A Graph-Based Agent Approach to Numerical Reasoning Question

Answering
Quang Nguyen' Vu Thanh Dat Ha! Thanh Tuan Le! Huan Vu?
"VNPT AI ? National Economics University

{quangngm, thanhdathv, lethanhtuan}@vnpt.vn
{huanv}@neu.edu.vn

Abstract

Numerical reasoning in finance requires high
accuracy and transparency, yet directly prompt-
ing Large Language Models (LLMs) for multi-
step calculations is often unreliable. While
modern LLMs possess long-context capabil-
ities, complex financial documents still pose
significant reasoning challenges. We propose
a four-step Al agent pipeline. Its core con-
tribution is a planning stage that utilizes n-
sampling to generate multiple reasoning paths,
allowing the agent to select the most coher-
ent and accurate solution. The system is de-
signed for the two competition subtasks: Sub-
task 1 (models <13B parameters), for which
we use Qwen3-8B, and Subtask 2 (any open-
source model size), for which we use Qwen3-
32B. Our method proved highly effective on
the VLSP 2025 Numerical Reasoning QA pri-
vate test set, achieving the highest Execution
Accuracy (84.00%) in Subtask 2 and securing a
top-3 rank in Subtask 1 with 79.14% Execution
Accuracy, demonstrating the superiority of our
structured, multi-path reasoning approach.

1 Introduction

Financial analysis is critical for assessing business
performance, but the sheer volume and complex-
ity of financial documents make manual analysis
a significant challenge for human experts (Jerven,
2013; MacKenzie, 2008). This has motivated the
development of automated systems to perform deep
analysis of financial data. However, numerical
reasoning in the financial domain poses unique
challenges compared to general-domain Question
Answering (QA) tasks like DROP (Dheeru Dua
and Gardner, 2019). Unlike general questions, fi-
nancial QA requires systems to perform complex,
multi-step numerical reasoning by synthesizing in-
formation from heterogeneous sources, including
both unstructured text and tables (Chen, 2021).
Approaches that rely on directly prompting Large
Language Models (LLMs) for these calculations

often prove unreliable and lack the necessary trans-
parency for high-stakes financial applications. For
a concrete illustration of the task, which requires
generating both a reasoning program and a final
answer, see Example 1.1.

In this paper, we address these challenges by
proposing a structured, inference-only Al agent
pipeline. Our approach systematically breaks down
the problem into four distinct stages: Question De-
composition, Data Extraction, Planning, and Equa-
tion Extraction. The cornerstone of our method is
the planning stage, where we employ n-sampling.
Instead of committing to a single line of reason-
ing, this technique generates multiple potential ex-
ecution plans. This multi-path exploration allows
the agent to evaluate and select the most robust
and logically sound reasoning program, signifi-
cantly improving accuracy over single-pass gener-
ation methods. The pipeline utilizes the Qwen3-8B
model for Subtask 1 and the more powerful Qwen3-
32B for Subtask 2. We specifically selected the
Qwen3 model family (Qwen Team, 2025) due to
its strong reasoning capabilities, which are well-
suited for tasks requiring coding, logical calcula-
tions, and step-by-step thinking. This architecture
makes it easier to trace the model’s reasoning pro-
cess, which is crucial for analysis and future im-
provements. Our methodology was validated in the
VLSP 2025 Numerical Reasoning QA competition,
where it achieved outstanding results on the highly
competitive private test set. In Subtask 2, our sys-
tem demonstrated its superiority by achieving the
highest Execution Accuracy (84.00%) among all
competitors, paired with a Program Accuracy of
74.07%. In Subtask 1, it also delivered a strong
performance with 79.14% EA and 69.82% PA, se-
curing top-tier rankings in both categories. The
main contributions of this work are threefold:

1. We design a robust, four-step agent pipeline
specifically tailored for financial numerical

reasoning.

2. We introduce the novel application of n-
sampling for generating and optimizing mul-
tiple reasoning plans, enhancing the model’s
accuracy and robustness.

3. We demonstrate state-of-the-art performance
on a competitive benchmark, confirming that
structured agentic workflows significantly
outperform direct LLM prompting for com-
plex reasoning tasks.

Example 1.1: Numerical Reasoning QA
Example

Question: Doanh thu thuan nim 2023 gip
bao nhiéu l1an doanh thu thuan nim 2022?
Context: (Abbreviated; see task description
for details containing a table with revenue
figures for 2023 and 2022.)

Program: divide(914, 391)

Answer: 2.337595907928389

2 Related Work

Numerical reasoning in question answering has
been explored in various benchmarks. General-
domain tasks include DROP (Dheeru Dua and
Gardner, 2019), focusing on reading compre-
hension with discrete reasoning, and MathQA
(Aida Amini and Hajishirzi, 2019), targeting math-
ematical word problems. In the financial domain,
FinQA (Chen, 2021) introduced a dataset for nu-
merical reasoning over financial reports, empha-
sizing interpretable reasoning programs. TAT-QA
(Zhu, 2021) extends this to hybrid tabular and tex-
tual content in finance, requiring diverse numerical
operations such as addition, subtraction, multipli-
cation, and division. ConvFinQA (Chen, 2022)
further explores conversational aspects, emphasiz-
ing chain-of-numerical reasoning in finance dia-
logues. Recent works have proposed specialized
models and approaches to tackle these challenges.
For instance, TAT-LLM (Zhu et al., 2024) is a lan-
guage model fine-tuned for discrete reasoning over
financial tabular and textual data, demonstrating
improved performance on benchmarks like TAT-
QA. ELASTIC (Zhang and Moshfeghi, 2022) intro-
duces an adaptive symbolic compiler for numerical
reasoning, allowing more flexible program gener-
ation. Additionally, multi-agent frameworks, such
as the one proposed by Lee et al. (2024), incor-
porate a critic agent to reflect on reasoning steps

and improve answer quality in financial QA tasks.
Case-based reasoning approaches (Kim, 2024) have
also been explored to address multi-step numerical
problems by retrieving and adapting similar past
cases. More recent benchmarks like FinanceRea-
soning (Tang et al., 2025) and FinMMR (Tang,
2025) aim to make financial numerical reasoning
more credible, comprehensive, and challenging,
including multimodal elements and broader finan-
cial concepts. The VLSP 2025 Numerical Rea-
soning QA extends these efforts by focusing on
Vietnamese financial reports and evaluating both
execution accuracy (numerical correctness) and
program accuracy (logical equivalence of reason-
ing programs). Our graph-based pipeline builds on
these foundations, integrating advanced planning
with n-sampling and parallel processing to enhance
transparency and efficiency in financial QA.

