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Abstract

Temporal reasoning is one of the fundamen-
tal properties of natural language comprehen-
sion, and date arithmetic is one of the important
problems in the symbolic processing of time.
This paper describes our approach and outcome
for the Date Arithmetic sub-task of the VLSP
2025 Temporal QA Challenge. The task asks
systems to take Vietnamese questions as input,
recognize temporal referential and operations,
and compute a new date accordingly from a
given context. To counter this, we took a fine-
tuning strategy on Vistral, which is a 7-billion
parameter language model. A key point in our
strategy was the use of data augmentation tech-
niques, whereby we could develop a stronger
and more generalized model that would com-
fortably be able to handle the different question
styles from the TimeBench dataset. Our system
worked extremely well, achieving 99% accu-
racy on the private test set and ranking first
among all the participants. In this work, we
give a clear explanation of our approach, an in-
terpretation of the results, and discuss what we
learned in fine-tuning large models to individ-
ual reasoning tasks, highlighting the strength
of data augmentation to achieve almost perfect
performance.

Source code available at:
https://github.com/minhlake04 /VSLP-2025-
temporal-qa-date-arithmetic-submission

1 Introduction

Temporal reasoning is one of the foundations of
cutting-edge natural language understanding, en-
abling machines to comprehend and reason over
the ordering, duration, and sequence of events de-
scribed in text. This capability is essential for a
wide range of applications, from question answer-
ing and information extraction to dialogue systems.
Date arithmetic is one among the numerous tempo-
ral reasoning challenges that is a simple symbolic

manipulation problem. It must be extremely accu-
rate in terms of time and also capable of making
precise calculations, as a basis for further temporal
logic which will be more complex.

We introduce our research in the setting of the
Date Arithmetic (date-arith) sub-task of the Viet-
namese Language and Speech Processing (VLSP)
2025 Temporal QA Challenge. The shared task
presents a wonderful opportunity to benchmark
and develop temporal reasoning systems for Viet-
namese. The task can be described as follows:

* Input: A question in Vietnamese, which con-
tains a base date, Dy, and a temporal offset
operation, O, fset, indicating a duration to be
added or subtracted.

* Output: The target date, Dygrges, calculated
by applying the operation to the base date:
Dtarget = Dpgse £ Ooffset-

The test data for this task is a Vietnamese trans-
lation and extension of the Date Arithmetic part of
the complete TimeBench benchmark, ensuring a
challenging and diverse set of questions.

In this paper, we present our methodology and
outcome of our system which was ranked num-
ber one in the competition. Our approach revolves
around fine-tuning Vistral, a powerful 7-billion-
parameter language model, to produce the com-
puted date directly from the input question. One
key element of our approach was the heavy reliance
on data augmentation strategies, enabling us to de-
velop a stronger model that could accommodate
a vast number of linguistic forms for calculating
dates. Our end system attained 99% accuracy on
the private test set, proving the benefit of com-
bining a strong base model and purposeful data
improvement.

The rest of this paper is organized as follows:
Section 2 provides an overview of related works on
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temporal reasoning. Section 3 describes our pro-
posed approach, i.e., the model structure and the
data augmentation process. Section 4 gives a com-
plete analysis of our experimental results. Finally,
Section 5 discusses our findings and concludes
with some possible directions for future work.

2 Related Work

2.1 Temporal Reasoning Benchmarks in NLP

Evaluating the temporal reasoning of Large Lan-
guage Models (LLMs) has been the focus of sev-
eral key benchmarks. For instance, datasets like
TORQUE (Ning et al., 2020) and MC-TACO
(Zhou et al., 2019) have consistently revealed
significant gaps between LLM and human per-
formance on complex tasks involving event or-
dering and temporal commonsense. More com-
prehensively, the TimeBench benchmark (Chu
et al., 2024) demonstrated that even state-of-the-art
LLMs struggle with fundamental symbolic manip-
ulations like date arithmetic, highlighting the need
for targeted, domain-specific solutions.

2.2 Temporal Reasoning in Vietnamese NLP

Research in Vietnamese temporal reasoning is a
nascent field. Early efforts primarily focused on the
foundational tasks of time expression recognition
and normalization (Lambert and Nguyen, 2012;
Strotgen and Nguyen, 2014), rather than complex
question answering. A significant step forward was
the VLSP 2025 Temporal QA challenge, which
introduced the first dedicated benchmark for tem-
poral reasoning in Vietnamese by adapting tasks
from TimeBench (Association for Vietnamese Lan-
guage and Speech Processing, 2025). Our work
directly addresses the symbolic Date Arithmetic
sub-task from this challenge.

