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Abstract

This paper presents our system for the Viet-
namese Spoofing-Aware Speaker Verification
in VLSP 2025 challenge. The proposed system
consists of an automatic speaker verification
sub-system, a spoof detection sub-system, and
a fusion module operating at either the score or
embedding level. To overcome limited model
generalization caused by insufficient data, we
employed augmentation strategies such as ad-
versarial perturbation, text-to-speech synthesis,
and voice conversion. Our system achieved the
best performance with EERs of 19.84% and
17.78% on the public and private test datasets
respectively, ranking first in the VLSP 2025
challenge.

Keywords: Vietnamese Spoof-aware Speaker Ver-
ification, spoof detection, data augmentation.

1 Introduction

Automatic speaker verification (ASV) has become
increasingly important in security-critical applica-
tions such as voice biometrics and fraud prevention.
However, the rapid development of voice synthesis
and conversion technologies has introduced severe
vulnerabilities. Malicious actors can now generate
highly realistic audio deepfakes, threatening the
reliability of ASV systems and enabling misinfor-
mation or identity fraud.

Recent surveys [1, 2] have reviewed the evo-
lution of speech deepfake detection from hand-
crafted features and traditional models to deep
learning, self-supervised methods, and end-to-end
systems. An effective anti-spoofing system often
relies on the integration of ASV and countermea-
sure (CM) sub-systems. The ASV sub-system is re-
sponsible for verifying a speaker’s claimed identity
based on their voice, with state-of-the-art models
such as ECAPA-TDNN [3], MFA-TDNN [4], and
Res2Net-based variants [5, 6]. The CM sub-system,
on the other hand, detects and rejects spoofed

speech, where leading approaches are AASIST [7],
RawNet-based models [8], and recent transformer-
based architectures [9]. Integration pipelines can
be categorized into four types. Cascaded systems
begin with an ASV classifier followed by the CM
detector. Score-level fusion combines the output
scores from both ASV and CM models to form
a unified decision while embedding-level fusion
integrates ASV and CM representations, either
by concatenating their embeddings or extracting a
joint representation. Finally, integrated end-to-end
systems learn a unified Spoofing-Aware Speaker
Verification (SASV) embedding directly, without
separate ASV and CM modules. These surveys fur-
ther indicate that score-level and embedding-level
fusion consistently achieve superior performance,
motivating this work to focus on enhancing these
two strategies.

The Vietnamese Language and Speech Process-
ing (VLSP) 2025 evaluation campaign features
several shared tasks on text and speech process-
ing. Among them, the Vietnamese Spoofing-Aware
Speaker Verification Challenge (VSASV) aims to
advance research in ASV and spoof detection for
Vietnamese, where resources remain limited. The
challenge provides a Vietnamese speech dataset col-
lected from multiple speakers and emphasizes gen-
eralization by evaluating models on unseen speak-
ers. The training partition comprises 815 speak-
ers and 101,367 utterances, totaling 203.28 hours.
Among these, 71,617 are bonafide samples, while
the remainder are labeled as spoofed. This im-
balance may hinder generalization across diverse
spoofing scenarios, underscoring the need for aug-
mentation. Among various attack sources referred
to in [1], adversarial perturbations, speech synthe-
sis, and voice conversion are the most prominent;
we therefore adopt them as the main augmentation
approaches.

This paper is organized as follows: Section 2
outlines the methodology; Section 3 describes the
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data augmentation, implementation, and results;
and Section 4 concludes the work.

2 Methodologies

2.1 Overall architecture

The overall architecture of our system extends two
baseline solutions introduced in the SASV 2022
challenges [10]: (1) a score-level fusion combining
the ASV cosine similarity and CM output scores,
and (2) an embedding-level fusion using a deep
neural network (DNN) backend classifier. In both
approaches, the ASV and CM sub-systems are first
trained independently and subsequently integrated
into the overall system.

