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Abstract
This technical report describes the SVBK team’s approach

to the Vietnamese Spoofing-Aware Speaker Verification Chal-
lenge at VLSP 2025. Our system consists of two independently
trained components: an Automatic Speaker Verification module
and a Countermeasure module, whose outputs are fused at the
score level to produce the final SASV decision. The method em-
phasizes independent optimization of both modules to leverage
their complementary capabilities. Our submission ranks second
in the challenge, achieving an Equal Error Rate of 17.86% on
the private test set, according to the announcement of the VLSP
organizers.
Index Terms: Spoof-aware Speaker Verification, Score-fusion,
Low-resources, Spoof Countermeasures

1. Introduction
Automatic Speaker Verification (ASV) has become an increas-
ingly important biometric technology, enabling secure and con-
venient identity verification across a wide range of applica-
tions, from mobile banking to access control. However, de-
spite its progress and widespread adoption, ASV systems re-
main vulnerable to various spoofing attacks. Techniques such
as voice conversion (VC), text-to-speech (TTS) synthesis, and
other advanced speech generation methods can be exploited to
mimic legitimate users, thereby undermining the reliability of
ASV. A fundamental challenge in secure speaker verification is
to address two complementary tasks simultaneously: detecting
whether an input utterance is spoofed and verifying whether it
originates from the claimed speaker. Traditional ASV systems
are not inherently designed to handle spoofing attacks, while
standalone countermeasure systems cannot determine speaker
identity. This gap motivates the development of spoof-aware
speaker verification (SASV), which seeks to integrate both ca-
pabilities into a unified framework.

Current solutions to SASV typically combine independent
ASV and spoofing countermeasure (CM) systems. Fusion is
performed at the score level [1, 2], the embedding level [3, 4],
or through hybrid approaches that exploit both [5]. Each strat-
egy offers distinct advantages and limitations: score-level fu-
sion is computationally efficient and requires fewer resources,
while embedding-based or hybrid fusion often yields superior
discrimination by leveraging richer speaker and spoof represen-
tations.

In the deep learning context, however, the scale and quality
of training data often exert a stronger influence on performance
than architectural refinements or scoring techniques. Most ex-
isting studies are benchmarked on the SASV Challenge 2022
datasets [6], which integrate VoxCeleb2 [7] for ASV training
and ASVspoof 2019 [8] LA for CM training. Although these

large-scale corpora enable robust evaluation, only a limited
number of works examine the generalization of proposed meth-
ods on smaller or less diverse datasets, where performance may
degrade due to restricted speaker coverage or spoof variability.

In this study, we report our methods and results on the Viet-
namese Spoof-Aware Speaker Verification (VSASV) track of
the VLSP 2025 Challenge. Our best-performing system adopts
a score-fusion framework, where the final decision is obtained
via a weighted summation of two complementary scores: (i)
the cosine similarity between the test and enrollment speaker
embeddings, and (ii) the spoof detection score of the test utter-
ance. On the other hand, to mitigate the effect of label noise
in the organizer ’s training dataset, we employ the DBSCAN
clustering algorithm to identify and remove mislabeled samples,
thereby refining the training set. With this approach, our system
achieves an Equal Error Rate (EER) of 17.86% on the Private
Test set, ranking second in the competition, only 0.08% higher
than the top-performing system.

2. Methodology
2.1. Dataset & Cleaning

The dataset provided by the VLSP organizers comprises a total
of 101,367 audio samples collected from 815 speakers, includ-
ing 71,617 bonafide and 29,750 spoofed utterances. The dataset
is divided into a training set and a testing set in a 9:1 ratio for
experimental purposes. This ensures that the training data re-
mains sufficiently sizable while preserving a significant fraction
for performance assessment. This split is designed to maintain
speaker diversity across both partitions as well as preserve the
distribution balance between bona fide and spoofed samples.

