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Abstract

The interpretation of traffic signs in accordance
with legal statutes is a challenging multimodal
reasoning task, as it requires integrating vi-
sual recognition with statutory provisions. This
paper presents our system for the VLSP 2025
shared task on Multimodal Legal Question An-
swering on Traffic Sign Rules (MLQA-TSR).
We propose a graph-based retrieval framework
that explicitly models relationships among legal
articles, traffic sign images, and tabular data.
Grounding DINO is used for zero-shot traf-
fic sign detection, and SigLIP encodes visual
features for alignment with a heterogeneous
knowledge graph. To refine relevance, we in-
corporate the jinaai/jina-reranker-m0 model as
a multimodal reranker for traffic sign selection.
These signs serve as entry points for cosine
similarity search and structured traversal with a
dynamic top-k strategy to retrieve legal context.
For question answering, we design a three-stage
pipeline that integrates image processing, con-
cise legal context extraction, and final reason-
ing. The reasoning stage ensembles Qwen2.5-
VL-7B-Instruct and InternVL3-8B models with
chain-of-thought and self-reflection prompting
to improve accuracy and interpretability. Ex-
periments on the official benchmark confirm
the effectiveness of our system for multimodal
legal QA, highlighting the advantages of struc-
tured graph-based retrieval combined with mul-
timodal reranking and reasoning.

1 Introduction

The rapid increase of traffic in urban areas, par-
ticularly in Vietnam, has led to a complex system
of traffic laws and regulations. For drivers, inter-
preting traffic signs in real-world scenes and un-
derstanding their legal implications is a significant
challenge. This paper addresses the VLSP 2025
challenge on Multimodal Legal QA on Traffic Sign
Rules (VLSP 2025 MLQA-TSR). The challenge
is divided into two sequential subtasks: first, re-
trieving relevant legal articles (Task 1), and second,

answering a specific question using the provided
context (Task 2). Per the shared task design, the
gold labels from Task 1 are provided as input for
Task 2, allowing for isolated evaluation of the VQA
component.

Our primary contribution is a novel, graph-based
multimodal system. For the retrieval task, we con-
struct a heterogeneous knowledge graph that ex-
plicitly connects law articles, traffic sign images,
and tabular data to robustly model the legal domain.
Our query processing pipeline uses a multimodal
reranker to identify salient visual evidence, fol-
lowed by a similarity search and structured graph
traversal to pinpoint relevant legal context. For the
question answering task, the highly accurate arti-
cles identified by our retrieval process serve as a
grounded knowledge base for a VQA module that
employs chain-of-thought reasoning to derive the
final answer.

2 Related Work

Multimodal Information Retrieval. Recent ad-
vances in multimodal QA highlight the benefits
of retrieval-augmented systems that combine tex-
tual and visual evidence. Approaches such as
MuRAG (Chen et al., 2022) and MuRAR (Zhu
et al., 2025b) retrieve relevant image–text pairs
to improve grounding, while M3DocRAG (Cho
et al., 2024) extends this paradigm to multi-page
documents with figures and tables. These works
demonstrate that multimodal retrieval substantially
improves QA performance over text-only baselines.

In the legal domain, retrieval-augmented gener-
ation has been shown to reduce hallucination and
improve statutory interpretation and case law rea-
soning (Kabir et al., 2025). Existing efforts largely
focus on textual pipelines, leveraging case-based
retrieval and legal knowledge graphs to organize
statutes and precedents. However, these systems
remain predominantly text-centric, overlooking the



role of visual evidence that is critical in domains
such as traffic law, where legal interpretation de-
pends on both statutory provisions and physical
signs. This gap motivates multimodal approaches
that explicitly link visual cues (e.g., traffic signs)
to legal rules, ensuring that answers are grounded
not only in textual statutes but also in the visual
context of the question.

Graph-based approaches further enrich retrieval
by exploiting structured relations. Symbolic traver-
sal over knowledge graphs enables explicit multi-
hop reasoning, while neural methods such as GNN-
Ret (Li et al., 2024) and CaseGNN (Tang et al.,
2023) leverage graph neural networks to capture
inter-document dependencies. More recently, mul-
timodal knowledge graphs (e.g., mKG-RAG (Yuan
et al., 2025)) unify text and images within retrieval-
augmented pipelines, though applications in the
legal setting remain largely unexplored.

