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Abstract

We present a comprehensive pipeline for Viet-
namese Speech Recognition (ASR) and Speech
Emotion Recognition (SER). Our contributions
include: (1) a large-scale data curation and aug-
mentation strategy combining multiple corpora,
(2) arobust filtering pipeline using multi-model
voting and n-gram scoring to construct an ad-
ditional high-quality dataset, (3) a Zipformer-
based ASR model trained from scratch with
joint CTC and RNN-T loss on 4000 hours of
augmented speech, and (4) a feature-fusion ap-
proach for SER leveraging Wav2Vec and Emo-
tion2Vec embeddings with SpeechFormer++.
Our systems achieve state-of-the-art perfor-
mance on VLSP 2025 benchmarks, demon-
strating the effectiveness of our methods for
both ASR and SER in Vietnamese.

1 Introduction

Automatic Speech Recognition (ASR) and Speech
Emotion Recognition (SER) are fundamental com-
ponents of spoken language understanding and play
a critical role in applications such as conversational
agents, call centers, and human-computer inter-
action. Recent advances in self-supervised learn-
ing (SSL) frameworks, such as Wav2Vec (Baevski
et al., 2019), Whisper (Radford et al., 2023) or
WavLM (Chen et al., 2022), have demonstrated
remarkable improvements in ASR across multiple
languages. However, Vietnamese remains under-
resourced compared to high-resource languages
like English and Mandarin, which results in chal-
lenges related to limited vocabulary coverage, out-
of-vocabulary (OOV) occurrences, and domain
mismatch across datasets.

On the other hand, Speech Emotion Recognition
has become increasingly important for affective
computing and empathetic conversational systems.
Despite progress using deep learning architectures
and multimodal fusion (He et al., 2023), SER still
suffers from noisy or weakly supervised emotion

labels, especially in low-resource languages like
Vietnamese. These limitations hinder the gener-
alization and robustness of deployed systems in
real-world environments such as noisy call centers
and spontaneous dialogues.

In this paper, we present a comprehensive
pipeline for Vietnamese ASR and SER. For ASR,
we introduce dataset filtering and augmentation
strategies that prioritize rare OOV tokens to im-
prove lexical coverage, combined with multi-model
voting to refine transcription quality. We then train
a 30M-parameters Zipformer (Yao et al., 2024)
model on 4000 hours of augmented speech data.
For SER, we investigate the joint Wav2Vec and
Emotion2Vec (Ma et al., 2023) representations
within a shared feature space, combined with the
SpeechFormer++ (Chen et al., 2023) architecture,
aiming to improve robustness against label noise
and variability in emotional expressions. Our ap-
proach advances spoken language understanding in
Vietnamese and offers insights that may extend to
other low-resource languages.

2 Data Statistics Overview

We curate and filter 8 Vietnamese corpora. Ta-
ble 1 summarizes dataset statistics. The 8th
dataset, VLSP2023-D1+3+4-Voting, was con-
structed based on a model voting mechanism. The
details of this procedure will be elaborated in Sec-
tion 3. Figure 1 visualizes OOV and vocabulary
size per dataset. Figure 2 and 3 visualizes top 20
vi-words, OOV per dataset.

3 Data Curating and Augmentation

Voting-based Pseudo Labeling. We employed a
model voting mechanism to generate pseudo-labels
for the VLSP2023-D1+3+4 dataset, which orig-
inally contained 245 hours of unlabeled speech.
First, we developed a text normalization module
that converts written forms into spoken forms. For



Dataset Hours OOV Vocab (Vi)
PhoAudioBook 1494 4980 5640
VietBud500 500 43 5322
ViMD 100 764 3927
ViVoice 1000 33867 8332
28k-Vietnamese 50 1022 4867
VIVOS 15 5 4924
VLSP2023-D2 60 602 3170
VLSP2023-D1+3+4-Voting 180 1745 5750

Table 1: Statistics of curated datasets.
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Figure 1: OOV and Vietnamese vocabulary counts per
dataset.
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example, “/” is normalized to “modt”, “chuong
iii” to “chuong 3”, and “3km” to “ba km”. Such
written forms frequently appear in the ViVoice
dataset. Due to the inherent ambiguity of spoken
language—for instance, “/13” can be read as either
“mot mot ba” or “mot tram muoi ba”’—we allowed
for a certain degree of error. We refer to this mod-
ule as TN1. In the following step, we sampled 300
hours from the initial 7 datasets (was normalized
through the TN1 module) to ensure sufficient cov-
erage of both the top 20 most frequent Vi-words
and the OOV set. This subset was then used to
fine-tune two ASR models for about 10 epochs:
Wav2Vec-250h and Whisper-Small.