In several instances, bona fide audio recordings with the
same speaker label are actually uttered by different speakers,
resulting in significant label noise in the training data, while
ASV subsystem relies heavily on having cleaned labels. To
mitigate this problem, we propose a DBSCAN-based dataset
cleaning procedure applied individually to the embeddings of
each speaker ID. In particular, an ASV model is first trained
on the initial dataset, which extracts speaker embeddings for
every bona fide utterance. Then, using DBSCAN with a thresh-
old of 0.3, a minimum sample size of 3, and cosine distance
as the similarity metric, these embeddings are clustered. Since
the model is trained with the three sub-center ArcFace loss, we
expect the embeddings of each speaker to naturally form up to
three major clusters. This accounts for possible intra-speaker
variations such as different recording environments (e.g., noise
conditions, microphone types). Therefore, we keep utterances
from each speaker’s top three largest clusters to ensure that we
preserve meaningful diversity while filtering outliers.
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Figure 1: Demonstration of the weighted-sum score fusion tech-
nique, where ⊙ means dot-product, ⊕ means weighted addition.

2.2. ASV subsystems

The goal of the ASV system is to determine whether a test ut-
terance belongs to the claimed speaker. Modern ASV archi-
tectures typically consist of a frame-level feature extractor, a
pooling layer, and an utterance-level feature extractor [9]. In
our work, two model architectures are examined. The first,
MFA-Conformer [10], introduces Multiscale Feature Aggre-
gation (MFA) on top of the original Conformer encoder [11].
The second, ResNet-SE, constructs the encoder block-the cen-
tral component of the network-by combining the Squeeze-and-
Excitation module [12] with Residual Mappings [13].

Each ASV system produces a 192-dimensional speaker em-
bedding vector, representing extracted features, for an input ut-
terance. More specifically, for an input audio U, a speaker em-
bedding E is extracted as follows:

E = fASV(U) (1)

where fASV (·) represents the ASV system.
For the ASV task, embeddings from the enrollment and test

utterances are extracted, and their similarity is computed via
the inner product, yielding a speaker similarity score that de-
termines whether the two utterances originate from the same
speaker.

2.3. CM subsystems

Spoof detection is a binary classification task in which the
system determines whether a given utterance is bona fide or
spoofed. For each test input, the model evaluates two possi-
ble hypotheses: the utterance is either genuine or the result of a
spoofing attack.

For this challenge, we implement two model architectures
for the countermeasure subsystem. The first is the XLSR-
Conformer-TCM [14], a model that performs well on the
ASVSpoof2021 benchmark [15]. The second model is an adap-
tation of the ResNet-SE encoder originally used in the ASV
task. To leverage it for spoof detection, we append a fully con-
nected layer on top of the embedding extractor. This additional
layer outputs a one-dimensional vector containing two logits,
each representing the probability that the input is spoofed or
bona fide, where a higher logit value indicates greater confi-
dence in the associated class. The following formula illustrates
the spoof score extraction of a CM system:

oCM = fCM (U) (2)

where U is the input utterance, fCM(·) denotes the CM system,
and oCM is the final vector of two logits corresponding to the
spoof and bona fide scores. By apply Softmax on the logits, the

final CM score can be obtained by deriving the probability that
an audio is bona fide.

For the ResNet-SE-based CM system, we utilize Log-
Magnitude Spectrum features. This representation has proven
to be effective in recent studies on spoofed audio detection [16].

2.4. Fusion techniques

Our primary results are obtained using the score-level weighted
summation strategy. As illustrated in Figure 1, during infer-
ence two inputs are provided: the enrollment utterance Uenr

and the test utterance Utst. Both are passed through the ASV
system, which produces two embeddings, Eenr and Etst. The
cosine similarity score sASV between these embeddings is then
calculated via the dot product. At the same time, the CM sys-
tem also processes Utst, extracting the corresponding spoofing
score sCM . Finally, the two subsystem scores are combined
using weighted summation to form the overall SASV decision,
following the formula:

sSASV = x · sCM + (1− x) · sASV (3)

where x is empirically determined to maximize performance
on the public test set before being applied to the private one.
Among all the methods, this proves to be the most effective.

Besides, we adopt a cascade strategy for score fusion. Since
the two tasks are distinct and largely independent, it is rea-
sonable to evaluate the audio separately on both tasks. In this
method, the CM system evaluates the test audio and generates
a score that is compared to a predetermined threshold σ. This
process is illustrated as follows:

sSASV =

{
−1 if sCM ≥ σ

sASV if sCM < σ
(4)

Should the score fall below the bona fide cutoff, the system re-
turns -1, rejecting the test audio as spoofed. This threshold is
determined by optimization: we start with an initial threshold
of 0.5 and then apply a local search to minimize the EER on
the CM task. Otherwise, the system calculates the cosine simi-
larity between the embeddings of the enrollment and test audio
generated by the ASV subsystem.