3 Task and Dataset

3.1 Task Definition

The VLSP 2025 Numerical Reasoning QA task
challenges systems to reason over financial doc-
uments. Formally, given a question ¢ and its
corresponding context C', which consists of un-
structured text (pre text, post text) and a struc-
tured table (table), the task is to learn a mapping
f:(q,C) = (a,p). Here, a is the final numerical
answer (answer), and p is the transparent, step-by-
step reasoning program (program) that produces
a.

The competition is structured into two distinct
subtasks, both sharing the same dataset but with
different constraints on model size:

* Subtask 1 restricts participants to using
models with 13 billion parameters or fewer
(<£13B).

* Subtask 2 allows for the use of models of
any size, with the exclusion of proprietary,
API-only models (e.g., GPT series, Gemini).

3.2 Dataset

The dataset provided, denoted as D = {d;}}¥ |,
consists of N samples. Each sample d; is a tuple
containing:

* context: The surrounding text and table data
from a Vietnamese financial report.

* question: The user’s question in Vietnamese.

» program: The gold reasoning program.

* exe ans: The gold numerical answer derived
from executing the program.

The training set is composed of the translated
FinQA dataset (Chen, 2021) and a collection of
Vietnamese financial reports spanning from 2020
to 2025. The evaluation is conducted on public and
answer-hidden private test sets, which only provide
the context and question.

4 Proposed Method

We introduce a modular, multi-stage agentic work-
flow designed to systematically deconstruct and
solve financial numerical reasoning problems. Our
pipeline models the reasoning process as a directed
acyclic graph, ensuring a structured and transpar-
ent execution flow. As illustrated in Figure 1, the
architecture comprises four distinct modules: a
Subquery Generator, a Subquery Answerer, a Plan
and Scheduler, and an Equation Extractor.

4.1 Question Decomposition

To mitigate the risk of reasoning errors, a key chal-
lenge for modern LLMs, despite their capacity for
long context windows, is maintaining focused rea-
soning amidst noisy data. Even when an entire
document is ingested, the model’s attention can
drift, causing it to struggle with discerning key nu-
merical figures from irrelevant details and failing to
grasp the precise relationships between them. This
increases the risk of reasoning errors, such as hallu-
cination or overlooking critical values. To counter-
act this, our pipeline adopts a "divide and conquer"
strategy, first decomposing the main question g into
atomic, fact-seeking subqueries. This approach ex-
plicitly separates the task of identifying the nec-
essary numerical evidence from the subsequent,
more complex task of calculation. By forcing the
model to focus on one piece of information at a
time, we minimize the distracting influence of the
broader context and significantly enhance the re-
liability of the numerical grounding for the final
reasoning step. The decomposition is performed
by an LLM-based generator function, Gy, which
is prompted to identify the core numerical entities
required to answer q.

SQ = Gy(q,C) ey

where SQ = {sqi,sq,...,sq} is the resulting
set of k self-contained subqueries that probe for

specific values within the context C. Gyq is im-
plemented as a prompted LLM call that takes the
question and context and is instructed to generate a
JSON object of fact-seeking queries.

4.2 Grounded Data Extraction

Each generated subquery sq; € SQ is then inde-
pendently executed against the full context C'. This
stage grounds the subsequent reasoning process
in verifiable numerical evidence by isolating the
data extraction task. An LLM-based answering
function, Asq, is responsible for this information
retrieval. Formally, this function maps each sub-
query to its corresponding value v;, yielding a set
of numerical arguments V.

V = {v; | vj = Axq(sq5,C),Vsq; € SQ} (2)

The resulting set V' = {v;,v9,..., v} provides
the necessary numerical and textual arguments for
the subsequent program synthesis stage. Ay is
implemented as an independent LLM call for each
subquery.

4.3 Multi-Path Program Generation

Rather than committing to a single, potentially
flawed reasoning path, our method explores a di-
verse solution space by generating multiple in-
dependent output sequences. We utilize the n-
sampling parameter to generate a set Pcyng of n
distinct candidate reasoning programs (in our ex-
periments, n = 15).

Peand = Pn—sample(va Ca q, T) 3)

This approach allows the agent to consider mul-
tiple hypotheses for combining the extracted nu-
merical arguments V' using a predefined toolset
T (e.g., add, divide). By exploring a variety of
computational graphs, this method significantly
enhances robustness against common reasoning
fallacies. Py sample represents the LLM generation
process, where the model is prompted with the ex-
tracted data V, financial context C, original ques-
tion, tool definitions 7" and is called to produce n
independent program outputs by setting the sam-
pling parameter n = 15.

