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Abstract

The VLSP community brings together research
groups from both academia and industry in
the field of Vietnamese language and speech
processing. One of the key shared tasks or-
ganized at the 11th Workshop on Vietnamese
Language and Speech Processing was Auto-
matic Speech Recognition (ASR) and Speech
Emotion Recognition (SER). The dataset pro-
vided for this task included audio recordings of
speakers along with corresponding text and la-
bels. A major challenge faced by most existing
ASR-SER systems is that ASR models often
misrecognize or skip segments with strong emo-
tional expressions (e.g., speech during crying
or anger). At the same time, emotion models
also frequently mislabel emotions due to the
complex nature of human feelings (for exam-
ple, crying out of happiness versus crying out
of frustration). In this paper, we present our ap-
proach to addressing these challenges. We first
preprocess the training data and then use it to
train a FastConformer-based ASR model. For
emotion recognition, we explore multiple mod-
els and incorporate additional data to establish
a strong rule-based foundation for the emotion
task. According to the official evaluation by
VLSP in the 2025 ASR-SER challenge, our
approach achieved a Word Error Rate (WER)
of 12.66% for ASR and an SER accuracy of
80.84%, resulting in an overall score of 85.39
and securing a Top-3 position on the VLSP
leaderboard.

Key words: VLSP-2025, Speech-to-text, speech
emotion recognition, Automatic Speech Recog-
nition.

1 Introduction

Automatic Speech Recognition (ASR) and Speech
Emotion Recognition (SER) have seen remark-
able progress in recent years, driven by advances
in deep learning. Traditional hybrid ASR sys-
tems (based on hidden Markov models and deep
neural networks) have largely been supplanted by
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end-to-end approaches that learn to map audio di-
rectly to text. Notably, attention-based sequence-to-
sequence models were among the first successful
end-to-end ASR frameworks. For example, the
Listen, Attend and Spell model demonstrated that
an attention-enabled encoder-decoder can jointly
learn acoustic and language modeling without the
need for explicit alignment or pronunciation dic-
tionaries (Chan et al., 2016). This paradigm shift
opened the door to training ASR entirely from data,
simplifying the pipeline and improving accuracy.

The introduction of the Transformer architecture
(Vaswani et al., 2017) further accelerated progress
in speech recognition. Transformers, which rely
on self-attention in place of recurrence, achieved
state-of-the-art results in natural language process-
ing and were soon adopted in ASR, outperform-
ing prior recurrent models. By the late 2010s,
Transformer-based ASR had become a de facto
standard approach. For instance, a Transformer-
based system for Vietnamese ASR (VLSP 2021
Task) achieved a strong syllable error rate of 6.72%
on the VLSP evaluation set (Truong, 2022), indi-
cating the effectiveness of self-attention models for
speech.

While Transformers capture long-range depen-
dencies well, researchers have sought to improve
their ability to model local speech patterns. This
led to the development of the Conformer architec-
ture, which combines self-attention with convo-
lutional layers to jointly model global and local
features (Gulati et al., 2020). Conformer has deliv-
ered superior accuracy on ASR benchmarks, signif-
icantly outperforming plain Transformers. In the
Vietnamese ASR research community, Conformer-
based models also proved highly successful. The
winning system of VLSP 2021°s ASR challenge
leveraged a Conformer with advanced training tech-
niques (gradient mask and pseudo-labeling) and
achieved the best performance (Syllable Error Rate
of 8.28%) in the competition (Son et al., 2022).



This exemplifies the trend of leveraging state-of-
the-art architectures from the global research in
local Vietnamese ASR tasks.

Speech Emotion Recognition has likewise bene-
fitted from the general progress in deep learning for
speech. SER systems historically relied on hand-
crafted acoustic features, but modern approaches
use learned representations and often borrow archi-
tectures from ASR and other speech tasks (Latif
etal., 2021). Indeed, representation learning with
deep models has significantly improved SER ac-
curacy and robustness. Recent studies show that
ASR-oriented models can be adapted to recognize
emotion: for example, fine-tuning an ASR model
(with appropriate auxiliary information) yielded
notable gains in SER performance (Ta et al., 2022).
These findings suggest a synergy between ASR and
SER, where a common acoustic model can serve
both transcription and paralinguistic recognition.