2.2 ASV sub-system

We evaluate three representative architectures:
ECAPA-TDNN [3], MFA-TDNN [4], and
ERes2NetV2 [6]. ECAPA-TDNN enhances the
traditional TDNN [11] with channel attention
and Res2Net modules to better capture speaker
characteristics. MFA-TDNN further enhances
ECAPA-TDNN by incorporating multi-scale fea-
ture aggregation to enrich the speaker embeddings.
Meanwhile, ERes2NetV?2 builds on Res2Net [5]
with strengthened residual connections, enabling
more efficient representation learning.

2.3 CM sub-system

The CM sub-system adopts the XLSR-Conformer
architecture with Temporal-Channel Modeling
(TCM) [9]. While XLSR-Conformer leverages a

pre-trained multilingual SSL model with a Con-
former backbone to capture both local and global
dependencies in speech signals, TCM further ex-
ploits correlations between temporal and spectral
domains, motivated by the conjecture that syn-
thetic speech artifacts often occur in specific time-
frequency regions [12, 13]. Further implementation
details for optimization are provided in Section 3.2.

2.4 SASYV system

Once the ASV and CM sub-systems are indepen-
dently trained, they are frozen and used to extract
scores or embeddings. These outputs are then inte-
grated at the score level or the embedding level.

At the score level, fusion is performed via lin-
ear interpolation. The ASV branch computes a
cosine similarity score between enrollment and test
embeddings, while the CM branch outputs a spoof-
ing detection score for the test utterance. These
two scores are then linearly combined with tun-
able weights, where the weighting factor reflects
the relative importance of each sub-system. The
overall architecture of Baseline 1 is illustrated in
Figure 1a.

At the embedding level, we employ a learnable
back-end classifier. It operates on three embed-
dings: a pair of ASV embeddings from the en-
rollment and test utterances, and a CM embed-
ding from the test utterance. These representations
are concatenated and then passed through a feed-
forward DNN with multiple fully connected layers
using LeakyReLU [14] activations, followed by a



final linear layer that predicts bonafide vs. spoofed
trials. This design enables the network to jointly
model speaker similarity and spoofing cues within
a unified representation space. The overall archi-
tecture of Baseline 2 is illustrated in Figure 1b.

3 Experiments and Results

3.1 Data augmentation

One of the major challenges we identified in the
VLSP 2025 VSASV dataset is the imbalance of
spoofed audio in the training data compared to the
public test set. Notably, spoofed utterances com-
prise less than 30% of the training data, while they
constitute approximately 52% of the public test set.
Since the spoofing techniques in the test remain
undisclosed, we did not attempt to replicate them
directly. Instead, we explored diverse augmenta-
tion strategies to enrich synthetic spoof samples.
An overview of the original VLSP 2025 VSASV
dataset together with our augmented data is pre-
sented in Table 1.

Table 1: Statistics of the training data (* describes the
spoofed data generated by our team; the remaining data
were provided by the competition organizers)

Type #Utterances \ #Hours ‘
Bonafide 71,617 152.89
Spoof 29,750 50.39
Voice conversion* 6,180 13.53
Adversarial* 11,071 24.00
Text-to-speech™ 2,069 2.84
All \ 120,687 243.65

Text-to-Speech (TTS)

For TTS augmentation, we utilized the pre-
trained F5-TTS-Vietnamese-100h model [15], re-
leased on Hugging Face. Transcripts were ob-
tained by running a pretrained Chunkformer' [16]
on the training audio, from which we retained
only utterances longer than two seconds to en-
sure sufficient duration for reliable synthesis. The
system occasionally produced code-switched seg-
ments that degraded TTS quality, these were man-
vally filtered out. To increase variability, the
dataset was generated with two different speak-
ing rate configurations-normal speed (1.0x) and
slower speed (0.7x)- using non-overlapping train-
ing data partitions. This procedure yielded 2,069
utterances totaling 2.84 hours, capturing human-

"https://github.com/khanld/chunkformer

like articulation and prosodic variation to enhance
spoof detection robustness.