4.4 Optimal Program Selection and Execution

The final stage involves selecting the optimal pro-
gram p* from the candidate set P.,nq Without su-
pervised labels. We introduce a selection heuristic

- Context before table:
theo do céc chi sb dinh gid nganh dién nhu sau : p/e binh
lquan: 9,8 an p/b binh quan: 1,72 ev/ ebitda binh quan: 6,79

- Context after table:

- Table:
| Phuong phép | Gid tri | Ty trong | Gid tri theo ty trong |

Function calling
processes

add(19038.80, 31434.47)

/56760.16

add(#0, 6286.89)

Subguery 1

[Téng gid tri theo ty.
trong la gi?

| Phuong phép P/E | 38077.60 | 50% | 19038.80 |

| Phuong phép P/B | 31483.64 | 30% | 9445.09 |

| Phuong phéap EV/ EBITDA | 31434.47 | 20% | 6286.89 |
| Gid c8 phan | |100% | 34770.79 |

Planning Phase
add(a, b)

join()

Top result
voting

= add(woas.io, 6286.89)

[Tng gid tri theo ty devide(a, b)

—| multiply(a, b) add(#0, 9445.09) » 3477078 add(19038.80, 9445.09),

add(#0, 6286.89)
table_max(column)
Subquery 2 table_min(column) join)
Ba phuong phép dinh tableaverra'ﬁe(wlumm
dinzgiél-agg?o i ‘table_sum(column)
- - Jjoin)

add(19038.80, 9445.09)

Ba phurang phap dinh
dinh gi a......

Subquery 3
Gia trj theo ty trong
clia ca ba phuang
phap dinh gia?
Phuong phap P/E c6
ty trong la ...

[E—

|- Question: Téng gid tri theo ty trong clia ca
lba phuong phap dinh gia (2 bao nhiéu?

add(#0, 6286.89)

\ 34770.78

join()

Figure 1: Overview of the graph-based Al agent pipeline for the VLSP 2025 Numerical Reasoning QA task,
illustrating the four sequential nodes: Subquery Generator, Subquery Answerer, Plan and Scheduler, and Equation
Extractor. Note: "Equation Extractor" in the diagram corresponds to the "Optimal Program Selection and Execution"

stage described in the text.

based on majority voting over the generated pro-
gram structures. First, the n candidate programs
are canonicalized (e.g., arguments of commutative
operators are sorted) and grouped to find the set
of unique programs. The unique program that was
generated most frequently is selected as the optimal
one, p*. This approach assumes that the reasoning
path generated most consistently by the model is
the most reliable. In case of a tie in frequency,
the program with fewer steps (lower complexity) is
chosen.

p* = arg max Score(p;) 4
Pi €Peand

The Score(p;) function formalizes this by calcu-
lating the frequency of each unique, canonicalized
program in Pcyng. The program with the highest
frequency count receives the highest score, with
complexity used as a tie-breaker. The final an-
swer a* is then obtained by executing this optimal
program:

a® = Execute(p™) 5)

The Execute(p*) function parses the program
string, calls the corresponding tool functions with
the specified arguments, and returns the final nu-
merical result. The resulting pair (a*, p*) consti-
tutes the final output of our system.

5 Experimental Setup

5.1 Implementation Details

Models For Subtask 1, we use the instruction-
tuned Qwen3-8B model. For Subtask 2, we em-
ploy the larger Qwen3-32B model. This selection
adheres to the competition’s rules, which mandate
a model size of <13B for Subtask 1 and allow
for larger open-source models in Subtask 2. Both
models are loaded in ‘bfloat16° precision. To op-
timize inference throughput and manage memory
efficiently, all experiments were conducted using
the vLLM library (Kwon et al., 2023).

Configuration Our pipeline generates k € sub-
queries and uses an n-sampling parameter of n =
15 for program generation. Inference was per-
formed using a sampling temperature of 0.6, with
top_p and top_k set to 0.95 and 20, respectively.
Experiments were run on two NVIDIA 80GB A100
GPUs.

5.2 Baseline Method

Our baseline uses the same foundation models
and inference configuration but employs a direct,
single-prompt approach. The model is prompted to
generate the final reasoning program in one step,

allowing us to directly measure the performance
gains from our structured workflow.

5.3 Evaluation Metrics

System performance is evaluated using two pri-
mary metrics: Execution Accuracy (EA) and Pro-
gram Accuracy (PA). Let (apred, Ppred) be the pre-
dicted answer-program pair and (agoid, Peola) be the
ground truth pair for a given question.

Execution Accuracy (EA) measures the percent-
age of predicted numerical answers that are an exact
match to the gold answers. The metric is defined
as:

ZI pred = ggld) (6)

where N is the total number of questions and I(-)
is the indicator function, which is 1 if the condition
is true and O otherwise.

Program Accuracy (PA) measures the percent-
age of predicted programs that are logically equiva-
lent to the gold programs. Since semantically iden-
tical operations can have different surface forms
(e.g., add(a, b) vs. add(b, a)), this metric eval-
uates structural equivalence after normalizing the
program, such as by sorting arguments for commu-
tative operators. It is defined as:

N
1
= Z norm ppred) = norm(pgold)) (7)

where norm(-) is the function that canonicalizes a
program’s structure and = denotes a string-level
identity check. Table 1 provides illustrative exam-
ples for both metrics.

Metric Gold Prediction Result
EA 2.338 2.338 Correct
EA 523.0 523.1 Incorrect
PA divide(914, 391) divide(914, 391) Correct
PA add(a, b) add(b, a) Correct
PA subtract(a, b) subtract(b, a) Incorrect
PA add(a, b) multiply(a, b) Incorrect

Table 1: Examples illustrating the evaluation criteria for
Execution Accuracy (EA) and Program Accuracy (PA).

5.4 Experiment Results

We evaluate our agentic pipeline against the direct-
prompting baseline and other top-performing sys-
tems in the VLSP 2025 Numerical Reasoning QA
competition. Table 2 presents the head-to-head

comparison against our baseline, while Table 3 sit-
uates our performance within the context of the
final private test set leaderboard.

Method Subtask Public Test

EA (%) PA (%) EA (%) PA (%)

Baseline Subtask 1 (8B) 41.05 32.60 - -
MPR-Agent Subtask 1 (8B) 78.47 71.83 79.14 69.82

Baseline Subtask 2 (32B) 47.89 40.24 - -
MPR-Agent Subtask 2 (32B) 81.29 75.25 84.00 74.07

Private Test

Table 2: Performance comparison against the direct-
prompting baseline. Our agentic pipeline Multi-Path
Reasoning Agent (MPR-Agent) achieves significant im-
provements across all metrics.