Given these developments, the VLSP 2023 chal-
lenge even combined ASR and SER into a sin-
gle evaluation task under low-resource conditions
(VLS, 2023). This joint task setting underlines the
need for efficient, high-capacity models that can
handle both speech recognition and emotion clas-
sification simultaneously. Building on the lessons
from VLSP 2021-2023, we select the Fast Con-
former architecture as our primary model for the
VLSP 2025 ASR & SER challenge. Fast Con-
former is an improved Conformer that employs a
linearly scalable self-attention mechanism and a
novel downsampling schema for efficiency. It is
reported to be 2.8 x faster than the original Con-
former while still achieving state-of-the-art accu-
racy on ASR benchmarks (Rekesh et al., 2023a).
This makes it highly suited for our task: the faster
training and inference speed facilitate experimen-
tation under limited data and compute, and the
model’s strong accuracy provides a solid founda-
tion for both recognition and emotion detection.
Moreover, Fast Conformer’s ability to handle long
speech sequences (through limited-context atten-
tion and global token integration) is advantageous
for real-world applications where utterances may
be lengthy.

In summary, our system adopts Fast Conformer
as the backbone for both speech recognition and
emotion classification. By leveraging the latest
advancements in end-to-end modeling — from at-
tention mechanisms and Transformers through
Conformers and their fast variants — we aim to
build a unified model that excels in transcribing

Vietnamese speech and identifying speaker emo-
tions. In the following sections, we detail our Fast
Conformer-based architecture and training strate-
gies for the VLSP 2025 ASR & SER tasks, and
evaluate its performance against the challenge cri-
teria.

In this paper, we present our approach to address-
ing these challenges in the context of the VLSP
2025 Vietnamese ASR-SER challenge. We first
perform thorough preprocessing on the training
data (e.g., speech normalization and augmentation)
and then use it to train a FastConformer-based ASR
model, a fast implementation of the Conformer ar-
chitecture tailored for Vietnamese to better handle
the acoustic variability introduced by emotional
speech. For the emotion recognition sub-task, we
explore multiple model architectures and incorpo-
rate additional approved external data, then employ
a simple rule-based fusion to establish a strong, ro-
bust predictor for the emotion labels. According to
the official evaluation on the VLSP 2025 test set,
our integrated system achieved a word error rate
(WER) of 12.66% for ASR and an SER accuracy of
80.84%, which corresponds to an overall challenge
score of 85.39. This performance secured our sub-
mission a Top-3 position on the VLSP leaderboard,
demonstrating the effectiveness of our combined
ASR-SER approach.

2 Relate Work
2.1 SER model

Emotion2Vec is a universal speech emotion repre-
sentation model pre-trained with self-supervised
online distillation on large-scale, open-source, un-
labeled emotional speech corpora. Its pre-training
jointly optimizes both utterance-level and frame-
level objectives, enabling the model to capture not
only the global emotional state of an utterance but
also the fine-grained temporal dynamics of emo-
tional expression. This dual-level representation is
particularly powerful for Speech Emotion Recog-
nition (SER), since holistic utterance embeddings
provide stable cues for categorical emotion classi-
fication, while frame-level features (at 50 Hz reso-
lution) enhance sensitivity to local prosodic varia-
tions such as pitch, intensity, or rhythm shifts that
strongly correlate with emotional intensity.

As a result, Emotion2Vec yields highly transfer-
able features across languages, datasets, and tasks;
with only a lightweight linear probe, it achieves
strong results on benchmarks such as IEMOCAP,



and demonstrates consistent gains across 10 lan-
guages (Ma et al., 2024a). In our system, we adopt
the emotion2vec_base checkpoint as a frozen fea-
ture extractor (no fine-tuning). This choice is mo-
tivated by its proven robustness in SER, where
the availability of richly pre-trained, emotion-
sensitive embeddings reduces reliance on large
labeled datasets and delivers strong generaliza-
tion across diverse speech conditions (emotion2vec
Team, 2024).

2.2 ASR model

After data preprocessing to ensure balance, diver-
sity, and quality, selecting the right ASR archi-
tecture becomes critical for achieving both high
accuracy and low-latency inference. The growing
demand for deployment on edge devices empha-
sizes the need for lightweight models that can run
efficiently on CPUs and resource-constrained envi-
ronments. FastConformer was chosen for this task
due to its superior inference speed and competitive
accuracy, ranking among the top models on the
Hugging Face ASR leaderboard. Its design builds
upon Conformer, which integrates convolutional
and transformer components to capture both lo-
cal acoustic features and long-range dependencies.
FastConformer enhances this architecture with 8x
subsampling, refined convolutional kernels, and a
combination of local and global attention mech-
anisms to achieve higher efficiency. As a result,
it provides up to 2.7x faster inference with mini-
mal accuracy trade-offs, making it well suited for
real-time and large-scale ASR applications.

