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Introduction

Welcome to the NAACL 2025 Student Research Workshop.

The Student Research Workshop (SRW) is a workshop for student researchers in computational lin-
guistics and natural language processing, and provides a unique opportunity for student participants to
present their work and receive valuable feedback from the research community.

Continuing the tradition of previous student research workshops, we offer archival and non-archival
tracks, and accept both research papers as well as thesis proposals in each track. The research paper
track welcomes submissions from Ph.D. students, Masters students, and advanced undergraduate or hi-
gh school students. Additionally, the thesis proposal submissions caters to advanced Masters and Ph.D.
students who have identified their thesis topic, offering them a platform to receive feedback on their pro-
posal and guidance on potential future avenues for their research.

This year, we received a record 169 submissions in total. Of the 145 valid submissions, we accepted 89
total, resulting in an acceptance rate of 61%. Out of the 89 accepted papers, 48 were archival research
papers, 29 were non-archival research papers, 6 were archival thesis proposals, and 6 were non-archival
thesis proposals.

Another core aspect of the SRW is mentoring. In line with previous years, we had a pre-submission men-
toring program before the submission deadline. A total of 28 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive comments from an expe-
rienced researcher to improve the writing style and presentation of their submissions. We are incredibly
grateful to all researchers who volunteered as mentors, particularly due the considerable increase in stu-
dent requests this year.

We are immensely grateful to the Association for Computational Linguistics for their sponsorship. Their
support has played a significant role in ensuring the success of the conference and has allowed a large
number of students to publish their work and attend the conference. We also express our sincere grati-
tude to the program committee members for their thorough reviews of each paper. We are also deeply
appreciative of the NAACL 2025 organizing committee for their ongoing support, and our faculty advi-
sors Maria Pacheco and Shira Wein, for their valuable guidance which was invaluable to organizing this
year’s workshop. Lastly, we thank all the student authors for submitting their work and participating in
the 2025 edition of the NAACL SRW.
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Sachin Narayan Nagargoje, Atharva Naik, Shoichi Naito, Nihal V. Nayak, Hamada Nayel, Lilian
Ngweta

Yusuke Oda, Atul Kr. Ojha, Şaziye Betül Özateş

Artemis Panagopoulou, Alexander Panchenko, Tanmay Parekh, Hyeyoung Park, Namyong Park,
Ajay S Patil, Xin Peng, Lis Pereira, Vladia Pinheiro, Adithya Pratapa, Gabriele Prato, Priyanshu
Priya, Rifki Afina Putri

Sree Harsha Ramesh, Philip Resnik, Enora Rice, Anthony Rios, João Victor Pessoa Rocha, Elisei
Rykov

Ahmed Sabir, Parisa Safikhani, Harshita Sahijwani, Yusuke Sakai, Jonathan Sakunkoo, Ahnaf
Mozib Samin, Prajvi Saxena, Michael Saxon, Rajiv Ratn Shah, Vishal Shah, Wan Jou She, Sina
Sheikholeslami, Andrii Shportko, Chenglei Si, Afroz Ahamad Siddiqui, Harman Singh, Aryan
Singhal, Thamar Solorio, Yejin Son, Yueqi Song, Richard Sproat, Yirong Sun, Sathya Krishnan
Suresh, Nikita Sushko

Savannah Jennifer Thais, Uthayasanker Thayasivam, Nicholas Tomlin

Takehito Utsuro

Sowmya Vajjala, Andrea Varga, Prasoon Varshney, Ishwara Vasista, Supriti Vijay

Wenlu Wang, Yimu Wang, Yu Wang, Taro Watanabe, Bonnie Webber, Adam Wiemerslage, Steven
R Wilson, Zach Wood-Doughty, Jian Wu, Yulong Wu

Yiqing Xie, Xi Xu

Ivory Yang, Ziyu Yao, Haotian Ye, Aditya Yedetore

Haiqi Zhang, Haoran Zhang, Chenyang Zhao, Xingmeng Zhao, Yang Zhong, Andrew Zhu, Yuqi-
cheng Zhu, Zhengyuan Zhu

vii



Keynote Talk

Philip Resnik
Unversity of Maryland, College Park

Bio: Philip Resnik is MPower Professor at University of Maryland with joint appointments in the De-
partment of Linguistics and the Institute for Advanced Computer Studies. He earned his bachelor’s in
Computer Science at Harvard and his PhD in Computer and Information Science at the University of
Pennsylvania, and does research in computational linguistics. Prior to joining UMD, he was an associate
scientist at BBN, a graduate summer intern at IBM T.J. Watson Research Center (subsequently awarded
an IBM Graduate Fellowship) while at UPenn, and a research scientist at Sun Microsystems Laborato-
ries. In 2020 he was designated a Fellow of the Association for Computational Linguistics. Philip’s most
recent research has focused in two areas. One is the computational cognitive neuroscience of language,
where he has been using computational modeling in connection with brain imaging to look at the role
of context and predictive processing during online language comprehension. The other is computational
social science, with an emphasis on connecting the signal available in people’s language use with under-
lying mental state – this has applications in computational political science, particularly in connection
with ideology, framing, and beliefs, and in mental health, focusing on the ways that linguistic behavior
may help to identify and monitor depression, schizophrenia, and suicidality. Philip is a scientific advisor
for NORC at the University of Chicago (a non-partisan, independent social research organization). In en-
trepreneurial life he was a technical co-founder of CodeRyte (NLP for electronic health records, acquired
by 3M in 2012), and is an advisor to FiscalNote (machine learning and analytics for government relations,
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Abstract

Large language models (LLMs) have excelled
in various NLP tasks, including machine trans-
lation (MT), yet most studies focus on sentence-
level translation. This work investigates the
inherent capability of instruction-tuned LLMs
for document-level translation (docMT). Un-
like prior approaches that require special-
ized techniques, we evaluate LLMs by di-
rectly prompting them to translate entire doc-
uments in a single pass. Our results show
that this method improves translation quality
compared to translating sentences separately,
even without document-level fine-tuning. How-
ever, this advantage is not reflected in BLEU
scores, which often favor sentence-based trans-
lations. We propose using the LLM-as-a-judge
paradigm for evaluation, where GPT-4 is used
to assess document coherence, accuracy, and
fluency in a more nuanced way than n-gram-
based metrics. Overall, our work demon-
strates that instruction-tuned LLMs can effec-
tively leverage document context for transla-
tion. However, we caution against using BLEU
scores for evaluating docMT, as they often pro-
vide misleading outcomes, failing to capture
the quality of document-level translation.1

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance across a wide range of
natural language processing tasks (Radford et al.,
2019; Brown et al., 2020; Touvron et al., 2023;
Dubey et al., 2024). In the realm of machine trans-
lation (MT), recent findings also suggest that LLM-
based models rival dedicated commercial systems
like Google Translate, particularly in translating
high-resource languages (Hendy et al., 2023; Peng
et al., 2023; Jiao et al., 2023; Zhu et al., 2024a,b).
Nonetheless, most research has focused only on

*Corresponding authors.
1Our code and the outputs from GPT4-as-a-judge are avail-

able at https://github.com/EIT-NLP/BLEUless_DocMT

sentence-level translation. While some studies
have begun to explore document-level translation
(docMT) with LLMs, there is a prevailing belief
that directly applying instruction-tuned LLMs to
docMT performs poorly without specialized train-
ing and prompting techniques, largely due to the
limited availability of document-level content in
instruction-tuning datasets (Wu et al., 2024; Cui
et al., 2024; Li et al., 2024). However, their con-
clusions are frequently drawn from n-gram-based
metrics without thorough analysis to substantiate
the models’ true performance.

In this work, we conduct an in-depth investiga-
tion into the inherent capabilities of instruction-
tuned LLMs in handling docMT tasks. Unlike pre-
vious studies that explore special tricks, such as
multi-turn inference (Wang et al., 2023), we di-
rectly prompt LLMs to translate entire documents
in a single pass. Comparing this method to a sim-
pler baseline that translates individual sentences
separately and then stitches them together, we can
evaluate whether instruction-tuned LLMs can lever-
age their inherent ability to incorporate document-
level context and improve translation quality.

A key challenge in our research is the eval-
uation of document-level machine translation
(docMT). Traditional metrics2 like BLEU3, ChrF,
and TER (Papineni et al., 2002; Popović, 2015;
Snover et al., 2006), though widely used, often
poorly correlate with human judgment (Freitag
et al., 2022), especially in docMT, where main-
taining coherence and logical flow across a docu-
ment is essential—something n-gram overlap strug-
gles to capture. Metrics like CTT, AZPT, and
BLONDE (Jiang et al., 2021; Wang et al., 2023)

2While COMET (Rei et al., 2020) is more reliable than
BLEU for sentence-level translation, it is trained exclusively
on sentence-level data. As a result, using COMET to evaluate
docMT can be unreliable, since out-of-distribution.

3Although we do not want to use BLEU based metric, it
remains a common metric in existing/recent research, despite
its limitations.
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address specific aspects such as terminology con-
sistency and zero-pronoun accuracy, but still rely
heavily on word matching and symbolic statistics.
We argue that an ideal docMT metric should be
(1) context-aware—capturing document-level co-
herence and accuracy, (2) structured—evaluating
aspects such as fluency, accuracy, and coherence
separately, and (3) interpretable—explicitly identi-
fying translation errors for clear, objective human
evaluation. To this end, we design a GPT-4-based
evaluation pipeline to provide deeper insights into
the docMT capabilities of LLMs.

• We show that translating entire documents
yields better results than translating sentences
independently then merging them, even with-
out document-level fine-tuning.

• We propose using the LLM-as-a-judge
paradigm with multiple prompts that assess
different aspects of translated text to achieve
a more targeted and accurate evaluation.

• We recommend against using d-BLEU scores
for docMT, as they fail to capture discourse-
level phenomena and can often provide mis-
leading results.

2 Problem Settings

Given a document containing l source sentences
X = {x1, · · · , xl}, the goal of docMT is to gener-
ate its translation Y = {y1, · · · , yl′} as a sequence
of sentences in the target language. In this work,
we explore two approaches for generating transla-
tions using instruction-tuned LLMs:

• ST[k]: We concatenate k source sentences
into a chunk, input each chunk into the LLM
for translation, and then concatenate the trans-
lated chunks together to form the full docu-
ment translation.

• DOC: We instruct the LLM to directly trans-
late the entire document in one pass.

The DOC approach is designed to capture inter-
sentence dependencies by considering the full doc-
ument context, potentially leading to more coherent
and accurate translations. However, this approach
requires the LLM to process and generate longer
sequences of text, which can increase the risk of
cumulative errors, especially if the model has not
been explicitly optimized for document-level trans-
lation.

3 BLEU-based Evaluation

Document-level BLEU (d-BLEU, Liu et al., 2020)
is widely used for evaluating translations in DocMT.
However, we notice that it is sensitive to overly
lengthy generation, which can be problematic as
LLMs sometimes overgenerate. We find that even
minor overgeneration can significantly affect the
final d-BLEU score.4 We argue that documents
are generally independent units, so they should be
weighted equally in the evaluation. We, therefore,
propose an alternative, AvgBLEU, defined as:

AvgBLEU =
1

N

N∑

i=1

BLEU
(
Y ref
i , Y

pred
i

)

Here, N is the number of documents, and Yref

and Ypred represent the reference document trans-
lations and the predicted translations, respectively.
This allows us to calculate the average BLEU score
(AvgBLEU) for the entire dataset, providing a com-
prehensive measure of translation quality.

Number of Sentences Avg. Document Length

zh-en 1142 252
en-zh 1696 219
de-en 1899 204
en-de 1780 231

Total 6517 225

Table 1: Statistics of our test set. The document length
is measured by the token count using Vicuna’s tokenizer.

Evaluation Setup. For evaluation, we use the
test set from WMT22 (Kocmi et al., 2022), which
includes sentence-level reference translations along
with annotated document boundaries. Document-
level references are obtained by concatenating the
corresponding sentence translations. We cover four
translation directions in our evaluation: German
(de) and Chinese (zh) translated to and from En-
glish (en). Specific dataset statistics are presented
in Table 1. We evaluate five instruction-tuned
LLMs: Vicuna-7B/13B (Zheng et al., 2023), their
-16K versions and Mistral-instruct-7B (Jiang et al.,
2023), all of which have very limited document-
level content in their instruction-tuning datasets.

Results. Table 2 presents the comparison be-
tween the two document-level translation ap-
proaches. ST[k] consistently achieves higher Avg-
BLEU scores across all models and nearly all trans-
lation directions, with zh-en using Vicuna-7B and

4For completeness, we report results using the standard
d-BLEU in Appendix B.
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Model Eval Type Translation Direction

zh-en en-zh de-en en-de

Vicuna-7B

ST1 19.70 30.97 29.42 20.82
ST2 19.69 31.65 29.56 22.10
ST3 19.62 32.14 29.22 22.53
DOC 20.50 31.70 29.15 21.94

Vicuna-7B-16K

ST1 20.26 28.08 28.16 21.11
ST2 20.05 31.17 28.78 22.99
ST3 19.99 31.64 28.89 22.93
DOC 20.20 30.77 28.65 21.57

Vicuna-13B

ST1 22.40 36.22 30.50 25.03
ST2 21.01 35.82 30.89 25.46
ST3 21.13 36.24 30.84 25.66
DOC 21.83 34.93 30.60 25.59

Vicuna-13B-16K

ST1 21.07 35.55 29.87 25.22
ST2 20.97 36.76 30.47 24.87
ST3 20.79 36.46 30.71 25.58
DOC 21.07 34.97 30.62 25.14

Mistral-7B

ST1 19.82 26.24 29.23 21.28
ST2 18.89 26.84 29.86 21.44
ST3 18.78 26.87 29.82 21.74
DOC 18.61 24.31 28.98 21.09

Table 2: AvgBLEU scores with different translation
approaches across four translation directions. The best
scores are in bold, with red/blue shading indicating the
highest score paradigm, respectively. In most cases,
merged sentence translations yield higher BLEU scores
than direct document translations.

Vicuna-13B-16K as the only two exceptions. The
specific value of k that yields the highest Avg-
BLEU score varies depending on the translation
direction, however, on average, ST3 achieves the
highest score overall. While independently trans-
lated sentences yield better AvgBLEU scores than
document translations done in one pass by LLMs,
manual inspection reveals that ST[k] translations
often contain more redundancy, literal translations,
and disjointed phrasing. While these translations
may achieve higher AvgBLEU scores, we find that
DOC translations result in more fluent, readable,
and cohesive output. This raises concerns about
how much AvgBLEU can be trusted as a metric for
evaluating docMT.

4 LLM-as-a-judge Evaluation

Maruf et al. (2021) outlines various discourse phe-
nomena that should be considered when evaluating
document-level translations, such as cohesion and
the use of discourse connectives. In the past, au-
tomatic evaluation of these aspects was difficult
due to the need for deep semantic understanding,
and evaluations typically focused on one aspect
at a time using specialized test sets (Hardmeier
and Federico, 2010; Gong et al., 2015; Jwalapuram
et al., 2019). Inspired by the “LLM-as-a-judge” ap-
proach (Zheng et al., 2023), we aim to assess mul-

tiple aspects simultaneously using a strong LLM.

Evaluation Setup. We design four (sub) metrics:
(1) Fluency, (2) Content Errors (CE), (3) Lexical
Cohesion Errors (LE), and (4) Grammatical Cohe-
sion Errors (GE). All metrics are measured using
prompts provided to GPT-4. See Appendix C for
details on prompt design.

Fluency is rated on a scale of 1 to 5, with higher
being better. Since fluency can be evaluated solely
based on the translated text, we present only the
model’s outputs to GPT-4 for this assessment, de-
coupling fluency from metrics that require consid-
eration of source and reference texts.

Content Errors refer to translation mistakes
such as mistranslations, omissions, or additions.
We instruct GPT-4 (gpt-4-0613) to output a list
containing all identified mistakes. The CE score is
determined by the length of this list, and report the
average CE score over the test set.5

Cohesion Errors are further divided into two
subcategories: lexical (LE) and grammatical (GE),
which affect text connection and the logic flow,
respectively. LE includes incorrect vocabulary us-
age, missing synonyms, or overuse of certain terms
that disrupt the flow. GE includes pronouns, con-
junctions, and sentence-linking structure mistakes.
Similar to CE, we prompt GPT-4 to generate a list
of identified errors, with the score corresponding
to the length of the list.

Other settings, such as translation directions and
the models of interest, remain consistent with Sec-
tion 3. Due to the cost associated with using GPT-4,
we sample 70 documents per translation direction
from the WMT22 dataset for our evaluation.

Results. The results with en-zh are shown in
Table 3. Although ST3 scores higher than DOC
on AvgBLEU, DOC consistently outperforms ST3
in Fluency. Additionally, DOC generally exhibits
fewer CE, also known as content errors. For co-
hesion errors, the results are mixed: DOC shows
better LE with vicuna-7B and its -16K version, and
Mistral-7B, while Vicuna-13B and its -16K ver-
sion yield higher LE. As for GE, DOC performs
better with -16K models and Mistral-7B while oth-
ers are mostly comparable. We also observe that
the -16K versions perform similarly to their origi-
nal counterparts in fluency but demonstrate notable
improvements in CE reduction. This pattern is

5For simplicity, all mistake types are equally weighted, but
our approach is flexible and can easily use different weights if
certain types are considered more severe than others.
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Figure 1: PCC Heatmaps among AvgBLEU, Fluency,
CE, LE and GE for Vicuna-7B under DOC evaluation
type in the en-zh translation direction.

consistent across all translation directions, with
full results provided in Appendix D. Overall, our
approach enables a more detailed evaluation of
translation quality in DocMT. It clearly shows that
instruction-tuned LLMs, even without fine-tuning
for document-level MT tasks, are effective at cap-
turing long-context information for DocMT.

To gain a deeper understanding of how these
metrics correlates with each other, we compute
the Pearson Correlation Coefficients (PCC) among
those metrics and visualize them in Figure 1, as
well as translation directions, showing that BLEU
score has poor correlation with those discourse-
level phenomena metrics. Other translation direc-
tions also exhibit low correlation results in Ap-
pendix E. Therefore, we suggest not using BLEU
score for docMT since it fails to account for
discourse-level phenomena, and even worse, it of-
ten produces misleading results—such as suggest-
ing that sentence translations are better.

Human Agreement. While some judgments by
the LLM-as-a-judge may appear reasonable, cer-
tain nuances may still be misinterpreted due to
unique human perspectives. To validate the align-
ment between our LLM-as-a-judge paradigm and
human evaluations, we conducted experiments to
assess agreement. For each model in both ST3 and
DOC, we used 10 samples per translation direc-
tion and asked human evaluators to respond with
a simple “yes” or “no” regarding their agreement
with the LLM-as-a-judge’s assessments according
to our metrics.

Model Eval Type AvgBLEU↑ Fluency↑ CE↓ LE↓ GE↓

Vicuna-7B ST3 33.44 3.64 4.97 2.55 1.21
DOC 28.48 4.04 4.40 2.31 1.25

Vicuna-7B-16K ST3 31.30 3.08 5.30 2.22 1.71
DOC 30.80 3.97 4.72 2.17 1.15

Vicuna-13B ST3 37.44 3.78 4.82 1.70 1.14
DOC 35.58 4.12 4.87 2.02 1.14

Vicuna-13B-16k ST3 38.66 2.98 4.21 1.84 1.02
DOC 34.25 4.10 4.15 2.04 0.95

Mistral-7B ST3 26.82 2.80 6.77 4.08 2.62
DOC 23.27 3.11 5.98 3.71 2.51

Table 3: Evaluation results (en-zh) by GPT-4 for
Vicuna-7B, Vicuna-13B, their -16K versions and
Mistral-7B under ST3 and DOC, showing metrics Avg-
BLEU, fluency, content errors, lexical cohesion errors,
and grammatical cohesion errors. Best performances
are in bold, with red/blue shading indicating the win-
ning paradigm, respectively.

Our manual evaluation confirmed a strong align-
ment between human judgments and the LLM-as-
a-judge paradigm. As shown in Table 4, GPT-4-
as-a-judge achieved approximately 95% agreement
with human evaluations across all languages and
evaluation types (ST3 and DOC), indicating robust
concordance with human judgment across trans-
lation directions and metrics. This high level of
agreement further validates GPT-4-as-a-judge as a
reliable metric for document-level translation qual-
ity.

AFluency↑ ACE↑ ALE↑ AGE↑
zh-en 0.96 0.95 0.94 0.96
en-zh 0.97 0.98 0.96 0.96
de-en 0.98 0.96 0.94 0.95
en-de 0.96 0.96 0.95 0.97

Table 4: Human agreement percentage on GPT4-as-a-
judge with our metrics in WMT22. Each judgment is
independently reviewed three times by different anno-
tators and consensus results are recorded. AFluency,
ACE, ALE, and AGE denote human agreement on the
metrics of Fluency, CE, LE, and GE.

Case Study. To inspect the advantages of LLMs
in docMT, we present two pairs of samples from
Vicuna-7B and Vicuna-7B-16K(zh-en), covering
beginning, middle, and end of each sample.

On the right side of first case in Box 2, the trans-
lation of “Hunan” remains consistent throughout
the document, illustrating the LLM’s capability to
leverage context and capture inter-sentence depen-
dencies. Conversely, on the left side, we see an
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Comparison Cases in ST3 and DOC

Model: Vicuna-7B
Prediction in ST3:
The 13th Provincial Tea Expo opened today... This morn-
ing, the 13th Hunan Tea Industry Expo and... were held
in the Hunan International Convention...
At the opening ceremony, the provincial leaders awarded
the fourth batch of enterprises with the right to use the
Lake South Red Tea trademark. New Hope held the
Lake Red Source. The Chaozhou tea industry warmly
welcomed the arrival of the new spring.

Prediction in DOC:
The 13th Hunan Tea Industry Expo opened today at the
Hunan International Convention...
At the opening ceremony, Hunan’s provincial leaders
awarded the fourth batch of enterprises with the right
to use the Hunan Red Tea trademark... The Hunan Red
Tea is red in color and has injected the cultural connota-
tion of tea into it, making it popular and lively, and the
Hunan tea industry is looking forward to a new spring.

Model: Vicuna-7B-16K

Prediction in ST3:
Color: As shown in the picture (please avoid shooting to
avoid color difference...
Therefore, girls who can’t drive should not complain
about their clothes being old...
2021.6.11部分圈中售出。看好编号下单，古董物品
售出不退不换。购买须知The products sold at this store
are non-refundable... The store does not accept styles
that are different from what is imagined, and size and
style cannot be used as reasons for refunds or exchanges...

Prediction in DOC:
Color: As shown in the picture (Please note that the
color difference may not be avoided due to shooting...
So, some girls who can’t drive vintage clothing should
not say that the clothes are old-fashioned, but that you are
not suitable for it!...
If the item is not suitable for personal reasons, such as
not fitting or not liking it, you can ask the store owner
to transfer it to the shelf, and once it is sold, it cannot
be exchanged or refunded. Part of the circle in the
middle was sold on June 11, 2021...

Box 2: Comparison of Vicuna-7B and Vicuna-7B-16K translations under ST3 and DOC evaluation types in the
en-zh translation direction.

erroneous translation where “Hunan” is rendered
as “Lake South” in “Lake South Red Tea” and
simply as “Lake” in “Lake Red Source”. Notably,
the model in ST3 correctly translates “Hunan” in
other parts of the text. In this case, although ST3
achieves a BLEU score approximately 11.88 points
higher than DOC, it is evident that DOC provides
more coherent wording and aligns better with natu-
ral human expression.

We present another case in Box 2: ST3 trans-
lates “color difference is inevitable in the photos”
as “please avoid shooting to avoid color difference,”
resulting in a significant change in meaning. Addi-
tionally, a description about some girls’ struggles
with a style is mistranslated as “girls who can’t
drive” where “drive” is incorrectly used as an in-
transitive verb. In contrast, DOC accurately trans-
lates this as “some girls who can’t drive vintage
clothing” preserving the intended meaning while
employing the same words in different contexts.
Furthermore, the statement “once it is sold, it can-
not be exchanged or refunded. Part of the circle in
the middle was sold on June 11, 2021” is correctly
translated in DOC, while ST3 reject translating this
segment entirely. These cases explicitly demon-
strate that instruction-tuned LLMs can effectively
capture inter-sentence dependencies by considering

the entire document context, leading to a deeper
understanding of the text and fewer content errors.

Thus, we advocate against using BLEU as an
evaluation metric for docMT, as it fails to detect
the true advantages of LLMs in this context and
can yield misleading results.

5 Conclusion

In this work, we investigate the performance of
instruction-tuned LLMs in document-level ma-
chine translation (docMT), comparing the trans-
lation of entire documents in a single pass to trans-
lating individual sentences that are then concate-
nated. Our findings show that translating entire doc-
uments yields better results, as the model can cap-
ture inter-sentence dependencies and maintain dis-
course coherence, even without explicit fine-tuning
for docMT tasks. However, evaluating these im-
provements is challenging. Traditional metrics like
d-BLEU fail to consider discourse-level phenom-
ena, often favoring sentence-level translations and
producing misleading results. To address this limi-
tation, we propose the LLM-as-a-judge approach,
utilizing GPT-4 to assess specific aspects of dis-
course through tailored prompts. This method en-
hances interpretability and can be adapted for eval-
uating translation quality in other domains.
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Limitations

Translation Directions. We evaluate only high-
resource language pairs, which limits the gener-
alizability of our findings for low-resource lan-
guages. Due to data availability constraints, our
experiments focus on well-resourced translation
directions. Future research should explore whether
instruction-tuned LLMs translating entire docu-
ments yield better results than translating sentences
independently in low-resource languages.

Model Size and Diversity. We focus exclusively
on small-scale LLMs. Future work should investi-
gate larger models to observe whether instruction-
tuned LLMs continue to perform better in docMT,
and whether BLEU would work.

Max Length. A small fraction (∼ 2%) of docu-
ments in WMT22, including both their source texts
and translations, exceed 2048 tokens. Thus, we
focus solely on samples within the model’s context
length (2048 tokens), as these instruction-tuned
LLMs are primarily trained on text within this
limit. In future work, we will evaluate LLMs with
longer context lengths, examine -16K models, and
investigate whether long conversation instruction-
tuned will help and whether those phenomena per-
sist when translating text that exceeds the models’
context length.

Ethical Considerations

Our study aims to investigate the docMT reliabil-
ity of instruction-tuned LLMs without fine-tuning
for docMT, concerned by the potential for accumu-
lating errors during decoding, which may lead to
increased hallucinations. We expect minimal social
risks associated with our efforts.
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A Evaluation Metrics Shortcoming
Analysis

While COMET has been shown to provide more
reliable evaluations than BLEU in many cases, it
is primarily trained on sentence-level translations
and, as such, is not well-suited for docMT. Given
that COMET lacks specific training to capture the
complexities of inter-sentence dependencies and
discourse-level phenomena, it is not an ideal met-
ric for evaluating the true capabilities of LLMs in
docMT tasks. Therefore, in this work, we opted
to explore more appropriate evaluation methods
tailored to document-level translation challenges.

Similarly, metrics like ChrF (Popović, 2015),
ChrF2, and TER have made incremental progress
by incorporating word-level matching mechanisms
that extend beyond simple token overlap, but they
still fundamentally rely on surface-level statistics.
Like BLEU, these metrics do not adequately ac-
count for deeper discourse relationships, cohe-
sion, and the broader context required for accurate
docMT assessment. As a result, their limitations
become more apparent when evaluating LLMs on
longer texts, where capturing the overall document
structure is essential.

While metrics such as CTT and AZPT are de-
signed to address specific issues like terminology
consistency and zero pronoun accuracy, they re-
main grounded in automatic identified lexical align-
ment. These metrics operate under the assumption
that the presence of specific terminology or pro-
nouns directly correlates with translation quality.
However, in practice, meaning can be conveyed
in multiple ways without strictly adhering to these
surface-level features. This makes CTT and AZPT
limited in scope, as they are unable to fully as-
sess translation quality when alternative phrasing
or omitted pronouns still preserve meaning accu-
rately.

Blonde represents a more sophisticated approach
by categorizing and analyzing discourse coherence
using linguistic features such as verb tense (e.g.,
VBD for past tense verbs). While this is a step to-

ward capturing discourse-level phenomena, Blonde
is still constrained by symbolic statistical meth-
ods. Its reliance on predefined linguistic categories
means that it struggles to account for the full range
of discourse phenomena that can arise in real-world
documents. As a result, these metrics, despite their
improvements, remain insufficient for capturing
the nuances of document-level translation in its
entirety.

To address these limitations, we propose lever-
aging LLM-as-a-judge for evaluating docMT. By
employing GPT-4 with specifically designed judg-
ing prompts, we can define and assess discourse
phenomena in a more abstract and flexible manner,
similar to how human evaluators would approach
the task. This method avoids the need to predefine
all possible linguistic cases and allows for a more
holistic evaluation of translation quality, ensuring
that complex discourse relationships and contextual
dependencies are properly recognized. In doing so,
we provide more reliable and interpretable metrics
and prompts for evaluating document-level transla-
tions, moving beyond the restrictive frameworks of
traditional metrics.

B d-BLEU Performance

We observe that the trend in Table 5 remains con-
sistent with Table 2, and the BLEU score shows
an even stronger preference for translations that
are processed separately and concatenated. It is
worth to Notice that the red data point in Table 5 is
influenced by the sensitivity of BLEU, where a cer-
tain generated translation contains a long-repeated
incorrect token toward the end, thus lowering the
overall score. When calculating the BLEU score
for this sample, we find that the document receives
a score near zero, despite the fact that the earlier
part of the translation is mostly accurate. This sen-
sitivity is one of the reasons why BLEU should not
be used in docMT.

C GPT4-as-a-judge Evaluation Prompts

C.1 Fluency
Fluency refers to the naturalness and smoothness
of a text in the target language, without awkward or
unnatural phrasing. In machine translation evalua-
tion, fluency is crucial for assessing the readability
and linguistic quality of the output, which is often
not fully captured by traditional metrics like BLEU.
While BLEU focuses on n-gram overlap between
the translation and reference text, it does not di-
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Model Eval Type Translation Direction

zh-en en-zh de-en en-de

Vicuna-7B

ST1 18.75 32.43 30.00 21.96
ST2 19.99 33.52 30.87 23.35
ST3 20.52 33.92 30.68 23.96
DOC 19.93 32.40 30.27 22.90

Vicuna-7B-16K

ST1 19.54 28.45 29.75 21.49
ST2 20.38 32.52 30.60 24.27
ST3 20.43 33.15 30.56 23.95
DOC 19.50 30.87 16.58 21.34

Vicuna-13B

ST1 21.33 37.62 31.98 26.24
ST2 21.26 37.70 32.16 27.19
ST3 21.89 37.97 32.15 26.94
DOC 21.63 35.87 31.22 26.31

Vicuna-13B-16K

ST1 21.22 37.29 31.48 26.21
ST2 21.99 37.93 31.78 26.53
ST3 22.61 37.83 32.02 26.98
DOC 21.84 35.01 31.60 26.03

Mistral-7B

ST1 18.69 25.75 29.50 22.37
ST2 19.29 26.83 30.02 21.98
ST3 18.82 26.81 30.11 22.60
DOC 13.70 17.54 27.50 21.98

Table 5: d-BLEU score with different translation paradigms. More explanations about not using d-BLEU and about
the red data point in the Table are stated in Appendix B

rectly evaluate how natural the translation sounds
or whether it adheres to syntactic rules. Fluency,
in contrast, provides a more nuanced evaluation of
the model’s ability to produce human-like text.

In this task, we assess fluency on a scale of 1 to
5, with higher scores indicating more fluent transla-
tions. Evaluators are instructed to analyze the text
and assign a score based solely on the naturalness
and grammatical correctness of the model’s output.

Importantly, the fluency evaluation is conducted
in isolation, decoupled from cohesion, with only
inference text input, to ensure a clear focus on
the text’s immediate readability. Cohesion, which
refers to the grammatical and lexical connectiv-
ity between text units (Halliday and Hasan, 2014),
is considered separately to avoid confounding the
two metrics, as fluency and cohesion could be cor-
related, as it is common sense that if a text is cohe-
sive, its flow is naturally better. See the correlation
heatmaps like Figure 1 which show that our prompt
design successfully decouples these two metrics.

The evaluation is supported by specific examples
and justifications for the assigned score. Below is

the prompt used to guide the evaluation:

Please evaluate the fluency of the follow-
ing text in the target language (English,
Chinese, or German).

Instructions:

• Task: Evaluate the fluency of the
text.

• Scoring: Provide a score from 1 to
5, where:

– 5: The text is highly fluent, with
no grammatical errors, unnatu-
ral wording, or stiff syntax.

– 4: The text is mostly fluent,
with minor errors that do not im-
pede understanding.

– 3: The text is moderately fluent,
with noticeable errors that may
slightly affect comprehension.

– 2: The text has low fluency,
with frequent errors that hinder
understanding.
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– 1: The text is not fluent, with se-
vere errors that make it difficult
to understand.

• Explanation: Support your score
with specific examples to justify
your evaluation.

Output Format:

Provide your evaluation in the
following JSON format:
{ "Fluency": { "Score":
"<the score>", "Explanation":
"<your explanation on how
you made the decision>" } }

Text to Evaluate:

"inference text"

C.2 Content Errors
Unlike fluency, which assesses the naturalness and
grammatical correctness of the output, accuracy
focuses on the semantic alignment between the
translated text and the original reference. The eval-
uator’s task is to identify and categorize errors that
affect the translation’s fidelity, such as mistransla-
tions, omissions, or additions.

Rather than relying on simple n-gram match-
ing, the evaluation emphasizes meaning preserva-
tion. The evaluator compares the translation with
the reference text, identifying instances where the
translation deviates in meaning. However, if the
translated text conveys the same information as the
reference but uses different words or phrasing, it is
not considered an error, since we suspect that this
phenomenon could happen in LLMs in document-
level translation task. This approach ensures that
the model’s output is evaluated based on its ability
to faithfully represent the source content, capturing
specific issues like mistranslations or information
loss, and ensuring semantic integrity. The accuracy
evaluation prompt is structured as follows:

Please evaluate the accuracy of the fol-
lowing text by comparing it to the refer-
ence text provided.

Instructions:

• Task: Compare the text to the refer-
ence text.

• Identify Mistakes: List all mis-
takes related to accuracy.

– Mistake Types:

* Wrong Translation: Incor-
rect meaning or misinterpre-
tation leading to wrong infor-
mation.

* Omission: Missing words,
phrases, or information
present in the reference text.

* Addition: Extra words,
phrases, or information not
present in the reference text.

* Others: Mistakes that are
hard to define or categorize.