Adpversarial perturbation (AP)

Following [17], we adopted the Double Deceiver
framework [18] to generate adversarial spoofing
data. An ECAPA-TDNN and an XLSR Conformer
combined with a TCM module were first trained
on the original training set as base models. These
models were then used as targets for generating
adversarial attacks. Prior to attack generation, the
reference recordings were normalized to —3dB to
standardize signal levels, followed by enhancement
with DeepFilterNet 3 [19] to reduce noise and im-
prove clarity. The Double Deceiver then optimized
perturbations against both target networks simul-
taneously, producing adversarial examples with a
higher likelihood of generalizing beyond a single
model. In total, this process yielded 11,071 utter-
ances with a duration of 24.00 hours.

Voice conversion (VC)

To further expand the spoofing diversity, we
incorporated VC augmentation. In this step, we
employed the Retrieval-based Voice Conversion
(RVC) Project?, a publicly available toolkit that
enables fine-tuning on new speakers with relatively
small amounts of data. RVC integrates a pretrained
UVRS model for fast vocal-instrument separation
and a HuBERT-based [20] representation model for
effective voice conversion. Given that the training
set contained many noisy recordings, we manu-
ally selected a subset of speakers with the cleanest
speech and applied the same enhancement as in the
adversarial preprocessing before RVC training. For
each selected speaker, we trained a dedicated VC
model and then applied it to convert audio from
all other speakers, thereby creating cross-speaker
spoof samples. With clean speaker data and the low
data requirements of RVC, this method proved to be
particularly efficient. This process resulted in 6180
high-quality VC spoofed utterances derived from
over 1000 bonafide audio files across more than
20 speakers. By introducing speaker-mimicked
spoofing conditions, VC augmentation provided
an additional layer of variety that complements
both TTS-generated and adversarially crafted spoof
data.

Through this augmentation pipeline, we signif-
icantly increased both the quantity and variety of
spoofed training data. The inclusion of synthetic

2https://github.com/RVC—Project/

Retrieval-based-Voice-Conversion-WebUI
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speech from TTS, speaker-altered audio from VC,
and adversarially crafted attacks enabled us to bet-
ter approximate the spoofing diversity observed in
the evaluation set. By aligning the training con-
ditions more closely with the challenges of the
test environment, this augmented dataset provides
a stronger foundation for training SASV systems
that are more robust and generalizable.

3.2 Implementation details

For the ASV task, we adopt the Wespeaker [21]
framework for implementation. Each model is
trained from scratch using the bonafide labeled data
from the training set of the VLSP 2025 VSASV
dataset. Each audio is randomly chunked into a
3.2-second segment and then converted into log
Mel-filterbank features with 80 Mel bins. The fi-
nal input feature contains 200 frames, with a frame
length of 25 ms and a frame shift of 10 ms. All mod-
els are optimized with the Sub-center ArcFace [22]
loss function, which improves intra-class compact-
ness and inter-class separation. The architectures
and training setups of the chosen ASV models are
strictly preserved to maintain their proven effec-
tiveness.

For the CM task, we implement our system
based on the XLLSR-Conformer-TCM [23] reposi-
tory. The CM model is also trained from scratch
using the entire training set, together with the aug-
mentation strategies described in Section 3.1, and
optimized with a binary cross-entropy loss to clas-
sify between the two classes. We randomly select
10% of the data using stratified sampling for vali-
dation. In addition, several modifications are intro-
duced into the baseline to improve the training pro-
cess. In the original setup, the model outputs two
logits corresponding to bonafide and spoof, with
the latter directly taken as the final CM score. We
instead apply a softmax to obtain the spoof proba-
bility, which yields normalized scores in [0, 1]. Fur-
thermore, the initial cropping is replaced with ran-
dom chunking to generate fixed-length segments
for efficient mini-batch learning. At inference, the
entire audio is processed with a batch size of one to
leverage richer temporal information and improve
detection performance. The effectiveness of these
enhancements is demonstrated through empirical
evaluation, reported in Table 3.

