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Abstract

In this paper, we present a comprehensive multi-
stage training framework that maximally ex-
ploits diverse open-source datasets with vary-
ing quality conditions for ASR and SER tasks.
Following this year’s competition guidelines,
we strategically leverage pre-approved exter-
nal datasets and pretrained models through a
carefully designed multi-stage training strategy.
Our framework systematically processes het-
erogeneous data sources across multiple train-
ing phases, utilizing a unified pre-trained model
architecture for both tasks to ensure optimal
knowledge transfer between stages. For SER,
we implement a hybrid loss function combining
cross-entropy loss with supervised contrastive
learning loss to handle quality variations and
improve discriminative capabilities across dif-
ferent data sources. During inference, we em-
ploy an interpolation strategy that integrates
predictions from the multi-stage trained model
with k-nearest neighbors results for robust per-
formance. Our approach demonstrates superior
performance in the ASR-SER VLSP 2025 chal-
lenge by effectively utilizing the full spectrum
of available open-source resources despite their
quality disparities.

1 Introduction

In conversational agents, humans convey not only
explicit requests, they also implicitly express emo-
tions. Currently, modern AI-based conversational
agents often integrate Automatic Speech Recog-
nition (ASR) and Speech Emotion Recognition
(SER) models at the same time, to improve user
satisfaction. This combination offers many ben-
efits and potential applications in fields such as
human-computer communication, psychological
health care, advertising analysis, and many other
fields. For instance, in automated customer sup-
port systems, conversational AI agents that auto-
matically transcribe the customers’ utterances us-
ing ASR also recognize their emotions using SER

models to provide appropriate suggestions and re-
sponses to improve the overall user experience.
Therefore, it is essential to build reliable systems
that can perform ASR and SER jointly to simplify
the computational requirement and increase effi-
ciency when exchanging information with each
other. However, joint training ASR and SER mod-
els at the same time is difficult due to the lack of
high-quality data pairing both text and emotion and
the duration imbalance between text and emotion
data. Additionally, due to the scarcity of emotional
data and the difficulty of recognizing emotional
speech, it is challenging for the SER model to work
well in practice.

Currently, ASR models using end-to-end archi-
tecture have proven effective and achieved state-
of-the-art (SOTA) results (Gulati et al., 2020; Kim
et al., 2022b; Gao et al., 2023; Kim et al., 2022a).
Because the ASR model achieves near-optimal re-
sults in ideal environmental conditions such as con-
versation systems, we focus on the development
SER model. We hypothesize that the language in-
formation of the encoder model of the ASR model
can significantly improve SER performance by
eliminating natural intonation deviations in speech.

SER is a well-studied problem in the literature,
with a variety of systems proposed that achieve
SOTA performance on benchmark datasets (Wag-
ner et al., 2023; Chen and Rudnicky, 2023; Zou
et al., 2022; Abdelhamid et al., 2022; Morais et al.,
2022). However, most of these systems are single-
task learning and development only from high-
quality public datasets, with very few systems tak-
ing a multi-task learning approach. Although both
tasks use speech signals as input, ASR works more
at the frame level, whereas SER recognizes emo-
tion on larger timescales. The relationship between
ASR and SER is an important but understudied
topic. We emphasize that better auxiliary learning
tasks can help the model learn improved represen-



Figure 1: The overall framework of the proposed method for training SER and ASR models throughout all stages.

tations, thereby improving final SER performance.
Several approaches for combined training of SER
and ASR have been proposed and have achieved
promising results (Li et al., 2022; Ghosh et al.,
2023; Feng et al., 2020). While the combination of
ASR and SER model training has gained traction in
recent research, its application in real-world scenar-
ios remains limited due to the persistent challenge
of emotion labeling quality, which is inherently
subjective and lacks comprehensive guidelines.

The availability of diverse open-source datasets
and pre-trained models has significantly advanced
the field of speech processing. Large-scale pre-
trained models such as Wav2Vec2 (Baevski et al.,
2020), HuBERT (Hsu et al., 2021), and Whisper
(Radford et al., 2023) have demonstrated remark-
able capabilities in learning robust speech represen-
tations from massive unlabeled data. These mod-
els serve as powerful foundation architectures that
can be effectively fine-tuned for downstream tasks
including ASR and SER. Furthermore, the prolif-
eration of open datasets across different languages,
domains, and quality levels presents both oppor-
tunities and challenges. While datasets like Lib-
riSpeech, Common Voice, and various emotional
speech corpora provide rich training resources,
their heterogeneous nature in terms of recording
conditions, annotation quality, and domain speci-
ficity requires careful consideration during model
development. The key challenge lies in effectively
leveraging this diversity to build robust models
that can generalize across different data condi-

tions while maintaining high performance on target
tasks.

