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Abstract

Machine translation in the medical domain re-
quires high accuracy and precise handling of
specialized terminology, but this is difficult un-
der limited-resource conditions. Challenges
include the scarcity of bilingual medical data,
frequent out-of-vocabulary terms, and the lim-
ited capacity of smaller models. We investigate
English—Vietnamese and Vietnamese—English
medical translation with base models from the
Qwen 2.5 and Qwen 3 families, constrained
to a maximum of 3B parameters. Our ex-
periments include QLoRA fine-tuning for effi-
cient domain adaptation and GRPO alignment
to better match human translation preferences.
Among the evaluated systems, Qwen2.5-3B-
Instruct achieves the best overall performance
on shared task datasets. Results show that com-
pact instruction-tuned models, when adapted
with efficient fine-tuning and alignment strate-
gies, can deliver accurate and reliable medical
translations, offering a practical solution for
high-stakes domains under strict resource con-
straints.

1 Introduction

Machine Translation has advanced rapidly with the
rise of Large Language Models (LLMs), which
capture multilingual structures and contextual nu-
ances with high accuracy. While these systems
achieve strong results for high-resource language
pairs supported by large parallel corpora, their ef-
fectiveness is reduced in specialized domains with
limited bilingual data, where terminology coverage
is incomplete and translation quality often diverges
between directions.

English—Vietnamese medical translation illus-
trates this challenge. Despite the demand for ac-
curate systems to support healthcare communica-
tion, high-quality bilingual data is scarce and frag-
mented. General-purpose systems such as Google
Translate or NLLB-200 provide functional cov-
erage but often misinterpret clinical terminology,
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leading to literal, inconsistent, or even misleading
translations that are unsuitable for sensitive con-
texts.

To address this, we evaluate compact open-
source LLMs from the Qwen 2.5 and Qwen 3 fam-
ilies, all constrained to a maximum of 3B parame-
ters. We investigate multiple adaptation strategies.
First, we explore continued pretraining (CPT) with
QLoRA, where the model is further exposed to
large amounts of unlabeled medical text, enabling
efficient integration of domain-specific knowledge
without requiring extensive resources. As a sepa-
rate line of experimentation, we apply supervised
fine-tuning (SFT) combined with GRPO align-
ment, which leverages limited bilingual data and
preference-based optimization to improve trans-
lation adequacy, fluency, and alignment with hu-
man judgments. In addition, we incorporate back-
translation to expand the training data with syn-
thetic bilingual pairs and apply a length penalty to
encourage more natural sentence outputs.

Our results show that Qwen2.5-3B-Instruct,
trained with supervised fine-tuning and GRPO and
further improved through back-translation with
length penalty, achieves the strongest overall per-
formance on the shared task datasets. This con-
figuration yields higher terminology fidelity, more
fluent sentence structure, and more reliable transla-
tions compared to smaller models and alternative
strategies such as CPT with QLoRA. These find-
ings suggest that compact instruction-tuned models,
when adapted with carefully selected methods, can
be effectively specialized for medical translation
under resource constraints, offering a practical so-
lution for high-stakes domains such as healthcare.

2 Related Works

2.1 Low-Resource MT Techniques

Neural machine translation (NMT) models tend to
underperform on language pairs with limited par-



allel data, prompting strategies such as data aug-
mentation (e.g., back-translation (Sennrich et al.,
2016)) and transfer learning from high-resource
“parent” models (Ekle and Das, 2025). These ap-
proaches leverage shared linguistic representations
and have yielded substantial gains in many low-
resource settings (Zoph et al., 2016).

For the medical domain, Vo et al. (2024) im-
proved BLEU by 4.94% over Google Translate
using vinai-translate with MedEV—a high-quality
Vietnamese—English parallel dataset constructed
specifically for the medical domain. This shows
that carefully curated in-domain corpora can yield
measurable gains over general-purpose systems,
but also highlights the dependence of supervised
approaches on costly and labor-intensive dataset
construction.