3 Data preprocessing

To ensure that the selected FastConformer architec-
ture can achieve optimal performance, it is crucial
to construct a well-prepared dataset. In this sec-
tion, we present a comprehensive description of our
data pre-processing pipeline and justify the strate-
gies adopted. At the initial stage, we conducted an
in-depth analysis of publicly available datasets to
determine the typical utterance durations, which
informed the time range prioritized during data
collection. Furthermore, we examined the distribu-
tion of emotional categories and their associated
labels to maintain class balance throughout train-
ing and to design an effective pre-processing strat-
egy. Additionally, linguistic and prosodic features
across different emotional states—such as happi-
ness, sadness, and anger—were analyzed to guide
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Figure 1: The distribution of audio files and their dura-
tion ranges in the public dataset.

the development of a suitable data augmentation
approach. This systematic data preparation pro-
cess constitutes a core contribution of our proposed
framework, as it ensures robustness and reliability
in subsequent model training.

Based on the analysis of the public test set (Fig.
1), we observed that the majority of speech seg-
ments fall within the range of 0-5 seconds (1860
of the 2344 samples, accounting for approximately
79%), while segments between 5-10 seconds repre-
sent approximately 20% (472 of the 2344 samples).
Consequently, during data processing, we prioritize
the selection of 0-5 second samples first and then
incorporate 5-10 second samples to maintain an ap-
proximate 4:1 ratio, consistent with the distribution
in the test set.

To accurately simulate the diversity of data so
that it closely resembles the competition dataset,
it is essential to first analyze and approximate the
temporal distribution of the public data. Starting
with the initial set of publicly available audio sam-
ples, we performed a filtering step based on utter-
ance duration, categorizing the data into two sub-
sets: short-duration segments (0—5 seconds) and
medium-duration segments (5—10 seconds). This
division reflects natural speech patterns, as most hu-
man utterances typically fall within the 0-5 second
range.

Once the filtering process was complete, we
aimed to reconstruct the original distribution of
the competition data by proportionally mixing the
two subsets. Specifically, we adopted a 4:1 ratio,
meaning that four samples from the subset contain-
ing utterances of five seconds or less were com-
bined with one sample from the subset containing
utterances longer than five seconds. This approach
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Figure 2: Comprehensive Data Processing Pipeline.

ensured a realistic representation of the temporal
structure observed in the target dataset.

However, this fixed-ratio mixing created an im-
balance, with a shortage of short utterances (0-5
seconds) and a surplus of longer segments. To
address this issue, we applied Voice Activity Detec-
tion (VAD) to segment long utterances into shorter
ones. These newly segmented utterances were
then pre-labeled using Erax on top of Whisper
(Nguyen Anh Nguyen, 2025) for training in Phase
1, while approximately 30,000 audio samples were
reserved for manual annotation in Phase 2. This
strategy increased the number of short samples.
The newly segmented data were subsequently rein-
tegrated using the same proportional mixing strat-
egy, ultimately forming the initial version of the
raw dataset.

After uniformly mixing the data, we proceeded
to enrich the dataset using various techniques in-
formed by human emotional characteristics. Based
on research on emotional expression in speech,
we observed that when individuals are angry, they
tend to speak faster and louder, whereas sadness
or crying is often associated with slower and softer
speech (Juslin and Laukka, 2003).

Specifically, we applied the following augmen-
tation techniques: speed adjustment to simulate
hurried or rushed speech; volume scaling to reflect
the intensity of emotions from whispering to shout-
ing; pitch shifting to replicate frequency variations
occurring when someone yells or speaks with a
trembling voice; and various sound effects, such as

echo to convey a sense of emptiness during sadness,
or tremolo to emulate a quivering voice associated
with anxiety or fear.

In addition to emotion-driven augmentation,
we also performed augmentations based on real-
world environmental factors. We incorporated di-
verse background noises, including bustling market
sounds with vendors and customers, traffic noise
from streets, machinery in factories, as well as
natural sounds like wind and rain. These augmen-
tations created a richer dataset closely resembling
real recording conditions that the system may en-
counter during deployment.