Our work builds on these directions by intro-
ducing a graph-based multimodal retrieval system
tailored for traffic law QA. Unlike prior legal QA
approaches that rely mainly on textual retrieval, we
explicitly connect traffic sign images, tabular data,
and legal articles in a heterogeneous knowledge
graph, enabling structured traversal and grounded
multimodal reasoning.

Visual Question Answering. Complementing
retrieval and graph methods, recent progress
in open-source vision–language backbones and
prompting strategies has materially advanced VQA
performance. In particular, Qwen2.5-VL (Bai et al.,
2025) and InternVL3 (Zhu et al., 2025a) demon-
strate strong multimodal understanding and pro-
vide practical, high-quality bases for downstream
reasoning. At the prompting level, Chain-of-
Thought (CoT) prompting has been shown to elicit
step-wise reasoning in large models (Wei et al.,
2023), and subsequent work indicates that concise
or self-reflective reasoning traces can further im-
prove problem-solving fidelity and reduce spurious
outputs. Motivated by these findings, our VQA
pipeline combines retrieval-grounded context with
CoT and self-reflection style prompting to improve
factual grounding and reduce hallucination in vi-
sion–language reasoning.

3 Method

Our overall system is composed of two sequential
pipelines designed to address the two subtasks. Fol-
lowing the shared task’s structure, the VQA module

is developed and evaluated using the gold-standard
retrieved articles provided by the organizers after
the completion of Task 1.

3.1 Subtask 1: Multimodal Information
Retrieval

Our proposed system for the information retrieval
subtask is a comprehensive pipeline structured into
three main stages: Data Processing and Feature
Extraction (3.1.1), Heterogeneous Graph Construc-
tion (3.1.2), and Multi-Modal Query Processing
and Retrieval (3.1.3), as illustrated in Figure 1

3.1.1 Data Processing and Feature Extraction
The initial stage focuses on processing the raw vi-
sual data from both the legal document corpus and
the user queries to create a standardized set of fea-
tures. We employ Grounding DINO to automati-
cally identify and crop traffic signs from all images.
To enable semantic comparison, all cropped signs
are then encoded into high-dimensional vector rep-
resentations using the SigLIP model.

3.1.2 Heterogeneous Graph Construction
To model the rich, structured information and ex-
plicit relationships within the legal corpus, we
construct a heterogeneous knowledge graph. This
graph is foundational to our retrieval strategy, pro-
viding a structured map of the legal domain. The
construction process is entirely rule-based, ensur-
ing deterministic and accurate links between dif-
ferent types of information. The graph comprises
three distinct types of nodes and three types of
edges connecting them.

• TextNode: Represents an individual law arti-
cle, containing its title and processed textual
content.

• ImageNode: Represents a single, specific
traffic sign that has been cropped from the
images in the law database.

• TableNode: Represents a structured table ex-
tracted from within the text of a law article.

The connections between nodes are not learned
but are created by parsing the explicit structure and
text of the legal documents. This deterministic ap-
proach guarantees that the graph accurately reflects
the citations and references in the source material.

• Text-Image and Text-Table Edges: These
edges connect an article to the visual or tabu-
lar data it explicitly contains. They are created



Figure 1: Overview of our retrieval system, which integrates data processing, heterogeneous graph construction, and
multi-modal query processing for effective information retrieval.

by parsing markup tags within the article’s
text. An edge is formed between a TextNode
and an ImageNode if the text contains an <IM-
AGE:...> tag referencing that specific sign im-
age. Similarly, a Text-Table edge is created
when a <TABLE:...> tag is found. This cre-
ates an undirect, many-to-many link between
articles and their embedded visual and tabular
elements.

• Text-Text Edges: To capture the intricate web
of inter-article citations, we establish undi-
rected edges between TextNodes using syntac-
tic pattern matching. We apply a set of regular
expressions to the text of each article to find
explicit references to other articles, clauses,
or appendices. The primary patterns include
Điều X (Article X), Khoản Y (Clause Y), and
Phụ lục [A-Z] (Appendix [A-Z]). When a pat-
tern is matched—for instance, if the text of Ar-
ticle 15 contains a reference to "Điều 21"—an
undirected edge is created from the TextN-
ode for Article 15 to the TextNode for Article
21. This rule-based system transforms the
flat legal corpus into a structured knowledge
graph where legal citations are represented as
traversable paths.