In this paper, we present a comprehensive three-
stage training framework for jointly developing
ASR and SER models that effectively handles di-
verse data quality conditions. Our approach con-
sists of: (1) Stage 1 - ASR model training using all
available data types followed by systematic data
quality filtering to identify high-quality samples;
(2) Stage 2 - SER model fine-tuning utilizing the
robust ASR encoder from Stage 1 with hybrid loss
functions combining cross-entropy and supervised
contrastive learning; and (3) Stage 3 - inference
optimization through interpolation strategies that
blend model predictions with k-nearest neighbors
results. This multi-stage methodology allows us
to maximally exploit heterogeneous datasets while
maintaining model robustness across varying qual-
ity conditions. Experimental results demonstrate
the effectiveness of our approach, achieving top-2
performance in the ASR-SER VLSP 2025 compe-
tition1.

2 Methodology

The proposed method’s diagram is shown in Figure
1 and includes three stages. The first stage focuses
on comprehensive ASR model training using di-
verse datasets followed by systematic data quality
filtering. The second stage involves SER model
fine-tuning by leveraging public pretrained mod-

1https://vlsp.org.vn/vlsp2025/eval/asr-ser



els and ASR-SER fusion techniques. Finally, the
third stage optimizes inference through advanced
interpolation strategies and multi-modal fusion.

For the comprehensive training data shown in Ta-
ble 1, we utilize a diverse collection of Vietnamese
and international datasets spanning both ASR and
SER tasks. Each dataset is strategically employed
across different training stages to maximize infor-
mation extraction and model robustness.

2.1 Stage 1: ASR Model Training and Data
Quality Filtering

The first stage prioritizes building robust ASR mod-
els through comprehensive training and systematic
data filtering, divided into two main phases.

2.1.1 Comprehensive ASR Training

We begin by fine-tuning various public pretrained
models for ASR using all available Vietnamese
speech datasets. Following the approach of
OWSMv3.1 (Peng et al., 2024b), we employ stan-
dardized preprocessing and training procedures.
The training utilizes both RNN-T (Graves, 2012)
and CTC (Graves et al.) decoders with the com-
bined loss function:

LASR = λLRNN−T + (1− λ)LCTC (1)

The ASR training leverages large-scale Viet-
namese datasets including VLSP2023 (300 hours),
phoaudiobook (1494 hours), vivoice (1000 hours),
viet_bud500 (500 hours), 28k_VigBigData (460k
utterances), ViMD (100 hours), and VIVOS (15
hours). Multiple pre-trained models are evaluated
including Conformer-based architectures, Whisper
variants, and other state-of-the-art ASR models.

2.1.2 Training-Loop Data Filtering

Inspired by OWSM v3.1, v3.2, and v4 approaches
(Peng et al., 2024b; Tian et al., 2024; Peng et al.,
2025), we implement an iterative training-loop
strategy to filter low-quality data samples. The
process involves training initial ASR models, eval-
uating transcription quality, filtering samples based
on dual criteria, and re-training on filtered data
until convergence.

We employ WER and CTC confidence scores
as complementary filtering metrics. Samples are
retained only if they satisfy moderate quality thresh-
olds:

Figure 2: Architecture of the multi-stage training
framework.

0.3 < CTC_conf < 0.95 and 5% < WER < 40%
(2)

This approach removes both overly simplistic
samples (low WER + high confidence) and cor-
rupted data (high WER + low confidence), ensur-
ing retention of moderately challenging samples
that effectively contribute to model learning.

2.2 Stage 2: SER Model Training and
ASR-SER Fusion

The second stage focuses on developing robust
SER models by leveraging public pretrained mod-
els and ASR-SER fusion techniques, utilizing both
Vietnamese and international emotion datasets.