2.3 Parameter-Efficient Fine-Tuning of LLMs

To efficiently adapt LLMs for specialized tasks,
we employ Parameter-Efficient Fine-Tuning
(PEFT) . This field has progressed rapidly from
Low-Rank Adaptation (LoRA), which injects
small, trainable low-rank matrices into a frozen
model (Hu et al., 2021), to QLoRA, which in-
tegrates 4-bit quantization to dramatically reduce
memory requirements (Dettmers et al., 2023). A
recent innovation, Weight-Decomposed LoRA
(DoRA), further improves performance by decom-
posing weights into magnitude and direction com-
ponents, allowing for more expressive and stable

training updates (Liu et al., 2024). Our methodol-
ogy builds on this paradigm, leveraging the effi-
ciency and power of these techniques to specialize
an LLM for date arithmetic without the prohibitive
cost of full fine-tuning.

3 Methodology

3.1 Overview of Method: Fine-tuning
Vistral-7B-iSMART with QDoRA and
EM-oriented Decoding

3.1.1 Data Preparation, Augmentation, and
Formatting

We began with a Vietnamese date-arithmetic cor-
pus derived from TimeBench via translation and
rule-based templating, and expanded it with a
retrieval-augmented generation (RAG) pipeline
coupled with a deterministic solver filter. Con-
cretely, we index ~2k seed questions together with
five calendar rules (leap years, month lengths,
month-rollover, week=7 days, output canonical-
ization) using a TF-IDF retriever (min_df=2,
max_features=30k). For each of 300 randomly
sampled seeds (random.seed=42), we retrieve top 5
snippets, prompt Google Gemini to propose up to 8
paraphrases per seed, and de-duplicate against the
seed set (case-insensitive). Each candidate question
must contain a recognizable temporal anchor and is
parsed by a strict regex-based recognizer into one
of three granularities - day (dd/mm/yyyy), month
(“Thang m, yyyy”), or year - together with an offset
signature covering years/months/weeks/days and a
direction token (“trudc/-” vs. “sau/+’). Candi-
dates are accepted only if a rule-consistent solver
(dateutil.relativedelta) returns a canonical an-
swer string; otherwise they are discarded. This pro-
cess yields 1,949 additional, solver-validated items,
bringing the final training set to 4,949 question
- answer pairs, all wrapped in a fixed instruction
schema (##+# Instruction: {question} ###
Response: {answer}.) to stabilize loss masking
and match inference prompts.

Beyond pipeline mechanics, we characterize the
synthesized 1,949-item subset along three axes that
are enforced by construction in the code:

1. Question taxonomy: questions are stratified
by anchor granularity (day/month/year) de-
tected via dedicated regexes; lexical variants
include both digit forms and Vietnamese num-
ber words (e.g., “mdt,” “hai,” “musi hai”),
ensuring coverage of common surface realiza-



tions while preserving parseability.

2. Operation typology: offsets span single-
unit (years, months, weeks, days) and mixed-
unit compositions; directionality is normal-
ized to addition/subtraction via a compact
sign detector keyed to “truc/bét/tri” (-) and
“sau/thém/+” (+). End-of-month and leap-
year corner cases are explicitly exercised and
resolved by a clamp-to-valid-date policy, guar-
anteeing valid Gregorian outcomes.

3. Quality and validity: syntactic validity is
guaranteed by anchor detection; semantic va-
lidity is guaranteed by the solver, which en-
codes the same calendar rules used at re-
trieval time. Canonical answer formats are en-
forced (“dd/mm/yyyy” for day-level, “Thang
m, yyyy” for month-level, and bare “yyyy” for
year-level), yielding deterministic supervision
targets.

Taken together, the augmentation improves lin-
guistic diversity (via retrieval-conditioned para-
phrasing) without sacrificing correctness (via
solver filtering) and produces a balanced portfolio
of anchor granularities and offset structures suit-
able for EM-oriented training. We note two limi-
tations intrinsic to the current code: (i) the anchor
recognizer prioritizes numeric date forms and a
limited lexicon of Vietnamese number words, po-
tentially under-sampling very long-form dates; and
(ii) week-level offsets are ignored for month/year
anchors by design to preserve granularity. These
constraints can be relaxed in future iterations by
expanding the lexical map, adding additional date
patterns, and introducing unit-conversion rules for
cross-granularity reasoning.

3.1.2 Model Fine-tuning with QDoRA (DoRA
on QLoRA)

We fine-tuned Vistral-7B-iSMART, a Viet-
namese Mistral-class 7B model, using a QDoRA
setup: DoRA adapters on top of a 4-bit (NF4)
quantized base (QLoRA). Concretely, the 4-bit
quantization (bitsandbytes) reduces GPU mem-
ory, while DoRA constrains adaptation to the di-
rection of the weights (magnitude held fixed),
improving optimization stability and preserving
pre-training knowledge. We targeted attention
and MLP projections (q_proj, k _proj, v_ proj,
o_proj, gate proj, up_ proj, down proj) with
rank R = 128 and oo = 256 and applied a modest
LoRA dropout of 0.05.