Subtask Team (Method Description) EA (%) PA (%) AvgScore (%)

Subtask 1 ngoquanghuy 81.95 75.00 78.48
HUET 79.88 76.63 78.26
Innovation-LLM (MPR-Agent) 79.14 69.82 74.48
truong13012004 74.26 69.67 71.97
vietld 68.49 61.83 65.16
masterunited 56.80 54.14 55.47

Subtask 2 Innovation-LLM (MPR-Agent) 84.00 74.07 79.04
HUET 79.88 76.63 78.26
truong13012004 74.26 69.67 71.97

Table 3: Final private test set leaderboard results, ranked
by Execution Accuracy (EA) to highlight performance
in obtaining the correct final answer. Our team name is
Innovation-LLM.

5.5 Analysis

The results unequivocally demonstrate the superi-
ority of our structured agentic pipeline. As shown
in Table 2, our method achieves a massive absolute
improvement over the direct-prompting baseline,
confirming that our structured approach is far more
effective.

Table 3 situates our performance on the private
test set, where we have ranked the results by Ex-
ecution Accuracy (EA) to emphasize the model’s
primary strength: delivering the correct numerical
answer. We also include an average score to pro-
vide a more holistic view of performance. In the
highly competitive Subtask 2, our agent established
its dominance by achieving the highest Execution
Accuracy (84.00%) of any system. This result un-
derscores our method’s exceptional reliability in
solving complex financial calculations, a crucial
factor for real-world applications where correctness
is paramount.

While the official competition was ranked by
Program Accuracy (PA), our system’s top-tier EA
highlights a key insight into our design. The multi-
path, consensus-based approach is optimized to
find a valid and correct reasoning path, which may

not always syntactically match the single gold pro-
gram. This phenomenon suggests that our agent
prioritizes functional correctness over stylistic con-
formity. The high EA score, paired with a competi-
tive PA, indicates that our system consistently iden-
tifies mathematically sound solutions, even if they
differ in structure from the reference program. This
flexibility is a feature, not a flaw, as it demonstrates
robust problem-solving rather than rigid adherence
to a single template (see Example 5.1 for a concrete
case).

5.5.1 Ablation Study

To understand the contribution of each compo-
nent in our pipeline, we conducted an ablation
study on the public test sets for both Subtask 1
and Subtask 2 public test set. We evaluated three
configurations: (1) our full MPR-Agent, (2) the
pipeline without multi-path generation (Decom-
position Only, n=1), and (3) the pipeline without
initial question decomposition (Multi-Path Only).
The results in Table 4 show that both decompo-
sition and multi-path generation contribute to the
final performance, with the multi-path providing
the largest boost in Execution Accuracy.

Method Configuration Model EA (%) PA (%)
MPR-Agent (Full Pipeline) 8B 78.47 71.83
Decomposition Only (n=1) 8B 72.84 62.58
Multi-Path Only (n=15) 8B 78.38 70.91
MPR-Agent (Full Pipeline) 32B 81.29 75.25
Decomposition Only (n=1) 32B 79.48 66.80
Multi-Path Only (n=15) 32B 80.91 74.65

Table 4: Ablation study of our pipeline components on
the Subtask 1 & 2 public test set. Both decomposition
and multi-path generation are crucial for performance.

5.5.2 Error Analysis and Heuristic Robustness

To investigate the failure modes of our
consensus-based selection heuristic, we qualita-
tively analyzed a sample of failure cases from the
public test set. Our findings indicate that failures
primarily fall into two distinct categories:

1. Systematic reasoning error: In the major-
ity of failures, the issue stemmed from the
foundational reasoning capability of the base
LLM itself. For certain complex or ambiguous
questions, the model systematically failed to
capture the correct logic, causing all, or nearly
all, of the 15 generated programs to converge
on the same flawed reasoning path. In these
instances, our heuristic correctly selected the

consensus program, but the consensus itself
was fundamentally incorrect.

2. Heuristic selection error: In a smaller num-
ber of cases, the set of generated candidates
did contain the correct program, but it was ul-
timately discarded. This failure occurs when
one or more incorrect reasoning paths are gen-
erated more frequently than the single correct
path, causing the correct program to be "out-
voted". The heuristic, by design, selects the
most frequent plan and thus fails. This rep-
resents an inherent limitation of the majority-
voting mechanism, where a more common but
flawed approach can overshadow a correct but
less frequently generated one.

This analysis confirms that while the heuristic is ef-
fective at filtering out stochastic generation errors,
its robustness is bounded by both the systematic
reasoning capabilities of the LLM and the proba-
bilistic nature of the selection process itself.

Example 5.1: Functional Correctness vs.

Programmatic Equivalence

Question: Based on the results of the first
quarter of 2019, what is the planned net
profit after tax (LNST) for the entire year
2019?

Extracted Numbers: Net profit for Q1
2019 is 1,041, which completes 29.2% of
the annual plan.

Gold Program: divide(1041, 0.292)
Our Generated Program: divide(29.2,
100), divide(1041, 0)

Answer: Both programs execute to
3565.07.

Analysis: Our agent’s generated program
passes EA but fails PA. The gold standard
directly uses the decimal value of the per-
centage (0.292). Our agent first explicitly
converts the percentage to a decimal by di-
viding it by 100, and then uses that result
for the final calculation. This demonstrates
the agent’s ability to find a functionally cor-
rect solution path by breaking the problem
into more granular steps, even if it does not
match the specific syntactic structure of the
gold annotation.

For future work, aligning the model’s output
more closely with the canonical program struc-

tures of the training data could further improve PA
scores. Fine-tuning the model on the competition
dataset presents a promising path to harmonize our
agent’s powerful reasoning capabilities with the
specific stylistic requirements of the benchmark.
Nonetheless, our current inference-only method
already demonstrates state-of-the-art performance
in numerical accuracy, showcasing the immense
power of advanced agentic workflows without the
need for costly training overhead.