In the score fusion approach, we first compute
the cosine similarity between the enrollment and
test utterances using the ASV embeddings, fol-
lowed by a sigmoid transformation to normalize

the score into [0, 1], which is more appropriate than
softmax since the ASV sub-system produces a sin-
gle similarity score rather than multiple competing
classes. The normalized ASV score is then com-
bined with the CM score using a weighted summa-
tion, with the weight optimized via grid search to
minimize EER on the public test set.

For the embedding fusion approach, we con-
struct training pairs of enrollment and test utter-
ances, concatenating the ASV and CM embeddings
as inputs to the DNN classifier described in Sec-
tion 2.4. The classifier is trained with cross-entropy
loss to produce the final spoofing-aware verifica-
tion score. To ensure generalization, no speaker
meta-information is used during either training or
evaluation.

Table 2: EER (%) of ASV models on the public test set.

| Model EER(%) |
Baseline 33.63
ECAPA-TDNN 32.17
MFA-TDNN 30.74
Eres2NetV2 30.00

3.3 Results

This section presents the performance of individual
sub-systems as well as the complete SASV sys-
tem, with evaluations primarily conducted on the
public test set. For fair comparison and analysis,
we also refer the official baseline results for each
sub-system and the SASV system, provided by the
organizers. The best-performing SASV configura-
tions are further validated on the private test set.

3.3.1 ASYV results

The performance of the ASV sub-system on the
public test set is summarized in Table 2. The offi-
cial baseline system achieves an EER of 33.63%.
Among our three evaluated models, ERes2NetV2
obtains the best EER of 30.00%, followed closely
by MFA-TDNN and ECAPA-TDNN. While all of
our models outperform the baseline, the improve-
ments remain relatively modest. Overall, the ob-
tained EER values are still considerably higher than
typical ASV benchmarks. We attribute this degra-
dation mainly to two factors: (i) the limited amount
of bonafide training data provided by the organiz-
ers, and (ii) the inability to fully address the noise
present in the training set. In addition, we observed
partial label inconsistencies in the public test set,



Table 3: EER (%) of CM models on the public test set. The last-2 models ([*i]) are used for SASV fusion.

Model Data EER (%) |
Baseline Original 10.11
XLSR Conformer + TCM Original 17.04
— w/ output softmax transform Original 13.99
XLSR Conformer + TCM Original + Adversarial 8.09
— w/ random 4s chunking Original + Adversarial + TTS 2.95
XLSR Conformer + TCM [*1] Original + Adversarial + TTS + VC 1.01
— w/ full-audio inference [*2] Original + Adversarial + TTS + VC 1.15

Table 4: SASV fusion results using 2 different methods. EER(%) is reported on the public test set, while the last
model is evaluated on both public and private test sets. The notation [*i] corresponds to model [*i] as presented in

Table 3
ASV CM \ Fusion strategy \ Public test \ Private test
Baseline Baseline - 24.21 31.60
Eres2NetV2 | XLSR Conformer + TCM [*2] Embedding 20.60 -
Eres2NetV2 | XLSR Conformer + TCM [#1] Score 20.04 -
Eres2NetV2 | XLSR Conformer + TCM [#2] Score 19.84 17.78

where some utterances from the same speaker were
incorrectly assigned as “non-target” and the reverse
mislabeling also occurred, which further hindered
performance evaluation. We also experimented
with two common strategies in speaker verification,
namely adaptive score normalization (AS-Norm)
[24] and large-margin fine-tuning [25]. However,
neither approach resulted in any performance im-
provements. Addressing these challenges remains
an important direction for future work.

3.3.2 CM results

After reproducing the XLSR-Conformer + TCM
from the repository and training it on the original
data, our reproduction yielded an EER of 17.04%,
which is worse than the official baseline EER of
10.11%. We then progressively incorporated the
improvements described in Section 3.2, each of
which contributed to noticeable performance gains.
In particular, the data augmentation strategies out-
lined in Section 3.1 played a crucial role in achiev-
ing the final performance.