To prevent the model from learning instruction
boilerplate, we used an answer-only loss mask: to-
kens before the sentinel ### Response: are set
to -100 in the labels, so only the completion seg-
ment contributes to the loss. This sharply focuses
learning on mapping questions to canonical dates.

Optimization & hardware. Training ran on
2x RTX 5090 GPUs with bfloat16 compute when
available, gradient checkpointing, AdamW (torch-
fused), a cosine schedule with 10% warmup, learn-
ing rate of 10~%, for 3 epochs, and an effective
batch size of 16 (per-device batch of 2 x 8 gradient
accumulation steps). This configuration achieved
strong generalization while keeping memory and
wall-time modest.

Base model. Vistral-7B-iSMART is an
Apache-2.0  licensed,  Vietnamese-oriented
Mistral-7B derivative (7.29B params) fine-tuned
from Viet-Mistral/Vistral-7B-Chat; the model
card notes prior SFT via TRL/Unsloth. We use
it strictly as the initialization checkpoint for our
task-specific fine-tuning.

3.1.3 Decoding and EM-oriented
Post-processing

Because evaluation uses Exact Match on canon-
ical date strings, we adopted a decoding/post-
processing stack explicitly tuned for EM:

* Greedy decoding (no sampling): We use
do sample=False and temperature=0.0,
with an instruction-aligned prompt identical
to the one used in training.

* Canonicalization by regex. Model outputs
are normalized to exactly one of two formats:

— Thang m, yyyy for month-granularity
anchors, or

- dd/mm/yyyy for day-level anchors
(zero-padded dd/mm).

Any tokens after a spurious “H#H#H ...”
marker are stripped.

* Fallback solver. If the string does not match
either regex (which is rare), the same deter-
ministic solver used during augmentation is
executed on the input question to compute the
date and re-format it to the canonical form.

This pipeline eliminates formatting noise and
recovers otherwise-correct predictions, yielding a
“free” EM boost without accessing any ground-
truth answers.



3.2 Setup
3.2.1 Overview

Objective. Our objective is to fine-tune a 7-billion
parameter language model for Vietnamese to solve
date-arithmetic questions and return answers in a
canonical format, optimized for Exact Match (EM)
evaluation.

Data Preparation & Augmentation.

* We start with the TimeBench dataset (approx-
imately 2,500 seed samples), translated into
Vietnamese.

* The dataset is expanded by combining the TF-
IDF retrieval method with Gemini-based para-
phrasing techniques.

e All synthetic data is filtered through a de-
terministic solver (dateutil.relativedelta) to
ensure logical correctness.

* The final dataset contains 4,949 question-
answer pairs, formatted with the template:

"##4# Instruction: {question} ... H#H#HH#

Response: {answer}".
QDoRA Architecture.

¢ Base Model: Vistral-7B-iSMART (7.29 bil-
lion parameters).

¢ Quantization: Utilizes QLoRA with 4-bit
NF4 quantization to save memory.

* Adapters: DoRA adapters are applied to the
attention and MLP projection layers (q/k/v/o
and gate/up/down) with a rank of R = 128
and o = 256.

Training Configuration.

* Utilizes answer-only loss masking (labels are
set to —100 before the "### Response:\n"
marker).

* Training is conducted for 3 epochs using the
AdamW optimizer with a cosine schedule, a
learning rate of 10, 10% warmup, and an
effective batch size of 16.

* The process uses 2 RTX 5090 GPUs, apply-
ing gradient checkpointing and bf16 precision
where available.

Inference Pipeline.

* Decoding: Uses greedy decoding with tem-
perature=0 and do_ sample=False.

* Canonicalization: A regex-based normalizer
converts the output to one of two formats:
"Théang m, yyyy" or "dd/mm/yyyy".

* Fallback Solver: A deterministic solver han-
dles edge cases (e.g., "trudc/sau", leap years,
end-of-month) if the output does not match
the regex.

Output & Evaluation.

* The final output is a canonical date string,
ready for EM evaluation.

* EM accuracy is improved by the combina-
tion of strict normalization and a deterministic
fallback, with all code paths designed to be
reproducible.

Why This Approach is Effective (Key Fea-
tures). The system’s success stems from the syn-
ergy of its components. 4-bit quantization re-
duces memory requirements, DoRA’s direction-
only adaptation stabilizes the fine-tuning process
and preserves the base model’s reasoning capabili-
ties, and the EM-oriented post-processing pipeline
recovers logically correct predictions, converting
them into high-accuracy, canonically formatted re-
sults.

3.2.2 Training Pipeline (Algorithm)

Objective. We use a standard causal-LM loss,
masked so that only tokens after the ### Re-
sponse: sentinel contribute to the loss. Let the
input tokens be x1.7 and let £y be the index of the
first token after the sentinel. The loss is:

T

L=—> logps(xs | <t). (1)

t=to

This removes the gradient from the instruction boil-
erplate and directly optimizes the output string that
Exact Match (EM) checks.