• Note: If the text expresses the same
information as the reference text but
uses different words or phrasing, it
is not considered a mistake.

• Provide a List: Summarize all mis-
takes without repeating the exact
sentences. Provide an empty list
if there are no mistakes.

Output Format:

{ "Accuracy": { "Mistakes": [ "<list of
all mistakes in the text, provide an empty
list if there are no mistakes>" ] }

Text to Evaluate:
"inference text"

C.3 Cohesion Errors
Cohesion is a critical aspect of machine transla-
tion evaluation as it ensures that the various parts
of the text are well-connected and that the overall
flow is logical. Unlike metrics such as fluency or
accuracy, cohesion specifically examines how sen-
tences are linked together through lexical (lexical
cohesion) and grammatical (grammatical cohesion)
means (Maruf et al., 2021). This is particularly
important in document-level translation, where the
consistency of vocabulary and the logical connec-
tion of grammatical structures across a longer text
are challenging for models to maintain.

In the context of translations produced using the
ST3 and DOC paradigms, evaluating cohesion al-
lows us to assess whether the model effectively
leverages contextual information to maintain con-
sistency across the text. By decoupling cohesion
from fluency, our evaluation framework enables
evaluators to focus specifically on identifying lex-
ical cohesion mistakes—such as incorrect vocab-
ulary usage, missing synonyms, or overuse of cer-
tain terms that disrupt the flow—and grammatical
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cohesion mistakes—such as errors in pronouns,
conjunctions, or sentence-linking structures.

The evaluator is asked to identify any mistakes
related to cohesion and categorize them as either
lexical or grammatical cohesion issues. The evalu-
ation prompt is structured as follows:

Please evaluate the cohesion of the fol-
lowing text by comparing it to the refer-
ence text.

Instructions:

• Task: Evaluate the cohesion of the
text.

• Definition: Cohesion refers to how
different parts of a text are con-
nected using language structures
like grammar and vocabulary. It en-
sures that sentences flow smoothly
and the text makes sense as a whole.

• Identify Mistakes: List all mis-
takes related to cohesion.

– Lexical Cohesion Mistakes: Is-
sues with vocabulary usage, in-
correct or missing synonyms, or
overuse of certain words that
disrupt the flow.

– Grammatical Cohesion Mis-
takes: Problems with pronouns,
conjunctions, or grammatical
structures that link sentences
and clauses.

• Provide Lists: Provide separate
lists for lexical cohesion mistakes
and grammatical cohesion mistakes.
Provide empty lists if there are no
mistakes.

Output Format:

{ "Cohesion": { "Lexical Cohesion Mis-
takes": [ "<list of all mistakes in the text,
provide an empty list if there are no mis-
takes>" ], "Grammatical Cohesion Mis-
takes": [ "<list of all mistakes in the text,
provide an empty list if there are no mis-
takes>" ] }}

Text to Evaluate:
"inference text"
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D GPT4-as-a-judge Evaluation Performance

Model Eval Type AvgBLEU↑ Fluency↑ CE↓ LE↓ GE↓

Vicuna-7B
ST3 20.25 4.27 3.06 1.46 0.96
DOC 19.36 4.20 3.24 1.40 0.67

Vicuna-7B-16K
ST3 20.07 4.24 3.50 1.20 0.77
DOC 21.14 4.38 3.24 1.18 0.67

Vicuna-13B
ST3 22.46 4.09 3.31 1.57 1.07
DOC 23.46 4.34 3.04 1.04 0.59

Vicuna-13B-16K
ST3 21.80 4.21 3.27 0.90 0.65
DOC 22.22 4.48 2.82 0.80 0.41

Mistral-7B
ST3 18.84 3.96 4.41 1.47 1.10
DOC 19.50 4.34 3.50 1.30 0.83

Table 6: Evaluation results (zh-en) by GPT-4 for Vicuna-7B, Vicuna-13B, and Mistral-7B under ST3 and DOC
evaluation types, showing metrics AvgBLEU, Fluency, Content Errors(CE), Lexical Cohesion Errors(LE), and
Grammatical Cohesion Errors(GE).

Model Eval Type AvgBLEU↑ Fluency↑ CE↓ LE↓ GE↓

Vicuna-7B
ST3 24.53 3.23 7.31 3.73 3.00
DOC 21.18 3.61 6.46 3.76 2.87

Vicuna-7B-16K
ST3 26.02 4.21 2.88 1.17 0.77
DOC 26.95 4.11 2.84 0.98 0.67

Vicuna-13B
ST3 26.76 3.59 6.84 3.79 2.39
DOC 27.32 3.90 5.23 3.34 1.96

Vicuna-13B-16K
ST3 28.15 4.32 2.67 0.78 0.42
DOC 28.54 4.45 2.28 0.95 0.45

Mistral-7B
ST3 22.32 3.16 6.83 4.64 2.93
DOC 21.46 3.17 6.63 4.51 2.96

Table 7: Evaluation results (en-de) by GPT-4 for Vicuna-7B, Vicuna-13B, and Mistral-7B under ST3 and DOC
evaluation types, showing metrics AvgBLEU, Fluency, Content Errors(CE), Lexical Cohesion Errors(LE), and
Grammatical Cohesion Errors(GE).
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Model Eval Type AvgBLEU↑ Fluency↑ CE↓ LE↓ GE↓

Vicuna-7B
ST3 26.82 4.11 4.01 1.23 1.11
DOC 25.64 4.31 3.14 1.67 0.66

Vicuna-7B-16k
ST3 23.56 3.61 5.74 3.52 2.52
DOC 21.71 3.54 5.81 3.47 2.21

Vicuna-13B
ST3 27.23 4.30 3.06 1.13 0.66
DOC 28.44 4.33 3.36 1.33 0.60

Vicuna-13B-16K
ST3 26.55 4.15 5.47 2.72 1.91
DOC 26.28 4.18 4.7 2.91 1.92

Mistral-7B
ST3 26.09 4.10 4.73 1.49 1.37
DOC 25.68 4.33 4.89 1.26 0.80

Table 8: Evaluation results (de-en) by GPT-4 for Vicuna-7B, Vicuna-13B, and Mistral-7B under ST3 and DOC
evaluation types, showing metrics AvgBLEU, Fluency, Content Errors(CE), Lexical Cohesion Errors(LE), and
Grammatical Cohesion Errors(GE).
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Figure 3: PCC Heatmaps among AvgBLEU, Fluency, CE, LE, GE for Vicuna-7B, Vicuna-13B, and Mistral-7B
under ST3 and DOC evaluation types in translation direction of en-zh.
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Figure 4: PCC Heatmaps among AvgBLEU, Fluency, CE(Content Errors), LE(Lexical Cohesion errors),
GE(Grammatical Cohesion Errors) for Vicuna-7B, Vicuna-13B, and Mistral-7B under ST3 and DOC evalua-
tion types in translation direction of zh-en.
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Figure 5: PCC Heatmaps among AvgBLEU, Fluency, CE(Content Errors), LE(Lexical Cohesion errors),
GE(Grammatical Cohesion Errors) for Vicuna-7B, Vicuna-13B, and Mistral-7B under ST3 and DOC evalua-
tion types in translation direction of de-en.
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Figure 6: PCC Heatmaps among AvgBLEU, Fluency, CE(Content Errors), LE(Lexical Cohesion errors),
GE(Grammatical Cohesion Errors) for Vicuna-7B, Vicuna-13B, and Mistral-7B under ST3 and DOC evalua-
tion types in translation direction of en-de.
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Figure 7: PCC Heatmaps among AvgBLEU, Fluency, CE, LE, GE for Vicuna-7B-16K and Vicuna-13B-16K under
ST3 and DOC evaluation types in translation direction of en-zh.
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Figure 8: PCC Heatmaps among AvgBLEU, Fluency, CE(Content Errors), LE(Lexical Cohesion errors),
GE(Grammatical Cohesion Errors) for Vicuna-7B-16K and Vicuna-13B-16K under ST3 and DOC evaluation
types in translation direction of zh-en.
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Figure 9: PCC Heatmaps among AvgBLEU, Fluency, CE(Content Errors), LE(Lexical Cohesion errors),
GE(Grammatical Cohesion Errors) for Vicuna-7B-16K and Vicuna-13B-16K under ST3 and DOC evaluation
types in translation direction of de-en.
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Figure 10: PCC Heatmaps among AvgBLEU, Fluency, CE(Content Errors), LE(Lexical Cohesion errors),
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Abstract

This paper presents our system,
INSIGHTBUDDY-AI, designed for extracting
medication mentions and their associated
attributes, and for linking these entities to
established clinical terminology resources,
including SNOMED-CT, the British National
Formulary (BNF), ICD, and the Dictionary of
Medicines and Devices (dm+d). To perform
medication extraction, we investigated various
ensemble learning approaches, including
stacked and voting ensembles (using first, aver-
age, and max voting methods) built upon eight
pre-trained language models (PLMs). These
models include general-domain PLMs—BERT,
RoBERTa, and RoBERTa-Large—as well as
domain-specific models such as BioBERT,
BioClinicalBERT, BioMedRoBERTa, Clinical-
BERT, and PubMedBERT. The system targets
the extraction of drug-related attributes such as
adverse drug effects (ADEs), dosage, duration,
form, frequency, reason, route, and strength.
Experiments conducted on the n2c2-2018
shared task dataset demonstrate that ensemble
learning methods outperformed individually
fine-tuned models, with notable improvements
of 2.43% in Precision and 1.35% in F1-score.
We have also developed cross-platform desktop
applications for both entity recognition and
entity linking, available for Windows and ma-
cOS. The INSIGHTBUDDY-AI application is
freely accessible for research use at https://
github.com/HECTA-UoM/InsightBuddy-AI.

1 Introduction

Extracting information about medications and their
associated attributes is a crucial task in natural
language processing (NLP) for the clinical do-
main, particularly to enhance digital healthcare so-
lutions. Traditionally, clinicians and healthcare
professionals have manually performed clinical
coding to translate medical events—such as dis-
eases, medications, and treatments—into standard-
ised terminologies like ICD and SNOMED. This

manual process is often labour-intensive and prone
to human error, potentially compromising accu-
racy. Automating the extraction of medication-
related information paves the way for automatic
mapping of these terms to existing medical ter-
minologies, enabling automated clinical coding.
Given the potential of this approach, numerous
NLP models have been applied in recent years to
tasks such as medication mining and clinical cod-
ing—though typically in isolation. In this study,
we unify these tasks by 1) developing a pipeline
that integrates medication and attribute extraction
(including dosage, route, strength, adverse effects,
frequency, duration, form, and reason) with auto-
mated clinical coding. Furthermore, 2) we explore
ensemble learning techniques—specifically Stack-
ing and Voting—across a diverse set of NLP mod-
els fine-tuned for named entity recognition (NER).
These include general-domain models like BERT,
RoBERTa, and RoBERTa-L, as well as clinical-
domain models such as BioBERT, BioClinical-
BERT, BioMedRoBERTa, ClinicalBERT, and Pub-
MedBERT. Our approach allows practitioners to
bypass the challenge of selecting individual models
for clinical NER tasks; instead, they can incorpo-
rate newer models into the ensemble framework to
evaluate their effectiveness.

2 Literature Review and Related Work

Named Entity Recognition (NER) plays a vital
role in extracting essential information from un-
structured texts, such as medical correspondence.
The inherent complexity and context sensitivity of
medical language make accurate entity extraction
particularly challenging. Traditional NER methods,
including rule-based approaches, have had limited
success in capturing the rich contextual details re-
quired for clinical applications (Nadeau and Sekine,
2007). The introduction of deep learning methods,
notably Long Short-Term Memory (LSTM) net-
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works, led to considerable improvements in NER
performance (Graves and Schmidhuber, 2005), par-
ticularly through their capacity to model long-range
dependencies in text. Nevertheless, these models
continued to face difficulties with infrequent en-
tities and intricate contextual relationships com-
monly found in clinical notes. The emergence
of BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) brought
a major breakthrough across multiple NLP tasks,
including NER. BERT leverages masked language
modelling on extensive corpora to learn rich token-
level representations, which can then be fine-tuned
with an added classification layer for token-level
predictions. However, since BERT is pre-trained on
general-domain corpora (Wikipedia and books), its
effectiveness on specialised medical texts has been
constrained. This limitation has spurred the devel-
opment of domain-specific BERT variants. Exam-
ples include BioBERT (Lee et al., 2019), trained
on large biomedical datasets; ClinicalBERT (Wang
et al., 2023), fine-tuned on electronic health records
from three million patients following pre-training
on 1.2 billion words across various disease con-
texts; and Med-BERT (Rasmy et al., 2021), all
of which have shown improved results for med-
ical NER tasks due to their focused training in
the healthcare domain. Other notable versions of
ClinicalBERT include (Huang et al., 2019) and
(Alsentzer et al., 2019), both trained on data from
the Medical Information Mart for Intensive Care
III (MIMIC-III) dataset (Johnson et al., 2016).

Despite these advancements, single-model so-
lutions still encounter obstacles due to the inher-
ent variability and complexity in clinical language,
as demonstrated in the comparative evaluation in
(Belkadi et al., 2023), which tested models includ-
ing BERT, ClinicalBERT, BioBERT, and custom-
trained Transformers. To mitigate these limitations,
ensemble techniques have gained traction. Suc-
cessfully applied in other areas such as computer
vision (Lee et al., 2018), ensemble methods com-
bine multiple models to exploit their complemen-
tary strengths and reduce their individual shortcom-
ings. In the NER domain, ensembling has led to
improved outcomes, as evidenced by (Naderi et al.,
2021), who demonstrated significant performance
gains by applying ensemble strategies to health
and life sciences corpora. Naderi et al. (2021) em-
ployed max voting across models for word-level
data in biology, chemistry, and medicine. How-
ever, their work focused on French for the clini-

cal/medical NER domain using the DEFT bench-
mark, while English data were only utilised for the
biology and chemistry domains. Among ensem-
ble methods, two of the most widely adopted are
voting and stacked ensembles: 1) Maximum vot-
ing, where each model has equal influence on the
final decision—as used in (Naderi et al., 2021)—se-
lects the label with the most votes. 2) Stacking,
a more advanced method introduced by Wolpert
(1992), involves training a meta-model on the out-
puts of base models to learn complex relationships
between predictions. For instance, (Saleh et al.,
2022) showed that stacking, when implemented
with a support vector machine (SVM), improved
sentiment analysis performance. In our work, we
opt for a simple feed-forward network that maps the
ensemble outputs to final predictions. Additional
examples of stacking can be found in (Mohammed
and Kora, 2022; Güneş et al., 2017). While en-
semble strategies have shown promise across var-
ious NER applications, their applicability to clin-
ical NER—especially with complex datasets like
n2c2 2018 (Henry et al., 2020)—has yet to be thor-
oughly explored. This study seeks to bridge that
gap by examining whether ensemble approaches,
particularly stacking and voting, can enhance NER
performance on clinical texts and help overcome
the challenges associated with individual model
limitations.

3 Methodologies

The overall architecture of INSIGHTBUDDY is illus-
trated in Figure 1, which outlines the base models
used from both general and clinical domains. From
the general domain, we included 1) BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
RoBERTa-Large; and from biomedical/clinical do-
mains, 2) BioBERT (Lee et al., 2019), BioClinical-
BERT (Alsentzer et al., 2019), BioMedRoBERTa
(Gururangan et al., 2020), ClinicalBERT (Wang
et al., 2023), and PubMedBERT (Gu et al., 2020).
All eight models were fine-tuned using the same hy-
perparameters and training set from the n2c2-2018
shared task, following data pre-processing. The
performance of each model was first evaluated in-
dividually using the n2c2-2018 test set, providing
a baseline comparison. Subsequently, ensemble
learning was applied to the outputs of all mod-
els. We then introduced an entity linking com-
ponent to map the extracted medical entities into
standardised clinical terminologies. Initially, we
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Figure 1: INSIGHTBUDDY Framework Pipeline: This diagram illustrates the full pipeline, including individual NER
model fine-tuning, ensemble integration, entity linking, and desktop applications in both Windows and Mac systems.
The base models are drawn from two domains: general and biomedical. Data pre-processing involves splitting the
input sequence either at the first full stop (“.”) occurring after the 100th word or, if none is found, truncating at 128
words. Fine-tuning is carried out using identical hyperparameter settings across all eight models. Ensembling is
performed using various strategies, which are detailed in Figure 3. Entity linking connects extracted entities to
clinical knowledge bases (KBs), specifically BNF and SNOMED CT.

used SNOMED-CT and BNF as our knowledge
bases (KB), which were further aligned with ICD
and dm+d.

For pre-processing, the input text was segmented
into chunks of up to 128 tokens. If a full stop (“.”)
appeared between the 100th and 128th word, the
chunk was cut at that punctuation mark. To explain
our ensemble-learning approach, we present the
InsightBuddy ensemble diagram in Figure 3. The
initial outputs from each of the eight fine-tuned
NER models are in sub-word format, as per their to-
kenisation strategy. For example, the word “Parac-
etamol” may be tokenised as “Para ##ce ##tam
##ol”. Therefore, our first step is to reconstruct
words from sub-word tokens for practical usage
and voting. However, since each sub-word receives
a potentially different label, discrepancies often
occur within the same word. To resolve this, we
implemented three grouping strategies: first-token
voting, max-token voting, and average voting. In
the first-token voting method, the label of the first
sub-word is applied to the entire word. For instance,
if “Para” is labelled as “B-Drug”, then “Paraceta-
mol” will be assigned the same label, regardless
of labels on subsequent sub-words. In the max-
token voting method, the label with the highest
logit score among the sub-words is assigned to the
word—reflecting the model’s highest confidence in
that prediction. The average voting approach com-
putes the mean of logits across all sub-words, from

which the label for the full word is derived. Regard-
ing word-level ensemble learning, we explore a
classical voting approach with two specific strate-
gies: The “>=4 or O” strategy assigns the majority
label if at least four models agree. If no majority
exists, the label “O” (non-entity) is used by default
to signify context words. The max-voting strategy
selects the most frequently predicted label, regard-
less of how many models it came from (e.g. 2, 3,
or 4 votes). In cases of a tie (e.g. two labels each
receiving three votes from six models), we resolve
it either alphabetically or randomly.

We also depict the STACKED-ENSEMBLE ap-
proach in Figure 2. During training, the data is
split into 80% for training and 20% for testing the
ensemble model. Output data from base models
is only used when at least two models assign a
label other than “O”; otherwise, “O” is kept and
the token is excluded from stacked training data.
For the stacked model’s input, we convert each
model’s output logits into one-hot encoded vectors,
then concatenate them alongside the true label of
each token. As we use eight models, the train-
ing input consists of eight one-hot vectors and one
label. Each vector is of length 19 (representing
19 possible labels), containing a single ‘1’ at the
predicted label’s index and ‘0’ elsewhere. As a
result, each training sample contains 8 vectors ×
19 values = 152 values, with exactly eight ‘1’s and
the remaining 144 being ‘0’s. We choose to use
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Voting Average Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8253 0.8256 0.8227
weighted avg 0.9807 0.9796 0.9798
Voting First logit Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8255 0.8260 0.8229
weighted avg 0.9807 0.9796 0.9798
Voting Max logit Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8261 0.8259 0.8232
weighted avg 0.9807 0.9796 0.9798
Stacked Ensemble first logit word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8351 0.8065 0.8156
weighted avg 0.9800 0.9796 0.9794

Non-BIO-only-word ensemble
Metric P R F1
accuracy 0.9839
macro avg 0.8844 0.8830 0.8821
weighted avg 0.9840 0.9839 0.9838

Table 1: Word-level ensemble grouping results: While
all three logit aggregation methods—max, first, and av-
erage—produce similar scores, max-logit voting slightly
outperforms the others. The stacked ensemble achieves
the highest Precision, but at the cost of lower Recall,
resulting in a reduced F1 score overall. The lower sec-
tion of the table presents word-level evaluation results
without differentiating between B- and I-labels, based
on the n2c2 2018 test dataset.

one-hot encoding instead of raw logits to reduce
the risk of overfitting, since models often produce
highly confident predictions on the data they were
trained on. We provide evaluation outcomes when
using “raw logits” for stacked-ensemble in Figure
7 (evaluation scores) and 8 (confusion matrix) us-
ing word-level grouping ensemble using max logit,
stacked ensemble, non-one-hot encoding, where
they showed lower performances. One-hot vectors
help regularise training by removing this overcon-
fidence and ensuring a more generalisable stacked
model.

4 Experimental Evaluations

We employed the dataset from the n2c2-2018
shared task, which focuses on named entity recog-
nition (NER) of adverse drug events and associated
medical attributes (Henry et al., 2020). The data
includes annotated labels such as ADE, Dosage,
Drug, Duration, Form, Frequency, Reason, Route,
and Strength in BIO tagging format, resulting in a
total of 19 possible tags: 2 (B/I) for each of the 9

classes, plus 1 (O). The original dataset comprises
303 training letters and 202 testing letters. Follow-
ing the data split approach by Belkadi et al. (2023),
we divided the training set into a 9:1 ratio for train-
ing and validation purposes. We evaluate the mod-
els using Precision, Recall, and F1-score under
both “macro” and “weighted” averaging schemes,
along with overall Accuracy. The “macro” average
gives equal importance to each class, regardless
of how often it appears in the dataset, whereas the
“weighted” average scales scores according to la-
bel frequency. We begin by reporting the results
from individual fine-tuned models (sub-word level),
followed by evaluations of ensemble models using
various strategies (word level).

4.1 Individual Models: sub-word level

The performance of individual models post fine-
tuning is presented in Table 2. Among general-
domain models, RoBERTa-Large achieved the
highest macro Precision (0.8489), Recall (0.8606),
and F1-score (0.8538), even outperforming domain-
specific models. BioMedRoBERTa emerged as the
top performer among domain-specific models, with
macro Precision, Recall, and F1 scores of 0.8482,
0.8477, and 0.8468, respectively. When compared
to the results reported by Belkadi et al. (2023),
whose ClinicalBERT-Apt model achieved macro
averages of 0.842, 0.834, and 0.837, our fine-tuned
ClinicalBERT model delivered comparable results
(0.848, 0.825, 0.834), validating the effectiveness
of our fine-tuning. Notably, our BioMedRoBERTa
model outperforms theirs with macro scores. Fur-
thermore, RoBERTa-Large achieved even higher
macro scores and Accuracy of 0.9782 (Figure
4). Both BioMedRoBERTa and RoBERTa-Large
thus surpass the best-performing model reported in
Belkadi et al. (2023), namely ClinicalBERT-CRF,
which scored 0.85, 0.829, and 0.837 with Accuracy
of 0.976. Building on this, our work transitions to
a focus on word-level evaluation, which contrasts
with the sub-word emphasis seen in Belkadi et al.
(2023).

4.2 Ensemble: word-level grouping (logits)

We evaluated three strategies for aggregating sub-
word predictions into word-level labels: first logit
voting, max logit voting, and average logit voting.
Their results are displayed in the upper section of
Table 1. The first-logit method produced a higher
Recall (0.8260), while max-logit voting yielded the
highest Precision (0.8261) and F1-score (0.8232),
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Figure 2: STACKEDENSEMBLE: training strategy.
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Figure 3: INSIGHTBUDDY Voted Ensemble Pipeline: Each individual NER model is fine-tuned to produce
predictions at the token or sub-word level. (Note: "Logits" refer to the neural network outputs prior to applying the
activation function.) The first step involves aggregating sub-word tokens into complete words using one of three
strategies: selecting the label of the first sub-word, applying max-token voting, or averaging logits across sub-words.
According to our results (see Table 1), the first-token approach yields higher Recall, while the other two methods
slightly favour Precision. However, all three produce nearly identical F1 scores. Based on these findings, we adopt
the first-token label method for further processing. For the word-level ensemble across all eight models, two voting
strategies are explored: 1) majority voting—if four or more models assign the same label, it is selected; otherwise,
the label defaults to “O”, and 2) max voting—selecting the most frequently predicted label, regardless of count. In
the case of ties (e.g. 3,3,2), we experimented with resolving ties either alphabetically or randomly. Our findings
indicate that the “>=4 or O” strategy performs comparably to max + alphabetical”, while “max + random” shows
slightly reduced performance.

following the trend: Max > First > Average, based
on macro F1 (0.8232, 0.8229, 0.8227). Given the
marginal performance differences, we selected the
first-logit voting output for the next ensemble step
for its computational efficiency.

4.3 Ensemble: Voting vs Stacked (one-hot)

The Stacked Ensemble approach, which uses one-
hot encoded vectors, is shown in the middle part of
Table 1. It achieved a higher Precision (0.8351)
compared to the best from voting ensembles
(0.8261). However, its macro Recall dropped to
0.8065, whereas voting ensembles reached 0.8260.
This suggests that while stacking reduced false pos-

itives, it also increased false negatives—indicating
a more conservative prediction style when identify-
ing positive cases.

4.4 Ensemble Models: BIO-span vs non-strict
word-level

Up to this point, evaluations have been based on
strict BIO tagging—treating labels like B-Drug and
I-Drug as distinct, with mismatches considered in-
correct. However, in practice, the distinction be-
tween B and I tags may not be necessary for all use
cases. As shown in Table 1, when we ignore the B/I
prefix and evaluate based on the 9 core label types,
the ensemble model at the word level significantly
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Model Macro P Macro R Macro F Accuracy Tokens(sub-words)
BERT 0.8336 0.8264 0.8283 0.9748 756798
ROBERTa 0.8423 0.8471 0.8434 0.9770 756014
ROBERTa-L 0.8489 0.8606 0.8538 0.9782 756014
PubMedBERT 0.8324 0.8381 0.8339 0.9783 681211
ClinicalBERT 0.8482 0.8245 0.8341 0.9753 796313
BioMedRoBERTa 0.8482 0.8477 0.8468 0.9775 756014
BioClinicalBERT 0.8440 0.8405 0.8406 0.9751 791743
BioBERT 0.8365 0.8444 0.8393 0.9750 791743

Table 2: INSIGHTBUDDY individual sub-word level model eval on n2c2-2018 test set. The first group: normal
domain PLM; The second group: biomedical PLM. The different numbers of Support are due to the different
tokenizers they used – ROBERTa and ROBERTa-L use the same tokenizers, BioClinicalBERT and BioBERT use
the same tokenizers, and other models all use different tokenizers; PubMedBERT generated the least number of
sub-words/tokens 681,211 while ClinicalBERT generated the largest number of tokens 796,313.

improves. Macro Precision reaches 0.8844, Recall
0.8830, and F1 0.8821—well above the macro F1
of 0.8232 (voting-max-logit) and 0.8156 (stacked-
first-logit) under strict BIO conditions.

4.5 Word-level: voting ensembles vs
individual fine-tuned

As reported in Table 3, the BioMedRoBERTa
model, when evaluated individually using max-
logit grouping, achieved macro averages of P/R/F1
(0.8065, 0.8224, 0.8122). In contrast, the
max-voting ensemble delivered (0.8261, 0.8259,
0.8232). This represents an improvement of 2.43%
in Precision and 1.35% in F1-score. These gains
confirm the success of ensemble voting, which en-
hances Precision—thus reducing the number of
false positive predictions—while maintaining Re-
call, thereby preserving true positive detections.

5 Entity Linking: BNF and SNOMED

To integrate the recognised named entities
with a clinical knowledge base, we utilised
the existing mapping resources provided by
the British National Formulary (BNF), which
establish links between SNOMED-CT, BNF,
dm+d, and ICD codes (available at https:
//www.nhsbsa.nhs.uk/prescription-data/
understanding-our-data/
bnf-snomed-mapping). We began by reduc-
ing the full set of 377,834 SNOMED codes to
10,804 entries through pre-processing, eliminating
duplicate mappings between SNOMED and BNF.
Additionally, we filtered out non-drug terms found
in the text. This included removing items that
contained words such as [’system’, ’ostomy’, ’bag’,
’filter’, ’piece’, ’closure’], as these typically refer
to medical equipment rather than pharmaceuticals.
For mapping to SNOMED CT, we applied a fuzzy

string-matching technique on the refined list, using
drug names as search queries. When a match was
found, the associated SNOMED CT code was
appended and used to generate a direct link to the
SNOMED CT online portal. In contrast, the BNF
mapping process relied on a keyword-based search
to retrieve matching entries from the BNF website.
This approach was necessary due to differences in
how the BNF site handles search queries compared
to the SNOMED CT platform. Depending on their
needs or preferences, users can choose to utilise
either of these two clinical knowledge bases (KBs),
as illustrated in Figure 9.

6 Discussion and Conclusion

This paper presented a pilot investigation into
the application of Stacked and Voting Ensem-
ble techniques for medical named entity recog-
nition, utilising eight pre-trained language mod-
els (PLMs) drawn from both general-purpose and
biomedical/clinical domains. Our experimental
results demonstrate that the best-performing fine-
tuned individual models surpassed the state-of-
the-art results on the standard n2c2-2018 shared
task dataset. Moreover, by incorporating ensem-
ble approaches—specifically using output logits
and one-hot encoded vectors—we achieved fur-
ther performance gains, with a 2.43% improve-
ment in Precision and a 1.35% increase in F1-
score. In addition, we developed a desktop
tool and user interface for our fine-tuned models,
which includes an entity linking and normalisa-
tion feature that maps recognised entities to the
BNF and SNOMED CT clinical knowledge bases.
This tool, named INSIGHTBUDDY-AI, is publicly
accessible at https://github.com/HECTA-UoM/
InsightBuddy-AI.

23

https://www.nhsbsa.nhs.uk/prescription-data/understanding-our-data/bnf-snomed-mapping
https://www.nhsbsa.nhs.uk/prescription-data/understanding-our-data/bnf-snomed-mapping
https://www.nhsbsa.nhs.uk/prescription-data/understanding-our-data/bnf-snomed-mapping
https://www.nhsbsa.nhs.uk/prescription-data/understanding-our-data/bnf-snomed-mapping
https://github.com/HECTA-UoM/InsightBuddy-AI
https://github.com/HECTA-UoM/InsightBuddy-AI


Limitations

Ensemble approaches—particularly those involv-
ing large-scale models—can be demanding in
terms of computational resources. During both
training and inference, we encountered challenges
related to hardware limitations. Future directions
include reducing the computational load associated
with ensemble learning, investigating alternative
ensemble strategies, model quantisation, model
output significance testing, and extending the ap-
proach to additional datasets. At present, the desk-
top applications support the deployment of all indi-
vidual fine-tuned NER models, including any Hug-
ging Face-compatible models. However, ensemble-
based models are not yet integrated. Future work
may focus on embedding ensemble learning di-
rectly into the application workflow, rather than
requiring it as a separate, manual process.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of ACL.

Sam Henry, Kevin Buchan, Michele Filannino, Amber
Stubbs, and Ozlem Uzuner. 2020. 2018 n2c2 shared
task on adverse drug events and medication extraction
in electronic health records. Journal of the American
Medical Informatics Association, 27(1):3–12.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2019. Clinicalbert: Modeling clinical notes and pre-
dicting hospital readmission. CoRR, abs/1904.05342.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data, 3(1):1–9.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Jinsu Lee, Sang-Kwang Lee, and Seong-Il Yang. 2018.
An ensemble method of cnn models for object detec-
tion. In 2018 International Conference on Informa-
tion and Communication Technology Convergence
(ICTC), pages 898–901.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

24

https://physionet.org/settings/credentialing/
https://physionet.org/settings/credentialing/
https://4dpicture.eu/
https://4dpicture.eu/
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.1109/BigData59044.2023.10386154
https://doi.org/10.1109/BigData59044.2023.10386154
https://doi.org/10.1109/BigData59044.2023.10386154
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://arxiv.org/abs/arXiv:2007.15779
https://arxiv.org/abs/arXiv:2007.15779
https://arxiv.org/abs/arXiv:2007.15779
https://arxiv.org/abs/1904.05342
https://arxiv.org/abs/1904.05342
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1109/ICTC.2018.8539396
https://doi.org/10.1109/ICTC.2018.8539396


Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ammar Mohammed and Rania Kora. 2022. An effective
ensemble deep learning framework for text classifi-
cation. Journal of King Saud University - Computer
and Information Sciences, 34(10, Part A):8825–8837.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvis-
ticae Investigationes, 30(1):3–26.

Nona Naderi, Julien Knafou, Jenny Copara, Patrick
Ruch, and Douglas Teodoro. 2021. Ensemble of deep
masked language models for effective named entity
recognition in health and life science corpora. Fron-
tiers in research metrics and analytics, 6:689803.

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and
Degui Zhi. 2021. Med-bert: pretrained contextual-
ized embeddings on large-scale structured electronic
health records for disease prediction. NPJ digital
medicine, 4(1):86.

Hager Saleh, Sherif Mostafa, Lubna Abdelkareim
Gabralla, Ahmad O. Aseeri, and Shaker El-Sappagh.
2022. Enhanced arabic sentiment analysis using a
novel stacking ensemble of hybrid and deep learning
models. Applied Sciences, 12(18).

Guangyu Wang, Xiaohong Liu, Zhen Ying, Guoxing
Yang, Zhiwei Chen, Zhiwen Liu, Min Zhang, Hong-
mei Yan, Yuxing Lu, Yuanxu Gao, et al. 2023. Opti-
mized glycemic control of type 2 diabetes with rein-
forcement learning: a proof-of-concept trial. Nature
Medicine, 29(10):2633–2642.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral Networks, 5(2):241–259.

A InsightBuddy-AI Desktop Application

For Clinical Coding (entity linking) options, the
desktop application can currently directly link
the extracted entities to BNF and SNOMED-
CT, as in Figure 9 from the screenshots. The
INSIGHTBUDDY-AI software supports both Mac
and Windows systems.

B Diagrams and Scoring Tables

B.1 Sub-word level diagrams
Sub-word level BioMedRoBERTa confusion ma-
trix, RoBERTa-L evaluation and confusion matrix
are shown in Figure 6, 4, and 5.

B.2 Word-level Ensemble: Stacked using
output logits (non one-hot)

When we used the ‘output logits’ instead of ‘one-
hot encoding’ for stacked ensemble, as we discus-
sioned in the methodology section, it will lead to
overfitting issues. We use the Max logit stacked en-
semble as an example, in figure 7, which shows that
the Stacked Ensemble using output logits produced
much lower evaluation scores macro avg (0.6863
0.7339 0.6592) than the voting mechanism macro
avg (0.8261 0.8259 0.8232) for (P, R, F1). The
corresponding confusion matrix from the stacked
ensemble using the max logit is shown in Figure 8
with more errors spread in the image, the coloured
numbers outside the diagonal line.

B.3 Individual vs Ensemble Models
The word-level performance comparisons from in-
dividual models and voting max-logit ensembles
are presented in Table 3.
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Figure 4: RoBERTa-L Eval at Sub-word Level on n2c2
2018 test data.