2.2.1 Public Pretrained Model-based SER
Training

We systematically evaluate various public pre-
trained models specifically designed for SER
tasks using a comprehensive collection of emotion
datasets:

• Vietnamese Emotion Data: ViSEC (5400 ut-
terances, 4 emotions) for Vietnamese-specific
emotion recognition

• International Emotion Datasets: IEMO-
CAP (10k utterances), EMODB (535 utter-



Figure 3: Fine-tuning cycle for SER task.

ances, 7 emotions), RAVDESS (1440 utter-
ances, 7 emotions), CREMA-D (7442 utter-
ances, 6 emotions), and EmoV-DB (7000 ut-
terances)

• WavLM fine-tuning: Utilizing WavLM’s en-
hanced speech understanding capabilities (Di-
atlova et al., 2024)

• Emotion2Vec: Leveraging specialized
emotion-aware pre-trained representations
(Ma et al., 2023)

• Wav2Vec2.0: Implementing proven SSL fea-
tures, particularly from layer 9/12 which
shows optimal performance for SER (Peng
et al., 2024a)

2.2.2 ASR-SER Fusion Architecture
Building upon the high-quality ASR models from
Stage 1, we implement advanced fusion strategies:

Cross-Attention Fusion: We employ cross-
attention mechanisms to fuse semantic information
extracted from the encoder layer output with acous-
tic information obtained from the public wav2vec-
base checkpoint. The fusion architecture addresses
the challenge of ASR errors degrading SER perfor-
mance (Chen et al., 2024).

The SER training combines supervised con-
trastive learning with cross-entropy loss:

Lscl =
∑
i∈I

−1

|P (i)|
log

∑
p∈P (i) exp((xi · xp)/τ)∑
a∈A(i) exp((xi · xa)/τ)

(3)

LSER = (1− α)Lce + αLscl (4)

where α balances the contribution of contrastive
and classification losses.

2.3 Stage 3: Inference Optimization
The final stage implements advanced inference
strategies combining model predictions with
retrieval-based methods.

2.3.1 Multi-Modal Prediction Fusion
For SER inference, we employ a polling method,
which has been proven optimal for SER tasks. The
final prediction combines:

• ASR-SER fusion model outputs

• k-NN retrieval from training embeddings

2.3.2 k-NN Interpolation Strategy
Following (Wang et al., 2023), we create an embed-
ding database from training and validation data:

(K,V ) = {(xi, yi), i ∈ D} (5)

The final prediction interpolates between model
and k-NN predictions:

p(y|x) = βpmodel(y|x) + (1− β)pknn(y|x) (6)

where β is optimized based on validation perfor-
mance across different fusion strategies.

3 Experiment & Analysis

3.1 Datasets
We utilized a comprehensive collection of public
datasets for training our emotion recognition sys-
tem, as detailed in Table 1. Our dataset compila-
tion includes both Vietnamese and international re-
sources to ensure robust cross-lingual performance.



Dataset Size Label Usage
Vietnamese ASR Datasets

VLSP2023 300 hrs ASR + SER Stage 1+2
phoaudiobook 1494 hrs audio+transcripts Stage 1
vivoice 1000 hrs audio+transcripts Stage 1
viet_bud500 500 hrs audio+transcripts Stage 1
28k_VigBigData 460k utterances audio+transcripts Stage 1
ViMD 100 hrs audio+transcripts Stage 1
VIVOS 15 hrs audio+transcripts Stage 1

Emotion Recognition Datasets
ViSEC 5400 utterances 4 emotions Stage 2
IEMOCAP 10k utterances Audio+emotion Stage 2
EMODB 535 utterances 7 emotions Stage 2
RAVDESS 1440 utterances 7 emotions Stage 2
CREMA-D 7442 utterances 6 emotions Stage 2
EmoV-DB 7000 utterances emotion label Stage 2

Table 1: Comprehensive dataset collection for multi-stage training framework.

Rank User WER (%) SER Acc (%) Final Score
1 hynguyenthien 9.07 82.21 88.31
2 ishowspeech (Ours) 11.38 79.13 85.77
3 dangnguyen-VLSP 12.66 80.84 85.39
4 SoFarSoGood 19.12 79.50 80.47
5 CodeSERSai 25.22 85.79 78.08
6 SoulSound 20.87 66.50 75.34
7 nhitny 23.56 71.76 75.04

Table 2: Performance comparison of teams in the
ASR-SER VLSP 2025 competition leaderboard.

Vietnamese Datasets: We incorporated
several Vietnamese speech datasets including
VLSP2023 (300 hours), phoaudiobook (1,494
hours), vivoice (1,000 hours), viet_bud500 (500
hours), 28k_VigBigData (460k utterances), ViMD
(100 hours), and VIVOS (15 hours) primarily
for acoustic modeling and speech representation
learning. Additionally, ViSEC (5,400 utterances)
provides Vietnamese emotional speech data with 4
emotion categories.