Adapters (QDoRA). We apply DoRA to the
linear projections in the attention and MLP layers
(q_proj, k_proj, v_proj, o_proj, gate proj,
up_proj, down proj). Conceptually, DoRA de-
composes each base weight into a magnitude and a
direction; the base magnitude is kept fixed, while
the direction is adapted via low-rank updates. Un-
der 4-bit QLoRA storage of the base model, this



QDoRA Fine-tuning Framework for Viethamese Date-Arithmetic
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Figure 1: An overview of our end-to-end framework, from data preparation and QDoRA architecture to the training
and inference pipelines. Each component is optimized to produce a canonical, EM-ready output for the Vietnamese

date-arithmetic task.

reduces sensitivity to quantization noise (which
predominately perturbs magnitude), stabilizing op-
timization at higher ranks.

Algorithm 1 Training Pipeline

Tokenization. Truncate or pad all samples to
512 tokens.

Masking. In each sample, locate the ### Re-
sponse: sentinel; set labels to —100 for all to-
kens appearing before it.

Forward Pass. Run the 4-bit quantized base
model with DoRA adapters and compute the
masked cross-entropy loss.

Update. Use the AdamW (torch-fused) opti-
mizer with a cosine schedule and 10% warmup.

Repeat for 3 epochs, using gradient accumula-
tion and gradient checkpointing.

Hyperparameters. A complete list of hyperpa-
rameters can be found in Table 1 in the Appendix.

Effective batch and steps. With two GPUs, the

effective global batch size per optimizer step is:

batch = (per-device = 2) x (grad-acc = 8)
x (#GPUs = 2) = 32.

Given N = 4,949 examples, the number of steps
per epoch is approximately 155, for a total of ap-
proximately 465 steps over 3 epochs.

3.2.3 Inference & EM-Oriented
Post-processing

The inference pipeline consists of four stages:

* Prompting (aligned to training). We use a
prompt identical to the training format:

### Instruction: {question}
#+4 Response:

* Decoding. We use greedy decoding
(do_sample=False, temperature=0.0) to
avoid stochastic formatting drift and ensure
deterministic outputs.

* Canonicalization. The raw model output is
normalized to exactly one of two formats:



— Théng m, yyyy (for month-granularity
anchors)

- dd/mm/yyyy (for day-granularity an-
chors; zero-padded dd /mm)

Any tokens that appear after a stray ###
marker are stripped.

¢ Fallback solver (deterministic). If the gen-
erated string fails to match either regex,
we apply a rule-based solver (using dateu-
til.relativedelta) directly to the input ques-
tion. This solver computes the date based
on calendar rules (month lengths, leap years,
carry/borrow) without using any labels. The
result is then reformatted canonically. This
fairly rescues logically correct predictions that
were merely formatted incorrectly.

Algorithm 2 Inference Pipeline

Build the instruction-aligned prompt for the in-
put question.
Perform greedy decoding to generate a short
completion (< 24 new tokens).
Apply regex normalization to convert the output
to a canonical form.
if normalization fails then

Call the deterministic fallback solver on the
question.

Reformat the solver’s output to the canonical
form.
end if
Emit the final canonical date string.

3.2.4 Parameter Settings (Concise)

A comprehensive summary of our hyperparameter
and model configuration settings is provided in
Table 1 in the Appendix.

3.2.5 Machine Specs and Processing Time

* GPUs: 2x NVIDIA RTX 5090 (bf16 sup-
ported).

* Parallelism: DataParallel/Distributed, gradi-
ent checkpointing; device map="auto".

« CPU/RAM/OS: Standard Linux server; exact
CPU & RAM were not recorded.

¢ Runtime: 3h25m.

4 Experimental Results

4.1 Evaluation Setup

We follow the official VLSP 2025 Temporal QA
protocol for the Date Arithmetic sub-task. Two
held-out sets are provided: a public test set for
development and a private test set for final leader-
board evaluation. The primary metric is Exact
Match (EM), meaning a prediction is correct only
if the canonicalized output string exactly matches
the gold date format (either dd/mm/yyyy or the
Vietnamese "Thang m, yyyy" format). Unless oth-
erwise noted, all analyses below use the public test
set and are run with greedy decoding (temperature
0) under identical hardware and decoding settings.

4.2 Dataset Sizes

The Public test set size is N = 1,200; Private
test size is N = 3,000. We additionally construct
several robustness subsets of size 300 each (see the
Robustness section) and cross-lingual evaluation
sets (see Cross-lingual positioning), described later.

4.3 Main Results on the Official Benchmark

Our submitted system is Vistral-7B-iSMART,
fine-tuned with QDoRA and decoded with an
EM-oriented pipeline (output canonicalization plus
a deterministic solver fallback). On the official
benchmark, the model attains 98.0% EM on the
public test and 99.0% EM on the private test,
ranking first on the final leaderboard. The official
results are summarized in Table 2 in the Appendix.
These results indicate that parameter-efficient fine-
tuning combined with form-constrained decoding
closes most of the gap on symbolic temporal rea-
soning in Vietnamese date arithmetic.