2.2 Multilingual Pretrained MT Models

Large multilingual models such as mBART (Liu
et al., 2020), mTS (Xue et al., 2021), M2M-
100 (Fan et al., 2020), and NLLB-200 (Team
et al., 2022) achieve strong low-resource perfor-
mance via extensive multilingual pretraining. Xi-
aomi’s GemmaX family (Cui et al., 2025) fol-
lows this paradigm with a decoder-only architec-
ture (2B—7B), translation-specific instruction tun-
ing, and over 100 language pairs, providing compet-
itive BLEU in low-resource MT while remaining
deployable on modest hardware.

2.3 Adapting General-Purpose LLMs for
Translation

General-purpose LLMs such as GPT-4, LLaMA,
Qwen, and GemmaX have shown strong transla-
tion capabilities when used with prompting or fine-
tuning (Sizov et al., 2024; Vashee, 2024). How-
ever, in specialized domains such as medicine,
these models often struggle with terminology fi-
delity and domain-specific semantics due to limited
exposure during pretraining. To address these is-
sues, compact open-source models can be adapted
with efficient methods such as parameter-efficient
fine-tuning (e.g., QLoRA) (Dettmers et al., 2023),
which enables domain adaptation even under strict
computational constraints. Another promising line
of work uses preference-based reinforcement learn-
ing methods such as Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024), Relative Pref-
erence Optimization (RPO), or exploration-based
algorithms like GRPO, which optimize model out-
puts to align more closely with human translation

quality. Beyond fine-tuning and alignment, data
augmentation techniques such as back-translation
and decoding strategies including length penalties
have also been widely applied to improve fluency
and coverage in low-resource or domain-specific
MT scenarios.

3 Background

3.1 Neural Machine Translation
Fundamentals

Neural Machine Translation (NMT) casts trans-
lation as a conditional sequence generation task.
Given a source sentence X = (X1,...,%m),
the model generates a target sequence y =
(y1,---,Yn) according to:

n

P(y | x:0) = [[ P | yer,x:0) (1)
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where 6 are the model parameters. Modern sys-
tems predominantly use Transformer architectures
(Vaswani et al., 2023) with an encoder-decoder de-
sign, in which the encoder produces contextual rep-
resentations of the source and the decoder autore-
gressively generates target tokens while attending
to both source and past outputs. This architecture
effectively captures long-range dependencies and
complex linguistic relationships.

3.2 Low-Resource Learning Principles

In low-resource scenarios, parallel data scarcity
limits the ability to train high-capacity models with-
out overfitting. Limited samples increase variance
in parameter estimation, leading to unstable predic-
tions and degraded translation quality. To mitigate
this, prior work has explored:

* Multilingual pretraining: initializing from
models trained on large, diverse multilingual
corpora to inherit broad cross-lingual repre-
sentations.

* Data augmentation: expanding training cov-
erage with synthetic bitext, such as back-
translation or pivot-based generation.

* Alignment-based optimization: directly re-
fining model outputs toward desired fluency
and adequacy using preference-based objec-
tives, without requiring a large supervised fine-
tuning stage.



3.3 Policy Gradient and GRPO

Reinforcement Learning from Human Feedback
(RLHF) frames text generation as a policy 7y pro-
ducing a sequence y given input x, with a scalar
reward R(y) reflecting quality. The learning goal
is to maximize the expected reward via policy gra-
dients:
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where b is a baseline to reduce gradient variance.
PPO. In Proximal Policy Optimization (PPO)
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GRPO. Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) completely eliminates
the critic. Instead, it sets the baseline b as the group
average reward over K candidates:
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where 7(y) is the scalar reward for a complete trans-
lation.

The GRPO objective then mirrors PPO but
shares the same A; for all tokens in candidate Yi:
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This design reinforces translations scoring above
the group mean and suppresses those below, yield-
ing stable optimization without the complexity of
training a critic.

3.4 Efficient Finetuning with QLoRA

QLoRA (Dettmers et al., 2023) enables fine-tuning
large models under limited hardware by combining
low-rank adaptation (LoRA) with 4-bit quantiza-
tion. Given pretrained weights Wy € R?** LoRA
introduces a low-rank update

AW = BA, AeR™F,

B e RY>" < min(d, k)

so that the adapted weights become
W =Wy + AW.