For Wav2Vec, we additionally constructed a
6-gram language model for decoding and a 4-
gram language model for scoring, both trained
on transcriptions from the first seven datasets.
After fine-tuning, the resulting systems were de-
noted as STT1 (Wav2Vec-250h-ft-300h) and STT2
(Whisper-Small-ft-300h). During our experiments,
we found that both STT1 and STT2 often missed
words in audio with relatively fast speaking rates.
To address this, we slowed down all audios in the
VLSP2023-D1+3+4 dataset using a speed factor

Figure 2: Top 20 vi-words per dataset.

of 0.9, resulting in VLSP2023-D1+3+4-Speed0.9.
We then performed voting between STT1 and
STT2 outputs on the modified dataset, applying
a WER threshold of 10% together with 4-gram LM
scoring (threshold -5.0). We prioritized the selec-
tion of audio—transcript pairs after voting, using the
outputs of the Whisper-Small-ft-300h model as the
criterion. This process yielded the 8th VLSP2023-
D1+3+4-Voting dataset, comprising 180 hours of
pseudo-labeled speech.

Augmentation. We employed multiple augmen-
tation strategies, including noise injection, low-
bitrate simulation, pitch shifting, and speech per-
mutation. To ensure fairness, the proportion of
augmented speech was balanced across the dif-
ferent augmentation methods. Augmentation was
selectively applied to audio samples containing rare
OOV tokens in seven datasets, while the 8th dataset
(VLSP2023-D1+3+4-Voting) remained unaltered.
Through this process, we obtained approximately
4000 hours of training data.

4 ASR Model Training

The Wav2Vec model demonstrates two primary
limitations. First, its reliance on character-level
tokens for CTC decoding renders transcription ac-
curacy highly dependent on the performance of the
accompanying n-gram language model. Second,
fine-tuning a pretrained Wav2Vec model without
explicit knowledge of the pretraining data distribu-



Figure 3: Top 20 OOV per dataset.

Figure 4: (Left): Zipformer block structure. (Right):
Non-Linear Attention module structure.

tion often results in overfitting to the target fine-
tuning domain and reduced robustness when ap-
plied across diverse domains. Similarly, the Whis-
per model exhibits several weaknesses. It tends
to produce a high rate of hallucinations in noisy
audio conditions, thereby compromising the relia-
bility of transcriptions. Moreover, training Whisper
necessitates extremely large-scale computational
resources, which poses a barrier to its broader ap-
plicability. Motivated by these reasons, we chose
to train a 30M parameters Zipformer model from
scratch. Compared with the conventional Con-
former (Gulati et al., 2020), Zipformer (Figure 4)
achieves higher recognition accuracy while using
fewer parameters, thanks to its gated linear atten-
tion and hierarchical time-reduction mechanism.
This design not only reduces computational cost
and decoding latency but also makes the model
more robust to noisy and spontaneous speech. Re-
cent studies show that combining CTC (Graves
et al., 2006) with RNN-T (Kuang et al., 2023) loss
stabilizes encoder training and accelerates conver-

Figure 5: SpeechFormer++ Arch.

gence, while simultaneously improving recognition
accuracy compared to RNN-T alone. The exper-
iments conducted by the authors in (Yao et al.,
2023) show that, this joint objective leverages the
strong alignment signal from CTC and the stream-
ing capability of RNN-T, making it highly effective
for large-scale ASR systems. The basic training
configurations of our model are as follows:

* BPE tokenizer (Kozma and Voderholzer,
2024) with a vocabulary size of 2048.

e Joint CTC and RNN-T loss.

* Trained on 4000h augmented data for 50
epochs using 4 x RTX 3090 GPUs.

* Decoding is performed using the modified
beam search (Kang et al., 2023) algorithm
with a beam size of 15.

S SER Model Training

We filtered VLSP2023-Dataset4 with low quality
emotion label using emotion2vec-finetuning-large,
obtaining a cleaner subset. Final SER training
data included VLSP2023-Dataset3 + VLSP2023-
Dataset4-filtered.

Feature fusion. We concatenated Wav2Vec-
250h-ft-300h (dim-512) and emotion2vec-base
(dim-768) embeddings into a dim-1280 feature
vector.

Classifier. SpeechFormer++ (Figure 5) leverages
the hierarchical structure of speech with unit en-
coders and merging blocks, effectively capturing
both fine and coarse-grained information. On SER
tasks (IEMOCAP & MELD), it outperforms the
standard Transformer while significantly reducing
computational cost. In this study, SpeechFormer++
(SF2) was trained for 25 epochs using binary clas-
sification labels (negative vs. neutral). The training
employed a batch size of 32, a learning rate of
0.0001, and cross-entropy loss as the optimization
objective. The dataset was divided into training
and validation sets with a 9:1 ratio.



6 Results

6.1 ASR

As shown in Table 2, the Wav2Vec-250h mod-
els combined with a 6-gram LM achieve moderate
performance with WERs ranging from 17.8% to
22.7%. Fine-tuning the Wav2Vec trained on 250h
with an additional 300h of in-domain data signif-
icantly improves the results, reducing the WER
by around 4-5 points compared to the baseline
Wav2Vec-250h model.