4.4 Component Analyses (Ablations)

We quantify the contribution of each component
by varying one factor at a time relative to the fi-
nal system (“Final”). We evaluate variants that
remove individual components (solver fallback,
answer-only loss masking, output canonicaliza-
tion), replace QDoRA with standard LoRA under
identical 4-bit settings, and vary the adapter rank
R € {16,64,96, 128} (with the LoRA scaling fac-
tor « adjusted proportionally) to study the quality—
efficiency trade-off. All results are reported as EM
(%) on the public test unless stated otherwise; we
also report Relaxed EM (logical equivalence af-
ter normalization), decoding throughput (tokens/s),



and peak GPU memory usage. The full results are
presented in Appendix Table 3.
Insights.

(i) Canonicalization and solver fallback are
the largest EM drivers (adding +3.5 and +2.3
points, respectively, when present). The gap
between EM and Relaxed EM without canon-
icalization (see Appendix Table 3) shows that
many “errors” are formatting-only; canoni-
calizing the output converts those into exact
matches.

(ii)) Answer-only masking contributes about
+1.2 EM, presumably by reducing objective
mismatch and focusing learning on the answer
span.

(iii)) Under 4-bit training, QDoRA outperforms
standard LoRA at the same rank (R = 96) by
+0.8 EM, reflecting improved expressiveness
and stability from the weight decomposition.

(iv) Adapter rank has diminishing returns: There
is a practical sweet spot around R ~ 96. For
example, increasing to R = 128 yields only a
marginal +0.1 EM gain at the cost of higher
memory usage and slightly lower throughput.

Statistical testing: For the three largest drops (re-
moving canonicalization, fallback, or masking),
McNemar’s test comparing the variant to the Fi-
nal model’s predictions yields p < 0.01 in each
case, indicating those differences are statistically
significant.

4.5 Robustness to Linguistic Variation and
Boundary Conditions

We construct five controlled robustness test sets
(N = 300 each) that introduce realistic input per-
turbations: R1 — spelling/punctuation noise; R2 —
abbreviations or synonyms for temporal operators
(e.g. “trc/sau” for before/after); R3 — clause re-
ordering; R4 — textual numerals (e.g. “mudi hai”,
“hai muoi ba”); and R5 — boundary stress (leap
years, end-of-month dates, year crossings). We
evaluate the Final model on these sets and also
compare to a standard LoRA baseline (R = 96).
The results for both models are reported in Table 4
in the Appendix.

Insights.

(i) Boundary cases (R5) are the most challeng-
ing, with EM dropping to 94.2% (—3.8 points

relative to the clean test set). This is consis-
tent with known difficulties in end-of-month
carry/borrow and leap-year edge cases.

(i1) Textual numerals (R4) remain a source of
brittleness. However, the high Relaxed EM
(98.6%) suggests that many predictions in this
category are logically correct but misformat-
ted due to numeral parsing artifacts. In other
words, the model often gets the right date but
expresses it incorrectly when numerals are
written out as words.

(ii1) Across all perturbations, the Final QDoRA
model maintains roughly a 0.7-1.5 EM point
advantage over the LoRA baseline, indicat-
ing that QDoRA’s accuracy gains persist under
distribution shift.

4.6 Cross-Lingual Positioning on English
Symbolic Subsets

To probe transferability beyond Vietnamese, we
evaluate our approach on an English symbolic
dataset derived from TIMEBench (N = 800). We
consider two deployment variants: (i) an EN—VI
translation front-end, where each English query is
machine-translated to Vietnamese and answered by
our Vietnamese model (with the result then con-
verted to the English date format via canonical-
ization); and (ii) a native English parser that di-
rectly extracts the temporal anchor and the signed
duration from the English query, feeding these to
the same solver and then applying English output
canonicalization. We also include small illustra-
tive samples from two English temporal reasoning
benchmarks focused on commonsense and events
(TORQUE and MC-TACO, N = 300 each) to de-
lineate the scope of our approach on non-symbolic
temporal questions. Our findings from this evalua-
tion are presented in Table 5 in the Appendix.
Insights.

(i) High EM on the English symbolic subset
(> 96.9%) indicates that our EM-oriented de-
coding pipeline and solver-verified approach
are language-agnostic for purely symbolic
temporal arithmetic. The system retains nearly
the same accuracy with English queries (ei-
ther via translation or direct parsing) as it does
on Vietnamese.

(i) The marked performance drop on TORQUE
and MC-TACO confirms that commonsense



or event-centric temporal questions require
reasoning beyond pure symbolic computa-
tion. Our method excels at deterministic date
arithmetic, but integrating world knowledge
and contextual event reasoning (as needed for
TORQUE/MC-TACO) remains an open chal-
lenge — these results clearly demarcate the
scope of our approach.