Figure 5: RoBERTa-L Eval Confusion Matrix at Sub-
word Level on n2c2 2018 test data.

Figure 6: BioMedRoBERTa Eval Confusion Matrix at
Sub-word Level on n2c2 2018 test data.

Figure 7: word-level grouping ensemble, max logit (log-
its, non-one-hot): stacked ensemble Eval on n2c2 2018
test data, which is much lower than the max voting.

Figure 8: word-level grouping ensemble, max logit:
stacked ensemble confusion matrix Eval on n2c2 2018
test data, which is much worse than the max voting.

Figure 9: INSIGHTBUDDY-AI coding: Choice of BNF
and SNOMED-CT Linking
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Individual models max-logit grouping (word)
Metric P R F1

BERT
accuracy 0.9773
macro avg 0.7942 0.7965 0.7928
weighted avg 0.9784 0.9773 0.9775

RoBERTa
accuracy 0.9780
macro avg 0.8029 0.8201 0.8094
weighted avg 0.9795 0.9780 0.9784

RoBERTa-Large
accuracy 0.9788
macro avg 0.8091 0.8351 0.8202
weighted avg 0.9802 0.9788 0.9792

ClinicalBERT
accuracy 0.9780
macro avg 0.8087 0.7916 0.7964
weighted avg 0.9785 0.9780 0.9779

BioBERT
accuracy 0.9776
macro avg 0.7972 0.8131 0.8027
weighted avg 0.9787 0.9776 0.9779

BioClinicalBERT
accuracy 0.9776
macro avg 0.7999 0.8090 0.8017
weighted avg 0.9788 0.9776 0.9779

BioMedRoBERTa
accuracy 0.9783
macro avg 0.8065 0.8224 0.8122
weighted avg 0.9797 0.9783 0.9786

PubMedBERT
accuracy 0.9784
macro avg 0.8087 0.8292 0.8166
weighted avg 0.9800 0.9784 0.9788

Voting Max logit ensemble word level
accuracy 0.9796
macro avg 0.8261 0.8259 0.8232
weighted avg 0.9807 0.9796 0.9798

Table 3: Word-level individual model (grouping using
max-logit) vs ensemble using max-logit, Eval on n2c2
2018 test data
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Abstract

Most studies on the linguistic information en-
coded by BERT primarily focus on English.
Our study examines a monolingual German
BERT model using a semantic classification
task on newspaper articles, analysing the lin-
guistic features influencing classification deci-
sions through SHAP values. We use the TüBa-
D/Z corpus, a resource with gold-standard an-
notations for a set of linguistic features, in-
cluding POS, inflectional morphology, phrasal,
clausal, and dependency structures. Semantic
features of nouns are evaluated via the Ger-
maNet ontology using shared hypernyms. Our
results indicate that the features identified in
English also affect classification in German but
suggests important language- and task-specific
features as well.

1 Introduction

Even today, with large language models (LLMs)
like GPT-4 (OpenAI et al., 2023), Llama (Tou-
vron et al., 2023), or Mistral (Jiang et al., 2023)
representing the de facto state-of-the-art systems
for most NLP tasks in English, the exploration of
BERT-like models still provides extremely useful
insights for low-resource and non-English scenar-
ios (Brookshire and Reiter, 2024; Sivanaiah et al.,
2024; Bressem et al., 2024), often offering more
efficient and lightweight solutions.

Despite the extensive research evaluating the lin-
guistic knowledge encoded in various English ver-
sions of BERT (Devlin et al., 2019) using inter-
pretative methods like attention analysis (Jawahar
et al., 2019; Goldberg, 2019; Kalouli et al., 2022),
monolingual models pre-trained on languages other
than English have received considerably less atten-
tion. Given that languages can differ quite signifi-
cantly in their morphological, syntactic, and seman-
tic complexity, it is crucial to identify which be-
haviours observed for English translate to other lan-
guages and which, instead, are language-specific.

For example, Jawahar et al. (2019) found that
different types of linguistic information are dis-
tributed across different layers of English BERT;
surface-level information like phrasal structure is
processed by layers closer to the input, syntactic
information by the middle layers, and semantic in-
formation by the layers closer to the output. The
ability of BERT-like models to process syntactic
information has been evaluated by assessing their
performance on subject-verb agreement in English
(Goldberg, 2019). More recently, Kalouli et al.
(2022) assessed the quality of the semantic repre-
sentations for general function words (e.g. nega-
tions, coordinating conjunctions, and quantification
terms) in these models. Their findings suggest that
BERT-like models struggle to accurately complete
sentences based on these function words alone, of-
ten relying on other indicators, like Named Entities
(NEs), for their predictions.

Our work investigates which morphological, syn-
tactic, and semantic features are the strongest pre-
dictors in an eight-class text classification task for a
German BERT model. Building on evidence from
English, we analyse similarities and differences,
particularly exploring how the richer inflectional
morphology of German (Eisenberg, 2020) affects
model performance. Former studies on German
have analysed morphological or syntactic features
separately (Zaczynska et al., 2020; Guarasci et al.,
2021). Claeser (2022) conducts a study on the same
corpus we use in this work, but considers only the
influence of morphology with regard to CNNs. Our
study covers a larger selection of morphological,
syntactic, and semantic features and focuses on
BERT.1

1Additional information for reproducibility can be found
at: https://github.com/CoPsyN/ling-in-German-BERT
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2 Materials and Methodology

2.1 Corpus Selection

For our analysis, we use the Tübinger Baum-
datenbank Deutsch/Zeitungskorpus (TüBa-D/Z;
Telljohann et al. (2004)). This corpus con-
tains 3,642 newspaper articles (1,782,129 tokens;
153,990 types) from the German newspaper Die
Tageszeitung and includes gold-standard annota-
tions for inflectional morphology, part-of-speech
tags, and syntax, along with automatically gener-
ated dependency structures. In addition, we use the
semantic annotation layer by Claeser (2022), that
categorizes the articles into eight topics with vary-
ing levels of coverage across the corpus: culture
(kultur; 24%), politics (politik; 22%), miscella-
neous (panorama; 17%), conflicts abroad (konflik-
teausland; 11%), economy (wirtschaft; 9%), crime
(kriminalität; 8%), sport (sport; 5%), and environ-
ment (umwelt, 4%). This corpus offers consistent,
rich, high-quality annotations on all layers. In ad-
dition, the text classification task covers a broad
range of topics, allowing for good generalisabil-
ity. To make the text compatible with BERT, we
split the available text into 6,674 chunks of approx-
imately 500 tokens each, ensuring that only full
sentences are included. We ensured that there is
no different in performance between chunks of the
same text throughout our experiments.

2.2 Model Fine-Tuning

We fine-tune a monolingual BERT-base German-
cased model (Chan et al., 2020) for 5 epochs with a
batch-size of 8, a learning-rate of 5e-5 and AdamW
as optimizer on the 8-way classification task men-
tioned above. We use a 10-fold-cross-validation de-
sign on the multi-class classification task described
above. Due to the corpus’ relatively small size and
class imbalance, the fine-tuning of each fold is re-
peated five times with a new random initialization
of the model. The classifier achieves an average F1-
score of 0.72±0.01. Table 1 reports the accuracy
scores per class, showing considerable differences
(0.59 for “environment” vs. 0.90 for “sport”). Such
differences should be considered when interpreting
the results in the following analyses.

2.3 SHAP Value Calculation

To determine the importance of specific words in
the classification task, we use the KernelSHAP
algorithm (Lundberg and Lee, 2017) through the
TransSHAP library (Kokalj et al., 2021). SHapley

class percentage accuracy

culture 24% 0.82± .06
politics 22% 0.70± .04
miscellaneous 17% 0.60± .03
conflicts abroad 11% 0.68± .06
economy 9% 0.65± .09
crime 8% 0.73± .06
sport 5% 0.90± .06
environment 4% 0.59± .11

Table 1: Distribution of semantic text classification cate-
gories in the 500-word chunk version of the corpus and
the validation accuracy.

Additive exPlanations (SHAP) (Lundberg and Lee,
2017) have been successfully applied to various
NLP tasks (Chakravarthi et al., 2023; Jang et al.,
2023; Tang et al., 2024; Rizinski et al., 2024). For
our analysis, we calculate the SHAP values, which
reflect the importance of each token in a text to the
classification decision for the whole text.

3 Results and Discussion

All steps in the following analysis focus on the top
10% tokens with positive SHAP values in correctly
classified texts; in this way we inspect only words
that positively contribute to the correct classifica-
tion decision. In addition to the usual quantitative
analysis of SHAP values, we run a statistical anal-
ysis to identify which features significantly affect
model performance. We make this decision to en-
sure that all reported effects are significant above
chance, which is especially important for less fre-
quent features. As null hypothesis, we assume that
the distribution of each SHAP feature within a cate-
gory matches its original distribution in the corpus
for the same category. Positive contributions are
reported when values significantly exceed the null
hypothesis, and negative contributions when they
are significantly lower (refer to Appendix A for
more details). To reduce data sparsity and increase
generalizability, we group all linguistic features
into coarse-grained categories (e.g., “verbs” would
include all types of verbs; refer to Appendix B for
the detailed mapping).

3.1 POS Analysis

The outcome of the POS analysis in Figure 1 de-
picts the null hypothesis as the red central line,
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Figure 1: Distribution of POS per classification category,
normalized against its category distribution. POS label
groups are explained in Table 3 in Appendix B.

with a two standard deviations confidence interval.2

The black vertical line represents the observed fre-
quency of each POS among SHAP values. Values
to the right of the red line indicate that a specific
feature has a positive contribution in the SHAP val-
ues compared to its corpus distribution, while those
to the left that it is has a negative contribution. Sig-
nificance is reached when the black line is outside
the confidence interval.

Among the noun POS-tags analysed, named en-
tities (nes) have a significant positive impact on the
predictions across all categories except for “envi-
ronment”. This finding perfectly mirrors the results

2The main text includes only the most relevant figures for
each step of the analysis, while the full set of plots supporting
the discussion is provided in Appendix C.

by Kalouli et al. (2022) on English. Additionally,
cardinal numbers (card) strongly predict categories
related to factual content, such as “politics”, “con-
flicts abroad”, “economy”, and “crime”. Likely
due to data sparsity (see Section 2.1), “environ-
ment” is the only category where no features reach
significance.

3.2 Inflectional Morphology
We analyse morphological features for nouns, ad-
jectives, and verbs. Figure 2 shows that for the
classes “politics” and “conflicts abroad”, nouns in
nominative are significantly more present than in
the overall distribution, while nouns in accusative
are significantly less present. For “miscellaneous”,
only accusative reaches significance as a negative
predictor. These differences are surprising given
the many syncretisms between nominative and ac-
cusative in German, leading to identical surface
forms. Possibly, the distinction mainly comes from
their roles as subjects and objects.

For the number feature, plural is a negative pre-
dictor in “economy” and a positive one in “environ-
ment”. This result is not straightforward to inter-
pret and may hint to category-specific preferences.

For adjectives only the underspecification of case
reaches positive significance in “politics”, “miscel-
laneous”, “culture”, “crime”, and “sport”. In addi-
tion, accusative is a significant negative predictor
in “politics” and genitive in “miscellaneous”. For
number, there are no significant predictors.

For verbs, the subjunctive is a significant nega-
tive predictor in “politics”, “miscellaneous”, “econ-
omy”, and “crime”. Given that the German sub-
junctive differs strongly in its morphology from

Figure 2: Normalized distribution of case (nominative,
genitive, accusative, dative) for nouns.
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the more commonly used indicative forms, BERT
likely considers these less frequent forms as less
important for the classification decision. In addi-
tion, it needs to be mentioned that the subjunctive
in German has two morphological forms. Among
the two, the subjunctive 1 is used more commonly
in German newspaper texts (as present in the TüBa
corpus) compared to more casual forms of written
German as it can be found in social media posts or
the rest of the internet.

For the inflectional degree, tense, and person,
only one significant negative predictor is found
for infinitive and past forms in “conflicts abroad”
and 1st person in “culture”. For number only plu-
ral is a significant positive predictor for “environ-
ment”. These observations hint to a class-specific
phenomenon rather than a generalisable behaviour
of the assessed model.

3.3 Syntactic Analysis

We study phrase, clause, complement, and depen-
dency relations between the words in a sentence
based on the annotation layers in the TüBa-corpus.

In the analysis of phrases, noun phrases and de-
terminer phrases are significant positive predictors
in “miscellaneous”, while prepositional phrases are
in “sport”. Significant negative predictors are finite
verb phrases in “miscellaneous”, finite verb phrases
in “politics”, “miscellaneous”, “conflicts abroad”,
“crime”, and “sport”, and determiner phrases in
“politics”. The analysis on the distribution of nouns
across different phrase types reveals no significant
results. Since our analysis considers the full 12
layer models, the results of the phrasal analysis do
not contradict Jawahar et al. (2019), who claims
that phrasal information tends to be more diluted
in the lower layers of BERT.

With regard to the higher-order phrase levels,
relative clauses (R-SIMPX) are significant negative
predictors for most categories (except “economy”).
Other subordinate types are not very important for
the classification task.

The analysis of complements shows subjects
as significant positive predictors in “politics” and
“miscellaneous”, while objects are significant neg-
ative predictors in “culture”. This perfectly aligns
with our previous discussion on the nominative
case. We do not observe a clear preference for any
other complement tags.

Dependency relations3 provide a perspective on

3Based on semi-automatically generated Hamburg Depen-

Figure 3: Normalized distribution of dependency labels
for a dependency-grammar perspective on syntax. The
labels are grouped according to Table 5 in Appendix B.

the relations between the words in a sentence. Fig-
ure 3 shows the result for dependencies.

The multi-head attention mechanism in BERT
allows the model to establish direct inter-token rela-
tionships similar to dependency relations. Similarly
to the analysis of complements, the dependency
analysis indicates that objects are strong negative
predictors for “conflicts abroad”, “politics”, and
“sport”. However, this is not true for subjects. This
variability has two possible explanations. First,
the analysis relies on semi-automatically generated
labels, increasing the probability of annotation er-
rors. Second, complements and dependency rela-
tions differ in their theoretical definitions, leading

dency Treebank (Foth et al., 2014) annotations from the 2010
version of the TüBa corpus.
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to slight differences in the resulting annotation.
The initial word in a dependency structure

(“root” tag) is a significant positive predictor for
“culture”, “politics”, “miscellaneous”, “conflicts
abroad”, “economy”, and “crime”. The additional
results for significant positive and negative pre-
dictors are rather wide-spread over categories and
relations, indicating possibly class-specific prefer-
ences.

Overall, the results from the dependency anal-
ysis are able to reproduce objects as a significant
negative predictor, found in clausal representations
and suggested in the morphological analysis of case
for nouns. Further, the model seems to prefer the
initial word in a dependency structure.

In a last step, we test whether the model is more
likely to consider a pair of tokens because they are
in a dependency relation. Since we cannot measure
a reference value from the full corpus data because
the corpus contains already the full dependency
structure, we estimate the expected value for this
observation to be≈ 1, 392 tokens (calculated based
on Equation 2 in Appendix A). This step considers
for the set of top 10% of positive SHAP values
the binary decision of a token and its governing
token, which is approximately Poisson distributed.
The observed value of 5,360 is nearly four times
higher than expected, indicating the model gives
disproportionate importance to words connected by
a dependency relation.

A closer look at the types of dependencies link-
ing these tokens reveals some general (yet non sig-
nificant; probably due to data sparsity) tendencies
for tokens connected by a subject, subordinate, par-
ticle or modifier dependency relation.

Overall, these results suggest that the model does
not favour a specific type of dependency. Instead,
it appears to group different tokens based on their
connections through specific dependency relations,
such as subject, particle, modifier, or subordinate
relations. This could indicate that the model consid-
ers words within smaller syntactic clusters, linking
them according to their dependency relations.

3.4 Semantic Analysis
To assess the influence of semantic features on
the classification task, we use GermaNet.4 The
semantic ontology includes information on verbs,
adjectives and nouns. Since the results for POS on
both verbs and adjectives do not yield significant

4Accessed using the provided Germanetpy API (https:
//github.com/Germanet-sfs/germanetpy).

results, the following analysis focuses uniquely on
the same nouns as considered in the previous sec-
tions. The semantic analysis exploits the tree-like
structure of the ontology. We pair each noun5 in
the category with every other noun in the same
category and identify the closest shared hypernym
for each pair. We then count the number of shared
hypernyms in each category and normalize this by
the frequency of each hypernym in the corpus. This
allows us to identify hypernyms that are generally
uncommon across categories, but very distinctive
to a specific one. Finally, we rank these hypernyms
by category, analyse the top 20, and manually se-
lect only those that are associated to the category.
Table 2 reports the count of selected hypernyms ap-
pearing in the top 5, 10, 15, and 20 most frequent
hypernyms and the percentage in the top 20 for
each category.

class top 5 top 10 top 15 top 20 percent

culture 1 2 4 5 10%
politics 0 0 0 1 4%
miscellaneous 0 0 0 0 0%
conflicts abroad 0 0 0 0 0%
economy 0 0 0 0 0%
crime 0 1 1 1 4%
sport 0 2 4 7 33%
environment 0 0 0 1 100%

Table 2: Analysis of class related hypernyms in top 5-
20 hypernyms with the highest weighted mean. The
last column reports the percentage of all class-related
hypernyms present in the top 20.

In this ranking of counts of shared hypernyms
(weighted by general hypernym frequency), we can
assess which class has an exceptionally high num-
ber of hypernyms related to its topic. For, “culture”
and “sport”, a higher percentage of class-related
concepts in the most frequent shared hypernyms
correlates with a higher classification accuracy (cf.
Table 1). The high number of class-related shared
hypernyms indicates that the words that are impor-
tant to the classification decision are more likely
to be hyponyms of rather class-specific concepts.
This outcome indicates a closer semantic cluster
making it easier to for the model to discriminate
the category.

Overall, this suggests that not only the class-size
is decisive for the classification accuracy, but also
that a smaller category may benefit from a higher
semantic proximity of its characteristic words.

5Pairs of identical nouns and named entities were excluded.
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4 Conclusion

This work investigates the role of linguistic infor-
mation in a monolingual German BERT model for
a multi-class classification task. It replicates prior
findings on the dilution of phrasal information in
a full 12-layer model (Jawahar et al., 2019) and
BERT’s preference for NEs (Kalouli et al., 2022).

The results suggest that German BERT’s syntac-
tic representation prioritizes dependency relations
over clausal or phrasal ones by focusing on word
clusters in dependency relations, showing opportu-
nities for further research. Additionally, German
noun inflection has a minor influence, with a prefer-
ence for nominative over accusative, possibly due
to the syntactic function outweighing its morpho-
logical form.

The semantic analysis shows that classification
accuracy depends not only on class size but also
on smaller categories forming a coherent semantic
space, and consequently, increasing their distinc-
tiveness.

Overall, this study indicates some cross-
linguistic consistency in BERT’s linguistic repre-
sentations while emphasizing the need for further
analyses of language-specific phenomena, espe-
cially in low-resource contexts.

5 Limitations

When interpreting the results of this study, it is im-
portant to note that only one model (BERT), one
corpus domain (news), and one specific semantic
classification task was analysed. Therefore, the
findings may reflect the specific distributions of the
assessed corpus and task; yet high generalisability
is expected given the broad nature of the chosen
task. Some results are not straightforward to inter-
pret, but we offer explanations based on the most
reasonable assumptions.

Finally, the study does not specifically analyse
the full complexity of inflectional morphology and
syntax. A more detailed analysis of nouns could
provide further insights into the model’s prefer-
ences. Similarly, more research is needed to un-
derstand how structural simplifications impact syn-
tactic complexity and the contribution of specific
words to this process.

6 Ethics statement

We do not anticipate any ethical concerns with this
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A Statistical Analysis

The statistical analysis in this paper highlights the
significance of specific linguistic features in the text
classification task. We compare the distribution of
each feature in the SHAP values to its distribu-
tion in the same category within the TüBa corpus.
Both distributions are normalized based on the total
number of words per category in the SHAP values
and in the entire corpus, respectively. As shown in
Equation 1, the null hypothesis (H0) assumes that
the two distributions are identical:

H0 :
k

n
=

K

N
(1)

where k is the count of the feature in the cate-
gory in the SHAP values, n is the total number of
words in the top 10% positive SHAP values for the
category, K is the count of the feature in the cate-
gory within the corpus, and N is the total number
of words in the category in the corpus.

The statistical analysis (two-sided t-test) iden-
tifies features in SHAP that have a significantly
higher or lower contribution to model performance
compared to their actual distribution in the corpus.

The analysis for the co-occurrence of tokens
with their governing token in a dependency relation
requires to estimate an expected value as reference
under the assumption that the dependency-related
tokens end up in the SHAP values based on a ran-
dom selection. A random selection assumes in this
case that there is a binary criterion of a token and its
governing token being in the SHAP values or not.
Under this assumption, Equation 2 approximates
the question whether two dependency-related to-
kens end up in the SHAP values as a Poisson Dis-
tribution.

A := Pgov. token of last word in SHAPS

=
nSHAPs

nTueba

=
46043

1523384
Egov. tokens in SHAPs = nSHAPs ·A

=
n2
SHAPs

nTueba

=
460432

1523384
≈ 1392

(2)

B Labels Mapping

Here, we document the mapping between the fine-
grained labels in the corpus, based on the Stuttgart-
Tübingen-Tagset (STTS), complement labels and
the dependency labels according to the Hamburg
Dependency Treebank. Table 3 documents POS
tags, Table 4 complement labels, and Table 5 the
dependency labels.

Grouped Tag Abbreviation STTS Tag

nouns nouns NN

named entities (NEs) nes NE

adjectives adj ADJA, ADJD

cardinal numbers card CARD

verbs verbs VMFIN, VAFIN, VVFIN,
VAIMP, VVIMP, VVINF, VAINF,
VMINF, VVIZU, VVPP, VMPP,
VAPP

articles art ART

pronouns pro PPER, PRF, PPOSAT, PPOSS,
PDAT, PDS, PIAT, PIDAT, PIS,
PRELAT, PRELS, PWAT, PWS,
PWAV, PAV

adverbs adv ADV

conjunctions conj KOUI, KOUS, KON, KOKOM

particle part PTKZU, PTKNEG, PTKVZ,
PTKA, PTKANT

other other ITJ, TRUNC, XY, FM

Table 3: Mapping between fine-grained STTS labels
and the coarse-grained labels used in the POS analysis.

Grouped Tag Abbreviation Complement Tag

subject subj ON

object obj OD, OA, OG, OS, OPP,
OADVP, OADJP

predicate pred PRED

verbal objects ov OV

facultative prepositional ob-
ject

fopp FOPP

apposition app APP

Table 4: Grouping of complement labels for the analy-
sis. For the original labels, see (Telljohann et al.).
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Grouped Tag Abbreviation Dependency Tag

root node of dependency
structure

root ROOT

subject subj SUBJ, SUBJC, EXPL

object obj OBJA, OBJI, OBJG, OBJC,
OBJD

subordination subord APP, NEB, REL, PAR, S,
gmod-app

determiner det DET

predicative complement pred PRED

auxiliary aux AUX

prepositions prep PP, PN, OBJP

modifier modif ADV, ATTR, GMOD,
PART, KOM

subordordination subord REL, NEB, PAR

coordination coord CJ, KONJ, KON, koord

participles part AVZ, PART

time information zeit ZEIT

gradual (indicating a mea-
sure)

grad GRAD

other other left over punctuation signs,
-UNKNOWN-

Table 5: Grouping of dependency labels for the analy-
sis based on the labels from the Hamburg Dependency
Treebank (Foth et al., 2014).

C Feature Analysis: Additional Plots

Below, we present the additional plots supporting
the complete feature analysis as documented in
the main text for the morphological features of
nouns (Figure 4), adjectives (Figures 5 and 6), and
verbs (Figures 7, 9, 8, 10, and 11), followed
by the syntactic analysis for phrasal (Figures 12,
13, and 14), clausal (Figure 15), and dependency
(Figure 16) features. As discussed in Section 3.1,
the red central line indicates the null hypothesis
surrounded by the 2σ(95%) confidence interval in
light blue. The black vertical line represents the
observed frequency of each feature among SHAP
values. Values to the right of the red line indicate
that a specific feature is over-represented in the
SHAP values compared to its corpus distribution,
while those to the left that it is under-represented.
Significance is reached when the black line is out-
side the confidence interval.

C.1 Morphology Plots
C.2 Morphology: Nouns

Figure 4: Normalized distribution of number (singular,
plural, underspecified) for nouns.

C.2.1 Morphology: Adjectives

Figure 5: Normalized distribution of case (nominative,
genitive, dative, accusative, underspecified) for adjec-
tives.

Figure 6: Normalized distribution of number (singular,
plural, underspecified) for adjectives.
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C.2.2 Morphology: Verbs

Figure 7: Normalized distribution of inflectional degree
(infinitive, participle, inflected) for verbs.

Figure 8: Normalized distribution of grammatical per-
son (1st, 2nd, 3rd, underspecified) for verbs.

Figure 9: Normalized distribution of number (singular,
plural, underspecified) for verbs.

Figure 10: Normalized distribution of tense (present,
past, underspecified) for verbs.

Figure 11: Normalized distribution of mood (indicative
and subjunctive (Konjunktiv)) for verbs.
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C.3 Syntactic analysis
C.3.1 Phrasal analysis

Figure 12: Normalized distribution of phrase labels.

Figure 13: Normalized distribution of higher-order
phrase labels.

Figure 14: Normalized distribution of phrase labels for
nouns to assess whether the phrasal attachment of a
noun influences the classification.

C.3.2 Clausal Analysis

Figure 15: Normalized distribution of complement la-
bels. The grouping of the labels can be found in 4.
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C.3.3 Dependency Analysis

Figure 16: Normalized distribution of dependency re-
lations between tokens, where both tokens appear in
the SHAP values. This aims to reveal whether specific
tokens are important to the classification task due to
their dependency relations.
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Abstract

Knowledge Graph Embedding (KGE) methods
are widely used to map entities and relations
from knowledge graphs (KGs) into continuous
vector spaces, enabling non-classical reasoning
over knowledge structures. Despite their effec-
tiveness, the uncertainty of KGE methods has
not been extensively studied in the literature.
This gap poses significant challenges, partic-
ularly when deploying KGE models in high-
stakes domains like medicine, where reliability
and risk assessment are critical. This disserta-
tion seeks to investigate various types of uncer-
tainty in KGE methods and explore strategies to
quantify, mitigate, and reason under uncertainty
effectively. The outcomes of this research will
contribute to enhancing the reliability of KGE
methods, providing greater confidence in their
use beyond benchmark datasets, and support-
ing their application in real-world, high-stakes
domains.

1 Introduction

Knowledge graphs (KGs) encode factual knowl-
edge about real-world entities and their relation-
ships, represented as triples <head entity, predicate,
tail entity>. These structures provide semantically
rich information, playing a crucial role in advanc-
ing intelligent systems (Lenat and Feigenbaum,
2000). Ontologies and logic rules, as standard
knowledge representation formalisms, are com-
monly used to reason about the semantics in KGs
(Hogan et al., 2021). However, management and
updating of rules can be cumbersome and the inher-
ently symbolic nature of such systems complicates
their integration with machine learning tasks.

Knowledge graph embedding (KGE) methods
map entities and predicates into numerical vec-
tors (a.k.a embeddings), providing non-classical
reasoning capability by exploiting similarities and
analogies over knowledge structure (Wang et al.,
2017; Zhu et al., 2024a). While KGE methods have

demonstrated effectiveness in various downstream
tasks, including triple classification (Socher et al.,
2013), link prediction (Bordes et al., 2013; Nickel
et al., 2011) and recommendation (Liu et al., 2019),
the uncertainty of KGE methods remains largely
under-explored.

Handling uncertainty in KGE methods is critical
because KGE models often encounter significant
uncertainty in their predictions (predictive uncer-
tainty) (Zhu et al., 2024a,b). This predictive uncer-
tainty can stem from several procedures throughout
the KGE pipeline shown in Figure 1. During KG
construction, noise and errors may arise from in-
consistent or ambiguous data aggregated from mul-
tiple sources (Zhou et al., 2022), or from inaccurate
automated knowledge extraction processes (Zhou
et al., 2021). Additionally, some knowledge is in-
herently uncertain, such as molecular interactions,
which are random process by nature (Szklarczyk
et al., 2016). This uncertainty, associated with KGs
before training the KGE model, is referred to as
knowledge uncertainty. Furthermore, algorithmic
uncertainty can emerge during model development,
caused by randomness and variability in the KGE
training process.

Understanding and dealing with these types of
uncertainty is especially critical in high-stakes do-
mains such as medicine, where reliable predictions
and robust risk assessment are imperative. De-
spite the relevance, research on uncertainty in KGE
methods remains limited. For instance, studies by
He et al. (2015); Xiao et al. (2015); Wang et al.
(2022) model algorithmic uncertainty and predic-
tive uncertainty using probabilistic embeddings.
While these approaches have improved overall ac-
curacy, the quality of the modeled uncertainty has
not been systematically studied. Moreover, these
methods often demand additional parameters, incur
high computational costs due to the need for cal-
culating distance between probability distribution,
and are challenging to adapt to other KGE methods
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Figure 1: This figure illustrates the three key stages in the KGE pipeline and their associated uncertainties: (1)
Knowledge Uncertainty arises during knowledge graph construction due to noise, errors, and inherent randomness
in the knowledge sources; (2) Algorithmic Uncertainty is introduced during KGE development through randomized
initialization, batch sampling, and negative sampling, leading to variations in the resulting models; and (3) Predictive
Uncertainty, which occurs in the deployment of a pre-trained KGE model, refers to the model’s confidence in its
predictions for a given query.

without substantial modifications.
To address these gaps, this dissertation plans

to systematically explore various types of uncer-
tainty in KGE methods and aim to propose model-
agnostic and easy-to-implement approaches to deal
with uncertainty. The remainder of this disserta-
tion proposal is structured as follows: Section 2
provides an overview of KGE methods and related
work relevant to this research. Section 3 details the
research questions and the proposed methodologies
to address them. Section 4 concludes the proposal
and outlines the anticipated contributions.

2 Background

2.1 Knowledge Graph Embedding

A KG G is a labelled directed graph, which can be
viewed as a set of triples T ⊆ E ×R× E , where
E is the set of entities, and R is the set of pred-
icates. An entity represents a real-world object.
Often the labels of entities and predicates are cho-
sen to be URIs or IRIs (Internationalised Resource
Identifiers). The elements in G are called triples
and denoted as ⟨h, r, t⟩, where h ∈ E is the subject,
r ∈ R is the predicate, and t ∈ E is the object.

A KGE model Mθ : E × R × E → R assigns
a score to each triple, measuring the plausibility
that the triple holds. Concretely, there are three key

components of a KGE model: embedding mapping,
score function and embedding training (Cao et al.,
2022).

Embedding Mapping. In the embedding map-
ping process, entities and predicates are mapped
into vector representations. For example, TransE
(Bordes et al., 2013) map them into Euclidean
space, while others map them into alternative math-
ematical spaces, such as complex space (Sun et al.,
2019) or hyperbolic space (Balazevic et al., 2019;
Xiong et al., 2022). Let h, r and t denote the vector
representation of entities and predicates in a triple.

Score Function. The score function, denoted
as s(h, r, t), then calculates a plausibility score
for the triple based on the vector representations.
For example, the translation-based scoring func-
tion s(h, r, t) = −||h + r − t||1/2 is widely used
to measure the plausibility that a triple is positive
(Bordes et al., 2013). More scoring functions are
summarized in Table 1.

Embedding Training. The parameters θ are
learned to let Mθ assign higher plausibility scores
to positive triples (real facts) while assigning lower
plausibility scores to negative triples (false facts).
Training begins with random initialization of θ and
then minimizes a loss function, such as margin-
based ranking loss (Bordes et al., 2013) or cross-
entropy loss (Nickel et al., 2011; Dettmers et al.,

41



Score Function s(⟨h, r, t⟩)
TransE (Bordes et al., 2013) −||h+ r− t||1/2

RotatE (Sun et al., 2019) −||h ◦ r− t||p
RESCAL (Nickel et al., 2011) hTMrt
DistMult (Yang et al., 2015) hTdiag(r)t

ComplEx (Trouillon et al., 2016) Re(hTdiag(r)t)

ConvE (Dettmers et al., 2018) f(vec(f([h; r] ∗ ω))W)t

Table 1: The score function of KGE models, where ◦
denotes Hadamard product. · refers to conjugate for
complex vectors in ComplEx, and 2D reshaping for real
vectors in ConvE. ∗ is operator for 2D convolution. ω is
the filters and W is the parameters for 2D convolutional
layer.

2018). Since ground truth negative triples are typ-
ically unavailable in KGs, they are generated by
corrupting positive triples during training. A com-
mon approach involves replacing the head or tail
entity in an observed triple with a random entity
sampled from E .

2.2 Downstream Tasks and Evaluation
The quality of learned embeddings is commonly
assessed through two primary tasks: triple classi-
fication and link prediction (Bordes et al., 2013),
with their performance measured using specific
evaluation metrics.

Triple Classification. The goal of triple classifi-
cation is to determine whether a given triple is true
or false. The model uses the learned embeddings
to compute plausibility scores and classify triples
accordingly. Performance is evaluated using stan-
dard binary classification metrics, such as accuracy,
precision, recall, and F1 score.

Link Prediction. Link prediction is essentially
a ranking task aimed at answering a given query,
such as ⟨h, r, ?⟩ or ⟨?, r, t⟩. The model ranks poten-
tial triples ⟨h, r, e⟩ or ⟨e, r, t⟩, where e ∈ E , based
on their plausibility scores. Positive triples are ex-
pected to rank higher than negative ones. Ranking-
based metrics are used to evaluate performance:

• Mean Rank (MR): The average rank of the
true entity in the model’s predictions.

• Mean Reciprocal Rank (MRR): The average
reciprocal rank of the true entity.

• Hits@K: The proportion of test triples where
the true entity is ranked within the top-K pre-
dictions.

Beyond these tasks, KG embeddings are used
to answer more complex queries (He et al., 2023,

2024a,b).

2.3 Related Work
Several works embed entities and relations from de-
terministic KGs as probabilistic distributions rather
than single numerical vectors to model uncertainty
in the embeddings (He et al., 2015; Xiao et al.,
2015; Wang et al., 2022). These methods typically
learn distribution parameters by minimizing the
KL-divergence between the probability distribu-
tion of the difference between head and tail entities
and that of the relation, adhering to the transla-
tional paradigm of KGE models. While this line of
work captures both algorithmic and predictive un-
certainty through prior and posterior distributions
in the vector representations, the evaluation primar-
ily focuses on accuracy, leaving the quality of the
uncertainty modeling largely unexplored. To the
best of our knowledge, Loconte et al. (2023) is the
only study that evaluates uncertainty quality using
calibration diagrams and empirical calibration er-
ror, as detailed in Loconte et al. (2023, Appendix
F.5.3).