6 Limitations

While our proposed method demonstrates strong
performance, we acknowledge several limitations.
First, our optimal program selection relies on a
consensus-based heuristic. As shown in our error
analysis, this can fail when the underlying model
systematically generates flawed reasoning paths,
leading the majority to converge on an incorrect
solution. A learned-critic or a more sophisticated
validation mechanism could potentially mitigate
this.

Second, the multi-path generation via n-
sampling significantly increases computational
overhead. Generating 15 candidate programs in-
creases inference time and cost, which may not
be practical for real-time applications. Our sen-
sitivity analysis (see Appendix A) explores this
trade-off, but it remains an inherent challenge of
the approach.

Finally, our evaluation is confined to the VLSP
2025 dataset. The agent’s performance on other
financial reasoning benchmarks or in different do-
mains has not been explored, and its effectiveness
may vary depending on the complexity and struc-
ture of the data.

7 Conclusion

In this work, we introduced a structured, graph-
based Al agent that effectively addresses the chal-
lenges of financial numerical reasoning. Our
methodology, centered on question decomposition
and multi-path plan generation via n-sampling,
proved significantly more robust than a direct-
prompting baseline. This was validated by our
strong performance in the VLSP 2025 Numeri-
cal Reasoning QA competition, where our agent
achieved the highest Execution Accuracy in Sub-
task 2 and secured top-3 EA and PA rankings in
Subtask 1.

Our analysis revealed a powerful insight: our

agent is exceptionally skilled at discovering func-
tionally correct solutions, prioritizing the accuracy
of the final answer over rigid adherence to a spe-
cific programmatic structure. This design choice
resulted in our system achieving the highest Execu-
tion Accuracy in Subtask 2, underscoring its real-
world applicability. The discrepancy between our
leading EA and competitive PA is not a limitation,
but rather a reflection of the system’s robust, flexi-
ble reasoning. Future work can focus on aligning
the agent’s programmatic style with canonical for-
mats through fine-tuning, which would bridge the
gap between numerical correctness and structural
equivalence, further advancing the development of
accurate, transparent, and trustworthy Al for the
financial domain.

References

Shanchuan Lin Rik Koncel-Kedziorski Yejin Choi
Aida Amini, Saadia Gabriel and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, 1.

et al Chen, Zhiyu. 2021. Finqa: A dataset of numerical
reasoning over financial data. Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing.

Zhiyu Chen. 2022. Convfinga: Exploring the chain of
numerical reasoning in conversational finance ques-
tion answering. Preprint, arXiv:2210.03849.

Pradeep Dasigi Gabriel Stanovsky-Sameer Singh
Dheeru Dua, Yizhong Wang and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, 1.

Morten Jerven. 2013. Poor numbers: how we are misled
by african development statistics and what to do about
it.

Yikyung Kim. 2024. Case-based reasoning approach
for solving financial question answering. Preprint,
arXiv:2405.13044.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody ho, Joseph E. Gon-
zalez, Ion Stoica, and Matei Zaharia. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
ACM Symposium on Operating Systems Principles.

https://arxiv.org/abs/2210.03849
https://arxiv.org/abs/2210.03849
https://arxiv.org/abs/2210.03849
https://arxiv.org/abs/2405.13044
https://arxiv.org/abs/2405.13044

Sanghoon Lee, Minchul Kim, and Jungmoon Kang.
2024. Enhancing financial question answering with
a multi-agent framework incorporating a critic agent.
In Proceedings of the 5th ACM International Confer-
ence on Al in Finance, pages 1-8.

Donald MacKenzie. 2008. An engine, not a camera:
How financial models shape markets.

Qwen Team. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Zichen Tang. 2025. Finmmr: Make financial numeri-
cal reasoning more multimodal, comprehensive, and
challenging. Preprint, arXiv:2508.04625.

Zichen Tang, Haihong E, Ziyan Ma, Haoyang He, Ji-
acheng Liu, Zhongjun Yang, Zihua Rong, Rongjin
Li, Kun Ji, Qing Huang, Xinyang Hu, Yang Liu,
and Qianhe Zheng. 2025. Financereasoning: Bench-
marking financial numerical reasoning more credi-
ble, comprehensive and challenging. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15721-15749, Vienna, Austria. Association
for Computational Linguistics.

Jiaxin Zhang and Yashar Moshfeghi. 2022. Elastic: Nu-
merical reasoning with adaptive symbolic compiler.
Advances in Neural Information Processing Systems,
35:12647-12661.

Fengbin Zhu. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. Preprint, arXiv:2105.07624.

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang, Moxin
Li, and Tat Seng Chua. 2024. Tat-llm: A specialized
language model for discrete reasoning over financial
tabular and textual data. In Proceedings of the 5th
ACM International Conference on Al in Finance,
pages 310-318.

A Sensitivity Analysis of Hyperparameter
n

We analyzed the sensitivity of our approach to
the hyperparameter n, which controls the num-
ber of candidate programs generated. We evalu-
ated Execution Accuracy (EA) and Program Ac-
curacy (PA) on a subset of the validation set for
n € {1,5,10,15,20}. The results, shown in Fig-
ure A.1, reveal a nuanced trade-off. For EA, perfor-
mance peaks at n = 10 and then slightly decreases.
For PA, performance continues to improve, peak-
ing at n = 15. Given that computational costs rise
linearly with n, we chose n = 15 as it provided the
best PA score while maintaining a high EA, strik-
ing a good balance between overall performance
and inference efficiency.

Effect of n-sampling on Performance

85 I I T T
80 -
S 75l
5y
g
8 70
<
65 [= EA
| | | |
60 1 5 10 15 20
n (Number of Samples)

Figure A.1: Sensitivity analysis of the n-sampling pa-
rameter on the Subtask 1 public test set. Performance
generally peaks between n=10 and n=15 before plateau-
ing. Best Program Accuracy stop at n=15.