3.1.3 Multi-Modal Query Processing and
Retrieval

This final stage processes a user’s query (image and
text) to retrieve the relevant legal articles. First, we
use the jinaai/jina-reranker-m0 model(AI, 2024)
to identify which traffic signs in the scene image
are relevant to the question. The relevant signs
are then used to perform a cosine similarity search
against the law database’s sign embeddings to find
entry points (ImageNodes) into our graph (see Fig-
ure. 2). Starting from these nodes, we perform a
Breadth-First Search (BFS) traversal to find con-
nected TextNodes. Finally, to ensure the number of

retrieved articles is proportional to the complexity
of the query, we apply a dynamic top-k selection
strategy. We observed that legal articles in the cor-
pus often appear in pairs: one article describing a
general rule, and another providing specific details.
To capture this structure, the number of results to
return, k, is determined by the number of relevant
signs (n_cropped) identified by the reranker, us-
ing the formula k = 2×n_cropped. This heuristic
is designed to retrieve the likely pair of articles for
each relevant sign, with the goal of improving the
F2 score by balancing precision and recall.

Figure 2: Visual similarity search results. The leftmost
column shows query images cropped from scenes. The
subsequent columns display the top images retrieved
from the law database, which are used to map the query
to a corresponding ImageNode

3.2 Subtask 2: Visual Question Answering

Our Visual Question Answering (VQA) module is
implemented as a three-stage pipeline (Figure 3)
that integrates questions, visual evidence, legal text,
and structured reasoning to produce the final an-
swer. The stages are: (i) Image Conditioning (3.2.1)
, which prepares visual inputs for clarity; (ii) Law
Context Extraction (3.2.2), which distills a concise
legal context based on the question and retrieved
articles; and (iii) Reasoning and Answer Selec-
tion (3.2.3), which generates the final answer using
vision-language models.



Figure 3: Overview of the Visual Question Answering
(VQA) pipeline. The system combines annotated query
images, retrieved law articles, and structured reasoning
prompts.

3.2.1 Image Conditioning
To prepare the visual evidence, we apply two pre-
processing steps. First, for each retrieved law arti-
cle, all associated images are merged into a single
composite image. Second, the user’s query image
is annotated using Grounding DINO, which detects
traffic signs and overlays bounding boxes to high-
light relevant regions. These annotated images pro-
vide clear attention anchors for downstream mod-
els.

3.2.2 Law Context Extraction
This stage generates a focused legal context con-
ditioned on the visual evidence. We employ
QwenVL, which receives the question, annotated
query image, retrieved law text, and composite law
image. The model is instructed to extract only the

details relevant to the detected traffic signs. To
avoid premature bias, answer options are withheld
from the model at this stage.

3.2.3 Reasoning and Answer Selection

The final stage derives the answer from the curated
inputs. We evaluate two small vision language
models, QwenVL2.5-7B and InternVL3-8B. Each
model is provided with the question, the candidate
answer choices, an annotated query image, and the
extracted legal context. To promote transparent
deliberation, we apply chain-of-thought and self-
reflection prompting. Finally, we aggregate the
predictions of both models through an ensemble
strategy to enhance robustness and reduce variance
in answer selection.

We experiment with two prompt variants, Pdetail
and Psimple. Figure 4 presents the prompt template
for Pdetail, which enforces a structured three step
reasoning schema.

Role: Vietnamese law expert
General Instruction:
1) Analyse the question;
2) Explain reasoning behind the choice;
3) Provide final answer.
Additional Information:
– Signs present in the image
– Exception: priority is always granted to
ambulances and police cars
Output Format:
<reasoning> ... </reasoning>
<answer> ... </answer>

Input: – Question – Answer choices

Figure 4: Prompt template for Pdetail. Psimple differs only
in its general instruction, which directs the model to
“think step by step” .

Pdetail The output format explicitly guides the
model through three distinct steps: Analyse the
question - Analyse the image - Reasoning based on
the provided choices
Psimple The output format only requires the

model to “think step by step” before producing
the final answer.

4 Experiment Result

4.1 Dataset

The VLSP 2025 MLQA-TSR dataset consists of
two main parts: a legal database and multimodal
QA pairs.



Law database. The legal database covers two
official Vietnamese traffic regulations: QCVN
41:2024/BGTVT with 310 articles and Law on
Road Traffic Order 36/2024/QH15 with 89 arti-
cles, totaling 399 articles. Many articles include
structured content such as 762 images and 212 ta-
bles, with references heavily skewed toward QCVN
41:2024/BGTVT (99.3%).