During training, Wy is frozen and quantized, while
only A, B are updated in higher precision. For
input 2 € R”, the forward pass is

h = Wox + BAm,

where Wy uses quantized matrix multiplication.
This reduces memory usage while retaining per-
formance, enabling domain-specific adaptation of
compact LLMs.

4 Methodology

4.1 Overview

We follow a three-stage Vi—En medical MT
pipeline—SFT on parallel data, BT to aug-
ment with synthetic pairs, and GRPO for
preference-based alignment—starting GRPO from
the SFT + BT checkpoint.

Central to this process is the reward function,
which combines automatic translation metrics with
penalty terms to discourage undesirable behaviors
such as excessive length deviation or semantic drift.
This scalar reward reflects overall translation qual-
ity, balancing fluency, adequacy, and stylistic con-
sistency. For each source sentence, the model gen-
erates K candidate translations, each scored by the
reward function. GRPO computes a normalized
advantage for each candidate relative to the group
mean, reinforcing outputs above average and sup-
pressing those below.

By bypassing an explicit supervised adaptation
stage, our pipeline focuses on exploiting the base

(likelihood ratio for token ¢ in candidate ). model’s multilingual prior and directly steering its
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Figure 1: The pipeline consists of three main stages. First, monolingual Vietnamese and English corpora are
augmented through back-translation and combined with available bilingual data to form a merged training set.
Second, this data is used to perform supervised fine-tuning (SFT), grounding the model in domain-specific bilingual
mappings. Finally, the SFT model is refined with Group Relative Preference Optimization (GRPO), where
preference-based rewards such as BLEU and length penalties align outputs for greater fluency, structural fidelity,

and reliability in medical translation.

outputs toward human-preferred translations. This
strategy allows exploration of diverse phrasings
while maintaining source fidelity, resulting in a
translation system tuned for both quality and de-
ployability in low-resource settings.

4.2 Supervised Fine-Tuning (SFT) Stage

The first stage applies supervised fine-tuning
(SFT) to adapt the base model for bidirectional
Vietnamese—English (Vi<>En) medical translation.
Let = be a source sentence and y = [y1, ..., Yjy(]
its target translation. Each x is wrapped in a prompt
template I(x), ensuring consistent instruction-
following in both Vi — En and En — Vi.

Training uses bilingual bitext, supplemented
with backtranslation (Sennrich et al., 2016): En-
glish monolingual sentences are translated into
Vietnamese and vice versa. This augmentation
broadens domain coverage, increases stylistic di-
versity, and balances both translation directions.

Objective. Let DL . be the merged bidirec-

tional dataset, containing both Vi — En and
En — Vi pairs. The SFT objective is the negative
log-likelihood:

Lspr(I(z),y;0) = —log Py(y | 1(x)) (10)
(full sequence loss)

lyl
= Z log Py (yr. | y<k, 1(2))

k=1
1D

(token-level form),
where:

* [(z) — instruction-formatted prompt contain-
ing the source sentence x,

* yr — the k-th target token,
* Yy — preceding target tokens,
*  — model parameters.

This stage focuses purely on maximizing trans-
lation fidelity and fluency in both directions, pro-
viding the model with a strong, instruction-aligned
translation capability before applying preference-
based optimization.

4.3 Reward Function Design

To guide the model toward human-preferred trans-
lations, we define a scalar reward that balances
accuracy and output length. Given an instruction-
formatted source I(x) and its reference trans-
lation ., the model generates K candidates
{yM, ..., 4} Each candidate is scored as:

R(y™®) = BLEU(y®), yyer)

| |y(k)| - ‘yref| ’

.
’yref’

o (12)

where the first term measures n-gram precision and
the second penalizes deviations in length, with A
controlling penalty strength. We also experimented
with a BLEU-only reward, which improved per-
formance for short, formulaic sentences but failed
to control verbosity consistently — motivating the
inclusion of the length penalty in the final formula-
tion.