B Prompts

This appendix provides the full prompts used at
each stage of our agentic pipeline. The prompt for
the Subquery Generator, responsible for question
decomposition, is shown in Appendix B.3. The
prompt for the Subquery Answerer, which handles
data extraction, is detailed in Appendix B.1. Fi-
nally, the planning stage uses a combination of a
system prompt (Appendix B.5) and a comprehen-
sive, multi-part user prompt (Appendices B.7, B.9,
and B.11) to guide the generation of the reasoning
program. English versions of these prompts are
provided in Appendices B.4 through B.12.

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2508.04625
https://arxiv.org/abs/2508.04625
https://arxiv.org/abs/2508.04625
https://doi.org/10.18653/v1/2025.acl-long.766
https://doi.org/10.18653/v1/2025.acl-long.766
https://doi.org/10.18653/v1/2025.acl-long.766
https://arxiv.org/abs/2105.07624
https://arxiv.org/abs/2105.07624
https://arxiv.org/abs/2105.07624

Ban 1a chuyén gia trong viéc chia nhé cau héi cia ngudi dung thanh mot chudi gom 3 dén
5 cau héi con nhé hon, dimg dé trich xuat dit lieu. Duge dua ra cau héi ctia ngusi ding
va boi canh xung quanh (vin ban va bang), nhiém vu clia ban la xac dinh cac diém dit
licu tho can thiét dé tra 16i cau héi chinh.

Muc tiéu ctia ban: Tao danh sach cac cau hoi chi TRICH XUAT gia tri dit liéu tho hodc
van ban hodc pham vi dit liéu tho.

HUONG DAN QUAN TRONG:
» KHONG tao ra cac cau héi thic hién so sanh (vi du, ’cai nao thap nhét/cao nhat’).

» KHONG tao ra cic cau hoéi thyc hién tinh toan (vi dy, ’téng/trung binh/hicu la bao
nhieu’).

« KHONG tao ra céc cau héi yéu cau cau tra 1oi cudi ciing.

+ Cong viéc ctia ban chi 1a hoéi vé chinh cac diém dit lieu. Bude tiép theo trong quy trinh
sé thuc hién tinh toan thuc té.

Bay gio, thyc hién nhiém vy nay cho dau vao sau day.

Béi canh:
{context}

Cau héi goc: {question}

Tra vé cac cau héi con duéi dang déi tugng JSON véi mot khoa duy nhat "subqueries"
chita danh séch cac chudi.

Figure B.1: Prompt for the Subquery Generator.

You are an expert at breaking down a user’s question into a series of 3 to 5 smaller
subqueries for data extraction. Given the user’s question and surrounding context (text
and tables), your task is to identify the raw data points needed to answer the main
question.

Your goal: Generate a list of questions that ONLY EXTRACT raw data values or text
or a raw data range.

IMPORTANT INSTRUCTIONS:

* DO NOT generate questions that perform comparisons (e.g., 'which is the lowest/high-
est’).

* DO NOT generate questions that perform calculations (e.g., 'what is the total/aver-
age/difference’).

* DO NOT generate questions that ask for the final answer.

* Your job is only to ask for the data points themselves. A later step in the pipeline will
perform the actual calculations.

Now, perform this task for the following input.

Context:
{context}

Original Question: {question}

Return the subqueries as a JSON object with a single key "subqueries" containing a list
of strings.

Figure B.2: English prompt for the Subquery Generator.

Ban 14 trg 1y hitu ich. Nhiém vu ctia ban 13 tra 1i truy van con duge dua ra chi diya trén
béi canh dugc cung cap.

Bo6i cadnh bao gom vin ban trudc bang, chinh bang dé, va vian ban sau bang. Luon phan
hoi bang cac cau hoan chinh, néu ré cau tra 16i cho cau héi hodc tinh toan.

Cung cap cau tra 10i ngan gon va tryc tiép cho truy van con.

Bdi canh:
{context}

Truy van con:
{subquery}

Tra 1oi:

Figure B.3: Prompt for the Subquery Answerer.

You are a helpful assistant. Your task is to answer the given subquery based only on the
provided context.

The context consists of the text preceding the table, the table itself, and the text following
the table. Always respond with complete sentences, stating the answer to the question or
calculation.

Provide a concise and direct answer to the subquery.

Context:
{context}

Subquery:
{subquery}

Answer:

Figure B.4: English prompt for the Subquery Answerer.

Ban 13 mot nha 1ap ké hoach tinh toan s6 hoc, ¢6 nhiém vu tao mot chudi cac 16i goi ham
dé giai quyét truy van ciia ngudi dung v6i kha nang song song héa t6i da, chi sit dung cac
cong cu dude cung cap.

Figure B.5: System prompt for the Plan and Scheduler.

You are a numerical reasoning planner, tasked with generating a sequence of function calls
to solve a user’s query with maximum parallelization, using only the provided tools.

Figure B.6: English system prompt for the Plan and Scheduler.

Dugc dua ra mot truy van ciia ngudi diing, hay tao mot chudi cac 15i goi ham dé giai quyét
v6i kha nang song song héa t6i da chi sit dung cac cong cu sau:

1. add(a: str, b: str, context: Optional[list[str]]) -> float: Cong hai dau vao (chudi s6 hoc
bién).

2. subtract(a: str, b: str, context: Optionallist[str]]) -> float: Trit dau vao thi hai tir dau
vao thit nhat.

3. multiply(a: str, b: str, context: Optional[list[str]]) -> float: Nhan hai dau vao.

4. divide(a: str, b: str, context: Optional[list[str]]) -> float: Chia dau vao thi nhat cho
dau vao thi hai.

5. table _max(row _identifier: str) -> float: Tra vé gid tri 16n nhat trong mot hang cia
bang, dugc xac dinh bang tén hang chinh xac.

6. table _min(row_identifier: str) -> float: Tra vé gia tri nhé nhat trong mot hang cia
bang, dugdc xac dinh bang tén hang chinh xac.

7. table _sum(row_identifier: str) -> float: Tra vé téng ctia mot hang trong bang, duge
xac dinh bang tén hang chinh xac.

8. table average(row identifier: str) -> float: Tra vé trung binh ctia mot hang trong bang,
duoc xac dinh bang tén hang chinh xAc.