Another idea of score-level fusion is to multiply the scores
after raising sCM to the power of q, which is referred to as Power
Weighted Score Fusion (PWSF) [17]. The fusion function is
expressed as:

sSASV = sASV · (sCM)
q (5)

where sCM is normalized to the range (0, 1) using a softmax
function applied to the CM system output, and the probability
of the bona fide class is used in the calculation.”

Assuming that q ≥ 1, this operation is valid when sCM lies
in the range (0, 1) after the softmax operation. Multiplying the
scores from the two subsystems is reasonable since only high
values of both scores determine the identity of the test utterance
in the context of the SASV task, which can also be interpreted as
a logical AND operation. Raising sCM to the power of q makes
it more categorical while still continuous on the interval (0, 1),
in contrast to making a hard decision based on a fixed threshold.

3. Experiment Setup
3.1. ASV subsystems

We set up the training framework for the ASV subsystems in
the same way as the repository that produced the results of the



Table 1: EER (%) results on the Public Test and Private Test partition of VLSP 2025 evaluation.

System Fusion Technique SPF-EER SV-EER SASV-EER
Public Public Public Private

ResNet-SE (CM) - 3.63% - - -
XLSR-Conformer-TCM - 1.36% - - -

ResNet-SE (ASV) - - 31.62% - -
MFA-Conformer - - 31.72% - -

Baseline - - - 24.21% -
ResNet-SE (ASV) + Resnet-SE (CM) Weighted Sum (x = 0.99) - - 20.79% -
ResNet-SE (ASV) + XLSR-Conformer-TCM Weighted Sum (x = 0.7) - - 19.71% 18.07%
MFA-Conformer + XLSR-Conformer-TCM Weighted Sum (x = 0.75) - - 19.6% 17.86%

well-known ECAPA-TDNN1 . The ASV subsystems are trained
using our automatically cleaned dataset, which contains approx-
imately 67k bona fide utterances from 741 speakers. Each audio
file is randomly cropped into two-second segments to standard-
ize input length. To enhance model robustness, we perform data
augmentation by adding real-world noise from the MUSAN
(music and noise) dataset and applying reverberation effects de-
rived from the RIR dataset. The audio is subsequently trans-
formed into 80-dimensional filterbank features, which serve as
input to the ASV systems. Lastly, we apply SpecAugment [18]
on the filterbanks, where random masking is applied to between
0 and 5 frames in the time dimension and 0 to 10 channels in
the frequency domain.

The ASV subsystems are evaluated on the Public Test with-
out spoofed audios.

3.2. CM subsystems

For the CM subsystems, the training framework is derived from
the authors of the XLSR-Conformer-TCM2 . We train the sys-
tem using the entire training set provided by the VLSP organiz-
ers. The cleaned version of the dataset is not used, as its purpose
was to remove incorrectly labeled bona fide samples caused by
human error. Since the spoof data is generated according to the
contest rules, it can be labeled correctly automatically, which
we verified by manually inspecting several audio samples. Dur-
ing training, we extract random four-second segments from the
original recordings, and all audio samples are augmented using
the RawBoost technique [19]. The choice of four seconds is
based on prior studies that report this duration to be effective
for training CM models.

For the ResNet-SE-based CM model, the Log Magnitude
Spectrum is employed as the primary input feature. The Short-
Time Fourier Transform (STFT) parameters are configured as
follows: a Fourier transform size of 512, a hop length of 160,
and a window size of 400. Additionally, 60 mel-filter banks
are applied for optional dimensionality reduction. The model is
trained on an NVIDIA P100 GPU with a batch size of 32 for
10 epochs. The Adam optimizer is used with an initial learning
rate of 0.001, and a scheduler decreases the learning rate by
20% every three epochs.

The CM subsystems are evaluated on the full Public Test,

1https://github.com/TaoRuijie/ECAPA-TDNN
2https://github.com/ductuantruong/tcm_add

with target and non-target pairs labeled as bona fide.