QA pairs. The dataset provides 530 training
questions and 196 test questions (50 public,
146 private). Questions appear in two formats:
multiple-choice (70.9%) and yes/no (29.1%). The
answer distribution is moderately balanced, as sum-
marized in Table 1. On average, each question con-
tains 18.8 words. In total, 130 unique legal articles
and 419 distinct traffic signs are explicitly linked to
the corpus, supporting grounded multimodal rea-
soning.

We do not use this data to train any model but
only as a validation set.

Answer label Proportion (%)
A 21.7
B 19.4
C 15.8
D 14.0
Đúng (Yes) 14.2
Sai (No) 14.9

Table 1: Answer label distribution in the VLSP 2025
MLQA-TSR training set.

4.2 Evaluation Metrics
4.2.1 Evaluation Metrics – Retrieval Task
Task 1 is evaluated using precision, recall, and the
F2 score, which emphasizes recall to better capture
the relevance of retrieved legal articles. For each
question i, the metrics are computed as:

precisioni =
#correctly retrieved articles

#retrieved articles
,

recalli =
#correctly retrieved articles

#relevant articles
.

The F2 score for question i is then defined as:

F2i =
5× precisioni × recalli
4× precisioni + recalli

.

The final evaluation metric is the macro-
averaged F2 score across all N questions:

F2macro =
1

N

N∑
i=1

F2i.

This macro-averaging ensures that each question
contributes equally to the overall score, prevent-
ing bias toward queries with more associated legal
references.

4.2.2 Evaluation Metrics – VQA Task
Task 2 is evaluated using accuracy, a straightfor-
ward and interpretable metric that quantifies the
proportion of correctly answered questions. It is
defined as:

accuracy =
#correctly answered questions

#total questions
.

Accuracy directly captures the end-user utility of
the system, as it reflects the frequency with which
the model provides the correct legal judgment. This
is particularly relevant for legal QA, where inter-
pretability and correctness of the final answer are
critical.

4.3 Results
4.3.1 Subtask 1. Multimodal Information

Retrieval
Our system ranked 2nd on the official leaderboard
with an F2 score of 0.611, slightly behind the top-
ranked team (0.646), as shown in Table 2.

Table 2: VLSP 2025 MLQA-TSR leaderboard results
for Subtask 1 (Legal Retrieval). Scores are reported in
terms of F2.

Team name F2 Score Rank

life_is_tough 0.646 1
Ours 0.611 2
tieen 0.599 3

To better understand the effectiveness of our
methods, we further conducted experiments on the
training set. We compared different graph traver-
sal strategies (Depth-First Search vs. Breadth-First
Search) and analyzed the impact of our dynamic
top-k selection strategy against a fixed-k baseline.
The results, measured in Precision (P), Recall (R),
and F2-Score, are presented in Table 3.

Table 3: Evaluation Results on Training Set

Experiment P R F2

Baseline (BGE-m3) - - 0.12

DFS, K=3 (best) 0.4132 0.5657 0.5136
DFS, w/ Dynamic-K 0.5472 0.5081 0.5061

BFS, K=3 (best) 0.4145 0.5676 0.5153
BFS, w/ Dynamic-K 0.4865 0.6176 0.5503



The results show that all graph-based meth-
ods significantly outperform the baseline. While
both Breadth-First Search (BFS) and Depth-First
Search (DFS) are effective, BFS consistently yields
slightly better results. The most significant im-
provement comes from our dynamic top-k selec-
tion strategy, particularly when paired with BFS,
which achieved the highest recall (0.6176) and the
best overall F2-score (0.5503). Because the F2-
score prioritizes recall, the BFS w/ Dynamic-K
configuration was selected for our final submission.

Finally, we evaluated this best-performing con-
figuration on the official test set. As shown in
Table 4, BFS with dynamic top-k achieved strong
performance, with recall reaching 0.6501 and F2-
score 0.6114, which aligns with our official leader-
board result in Table 2. This confirms the robust-
ness of our retrieval strategy across both validation
and test sets.

Table 4: Evaluation results of BFS with dynamic top-K
on the test set. The row ALL corresponds to using the
dynamic top-K strategy across all queries.