9. join(): Két hop két qué cho phan hoi cudi cung (phai duge stt dung lam bude cudi ciing).

Hudéng dan:

« Ban CHI DUOC st dung cac cong cu duge liet ké & tren. Khong c¢6 cong cu nao khac
ton tai hosic c6 thé duge sit dung.

« PHAN TRAM VS TY LE: Déi v6i bét ki truy vin nao yeu ciu "phan tram", "thay ddi
phan tram", hoac "ty 18", ké hoach ctia ban chi dugce tinh ty 1é cudi cung (vi du, 0.25).
Ban KHONG DUQC nhan ty lé cudi cliing véi '100’ dé chuyén déi thanh dinh dang phan
tram (vi duy, 25%). Ham join chi can tra vé ty lé da tinh cudi cling.

« YEU CAU BAT BUOC: Déi véi bat ki truy vAn nio yeu cau két qua sb (vi du, hiéu,
tong, ty le, ROI, tac dong tich liiy), ban PHAI tao ké hoach véi cac 10i goi cong cu s6 (vi
du, add, subtract, multiply, divide) dé tinh toan hodc x4dc minh két qua. Viéc sit dung gia
tri tryc tiép tir cau tra 16i truy vAn con hozic bang ma khong c6 15i goi cong cu la HOAN
TOAN BI CAM, ngay ca khi cau tra 16i ¢6 vé rd rang (vi du, -23’ trong cau tra 16i truy
van con ho#c bang).

e QUAN TRONG - Thit tu Phép trit cho Thay ddi:

- D&i v6i BAT KY tinh todn thay ddi nao (tang, gidm, ting trudng, suy gidm, v.v.),
LUON sit dung: subtract(a=’'gia_tri_ mdi’, b="gia_tri c@’)
— C6 nghia la: gia tri hién tai/cudi cing/méi TRU gia tri truée d6/ban dau/ci.

Figure B.7: User prompt for the Plan and Scheduler (Part 1: Tools and Core Instructions).

Given a user query, generate a sequence of function calls to solve it with maximum paral-
lelization using only the following tools:

1. add(a: str, b: str, context: Optional[list[str]]) -> float: Adds two inputs (numeric strings
or variables).

2. subtract(a: str, b: str, context: Optionallist[str]]) -> float: Subtracts the second input
from the first.

3. multiply(a: str, b: str, context: Optional[list[str]]) -> float: Multiplies two inputs.

4. divide(a: str, b: str, context: Optional[list[str]]) -> float: Divides the first input by the
second.

5. table max(row_identifier: str) -> float: Returns the maximum value in a table row,
identified by its exact row name.

6. table min(row identifier: str) -> float: Returns the minimum value in a table row,
identified by its exact row name.

7. table sum(row identifier: str) -> float: Returns the sum of a table row, identified by
its exact row name.

8. table average(row identifier: str) -> float: Returns the average of a table row, identi-
fied by its exact row name.

9. join(): Combines results for the final response (must be used as the last step).

Instructions:
* You may ONLY use the tools listed above. No other tools exist or can be used.

* PERCENTAGE VS RATIO: For any query asking for a "percentage", "percent change",
or "rate", your plan must only calculate the final ratio (e.g., 0.25). You MUST NOT
multiply the final ratio by "100’ to convert it to a percentage format (e.g., 25%). The join
function should just return the final calculated ratio.

* MANDATORY REQUIREMENT: For any query that asks for a numerical result (e.g.,
difference, sum, ratio, ROI, cumulative impact), you MUST generate a plan with nu-
merical tool calls (e.g., add, subtract, multiply, divide) to calculate or verify the result.
Directly using a value from a subquery answer or table without a tool call is STRICTLY

FORBIDDEN, even if the answer seems obvious (e.g., *-23’ in a subquery answer or ta-
ble).

* IMPORTANT - Subtraction Order for Change:

— For ANY change calculation (increase, decrease, growth, decline, etc.), ALWAYS use:
subtract(a="new_value’, b="old _value’)

— Meaning: the current/final/new value MINUS the previous/initial /old value.

Figure B.8: English user prompt for the Plan and Scheduler (Part 1: Tools and Core Instructions).

Huéng dan (tiép theo):
e Truy van Duya trén Bang:
— Néu truy van tham chiéu dén mot bang, trich xuat gia tri sd tit bang hoac cau tra
18i truy van con.
- Dai vdi gia tri bang c¢6 dinh dang hén hop (vi du, ’$ -54 (54)’), sit dung gia tri sd
(vi dy, *-54").
— Néu bang cung cap gia tri cudi ciing (vi dy, 'tong anh hudng liy ké’ = -23), xac minh
n6 bang cac 18i goi cong cu.
— St dung table sum, table max, v.v., chi cho cac phép toan hang.

« Déi v6i add, subtract, multiply, divide, dAu vao a va b PHAI la chudi sb (vi dy, ’3.14°)
hoiic bién (vi dy, '$1’) tham chiéu dén dau ra ctia mot hanh dong trude.

» D6i v6i cac ham bang, row identifier PHATI 1a tén chudi chinh x4c ciia mot hang.

e Phan tich Dau vao Sé:

— Dam bao tat cid dau vao s6 duge phan tich cung don vi.
— Dai v6i gia tri ¢6 dau phan tram (vi dy, '48.8%’), loai bé dau phan tram va sit dung
gid tri s6 dudi dang chudi (vi duy, '48.8").

« Néu "BOI CANH BO SUNG TU TRUY VAN CON" dugc cung cép, hay sit dung céc su
kien va s6 lieu cu thé tit bi canh dé dé xay dung ké hoach ciia ban.

Bién ($x) CHI DUGC tham chiéu dén dau ra ciia mot hanh dong add, subtract, multiply,
hoac divide trude do.

« Céc biéu thiic phic tap (vi du, '3 * (4 4+ 5)’) PHAI dugc chia nhé thanh cac 15i goi cong
cu riéng biét.