Other approaches represent knowledge uncer-
tainty by associating facts or axioms with a con-
fidence score or probability (Chen et al., 2019,
2021b,a; Zhu et al., 2023, 2024c). These methods
aim to learn embeddings that incorporate both KG
structure and input data uncertainty. For instance,
UKGE (Chen et al., 2019) extends DistMult (Yang
et al., 2014) by predicting confidence scores for
facts. It computes the plausibility of triples as the
product of embedding vectors and maps this plau-
sibility to a confidence score in the range [0, 1]. To
enrich the training data, UKGE employs probabilis-
tic soft logic to infer confidence scores for a sub-
set of unseen triples. Subsequent work enhances
these methods through improved negative sampling
strategies via semi-supervised learning (Chen et al.,
2021b) and by increasing the robustness and ex-
pressiveness of UKGE using entity representations
as boxes and affine transformations for relations
(Chen et al., 2021a).

Explicit studies on predictive uncertainty in
triple classification have also been conducted. Re-
search by Tabacof and Costabello (2020) and
Safavi et al. (2020a) applies off-the-shelf calibra-
tion techniques, such as Platt scaling and isotonic
regression, to KGE models. These techniques con-
vert uncalibrated plausibility scores into probabili-
ties by minimizing the negative log-likelihood on a
validation set. However, these approaches are sen-
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sitive to the quality of the validation set and lack
formal guarantees for the generated probabilities.

3 Research Questions

The primary objective of this dissertation is to sys-
tematically investigate various types of uncertainty
in KGE methods and to develop model-agnostic
approaches for effectively managing them. Specifi-
cally, this work focuses on the following research
questions:

RQ1: For the reducible component of predic-
tive uncertainty caused by algorithmic uncer-
tainty, how can we effectively reduce it?

RQ2: For the irreducible component of predic-
tive uncertainty, how can we reliably quantify
it with statistical guarantees?

RQ3: When knowledge uncertainty is explic-
itly present in the input KGs, how can KGE
methods effectively and efficiently reason un-
der such uncertainty?

In this section, I will elaborate on each research
question, introduce sub-research questions, outline
tentative solutions, and describe the preliminary
results or the expected contributions for each.

3.1 Reducing Uncertainty
The training process for KGE models, described in
Section 2.1, introduces randomness through vari-
ous sources, such as randomized embedding initial-
ization, randomized sequences of training triples,
and randomized negative sampling. Due to the
non-convex nature of the training process, identical
configurations (including the training KG, KGE
algorithm, and hyperparameters) can result in dif-
ferent KGE models that converge to different local
minima.

Among the possible KGE models trained under
the same configuration, some may achieve simi-
lar accuracy on the training KG but differ signif-
icantly in their vector representations of entities
and predicates, capturing distinct patterns. This
phenomenon, known as model multiplicity in ma-
chine learning (Breiman, 2001; Marx et al., 2020;
Black et al., 2022b,a), poses a significant obstacle
to reliably training models that behave as expected
during deployment (D’Amour et al., 2022). An
extreme example involves two models with both
50% accuracy but mutually contradictory predic-
tions on the validation set, which creates challenges

for model selection. Randomly selecting models
based on accuracy alone fails to justify decision-
making, especially in high-stakes domains such as
loan approval or medical diagnosis (Black et al.,
2022b).

Model multiplicity is a specific form of algo-
rithmic uncertainty that contributes to predictive
uncertainty by producing conflicting predictions
under identical training configurations. To better
understand and address model multiplicity in KGE
methods, this research investigates the following
sub-questions:

• RQ1.1: How can model multiplicity in KGE
methods be formally defined?

• RQ1.2: How can model multiplicity in KGE
methods be measured?

• RQ1.3: What are the key factors influencing
model multiplicity in KGE methods?

• RQ1.4: How can model multiplicity in KGE
methods be alleviated to reduce predictive un-
certainty?

Although model multiplicity is known to be ubiq-
uitous in gradient-based optimization (D’Amour
et al., 2022), we explore strategies to mitigate
the predictive uncertainty it induces. A promis-
ing approach involves ensembling models trained
with different random seeds. Such ensembles, in-
spired by voting methods from social choice theory
(Brandt et al., 2016), can combine predictions to
reduce the impact of single model’s error, thereby
effectively reducing predictive uncertainty (Black
et al., 2022a; Potyka et al., 2024).

Our preliminary results in (Zhu et al., 2024a)
contribute in the following aspects:

• Development of suitable evaluation metrics to
quantify and analyze model multiplicity in the
context of KGE methods.

• Theoretical insights into model multiplicity in
KGE methods.

• Design of a novel ensemble-based strategy
to effectively reduce predictive uncertainty
caused by model multiplicity.

3.2 Quantifying Uncertainty
Once a KGE model is deployed, the reliability of
its predictions becomes a critical concern. Current
KGE models generate plausibility scores for triples,
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which are used to differentiate positive triples from
negative ones. However, these scores lack prob-
abilistic interpretation and do not reflect the true
likelihood of a triple being correct (Tabacof and
Costabello, 2019; Safavi et al., 2020b).

Previous studies (Tabacof and Costabello, 2019;
Safavi et al., 2020b) have attempted to calibrate
these plausibility scores using techniques that con-
vert them into probabilities. However, this calibra-
tion relies on high-quality negative triples in the
validation set, which are often unavailable. Fur-
thermore, the calibration process, which minimizes
negative log-likelihood on the validation set, is sen-
sitive to the distribution of validation triples and
offers no theoretical guarantees for the calibrated
probabilities. Consequently, practitioners lack a
reliable framework to assess when predictions can
be trusted.

To address this issue, the following sub-
questions are explored:

• RQ2.1: Can the uncertainty of KGE methods
be quantified without relying on ground-truth
negative triples?

• RQ2.2: Is it possible to provide statistical
guarantees for the quantified uncertainty?

Conformal prediction (Vovk et al., 2005), a gen-
eral framework for generating prediction sets that
include the ground truth with predefined proba-
bilistic guarantees, is a good candidate to provide
statistically rigorous uncertainty estimates.

In Zhu et al. (2024b), we first assess whether the
assumptions of conformal prediction, particularly
the exchangeability of triples between the training
and test sets, are satisfied in the context of KGE.
We then establish theoretical guarantees for the
coverage probability and empirically verify them
through comprehensive evaluations.

The contributions of this work include:

• Development of a novel uncertainty quantifi-
cation methods with statistical guarantees.

• An efficient implementation of the approach.

3.3 Reasoning under Uncertainty
Most existing KGE methods assume deterministic
KGs as input, where every fact is treated as un-
equivocally true. However, real-world knowledge
is often uncertain due to noise, acquisition errors,
or the uncertain nature of knowledge itself. Rea-
soning under such knowledge uncertainty remains
an under-explored area.

Recent studies (Chen et al., 2019, 2021b,a) have
extended KGE methods to uncertain KGs by mod-
ifying the loss function and incorporating proba-
bilistic reasoning techniques such as probabilistic
soft logic (Chen et al., 2019) and semi-supervised
learning (Chen et al., 2021b). However, these ap-
proaches produce only point estimates for predic-
tions, failing to capture the inherent variance asso-
ciated with uncertainty.

Given the complexity of modeling determinis-
tic KGs, reasoning under knowledge uncertainty
presents additional challenges in capturing the un-
certainty associated with triples. This motivates the
following research questions:

• RQ3.1: What is the variance in predictions
made by existing uncertain KGE methods
when the training process is repeated?

• RQ3.2: How can prediction intervals be es-
timated to reliably reflect the uncertainty of
predictions instead of relying solely on point
estimates?

Conformal prediction, also commonly used for
regression task to provide prediction intervals with
guarantees (Vovk et al., 2005; Lei et al., 2018), is
planed to be applied to develop an approach for rea-
soning under knowledge uncertainty with reliable
uncertainty estimates. The expected contributions
are as follows:

• Systematical analysis of the variance of point
estimates produced by existing uncertain KGE
methods.

• Development of a novel uncertain KGE ap-
proach with reliable uncertainty estimates.

4 Conclusion

In summary, this research seeks to address the criti-
cal yet underexplored challenge of uncertainty in
KGE methods. By investigating knowledge, algo-
rithmic, and predictive uncertainty, the dissertation
aims to enhance the reliability of KGE methods,
particularly in high-stakes applications. The antic-
ipated contributions include novel methodologies
and theoretical insights for reducing, quantifying
and reasoning under uncertainty. These advance-
ments will not only bridge significant gaps in cur-
rent research but also support the deployment of
more reliable KGE systems in real-world scenarios.
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Abstract

In the digital age, social media platforms like
Twitter serve as an extensive repository of pub-
lic discourse, including instances of sexism. It
is important to identify such behavior since
radicalized ideologies can lead to real-world vi-
olent acts. This project aims to develop a deep
learning-based tool that leverages a combina-
tion of BERT (both English and multilingual
versions) and GraphSAGE, a Graph Neural Net-
work (GNN) model, alongside sentiment analy-
sis and natural language processing (NLP) tech-
niques. The tool is designed to analyze tweets
for sexism detection and classify them into five
categories.

1 Introduction

In today’s digital age, social media platforms
such as Twitter have become central to public dis-
course, providing users with a space to express
their thoughts and opinions, while also serving as a
powerful tool for activism (ElSherief et al., 2017).
However, while social media can empower victims
to share their experiences, it also enables the spread
of harmful ideologies such as sexism and Gender-
Based Violence (GBV) (Martínez et al., 2021).

Peter Glick and Susan Fiske introduced a theory
in 1996 that explains how power imbalances and
mutual dependence between men and women give
rise to two interconnected forms of sexist attitudes
(Bareket and Fiske, 2023). The first, hostile sex-
ism (HS), is marked by overtly attitudes, including
aggression, resentment, objectification, sexual vio-
lence, and misogyny. In contrast, benevolent sex-
ism (BS) praises women who conform to traditional
roles, offering protection and admiration. However,
this attitude is based on the belief that women are
inherently weaker, reinforcing harmful stereotypes
and gender inequality (Rodríguez-Sánchez et al.,
2024).

This dynamic of sexism is not limited to interper-
sonal interactions but extends to digital platforms,

where it takes on new forms and reaches broader
audiences. Twitter, with its 280-character limit, of-
ten amplifies the problem of hate speech, including
gender-based violence and sexism, by encourag-
ing more aggressive and sensational content com-
pared to platforms like Facebook (Founta et al.,
2018). Therefore, systems that accurately detect
hate speech are crucial for proactive moderation
(Davidson et al., 2017).

Sentiment analysis techniques are commonly
employed to extract insights about the public sen-
timent on a wide range of topics, including sex-
ism (Caruccio et al., 2022; Anna Maria Górska
and Jemielniak, 2023). When it comes to this
classification task, a variety of approaches have
been explored, incorporating both machine learn-
ing (Sreekumar et al., 2024) and deep learning tools
(Castorena et al., 2021; Al-Garadi et al., 2022;
Kalra and Zubiaga, 2021). A popular advance-
ment in text representation involves the use of trans-
formers, like BERT, which capture deep, bidirec-
tional contextual information, significantly enhanc-
ing the understanding of language complexities
(Magnossão et al., 2021; Butt et al., 2021).

However, despite its strengths, these techniques
often struggle to capture the complex relationships
and structures within texts, such as dependencies
between words and tend to underperform when
dealing with long-range dependencies. To address
these limitations, Graph Neural Networks (GNNs)
have been applied in text classification tasks, as
they are capable of modeling relationships and de-
pendencies between nodes by propagating infor-
mation along edges (Khosravi et al., 2024; Utku
et al., 2023; Singh and Singh, 2024). Additionally,
to further enhance performance, recent approaches
have sought to combine BERT embeddings with
GNNs (Liu et al., 2025). Our approach builds on
this by leveraging BERT’s capacity to understand
complex language contexts alongside GraphSAGE,
a GNN model chosen for its ability to generate
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node representations by aggregating features from
neighboring nodes (Lu et al., 2024).

Then the contributions of this research in ad-
dressing the sexism classification task are summa-
rized as follows:

• The use of representation embeddings com-
bined with GraphSAGE, a GNN model, for
detecting and classifying sexism in social me-
dia text.

• A competitive tool’s accuracy in classifying
instances of sexism through a binary classifi-
cation.

• A comparative study of our proposal against
some relevant models in the EXIST 2021 com-
petition.

The rest of the paper is structured with Section
2 covering the dataset and methodology of the pro-
posed model, Section 3 presenting the results, and
Section 4 discussing the findings.

2 Method and Data

2.1 Data Description

The dataset used in our study was sourced from the
2021 edition of the sEXism Identification in Social
neTworks (EXIST) contest (Rodríguez-Sánchez
et al., 2021; Montes et al., 2021), which aims to
promote the automatic identification of sexism by
providing a benchmark dataset. This dataset in-
cludes data from Twitter and Gab.com in both En-
glish and Spanish 1. This distinction highlights the
challenge of training a model on one type of struc-
ture (tweets) while testing it on a different structure
(gabs) to evaluate its adaptability. For this work,
we used only the English dataset, which contains
3,436 tweets for training and 2,208 for testing.

The classification task consists of two main sub-
tasks. Task 1 is a binary classification problem,
where automated systems must determine whether
a message is sexist or non-sexist, as illustrated in
Figure 1. The second subtask, shown in Figure
2, involves categorizing a message that has been
identified as sexist according to the type of sex-
ism it conveys, such as ideological and inequality,
stereotyping and dominance, objectification, sexual
violence, and misogyny or non-sexual violence.

1https://nlp.uned.es/exist2021/

Sexist Non-sexist
0

25

50

75

100

47.6
52.452.4

47.6

Pe
rc

en
ta

ge

Training Test

Figure 1: Proportion of Training and Test Datasets for
Binary Classification for the EXIST dataset

Training Set (3,436 tweets)

Non-Sexist (52.4%)
Objectification (7.5%)
Misogyny-Non-Sexual-
Violence (8.3%)
Sexual-Violence (10.0%)
Stereotyping-
Dominance (10.7%)
Ideological-
Inequality (11.2%)

Testing Set (2,208 tweets)

Non-Sexist (47.6%)
Objectification (6.8%)
Misogyny-Non-Sexual-
Violence (9.7%)
Sexual-Violence (9.0%)
Stereotyping-
Dominance (11.9%)
Ideological-
Inequality (15.1%)

Figure 2: Comparative Class Distribution for English
tweets in the EXIST dataset

2.2 Data Processing

In order to enhance the performance of the Graph-
SAGE. The cleaning process involved:

• Converting text to lowercase

• Removing HTTP links

• Removing Twitter mentions (@username)

• Removing punctuation marks

• Eliminating repeated consecutive letters to at
most two consecutive letters

• Removing stop words
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2.3 Graph Definition

GraphSAGE is a framework for inductive represen-
tation learning on large graphs. It is particularly
useful for generating low-dimensional vector rep-
resentations for nodes, especially in graphs with
rich node attribute information (Hamilton et al.,
2017). In our case, the graph captures relation-
ships between tweets based on the similarity of
their content. First, let us define a graph G as a
tuple G = (V,E), where V is the set of nodes (in
this case, tweets) of the graph, and E is the set of
edges (connections between similar tweets).

For the text numerical representation, we de-
cided to experiment with both the English and Mul-
tilingual versions of Bidirectional Encoder Repre-
sentations from Transformers (BERT and mBERT,
respectively). We tested the multilingual version of
mBERT to to assess its effectiveness in handling
the complexities of multilingual examples, as so-
cial media content often contains tokens in multiple
languages (Magnossão et al., 2021). Additionally,
we included a sentiment polarity attribute because,
as noted by (Raees and Fazilat, 2024), it is a key
factor in identifying the positive or negative senti-
ment of a tweet.

Therefore in our graph, each node representing
a tweet Ti was associated with four attributes: an
embedding vector ei generated by the pre-trained
model, the sentiment polarity score, and two labels.
The first label was a binary encoded label, while
the second was a multiclass encoded label. Regard-
ing the graph connections, we chose four metrics
to appropriately weigh the edges, with the goal of
forming a composite weight. Two of these metrics,
include cosine similarity between the tweet embed-
dings and cosine similarity between TF-IDF vector
representations (Nakajima and Sasaki, 2023). We
decided to incorporate the vector representation
TF-IDF to complement the embeddings, as it is
a statistical measure used to evaluate the impor-
tance of a word in a document relative to a corpus
(Khosravi et al., 2024).

For the remaining two metrics that contribute
to the composite weight, we chose semantic simi-
larity and sentiment agreement. For semantic sim-
ilarity, we used the NLP model en-core-web-md
from SpaCy, which computes the similarity be-
tween the embeddings of the tweets. For sentiment
agreement, we used the sentiment polarity score
from TextBlob to calculate the sentiment of each
tweet. The sentiment agreement is then determined

by calculating

1− abs(sent1, sent2) (1)

where sent1 and sent2 represent the sentiment
polarity scores of the two tweets being compared.

To identify the optimal weights for each metric,
we conducted two experiments on the training set.
One experiment used nodes generated by BERT,
while the other used nodes generated by mBERT.
For each pair of nodes, we calculated four key
metrics: cosine similarity between embeddings, co-
sine similarity between TF-IDF vectors, semantic
similarity, and sentiment agreement. To optimize
memory usage, the training dataset was divided
into smaller chunks during computation.

After calculating the four metrics, they were nor-
malized to ensure compatibility with the Louvain
algorithm. This algorithm partitions a network into
communities by first assigning each node to its own
community, then iteratively merging nodes or com-
munities to maximize modularity. By optimizing
modularity, the algorithm identifies clusters where
nodes are more strongly connected to each other
than to those outside the cluster (Kim and Sayama,
2019).

We tested 15 random weight combinations, each
prioritizing a specific metric, to assess its impact on
community formation. This approach enabled us
to evaluate the importance of each metric in creat-
ing meaningful communities. Finally, we analyzed
the results to determine the weight combination
that produced the most cohesive community struc-
ture, using modularity as the evaluation criterion.
Based on the experiment with the highest modular-
ity score, we assigned the following weights:

composite weight = cosine similarity TF-IDF× 0.1

+ semantic similarity× 0.8

+ sentiment agreement× 0.1
(2)

Additionally, to reduce noise and avoid compu-
tational problems due to a very dense graph, we
established a threshold of 0.7, ensuring that only
edges with a similarity score above this threshold
are created. Furthermore, we limited the number of
connections per node to a maximum of 5. Finally,
we construct the graph by creating an Adjacency
matrix A, where each entry Aij corresponds to the
edge between tweets Ti and Tj .

2.4 GraphSAGE
Unlike previous approaches that require all nodes
to be available during the training of embeddings,
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GraphSAGE leverages node feature information
to create effective representations even for un-
seen nodes. This inductive property allows the
algorithm to generalize beyond the trained data
(Hamilton et al., 2017). As demonstrated by (Lu
et al., 2024), integrating BERT into the Graph-
SAGE framework significantly improves general-
ization ability and classification accuracy compared
to traditional graph-based and BERT-based models.
While their study focused on classification within
a citation network, they also tested their model on
sentiment analysis for movie reviews, which moti-
vated us to explore this GNN model for our task.

For Task 1, we used two layers with ReLU acti-
vation and a Sigmoid function for the output layer.
The Adam optimizer was employed, with Binary
Cross-Entropy as the loss function. For Task 2,
we also used two layers with ReLU activation, but
applied the argmax function for the output. The
Adam optimizer was retained, and the loss function
was changed to Cross-Entropy for multiclass clas-
sification. To address class imbalance, we assigned
higher weights to less frequent classes, ensuring
the model focused more on these during training.

2.5 Hyperparameter Optimization

We used Optuna (Akiba et al., 2019), a framework
for hyperparameter optimization, targeting valida-
tion accuracy, which allowed the framework to it-
eratively test various configurations and select the
best. The key hyperparameters optimized were hid-
den channels, dropout rate, learning rate, weight de-
cay, and epochs. These were selected because hid-
den channels enhance feature learning, dropout rate
helps reduce overfitting, learning rate and weight
decay balance convergence and regularization, and
epochs control the training depth and efficiency.

We tested two different graphs for both tasks:
one with BERT embeddings, and another one with
mBERT embeddings. We ran 100 Optuna trials for
each one of the four models. Table 1 show the
obtained best configurations for the hyperparame-
ters. An important note is that we used a transduc-
tive training approach, where the training, valida-
tion, and test sets are part of the same graph but
segmented through attribute-based masking. This
setting enables us to leverage all available node
information within the graph structure (Li et al.,
2021).

Task Hyperparameter BERT graph mBERT graph

Task 1 Hidden channels 62 62

Task 1 Dropout rate 0.178 0.1837

Task 1 Learning rate 0.0032 0.00078

Task 1 Weight decay 0.0049 0.0056

Task 1 Epochs 76 102

Task 2 Hidden channels 128 128

Task 2 Dropout rate 0.4170 0.5009

Task 2 Learning rate 9.1012 9.9856

Task 2 Weight decay 0.0061 0.0052

Task 2 Epochs 320 300

Table 1: Best hyperparameter configuration obtained by
Optuna for both graphs in Task 1 (binary classification)
and Task 2 (multiclass classification)

Task Model Accuracy F1

Task 1
BERT 0.7020 0.7303

mBERT 0.6359 0.6271

Task 2
BERT 0.5308 0.3783

mBERT 0.5231 0.2981

Table 2: Performance Comparison of Both Models

3 Results

Results of both tasks are presented in Table 2 show-
ing a comparison of the main metrics obtained on
Task 1 (binary) between the first proposed model,
which uses embeddings generated with BERT, and
the second model, which uses embeddings gener-
ated with mBERT. It is important to note that the
primary metric we are using to measure the success
of our model is the F1-score.

Actual
Predicted

Sexist Not Sexist

Sexist
True Positive

840

False Negative

318

Not Sexist
False Positive

340

True Negative

710

Table 3: Confusion Matrix for BERT Embeddings
Model on Task 1

The BERT graph exhibited strong performance
in distinguishing sexist tweets from non-sexist
ones, achieving an accuracy of 0.702 and an F1
score of 0.731. In contrast, mBERT produced lower
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results for both metrics, highlighting the superior-
ity of BERT over mBERT on this task. Table 3,
presents the confusion matrix for the BERT model
in this binary classification, showing similar error
rates for false positives and false negatives. Al-
though, the model slightly favors non-sexist clas-
sification, with 318 false negatives compared to
340 false positives, indicating a relatively balanced
performance.

Act.

Pred.
NS II SD OBJ SV MNSV

NS 413 172 150 104 118 93

II 56 203 38 13 14 9

SD 45 62 87 28 25 15

OBJ 15 5 31 70 20 9

SV 16 24 22 25 82 29

MNSV 29 36 34 27 24 65

Table 4: Confusion Matrix for BERT Embeddings
Model on Task 2. NS: Non Sexist, II: Ideological In-
equality, SD: Stereotyping Dominance, OBJ: Objecti-
fication, SV: Sexual Violence, MNSV: Misogyny Non
Sexual Violence

For Task 2, both embeddings showed lower per-
formance overall; however, BERT continued to
demonstrate its advantage over mBERT with an ac-
curacy of 0.5308 and an F1 score of 0.3783. Table
4, displays the confusion matrix for BERT in this
multiclass classification task, revealing the highest
confusion between the Non-Sexist (NS) and Ideo-
logical Inequality (II) classes, with 172 instances
of II misclassified as NS. There was also signifi-
cant confusion between NS and Stereotyping Dom-
inance (SD), with 150 misclassifications. Overall,
the model shows a bias toward classifying instances
as NS but performs best at identifying the Ideologi-
cal Inequality (II) class, with a precision of 61.0%.
It struggles the most with the MNSV (30.2% preci-
sion) and SD (33.2% precision) classes.

4 Discussion and Related Work

The application of GNNs, such as GraphSAGE, to
text classification, remains relatively unexplored
but holds considerable promise. Our model demon-
strated competitive performance on Task 1. How-
ever, it requires improvements for Task 2.

The first-place team in the EXIST contest (Mag-
nossão et al., 2021) created a second version of
both BERT and mBERT by translating some in-

stances from Spanish to English to enhance the
training data. They also implemented ensemble
strategies, combining predictions from individual
models, which consistently outperformed the single
mBERT and BERT models. Therefore, integrating
some data strategies and an ensemble of Graph-
SAGE networks could be a worthy experiment for
future research. Nonetheless, this entry was not
the only using data augmentation strategies. Butt
et al. (Butt et al., 2021) used a ‘Back Translation’
strategy, where they input the text in the source lan-
guage, translate it to another second language, and
finally back to the source language. Furthermore,
data augmentation strategies can also be utilized to
mitigate the class imbalance problem of Task 2.

Among the models reviewed by the contestants,
MB-Courage (Wilkens and Ognibene, 2021) was
the model most closely aligned with our proposed
approach, as it also utilizes GNN for identifying
sexism. However, while MB-Courage employs
Graph Convolutional Neural Networks (GCN), we
use GraphSAGE, a distinct variation of GNN. In
terms of performance, our model outperformed
MB-Courage’s best proposal on F1-score for Task
1. Regarding Task 2, our best proposal proved to
be the least effective among the compared models
showed in Table 5. We attribute the low perfor-
mance in this second task to class imbalance and
the model’s difficulty in understanding the con-
text of statements. This explains why it can gen-
eralize for two classes but struggles to adapt to
multiclass classification.This would also explain
why proposal that performed data augmentation
performed well. By adding more examples of each
class, the class imbalance could be lessen and, in
turn, the model may enough data to distinguish the
different classes.

As a final point, exploring alternative text sim-
ilarity metrics such as emotion detection, Latent
Dirichlet Allocation (LDA) topic modeling, or Con-
ceptNet similarity, could provide valuable insights
for defining the graph structure, leading to im-
proved performance in second tasks. Moreover,
improved text preprocessing and experimenting
with different embedding models could help pre-
serve higher-quality information.

Conclusion and future work

Our best model archived an F1 score of 0.7331
on Task 1, which demonstrates competitive perfor-
mance, as this would have placed us 29th out of
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Task Model Accuracy F1 Score

Task 1 mBERT & GraphSAGE 0.636 0.627

Task 1 BERT & GraphSAGE 0.702 0.730

Task 1 Ensemble Model 0.789 0.780

Task 1 GCN 0.715 0.715

Task 1 BERT & Data Augmentation 0.728 0.727

Task 2 BERT & GraphSAGE 0.531 0.378

Task 2 mBERT & GraphSAGE 0.523 0.298

Task 2 Ensemble Model 0.658 0.579

Task 2 GCN 0.595 0.459

Task 2 BERT & Data Augmentation 0.553 0.491

Table 5: Accuracy and F1 scores of our models for Task
1 (binary classification) and Task 2 (multiclass classifi-
cation), compared to those reported by Magnossão de
Paula et al., Wilkens & Ognibene, and Butt et al.

72 participants in the competition, and also out-
performs the only Graph Neural Network proposal
used in the competition. This performance shows
the potential of using Graph Neural Networks for
sexism in text settings.

However, further enhancements can be made
to improve upon these results, especially in Task
2, where our model only managed an F1 score
of 0.378 (56th place out of 72). Exploring data
augmentation techniques and incorporating an en-
semble of GraphSAGE networks could be valuable,
particularly for tasks like Task 2, where class imbal-
ance was a significant factor. Additionally, experi-
menting with different text similarity metrics and
enhancing data pre-processing approaches could
lead to better performance.
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Abstract

Neural codec language models (or codec LMs)
are emerging as a powerful framework for au-
dio generation tasks like text-to-speech (TTS).
These models leverage advancements in lan-
guage modeling and residual vector quantiza-
tion (RVQ)-based audio codecs, which com-
press audios into discrete codes for LMs to
process. Despite the close interdependence of
codecs and LMs in these systems, research on
codecs and LMs has largely remained siloed. In
this work, we propose three techniques for bet-
ter codec-LM co-design: (i) a frame-wise codec
encoder that improves both LM log-likelihood
and end-to-end TTS metrics, (ii) LM codebook
level dropout, a method to efficiently navigate
a portion of the codec-LM design space by
training a single LM, and (iii) increased codec
frame duration, which we show can accelerate
inference while maintaining end-to-end perfor-
mance. Our experiments demonstrate that com-
bining all three co-design techniques results in
doubled inference speed, and improvements in
intelligibility, audio quality, and speaker con-
trol in TTS relative to a siloed baseline.

1 Introduction

Neural codec language models (or codec LMs)
(van den Oord et al., 2017; Wu et al., 2024) have
recently emerged as a prominent framework for
text-to-speech (TTS) (Tan et al., 2021; Wang et al.,
2023; Yang et al., 2024) and general audio genera-
tion tasks (van den Oord et al., 2016; Copet et al.,
2023; Borsos et al., 2023; Yang et al., 2024), replac-
ing autoregressive methods that model continuous
raw waveforms (van den Oord et al., 2016; Kalch-
brenner et al., 2018; Goel et al., 2022). The success
of codec LMs can be attributed to improvements
in the architecture, scaling, and efficiency of lan-
guage models (LMs) (Vaswani et al., 2017; Brown
et al., 2020; Dao et al., 2022; Gu and Dao, 2023),
as well as increasingly high-fidelity convolutional

audio codecs that employ the residual vector quan-
tization (RVQ) technique (Zeghidour et al., 2021;
Défossez et al., 2023; Kumar et al., 2023), bridg-
ing continuous-domain audio generation tasks with
LM methods that model discrete tokens.

Although the codec and the LM are closely cou-
pled, they represent relatively isolated research ar-
eas. Research on codecs (Zeghidour et al., 2021;
Défossez et al., 2023; Kumar et al., 2023; Ahn et al.,
2024) primarily focuses on achieving higher com-
pression rates (i.e., lower bandwidths) while main-
taining reconstruction quality. Conversely, research
on codec-based LMs (Borsos et al., 2023; Wang
et al., 2023; Copet et al., 2023; Yang et al., 2024)
typically treats the codec as a fixed module and
explores how to best model the codec tokens. (We
defer more detailed Related Work to Appendix A.)
While the design space of codecs and LMs com-
bined is too large to explore exhaustively, consider-
ing each in isolation may be suboptimal when the
goal is to improve the end-to-end performance.

In this work, we aim to break the isolation and
uncover co-design principles between the codec
and the LM. We identify several aspects that play
a key role in the interactions between the two, and
substantially impact the end-to-end generation qual-
ity and/or efficiency. Leveraging these co-design in-
sights, we propose actionable interventions which
can improve the performance and efficiency (both
at training and inference) of end-to-end audio gen-
eration systems. Our technical contributions are:

• Considering the different impacts of receptive
field overlaps in the RVQ codec encoder and
decoder, we introduce a framewise codec en-
coder (Sec. 3.1), which encodes each frame (i.e.,
non-overlapping chunks in input audio) indepen-
dently. We find that this leads to improvements
in the LM log-likelihood (>8% higher), and all
end-to-end TTS metrics (Table 1).

• Observing that the end-to-end generation per-
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Figure 1: Overview of an RVQ-based codec-LM system for TTS (left), our contributions (right, Proposals 1, 2 &
3), and associated benefits. (Shaded triangles are receptive fields per code frame.)

formance is heavily influenced by number of
RVQ codebook levels modeled by the LM, we
propose LM codebook level dropout (Sec. 3.2),
which allows practitioners to efficiently tune this
salient hyperparameter of the codec-LM design
space in a single LM training run (Fig. 2).

• As codec frame duration is inversely propor-
tional to LM sequence length, we show that us-
ing longer frame durations (Sec. 3.3), while
tuning other codec hyperparameters accordingly,
can accelerate end-to-end TTS inference, and
preserve TTS metrics (Table 2).
A schematic diagram of our end-to-end audio

generation system and proposed techniques can
be found in Fig. 1. Our experiments are based
on a streamable (i.e., causal) variant of the DAC
codec (Kumar et al., 2023), and we implement our
changes (i.e., framewise encoder, and longer frame
duration) without altering its architecture. We then
train Delay-pattern LMs (Copet et al., 2023) for
TTS, where LM codebook level dropout is applied,
on the RVQ codes from our codecs. We finally
demonstrate that combining all three co-design
techniques doubles the end-to-end TTS inference
speeds while improving all end-to-end TTS metrics
(Table 3) concerning intelligibility, audio quality,
and speaker control.

We open source our implementation of the
framewise and causal DAC (Kumar et al., 2023)
codecs at https://github.com/slSeanWU/
descript-audio-codec/tree/main.

2 Technical Background

Residual vector quantization (RVQ)-based au-
dio codecs. An RVQ-based audio codec com-
presses a continuous waveform w ∈ RTfs , where

T is the duration (in seconds) and fs is the sampling
rate (in Hz) of the waveform, into discrete codes
x ∈ VTfx×Q. Here, V := {1, 2, . . . , |V|} repre-
sents the codebook, fx (typically much smaller than
fs) is the frame rate (in Hz) of the codec, and Q is
the number of codebook levels used to represent
each frame. We also call downsampling rate of the
codec, i.e., fs/fx, the frame size (an integer num-
ber of audio samples) and 1/fx the frame duration
(in seconds). The term residual refers to how the
Q codebook levels are structured to progressively
refine the quantization (Zeghidour et al., 2021).
Let the unquantized representation (i.e., the codec
encoder output) for the i-th frame be denoted by
h
(1)
i ∈ RD, where D is the codec encoder’s output

dimension. The RVQ process works iteratively for
each level q ∈ {1, . . . , Q} on a frame-by-frame
basis, quantizing the residual information from pre-
ceding levels using a level-wise learned codebook
C(q) : V → RD. The operations at each level are:

xi,q := argmin
x̃∈V

∥h(q)
i − C(q)(x̃)∥22 (1)

h
(q+1)
i := h

(q)
i − C(q)(xi,q) , (2)

where xi,q ∈ V is an element in the code sequence
x, and C(q)(xi,q) ∈ RD is the quantized represen-
tation corresponding to xi,q. The level-wise quan-
tized representations are summed frame-by-frame,
i.e.,

∑Q
q C(q)(xi,q); ∀i ∈ {1, . . . ,Tfx}, and sent to

the decoder to reconstruct the original waveform.
Typically, during RVQ codec training, quantizer

dropout (Zeghidour et al., 2021; Kumar et al., 2023)
is applied, which sometimes performs Eqn. (1) and
(2) for Qtrunc < Q levels. This enables the codec
to encode and reconstruct audio waveforms at all
Q possible RVQ level counts.
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Language modeling with Delay pattern of RVQ
codes. We can construct an end-to-end audio gen-
erative model by training an LM on the RVQ codes
x ∈ VTfx×Q′

, where Q′ ∈ {1, . . . , Q} is a sub-
set of the RVQ levels to model. To model such
2D-structured codes, we adopt the Delay pattern
proposed in (Copet et al., 2023), which makes
a good tradeoff between the efficiency and effi-
cacy of modeling the RVQ codes x. Instead of
naively flattening x to a sequence of Tfx ×Q′ el-
ements, it shifts the q-th level of x to the right
by q positions, creating a shifted code sequence
x(delay) ∈ V(Tfx+Q′−1)×Q′

, where each frame is
x

(delay)
t := [xt−q+1, q]

Q′
q=1. Then, the LM models:

p(x) = p(x(delay)) :=

Tfx+Q′−1∏

t=1

p(x
(delay)
t | x(delay)

<t ) ,

(3)
predicting the elements in each frame x

(delay)
t in

parallel. Though omitted in Eqn. (3), the LM is
typically trained with conditions y expected from
the user, e.g., text transcripts and speaker charac-
teristics. Bringing all components together, our
codec-LM audio generation system models:

p(w,x | y) := p(w | x)︸ ︷︷ ︸
learned by codec

· p(x | y)︸ ︷︷ ︸
learned by LM

, (4)

where conditional independence between wave-
form w and user inputs y is assumed given codes x.
We note that p(w | x) is typically a deterministic
mapping parameterized by the RVQ codec decoder.