As shown in Table 3, our best model reached
an EER of 1.01% on the public test set - a sub-
stantial improvement both over the official baseline
(90.00% relative reduction) and over our initial re-
produced model (94.07% relative reduction). These
results confirm the effectiveness of our proposed en-
hancements and the improved generalization abil-
ity of the CM sub-system. Furthermore, the two
best-performing models in Table 3 were selected

as candidates for integration into the subsequent
SASV fusion system.

3.3.3 SASY results

We evaluate our complete SASV system using
two fusion strategies: score fusion and embed-
ding fusion. The ASV sub-system is based on
the best-performing model, ERes2NetV2, while
the CM sub-system is represented by the two top-
performing models: (i) XLSR-Conformer with
inference on the entire utterance, and (ii) XLSR-
Conformer with inference on a random segment.
The overall results are summarized in Table 4. For
reference, the official baseline system achieves an
EER of 24.21% on the public test set and 31.60%
on the private test set.

Score fusion

The optimal weight of this strategy is determined
via grid search on the public test set, leveraging the
availability of labels. Specifically, we represent the
fusion weights as w for the ASV sub-system and
(1 — w) for the CM sub-system. As shown in Ta-
ble 4, the best performance is achieved by combin-
ing ERes2NetV2 with the XLSR-Conformer (full-
utterance inference), yielding an EER of 19.84%
on the public test set. The optimal weight obtained
is w = 0.1, indicating that the fused score relies
much more heavily on the CM output. This corre-
sponds to a relative reduction of 18.05% compared
to the baseline. Consequently, the CM sub-system
contributes more heavily to the final fused score,



while the ASV sub-system still plays a supporting
role in the overall decision.

Embedding fusion

For this approach, only the XLSR-Conformer
with full-utterance inference was considered for
the CM sub-system. It achieved an EER of 20.60%
on the public test set. While this result indicates
that the DNN can leverage complementary infor-
mation from both sub-systems, it remains less ef-
fective than score fusion, suggesting that the latter
provides a more effective integration.

Private test evaluation

Due to the submission limit, only the best-
performing system on the public test set was se-
lected—score fusion of ERes2NetV2 and XLSR-
Conformer with full-utterance inference.The opti-
mal weight was initially set to w = 0.1 as tuned
during the training phase and was later refined to
w = 0.11 on the private test set. With this con-
figuration, the system achieved an EER of 17.78%
on the private test set, compared to the official
baseline’s 31.60%. This corresponds to a relative
reduction of 43.73%, which is substantially supe-
rior to the baseline and even more pronounced than
the improvement observed on the public test set.
A plausible explanation is that the baseline system
fails to generalize to novel attack types present in
the private test set, whereas our augmented data en-
dows the model with stronger robustness against di-
verse spoofing strategies. This highlights the effec-
tiveness of our augmentation pipeline in handling
real-world and previously unseen attacks, thereby
yielding superior generalization in practical SASV
applications.

4 Conclusion

In this work, we presented our system for the
VLSP 2025 VSASV challenge. Our experiments
reveal that the CM sub-system, based on XLSR-
Conformer-TCM with extensive spoof data aug-
mentation, substantially enhances overall perfor-
mance, while the ASV sub-system remains con-
strained by the limited and noisy bonafide training
data provided.

Among the evaluated strategies, score fusion
proved to be the most effective, outperforming em-
bedding fusion and yielding the best overall re-
sults. Specifically, our system achieved an EER
of 19.84% on the public test set and 17.78% on
the private test set, corresponding to relative re-
ductions of 18.05% and 43.73% compared to the

official baseline, respectively.

These results highlight the crucial role of robust
spoof detection in SASV systems and suggest that
future improvements may come from two direc-
tions: (i) developing more data-efficient training
strategies for ASV under limited resources, and (ii)
exploring advanced fusion mechanisms to better
exploit the complementary strengths of ASV and
CM sub-systems.
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