The group baseline for variance reduction is the
mean reward across all K candidates:

1 ,
b= ?ZR(yU)). (13)



4.4 GRPO Optimization Process

We adopt Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) to directly align model
outputs with our reward function, bypassing the
need for a critic. GRPO computes the relative ad-
vantage R(y*)) — b for each candidate and updates
the model parameters via:

K
(R(y™) —b)
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1
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where 7y is the model policy. Candidates scoring
above the baseline are reinforced, while those be-
low are suppressed. Rewards are computed for
both Vi—En and En—Vi directions for balanced
improvements.
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Figure 2: GRPO pipeline for translation optimiza-
tion. The model generates K candidates, computes
BLEU + length-penalized rewards, applies a group base-
line, and updates parameters based on relative advan-
tages.

5 Datasets Resource

5.1 Data Collection

To develop a robust Vietnamese—English medical
domain translation system, we curated a multi-
stage dataset pipeline entirely based on the re-
sources released by the shared task organizers.!
The dataset preparation followed two key phases:
supervised fine-tuning and reinforcement learning
with GRPO.

Supervised Fine-tuning:
The supervised fine-tuning utilized a primary
Vietnamese—English parallel corpus, provided by
VLSP 2025. To ensure data quality and consistency,
datasets were processed through a comprehensive
multi-step cleaning pipeline.

* Punctuation Filtering: We excluded sentence
pairs with abnormal punctuation patterns to
minimize noise in the training data.

* Deduplication: Exact duplicates were identi-
fied and removed through hashing, ensuring
data diversity and reducing overfitting risks.

* Quality-Based Filtering We applied sentence-
level filtering using SacreBLEU (Post, 2018).
Each source sentence was translated with a
preliminary baseline model, and the hypoth-
esis was compared against the provided tar-
get side as reference. Sentence pairs with
BLEU scores below a defined threshold were
removed, improving the overall quality of the
parallel data.”

Each step progressively refined the datasets by
discarding low-quality or problematic data. The
final dataset sizes and the detailed statistics of sen-
tence pairs remaining and removed at each stage
for both corpora are summarized in Table 1.

GRPO-based Reinforcement Learning:

In this stage, we did not introduce additional
datasets such as ViPubmed. Instead, we reused
the bilingual corpus from the SFT + BT stage and
applied a semantic embedding model to filter for
the most semantically relevant pairs. This ensured
that GRPO optimization focused on high-quality,
domain-relevant translations while discarding noisy
or weakly aligned examples. From this filtering,
we obtained a balanced subset of approximately

'We strictly adhered to the competition rules and did not
use any external parallel corpora beyond the official dataset.

>The baseline system was trained only on organizer-
provided data; no external resources were used.



Step

VLSP2025

Initial Dataset
Punctuation Filtering
De-duplication
Quality-Based Filtering

Final Dataset

Remaining Removed
500,000 -
500,000 0
369,224 130,776
358,601 10,623
358,601 141,399

Table 1: Data cleaning pipeline statistics showing sentence pair counts and removal percentages at each processing

stage for VLSP2025 and ViPubmed datasets.

50,000 sentence pairs (25,000 Vi-En and 25,000
En-Vi). This curated subset was then employed for
GRPO-based fine-tuning, where preference-based
rewards such as BLEU and length penalties guided
the model toward greater fluency, structural fidelity,
and robustness in medical translation.

5.2 Data Augmentation

We augmented the Vietnamese—English medical
corpus through bidirectional backtranslation, us-
ing only the monolingual datasets released by
VLSP 2025. English medical texts were translated
into Vietnamese to create synthetic En— Vi pairs,
while Vietnamese texts were translated into En-
glish for Vi—En. Synthetic data was generated
with our intermediate SFT model trained exclu-
sively on organizer-provided data.®> This approach
increases coverage of domain-specific terminology
such as drug names, diseases, and clinical proce-
dures that are often underrepresented in parallel
corpora. Backtranslation also improves balance
between translation directions, broadens stylistic
variety, and strengthens generalization to unseen in-
puts. To reduce noise, synthetic pairs were further
filtered using automatic quality metrics to retain
only high-confidence translations.

6 Experiments

6.1 Experiment Setup

To validate our two-stage Vietnamese—English
(Vi<»En) medical translation pipeline, we executed
each component sequentially and evaluated per-
formance at every step. This staged evaluation
isolates the contribution of each method. We
first established a baseline using Supervised Fine-
Tuning (SFT) on bilingual and backtranslated data.

3No external translation models or corpora were used for
backtranslation.