For Whisper-Small, the performance is consid-
erably worse, with WERs over 50%, even after
fine-tuning with 300h of data (WER ~ 20%). This
degradation mainly comes from hallucinations, a
common issue for Whisper in low-resource and
domain-mismatched settings. For example, in some
audios Whisper-Small produces irrelevant phrases
such as “hdy subscribe cho kénh ghién mi gé dé’
khong bo 16...” or repeats words and phrases mul-
tiple times (e.g., “may cit d¢t chdn ddt phdi duong
mdy mdy mdy mdy mdy mdy mdy ...”"). These errors
lead to extremely high WER compared with other
models.

The best results are obtained with the Zipformer
+ CTC-RNN-T trained from scratch on 4000 hours
of data, achieving WERSs below 10% across all test
sets. This demonstrates the importance of large-
scale and well-augmented training data, where the
Zipformer model with only 30M parameters can
outperform both large pretrained models (Wav2Vec
and Whisper) and fine-tuned versions. The results
highlight that careful data curation and augmenta-
tion strategies, together with an appropriate archi-
tecture and training objective (CTC+RNNT), are
critical to achieving state-of-the-art performance in
VLSP 2025 benchmarks ASR.

Model Pr23 Pb25 Pr25

W2V-250h + 6-gram LM 22.7 22.7 21.9
W2V-250h-ft-300h + 6-gram LM 18.6 18.4 17.8
Whisper-S 5020  57.60  55.32
‘Whisper-S-ft-300h 22.2 21.8 20.05
Zipformer + CTC-RNNT + 4000h 9.62 9.54 9.07

Table 2: ASR results (WER%).

6.2 SER

As shown in Table 3, using only mel spectrogram
features (Mel+SF2) or a pretrained Wav2Vec model
(W2V-Base+SF2) yields comparable accuracies in
the range of 76-87%, with limited improvements
when fine-tuning Wav2Vec-250h on 300 hours

data. In contrast, incorporating Emotion2Vec rep-
resentations into the W2V-250h-ft-300h system
achieves a substantial performance boost, reaching
90.24% on Pr23, 82.83% on Pb25, and 82.21%
on Pr25. These results highlight the effectiveness
of combining self-supervised speech representa-
tions (Wav2Vec) with emotion-oriented embed-
dings (Emotion2Vec), which capture prosodic and
affective cues that conventional spectral or linguis-
tic features often miss. The synergy between the
two feature types enables more robust modeling of
emotional expressions in speech, leading to signif-
icantly higher SER accuracy across all test sets.

Model Pr23 Pb25 Pr25
Mel+SF2 86.76 76.36 77.64
W2V-Base+SF2 86.68 76.79 76.67
‘W2V-250h-ft-300h+SF2 8720 7893 78.33
W2V-250h-ft-300h+emo2vec+SF2  90.24 82.83 82.21

Table 3: SER results (accuracy%).

6.3 ASR + SER

According to the Final Score definition
Score = 0.7x (1—-WERAsr)+0.3x ACCsgr

ASR accuracy (reflected by 1 — W E'R) contributes
70% to the final ranking, while SER accuracy con-
tributes 30%. As shown in Table 4, the top-ranked
system (hynguyenthien - ours) achieved the low-
est WER (9.07%) together with high SER accu-
racy (82.21%), resulting in the best Final Score of
88.31. Although CodeSERSai obtained the highest
SER accuracy (85.79%), its much higher WER
(25.22%) significantly reduced the Final Score
(78.08). This contrast clearly demonstrates that
lowering WER is more influential for the overall
evaluation metric than maximizing SER alone. The
systems ishowspeech and dangnguyen-VLSP also
illustrate this balance, achieving competitive rank-
ings with moderate SER accuracy but relatively low
WER values. Overall, these results confirm that
improvements in ASR (WER reduction) play the
dominant role in boosting the Final Score, while
SER accuracy provides an additional but smaller
contribution. Notably, the system of hynguyenthien
consistently optimized both WER and SER, leading
to a clear margin over the second and third ranked
teams.



Team WER | SER Acc | Final Score
hynguyenthien 9.07 82.21 88.31
ishowpeech 11.38 79.13 85.77
dangnguyen-VLSP | 12.66 80.84 85.39
SoFarSoGood 19.12 79.50 80.47
CodeSERSai 25.22 85.79 78.08
SoulSound 20.87 66.50 75.34
nhitny 23.56 71.76 75.04

Table 4: Leaderboard results on VLSP-2025 private test
dataset.

7 Conclusion

We proposed a comprehensive pipeline for Viet-
namese ASR and SER. Our Zipformer-30M-
parameters model achieved state-of-the-art WER
on the VLSP 2025 benchmarks, while the integra-
tion of Wav2Vec and Emotion2Vec representations
significantly improved SER accuracy. Looking
ahead, we plan to explore multilingual expansion
and to unify ASR and SER into a single, mul-
timodal framework, potentially integrating addi-
tional components such as gender recognition, re-
gional accent identification, and other paralinguis-
tic features. This approach aims to enhance the
efficiency and robustness of spoken language un-
derstanding systems, with potential applications in
conversational Al and other low-resource language
scenarios.
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