4.7 Error Analysis

We manually inspect N = 100 residual errors from
the public test and robustness sets, and we catego-
rize each error into one of five types (E1-ES), as
summarized in Table 6 in the Appendix.
Representative observations.

(i) Boundary errors (E2) often arise from
month-end carry/borrow issues and the spe-
cial case of February in leap vs. non-leap
years. Incorporating explicit “end-of-month”
logic or training examples could reduce this
category significantly.

(i1) Formatting errors (E4) are largely eliminated
by our post-processing canonicalizer, but a
few failures remain — for example, when
the model correctly computes the date but
then emits extra tokens or an incorrect for-
mat beyond the date string. Implementing
stricter format constraints in decoding or post-
filtering any non-date tokens can help address
these cases.

(iii) Vietnamese parsing ambiguities (ES5)
mainly involve overlapping numeral inter-
pretations. For instance, the phrase “mudi
hai” (12) can overlap with “hai” (2) if
the system naively scans for digit words,
leading to misinterpretation. A more robust,
non-overlapping numeral parsing strategy
(e.g. always matching the longest valid
numeral phrase) would mitigate these errors.

4.8 Efficiency and Memory Footprint

We measure inference throughput and memory us-
age for different model variants under identical
hardware and decoding parameters (greedy decod-
ing with max_new_tokens=24, batch size 1 for la-
tency). All results are obtained on a single NVIDIA
RTX 5090, and training was performed on 2Xx
NVIDIA RTX 5090s. Detailed efficiency metrics
are provided in Table 7 in the Appendix.

Insights.

(i) EM-oriented decoding adds negligible over-
head. Our pipeline’s extra steps (canonical-
ization and occasional solver calls) have min-
imal impact on latency. The fallback solver is
invoked for < 3% of queries thanks to high di-
rect canonicalization success, and even when
used, the solver’s runtime is small compared
to generation latency.

(i1) Increasing adapter rank from 96 to 128 has
diminishing returns: it yields only +0.1 EM
(as noted earlier) while reducing throughput
(204 vs 210 tokens/s) and increasing memory
usage. This suggests that R ~ 96 is a good
Pareto optimal point for this task, beyond
which gains are marginal.

(iii)) LoRA and QDoRA have similar runtime
profiles. The quantized QLoRA approach
does not incur additional inference cost rela-
tive to standard LoRA at the same rank. The
primary benefit of QDoRA is improved ac-
curacy under 4-bit quantization, not speed —
as shown, both LoRA and QDoRA achieve
~ 210 tokens/s and have comparable latency.

5 Discussion

We synthesize the empirical findings to explain
why the proposed system attains near-ceiling EM
on Vietnamese date arithmetic, which compo-
nents matter most, and where the remaining failure
modes lie. We also outline practical considerations
and limitations, together with concrete next steps.

5.1 Why QDoRA for date arithmetic

Direction-only adaptation under 4-bit.
Direction-only adaptation under 4-bit means
DoRA decomposes each pretrained weight into
magnitude and direction and updates only the
direction. Under 4-bit QLoRA, magnitude is the
dimension most sensitive to quantization error;
freezing it stabilizes optimization—especially at
higher adapter ranks—while preserving pretrained
priors useful for rule-like reasoning. Empirically
(see Appendix Table 3), QDoRA @R=96 outper-
forms LoORA@R=96 by +0.8 EM with identical
hyperparameters, and remains robust across ranks.

Closer to full-FT behavior on structured
logic. Date arithmetic is structured and compo-
sitional (carry/borrow across months, leap-year
rules). Directional updates permit coherent ro-
tations in attention/MLP subspaces, approximating



full fine-tuning with ~ 1-2% trainable parame-
ters and no inference-time latency. The small—but
consistent—edge at higher ranks (R = 128 vs.
R = 96: +0.1 EM) mirrors this behavior, albeit
with diminishing returns and higher VRAM (see
Appendix Tables 3 and 7).

5.2 Answer-only loss masking

EM is assessed solely on the completion span.

Masking out all tokens before the ### Response:

sentinel removes gradients from instruction boil-
erplate, focusing capacity on the output subspace.
Ablation confirms a —1.2 EM drop when mask-
ing is disabled (see Appendix Table 3), indicating
reduced objective mismatch and fewer stylistic ar-
tifacts in the decoded string.

5.3 EMe-oriented decoding and
canonicalization

Greedy decoding avoids sampling noise that harms
exact string match. Regex canonicalization col-
lapses benign surface variation (whitespace, hy-
phen vs. slash) into the two allowed formats. Re-
moving canonicalization yields the single largest
drop (—3.5 EM, see Appendix Table 3) while Re-
laxed EM remains 99.1, showing most “errors” are
formatting-only. The deterministic solver fallback
corrects rare residual formatting failures without
labels, contributing +2.3 EM (Final vs. — Fallback).
Jointly, these steps convert logically correct reason-
ing into exact-match strings—precisely what the
metric rewards.