Following the data augmentation process, it re-
mained challenging to obtain a sufficient number
of emotionally rich samples, as such data are inher-
ently rare in natural speech. The publicly available
dataset provided by the organizers also contained
only a limited number of instances with high emo-
tional intensity. To address this limitation, we em-
ployed additional techniques, including leveraging
an emotion detection model combined with manual
verification through auditory inspection, to identify
segments exhibiting strong emotional expressions.
Given that the quantity of these samples was still
insufficient, we oversampled them by a factor of
three to achieve better class balance in the training
set. This approach enables the model to learn more
effectively from emotionally expressive samples
throughout the training process.

Following comprehensive processing and aug-
mentation (Fig. 2), we obtained two complemen-



tary datasets: a original raw dataset that preserves
the inherent distributional characteristics of hu-
man speech in real-world environments, and an en-
hanced dataset enriched through the integration of
multiple advanced audio transformation techniques,
vividly capturing the diverse emotional spectrum
of human expression.

3.1 SER preprocessing

We standardize audio to 16 kHz mono PCM; ap-
ply VAD/trim silence to remove long pauses and
non-speech; choose feature granularity: utterance-
level (pooled) vs. frame-level 50 Hz embeddings;
enforce speaker-independent splits; harmonize
labels when mixing corpora; and mitigate class
imbalance via class weights/sampling. In prac-
tice, our pipeline is: resample — VAD/trim —
loudness norm — extract frame (50 Hz) or pooled
utterance features — balance classes. (Ma et al.,
2024a; emotion2vec Team, 2024; Ayadi et al.,
2011) As shown in Table 1, the VLSP 2022 and

Dataset # Utterances
VLSP 2022 19673
VLSP 2023 42040
Total 61713

Table 1: Statistics of the number of utterances in the
datasets

VLSP 2023 datasets contain a total of 61,713 utter-
ances after the processing stage.

3.2 ASR preprocessing

ASR (Automatic Speech Recognition) is a special-
ized task that involves converting speech into text.
In this process, the duration of audio segments
plays a critical role as it directly influences the
model’s ability to capture contextual information,
maintain data balance, and ensure generalization.
Specifically, if the dataset predominantly consists
of short utterances, the model tends to become
biased toward predicting short sentences and strug-
gles with longer ones during inference. Conversely,
if the dataset contains many long utterances, the
model learns to preserve context effectively but
may produce redundant or incorrect predictions
when dealing with shorter sentences.

In the preparation phase for model training, to-
kenizer processing is a critical component for en-
suring robust and efficient model learning. For
the Automatic Speech Recognition (ASR) task, we
adopted a structured text preprocessing pipeline
comprising the following steps: normalizing all

text to lowercase, removing punctuation and extra-
neous special characters, and applying digit nor-
malization prior to tokenizer training. This pre-
processing strategy is intended to enhance token
consistency and, consequently, improve the overall
accuracy of the speech recognition system.

4 Methodology

4.1 Unified Pipeline (Twinkle ASR)

Our proposed system, Twinkle ASR, is designed to
simultaneously exploit the strengths of emotion rep-
resentation learning and efficient automatic speech
recognition within a unified framework. Here, uni-
fied framework means coupling the two models to-
gether into a single framework for inference, where
the input is speech and the outputs are both the emo-
tion label and the transcribed text. Subsequently,
the results are passed through a post-processing
module (rubase) before generating the final output,
further enhancing overall accuracy.

4.1.1 ASR-SER Framework

At the upstream stage, we adopt the Emo-
tion2Vec paradigm (Ma et al., 2024a), a univer-
sal speech emotion representation model trained
with self-supervised online distillation from a
teacher—student setup. As illustrated in Figure 3,
the teacher network guides the student through
both utterance-level and frame-level objectives,
ensuring that the extracted features capture both
global emotional context and fine-grained temporal
variations. We use the emotion2vec_base check-
point as a frozen feature extractor, producing ro-
bust utterance-level embeddings and optional 50
Hz frame-level representations. These represen-
tations are then passed to the downstream ASR
module, where they provide rich emotional and
acoustic cues beneficial for recognition robustness
in diverse and emotionally expressive speech.

For the downstream architecture, Twinkle ASR
incorporates FastConformer, a recent variant of the
Conformer model that offers an excellent trade-
off between accuracy and efficiency. While Con-
former (Gulati et al., 2020) harmonizes convolu-
tional layers to model local acoustic patterns and
Transformer layers to capture long-range depen-
dencies, FastConformer (Rekesh et al., 2023b) in-
troduces several enhancements. These include 8x
convolutional subsampling, depthwise-separable
convolutions, and a hybrid local—global attention
mechanism, which together yield up to 2.7x faster



inference without significant loss in recognition ac-
curacy. Importantly, this design supports scalability
to long input sequences (up to several hours), mak-
ing it well suited for real-world ASR deployments.