3 Method

3.1 Codes with non-overlapping receptive
fields (Framewise codec encoder)

Most common RVQ audio codecs (Zeghidour et al.,
2021; Défossez et al., 2023; Kumar et al., 2023)
set the stride size of each 1D convolutional layer to
be smaller than the filter size. This way the neigh-
boring outputs (along the time dimension) have
overlapping receptive fields. When we consider the
entire codec encoder, where multiple convolutional
layers are stacked, this overlapping property at each
layer causes the receptive field of each code frame
xt to overlap with those of preceding code frames
[xt−k, . . . ,xt−1], assuming the codec is causal.1

A similar property also holds in the codec decoder,
i.e., each sample in the reconstructed waveform ŵ
is influenced by multiple code frames.

1For example, for the architecture of DAC (Kumar et al.,
2023), the extent of overlap is k = 8.

If we reason about the frame-level overlaps, it
is intuitive that they benefit the decoder, as the
mutual information between multiple code frames
can be leveraged for improved reconstruction. On
the other hand, whether these overlaps are advanta-
geous on the encoder side is less clear. They may
provide the opportunity for the codec to pack in-
formation in high-complexity waveform segments
(e.g., fast speech with frequent intonation changes)
into neighboring code frames corresponding to low-
information segments (e.g., silence), hence improv-
ing audio reconstruction. However, this could be
detrimental for the downstream LM as each code
frame may hold varying amounts of (confounding)
information from preceding frames.

Therefore, we propose a setup where the codes
are encoded framewise, i.e., each code frame xt

has a receptive field covering only fs/fx wave-
form samples, without overlapping with other code
frames. Operationally, this is achieved by re-
shaping the waveform (i.e., the inital input to the
codec encoder) from (B,Tfs, 1), where the di-
mensions represent (batch, sequence, channels),
to (BTfx, fs/fx, 1). Since the downsampling rate
of the entire encoder is precisely fs/fx, the final
encoder output is of shape (BTfx, 1, D), which we
then reshape back to (B,Tfx, D) before quantiza-
tion as in normal codecs with frame-level overlaps.
Note that no architectural changes are required.

This setup with encoder-framewise and decoder-
overlapping receptive fields retains desirable prop-
erties such as leveraging mutual information be-
tween code frames for reconstruction, Also, the
information unique to each frame of waveform sam-
ples is encoded distinctly into one code frame, in-
stead of spilling over multiple code frames, which
we anticipate might benefit the downstream LM.

3.2 LM Codebook level dropout (CL drop)
Here we propose a novel method designed to in-
crease the efficiency of hyperparameter tuning for
the number of codec RVQ levels Q′ used when
training the downstream LM. The choice of the
hyperparameter Q′ can have a substantial impact
on the end-to-end audio generation performance of
the codec LM system. While increasing Q′ mono-
tonically improves codec audio reconstruction due
to a wider information bottleneck, its impact on the
combined codec LM system is ambiguous. Using
too low of a Q′ value in the LM could result in
poor audio quality, while using too high of a value
could be detrimental as modeling finer-grained lev-
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Framewise Enc. ? Codec Recons. Text-to-Speech Uncond. Music

Codec setting Mel-L1↓ NLL↓ WER↓ NISQA↑ Spk. sim.↑ NLL↓ FAD↓
Causal ✗ .846 5.46±.00 4.12±.35 4.35±.01 80.2±.1 6.06±.01 18.7±1.2

Proposed ✓ .873 4.97±.02 3.71±.19 4.37±.02 80.7±.2 5.16±.00 17.1±0.8

Table 1: Codec encoder receptive field settings vs. end-to-end TTS & music generation performance. Our proposed
framewise codec encoder (Sec. 3.1) consistently beats the commonly used streamable setting (i.e., Causal) both on
LM likelihood (cf. NLL) and all end-to-end metrics. Stdev over 5 runs follow ±.

els may: (i) present information that is too stochas-
tic for the LM to process effectively, or (ii) shift
the LM’s capacity away from the coarser-grained
levels which contain more crucial structural or se-
mantic information about the audio.2

However, naively trainingO(Q) LMs to tune Q′

is computationally expensive. Thus, we propose
codebook level dropout (CL drop), which trains
just a single LM that allows evaluation/inference at
all possible level counts up to Q, analogous to the
quantizer dropout method used to train the codec.
To perform CL drop, we first define a dropout distri-
bution P(q) over the all levels q ∈ {1, . . . , Q}, and
then during LM training, we truncate inputs x(delay)

along the level dimension according to P(q). The
LM’s training objective can hence be written as:

min
θ

E(x,y)∼D,Q′∼P(q)

[
− log pθ

(
x

(delay)
:, :Q′ | y

)]

(5)
where D is the LM training set with paired con-
ditions y and RVQ codes x for the desired audio,
and θ is the set of the LM’s trainable parameters.

For CL drop to be effective in determining the
best Q′, its end-to-end performance profile across
different level counts should closely mirror the
trends without CL drop (i.e., the ‘end-to-end TTS’
curve in Fig. 3). Intuitively, the choice of P(q) is
critical in preserving the trends, as it governs how
much the LM’s focus is shifted toward the lower
(coarser-grained) levels.3

3.3 Navigating other codec hyperparameters
In addition to the number of RVQ levels (Q),
there are two additional hyperparameters that af-
fect the compression factor of the codec: (i) the
codec’s frame duration (1/fx), and (ii) the code-
book size (|V|). The bitrate of the codec, equal to
Qfx log2(|V|) bits per second, is a function of these
three factors and directly impacts the reconstruc-
tion quality. In siloed codec design, these three fac-
tors can be traded off freely to optimize for higher

2Experiments on the impact Q′ are in Appendix B.
3Experiments on different P(q)’s are in Appendix D.

reconstruction quality at some fixed bitrate. How-
ever, in a co-design context, the LM’s behavior can
be impacted by different tradeoffs even when the
codec’s bitrate is kept fixed.

Here we make several observations about frame
duration and codebook size respectively in the con-
text of codec-LM co-design. From Eqn. (3), we
can observe that the Delay LM sequence length
is inversely proportional to frame duration. Thus,
increasing it by a factor of two can roughly halve
sequence length, resulting in efficiency gains and
reduced inference latency. (Note that either |V|
or Q should be increased accordingly to preserve
audio quality.)

On the other hand, increasing the codebook size
|V|may have mixed impacts on the LM. On the pos-
itive side, assuming the frame duration and bitrate
are controlled, using a larger codebook (and hence
fewer RVQ levels) reduces the extent of packing
information from multiple (i.e., Q′) code frames
into one Delay LM timestep x

(delay)
t . However, in-

creasing only |V| while holding Q constant leads to
an exponential growth in the LM’s vocabulary size
(and embedding parameters) relative to a linear in-
crease in bitrate. This growth can inflate the LM’s
memory footprint and introduce potential modeling
challenges. Thus, while our CL drop technique can
efficiently find the best Q′ given a fixed |V|, finding
the optimal |V| still requires trial and error.

4 Experiments and Discussion

We first conduct experiments specifically for each
proposed technique (i.e., Sec 3.1, 3.2, and 3.3) to
elucidate their individual effects, and finally com-
bine them to show their collective benefits. We
use word error rate (WER), NISQA (Mittag et al.,
2021), and cosine similarity of speaker embed-
dings (Jung et al., 2022) to evaluate the intelligi-
bility, audio quality, and speaker control of end-
to-end TTS generations. For music generation, we
use Fréchet audio distance (FAD) (Kilgour et al.,
2019) to capture overall quality. More experimen-
tal setups are deferred to Appendix C.
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Figure 2: Number of RVQ codebook levels used by LM vs. end-to-end TTS metrics. Training one LM with
codebook level dropout (‘CL drop’, Sec. 3.2) leads to performance trends that closely follow training Q = 12
LMs w/o CL drop at each Q′ ∈ {1, . . . , 12}. Note that practitioners can then train a second LM at the found optimal
level count w/o CL drop for best possible performance. Shaded bands represent stdev over 3 runs.

Codec Config Codec Recons. Text-to-Speech Efficiency

Frame dur. log2(|V|) Q′ Rel. bitrate Mel-L1↓ WER↓ NISQA↑ Spk. sim.↑ Inf. speedup↑
11ms 10 9 1.00× .873 3.71 ±.19 4.37 ±.02 80.7 ±.2 1.00×
11ms 15 6 1.00× .874 3.73 ±.28 4.33 ±.01 80.4 ±.1 1.01×
22ms 10 16 0.89× .888 4.21 ±.33 4.42 ±.01 81.0 ±.1 1.94×
22ms 15 11 0.92× .876 3.55 ±.36 4.33 ±.01 79.3 ±.1 2.00×
44ms 10 32 0.89× .875 6.73 4.14 76.7 3.20×
44ms 15 20 0.83× .871 4.53 3.65 73.2 3.77×

Table 2: Effects of using longer frame durations (Sec. 3.3), holding audio reconstruction quality approximately
constant by varying codebook size |V| and/or # of RVQ levels Q′. We measure the actual inference time (LM
& codec decoding combined) over 50 samples with batch size 1 and treat the first row as the baseline for the
‘Inf. speedup’ column. In general, using a 2× frame duration (22ms) strikes best balance between performance and
efficiency. Stdev over 5 runs follow ±. First row is the default configuration inherited from DAC.

Framewise codec encoder. Table 1 presents a
comparison of audio reconstruction and down-
stream TTS (and music) generation performance
with and without the use of our proposed frame-
wise codec encoder. Here, we adopt the default
DAC (Kumar et al., 2023) codec configurations.4

Our framewise codec encoder setting outperforms
the default streamable causal setting consistently,
both on LM likelihood (>8% lower NLL) and all
end-to-end TTS and music generation metrics.
Notably, it is slightly worse on Mel-L1, underscor-
ing the fact that better audio reconstruction does
not always translate to better end-to-end per-
formance. Due to its advantage, we conduct all
subsequent experiments with framewise codec en-
coders, unless otherwise specified.

LM codebook level dropout (CL drop). Results
of training the LM with codebook level dropout
(see Sec. 3.2) are presented in Fig. 2. To exam-
ine how end-to-end performance evolves in the
higher-bitrate regime, we use 15-bit codebooks
(log2(|V|) = 15) and codebook levels Q = 12 for

4Frame duration (1/fx) = 11ms; number of RVQ levels
(Q and Q′) = 9; codebook size per level (|V|) = 210.

the codec.5 We experiment with various dropout
distributions P(q) (see App. D for details) and con-
clude that it is best to train at the full level count
(i.e., 12 in this case) for 90% of the steps and uni-
formly distribute the remaining 10% to all lower
level counts. The curves in Fig. 2 show that training
a single LM with CL drop produces a performance
profile closely aligned with training 12 separate
LMs without CL drop. This demonstrates that CL
drop is a reliable method for practitioners to
efficiently optimize for the level count Q′ with
significantly reduced training compute. Besides,
the curves also show that WER, which focuses
on (coarser) word-level information, reaches the
best early at 3∼4 levels, while NISQA and speaker
similarity, which are tied more closely to the fine-
grained details, peak at around 9 levels. Though dif-
ferent metrics behave differently w.r.t. level count,
we find that choosing the best level count based
on FAD (shown in Fig. 3, which uses the same
codec as here and would suggest using 9 levels)
achieves a balanced performance between all
the TTS metrics we consider.

5amounting to a max bitrate that is 2× that of official DAC.
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Proposals Codec Config Text-to-Speech Metrics Efficiency

#1 #2 #3 Frame dur. log2(|V|) Q′ : Q WER↓ NISQA↑ Spk. sim.↑ Inf. speedup↑
✗ ✗ ✗ 11ms 10 9 : 9 4.12 ±.35 4.35 ±.01 80.2 ±.1 1.00×
✓ ✗ ✗ 11ms 10 9 : 9 3.71 ±.19 4.37 ±.02 80.7 ±.2 1.01×
✓ ✗ ✓ 22ms 10 16:16 4.21 ±.33 4.42 ±.01 81.0 ±.1 1.95×
✓ ✓ ✓ 22ms 10 14:16 3.86 ±.19 4.43 ±.01 80.8 ±.2 2.01×

Table 3: Combined improvements from using multiple proposed techniques—#1: Framewise codec encoder; #2:
CL drop; #3: Longer frame duration. Q′ denotes the # of levels the LM is trained with for end-to-end TTS, while
Q denotes the RVQ codec’s full # of levels. We italicize the second best setting for each metric. Compared to
the baseline using a causal codec (1st row), applying all of our proposed techniques (last row) improves both the
efficiency and all end-to-end TTS metrics.

Longer frame duration. Table 2 displays
the effects of using longer frame durations
({1×, 2×, 4×} that of default DAC), and wider
codebooks (210 (default) or 215 codewords per
level). Here, we use the number of levels Q′ (in
this set of experiments, Q′ = Q) as a variable to
roughly control for audio reconstruction quality
(i.e., Mel-L1). In general, using a 22ms frame
duration (i.e., 2× that of default DAC) preserves
or improves TTS performance and enjoys a 2×
inference speedup at the same time. Increasing
the frame duration to 44ms leads to substantially
worse TTS metrics despite further efficiency gains.
However, whether to increase the codebook size
|V| from the default 210 to accommodate longer
frame durations remains unclear (better on WER,
worse on other metrics), warranting a more fine-
grained exploration (e.g., a dense sweep over 10-
to 15-bit codebooks) in future work.

Combining all techniques. Table 3 illustrates
the cumulative impact of progressively integrating
our proposed techniques. In the last row, we ap-
ply LM codebook level dropout to a (22ms, 10-bit,
16-level) codec, identifying the optimal level count
Q′ = 14 using FAD on end-to-end TTS. Com-
paring the streamable baseline (1st row) and the
final model with all our techniques (last row), we
achieve substantial improvements across all end-to-
end TTS metrics, while doubling inference speed.

Future work. Our work may be extended to:
(i) study the theory of why framewise compressed
representations improve language modeling, (ii) de-
velop RVQ codecs that have flexibility also in code-
book size and frame duration such that our LM
codebook level dropout can be applied to multiple
key hyperparameters altogether, and (iii) uncover
the scaling properties (Hoffmann et al., 2022) of
the optimal codec settings w.r.t. larger models and
more training data.
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A Related Work

Neural audio codecs. Compressing and quantiz-
ing long, continuous audio waveforms into shorter
discrete codes using a convolutional autoencoder
was first proposed by van den Oord et al. (2017).
Their proposed VQ-VAE method involves online
K-Means for quantizing latent representations and
a reconstruction objective on the decoder’s output.
Later, SoundStream (Zeghidour et al., 2021) in-
troduced the 2D-structured Residual Vector Quan-
tization (RVQ) to such codecs. This work also
integrated a mixture of discriminators, a technique
adoped from GAN-based audio synthesis (Goodfel-
low et al., 2014; Donahue et al., 2019; Kumar et al.,
2019; Kong et al., 2020), on top of the decoder
to enhance the perceptual quality of reconstructed
waveforms—this RVQ-GAN setup has since been a
norm for neural audio codecs. EnCodec (Défossez
et al., 2023) and DAC (Kumar et al., 2023) further
advanced the RVQ-GAN architecture with opti-
mized discriminator setup, activation function, and
(low) latent dimensionality. HILCodec (Ahn et al.,
2024) showed that layer-wise variance constraining
helps with the depth scaling of lightweight RVQ-
GAN codecs. Overall, research in neural audio
codecs has focused on achieving higher compres-
sion (i.e., lower bitrates) while maintaining audio
reconstruction quality, rather than downstream au-
dio generation, and often involved detailed archi-
tectural designs and tuning. In contrast, our work
approaches codec design from an end-to-end au-
dio generation practitioners’ perspective, exploring
codec hyperparameters that are both easily config-
urable and influential to the end-to-end system.

LM-based end-to-end audio generation. Au-
toregressive modeling of compressed discrete
codes for audio waveforms was first proposed
alongside VQ-VAE (van den Oord et al., 2017).
AudioLM (Borsos et al., 2023) introduced a hierar-
chical LM approach that first generates semantic to-
kens (Hsu et al., 2021; Chung et al., 2021), derived
from BERT-like pretraining (Devlin et al., 2019)
on audio data, followed by RVQ codes (or acoustic
tokens), resulting in better long-term coherence in
generated audios. To navigate the efficiency-quality
tradeoff given an RVQ codec, VALL-E (Wang
et al., 2023) proposed non-autoregressive model-
ing for all RVQ levels except the coarsest one, and
MusicGen (Copet et al., 2023) introduced the De-
lay pattern, dramatically shortening the sequence
length while preserving key autoregressive depen-

dencies. UniAudio (Yang et al., 2024) unified tok-
enization schemes for text, phonemes, audio, and
symbolic music to build an LM for a wide range
of audio generation tasks. Despite these advance-
ments, all aforementioned work treated the audio
codec, which is upstream from the LM, as a fixed
component, leaving out the potential gains from a
co-design between the codec and the LM.

Co-design of audio codecs and LMs. Compared
to the two previously discussed areas, designing
codecs with the goal of improving end-to-end au-
dio generations is a relatively nascent direction.
SpeechTokenizer (Zhang et al., 2024) proposed to
distill information in semantic tokens (Hsu et al.,
2021) into the first (coarsest) level of the RVQ
codec, alleviating the need of using two LMs (Bor-
sos et al., 2023; Agostinelli et al., 2023) in tandem
for semantic and acoustic RVQ tokens. Moshi (Dé-
fossez et al., 2024), a work conducted concurrently
with ours, adopted this technique and used a causal
codec setup to enable low-latency, streamable real-
time voice conversations. Language-Codec (Ji
et al., 2024) proposed to arrange the RVQ levels
in a first-parallel, then-sequential fashion to dis-
tribute information more evenly among the RVQ
levels. While the methods above improved the la-
tency and/or quality of end-to-end generations, they
focused on single, and highly specific, modifica-
tions to the codec. Meanwhile, our work investi-
gate the downstream impact of multiple general
RVQ codec hyperparameters in combination, paint-
ing a more complete picture for end-to-end system
practitioners.

B Impact of RVQ levels on reconstruction
vs. on end-to-end generation
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Figure 3: Impacts of # of codebook levels Q′ are differ-
ent on codec-only audio reconstruction vs. end-to-end
TTS involving both the codec and the LM. (frame dura-
tion 1/fx = 11ms; codebook size |V| = 215.)

We train a single RVQ codec on speech data

63



with Q = 12 levels and train 12 LMs for text-
to-speech (TTS) using each possible value of
Q′ ∈ {1, . . . , 12}. In Fig. 3, we first plot the codec
audio reconstruction performance as measured by
Mel-spectral L1 distance. We also plot the end-to-
end codec LM system performance as measured
by Fréchet audio distance (FAD) (Kilgour et al.,
2019), an end-to-end metric for audio generation.
We observe that end-to-end performance improves
as the number of levels increases towards a global
minima at 9 levels and deteriorates afterwards, as
opposed to the monotonically improving curve of
audio reconstruction.

C Experimental Setup

Datasets for codec. For TTS, we collect 1.7K
hours of YouTube podcast data in-house to train
the codec. For music experiments, we use the
medium version of FMA dataset (Defferrard et al.,
2017) containing 200 hours of multitrack music.
To evaluate audio reconstruction of our codecs,
we follow DAC (Kumar et al., 2023) and cre-
ate a dataset of 3K 10-second audios comprising
speech (Mysore, 2014), music (Rafii et al., 2017)
and general sounds (Gemmeke et al., 2017) (1K
each).

Datasets for LM. For TTS, we use the 550-hour
LibriTTS-R (Koizumi et al., 2023) for LM training,
and its test-clean split (8 hours, 4.7K samples) for
evaluation. For unconditional music generation,
we train our LMs on 1.5K hours of multitrack mu-
sic from MTG-Jamendo dataset (Bogdanov et al.,
2019). We exclude examples with vocals using
the associated metadata, and and hold out 1.5K
examples for evaluation.

Codec model specifics. We utilize the open-
source code of DAC (Kumar et al., 2023) and
implement our changes on top. Our codecs have
76∼84M non-codebook parameters due to various
frame durations. We train our codecs for 300K
steps with an effective batch size of 75 seconds of
audio. We use the AdamW (Loshchilov and Hut-
ter, 2018) optimizer with 10−4 initial learning rate
and exponential decay. The training process takes
about 25 hours on 4 NVidia H100 (80G) GPUs.

LM model specifics. Following recent validation
that a hybrid of state-space model (SSM) and at-
tention outperforms either approach alone (Waleffe
et al., 2024; Hatamizadeh and Kautz, 2024), we use
24 layers of stacked Mamba2 (Dao and Gu, 2024)

and Transformer decoder blocks (Vaswani et al.,
2017), totaling 400M non-embedding parameters.
We prepend the conditioning information for TTS
(i.e., y, which includes text transcripts and speaker
embedding) to the RVQ audio codes x(delay). The
text transcript is transformed into character embed-
dings, while the speaker embedding is extracted
using a raw waveform-based speaker recognition
model (Jung et al., 2022).

We train our LMs for 30K steps with a batch
size equivalent to 500 seconds of audio. We use the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a peak learning rate of 4 × 10−4, and 10%
warmup steps followed by cosine decay. Training
takes 12 hours on 8 H100 (80G) GPUs. For infer-
ence, we use pure sampling from the LM’s output
logits.

Evaluation for audio reconstruction (codec).
We follow (Kumar et al., 2023) and compute the
L1 distance between the log-scaled Mel spectro-
grams of the original and reconstructed waveforms
to measure reconstruction at the signal level. We
abbreviate this metric as Mel-L1 hereafter.

Evaluation for end-to-end audio generation
(codec + LM). To evaluate our end-to-end TTS
system involving both the codec and the LM, we
consider the following three aspects:
• Intelligibility: Following (Wang et al., 2023),

we measure the word error rate (WER, in %)
between the given text transcript and automat-
ically transcribed text by Whisper (Radford
et al., 2023) (v3 large) model from the gener-
ated speech.

• Audio quality: We leverage NISQA (Mittag
et al., 2021) overall quality score, which is pre-
dicted by a CNN-Transformer model trained on
pairs of speech audios and human-labeled qual-
ity scores in the range of [1, 5]. NISQA has been
shown to correlate well (Pearson’s r ≥ 0.9) with
human judgments of speech audio quality.

• Speaker control: Following (Wang et al., 2023;
Kim et al., 2024), we compute the cosine similar-
ity (∈ [−1, 1], reported in %) between the given
speaker embedding and that extracted from the
generated speech, using the same speaker recog-
nition model (Jung et al., 2022).
For experiments on unconditional music gener-

ation, following (Copet et al., 2023; Agostinelli
et al., 2023), we report Fréchet audio distance
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Figure 4: Effects of using different dropout distributions, i.e., P(q), for LM codebook level dropout. The curves of
‘w/ CL drop’ settings are the closer to those of ‘w/o CL drop’ the better.

(FAD) (Kilgour et al., 2019) computed on audio em-
beddings from the VGGish (Hershey et al., 2017)
audio classification model. FAD captures how real-
istic the generations are at the dataset level (i.e., all
generations vs. all reference inputs) using feature-
wise covariances estimated from all audio embed-
dings of the generated/reference set.

D Choosing A Good P(q) for LM
Codebook Level Dropout

For LM codebook level dropout (i.e., CL drop) to
be effective in determining the optimal level count,
its performance profile w.r.t. the level count should
trend as closely as possible to that resulting from
training LMs without CL drop at every possible
number of levels. Here, we find that the choice of
dropout distribution P(q), which determines the
fraction of training steps allocated to each level
count, to be critical. We experiment with a total of
5 different P(q)’s detailed below:

• Uniform: P(q) := 1
Q ; ∀q ∈ {1, . . . , Q}, i.e.,

every level count gets equal attention.

• q-proportional (or q-prop): P(q) :=
q

Z(Q) ; ∀q ∈ {1, . . . , Q}, where the normaliza-

tion constant Z(Q) :=
∑Q

q′=1 q
′, i.e., the frac-

tion for each level count q is proportional to q.

• 50% full: P(q) := 0.5 for q = Q, and P(q) :=
1−0.5
Q−1 ; ∀q ∈ {1, . . . , Q− 1}, i.e., the full level

count Q gets 50% of the steps, and all the lower
level counts share the remaining 50% uniformly.

• 75% full: P(q) := 0.75 for q = Q, and
P(q) := 1−0.75

Q−1 ; ∀q ∈ {1, . . . , Q − 1}, which
is similar to 50% full but focuses more on the
full level count Q.

• 90% full: P(q) := 0.9 for q = Q, and P(q) :=
1−0.9
Q−1 ; ∀q ∈ {1, . . . , Q − 1}, which puts even

more focus on q = Q than 75% full.

The performance profiles resulting from these
P(q)’s are shown in Fig. 4. The NISQA (which
evalutes audio quality) and speaker similarity pro-
files suggest that 90% full is the best choice among
the five P(q)’s. Other choices all peak at relatively
lower level counts, and Uniform, which is the most
straightforward option, appears to be the worst of
the five.

The reasons behind why allocating only 10%
to lower level counts leads to metrics that track
most closely those from training separate LMs for
each level count are left for further investigation.
Our intuition is that, training with Q levels already
includes modeling all the lower levels, and hence
the LM only needs a small number of steps to adapt
to the scenarios where the finer-grained information
in higher levels is absent.
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Abstract

Machine translation for low-resource lan-
guage pairs is a challenging task. This
task could become extremely difficult once
a speaker uses code switching. We present
the first code-switching Kazakh-Russian
parallel corpus. Additionally, we propose
a method to build a machine translation
model for code-switched Kazakh-Russian
language pair with no labeled data. Our
method is basing on generation of synthetic
data. This method results in a model beat-
ing an existing commercial system by hu-
man evaluation.

1 Introduction

Code-switching presents a significant challenge
in Natural Language Processing due to its un-
predictability, variability, and the lack of avail-
able corpora, especially for low-resource lan-
guages. There were no publicly available code-
switched Kazakh-Russian parallel dataset, thus
we present one in this work. The sample from
the dataset is presented in Tab. 1. This dataset
contains only 618 parallel sentences, so it can
be used only for evaluation and not for train-
ing. We propose a method for training a ma-
chine translation model for code-switching task.
In our method we use several publicly avail-
able Kazakh-Russian datasets, but since these
datasets do not address code-switching prob-
lem, we generate additional training data by
translating relevant monolingual corpus and
show the effectiveness of this approach. We
augment the data to address challenge of code-
switching. To do so we developed a novel text
transformation method based on SimAlign (Sa-
bet et al., 2020). We train several machine
translation models on the augmented dataset
resulting in 3.09 Likert score for the best base-
line model, while Yandex commercial model
shows 2.80 Likert score. These experimental

results suggest that our method is able to im-
prove the performance of machine translation
systems on real code-switching data and jump
start for those language pairs that do not have
collected code-switched data.

The following paper is structured as follows:
section 2 describes the work on code-switching
done for other language pairs alongside with
studies devoted to Russian-Kazakh language
pair; section 3 presents the description of the
existing public datasets for the mentioned lan-
guage pair and the description of a newly intro-
duced dataset with code-switching phenomenon
captured; section 4 contains the details regard-
ing our proposed augmentation method; sec-
tion 5 describes the baselines, their training
process, and the achieved results, while sec-
tion 9 concludes the paper.

The contribution of this work is three-fold:
(i) we present the first Kazakh-Russian code-
switching dataset;1 (ii) we present an evaluation
of the existing models on this dataset; (iii) we
propose a novel data augmentation for not code-
switched datasets, which allowed us to fine-tune
the existing open models achieving almost on
par performance with an available commercial
system.

2 Related Work

Recent progress in NLP has spurred the de-
velopment of technologies capable of handling
code-switched data. Despite the initiation
of Code-Switching research several years ago,
progress within the research community has
been sluggish. The primary challenge to ad-
dress this issue arises from the insufficient avail-
ability of data (Winata et al., 2023). A limited
number of languages, such as Spanish-English

1KRCS dataset could be accessed here: https://
github.com/madrugado/KRCS.
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Original казахстанский гендерлiк теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

фискал көзқарастан
гөрi либералдандыру жақсы

Corrected Қазақстан гендерлiк теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

Фискалдық көзқарастан
гөрi либералдандыру жақсы

Russian Казахстаном ратифицировано 12 международных
документов в сфере гендерного равенства .

Лучше либерализация ,
чем фискальный подход

Augmented Қазақстан гендерного теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

Фискалдық подход
гөрi либералдандыру

Table 1: Sample sentence triplet from KRCS dataset accompained with cs-5 augmentation of a Russian
one.

(Weller et al., 2022; Xu and Yvon, 2021), Hindi-
English (Appicharla et al., 2021; Jadhav et al.,
2022), or Chinese-English (Li et al., 2012), dom-
inate research and resources in code switching.
Nevertheless numerous countries and cultures
that extensively use code switching remain un-
derrepresented in NLP research.

A common feature of natural interactions
among bilingual speakers is the spontaneous
and continuous switching between the Kazakh
and Russian languages. It is worth noting that
the field still faces challenges, particularly due
to the scarcity of code-switched data and the
colloquial characteristic of code-switching. To
our knowledge, only a few research papers have
been published on this matter. In the context
of Kazakh-Russian code-switching, a study by
Ubskii et al. (2020) attempted to determine
the benefit of bilingual training on matrix lan-
guage (Kazakh) and embedded language (Rus-
sian) monolingual data (Myers-Scotton, 1997),
as opposed to training on code-switched data
only. The study made use of two datasets:
Kazakh speech with code-switching and Rus-
sian speech with no code-switching. The main
objective of the experiments was to compare
the performance of a model trained on code-
switched speech with that of a model trained
on full utterances in both languages. Experi-
mental results suggested that bilingual training
improves the model’s performance on matrix
words, and greatly improves its performance on
embedded words. Another study by Zharkyn-
bekova and Chernyavskaya (2022) discussed
the ethnic bilingual practice in Kazakhstan.
The focus was on code-switching or, in other
term, code-mixing in the Kazakh-Russian and
Russian-Kazakh bilingualism. The bi- and mul-

tilingualism is characteristic for Kazakhstan
and is caused by multi-ethnicity of the repub-
lic. The study analyzed 300 contexts that show
the Kazakh-Russian code-mixing in everyday
and internet communication, and in modern
Kazakh films reflecting the typical code-mixing
practice.

3 Datasets

Training Datasets consist of a dataset col-
lected by Nazarbayev University and described
in (Kozhirbayev and Islamgozhayev, 2023), we
refer to this dataset as NU below; a dataset
collected by Al Farabi University and described
in (Balzhan et al., 2015) (KazNU); translated
domain adaptation dataset, which is based on
Russian tweet corpus described in (Рубцова,
2012) (RTC). We provide more details on do-
main adaptation in section 8. These three
datasets are the main sources of training data,
in addition we use several smaller datasets. To
acquire these datasets we used MTData tool
described in (Gowda et al., 2021). We combine
all the datasets in a single one and apply dedu-
plication. We call this dataset “all data” below.
We provide the statistics for all the training
datasets in Appendix B.

Evaluation Dataset We use Kazakh-
Russian Code-Switching dataset (KRCS) as
our evaluation dataset. The KRCS dataset
consists of 618 colloquial Kazakh sentences
from social media which include some Russian
phrases with corresponding ground truth
translations to grammatically correct Kazakh
and Russian labeled by annotators. We had
two annotators, both of them were natively
bilingual in Kazakh and Russian, both of them
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are working in academia. The annotation were
done as part of their academic duties.

Number of sentences 618
# in an original Kazakh sentence 11.95
Russian # in an original sentence 2.77
# in a corrected Kazakh sentence 12.27
# in a Russian sentence 13.64

Table 2: KRCS dataset statistics. # stands for
average number of tokens.

The descriptive statistics of the collected cor-
pus is provided in Tab. 2. In Tab. 1 we provide
a sample from KRCS dataset.

4 Dataset Augmentation

Code-Switching Emulation Method In
the previous section we described the train-
ing datasets, nevertheless we need to state
clearly that that datasets are not consider code-
switching phenomenon and thus cannot be used
effectively in our setup. Therefore we decided
to make code-switching data artificially, using
specific techniques for data augmentation.

First, we prepare the data. For it we follow
the M2M100 recipe provided in fairseq reposi-
tory which is an official implementation of (Ott
et al., 2019). Namely, we filter out sentences
with more than 50% of punctuation, remove
the duplicates, and discard sentences with more
than 50% of symbols that are not common for
a given language.

Next, we take Kazakh processed sentences
and augment them. We chose cs-5 method for
augmentation: Replace a Kazakh word with a
Russian word aligned using SimAlign (Sabet
et al., 2020). Preliminary, we tried several
augmentation techniques, their description and
evaluation can be found in section 7.

For cs-5 Minimal Aligned Units (MAU)
are extracted following an approach described
in (Xu and Yvon, 2021): the small billingual
phrase pairs (a, b) extracted from symmetrical
alignment such that for every word in a there
exists a link to word in b and vise versa.

Next, we replace 15% of tokens/MAUs in the
Kazakh sentence at random2. Sentences with
length of less than 7 tokens have one replace-
ment following (Anwar, 2023). We provide a

2The exact percentage is inspired by Masked Lan-
guage Modeling approach firstly introduced in (Devlin
et al., 2018)

sample of augmented sentence in Tab. 1. We
also provide additional linguistic analysis and
justification for each method in Appendix D.