International Emotion Datasets: For emotion-
specific training, we employed established emo-
tion recognition datasets: IEMOCAP (10k utter-
ances), EMODB (535 utterances with 7 emotions),
RAVDESS (1,440 utterances with 7 emotions),
CREMA-D (7,442 utterances with 6 emotions), and
EmoV-DB (7,000 utterances). These datasets pro-
vide diverse emotional expressions across different
languages and recording conditions.

Data Preprocessing: We filtered out audio
files with insufficient duration (< 0.5 seconds) and
empty audio files from all datasets. We extracted
128-channel filterbank features using a 25ms win-
dow with 10ms stride.

Data Augmentation: We applied multi-domain
augmentation strategies to enhance model robust-
ness. In the temporal domain, we incorporated
background noise injection, impulse response con-

volution, and pitch shifting to create acoustic vari-
ations while preserving emotional content. For
spectral augmentation, we employed SpecAug-
ment (Park et al., 2019) with frequency masking
(F = 27) and temporal masking with maximum
ratio (pS = 0.05), where mask duration is pro-
portional to utterance length. The pitch shifting
technique particularly benefits emotion recognition
by generating diverse vocal pitch variations for
identical emotional categories.

3.2 Model configuration
After careful consideration, we decided to imple-
ment an ASR model from scratch while utilizing a
pre-trained Wav2Vec2.0 encoder for the SER com-
ponent.

ASR Model Architecture: The ASR encoder
module comprises one subsampling block that pro-
vides 4 times temporal dimension reduction for the
input sequences and 12 layers of the conformer
model. Each conformer layer has 512 input dims
and 2048 hidden dims with 8 heads of self-attention.
The pre-training uses mask config same as 3.1.
Since the encoder has 4 times temporal dimension
reduction, the quantization with random projec-
tions stacks every 4 frames for projections. The
vocab size of the codebook is 8192 and the dimen-
sion is 16. The model has 80 million total learnable
parameters.

We adopt the grapheme-based tokenizer scheme
from the top-performing solution at this 2023 chal-
lenge, utilizing a vocabulary of 804 tokens for Viet-
namese multilingual speech recognition.

The ASR model employs CTC (Graves et al.)
and RNN-T (Graves, 2012) for the decoder, which
consists of a predictor layer, a joint dense layer, and
an output layer with softmax non-linearity. The



predictor network contains a layer of unidirectional
LSTM, where the hidden dimension of the LSTM is
640. The joint network layer has a size of 512 and
the output layer has 804 dimensions, representing
804 graphemes.

SER Model Architecture: For the Speech Emo-
tion Recognition component, we employ a pre-
trained Wav2Vec2.0 encoder to leverage its robust
feature extraction capabilities for emotional speech
understanding.

We set λ to 0.5 for the loss function in both loss
functions 1 and 4.

All networks are trained using a transformer
learning rate schedule (Vaswani et al., 2017).
The training of the model uses Adam optimizer
(Kingma and Ba, 2014) with a 0.004 peak learning
rate and 10000 warmup steps. All training is done
using two NVIDIA A100 GPUs with a batch size
of 32 and the number of epochs is limited to 100.

3.3 Results
Model performance is assessed using Word Error
Rate (WERASR) and Emotion Recognition Accu-
racy (ACCSER) metrics.

WERASR =
S +D + I

N
(7)

where S represents substitution errors, D denotes
deletion errors, I indicates insertion errors, C is the
count of correctly recognized words, and N is the
total number of words in the reference transcription
(N = S +D + C).

ACCSER =
NEUCorrect

NEU × 2
+

NEGCorrect

NEG× 2
(8)

where NEUCorrect denotes correctly classified
neutral emotion utterances, NEU represents the
total neutral utterances, NEGCorrect indicates cor-
rectly classified negative emotion utterances, and
NEG represents the total negative utterances.

The final evaluation score is computed as:

Final_Score = 0.7×(1−WERASR)+0.3×ACCSER

(9)
As demonstrated in Table 2, our proposed ap-

proach achieved second place with a competitive
final score, with particularly strong performance in
the ASR component compared to competing teams.

4 Conclusion

This work presents an innovative training frame-
work for jointly optimizing Automatic Speech

Recognition and Speech Emotion Recognition
tasks through a unified pre-trained model archi-
tecture. Our integrated approach enables the devel-
opment of an end-to-end ASR-SER system with
the capability to leverage diverse data modalities
during the training phase. Experimental results
validate the effectiveness of this methodology, es-
pecially in scenarios with limited or low-quality
emotional speech data. The practical value of our
approach is demonstrated through achieving sec-
ond place in the ASR-SER VLSP 2025 competi-
tion, establishing its competitiveness in real-world
applications.
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