5.4 Data augmentation with solver filtering

RAG-prompted variants are filtered by a determin-
istic solver; only logically valid items are retained
(1,949 kept; total 4,949). This guarantees target
consistency and densifies tail cases (end-of-month,
leap year, multi-unit offsets) that disproportion-
ately affect EM. Robustness results (see Appendix
Table 4) suggest that the training distribution suf-
ficiently exposes boundary phenomena: the Final
model degrades modestly under noise and remains
resilient relative to the LoRA baseline.

5.5 Why these components work together

» Capacity & stability: QDoRA supplies sta-
ble, high-rank capacity to internalize symbolic
rules under 4-bit compression.

* Objective alignment: Answer-only masking
ensures that capacity is spent on the exact re-
gion EM evaluates.

* Form-faithful decoding: Greedy + canon-
icalization + fallback systematically con-
vert “right-in-logic” outputs into “right-as-
strings.”

* Distribution shaping: Solver-filtered aug-
mentation targets failure modes that matter
(EOM, leap-year, multi-unit deltas), improv-
ing generalization where EM is most brittle.

The net effect is visible across analyses: removing
canonicalization or fallback collapses EM despite
high Relaxed EM (see Appendix Table 3), while
QDoRA’s gains persist under perturbations (see
Appendix Table 4).

5.6 Practical considerations and complexity

Memory. 4-bit base storage with bf16 adapters
(and optimizer states for adapters only) keeps
VRAM modest. Peak VRAM,;, for the Final
model is 29.1 GB/GPU, and VRAMj¢.; is 8.6 GB
(see Appendix Table 7). Gradient checkpointing
limits activation memory. Time. With N = 4,949,
global batch size 32, and 3 epochs, the training
loop runs =~ 465 updates. Wall-clock for the Final
model is 3 h 25 m on 2x GPUs. Latency. In-
ference sustains ~ 210 tokens/s with median 120
ms / P95 180 ms per query. The fallback solver is
invoked on < 3% of queries and does not dominate
latency. Sweet spot. R = 128 yields only +0.1 EM
over R = 96 but reduces throughput and increases
memory (see Appendix Table 7), making R ~ 96
a pragmatic Pareto point for this task.

6 Conclusion

We presented a champion system for the VLSP
2025 Temporal QA Date Arithmetic sub-task
that combines parameter-efficient fine-tuning with
form-constrained decoding. Fine-tuning Vistral-
7B-iSMART via QDoRA and decoding with an
EM-oriented pipeline (greedy search, regex canon-
icalization, deterministic solver fallback) yields
98.0% EM on the public test and 99.0% EM on the
private test, topping the leaderboard. Beyond head-
line numbers, our results demonstrate that symbolic
temporal reasoning in Vietnamese can be brought
close to ceiling with carefully aligned modeling,
training, and decoding choices.

Our empirical analysis clarifies which com-
ponents matter and why. Ablations show that
canonicalization and solver fallback are the largest
drivers of EM (—3.5 and —2.3 EM when removed),



converting logically correct predictions into exact
matches. Answer-only masking reduces objective
mismatch (—1.2 EM when removed), and QDoRA
outperforms standard LoRA under the same 4-bit
setting (+0.8 EM at R=96), indicating improved
expressiveness and stability for rule-like compu-
tation. Rank sensitivity reveals a pragmatic sweet
spot near R ~ 96: R = 128 adds only +0.1 EM
while increasing VRAM and lowering throughput.
The system is fast and compact (=~ 210 tokens/s,
8.6 GB VRAM inference; 29.1 GB VRAM/GPU
training), making it practical for deployment.

We also evaluated robustness and trans-
ferability. Under realistic perturbations—
spelling/punctuation noise, abbrevia-
tions/synonyms, clause reordering, textual
numerals, and boundary stress—the model remains
strong (e.g., EM 97.3 under R1, 95.9 under R4),
with Relaxed EM indicating that many failures are
formatting-only. On an English symbolic subset,
both an EN— VI front-end and a native English
parser retain high EM (97.5/96.9), suggesting
language-agnostic applicability for deterministic
date arithmetic. In contrast, performance drops on
commonsense/event benchmarks (e.g., TORQUE
47.3 EM; MC-TACO 56.2 Acc), delineating
the boundary between symbolic arithmetic and
knowledge-heavy temporal reasoning.

Our limitations follow directly from this anal-
ysis. First, the approach is metric-centric: EM
rewards form correctness, and gains partly arise
from post-hoc canonicalization. Second, residual
errors concentrate in boundary conditions (end-
of-month/leap-year; 34% of analyzed errors) and
textual numerals (18%), reflecting known brittle-
ness in month-end carry/borrow and overlapping
numeral spans. Third, generalization to semantics-
heavy temporal QA remains incomplete, as evi-
denced by the gap on TORQUE/MC-TACO.