3.3. SASV fusion

After obtaining individual scores for each utterance pair
from the ASV and CM subsystems, we optimize the score-
summation weights to minimize the Equal Error Rate (EER).
Specifically, a linear search with a step size of 0.05 is conducted
over the development set to determine the optimal weight con-
figuration.

4. Results
4.1. Experiment results

Table 1 summarizes our results from the competition. As shown
in the first two rows, the Conformer-based model demonstrates
superior capability to detect spoofed audio, achieving a no-
tably low equal error rate (EER) of 1.36%, compared to the
ResNet-SE baseline. In contrast, the ASV systems exhibit con-
siderably higher error rates on the test set: the ResNet-based
system reaches an EER of 31.62%, which is only marginally
better (by 0.1%) than the MFA-Conformer system. These un-
usually high error rates are attributed to label inconsistencies
present in the competition’s test set, where a substantial portion
of the trials appear to be mislabeled. Together with the label
noise previously identified in the training set, these inconsis-
tencies substantially impair system performance—particularly
given the relatively limited size of the dataset for training robust
speaker verification models, even after applying our proposed
label noise filtering strategy.

The last three rows of Table 1 present our score-fusion re-
sults and final submissions for the entire SASV task, evaluated
on both the Public Test and Private Test sets of the competi-
tion. Using empirically optimized fusion weights, the weighted-
sum results on the Public Test set show relatively modest differ-
ences across configurations. The best performance is achieved
by combining two Conformer-based systems, resulting in an
EER of 19.6%, which represents only a relative enhancement
of 1.2% compared to the highest EER obtained from summing
the ResNet-SE systems. However, this choice of system fusion
also records an improvement of about 23.5% over the Base-
line, which employs ECAPA-TDNN and XLSR-Conformer as
two subsystems and averages the scores obtained from those
systems. Under the same fusion strategy, the best-performing
system on the Private Test set is the combination of our MFA-



Conformer and XLSR-Conformer-TCM models, which attains
an EER of 17.86%.

Since the organizer gives us six chances for Private Test
submission, most submissions are used to cross-check weighted
sum on Public and Private Test, leading to most Private Test
EER values being missing. While most of the promising results
are achieved using the linear weighting technique, both the cas-
caded strategy and the PWSF method yield relatively poor per-
formance on our evaluation set, with results that are unstable
and consistently inferior to those of the linear fusion approach.

4.2. Observations

While training the ResNet-SE system, we notice that several
spoofed samples exhibit distinctive spectral patterns that are
visible even to the human eye. This observation motivates the
use of logarithmic spectral representations for spoof detection
using a lightweight model such as ResNet-SE. However, this
design choice also explains why the system struggles to gener-
alize effectively to unseen spoofing attacks in the public set.

The optimized fusion weights are also noteworthy, as they
exhibit negligible variation and inconsistency across different
model combinations. During our experiments, we perform a lin-
ear search within the range (0, 1) to identify the optimal weights
and observe a steady improvement in performance until conver-
gence is reached. This behavior can be explained by the distinct
characteristics of each subsystem: within a given task, different
models produce scores that follow diverse distributions. When
combined, these complementary score distributions interact in
unique ways, leading to varying optimal weights across differ-
ent fusion settings.

Although several promising results in the SASV Challenge
2022 were obtained through embedding-level fusion for final
score computation, such approaches typically require post fine-
tuning after pretraining each subsystem, making the overall pro-
cess computationally expensive and time-consuming. There-
fore, in this work, we restrict our experiments to score-level
fusion, which prove to be more efficient while still yielding en-
couraging results in the competition.

5. Conclusion
In this paper, we present our solution to the VLSP 2025 Chal-
lenge on Vietnamese Spoofing-Aware Speaker Verification. Our
solution comprises dataset cleaning using DBSCAN, an ASV
system to handle the speaker verification task with the MFA-
Conformer model, a CM system to handle the spoof detection
task with the XLSR-Conformer model, and a comparison of
various fusion techniques to return the best EER result. Us-
ing these techniques, the best result from our developed system
ranks second place in the SASV task of the VLSP 2025 Chal-
lenge.
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