Separately, we explored Parameter-Efficient Fine-
Tuning (PEFT) with QLoRA to efficiently integrate
domain-specific knowledge. Finally, we applied
Group Relative Policy Optimization (GRPO) to
align model outputs with preference-based reward
signals. This setup allows comparison between
likelihood-based and preference-aligned training,
highlighting gains in fluency, adequacy, and style.

For bidirectional translation, the prompt format
is key. Instead of a single fixed template, we created
multiple instruction-style prompts explicitly speci-
fying source and target languages. Variations pre-
vent overfitting to phrasing and improve robustness.
Prompts use the messages format, with role and
content fields, matching the LLM’s chat-based
training. Each source sentence = is embedded into
a prompt I(x) paired with reference y, ensuring
consistency between training and inference and en-
abling both translation directions within a single
model.

In GRPO, the reward combines BLEU with a
length penalty to avoid outputs that are too long
or short. Ablation with BLEU-only shows im-
provements over SFT, but adding the length penalty
yields more concise, fluent, and structurally faithful
translations, particularly in En— Vi.

6.2 Implementation Detail

All experiments using standard Supervised Fine-
Tuning (SFT) were implemented with the Hugging-
Face Trainer API for sequence-to-sequence train-
ing. For QLoRA experiments, we employed the
PEFT library to perform parameter-efficient fine-
tuning on the base model.

Training was conducted on a single GPU with
48GB of VRAM using mixed-precision (fp16) to
reduce memory usage and accelerate computation.
Batch sizes and sequence lengths were tuned to
fully utilize GPU memory while maintaining sta-



Model En—Vi Vi—En
envit5-translation’ 42.86 31.33
ChatGPT (zero-shot)f 3438  29.79
SeamlessM4T-medium? 31.04 21.57
QLoRA 37.80 23.35
QLoRA + GRPO (BLEU-only) 41.96 27.44
QLoRA + GRPO (BLEU + length penalty)  42.55 28.94
SFT 40.92 27.32
SFT + GRPO (BLEU-only) 42.54 29.78
SFT + GRPO (BLEU + length penalty) 43.38 31.49

Table 2: BLEU scores for external baselines and our experimental models on the Vi<+En test set. TExternal baseline
scores were reported on the same larger dataset but with a different evaluation split; therefore, results are not strictly

comparable to ours.

bility. For GRPO, reward signals combined BLEU
with a length penalty and were computed during
training. Backtranslated data were filtered for qual-
ity before inclusion, and early stopping based on
validation BLEU was applied to prevent overfit-
ting.

7 Results
Model Variant En—Vi | Vi—En
SFT 40.92 27.32
+ GRPO (BLEU-only) 42.54 29.78
+ GRPO (BLEU+len) 43.38 31.49

Table 3: Incremental BLEU improvements from GRPO
over the SFT baseline.

We evaluate translation quality of the proposed
Vietnamese—English (Vi<>En) MT system against
strong external baselines. All experiments are con-
ducted on a held-out test set, with evaluation in
both directions (Vi—En and En—Vi).

7.1 Evaluation Metrics

We report translation quality using BLEU (Pap-
ineni et al., 2002), computed with SacreBLEU
(Post, 2018) for reproducibility.

7.2 Baselines and Stages
We compare against:
¢ envit5-translation — a transformer-based

Vietnamese—English translation model from
VietAl

¢ ChatGPT (zero-shot) — evaluated without
task-specific fine-tuning.

* SeamlessM4T-medium — a multilingual
translation model released by Meta.

and evaluate our models across the following
stages:

* QLoRA — parameter-efficient continual pre-
training on medical text.

* QLoRA + GRPO (BLEU-only) — prefer-
ence optimization using BLEU as reward.

* QLoRA + GRPO (BLEU + length penalty)
— adds a length-regularization term to encour-
age natural outputs.

* SFT — supervised fine-tuning on parallel and
backtranslated data (full configuration in the
appendix table 4).

* SFT + GRPO (BLEU-only) — SFT model
further aligned with BLEU-based preference
optimization.

* SFT + GRPO (BLEU + length penalty)
— extends BLEU optimization with length
penalty for fluency.