5 Evaluation

Baselines There are several baselines which
are used in our experiments. We use identity
baseline, which simply copying its input to the
output. This baseline is obviously not trained.

There are two trained from scratch base-
lines, namely, the first one is transformer-600,
which is described below. The architecture of
the model follows NLLB one, specifically the
600M parameters variant. The details of imple-
mentation can be found in Appendix A.

The second trained from scratch baseline is
a reproduced approach from (Kozhirbayev and
Islamgozhayev, 2023). We call this baseline
transformer-NU.

The next three baselines are using pre-
trained machine translation models and fine-
tune them on our training data. These baselines
are mBART, a model family described in (Liu
et al., 2020), we use specifically mbart-large-
50-many-to-many-mmt variant; M2M100,
a model family described in (Fan et al.,
2020), specifically facebook/m2m100_1.2B;
and NLLB-600, a model family described
in (Costa-jussà et al., 2022), specifically
facebook/nllb-200-distilled-600M.

The last fine-tuned baseline is NLLB-3.3B
from the same model family as the previous
one, but it is facebook/nllb-200-3.3B variant.
We do not fully fine-tune this model, instead
we use PiSSA (Meng et al., 2024), a PEFT
approach.

Metrics In our work we are using three stan-
dard metrics: BLEU score (Papineni et al.,
2002), which is basically a token accuracy;
ChrF++ score (Popović, 2017), which is char-
acter level F-score; and COMET score (Rei
et al., 2020), which is a Transformer-based
model trained to compare translations. For the
last metric we use specifically Unbabel/wmt22-
cometkiwi-da model, described in (Rei et al.,
2022).

6 Results

For this evaluation we use all the baselines
with cs-5 augmentation, since it is the best in
our setup as it shown in previous section. In
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Model w/o training trained

identity 7.55 / 25.10 / 0.56 N/A
transformer-NU 7.87 / 31.99 / 0.50 11.31 / 35.35 / 0.53
transformer-600 N/A 12.49 / 36.44 / 0.54

mBART 4.62 / 17.83 / 0.56 12.08 / 34.31 / 0.53
M2M100 5.37 / 21.59 / 0.42 12.50 / 36.44 / 0.53

NLLB-600 12.26 / 36.67 / 0.53 12.95 / 36.44 / 0.54
NLLB-3.3B 15.23 / 39.68 / 0.56 16.48 / 42.27 / 0.56

Commercial APIs

Yandex MT2 22.24 / 47.13 / 0.67 N/A
Google MT 24.14 / 47.84 / 0.64 N/A

Table 3: The comparison of baseline models in BLEU / ChrF++ / COMET on KRCS dataset.

addition, we provide results for two commercial
machine translation systems, namely Yandex
MT and Google MT. The results are provided
in Tab. 3. As one can see, the best results
are achieved by NLLB-3.3B model. This is
not surprising, once it is the biggest model in
comparison. What is interesting in this setup
is that our approach allows to achieve good
results with all the trained models, and the
best trained model once achieved a score close
to Yandex MT system3. Another point worth
mentioning that COMET scores are close for
identity baseline, mBART model, and NLLB-
3.3B model.

Human Evaluation We have done human
evaluation for our best model (chosen by BLEU
score) and two commercial APIs. We asked our
assessors to use Likert scale and averaged their
scores for 100 random sentences from KRCS.
The results are provided in Tab. 4. As can
be seen, the results are a bit unexpected. De-
spite the automatic metrics scoring the Yandex
MT system higher than NLLB-3.3B model, hu-
man evaluation showed the opposite. Also, it is
worth noting that even the best commercial sys-
tem is pretty far from ground truth translation
in this domain.

We also evaluated the naturalness of aug-
mentation in Kazakh. We chose 100 random
sentences with cs-5 augmentation and asked
our assessors again to use Likert scale. The
achieved result is 2.62, which could be consid-

3We provide current scores for Yandex MT system
at 15th of June. When the work has been started the
score for Yandex MT was 16.72 BLEU.

Mean Std.

Ground Truth 4.75 0.68
NLLB-3.3B 3.09 1.13
Yandex MT 2.80 1.17
Google MT 3.49 1.14

Table 4: The human evaluation results.

ered acceptable.

7 Augmentation Study

We experiment with 5 augmentation types,
namely: cs-1: Replace a Kazakh word with a
Russian one in normal form; cs-2: Replace a
Kazakh word with a Russian one’s stem with
Kazakh ending, extracted from a Kazakh word
by excluding stem from it; cs-3: Replace a
Kazakh word with a Russian one in random
form; cs-4: Replace a Kazakh word with a Rus-
sian word aligned using fastalign (Dyer et al.,
2013); cs-5: Replace a Kazakh word with a
Russian word aligned using SimAlign (Sabet
et al., 2020).

For cs-1, cs-2, and cs-3 we employ a pub-
licly available Kazakh-Russian dictionary from
work (Rakhimova, 2020). For cs-4 Minimal
Aligned Units are extracted as for cs-5. For
all augmentation methods, the replacement is
done as for cs-5. We provide samples for all
the augmentation types in Tab. 5.

7.1 Augmentation Evaluation

In this section we provide a comparison for the
models trained on different augmentation types.
We train our transformer-600 model on cs-1, cs-
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kk Қазақстан гендерлiк теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

Фискалдық көзқарастан
гөрi либералдандыру жақсы

cs-1 казахстанский гендерлiк теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

фискал көзқарастан
гөрi либералдандыру жақсы

cs-2 казахстансктан гендерлiк теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

фискадық көзқарастан
гөрi либералдандыру жақсы

cs-3 Қазақстан гендерлiк теңдiк саласындағы
12 международной құжаттарды бекiттi .

Фискалдық көзқарастан
скорейших либералдандыру жақсы

cs-4 Қазақстан гендерлiк теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

Фискалдық көзқарастан
гөрi либерализация жақсы

cs-5 Қазақстан гендерного теңдiк саласындағы
12 халықаралық құжаттарды бекiттi .

Фискалдық подход
гөрi либералдандыру

ru Казахстаном ратифицировано 12 международных
документов в сфере гендерного равенства .

Лучше либерализация ,
чем фискальный подход

Table 5: Examples of code-switching augmentations.

Data NU CS-1 CS-2 CS-3 CS-4 CS-5 KRCS
all data (AD) 36.03 33.10 33.41 33.00 29.64 35.16 12.25
AD + cs-1 35.07 34.34 33.60 33.67 30.51 34.25 10.20
AD + cs-2 35.54 33.78 35.17 33.49 30.03 34.52 11.65
AD + cs-3 34.24 33.37 32.94 33.25 29.53 33.42 10.22
AD + cs-4 35.58 32.87 33.10 32.74 33.69 37.03 11.38
AD + cs-5 36.83 33.68 34.18 33.63 32.96 39.05 12.49

Table 6: The BLEU scores for transformer-600 model on differently augmented datasets.

2, cs-3, cs-4 and cs-5 augmented datasets. We
evaluate the trained models on testing subset
of NU dataset, and its augmented versions. A
version of NU test set augmented with cs-1 is
called CS-1, the other types are called in the
same manner. More importantly we evaluate
the models on KRCS dataset. The results are
presented in Tables 6.

Interesting, that the only augmentation type
which helps to improve the baseline results is
cs-5. All other types are leading to decrease
in quality. For all the types, except cs-3, the
evaluation on corresponding augmented testset
is the best. For cs-3 the best result is achieved
by a model trained on CS-1, this result is not
surprising since the cs-3 augmentation is just a
random choice between cs-1 and cs-2 augmen-
tations. Another interesting point is that cs-5
augmentation allowed a model to achieve the
best performance on the original testset. We hy-
pothesize that this augmentation produces the
closest data distribution to the spoken Kazakh

language, thus effectively extending the train-
set.

8 Domain Adaptation

As one can conclude from section 3, there is
a domain mismatch for the available training
data and collected evaluation data. We provide
a visualization of this mismatch in Fig. 1. It is
a tSNE projection of LaBSE embeddings (Feng
et al., 2020) of the Kazakh sentences from the
training datasets and Russian sentences from
Russian Tweet Corpus. One can see that cen-
troid of Russian Tweet Corpus is closer to the
centroid of KRCS dataset than any other one
of another dataset. This observation drove us
to conclusion that we might need a domain
adaptation.

Since Russian Tweet Corpus is a monolin-
gual Russian language dataset, we translated
it to Kazakh using publicly available machine
translation model nllb-200-distilled-600M from
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Figure 1: Sentence embedding visualization with dataset centroids.

NLLB model family described in (Costa-jussà
et al., 2022). Our choice of the model was
driven by the fact that it shows the best qual-
ity in standard Russian-Kazakh translation.

8.1 Domain Adaptation Evaluation

We decided to evaluate the importance of do-
main adaptation corpus which is extend our
training dataset. We trained our transformer
baseline model in three setups, namely: whole
training data, including RTC, whole training
data, excluding RTC, and RTC only. The ex-
periments show that domain adaptation is in-
deed important, but the single domain adap-
tation data is not enough to achieve high per-
formance in code switching task. These results
are in Tab. 7.

Data KRCS
all data 12.25 / 37.10 / 0.52

all data w/o RTC 11.64 / 35.58 / 0.49
RTC only 10.86 / 34.76 / 0.52

Table 7: The results of training on different
datasets.

9 Conlusion

In conclusion, the proposed method demon-
strates a viable approach to tackling machine

translation challenges for low-resource, code-
switched language pairs, specifically Kazakh-
Russian. By utilizing synthetic data generation,
the method circumvents the need for labeled
training data, which is typically scarce for such
language pairs.

Furthermore, the introduction of the first
code-switching Kazakh-Russian parallel corpus
represents a significant contribution to the field,
providing a valuable resource for future research
and development. The empirical results indi-
cate that the system’s performance surpasses
that of an existing commercial translation sys-
tem, as evidenced by superior human evaluation
outcomes. This highlights the effectiveness and
potential of the proposed approach for improv-
ing machine translation in similar low-resource,
code-switched contexts.

10 Limitations

Synthetic Data Dependence: The approach re-
lies heavily on the generation of synthetic data,
which may not perfectly capture the nuances
and complexities of natural code-switching in
Kazakh-Russian speech.

Evaluation Scope: While achieving a BLEU
score of 16.48 is promising, the evaluation is
limited to specific criteria and doesn’t necessar-
ily account for all aspects of translation quality,
such as fluency and contextual accuracy.
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Corpus Size and Diversity: The newly pre-
sented code-switching Kazakh-Russian parallel
corpus may still be limited in size and diver-
sity, potentially impacting the generalizability
of the model to broader linguistic contexts or
different dialects.

Commercial System Comparison: The perfor-
mance comparison to an existing commercial
system is based on certain benchmarks and
human evaluations, which might not cover all
practical use cases and scenarios where the com-
mercial system might excel.

Scalability and Adaptability: The method’s
scalability to other low-resource, code-switched
language pairs is not addressed, raising ques-
tions about its broader applicability and adapt-
ability to different linguistic environments.

Long-term Sustainability: There is no discus-
sion on the long-term sustainability and mainte-
nance of the synthetic data generation process
and how it might evolve with changes in the
language pair dynamics or increased data avail-
ability.

By acknowledging these limitations, future
research can focus on addressing these gaps
to further enhance the robustness and applica-
bility of machine translation models for code-
switched languages.
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A Baseline Implementation Details

Transformer-600 is implemented in fairseq
framework (Ott et al., 2019). The model has 6
encoder layers and 6 decoder layers with hid-
den size of 512. Feed forward network hidden
dimension is 4096, there are 8 attention heads
for encoder and for decoder. Layer normaliza-
tion before each encoder and decoder block is
applied. For regularization we apply dropout
of 0.3, Attention dropout of 0.2 and ReLU
dropout of 0.2 (which in a dropout probability
after ReLU in FFN). The embedding matrices
for encoder input, decoder input and decoder
output are all shared. The model was opti-
mized using Adam (Kingma and Ba, 2014) with
betas of (0.9, 0.98) and epsilon 1e−0.6. Sched-
uler is inverse square root with initial learning
rate of 3e−0.5 and warmup of 2500 updates.
Max tokens per batch is 2048. Maximum num-
ber of updates is 500000. Criterion is label
smoothed cross entropy with smoothing factor
of 0.2 following (Szegedy et al., 2016). The
hyperparameters of the Transformer-600 model
are presented in Tab. 8.

Number of layers 6
Hidden size 512

FFN hidden dimension 4096
Attention heads 8
LN before blocks True

Max Tokens 2048
Criterion label smoothed CE

Label smoothing 0.2
Optimizer adam

Adam epsilon 1e-06
Adam betas (0.9, 0.98)
Lr scheduler inverse sqrt

Lr 3e-05
Warmup updates 2500

Dropout 0.3
ReLU dropout 0.2

Attention dropout 0.2
Share all embeddings True

Max update 500000

Table 8: Model Hyperparameters. LN stands for
Layer Normalization. CE stands for Cross-Entropy.

B Train Datasets

The statistics for the training datasets is pre-
sented in Tab. 9. For Russian Tweet Corpus
we report number of Kazakh tokens for the
generated translation.

C Additional Scores

The additional statistics for the baseline eval-
uation on augmented datasets is presented in
Tab. 10.

D Augmentation Analysis

cs-1: Replace a Kazakh word with a Russian
one in normal form Linguistic

Soundness : This approach is straightforward
and resembles natural code-switching seen in
everyday speech, where speakers often insert
words from another language in their base form,
especially nouns and technical terms.

Examples: In Kazakh media and daily con-
versations, you might hear sentences like “Мен
жаңа ручка сатып алдым” (“I bought a new
pen”), where “ручка” is a Russian-origin word
used in its normal form.

Usage Contexts : Such patterns are common
in informal speech, especially when referring
to modern or technical terms for which there
might be no direct equivalent in Kazakh.

cs-2: Replace a Kazakh word with a Russian
word’s stem with Kazakh ending

Linguistic Soundness : This is somewhat less
natural, as it involves morphologically adapt-
ing Russian stems with Kazakh endings, which
does not always fit the natural phonological
or morphological rules of Kazakh. However,
speakers often perform such blending to main-
tain grammatical consistency within a sentence.

Examples : This is occasionally seen in youth
slang or creative language use in social media
where Kazakh speakers playfully adapt Russian
words. For instance, “жазать” (from Russian
“писать” but adapted to sound more Kazakh)
might appear in informal texts, though not
formally accepted.

Usage Contexts: This type of adaptation is
mostly informal, often perceived as a playful or
creative linguistic exercise rather than standard
usage.
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Dataset Name #Sentences #Ave. Tokens Domain
NU (Kozhirbayev and Islamgozhayev, 2023) 895372 20.58 Juridical docs
KazNU (Balzhan et al., 2015) 80627 20.74 Off. press-releases
Russian tweet corpus (Рубцова, 2012) 12752816 7.88 Social media
Statmt-news_commentary-15-kaz-rus 11735 19.43 News
Statmt-news_commentary-14-kaz-rus 9204 19.15 News
Statmt-news_commentary-16-kaz-rus 13224 19.42 News
Facebook-wikimatrix-1-kaz-rus 165109 10.09 Web docs
OPUS-tatoeba-v2-kaz-rus 2010 8.59 General
OPUS-wikimatrix-v1-kaz-rus 32807 10.47 Wikipedia
OPUS-tatoeba-v20190709-kaz-rus 2390 8.27 General
OPUS-tatoeba-v20210310-kaz-rus 2401 8.26 General
OPUS-tatoeba-v20210722-kaz-rus 2417 8.24 General
OPUS-multiccaligned-v1-kaz-rus 1841440 4.94 Web docs
OPUS-xlent-v1.1-kaz-rus 87167 2.05 Software doc-n
OPUS-kde4-v2-kaz-rus 68014 4.70 Software doc-n
OPUS-qed-v2.0a-kaz-rus 5125 10.74 Software doc-n
OPUS-opensubtitles-v2016-kaz-rus 1246 4.55 Subtitles
OPUS-ubuntu-v14.10-kaz-rus 235 4.13 Software doc-n
OPUS-wikimedia-v20210402-kaz-rus 40714 16.41 Wikipedia
OPUS-tatoeba-v20200531-kaz-rus 2400 8.26 General
OPUS-multiccaligned-v1.1-kaz-rus 431952 12.04 Web docs
OPUS-ted2020-v1-kaz-rus 9484 12.05 Subtitles
OPUS-opensubtitles-v2018-kaz-rus 2223 4.21 Subtitles
OPUS-news_commentary-v14-kaz-rus 9163 19.12 News
OPUS-news_commentary-v16-kaz-rus 9163 19.03 News
OPUS-tatoeba-v20220303-kaz-rus 2418 8.59 General
OPUS-xlent-v1-kaz-rus 307929 2.05 Software doc-n
OPUS-gnome-v1-kaz-rus 20550 3.07 Software doc-n
OPUS-tatoeba-v20201109-kaz-rus 2401 8.26 General

all data (dedup.) 20424090 Mixed

Table 9: Train datasets statistics.

Data NU CS-1 CS-2 CS-3 CS-4 CS-5 KRCS
all data (AD) 61.28 / 0.82 59.58 / 0.76 59.44 / 0.76 58.96 / 0.75 56.73 / 0.69 61.78 / 0.78 37.10 / 0.52
AD + cs-1 60.64 / 0.81 60.13 / 0.77 59.67 / 0.77 59.51 / 0.76 56.95 / 0.69 60.47 / 0.77 34.52 / 0.51
AD + cs-2 61.09 / 0.82 59.67 / 0.77 60.85 / 0.78 59.53 / 0.76 56.76 / 0.69 61.12 / 0.77 36.02 / 0.52
AD + cs-3 60.33 / 0.81 59.62 / 0.77 59.50 / 0.77 59.59 / 0.76 56.18 / 0.69 59.82 / 0.77 33.72 / 0.50
AD + cs-4 59.81 / 0.81 58.16 / 0.74 58.33 / 0.74 58.16 / 0.74 59.15 / 0.69 62.56 / 0.77 34.81 / 0.51
AD + cs-5 61.63 / 0.82 59.22 / 0.75 59.68 / 0.75 59.20 / 0.74 58.81 / 0.69 64.27 / 0.79 36.44 / 0.54

Table 10: The ChrF++ and COMET scores for transformer-600 model on differently augmented datasets.

cs-3: Replace a Kazakh word with a Russian
one in random form

Linguistic Soundness: This approach might
lack naturalness as it disregards context, gram-
mar, and sentence flow. The randomness can
introduce syntactic or morphological anomalies.

Examples: You might hear mismatched
forms in spontaneous bilingual speech, particu-
larly among less proficient speakers who switch
languages mid-sentence without full grammat-

ical integration. For example, “Мен пошел
домой” ("I went home" mixing Kazakh and
Russian), where the Russian verb form is not
conjugated correctly according to Kazakh syn-
tax.

Usage Contexts: Common in highly informal
settings, such as among bilingual children or
learners who are not fully competent in both
languages.
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cs-4: Replace a Kazakh word with a Russian
word aligned using FastAlign Linguistic Sound-
ness: Using statistical alignments like FastAl-
ign generally improves the naturalness of word
replacements because it considers contextual
word pairs frequently appearing together in
parallel corpora.

Examples: News broadcasts or bilingual pod-
casts often use consistent patterns of switch-
ing, aligning with how FastAlign might map
Kazakh-Russian sentence structures. For exam-
ple, “Менiң ойымша, это не совсем правильно”
("I think this is not quite right") frequently oc-
curs.

Usage Contexts: Seen in media content where
consistent patterns in code-switching reflect
translation or repeated bilingual interactions.

cs-5: Replace a Kazakh word with a Russian
word aligned using SimAlign

Linguistic Soundness: SimAlign uses contex-
tual embeddings, making this approach more
linguistically sound as it considers sentence-
level semantics for alignment. This tends to
produce contextually appropriate and gram-
matically fitting replacements.

Examples: In digital content, such as
YouTube videos or podcasts with bilingual
speakers, there are instances like “Бұл өте
интересно тақырып” (“This is a very inter-
esting topic”), where alignment mirrors natural
bilingual communication.

Usage Contexts: Common in both formal
and informal settings, particularly where speak-
ers frequently shift between languages without
disrupting the overall meaning.
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Abstract

In recommender systems, users often seek
the best products through indirect, vague, or
under-specified queries, such as “best shoes
for trail running”. Such queries, also referred
to as implicit superlative queries, pose a sig-
nificant challenge for standard retrieval and
ranking systems as they lack an explicit men-
tion of attributes and require identifying and
reasoning over complex attributes. We inves-
tigate how Large Language Models (LLMs)
can generate implicit attributes for ranking as
well as reason over them to improve product
recommendations for such queries. As a first
step, we propose a novel four-point schema for
annotating the best product candidates for su-
perlative queries called SUPERB, paired with
LLM-based product annotations. We then em-
pirically evaluate several existing retrieval and
ranking approaches on our new dataset, provid-
ing insights and discussing their integration into
real-world e-commerce production systems.

1 Introduction

Superlative queries are common in product search
as users seek products with the highest degree of
one or more attributes to satisfy their needs. While
some superlative queries can be handled by existing
retrieval systems (Kumar et al., 2024; Zhang et al.,
2015) through attribute-based filtering (e.g., “the
largest M2 Pro with 32 GB RAM”), others can
pose challenges to the existing solutions.

Specifically, in this paper, we study the problem
of product ranking and recommendation for im-
plicit superlative queries, where the desired prod-
uct attributes are not explicitly stated. These
queries often involve aspects that require com-
mon sense knowledge of the product (Bos and
Nissim, 2006; Scheible, 2007). This problem is
further compounded by users creating vague and
under specified search queries, either due to a lack

∗Work done at Amazon.

Queries Query Type Ranking Criteria

toys Expecting Relevant Products No Superlative criteria.

highest rated toy for 3-year olds Objective Superlative Single Objective Criteria: highest rating

best toy for my 3-year nephew
who loves the Flintstones

Implicit Superlative Multiple & Implicit Criteria: highly-rated,
overall positively-reviewed, suitable for a
male child, likes Flintstones, dinosaurs, etc.

Table 1: Types of Queries along with the criteria of
each. SUPERB focuses on implicit superlative queries.

of knowledge about certain entity features or the
search spanning implicit dimensions, frequently
leading to query-product mismatches. For exam-
ple, a query such as “the best toy for a 3 year old
girl” requires gauging the best products across sev-
eral implicit attributes. To effectively serve such a
query, product recommendations should consider
popular toy standards like ASTM F963, quality,
non-toxic materials, and bright, engaging colors
— attributes that are often unknown to end users.
With a plethora of product options available on e-
commerce platforms, identifying the best products
to meet customer needs requires additional product
category and world knowledge.

Existing ranking pipelines (Reddy et al., 2022)
rely on traditional relevance labels like ‘Highly
Relevant’ vs ‘Irrelevant’ or ESCI (Exact, Substi-
tute, Complement, Irrelevant), and are typically
designed for highly objective queries. They do not
capture the nuances of product quality and the sub-
jective expectations of “best” products for a given
need. In such a scenario, Large Language Models
(LLMs) trained on vast amounts of data from di-
verse sources can act as sources of common-sense
knowledge. They have been exposed to extensive
text sources and have demonstrated success in mod-
eling global opinions in various domains (Santurkar
et al., 2023) and predicting user preferences (Kang
et al., 2023). LLMs can leverage this knowledge
to offer expert insights beyond the basic product
descriptions, thereby enabling search and ranking
based on external knowledge.
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We hypothesize that LLMs possess the capability
to perform multi-objective optimization over im-
plicit attributes that match user preferences. Hence,
LLMs could play a pivotal role in recommending
products for superlative queries by (i) offering com-
prehensive knowledge across multiple product di-
mensions and (ii) addressing the inherent subjectiv-
ity associated with such queries.

Our work aims to investigate the research ques-
tion: Can LLMs effectively rank and recommend
the “best” products? To that end, we propose a
four-level labeling scheme for superlative queries –
SUPERB with LLM-based annotations, and eval-
uate retrieval effectiveness across multiple tradi-
tional and LLM-based ranking pipelines. To our
knowledge, this is the first work to explore implicit
superlative queries for product recommendation.
Specifically, we make the following contributions:

• We investigate the challenges in answering
superlative queries, and define a four-level
labeling scheme for relevance ratings.

• We introduce SUPERB,1 Superlatives
with Best relevance annotations, a schema of
superlative queries and pair them with LLM-
based annotations using four different ranking
approaches i.e., pointwise, pairwise, listwise
and deliberated prompting.

• We evaluate the retrieval effectiveness of mul-
tiple ranking pipelines against SUPERB.

Our contributions highlight the importance of
addressing superlative queries in recommendation
systems, an area that has been largely overlooked.

2 Related Work

We now discuss related work to place our contribu-
tions in context.

2.1 LLMs for Ranking and Recommendation
LLMs have been successfully applied for ranking
and recommendation (Yue et al., 2023). Early
pointwise ranking approaches (Nogueira et al.,
2019) fine-tuned BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2020) with query-document pairs,
and showed improved performance across a variety
of benchmarks (Craswell et al., 2021; Thakur et al.).
Pointwise approaches (Ma et al., 2024) ranked
items based on scores predicted for individual docu-
ments, while pairwise approaches (Qin et al., 2024)

1 https://github.com/emory-irlab/SUPERB

prompted models with the query and two docu-
ments to compare and rank. Others (Pradeep et al.,
2023a,b; Sun et al., 2023) explored a listwise rank-
ing strategy by prompting with a list of documents
and generating a ranked list of document IDs.

2.2 LLMs for Relevance Labelling
After showing promise in predicting searcher pref-
erences (Thomas et al., 2024), LLMs have been ex-
tensively used in generating relevance labels (Fag-
gioli et al., 2023; Yan et al., 2024; MacAvaney and
Soldaini, 2023; Mehrdad et al., 2024; Dhole and
Agichtein, 2024a; Dhole et al., 2025). As com-
pared to human evaluation, automated relevance
labeling is faster and more scalable.

2.3 Prompting Approaches
Apart from standard prompting approaches, deliber-
ative prompting (Li et al., 2023; Zheng et al., 2024)
approaches like Chain-of-Thought (Wei et al.,
2022) and scaling inference time compute (Snell
et al., 2024; Guo et al., 2025) have successfully im-
proved the performance of LLMs. These methods
involve the model generating related information,
such as reasoning chains or explanations, to elu-
cidate the reasoning process before arriving at an
answer. Our deliberated prompting approach, dis-
cussed in Section 5.2 is on similar lines, where we
seek to regurgitate implicit attributes so as to make
them explicit and help in arriving at the appropriate
best label.

2.4 Superlative Search Queries
Much of the research related to superlatives has
focused on applications in question answering,
opinion mining, and sentiment analysis. A recent
study (Kumar et al., 2024) focused on ranking over
objective superlatives where the dimensions to com-
pare against (also referred to as the comparison
set (Pyatkin et al., 2024)) are often explicitly pro-
vided. However, superlative queries often have
implicit, vague and complex dimensions.

3 Implicit Superlative Queries

We now formalize the type of superlative queries
that we seek to address. We define implicit su-
perlative queries as those which (i) seek the high-
est degree of one or more attributes or features of
a product; and (ii) are implicit in nature. These
queries involve preferences which are generally
popular, subjective, and not just based on quantifi-
able attributes. E.g., the superlative query “best toy
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for my 3-year nephew who loves the Flintstones”
– requires an implicit understanding that the user
might be looking for a good quality toy which is
well-rated and reviewed, reasonably priced, age
appropriate, and relates to characters or properties
of the show “The Flintstones”. Addressing such
implicit superlative queries would require (i) infer-
ring hidden attributes, (ii) world knowledge or a
general understanding of concepts, and (iii) being
able to reason and compare across different related
products and ensure that the necessary attributes
are of the highest degree. Table 1 shows a summary
and examples of targeted queries.

4 The SUPERB Relevance Scheme

We design a novel four-category relevance taxon-
omy to rank, recommend, and evaluate the retrieved
product candidates for superlative queries.

• Overall Best (3): reserved for products that
excel across a broad spectrum of parameters
including quality, user experience, value for
money, innovation, aesthetics, and environ-
mental impact, among others. Products in this
category represent the best of what is avail-
able in the market, meeting or exceeding all
the expected criteria.

• Almost Best (2): includes products that per-
form exceptionally well for most criteria but
may fall short in one or a few aspects. These
products are generally considered top-tier but
lack one or more elements that would elevate
them to the Overall Best status.

• Relevant but Not the Best (1): captures prod-
ucts that are suitable for certain contexts or
specific needs but do not represent the best
available option across the board.

• Not Relevant (0): products that do not align
well with the user’s query or fail to meet
the basic standards expected in their category,
making them generally not recommended.

We design such a fine-grained system for multi-
ple reasons. Fine-grained labels have been found
to be more advantageous than simplistic binary
choices (Zhuang et al., 2024). In addition, they
facilitate nuanced evaluations and provide compre-
hensive feedback. For example, differentiating be-
tween Overall Best and Almost Best might be less
obvious when purchasing standard office supplies,
where basic functionality is adequate. However,
this distinction becomes essential when selecting

infant car seats, where the highest safety and tech-
nology standards are vital.

5 Dataset Construction

We now describe how we generate superlative
queries and pair them with products labeled with
annotations from our schema.

5.1 Creation of Superlative Queries
For generating superlative queries, we employ the
Amazon Shopping Queries dataset (Reddy et al.,
2022), which consists of search queries each an-
notated with up to 40 potential items with ESCI
relevance judgements.2

Inspired by LLM-based reformulation ap-
proaches (Yang et al., 2023; Dhole and
Agichtein, 2024b; Dhole et al., 2024), we
prompt Claude-Sonnet (Anthropic, 2024b) with
tailored few-shot instructions, to reformulate
these shopping queries into their superlative
counterparts. We select queries paired with at
least five products with the Exact ESCI label.
We consider all the products of such queries for
subsequent SUPERB annotations.3 We generate
a total of 35,651 superlative queries from 1,825
original queries. The complete prompt is shown
in Appendix Table 6 and some of the generated
queries are shown in Table 2.

Query Superlative Queries
“running shoes” “best running shoes for flat feet”

“best running shoes for rocky terrain”

“diaper backpack” “best diaper backpack for twins”, “most

comfortable diaper backpack for back

pain”

Table 2: Examples of generated superlative queries.

5.2 Creating Relevance Annotations
We adopt four methods for annotating the retrieved
product candidates with an LLM: pointwise, pair-
wise, listwise and deliberated prompting. In
the pointwise approach, we prompt the model with
a superlative query q and the description of a prod-
uct p1, to generate a single annotation label b1 that
corresponds to a category in our schema, along
with an explanation E (Eq. 1).

(q, p1)→M→ b1 + E (1)
2Exact (3), Substitute (2), Complement (1), Irrelevant (0)
3Products of the highest relevance might not necessarily

be the Overall Best option.
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Figure 1: Attributes generated through deliberated
prompting for a superlative query.

In the pairwise approach, we want the model M to
compare a product p1 to another product p2. Hence,
we prompt M with the additional description p2 and
force it to generate two labels b1 and b2 for both
products as shown (Eq. 2).

(q, p1, p2)→M→ b1 b2 + E (2)

In the listwise approach, we expand the context to
N − 1 additional products. We hypothesize that
providing a context of other products would help
the model make accurate judgements in inferring
the necessary attributes. Besides, it is more effi-
cient as compared to the pointwise approach as it
can process multiple products simultaneously and
generate category labels for each (Eq. 3).

(q, p1, . . . , pN )→M→ b1 b2 . . . bN + E (3)

The pairwise and listwise approaches allow gaug-
ing the properties of other related product(s) for
generating the category label of a product. We do
not explicitly force the model to select the highest
category (i.e., Overall Best) in these scenarios.

q →M→ aq (4)

(q, aq, p1)→M→ b1 + E (5)

We also employ a two-step deliberated prompt-
ing strategy inspired by previous studies (Wei et al.,
2022; Li et al., 2023; Zheng et al., 2024), which
asks the model to deliberate and reason before gen-
erating the final answer. We first generate a set
of attributes aq characterizing the best features of
products, and then use them to prompt the model to
generate the final taxonomy label (Eq. 4-5). These
attributes serve as potential dimensions for the
model to compare against in the subsequent point-
wise step. Figure 2 shows an example of the label
generation process with deliberated prompting.

In each of the methods, we also force the model
to generate an explanation to improve model per-
formance (Wei et al., 2022) and also aid human

evaluation. Figure 1 shows sample generated at-
tributes for a superlative query. We describe the
corresponding instructions in Table 13 in the Ap-
pendix.

Queries Best Annotations
2,230 29,218

Best Label Number of Examples
Overall Best 8,564
Almost Best 10,100

Relevant But Not the Best 8,342
Not Relevant 2,212

Table 3: Category label distribution of SUPERB.

We use deliberated prompting to generate a
large number of (query, product, best-label)
triplets, which we refer to as SUPERB. We gener-
ate a total of 29,218 triplets corresponding to 2,230
randomly sampled unique superlative queries. The
label distribution is shown in Table 3. Most of the
labels are concentrated in the Almost Best and Rel-
evant But Not the Best categories, with fewer in
the Not Relevant category. This is expected as an-
notations were performed over products that were
human-rated as Exact, albeit with respect to the
original non-superlative queries.

6 Methods

We perform our analysis in a constrained setting
where the item description is limited to 512 tokens
in length. This is useful for low latency applica-
tions. We then use SUPERB for evaluating the
following ranking pipelines:
(i) BM25: We use BM25 as our baseline.
(ii) RM3: We also employ a pseudo-relevance feed-
back baseline RM3 (Abdul-Jaleel et al., 2004).
(iii) BM25/RM3 + Listwise Re-ranking: Here, we
re-rank the results of the first stage BM25 and RM3
through a listwise ranking approach. We force the
model to generate a ranked list of product IDs in
the style of RankGPT (Sun et al., 2023) (Eq. 6).

(q, p1, . . . , pN )→M→ r1 . . . rN + E (6)

where rj is the index of a product ranked j.
(iv) BM25/RM3 + Deliberated Pointwise Re-
ranking: Here, the model is forced to generate a
schema label for each item along with a confidence
score, when given a query and estimated product
attributes. The final ranked list is obtained by first
sorting using the labels, and resolving ties first by
confidence scores, and then by the BM25 scores.
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Retrieval Pipeline P@5 P@10 P@20 nDCG@5 nDCG@10 nDCG@20

BM25 .206 .163 .125 .219 .213 .235
RM3 .214 .180 .139 .219 .219 .243
BM25 Top K + Pointwise Reranking .226 .163 - .205 .198 -
RM3 Top K + Pointwise Reranking .208 .180 - .199 .210 -
BM25 Top K + Listwise Reranking .262α .192α .125 .278α .259α .264α

RM3 Top K + Listwise Reranking .248 .201α .140 .245 .241 .254

Table 4: Performance metrics for different ranking pipelines. α denotes significant improvements (paired t-test with
Holm-Bonferroni (Holm, 1979) correction, p < 0.05) over BM25.