These observations open several avenues for fu-
ture work. On decoding and parsing, we will (i)
adopt constrained decoding to eliminate trailing
tokens and enforce date formats at generation time;
(i) implement longest-match, non-overlapping
numeral parsing with unit-aware grammars; and
(iii) encode end-of-month semantics directly in
training (via augmentation or rule-regularized ob-
jectives). On reasoning, we will (iv) extend beyond
symbolic arithmetic by integrating retrieval over
temporal KBs/corpora, and (v) explore neuro-
symbolic pipelines that apply solver-style checks
to event timelines. On evaluation and openness, we

plan to (vi) release splits, augmentation templates,
and code to strengthen reproducibility, and (vii)
broaden multilingual experiments to further test
cross-lingual stability.

In sum, the proposed QDoRA-fine-tuned, EM-
oriented system offers a principled, compute-
efficient recipe for high-precision symbolic tem-
poral QA in Vietnamese. By aligning objective,
capacity, and decoding with the target metric, we
achieve near-ceiling EM while maintaining speed
and memory efficiency. The analysis pinpoints
precisely what remains hard—boundary semantics
and temporal commonsense—charting a clear path
toward next-generation temporal reasoning systems
that combine symbolic reliability with semantic
breadth.
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A Tables

Component Setting

Base model Vistral-7TB-iSMART
(7B)

Adapters DoRA over QLoRA base

Target modules q/k/v/o_proj;
gate/up/down_ proj

Rank / o / dropout R =128, a = 256, p =
0.05

Quantization 4-bit NF4, double-quant

Sequence length 512

Optimizer AdamW (torch-fused)

LR / schedule 10~%, cosine, warmup
10%

Epochs 3

Per-device batch 2

Grad accumulation 8

Global batch (2 GPUs) 32

Compute dtype bf16 (fallback fp16)

Seed 42

Table 1: Hyperparameter and model configuration set-
tings.



Table 2: Official VLSP 2025 Date Arithmetic results (EM %)

Test Set EM (%) N

Public test 98.0 (95% C197.2-98.8) 1,200
Private test (official)  99.0 (95% CI 98.6-99.4) 3,000

Table 3: Ablation summary on public test (N=1,200)

Variant EM Relaxed EM AEM vs Final tokens/s VRAMpain VRAMinfer
Final (QDoRA, R=96) 98.0 99.2 - 210 29.1 GB/GPU 8.6 GB
— Fallback solver 95.7 99.0 -2.3 215 29.1 GB 8.4 GB
— Answer-only masking 96.8 97.4 —1.2 210 29.1 GB 8.6 GB
— Canonicalization 94.5 99.1 —-3.5 220 29.1 GB 8.3 GB
LoRA (no DoRA), R=96 97.2 98.4 —0.8 211 28.7 GB 8.5GB
QDoRA, R=16 96.1 97.6 —-19 213 27.3 GB 8.2 GB
QDoRA, R=64 97.6 98.8 —-0.4 211 28.5GB 8.5GB
QDoRA, R=128 98.1 99.2 +0.1 204 30.8 GB 8.9 GB

Table 4: Robustness results (N=300 each)

Noise/Perturbation Type Final EM Final Relaxed EM LoRA EM
R1: Spelling/punctuation noise 97.3 99.0 96.4
R2: Abbrev./synonyms (trc/sau) 96.8 98.7 95.9
R3: Clause reordering 97.1 99.1 96.2
R4: Textual numerals 95.9 98.6 94.8
RS5: Boundary stress (EOM/leap) 94.2 96.9 93.4

Table 5: Cross-lingual symbolic and illustrative commonsense/event evaluation

Evaluation Set Metric  Score
TIMEBench-EN (symbolic) - EN— VI model pipeline =~ EM 97.5
TIMEBench-EN (symbolic) — Native EN parser EM 96.9
TORQUE sample (event ordering questions) EM 473
MC-TACO sample (commonsense temporal questions)  Acc 56.2

Table 6: Error taxonomy (share of errors)

Error Type Share of Errors (%)
El.  Offset miscalculation 18
E2. Boundary handling (end-of-month/leap-year) 34
E3.  Anchor mismatch (day vs month vs year) 9
E4. Formatting failures 21
E5. Vietnamese parsing issues (textual numerals, etc.) 18

Table 7: Efficiency metrics

Model/Variant Tokens/s Median latency (ms) P95 latency (ms) VRAMiyter VRAMgain (per GPU)
Final (QDoRA, R=96) 210 120 180 8.6 GB 29.1 GB
— Fallback solver 215 117 175 8.4 GB 29.1 GB
LoRA (R=96) 211 121 182 8.5 GB 28.7 GB

QDoRA (R=128) 204 126 189 8.9GB 30.8 GB
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