K Precision Recall F2-Score
1 0.8151 0.3344 0.3759
2 0.6986 0.5699 0.5829
3 0.5091 0.6124 0.5763
4 0.3955 0.6271 0.5473
5 0.3192 0.6289 0.5116
6 0.2728 0.6409 0.4887
7 0.2348 0.6426 0.4610
8 0.2082 0.6500 0.4386
9 0.1865 0.6491 0.4178
10 0.1685 0.6501 0.3980
15 0.1123 0.6501 0.3193
20 0.0842 0.6501 0.2671
30 0.0562 0.6501 0.2018
50 0.0337 0.6501 0.1359
100 0.0168 0.6501 0.0750
500 0.0034 0.6501 0.0164
ALL 0.6130 0.6501 0.6114

4.3.2 Subtask 2. Visual Question Answering
For the VQA task, our system achieved an accuracy
of 0.623, placing us 8th overall on the leaderboard
(Table 5).

We also performed ablation experiments to quan-
tify the contribution of different components. We
evaluate the pipeline under the following config-
urations: (i) using only the reasoning stage, (ii)
reasoning with annotated query images, (iii) rea-

Table 5: VLSP 2025 MLQA-TSR leaderboard results
for Subtask 2 (Visual Question Answering). Scores are
reported in terms of Accuracy.

Team name Accuracy Rank

dinhanhx 0.863 1
brownyeyez 0.836 2
tieen 0.781 3
Ours 0.623 8

soning with law context extraction, and (iv) the full
three-stage pipeline.

Table 6 reports accuracy across different set-
tings. Incorporating law context extraction con-
sistently improves performance, as it directs the
SVLMs to focus on the relevant legal rules. Anno-
tating the query image provides an additional but
smaller improvement. The ensemble of QwenVL
and InternVL yields the best overall accuracy.

Table 6: Task 2 results on Visual Question Answering.
Accuracy (Acc) is reported for different pipeline vari-
ants. The best score is in bold.

Base Prompt Annotation Law Ext. Acc

QwenVL Psimple No No 0.613
QwenVL Pdetail No No 0.615
QwenVL Pdetail Yes No 0.619
QwenVL Pdetail No Yes 0.624
QwenVL Pdetail Yes Yes 0.626
InternVL Pdetail Yes Yes 0.625
QwenVL Psimple Yes Yes 0.621
InternVL Psimple Yes Yes 0.628
Ensemble - - - 0.632

5 Discussion

5.1 Discussion
Our experimental analysis underscores two central
findings: (i) Breadth-First Search (BFS) consis-
tently outperforms Depth-First Search (DFS) and
(ii) the proposed dynamic top-k strategy provides
a principled improvement over a fixed-k baseline

Superiority of BFS over DFS. An examination
of the VLSP dataset reveals that each question is
paired with a single query image, which typically
contains only a limited number of traffic signs rel-
evant to the legal reasoning process. Each sign
corresponds to one appendix in the legal corpus,
and each appendix is uniquely linked to a single
governing article. Within this structured hierar-
chy, BFS is particularly well suited. Starting from
an ImageNode, BFS rapidly identifies the corre-
sponding appendix (TextNode) and subsequently



the governing article, thereby maintaining focus on
the most relevant legal provisions. In contrast, DFS
tends to traverse deeply into articles beyond the
immediately relevant ones, often retrieving extra-
neous content that introduces noise. This structural
alignment explains why BFS achieves superior re-
call and F2 performance across our experiments.

Effectiveness of dynamic top-k selection. A
second empirical observation is that the regula-
tion of a given traffic sign typically involves two
complementary provisions: a general article and a
corresponding appendix. A fixed-k retrieval strat-
egy is inherently limited in accommodating this
variability—setting k too low risks omitting perti-
nent articles (lowering recall), while setting k too
high introduces irrelevant content (lowering preci-
sion). The dynamic top-k approach mitigates this
limitation by adjusting the number of retrieved ar-
ticles to the number of detected signs in the query
image. Concretely, for ncropped detected signs, we
set k = 2× ncropped, which approximates the true
number of governing provisions. This adaptive
mechanism strikes a more effective balance be-
tween precision and recall, as reflected in the ob-
served gains in both recall and F2 score. These re-
sults demonstrate that dynamic top-k is not merely
heuristic but a principled adaptation to the struc-
tural characteristics of traffic law data.