7.3 Observations

Table 2 shows clear improvements across the
pipeline stages. ~ Among external baselines,
envitb-translation achieves the strongest
BLEU scores (42.86 En—Vi, 31.33 Vi—En), while
ChatGPT and SeamlessM4T-medium perform sub-
stantially lower, highlighting the challenge of
medical-domain translation for general-purpose
systems.



For QLoRA experiments, parameter-efficient
continual pretraining alone yields modest gains
(37.80 BLEU En— Vi), showing that domain adap-
tation helps but is insufficient by itself. Adding
GRPO improves performance, and length penalty
provides a slight additional boost, particularly in
Vi—En.

Supervised Fine-Tuning (SFT) is a much
stronger baseline, already surpassing QLoRA alone.
Table 3 further breaks down the incremental ef-
fect of GRPO over SFT: GRPO adds +1.6 BLEU
(En—Vi) and +2.5 BLEU (Vi—En), while the
length penalty contributes a smaller +0.8 and +1.7
BLEU respectively. This indicates that most of the
gain arises from reinforcement-based alignment,
with length penalization acting mainly as a stabi-
lizer.

Overall, the results demonstrate that combining
SFT with GRPO achieves the best performance
(43.38 BLEU En—Vi, 31.49 Vi—En). The pro-
gression across experiments indicates that super-
vised signals and preference optimization are com-
plementary, addressing issues such as literalism,
verbosity, and phrasing quality.

8 Discussion

8.1 Limitations

Despite these promising results, several limitations
remain. First, the evaluation is restricted to BLEU
scores, which primarily capture n-gram overlap but
do not fully reflect semantic adequacy or terminol-
ogy correctness. This makes it difficult to assess
translation safety in critical medical contexts. Sec-
ond, while the models demonstrate consistent gains,
the absolute improvements in Vi—En remain mod-
est, suggesting that reverse-direction translation
is more sensitive to data coverage and alignment
strategies. Third, GRPO training introduces addi-
tional complexity in terms of hyperparameter sen-
sitivity and computational overhead, which may
limit reproducibility or scalability to larger settings.
Finally, the reliance on synthetic backtranslation
data could bias the model toward overfitting gen-
erated patterns, reducing robustness to real-world
clinical text.

8.2 Future Work

While our pipeline demonstrates strong perfor-
mance, several directions remain for improvement.
First, exploring larger or more diverse medical cor-
pora could further enhance domain coverage. Sec-

ond, extending GRPO reward functions to incorpo-
rate semantic similarity metrics or terminology ac-
curacy could reduce errors in clinical terms. Third,
investigating multi-task or multilingual adaptation
might allow simultaneous translation across multi-
ple language pairs without compromising quality.
Finally, integrating uncertainty estimation could
help flag translations that require human verifica-
tion in high-stakes medical contexts.

Another promising direction is to explore hy-
brid evaluation frameworks that combine automatic
metrics with domain-expert feedback. Incorpo-
rating physician or translator annotations could
expose systematic weaknesses in terminology fi-
delity, pragmatic correctness, or ambiguity han-
dling. Additionally, scaling the pipeline to other
low-resource medical languages could test the gen-
eralizability of the approach and highlight whether
the synergy between SFT and GRPO is universally
beneficial across linguistic and cultural boundaries.

8.3 Conclusion

We present a resource-efficient, two-stage
Vietnamese—English medical translation pipeline
combining Supervised Fine-Tuning, parameter-
efficient QLoRA adaptation, and preference-based
GRPO optimization. Experiments show that SFT
with GRPO and length-penalized rewards achieves
the strongest performance across both translation
directions. Our results demonstrate that compact
LLMs, when carefully adapted and aligned with
preference-based signals, can provide reliable,
fluent, and domain-accurate translations suitable
for medical applications under computational and
data constraints.