The Twinkle ASR pipeline proceeds as follows.
Raw input waveforms undergo spectrogram aug-
mentation for robustness against acoustic variabil-
ity. Next, an 8x convolutional subsampling layer
reduces the temporal resolution, feeding into a
linear projection layer and dropout regularization
to stabilize training. The processed features are
then passed through stacked FastConformer blocks,
each consisting of feed-forward modules, multi-
head self-attention, and convolutional modules
with residual connections and normalization. Fi-
nally, the output layer maps to the target label set
for recognition. To align with competition eval-
uation protocols, we fine-tune using the original
labels of the datasets (Table 1), before mapping
them into two high-level categories (neutral and
negative) for downstream emotion evaluation.

Overall, As shown in Fig. 3 Our model Twin-
kle ASR combines the representational power of
Emotion2Vec with the speed and scalability of
FastConformer, resulting in a system that is ac-
curate, efficient, and emotionally aware. This hy-
brid design not only achieves strong recognition
performance under real-time constraints but also
enables robust handling of emotionally rich speech,
making it highly suitable for next-generation hu-
man—computer interaction systems.

4.1.2 Rule-base postprocessing

The rubase technique we applied is conceptually
simple and specifically tailored for the emotion
recognition task. By examining the dataset, we
observed that in most cases of anger, speakers fre-
quently use offensive or profane words such as
"tao", "may", ... and similar expressions. Leverag-
ing this characteristic, we developed an additional
rubase module as a post-processing step, designed
to detect negative emotions purely based on the
presence of such profane words in the transcribed

text.

As a result, the emotion label can be reassigned
after the ASR + SER pipeline if any offensive
words are detected in the recognized text. This
lightweight but effective strategy significantly en-
hanced emotion recognition performance, improv-
ing accuracy from approximately 80 to 82 points
in our experiments with the private test set.

4.2 Loss function
4.2.1 Loss function for our ASR model

For the ASR component, the loss computation
mechanism is designed to optimize training effi-
ciency while maintaining stability across variable-
length audio sequences. The primary component is
Connectionist Temporal Classification (CTC) Loss
(Graves et al., 2006), applied on sequences of BPE
(Byte-Pair Encoding) subword units. The decoder
is implemented as ConvASRDecoder, which maps
the encoder output to the corresponding number of
classes:

num_classes=vocab+blank

prior to CTC loss computation. To ensure sta-
bility, the parameter ctc_reduction is configured
as mean_volume, meaning that the loss is averaged
over the total number of valid frames in the batch
(excluding padding) rather than simply based on
batch size.

Additionally, the model supports an optional
InterCTC mechanism, which introduces auxil-
iary CTC losses at one or more intermediate en-
coder layers to improve convergence and act as
a regularization technique. These components
are configured via interctc.loss_weights and
interctc.apply_at_layers. The overall loss is
computed as:

final layer i
Liotal = Qo E(C%%) + Z Q; E(c*i}yér 9
_ : (1)
withag =1 — ZO@.
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4.2.2 Loss function for our EMO model

Our emotion recognition (EMO) module is fine-
tuned downstream from the universal speech emo-
tion representation model emotion2vec (Ma et al.,
2024b), which is pre-trained via self-supervised
online distillation combining both utterance-level
and frame-level losses. To further adapt the model
to our task, we use a lightweight classifier head on
top of frozen emotion2vec features.

We train this downstream classifier using the
cross-entropy loss:

N C
1 .
EEMO = _N ;:1 ;1 Yic Ingi,w (2)

where N is the number of training examples, C
is the number of emotion categories, ¥; . is the one-



hot label, and p; .. is the predicted probability for
class c.

In line with the original emotion2vec framework,
we freeze the backbone and only update the pa-
rameters of the classifier during fine-tuning. This
strategy preserves the generalization ability of the
pre-trained emotion representations while minimiz-
ing the risk of overfitting on limited labeled emo-
tion data. Label smoothing is optionally applied
to regularize the model, particularly when class
distributions are imbalanced.