Although our study is grounded in Vietnamese
traffic law, the observed advantages of BFS over
DFS and the dynamic top-k strategy arise from
structural characteristics of legal corpora such as
hierarchical referencing and interdependent provi-
sions, which are prevalent across jurisdictions and
indicate the broader applicability of our approach
to multimodal legal QA in diverse regulatory con-
texts.

5.2 Error Analysis

Failed case of Retrieval task Our analysis iden-
tified two primary sources of retrieval failures:
the multimodal reranker and the visual similar-
ity search model. The reranker can fail due to a
lack of global context or confusion between simi-
lar signs, leading to two outcomes (see Table. 7).
Over-ranking, as seen in query private_test_1, adds
too many irrelevant signs, causing our dynamic
top-k strategy to retrieve excess articles and harm
precision. Conversely, under-ranking, as in query
private_test_2, misses relevant signs, leading to the
omission of correct articles and reducing recall.

Table 7: Examples of reranker failures. Incorrectly
retrieved or missed articles are marked with an asterisk
(*).

Query ID Predicted Articles Ground Truth

private_test_1 QCVN 41, Art. 22 QCVN 41, Art. 22
(Over-ranking) QCVN 41, Art. B.4 QCVN 41, Art. B.4

QCVN 41, Art. 36*
QCVN 41, Art. E.14*
QCVN 41, Art. E.48*
QCVN 41, Art. E.17*
QCVN 41, Art. 25*
QCVN 41, Art. 73*

private_test_2 QCVN 41, Art. 41 QCVN 41, Art. 22*
(Under-ranking) QCVN 41, Art. F.10 QCVN 41, Art. B.3*

QCVN 41, Art. 41
QCVN 41, Art. F.10

Furthermore, the visual similarity search some-
times fails by prioritizing general visual features
(shape, color) over the specific symbols that de-
fine a sign’s legal meaning. For instance, a query
for a "speed bump" sign incorrectly retrieves other
rectangle information signs like "market", while
a query for a supplementary sign retrieves other
blue rectangular signs with different legal interpre-
tations (Figure. 5). This highlights the model’s
limitation in fine-grained semantic differentiation,
where visual similarity does not guarantee legal
equivalence.

Figure 5: Example of a similarity search failure.

Failed Case of VQA task Our analysis identified
three distinct patterns of error, even in seemingly
simple tasks. First, the models struggle with spatial
reasoning: when questions require distinguishing
the relative position of traffic signs (e.g., left vs.
right), the predictions often reveal confusion, de-
spite the visual cues being explicit. Second, the
models underperform on basic symbolic reason-
ing. For instance, when asked to determine parking
permission on a specific calendar day, the mod-
els correctly identify the day but fail to map it to
an odd/even category, leading to incorrect conclu-
sions (see Table 8). Third, we observe reason-
ing–answer mismatches: although the chain-of-
thought (CoT) rationale is correct, the final se-
lected choice is inconsistent with the reasoning,
even when self-reflection or randomized answer



formatting is applied. These observations suggest
that, rather than incrementally refining decisions
through CoT prompting, the models often commit
to an answer prematurely during question parsing.
This highlights an important limitation of current
small VLMs.

Table 8: Example of a Symbolic Reasoning Failure in
the VQA Module. The model correctly identifies the
rule for sign P.131c but incorrectly classifies the date
’17’ as an even number.

Model’s Generated Rationale (Incorrect)
"Trong trường hợp này, biển số P.131c áp
dụng vì nó cấm đỗ xe vào những ngày chẵn.
Ngày 17/5/2025 là ngày chẵn, do đó biển báo
này có hiệu lực."

English Translation:
"In this case, sign P.131c applies because it
prohibits parking on even days. May 17, 2025
is an even day, therefore this sign is in effect."

6 Conclusion

In this paper, we presented our system for the VLSP
2025 MLQA-TSR shared task, detailing a compre-
hensive, two-stage approach for multimodal legal
information retrieval and visual question answer-
ing. Our retrieval system’s core innovation is a
rule-based heterogeneous knowledge graph that
accurately models the relationships between le-
gal articles, traffic signs, and tabular data. This
structured approach, combined with a multimodal
reranker and an adaptive dynamic top-k selection
strategy, proved highly effective, securing Rank 2
in the Legal Document Retrieval task with an F2-
score of 0.611. For the VQA task, our three-stage
reasoning pipeline achieved an accuracy of 0.623,
placing us 8th overall.
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