 Kiém tra va chuyén ddi cac don vi dé thong nhat trude khi tinh toan.

 D6i véi cac truy van tai chinh lién quan dén s6 tién do la (vi duy, $47 trieu), st dung gid
tri s6 dudi dang chudi (vi dy, ’47’).

Figure B.9: User prompt for the Plan and Scheduler (Part 2: Detailed Instructions).

Instructions (continued):

¢ Table-Based Queries:
— If the query references a table, extract numeric values from the table or subquery
answers.
- For mixed-format table values (e.g., '$ -54 (54)’), use the numerical value (e.g.,
’-547).
— If the table provides a final value (e.g., ’total cumulative effect’ = -23), verify it with
tool calls.

— Use table sum, table max, etc., for row operations only.

* For add, subtract, multiply, divide, the inputs a and b MUST be numeric strings (e.g.,
’3.14°) or variables (e.g., '$1’) referencing the output of a prior action.

* For table functions, the row identifier MUST be the exact string name of a row.

* Numeric Input Parsing:

— Ensure all numeric inputs are parsed in the same units.

— For values with a percentage sign (e.g., '48.8%’), strip the percent sign and use the
numeric value as a string (e.g., '48.8”).

e If "ADDITIONAL CONTEXT FROM SUBQUERY" is provided, use the specific facts
and figures from that context to build your plan.

* Variables ($x) may ONLY refer to the output of a previous add, subtract, multiply, or
divide action.

» Complex expressions (e.g., '3 * (4 + 5)’) MUST be broken down into separate tool calls.
¢ Check and convert units for consistency before calculations.

* For financial queries involving dollar amounts (e.g., $47 million), use the numeric value
as a string (e.g., '47’).

Figure B.10: English user prompt for the Plan and Scheduler (Part 2: Detailed Instructions).

Huéng dan (cubi clung):
» Mobi hanh dong phai c6 mot ID duy nhat, ting nghiém ngat bat dau tir 1.

« Hanh dong join PHAT la hanh dong cubi cing va KHONG tao ra diu ra sb.

KHONG stt dung $id ctia hanh dong join lam bién.
« Sau join, thém <END_OF PLAN>.

« T6i da héa kha ning song song héa bing cach ciu tric cac phép tinh doc lap dé thuc
hién dong thoi.

KHONG phét minh ho#ic goi cac cong cu khong ton tai.

Vi du:

Truy van: Thay doi gia tri hgp 1y clia cac cong cu thi truong tai chinh tit $47 trieu nam
2009 dén $21 triéu nam 2010

Ké hoach: 1. subtract(a="21", b="47") 2. join() <END OF PLAN>

Truy van: Phan tram thay do6i 1a bao nhiéu néu doanh thu tang tit $500 dén $600?
Ké hoach: 1. subtract(a="600", b="500") 2. divide(a="$1", b="500") 3. join()
<END_OF PLAN>

Truy van: Ty sudt lgi nhuan tich lily ctia ¢ phiéu Illumina Inc. trong bon nam két thic
vao nam 2003 1a bao nhiéu, véi gia tri 100.00 vao ngay 27 thang 7 ndm 2000 va 43.81 vao
ngay 26 thang 12 nam 20037

Ké hoach: 1. subtract(a='43.81", b="100.00") 2. divide(a="$1", b="100.00") 3. join()
<END OF PLAN>

Truy van: Tong ctia 'Lgi nhuan sau thué (ty dong)’ cho tat ca cic nam la bao nhieu?

Bdi canh: [Mot bang c6 hang 'Lgi nhuan sau thué (ty dong)’]

Ké hoach: 1. table sum(row_identifier="Lgi nhuan sau thué (ty dong)’) 2. join()
<END_OF PLAN>

Chi tra loi véi danh sdch nhiém vu theo dinh dang:
idx. tool(arg name=args)
<END_OF PLAN>

Figure B.11: User prompt for the Plan and Scheduler (Part 3: Final Rules and Examples).

Instructions (final):
¢ Each action must have a unique, strictly increasing ID starting from 1.

e The join action MUST be the final action and does NOT produce a numerical output.

DO NOT use the $id of the join action as a variable.
» After the join, add <END OF PLAN>.

¢ Maximize parallelization by structuring independent calculations to run concurrently.

DO NOT invent or call non-existent tools.

Examples:

Query: Change in the fair value of financial market instruments from $47 million in 2009
to $21 million in 2010

Plan: 1. subtract(a='21", b="47") 2. join() <END OF PLAN>

Query: What is the percentage change if revenue increases from $500 to $6007
Plan: 1. subtract(a="600", b='500") 2. divide(a="$1", b=’500") 3. join()
<END_ OF PLAN>

Query: What was the cumulative total return for Illumina Inc. stock for the four years
ended 2003, given a value of 100.00 on July 27, 2000 and 43.81 on December 26, 20037
Plan: 1. subtract(a=43.81", b="100.00") 2. divide(a="$1", b="100.00") 3. join()
<END_ OF PLAN>

Query: What is the sum of "Profit after tax (VND billion)’ for all years?

Context: [A table with a "Profit after tax (VND billion)’ row]

Plan: 1. table sum(row identifier="Profit after tax (VND billion)’) 2. join()
<END OF PLAN-

Only respond with the task list in the format:
idx. tool(arg name=args)
<END_ OF PLAN>

Figure B.12: English user prompt for the Plan and Scheduler (Part 3: Final Rules and Examples).

	Introduction
	Related Work
	Task and Dataset
	Task Definition
	Dataset

	Proposed Method
	Question Decomposition
	Grounded Data Extraction
	Multi-Path Program Generation
	Optimal Program Selection and Execution

	Experimental Setup
	Implementation Details
	Baseline Method
	Evaluation Metrics
	Experiment Results
	Analysis
	Ablation Study
	Error Analysis and Heuristic Robustness

	Limitations
	Conclusion
	Sensitivity Analysis of Hyperparameter n
	Prompts