5 Experiment

5.1 Training metric
5.1.1 ASR training

The FastConformer-CTC-BPE model was trained
from scratch for a total of 300 epochs, with Phase
1 consisting of 200 epochs on the public dataset,
followed by Phase 2 with 100 epochs on the care-
fully annotated dataset. The entire training process
took approximately one month on a multi-GPU
server equipped with 2 x NVIDIA RTX 4090 GPUs
(24 GB each) and 100 GB of RAM, using a batch
size of 32 and 16 parallel data-loading workers
(num_workers).

To mitigate overfitting, a dropout rate of 0.1 was
applied to the core network components. The train-
ing procedure followed the NeMo configuration
for large-scale FastConformer models ( 120 mil-
lion parameters), utilizing the CTC loss over BPE
subword sequences in combination with a ConvA-
SRDecoder to map encoder outputs into the vocab-
ulary logits space.

Key optimization strategies included mixed-
precision training (BF16) to accelerate conver-
gence, reduce memory footprint, and allow stable
training with large batch sizes; in case of insta-
bility, the model could fall back to FP32. The
AdamW optimizer was used with weight decay
= le-3 and an initial learning rate of le-3, cou-
pled with a CosineAnnealing scheduler and 15,000-
step warmup, ensuring smooth learning rate ad-
justments. Regularization and data augmentation
strategies incorporated SpecAugment with time
masking = 10 and frequency masking = 2, along
with feature-wise normalization, enhancing model
generalization.

Architecturally, the FastConformer Encoder
comprises 18 layers, with d_model =512, 8 atten-
tion heads, depthwise convolutional subsampling
at an 8x factor with kernel size = 9, balancing per-

formance and accuracy. The optional InterCTC
Loss provides auxiliary supervision at intermedi-
ate encoder layers, promoting faster convergence
and improved alignment. Additionally, gradient
clipping, synchronized batch normalization, and
checkpointing were applied to maintain stability
during large-scale training.

This setup adheres to NVIDIA’s recommenda-
tions for FastConformer in large ASR systems, ef-
fectively balancing accuracy, speed, and scalabil-
ity, and is particularly suitable for long-sequence
speech recognition tasks.

5.1.2 SER training

We employed a pretrained distilled student model
derived from the teacher model of emotion2vec.
On top of this representation, we trained a linear
classification layer with the label sets provided in
the two datasets listed in Table 1. During fine-
tuning, we preserved the original labels from the
papers without applying any mapping. After train-
ing, the labels were mapped into two categories,
neutral and negative, for the purpose of competition
evaluation.

5.2 Result

The FastConformer-CTC-BPE model was trained
from scratch for a total of 300 epochs, with Phase 1
consisting of 200 epochs on the public dataset, fol-
lowed by Phase 2 with 100 epochs on the carefully
annotated dataset. The entire training process took
approximately one month on a multi-GPU server
equipped with 2 x NVIDIA RTX 4090 GPUs (24
GB each) and 100 GB of RAM, using a batch size
of 32 and 16 parallel data-loading workers. This
rigorous training procedure enabled comprehensive
optimization in both performance and generaliza-
tion. As a result, our final system achieved an
overall score of 85.4 across both ASR and SER
tasks on the VLSP public dataset, with a word er-
ror rate (WER) of 0.074 specifically on the ASR
test set. These results highlight the effectiveness of
our architectural choices, optimization strategies,
and data augmentation techniques in building an
advanced Vietnamese speech processing system.
The final evaluation of the competition was con-
ducted on a private test set provided by the or-
ganizers, ensuring an objective and rigorous as-
sessment of all submitted systems. Among the
generated checkpoints, Checkpoint 299 demon-
strated superior performance as a result of exten-
sive fine-tuning and optimization during training.
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Figure 3: Twinkle ASR.

This model achieved a Word Error Rate (WER)
of approximately 0.07 on the internal test set, in-
dicating a substantial reduction in recognition er-
rors compared to earlier iterations. Such a low
WER not only confirms the model’s high accuracy
in Vietnamese speech recognition but also high-
lights its robustness under diverse acoustic con-
ditions. These findings underscore the effective-
ness of our architectural design, training strategies,
and data processing pipeline in developing a high-
performance ASR system. In the final leaderboard,
our team ranked third overall, achieving WER =
12.66%, SER Accuracy = 80.84%, and a Final
Score of 85.39, as shown in Table 2.

Rank  Team WER SER Acc  Final Score
1 nguyenhythien 9.07% 82.21% 88.31
2 ishowspeech 11.38% 79.13% 85.77
3 dangnguyen-VLSP 12.66% 80.84% 85.39
4 SoFarSoGood 19.12% 79.50% 80.47

Table 2: Performance comparison across teams.
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