Retrieval Pipeline P@10 P@50 nDCG@10 nDCG@50
BM25-Top 100 .154 .079 .205 .279
BM25-Top 100 + Window (5, 2) .185α .084α .241α .309α

BM25-Top 100 + Window (20, 10) .198α .082α .240 .302α

BM25-Top 200 .196 .079 .205 .279
BM25-Top 200 + Window (20, 10) .262 .088 .259 .328

Table 5: Comparing different retrieval pipelines for the long context setting. α denotes significant improvements
(paired t-test with Holm-Bonferroni (Holm, 1979) correction, p < 0.05) over BM25.

This can also be seen as a black-box counterpart of
pointwise ranking approaches which provide confi-
dence through logit probabilities. The confidence
scores range between 1 and 9 (Eq. 7-8).

q →M→ aq (7)

(q, p1, aq)→M→ b1 + c1 + E (8)

We choose the Claude-Haiku (Anthropic,
2024a) model for our experiments since it
is beneficial to evaluate smaller models for
production pipelines. We use the PyTerrier (Mac-
donald and Tonellotto, 2020) library with the
PyTerrier-GenRank (Dhole, 2024) plugin for
designing the retrieval and re-ranking pipelines,
and computing precision and nDCG metrics.

Analysis on Longer Context: We also analyze
the case where we use longer product descrip-
tions, and when there are a large number of prod-
ucts in the context. In that case, employing a
listwise strategy can be detrimental as LLMs have
been known to show bias towards specific posi-
tions of text in the context (Liu et al., 2024), while
employing a pointwise strategy would involve ex-
cessive inference calls. Also, in practice, we found
that LLMs find it hard to generate 100 or 200 item
IDs at once hindering their ability to rerank items
properly. We hence evaluate such queries using (v)
a BM25 + Sliding-window approach introduced
in RankGPT (Sun et al., 2023).

7 Results and Analysis

As shown in Table 4, we find that the listwise rank-
ing approach is able to rank the best products sig-
nificantly better as compared to other approaches
across all metrics. The listwise scores are better for
queries with larger nDCG values of BM25 meaning
they benefit from an initial ranked list as shown
in Appendix Figure 4. Pointwise approaches also
help marginally with P@10 compared to BM25.

We also show the results for top-100 and top-
200 items with long descriptions in Table 5. We
find that employing a listwise approach in a sliding
window fashion significantly improves retrieval ef-
fectiveness over the baseline BM25 retrieval across
all metrics. In some cases, we observed modest im-
provements compared to BM25, highlighting the
difficulty of handling superlative queries, which is
inherently challenging due to ambiguities and the
need for extensive world knowledge. This com-
plexity underscored the hardness of the task, as it
requires more than traditional retrieval models.

7.1 Error Analysis
By analyzing queries where the methods perform
well or poorly, we can gain insights into the model’s
behavior. The relative performance by nDCG@10
is summarized in Figure 4 in the Appendix.

Both BM25 and LLM perform well: Queries
like “most versatile baby carrier for all terrains”
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(nDCG@10 of 0.756 and 0.756, respectively) and
“Best of montreal album for summer road trips”
(0.787, 0.951) show strong performance for both
approaches. These queries are specific, and the
attributes are commonly matched both lexically
and semantically to product descriptions.

Both BM25 and LLM perform poorly: For
queries such as “Most durable kids plates not plas-
tic” (nDCG@10 of 0.024 and 0.016, respectively)
and “most gentle water wipes for baby’s skin”
(nDCG 0.066 and 0.054, respectively), both ap-
proaches struggled. In these cases, challenges like
negation, tokenization errors, and specific attributes
may contribute to poor performance.

LLM outperforms BM25: Queries like “most
modern LG refrigerators to complement minimalist
kitchen decor” or “most stylish child safety harness
to match toddler’s outfits” involve interpreting nu-
ances related to style, versatility, and aesthetics,
where LLMs arguably excel i.e. recognizing global
preferences and broader contexts, enabling them to
rerank products with less tangible attributes.

BM25 outperforms LLM: Many of the BM25-
favored queries have clear, well-defined criteria,
such as “safest bottle warmer for preserving nutri-
ents” (nDCG 0.508 vs. 0.264); “most flexible rv
caulking sealant for easy application” (nDCG 0.619
vs. 0.474). We speculate that BM25 excels with
queries containing specific product terms and com-
mon words, as it performs well without advanced
reasoning, while LLMs might over-generalize.

8 Conclusion

This work studied superlative queries with implicit
attributes, which are typically more complex com-
pared to other query types since ranking prod-
ucts for them requires inferring attributes, placing
other products in context, and using commonsense
knowledge to determine the best ones. Our analysis
shows that LLMs can rank the best items, improve
ranking when provided with initial ranked lists, and
can also be sensitive to them. In addition, our meth-
ods are applicable to rank superlative queries in
other item and document ranking settings.

We present the SUPERB, 4-point schema and
propose pointwise, deliberated pointwise, pair-
wise, and listwise methods to label superlative
queries over it and re-rank retrieved products, using
an LLM as the backbone. The listwise approach

is preferable for lower budgets, while the deliber-
ated point-wise approach can be preferred for better
quality annotations. We believe that our study can
drive further research on superlative search queries.

Our work highlights key considerations for de-
ploying an LLM-based product ranking system into
production. While a listwise approach effectively
ranks multiple items at once, it can be inefficient
due to lengthy item descriptions. In contrast, a
pointwise approach is faster, especially with paral-
lel processing. Sliding window methods and query
reformulation are also viable alternatives. Gen-
erating attributes and explanations clarifies label
assignments, boosting user trust and satisfaction.

Addressing superlative queries in product recom-
mendation systems is essential, particularly for the
next generation of interactive shopping assistants
(Vedula et al., 2024; Li et al., 2025) and gener-
ative recommender systems (Senel et al., 2024).
This becomes even more relevant as information-
seeking and product search system grow closer
together (Kuzi and Malmasi, 2024). These su-
perlative queries capture user intent to find the best
possible items, an aspect often overlooked in cur-
rent systems. Introducing SUPERB allows for
the development and assessment of recommenda-
tion pipelines capable of handling high-expectation
queries, helping systems address this unmet need.

Limitations

LLMs have a tendency to average out preferences
and often aligning to the majority of the users mak-
ing them apt for our use case, as shoppers fre-
quently tend to buy the best products unanimously
for instance, following viral trends or popular rec-
ommendations provided by bloggers.

However, there are other types of superlative
queries that could be subjective and depend on
user preferences. It would be interesting to see
how such user preferences could be incorporated
in ranking the best. We envisage various ways our
work could be extended to achieve this – through
traditional techniques like relevance feedback, con-
versational interactions, and understanding cultural
contexts (Dhole, 2023; Mitchell et al., 2025). Be-
sides, users often make use of public reviews, blogs
and ephemeral trends to guide their purchase deci-
sion (Hsu et al., 2013; Wilson et al., 2024). Hence
incorporating public reviews, and external infor-
mation through retrieval augmentation could be an
interesting line of subsequent study.
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Appendix

Given a query, generate multiple diverse superlative versions of the same which require common sense inference. The
reformulated superlative queries should provide additional context for which common sense knowledge is required. The
context should be related to the item in the original query in various ways and should seek the highest degree of some
related aspects. For instance, if a user is looking for a mouse pad, she might be interested in the best one which best
complements the color of her laptop, or may require the most suitable one for painful wrists, etc. The context should
require generally understood knowledge and common sense and it should not depend on objective criteria like highest
rated or cheapest. Some examples of superlative queries are “Best booster chairs to make mealtime hassle-free for my
toddler”, “most user-friendly diaper pail to make my life as a new mom easier”, “most suitable lawnmover for rocky
areas”, “most stylish and modern changing table pad to complement my nursery decor”,“Smoothest-riding 2 seater
stroller for twin toddlers”,“Best diaper genie for sparking a child’s creativity”,“Highest quality epoxy resin for creating
stunning wood art pieces”, You should not try to change the type of the product which the user is asking for. Only if the
product explicitly mentions a single product, you should change it to make it more generalized (for instance, Amazon
$100 gift card can be changed to $100 gift card and so on). Do not generate anything else except for one body of JSON
and do not explain yourself. Do not include double quotes while generating the superlatives.
Provide your output in the form of a JSON.
Input Query: LEGO kit
{{

“superlatives” : [
“best LEGO kit for chess players”,
“best lego kits for marvel fans”,
“most impressive lego kits for my friend who is fascinated about India”,
“best lego kit to encourage my toddler to learn astronomy”,
]

}}

Input Query: black halter beaded satin long gowns sequin
{{

“superlatives”: [
“Trendiest black halter beaded satin long gowns with sequins for an Afro-themed fashion parade”,
“Best halter beaded satin long gowns to match my husband’s black silk coat”,
“Most casual black halter satin long gowns with sequins helpful ”,
“most suitable black halter beaded satin long gowns sequin for a date night”
]

}}

Input Query: armani exchange glasses
{{

“superlatives”: [
“best glasses with bold and trendy frames”,
“best glasses which can be used for office and at parties”,
“best retro look armani exchange glasses”,
“most suitable armani exchange glasses for travelling to dubai and mexico" ,
“best armani exchange glasses that blend seamlessly with my red jeans”,
]

}}

Input Query: {query}

Table 6: Prompt used for Superlative Query Generation
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Based on the item description and some of its reviews, your internal knowledge about all the features of such types of
items, and a user’s given shopping query, you should classify the item into one of the taxonomy categories:

User Query: {query}
Item Description: Title: {title} Description: {description}
User Query: {query}

Categories:
3. Overall Best: The item meets the following criteria: The item is overall best in its category on various parameters –
excellence in quality, user experience, value for money, innovation, aesthetics, environmental impact, market position,
safety, versatility, processing speed, user rating, etc..
2. Almost Best: The item scores high on most or majority of the parameters except for a few. Most users would consider
this as item as the best..
1. Relevant But Not Best: The item is suitable in certain contexts but not the best option..
0. Not Relevant: The item is generally not recommended as it is not relevant to the user’s query..

Please classify the item into one of the four types. You should return a number between between 3 (Overall Best) and 0
(Not Relevant) followed by an explanation on the next line justifying why that category of best is suitable.

Table 7: Pointwise Prompt Used For Best Annotations

Figure 2: Sample generated label and explanation using the deliberated pointwise approach.

A Evaluating the Best Product Judgements

To evaluate the efficacy of the SUPERB labels from the above methods, we perform a human evaluation
to record the agreement with the model’s labels. In-house domain experts performed the annotation. For
each superlative query, the product descriptions, the corresponding category labels and their explanations
from the pointwise, pairwise and listwise methods are presented to the annotator, who may agree with
none, some, or all of the LLM generated labels.

As shown in Table 8, in our first phase of human evaluation, we find that the pointwise approach is
more often preferred over listwise and pairwise approaches. During the process of annotation, we find
that the pairwise approach tends to narrow its focus on attributes presented in the single product in the
context, often misjudging necessary attributes. In the pointwise and listwise approaches, this seems to be
less of a concern.

In the second phase of human evaluation, we use the best strategy of the first phase, i.e., pointwise, and
measure the effects of deliberation over a separate set of queries. We find that deliberated prompting is
preferred more often than its non-deliberated counterpart, as shown in Table 9, and making the attributes
explicit helps assign better quality annotations.
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Pointwise Pairwise Listwise

Agreement Rate 66.36% 44.86% 60.75%

Table 8: Comparing the three best labelling approaches over 107 random superlative queries.

Without With Deliberation

Agreement Rate 75.23% 78.90%

Table 9: Effect of deliberation on pointwise prompting for 109 random superlative queries.

Effect of Increasing the Number of Products: We measure the listwise ranking performance while
increasing the number of input products K. As shown in Figure 3, we find that the listwise approach
increases the likelihood of picking the best product as we provide more products in the context, and then
tends to stagnate after a large K. The pointwise approach’s performance remains almost the same.

As shown in Table 10, we also shuffle the product order from the first stage retriever and evaluate
how sensitive the listwise re-ranker is to the initial order. Shuffling the top-20 products in three different
random orders causes drastic performance drops in each, i.e. listwise re-ranking benefits from an initial
ranked list and improves upon it.

Listwise BM25 seed1 seed2 seed3 RM3

nDCG@10 .259 .147 .143 .141 .241

Table 10: Listwise reranking performance when the top-20 products are placed in context with initial rankings from
BM25, random and RM3 orderings. The listwise re-ranker is highly sensitive to the order provided by the first stage
retriever.

B Effect of Query Reformulation

To reduce inference latency for such scenarios, we also investigate incorporating LLM-based reformulation
i.e. employing the LLM during query generation rather than during reranking. Specifically, we introduce
(vi) two types of query reformulations to generate i) keywords: this is accomplished by generating
generic query expansion terms which are related to the query ii) attributes: we use the above estimated
ideal attributes for expanding the query.

Results: We also find that employing keyword and attribute-based reformulated queries helps improve
overall retrieval effectiveness, as compared to the original queries. Attribute-based reformulation improves
recall and MAP across all retrieval settings.

We find that by employing keyword and attribute based reformulated queries helps improve overall
retrieval effectiveness, as compared to the original queries. Attribute based reformulation improves recall
and MAP across all retrieval settings. Table 11 presents the details.

Based on the following descriptions of multiple items and a user’s shopping query, you need to classify each item into
one of the taxonomy categories:

User Query: {query}
Item 1 Description: Title: {Title 1} Description: {Item Description 1}
Item 2 Description: Title: {Title 2} Description: {Item Description 2}
...
...
Item N-1 Description: Title: {Title N-1} Description: {Item Description N-1}
Item N Description: Title: {Title N} Description: {Item Description N}
User Query: {query}

Classification Categories:
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3. Overall Best: The item meets the following criteria: The item is overall best in its category on various parameters –
excellence in quality, user experience, value for money, innovation, aesthetics, environmental impact, market position,
safety, versatility, processing speed, has been rated highly, etc..
2. Almost Best: The item scores high on most or majority of the parameters except for a few. Most users would consider
this as item as the best..
1. Relevant But Not Best: The item is suitable in certain contexts but not the best option..
0. Not Relevant: The item is generally not recommended as it is not relevant to the user’s query..

Please rank each item into one of the four types. First, return the rankings as numbers separated by ’ ’ where each
number ranges between between 3 (Overall Best) and 0 (Not Relevant). And then provide a short explanation as to why
you assigned the best categories. You should start your answer with only the rankings (i.e. 3 2 2 0 and so on ) and not a
description. Ensure that the number of rankings is equal to the number of items shown i.e. exactly 25.

Table 12: Listwise Prompt Used For Best Annotations – Provides multiple additional items as context

Given a user seeking the best item, define the ideal requirements for satisfying the user query by returning a list of
attributes which are essential for that item. For instance, if the user is seeking the best laptop for his 15 year old son, the
attributes could be a large RAM, the best GPUs (maybe from NVIDIA or AMD), good speakers etc. You should try to
come up attributes which are essential for the perfect or the best item as well as which satisfy the user query. Return your
output as a json. Do not generate anything else. {query}

Table 13: Deliberation Step used for Generating Attributes

Based on the following descriptions of two items, their reviews, and a user’s shopping query, you need to rank each item
into one of the taxonomy categories:

User Query: {query}
Item 1 Description: Title: {Title 1} Description: {Item Description 1}
Item 2 Description: Title: {Title 2} Description: {Item Description 2}
User Query: {query}

Categories:
3. Overall Best: The item meets the following criteria: The item is overall best in its category on various parameters –
excellence in quality, user experience, value for money, innovation, aesthetics, environmental impact, market position,
safety, versatility, processing speed, has been rated highly, etc..
2. Almost Best: The item scores high on most or majority of the parameters except for a few. Most users would consider
this as item as the best..
1. Relevant But Not Best: The item is suitable in certain contexts but not the best option..
0. Not Relevant: The item is generally not recommended as it is not relevant to the user’s query..

Please rank each item into one of the four types. First, return two numbers separated by ’ ’ where each number ranges
between between 3 (Overall Best) and 0 (Not Relevant). And then briefly explain why the category of best is suitable.

Table 14: Pairwise Prompt Used For Best Annotations – Provides one additional item as context

Based on the following descriptions of two items, their reviews, and a user’s shopping query, you need to rank each item
into one of the taxonomy categories:
User Query: {query}
The best item would possibly possess many of such attributes: {Predicted Attributes}
Item 1 Description: Title: {title} Description: {Item Description}
User Query: {query}
Categories:
3. Overall Best: The item meets the following criteria: The item is overall best in its category on various parameters –
excellence in quality, user experience, value for money, innovation, aesthetics, environmental impact, market position,
safety, versatility, processing speed, has been rated highly, etc..
2. Almost Best: The item scores high on most or majority of the parameters except for a few. Most users would consider
this as item as the best..
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1. Relevant But Not Best: The item is suitable in certain contexts but not the best option..
0. Not Relevant: The item is generally not recommended as it is not relevant to the user’s query..

Please rank each item into one of the four types. First, return two numbers separated by ’ ’ where each number ranges
between between 3 (Overall Best) and 0 (Not Relevant). And then briefly explain why the category of best is suitable.

Table 15: Deliberated Pointwise Prompt Used For Best Annotations – Predicted attributes are provided as context

Based on the item description and some of its reviews, your internal knowledge about all the features of such types of
items, and a user’s given shopping query, you should classify the item into one of the taxonomy categories and provide a
confidence score for your prediction:

User Query: {query}
The best item would possibly possess many of such attributes: {Predicted Attributes}
Item Description: Title: {title} Description: {description}
User Query: {query}

Categories:
3. Overall Best: The item meets the following criteria: The item is overall best in its category on various parameters –
excellence in quality, user experience, value for money, innovation, aesthetics, environmental impact, market position,
safety, versatility, processing speed, user rating, etc..
2. Almost Best: The item scores high on most or majority of the parameters except for a few. Most users would consider
this as item as the best..
1. Relevant But Not Best: The item is suitable in certain contexts but not the best option..
0. Not Relevant: The item is generally not recommended as it is not relevant to the user’s query..

You should return a number between between 3 (Overall Best) and 0 (Not Relevant) followed by the confidence of your
prediction between 1 to 9 and an explanation on the next line justifying why that category of best is suitable. Your output
should look something like this: 2 8 some explanation or 3 4 some explanation. If you are fully confident, then your
confidence should have high values like 7, 8 upto 9. If you are not sure, then you should assign low confidence values
like 1, 2 or 3. If you are partially confident, then assign other values.

Table 16: Deliberated Pointwise Prompt Used For Ranking for generating labels and confidence scores.

Based on the following descriptions of multiple items and a user’s shopping query, you need to rank the items using the
below taxonomy:

User Query: {query}
Item 1 Description: Title: {Title 1} Description: {Item Description 1}
Item 2 Description: Title: {Title 2} Description: {Item Description 2}
...
...
Item N-1 Description: Title: {Title N-1} Description: {Item Description N-1}
Item N Description: Title: {Title N} Description: {Item Description N}
User Query: {query}

Classification Categories:
3. Overall Best: The item meets the following criteria: The item is overall best in its category on various parameters –
excellence in quality, user experience, value for money, innovation, aesthetics, environmental impact, market position,
safety, versatility, processing speed, has been rated highly, etc..
2. Almost Best: The item scores high on most or majority of the parameters except for a few. Most users would consider
this as item as the best..
1. Relevant But Not Best: The item is suitable in certain contexts but not the best option..
0. Not Relevant: The item is generally not recommended as it is not relevant to the user’s query..

The ’Overall Best’ item(s) should be ranked higher, followed by the ’Almost Best’ item(s), the ’Relevant But not the
best’ and then the ’not relevant’ ones. You should return the item ids separated by ’ ’ something like 8 3 9 1 2... You
should start your answer with only the rankings and not a description. Ensure that each item id is present in the list.
Ensure that the number of rankings is equal to the number of items shown i.e. exactly K.

Table 17: Listwise Prompt Used For Ranking
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Figure 3: Listwise ranking consistently improves best
ranking for different values of K.
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Figure 4: Listwise scores rank better than BM25 for al-
most all queries. Moreover, LLMs when employed in
a listwise fashion benefit from an initial ranked list as
queries with higher BM25 scores tend to get better im-
provements from the listwise approach.

BM25 BM25 + Window (20,10)

Queries MAP R@50 nDCG@50 MAP R@50 nDCG@50
SUPERB (Raw) .152 .358 .279 .168 .372 .302
+ Keyword based QR .155 .371 .291 .172 .383 .31
+ Attribute based QR .156 .382 .291 .176 .389 .311

Table 11: Comparison of Query Reformulation with BM25 over superlative queries.
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Abstract

Quizzes play a crucial role in education by re-
inforcing students’ understanding of key con-
cepts and encouraging self-directed exploration.
However, compiling high-quality quizzes can
be challenging and require deep expertise and
insight into specific subject matter. Although
LLMs have greatly enhanced the efficiency
of quiz generation, concerns remain regarding
the quality of these AI-generated quizzes and
their educational impact on students. To ad-
dress these issues, we introduce ConQuer, a
concept-based quiz generation framework that
leverages external knowledge sources. We em-
ploy comprehensive evaluation dimensions to
assess the quality of the generated quizzes, us-
ing LLMs as judges. Our experiment results
demonstrate a 4.8% improvement in evalua-
tion scores and a 77.52% win rate in pair-
wise comparisons against baseline quiz sets.
Ablation studies further underscore the effec-
tiveness of each component in our framework.
Code available at https://github.com/
sofyc/ConQuer.

1 Introduction

Quizzes are a widely used tool in modern educa-
tion, serving as a means to test students’ under-
standing of material and providing opportunities
for reflection (Cheong et al., 2013; Evans et al.,
2021). Well-designed quizzes can enhance active
learning, provide valuable feedback, and stimulate
curiosity (Malandrino et al., 2014; Mukaromah
et al., 2019). However, the process of creating
quizzes is often labor intensive, requiring subject
matter expertise, careful consideration of key con-
cepts, and understanding of students’ knowledge
levels (Gorin, 2006). This challenge becomes even
more pronounced in fields where content is updated
frequently or where educators need to generate
quizzes on a scale.

In recent years, the emergence of Large Lan-
guage Models has provided a promising solution

to these challenges. LLMs can quickly generate
quizzes that cover a wide range of topics. Elkins
et al. (2023) demonstrated that the LLM-generated
quizzes are promising for widespread use in the
classroom. Although this approach offers signifi-
cant efficiency gains, it also raises concerns about
the quality and relevance of the generated quizzes
(Lodovico Molina et al., 2024). Specifically, there
are questions about whether the quizzes accurately
reflect key concepts in a given domain and whether
they are grounded in reliable sources of knowl-
edge (Zhang et al., 2023).

To address these concerns, we propose a concept-
based quiz generation method grounded in exter-
nal knowledge corpora, such as Wikipedia and
ConceptNet (Speer et al., 2017). Using concepts
instead of keywords to search for relevant infor-
mation enables the capture of knowledge points
that may not be explicitly mentioned in students’
questions. By anchoring quiz generation in well-
established knowledge bases, our approach ensures
that quizzes are not only relevant but also com-
prehensive, covering critical concepts that learners
must grasp.

We employ comprehensive evaluation dimen-
sions to assess various aspects of quiz quality. Our
concept-based approach achieves a 4.8% improve-
ment in evaluation scores compared to traditional
LLM-generated quizzes. In pairwise evaluations,
our method consistently outperforms other alter-
natives,with 77.52% of evaluations favoring our
method over LLM-generated quizzes. Additionally,
ablation studies reveal the critical contributions of
the concept extraction module, knowledge source,
and summary module in enhancing the overall ef-
fectiveness of our framework.

In summary, our key contributions are as fol-
lows:

• We present ConQuer, a novel concept-
based quiz generation framework that signifi-
cantly improves the quality of LLM-generated
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Figure 1: The ConQuer Framework. First, key concepts are extracted from student questions, followed by retrieving
relevant information from external knowledge sources based on semantic similarity. Finally, the main topics are
summarized to generate personalized quizzes.

quizzes. A diagram of our framework is
shown in Figure 1.

• We conduct a detailed ablation study with
qualitative analysis, revealing that each com-
ponent of our framework plays a crucial role
in improving the quality of quiz generation.

• We release our student question dataset and
quiz generation pipeline code as open-source
resources to facilitate future research.

2 Related Work

Retrieval-Augmented Generation While LLMs
have demonstrated strong performance in various
understanding and reasoning tasks, their ability
to generate reliable and factually accurate text
remains a challenge, particularly in knowledge-
intensive tasks (Kandpal et al., 2023). This of-
ten leads to hallucinations, where models produce
incorrect or fabricated information (Zhang et al.,
2023). Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) has been proposed to ad-
dress this issue by integrating LLMs with retrieval
mechanisms, allowing models to refer to external
databases and improve the factuality and credibil-
ity of their outputs. RAG has shown promising
results in QA tasks such as SQuAD (Rajpurkar
et al., 2018) and HotpotQA (Yang et al., 2018), as
well as in personal planning applications (Fu et al.,
2024b), where external knowledge is essential for
generating accurate and contextually relevant re-
sponses.

Quiz Generation Quizzes are Widely recog-
nized as an effective tool to promote active learning
and improve knowledge retention (Evans et al.,
2021; Mukaromah et al., 2019). Recent studies

have explored how large language models (LLMs)
can be used to improve the quality of generated
quiz content. For instance, Vu et al. (2024) in-
vestigates interactive prompting strategies for de-
signing question banks, while Hasan et al. (2024)
combines LLMs with structured resources to en-
hance factual accuracy and contextual relevance in
quiz generation. Additionally, Gabajiwala et al.
(2022) explores keyword extraction to generate bet-
ter quizzes. Biancini et al. (2024) proposes to gen-
erate quizzes by Injecting external knowledge into
LLM prompts. These approaches typically rely on
pre-identified topic and keyword-based techniques.
In contrast, our ConQuer framework tackles sce-
narios where Students may lack awareness of the
concepts they need to learn, requiring a focus on
deeper concept identification rather than surface-
level keyword-based methods.

3 Task

Previous studies have explored quiz generation
based on predefined topics (Song and Zhao, 2016;
Vu et al., 2024). However, Such topic-centered
approaches often fails to capture the complexities
of real-world educational settings. In practice, stu-
dents Frequently ask vague or incomplete question,
sometimes without fully grasping the underlying
concepts they are struggling with (Commeyras,
1995). Research in education has shown that stu-
dents’ questions can reflect their thought processes
and serve as a valuable resource to enhance learn-
ing (Cuccio-Schirripa and Steiner, 2000; Chin and
Osborne, 2008). Inspired by this, our approach
shifts from relying on predefined topics for LLM-
based quiz generation. Instead, we focus on gen-
erating questions that mirror the types of inquiries
students might pose to instructors, capturing their
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authentic learning challenges. The task then be-
comes generating quizzes that effectively support
students with limited information about their cur-
rent knowledge level.

To enhance the diversity of student questions
and broaden the framework’s applicability across
a wide audience, we selected 30 subject areas
from the MMLU dataset (Hendrycks et al., 2020)
and considered three educational levels: primary
school, high school, and PhD. For each subject and
educational level, we tasked GPT-4o (Hurst et al.,
2024) with generating five representative questions
that students would typically ask. This approach
yields a dataset of 450 questions, which we com-
piled into a comprehensive question set for experi-
ment. The quiz generation task involves generating
three quizzes for each student question, where each
quiz consists of one question, one correct answer,
and three incorrect options, with the correct answer
always positioned as option A. We believe that a
single quiz may only provide a limited perspective
on the topic, and a set of quizzes offers a more com-
prehensive approach, thereby enhancing students’
overall understanding of the subject matter.

To verify that the difficulty of the student ques-
tions varies appropriately across different education
levels, we tasked the LLM with assessing the rea-
soning difficulty and knowledge depth required to
answer each student question, assigning a score on
a scale of 1 to 5. The results are presented in Fig-
ures 2 and 3. As anticipated, the difficulty remains
consistent within subject areas but increases pro-
gressively with the educational level, aligning with
our goal for the dataset. Example student questions
can be found in the Appendix A.

4 Framework

The proposed framework ConQuer operates as fol-
lows. The system receives three inputs: the stu-
dent’s question, their educational level, and the
subject area. We first use an LLM to extract key
concepts from the question. For example, given
the question, "What happens to a plant when it
doesn’t get enough sunlight or water?", we iden-
tify several potentially relevant key concepts such
as "plant", "sunlight", "water", "photosynthesis",
"growth", "stress", "environment".

After extracting the relevant concepts, we re-
trieve relevant information from a knowledge
source based on these concepts. In this work, we
primarily use Wikipedia, which provides a wealth

of information on a wide range of topics. To lo-
cate the most relevant content, we utilize Sentence-
BERT (Reimers, 2019) to compute cosine simi-
larity scores. This allows the system to pinpoint
the most contextually appropriate sections of text.
Subsequently, an LLM-based summarization mod-
ule condenses the retrieved information into its key
points. These summarized details are then passed
to the quiz generator, which creates tailored quizzes
based on the content.

5 Experiments

5.1 Evaluation
To evaluate the quality of the generated quizzes,
we propose 5 evaluation dimensions:

• Educational Value: Whether the quizzes en-
hance learning and help students acquire new
knowledge.

• Diversity: Whether the quizzes cover a broad
range of important topics and concepts.

• Area Relevance: How well the quizzes align
with the student’s query and the specific sub-
ject area they are trying to learn.

• Difficulty Appropriateness: Whether the
quiz difficulty matches the student’s educa-
tion and knowledge level.

• Comprehensiveness: Whether the quizzes
cover the topic’s key concepts thoroughly.

We leverage LLM-as-a-judge for evaluation,
with GPT-4o (Hurst et al., 2024) serving as the
judge model in all our evaluations. The model is
instructed to assign a score on a scale of 1 to 5,
with detailed prompts provided in Appendix B. To
further compare quiz quality, we perform pairwise
comparisons, prompting the judge model to select
the better quiz set based on each of the five criteria
outlined above. To mitigate any potential ordering
bias, pairwise comparisons are conducted in both
orders, and the average win rate is computed.

5.2 Experiment Setup
We use GPT-4o-mini (Hurst et al., 2024) and
Gemini-2.0-flash (Team et al., 2023) as LLMs to
complete the task. For information retrieval, we
employ the text-embedding-3-large model for em-
beddings, with a chunk size of 128, a chunk over-
lap of 50, and retrieve the top 3 results. Detailed
prompts are provided in the Appendix B.
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Figure 2: Student Question Difficulty Vs. Area Figure 3: Student Question Difficulty Vs. Education Level

5.3 Ablation Study
To evaluate the contribution of each component in
our framework, we conduct three ablation studies.

• Concept Extraction Module: We remove the
concept extraction module and rely solely on
the pure words from the sentence after remov-
ing stop words and punctuation to search for
relevant information in Wikipedia.

• Knowledge Source: Instead of retrieving in-
formation from Wikipedia, we rely on Con-
ceptNet (Speer et al., 2017) to gather related
concepts and their relational descriptions in
sentence format. Unlike Wikipedia, which
provides detailed introductions to each term,
ConceptNet only includes simple relational
descriptions between words like "Find [[a
money]] in [[a bank]]".

• Summarization Module: We remove the
summarization module and directly feed all
the information retrieved from Wikipedia into
the quiz generator without any further process-
ing.

6 Results

We compare the performance of our ConQuer
framework against a baseline, where the quiz is
generated directly from the student’s question with-
out utilizing any external materials or concepts.
The evaluation score for quizzes generated by GPT-
4o-mini is shown in Figure 4, and the win rate of
ConQuer in pairwise comparison is presented in
Figure 5. For clarity, the evaluation score has been
scaled to 100, and the win rate is expressed as a

percentage. Additional results for Gemini-2.0-flash
can be found in the Appendix C.

Figure 4: Evaluation score comparison between the
baseline and ConQuer with GPT-4o-mini. The evalua-
tion score has been normalized to a scale of 100.

Our results, based on both evaluation score and
pairwise comparison win rates, demonstrate that
ConQuer consistently outperforms the baseline
across all five evaluation dimensions. Although
the average score improvement across these five di-
mensions is only 4.8%, ConQuer achieves a signifi-
cant win rate of 77.52% in the pairwise comparison.
We hypothesize that both ConQuer and the base-
line produce quizzes that appear well-constructed
when considered in isolation, leading to high eval-
uation scores for both. However, when evaluated
together, ConQuer significantly outperforms the
baseline because its quizzes are grounded in high-
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Source EV Diversity AR DA Comprehensiveness Avg ∆

ConQuer 83.22 52.04 97.18 84.70 61.34 75.70 —

- Concept Extraction 80.31 52.13 93.24 83.36 59.42 73.69 -2.66%
ConceptNet 80.36 53.06 93.60 83.40 59.91 74.07 -1.32%
- Summary 77.49 52.39 88.28 81.88 57.94 71.60 -5.42%

Table 1: Ablation Study Results. EV, AR, and DA stand for Educational Value, Area Relevance, and Difficulty
Appropriateness, respectively.

Figure 5: Win rate from pairwise comparison between
the baseline and ConQuer with GPT-4o-mini

quality knowledge sources that are closely aligned
with key concepts. We have observed that the LLM
judge tends to prefer the second candidate, except
in the diversity dimension. This preference may
be attributed to the fact that the second candidate
is closer to answer tokens, prompting the model
to allocate more attention weights to it. In the di-
versity dimension, however, the model identifies
more repeated content in the second candidate, as
it has already seen all the quizzes from the first can-
didate. Correlation analysis of the five evaluation
dimensions can be found in Appendix E.

6.1 Results of Ablation Studies

The results of ablation study are in Table 1. We
observe that removing any of the three components
leads to a decrease in performance, except in the
diversity dimension. Although the performance
drop is minimal, as noted in the previous analysis,
it may represent a significant reduction in quality
when compared to the original quiz. The diversity
score remains largely unaffected, likely because the

task only requires generating three quizzes, making
it relatively easy to ensure variety. A qualitative
analysis of each ablation experiment is provided in
the Appendix D.

Removing the concept extraction module leads
to the loss of important concepts that may not be
explicitly mentioned in the sentence. For example,
in the student question, "What happens to a plant
when it doesn’t get enough sunlight or water?", the
key concept "Photosynthesis" is missing, resulting
in the omission of vital information.