In summary, this work confirms that the com-
bination of data-driven supervised training and
preference-guided reinforcement represents a prac-
tical and scalable solution for domain-specific
translation. While challenges remain in evaluation
depth and robustness, the demonstrated gains sug-
gest that compact architectures with tailored adap-
tation strategies can serve as a viable alternative to
general-purpose large-scale models in high-stakes
environments such as healthcare.
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Stage Configuration
SFT Optimizer: AdamW (51 = 0.9, B2 = 0.999, weight decay = 0.01)
Learning rate: 2 x 10™° with linear decay
Batch size: 64 sequences (grad. accumulation = 8)
Max sequence length: 512 tokens
Epochs: 5 (early stopping, patience = 2)
QLoRA | Quantization: 4-bit NF4 with double quantization
LoRA rank r = 64, oo = 128, dropout = 0.05
Target modules: linear projections in attention & MLP blocks
Batch size: 128 sequences (enabled by quantization)
Epochs: 5
GRPO Candidate number K = 4 per source sentence
Reward: BLEU — - length penalty (Eq. 12)
Optimizer: Adam, learning rate 1 x 1076
Training steps: 20,000 (= 2 epochs over GRPO subset)
Clip parameter € = 0.2
Batch size: 16 prompts (4 candidates each, total 64 samples/step)
Table 4: Detailed hyperparameter settings for SFT, QLoRA, and GRPO training.
Appendix C Additional Evaluation Metrics

A Hyperparameter Settings

To ensure reproducibility, Table 4 summarizes the
detailed configurations used in all training stages,
including supervised fine-tuning (SFT), parameter-
efficient fine-tuning (QLoRA), and GRPO align-
ment.

All experiments were run on a single NVIDIA
A6000 GPU (48GB VRAM) with mixed-precision
(fp16). QLoRA was adopted to increase effec-
tive batch size, enable longer sequence lengths (up
to 1,024 tokens) during GRPO, and ensure repro-
ducibility on more resource-constrained hardware.

B Length Penalty Sensitivity

In the reward function (Eq. 12), we set A = 1.0
for all experiments, which we found to be a sta-
ble choice balancing BLEU gains with verbosity
control.

To assess sensitivity, we ran an ablation vary-
ing A € {0.5,1.0,2.0}. Results (Table 5) show
that A = 1.0 consistently yields the best trade-off.
Lower values reduce the effectiveness of verbosity
control, while higher values over-penalize outputs,
occasionally truncating translations.

A | En—ViBLEU | Vi—En BLEU
0.5 43.12 30.88

1.0 43.38 31.49
2.0 42.70 30.92

Table 5: Effect of A on BLEU scores for the SFT+GRPO
model.

To complement BLEU, we include further evalua-
tion dimensions covering semantic similarity, ter-
minology fidelity, and human validation.

C.1 BLEU and Semantic Similarity

We report BLEU together with cosine similar-
ity computed from Qwen3-Embedding-4B(Zhang
et al., 2025) to capture both surface-level overlap
and semantic alignment. Results in Table 6 show
that GRPO consistently improves over SFT. While
length penalization contributes to modest gains by
discouraging verbosity, the majority of improve-
ments are attributable to the model’s enhanced abil-
ity to phrase translations more effectively.

Metric Model En—Vi | Vi—En
SFT 40.92 27.32
BLEU SFT + GRPO 42.54 29.78
(BLEU-only)
SFT + GRPO 43.38 31.49
(BLEU+len)
SFT 0.894 0.862
Cosine Similarity | SFT + GRPO 0.901 0.869
(BLEU-only)
SFT + GRPO 0.905 0.873
(BLEU+len)

Table 6: BLEU and semantic similarity (cosine similar-
ity using Qwen3-Embedding-4B) for SFT and GRPO
models.

C.2 Terminology Fidelity

To assess domain fidelity, we extracted 200 sen-
tences containing medical terminology (e.g., drug



names, diagnoses, procedures) and measured exact-
match accuracy. As shown in Table 7, GRPO with
length penalty improves terminology consistency
over SFT, reducing mistranslations of critical do-
main terms.

Model En—Vi | Vi—En
SFT 87.2% 83.5%
SFT + GRPO (BLEU+len) | 90.1% 85.6%

Table 7: Terminology-level accuracy on a medical sub-
set.

D Additional Evaluation Metrics

To complement BLEU, we include further evalua-
tion on semantic similarity and terminology fidelity.
A human expert evaluation was not conducted due
to the lack of available medical annotators, which
we identify as an important direction for future
work.
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