Using ConceptNet as the knowledge source re-
duces the richness and quality of the retrieved in-
formation, although this is not as apparent in the
three-quiz scenario since the retrieved information
is still sufficient to generate distinct quizzes.

Removing the summarization module causes the
most significant drop in scores. This likely happens
because the model is overwhelmed by the exces-
sive information and struggles to focus on the key
elements.

7 Conclusion

We introduced ConQuer, a concept-based frame-
work for generating conceptually grounded and
educationally effective quizzes. By prioritizing key
concepts over surface-level keywords, ConQuer en-
sures alignment with essential learning objectives.
Our evaluations show a 4.8% improvement in quiz
quality and a 77.52% win rate in pairwise compar-
isons, highlighting the superiority of our approach.
Ablation studies emphasize the importance of each
component in driving these improvements.

ConQuer offers a scalable, accurate, and peda-
gogically valuable tool for quiz generation across
diverse educational contexts. Future work could ex-
tend knowledge sources, refine quiz generation for
adaptive difficulty, and personalize learning path.
ConQuer represents a step forward in automating
quiz creation while ensuring the accuracy and rele-
vance that are critical to effective learning.
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Limitations

While ConQuer demonstrates significant improve-
ments over the baseline in several aspects, there
are key limitations to our evaluation. One notable
limitation is that it is evaluated for generating only
three multiple-choice quizzes, limiting its general-
izability to other quiz formats or larger-scale quiz
settings.

Another limitation is that our evaluation relies
solely on LLMs for assessing quiz quality, with-
out human input, which may undermine its validity
by omitting human values and preferences. Addi-
tionally, the lack of feedback assessment limits the
practical usefulness of the quizzes. Future research
should explore the impact of personalized quiz gen-
eration based on student profiles, such as learning
history and preferences.

In interactive learning environments, students
often expect quizzes to be generated rapidly; how-
ever, the inherent latency of LLMs can hinder this
expectation. Addressing this challenge may require
integrating supplementary LLM serving systems
with adaptive computing strategies, as proposed
in (Fu et al., 2024a).

Finally, while concept extraction plays a crucial
role, it is not without its flaws. Critical concepts
may be overlooked or misinterpreted, particularly
when questions are ambiguous or contain implicit
ideas, potentially compromising quiz quality and
relevance.
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A Example student question

Example questions of biology area can be found be-
low. The question difficulty across the three educa-
tional levels shows a clear progression. For primary
school, questions focus on basic understanding of
natural phenomena and straightforward cause-and-
effect relationships, requiring minimal specialized
knowledge. At the high school level, questions
become more complex, involving scientific meth-
ods, deeper concepts like genetic variation and the
impacts of human activities, and a higher demand
for critical thinking. For PhD-level questions, the
focus shifts to advanced research topics, such as
methodologies in studying microbiomes and the
ethical implications of genetic manipulation.

Example Student Questions

Primary School:

• What are the ways plants and animals
adapt to their environments to survive?

• How do some animals use camouflage
to protect themselves from predators?

• What happens to a plant when it
doesn’t get enough sunlight or water?

• Why do some animals migrate long
distances, and how do they find their
way?

• How do different animal habitats, like
forests and deserts, affect the types of
species that live there?

High School:

• What are the various methods scien-
tists use to study ecosystems, and what
challenges do they face in collecting
data?

• How do genetic variations within a
population contribute to natural selec-
tion and evolution?

• What role do enzymes play in biochem-
ical reactions, and how can tempera-
ture and pH affect their activity?

• In what ways do human activities im-
pact biodiversity, and what strategies
can be employed to mitigate these ef-
fects?

• How do different types of symbiotic
relationships (like mutualism and par-
asitism) influence ecological balance?

PhD:

• What are the current methodologies
used in studying the microbiome’s in-
fluence on human health, and how do
they differ in their approaches?

• How does epigenetic modification play
a role in the adaptation of organisms to
their environments over generations?

• What are the key differences in
the mechanisms of action between
CRISPR technologies and traditional
gene editing techniques?

• In studying evolutionary biology, how
do we measure and interpret the rate
of speciation in various ecosystems?

• What ethical considerations arise in the
manipulation of genetic material in re-
search, particularly regarding biodiver-
sity conservation?

B Prompts

Here is the prompts we use as baseline method

Baseline Prompt

You are a quiz generator. The students are
currently studying {area} at the {level}
level and have asked a question. Your task
is to create 3 quizzes that help the student
better understand the question. The quiz
should consist of one question, one correct
answer, and three incorrect options. The
correct answer must always be placed in
option A.

Example:

Student Question: Where is Beijing
located?
[Quiz]
Quiz: What is the capital city of China?
A. Beijing
B. Chengdu
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C. Shanghai
D. Hangzhou

[Quiz]
Quiz: What continent is Beijing located?
A. Asia
B. Europe
C. Africa
D. North America

Now, please generate 3 quizzes following
the format, each quiz should follow the sign
of [Quiz]:
Student Question: {question}

Here is the prompt we use with WikiPedia knowl-
edge:

ConQuer Prompt

You are a quiz generator. The students are
currently studying {area} at the {level}
level and have asked a question. Your
task is to create 3 quizzes that helps the
student better understand the question.
You have access to summarized reference
information from Wikipedia. The quizzes
should accurately reflect reference infor-
mation, and the correct answer must be
well-supported by reference information.
The quiz should consist of one question,
one correct answer, and three incorrect
options. The correct answer must always
be placed in option A.

Example:

Student Question: Where is Beijing
located?
[Quiz]
Quiz: What is the capital city of China?
A. Beijing
B. Chengdu
C. Shanghai
D. Hangzhou

[Quiz]
Quiz: What continent is Beijing located?
A. Asia
B. Europe
C. Africa

D. North America

Now, please generate 3 quizzes following
the format, each quiz should follow thw
sign of [Quiz]:

Reference Wikipedia Information:
{summary}
Student Question: {question}

Here is the prompt we use to evaluate the overall
quality of quiz set:

Prompt for Quiz Quality Evaluation

A student studying {area} at the {level}
level is asking a question: "{question}".
Based on the following quiz set related to
the question, I need you to evaluate the
educational quality of the quiz set. For each
of the following criteria, assign a score
from 1 to 5 for the entire quiz set:

1. Educational Value: Do you think these
quizzes are educational? Will students
learn more by taking these quizzes?
- 1: Not educational at all, no learning
value.
- 2: Minimally educational, little learning
value.
- 3: Moderately educational, some learning
value.
- 4: Very educational, strong learning value.
- 5: Highly educational, great learning
value.

2. Diversity: Do you think these quizzes
are diverse? Are the quizzes covering a
broad range of topics, or do they all focus
on the same concept?
- 1: Very repetitive, covers a narrow area.
- 2: Some diversity, but mostly focuses on
one concept.
- 3: Fairly diverse, covers a few different
topics.
- 4: Quite diverse, covers multiple relevant
topics.
- 5: Extremely diverse, covers a broad range
of topics.

3. Area Relevance: Are these quizzes
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relevant to the student’s question and the
concepts they’re trying to learn? Are the
quizzes tailored to the subject area being
studied?
- 1: Not relevant to the question or subject
at all.
- 2: Minimally relevant, some connection to
the question/subject.
- 3: Moderately relevant, fairly aligned with
the question/subject.
- 4: Highly relevant, strongly aligned with
the question/subject.
- 5: Perfectly relevant, directly tied to the
question/subject.

4. Difficulty Appropriateness: Do you think
these quizzes match the student’s current
education level? Would these quizzes be
too easy or too difficult for a student at this
level?
- 1: Too easy or too difficult, not appropriate
for the level.
- 2: Slightly mismatched, quizzes may be
too easy or too hard.
- 3: Moderately appropriate, quizzes are
somewhat aligned with the level.
- 4: Mostly appropriate, quizzes are
well-suited for the level.
- 5: Perfectly suited to the student’s
education level.

5. Comprehensiveness: Do these quizzes
cover the depth and breadth of the topic?
Are they thorough in addressing key
concepts and details?
- 1: Very superficial, only scratches the
surface of the topic.
- 2: Somewhat incomplete, misses impor-
tant aspects.
- 3: Moderately comprehensive, covers the
basics but lacks depth.
- 4: Quite comprehensive, addresses most
key aspects with reasonable depth.
- 5: Highly comprehensive, thoroughly
covers the topic in great depth and detail.

Here is the quiz set related to the question:
{quiz_set}

Please start by providing a step-by-step rea-

soning analysis of the quiz set, then return
your evaluation as a JSON object in the fol-
lowing format:
”’json
{
"Educational Value": score,
"Diversity": score,
"Area Relevance": score,
"Difficulty Appropriateness": score,
"Comprehensiveness": score
}”’

Here is the prompt we use to do pairwise com-
parisons of quality of quiz set:

Prompt for Pairwise Comparison

A student studying {area} at the {level}
level has asked the following question:
"{question}". You are given two quiz
sets that aim to help the student better
understand the question. Please choose
the quiz set that best address this question.
Please evaluate and compare the educa-
tional quality of these quiz sets based on
the criteria listed below. For each criterion,
select the quiz set that performs better by
outputting 1 or 2.

1. Educational Value: Which quiz set offers
greater learning potential? Which set will
help students gain a deeper understanding
of the topic?
2. Diversity: Which quiz set covers a
broader range of topics? Does it explore a
variety of concepts or focus narrowly on a
single idea?
3. Area Relevance: Which quiz set is more
aligned with the student’s question and the
key concepts they are studying? How well
is it tailored to the specific subject area?
4. Difficulty Appropriateness: Which quiz
set is better suited to the student’s current
educational level, neither too simple nor
too advanced?
5. Comprehensiveness: Which quiz set
provides greater depth and breadth? Which
one is more thorough in addressing key
concepts and details?

Here is the quiz set 1:
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{quiz_set_1}

Here is the quiz set 2:
{quiz_set_2}

Please start by providing a step-by-step rea-
soning analysis of the quiz sets, then return
your evaluation as a JSON object in the fol-
lowing format:
”’json
{
"Educational Value": choice,
"Diversity": choice,
"Area Relevance": choice,
"Difficulty Appropriateness": choice,
"Comprehensiveness": choice
}”’

C Additioanl Experimental Results with
Gemini

To further demonstrate the generalizability of Con-
Quer across different LLMs, we conducted experi-
ments using Gemini-2.0-flash (Team et al., 2023).
The corresponding results are presented in Fig-
ures 6 and 7. On average, ConQuer achieved
a 3.1% improvement across five evaluation dimen-
sions, with a win rate of 66.32%. While this per-
formance is slightly lower than that of GPT-4o-
mini, it clearly demonstrates the effectiveness of
the ConQuer framework in generating high-quality
quizzes.

Figure 6: Evaluation score comparison between the
baseline and ConQuer with Gemini-2.0-flash

Figure 7: Win rate from pairwise comparison between
the baseline and ConQuer with Gemini-2.0-flash

D Qualitative Analysis of Ablation Study

In this section, we provide a qualitative analysis
of the quizzes generated by ConQuer and compare
them to quizzes generated with different modules
removed, as shown in Table 2. For clarity, we select
representative quizzes from the quiz set and only
present a subset of the results.

Removing the concept extraction module sig-
nificantly impacts the quiz’s ability to capture the
underlying concept behind the student’s question.
In the example related to plant growth, the quiz
generated without this module fails to mention pho-
tosynthesis, which is essential for the student’s un-
derstanding of the process and its importance for
plants.

When the knowledge source is altered, the gen-
erated quiz becomes overly simplistic, essentially
repeating basic concepts without depth. In contrast,
the quiz generated by ConQuer, utilizing a more
comprehensive knowledge base like Wikipedia, in-
corporates richer details, such as explaining how
Earth’s mass and distance influence gravity.

Finally, when the summarization module is re-
moved, the resulting quiz deviates from the stu-
dent’s original question, likely due to the model’s
failure to focus on the key information. On the
other hand, the quiz generated by ConQuer main-
tains a close alignment with the student’s question,
demonstrating its ability to stay on topic and pro-
vide relevant information.
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Ablation
Module Student Question Quiz Generated without Abla-

tion Module Quiz Generated by ConQuer

Concept Ex-
traction Mod-
ule

What happens to
a plant when it
doesn’t get enough
sunlight or water?

Nothing about photosynthesis

Quiz: Which process do plants
struggle with when they do not
get enough sunlight?
A. Photosynthesis
B. Respiration
C. Digestion
D. Germination

Wikipedia
Knowledge
Source

How does gravity
affect the way ob-
jects move on Earth
and in space?

Quiz: What force pulls objects
toward each other on Earth?
A. Gravity
B. Magnetism
C. Friction
D. Electricity

Quiz: What determines the
strength of Earth’s gravitational
field at a given location?
A. The mass of Earth and the dis-
tance from its center
B. The temperature of the air
C. The speed of sound in water
D. The color of the sky

Summarization
Module

What role does
childhood devel-
opment play in
shaping adult
behavior and per-
sonality?

Quiz: Which of the following at-
tachment styles was NOT iden-
tified by Mary Ainsworth in her
strange situation experiment?
A. Independent
B. Secure
C. Ambivalent
D. Avoidant

Quiz: What term is often used to
describe personality in children?
A. Temperament
B. Mood
C. Character
D. Disposition

Table 2: Ablation Study Result

E Analysis of Correlation of Evaluation
Dimensions

Given the range of evaluation dimensions em-
ployed in this study, it is essential to examine the
relationships between them. To facilitate this, we
present a heatmap illustrating the correlation be-
tween the scores of each evaluation dimension.

The heatmap reveals several dimensions with
strong positive correlations. For instance, Educa-
tional Value, Difficulty Appropriateness, and Com-
prehensiveness are closely related. These corre-
lations can be explained by the fact that a more
comprehensive quiz tends to cover a broader range
of topics, thereby enhancing its educational value.
Similarly, a difficulty level aligned with the stu-
dent’s abilities tends to improve both educational
value and comprehension by appropriately chal-
lenging the learner.

On the other hand, some metrics exhibit little to
no correlation. For example, Diversity and Area
Relevance show near-zero or even negative corre-

Figure 8: Correlation of scores in each evaluation di-
mension.
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lations. This may occur because increasing the
diversity of content often necessitates expanding
the scope of topics, which could inadvertently re-
duce the focus on a specific subject area.
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Abstract
This paper presents a research thesis proposal
to develop a generalizable Native American lan-
guage identification system. Despite their cul-
tural and historical significance, Native Ameri-
can languages remain entirely unsupported by
major commercial language identification sys-
tems. This omission not only underscores the
systemic neglect of endangered languages in
technological development, but also highlights
the urgent need for dedicated, community-
driven solutions. We propose a two-pronged
approach: (1) systematically curating linguis-
tic resources across all Native American lan-
guages for robust training, and (2) tailored data
augmentation to generate synthetic yet linguis-
tically coherent training samples. As proof of
concept, we extend an existing rudimentary
Athabaskan language classifier by integrating
Plains Apache, an extinct Southern Athabaskan
language, as an additional language class. We
also adapt a data generation framework for low-
resource languages to create synthetic Plains
Apache data, highlighting the potential of data
augmentation. This proposal advocates for a
community-driven, technological approach to
supporting Native American languages.

1 Introduction

Language is more than a means of communica-
tion; it is a vessel of culture, history, and identity
(Miller and Hoogstra, 1992; Bucholtz and Hall,
2004; Sirbu, 2015). For many Indigenous commu-
nities, the loss of a language represents not just lin-
guistic erosion but the disappearance of traditions,
worldviews, and ways of knowing (Grenoble and
Whaley, 1998; Khawaja, 2021). Despite increasing
efforts in computational linguistics to support low-
resource languages (Ranathunga et al., 2023; Singh
et al., 2024), the landscape remains starkly imbal-
anced. Google’s LangID (Caswell et al., 2020), one
of the most commercialized language identifica-
tion systems, covers over 200 languages, but over-
looks almost all North American Native languages.

Figure 1: A simplified, stylized rendition of the pro-
posed generalizable Native American Language identi-
fication system.

This exclusion is an alarming reflection of how
centralized language technologies systematically
marginalize Indigenous voices (Khubchandani,
2016; Yim, 2024).

The state of New Mexico (NM) stands as a cru-
cial focal point in this discussion. Home to eight
Native American languages1 (New Mexico Sec-
retary of State, 2025), the state exemplifies both
the resilience and fragility of Indigenous linguistic
heritage. While computational linguistics has ex-
plored the most-widely spoken Navajo to some ex-
tent (Liu et al., 2021; Yang et al., 2025b), progress
remains constrained by the scarcity of accessible
linguistic data (Meek, 2012; Goswami et al., 2024).
To address the current gap in commercialized lan-
guage technologies, we propose a research agenda
to build a generalizable Native American language
identification system, the first of its kind, as exem-
plified in Figure 1.

Our approach consists of two key initiatives: (1)
Data Resource Aggregation: A comprehensive, sys-
tematic effort to manually collect and curate lin-
guistic datasets across all available Native Amer-

1The eight languages are Tiwa, Tewa, Keres, Towa, Zuni,
Navajo, Mescalero Apache and Jicarilla Apache. There are
eleven New Mexico counties with Native American lands.
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ican languages, ensuring high-quality, representa-
tive training data. (2) Synthetic Data Generation:
Applying an established data augmentation frame-
work for endangered languages to expand exist-
ing data, particularly for languages with few or no
remaining fluent speakers. For proof of concept,
we manually curated a small dataset of 25 Plains
Apache sentences, an extinct Southern Athabaskan
language, and successfully integrated it into an ex-
isting rudimentary Athabaskan language classifier
(Yang et al., 2025b). We then adapted a data gener-
ation framework for low-resource languages (Yang
et al., 2025a) to create 5 syntactically-coherent new
Plains Apache sentences, displaying the promise
of our approach. This paper serves as both a re-
search thesis proposal and a call to action, work-
ing towards a future where Native American
languages are not only included but actively sup-
ported by commercialized language technolo-
gies.

2 Related Work

Efforts to develop Natural Language Processing
(NLP) technologies for endangered languages are
hindered by scarce datasets (Maimaiti et al., 2022)
and non-specialized model architectures (Lin et al.,
2018). This section reviews emergent research in
two key areas: Native American language classi-
fication, and synthetic data generation for endan-
gered languages.

2.1 Native American Language Classification

Yang et al. (2025b) exposed the shortcomings of
centralized NLP systems in handling Native Amer-
ican languages. Google’s LangID system (Caswell
et al., 2020), despite covering over 100 languages,
failed to include any Native American languages,
even the most widely spoken Navajo (Palakurthy,
2022). To address this gap, they developed a Ran-
dom Forest classifier (Ho, 1995) trained on Navajo
and 20 of its most frequently confused languages,
achieving a near-perfect accuracy (97-100%). Fur-
ther experiments revealed that the classifier gener-
alized well to other Athabaskan languages2 under
the same family tree, suggesting potential scala-
bility across related language families. However,
while this work introduced a novel approach to
Native American language identification, its scope

2The languages tested with the Navajo classifier were West-
ern Apache, Mescalero Apache, Jicarilla Apache and Lipan
Apache, which are all Southern Athabaskan languages.

was limited, covering only five languages. Expand-
ing its applicability requires broader generalization
across diverse linguistic groups.

2.2 Synthetic Data Generation for
Endangered Languages

Data scarcity is a persistent challenge in low-
resource NLP (Ghafoor et al., 2021; Adimulam
et al., 2022), particularly for languages with few
or no fluent speakers (Bansal et al., 2021). Yang
et al. (2025a) demonstrated the effectiveness of
synthetic data augmentation for endangered lan-
guages on Nüshu, a near-extinct ancient Chinese
script (Congrong, 2024). Using a language-specific
data generation framework, they produced a novel
dataset of 98 linguistically coherent synthetic sen-
tences in Nüshu, demonstrating a viable approach
to language revitalization.

Applying this approach to Native American lan-
guages presents both opportunities and challenges.
Unlike Nüshu’s text-to-text structure (Di, 2024),
many Indigenous languages require careful han-
dling of phonetic, morphological, and orthographic
variation (Link et al., 2021). Still, a synthetic data
pipeline remains a promising strategy for expand-
ing training resources, especially for those on the
verge of extinction.

2.3 Towards a Unified Approach

Building on prior work, this paper proposes a hy-
brid approach that combines language classification
and synthetic data generation to create a scalable
Native American language identification system.
Unlike previous efforts that addressed classification
or data expansion in isolation, we argue that both
are essential for developing a truly generalizable,
resource-efficient, and community-driven model.
By integrating rigorous classifier development with
targeted augmentation, we aim to surpass exist-
ing limitations and advance linguistic inclusivity in
commercialized language technologies.

3 Native American Language Landscape

Native American languages form a vast and diverse
linguistic ecosystem (Oberg and Olsen-Harbich,
2022), reflecting centuries of cultural, historical,
and geographical significance (Clements, 2021).
While many of these languages once flourished
across North America, colonization (Huang, 2024),
forced assimilation policies (Ellinghaus, 2022), and
systemic marginalization (Sear and Turin, 2021)
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Figure 2: Family Tree for Athabaskan Languages

have led to widespread language loss. Today, their
survival depends on urgent and deliberate revitaliza-
tion efforts (De Costa, 2021), including the devel-
opment of computational tools for language preser-
vation and accessibility.

3.1 Statistics

At the time of European contact, over 300 Na-
tive American languages were spoken across North
America (Williams, 2022), belonging to numerous
distinct language families (Sutton, 2021). These
languages exhibited immense structural diversity,
with some featuring polysynthetic morphology
(e.g., Mohawk, Inuktitut) (Arkadiev, 2023), com-
plex tone systems (e.g., Athabaskan languages)
(Uchihara, 2023), or elaborate evidential marking
(e.g., Quechua) (Kalt, 2021). In present-day United
States, about 175 Native American languages are
still spoken (Antoine, 2021). While some lan-
guages like Cherokee and Navajo are better doc-
umented, with existing text corpora (Zhang et al.,
2021; Goldhahn et al., 2012), many others have
little to no surviving linguistic records (Leonard,
2023).

3.2 Endangered Status and Language Loss

The vast majority of Native American languages in
the United States are either moribund (Dorzheeva
et al., 2021), where they are spoken only by the el-
derly, or critically endangered (Estrada et al., 2022),
where fewer than 100 speakers remain. The statis-
tics are stark: Only about 20 Native American lan-
guages are being acquired by children as a first
language (Clifton, 2021), and by 2050, at least 90%
of Native American languages are predicted to be-
come extinct (Yerian and Halima, 2024).

These figures highlight an accelerating crisis -
one driven not only by natural language shift but by
centuries of forced assimilation policies, including
residential schools that punished Indigenous chil-

dren for speaking their native tongues (Lomawaima
and McCarty, 2025). Even today, Native Ameri-
can communities face systemic barriers to language
transmission, from limited access to bilingual edu-
cation (McCarty and Brayboy, 2021) to the short-
age of digital language tools that support continued
learning and usage (Meighan, 2021). Without delib-
erate investment in technological solutions tailored
to Indigenous languages, these languages risk fur-
ther exclusion from digital spaces, thus accelerating
their decline.

4 Language Detection Experiments

To demonstrate the feasibility of our proposed
approach mentioned in Section 2.3, we conduct
a small-scale experiment using Plains Apache
(Saxon, 2023), an extinct member of the Southern
Athabaskan language family. This proof of concept
serves as as a preliminary step in our broader effort
to build a generalizable Native American language
identification system.

4.1 Why Plains Apache?

Plains Apache presents a unique case study for
two key reasons. Firstly, the Athabaskan language
classifier proposed by Yang et al. (2025b) covered
nearly all Southern Athabaskan languages except
Plains Apache. Given its linguistic proximity to
Navajo and other Apache languages, as shown in
Figure 2, incorporating it into the classifier offers a
straightforward and scalable expansion. Secondly,
unlike Navajo, which still has thousands of speak-
ers, Plains Apache is extinct (Tellmann, 2021), with
no known fluent speakers. This makes it an ideal
candidate for synthetic data augmentation using
the text generation framework for endangered lan-
guages proposed by Yang et al. (2025a). If suc-
cessful, this experiment could serve as a blueprint
for generating linguistically sound training data for
other highly endangered or extinct Native Ameri-
can languages. By implementing the classifier ex-
pansion and synthetic data pipeline with the Plains
Apache language, we aim to evaluate the feasibility
of our broader research approach on a small scale
before scaling to a multi-language setting.

4.2 Manually Gathering Plains Apache Data

Due to the absence of publicly available digital
corpora for Plains Apache, we manually scraped
and transcribed sentences from various linguistic
sources (Wikipedia, 2025; Morgan, 2012). As an
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Figure 3: Sample sentences of manually curated Plains
Apache text

initial effort, we curated 25 Plains Apache sen-
tences in CSV format, with a small sample shown
in Figure 3. This manually curated dataset under-
scores the challenges of working with endangered
and extinct Indigenous languages, highlighting the
urgent need for automated, scalable solutions such
as data augmentation.

4.3 Integration into Athabaskan Classifier
Integrating Plains Apache as an additional lan-
guage class into the Random Forest classifier
yielded interesting results. With all other train-
ing weights of the original classifier unchanged,
Plains Apache sentences were classified as Navajo
with 100% likelihood, as shown in Table 1. In
the original experiments conducted by Yang et al.
(2025b), Western Apache and Mescalero Apache
had the highest classification rates as Navajo at
96.00% and 100%, respectively, while Jicarilla
Apache and Lipan Apache performed lower at
92.32% and 62.16%. This disparity was previ-
ously attributed to subgroup distinctions, as Jicar-
illa and Lipan Apache belong to the Eastern branch
of Southern Athabaskan, whereas Navajo, Western
Apache, and Mescalero Apache fall under the West-
ern subgroup, as illustrated in Figure 2. However,
Plains Apache, despite being its own distinct sub-
group, exhibited classification behavior identical
to Mescalero Apache. This raises new questions
about the lexical and syntactic relationships among
the Southern Athabaskan subgroups, warranting
further analysis.

4.4 Synthetic Data Generation for Plains
Apache

We applied the framework introduced by Yang et al.
(2025a) to expand our Plains Apache text. Orig-
inally developed for the endangered Nüshu lan-

Language Classified as Navajo Total Sentences

Western Apache 96.00% 25
Mescalero Apache 100.00% 32
Jicarilla Apache 92.31% 13
Lipan Apache 62.16% 37
Plains Apache 100.00% 25

Table 1: Classification Results for Apache Languages:
Percentage of sentences classified as Navajo and total
number of sentences examined for each Apache lan-
guage, with the addition of Plains Apache, highlighted
in pink.

guage, this approach combines few-shot prompt-
ing with language-specific tailoring to generate
new synthetic data. Using the GPT-4o model, we
provided a dataset of 25 Plains Apache sentences
and prompted the model to generate 5 new arti-
ficial sentences, which it successfully produced3.
While this represents a small-scale test, it high-
lights the potential of synthetic augmentation for
highly endangered Indigenous languages, even in
cases of extreme data scarcity. Moving forward,
this methodology could be extended to other extinct
or moribund Native American languages, signifi-
cantly increasing the amount of available data for
classification, modeling, and revitalization efforts.

5 Conclusion

This paper presents a long-term research vision
for developing a generalizable Native American
language identification system, addressing the crit-
ical absence of Indigenous languages in commer-
cial language technologies. By building on ex-
isting work in Native American language classifi-
cation and synthetic data generation, we propose
a unified approach that leverages both to bridge
this gap. Our small-scale experiments integrating
Plains Apache demonstrate the promise and fea-
sibility of this method. Beyond its technical con-
tributions, this work serves as a call to action for
the broader NLP community to invest in decentral-
ized, community-driven language technologies that
prioritize linguistic diversity. Through collective
efforts, we can ensure that these languages are not
only preserved, but actively recognized and used in
the digital age.

3These generated sentences have not yet been rigorously
validated beyond a visual review; we propose this as a viable
method for data augmentation rather than asserting complete
accuracy.
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Limitations

While this study lays the groundwork for Native
American language identification, limitations re-
main. The Plains Apache experiment, though in-
formative, is constrained by scarce natural data,
and while synthetic augmentation mitigates this, it
cannot fully replicate the depth of naturally spoken
language. Our focus on Athabaskan languages also
raises questions about the broader applicability of
this approach to other linguistic families. Addition-
ally, reliance on synthetic data poses risks of cap-
turing artifacts rather than true linguistic features.
Beyond identification, future work must explore
applications like translation and speech recogni-
tion for meaningful impact. Expanding datasets,
refining augmentation techniques, and engaging
Indigenous communities will be essential to ensur-
ing these technologies support both linguistic and
cultural preservation.

Ethics Statement

Ethical considerations are important when develop-
ing technologies for Native American languages,
which have a big role in cultural, spiritual, and his-
torical settings. This study recognizes that these
languages are not only tools for communication
but also symbols of culture and heritage. Thus, the
development of language technologies for Native
American languages should happen in close collab-
oration with community members and leaders to
ensure language preservation rather than cultural
homogenization and appropriation. We are actively
engaging with the Native American and Indigenous
Languages department at our institution to ensure
this project is conducted in a thoughtful, respectful,
and community-centered manner.
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Abstract

The emergence of large language models
(LLMs) has significantly influenced numerous
fields, including healthcare, by enhancing the
capabilities of automated systems to process
and generate human-like text. However, de-
spite their advancements, the reliability and
accuracy of LLMs in medical contexts remain
critical concerns. Current evaluation methods
often lack robustness and fail to provide a com-
prehensive assessment of LLM performance,
leading to potential risks in clinical settings. In
this work, we propose Med-CoDE, a specifi-
cally designed evaluation framework for med-
ical LLMs to address these challenges. The
framework leverages a critique-based approach
to quantitatively measure the degree of dis-
agreement between model-generated responses
and established medical ground truths. This
framework captures both accuracy and reliabil-
ity in medical settings. The proposed evalu-
ation framework aims to fill the existing gap
in LLM assessment by offering a systematic
method to evaluate the quality and trustwor-
thiness of medical LLMs. Through extensive
experiments and case studies, we illustrate the
practicality of our framework in providing a
comprehensive and reliable evaluation of medi-
cal LLMs.

1 Introduction

Medical Question Answering systems based on
Large Language Models represent a significant
leap in leveraging artificial intelligence for health-
care. These systems are designed to process and
respond to medical queries. The primary aim of
Medical QA LLMs is to provide accurate, reli-
able, and timely information to support clinicians,
researchers, and patients. Evaluating the perfor-
mance of these LLMs is crucial to ensure their
reliability and effectiveness in real-world medical
applications. Performance evaluation typically in-
volves assessing the accuracy, relevance, and co-

Critique Generation

Critique Classification

0.0113 0.0735 0.1247 0.7903

Question: A multi-specialty physician practice is meeting to determine which
compensation scheme would best serve the practice and its patient population. Which of
the following are true in regards to physician compensation?
Ground Truth: Fee-for-service may incentivize physicians to increase healthcare
utilization irrespective of quality.

Prediction: Capitation poses the least financial risk to physicians.

Critique: The prediction is incorrect. The critique is that the model failed to identify the
correct incentive structure associated with Fee-for-service compensation scheme. The
ground-truth accurately states that Fee-for-service may incentivize physicians to
increase healthcare utilization, regardless of quality, which is a key consideration in
determining the best compensation scheme for the practice.

None Low Moderate High

Degree of Disagreement

Figure 1: Med-Code Framework

herence of the generated responses compared to
established medical standards or expert opinions.

Traditional methods for evaluating text genera-
tion, such as string similarity metrics (e.g., ME-
TEOR, BLEU, ROUGE), have been used widely
across various domains. These metrics compare
the overlap between generated and reference text-
based on the n-gram matching, synonymy, and para-
phrasing. While effective in general text generation
tasks, these metrics pose significant limitations in
the medical QA domain. Medical texts often re-
quire precise and contextually accurate responses
where minor discrepancies can lead to substantial
misunderstandings or clinical errors. Traditional
metrics fail to capture the nuanced medical context,
thereby providing an inadequate measure of LLM
performance in this sensitive field.

To address the shortcomings of traditional evalu-
ation methods, researchers have started exploring
the use of LLMs themselves for evaluating other
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LLMs. Frameworks such as Harness (Gao et al.,
2023), DeepEval1, MLFlow2 represent this shift
towards LLM-assisted evaluation. These frame-
works aim to provide more contextual and com-
prehensive evaluations by leveraging the advanced
capabilities of LLMs to understand the generated
responses. Despite these advancements, the cur-
rent LLM-assisted evaluation methods still lack a
structured approach to quantifying disagreement
and assessing reliability.

This research paper presents an reliable evalu-
ation framework tailored for Medical QA LLMs.
Drawing inspiration from the work of (Wang et al.,
2023), our framework introduces a critique-based
methodology that quantitatively assesses the dis-
crepancies between model-generated responses and
established medical ground truths. By employing
a critique model, we analyzed the differences in
LLM outputs and provide a comprehensive evalu-
ation of their accuracy and reliability. The visual
representation of Med-Code framework is shown
in Fig. 1.

The contributions of this work are as follows.

• We curated a specialized medical cri-
tique dataset, incorporating medical Q&A
pairs from benchmark datasets such as
Medqa (Zhang et al., 2018), Medmcqa (Pal
et al., 2022). etc. The dataset includes re-
sponses from various medical language mod-
els (LLMs) and a degree of disagreement la-
bel between the ground-truth answers and the
models’ responses.

• We developed an advanced evaluation pipeline
based on the Shepherd model (Wang et al.,
2023), where we fine-tuned the Phi-3 model
for generating critiques and employed a BERT
model for classifying them.

• To demonstrate the effectiveness of our eval-
uation framework, we conducted comprehen-
sive experiments across four medical bench-
mark datasets, utilizing diverse evaluation
techniques to ensure robust validation.

2 Related Work

This section discusses related work in the field
of evaluation, highlighting previous contribu-
tions. Our motivation stems from the Shepherd

1https://docs.confident-ai.com/
2https://mlflow.org/

Model (Wang et al., 2023), which introduces a large
language model designed to generate critiques of
model responses to given prompts. We extend this
work by using critiques to evaluate discrepancies
between model responses and ground truth.

Recent studies have shown that traditional met-
rics such as METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004) and BLEUScore (Zhang et al.,
2020) are inadequate for accurately evaluating
open-ended generation tasks due to their reliance
on reference text (Chiang and Lee, 2023; Gu et al.,
2021; Guan et al., 2021; Polišenská et al., 2020;
Wu et al., 2021). Advances have led to new re-
search using LLMs as evaluators, demonstrating
their potential to overcome these limitations (Kim
et al., 2024; Kocmi and Federmann, 2023; Liu et al.,
2024b,c). Notably, approaches employing power-
ful LLMs like GPT-4 have achieved remarkable
performance (Fu et al., 2024; Liu et al., 2023).
However, current LLM-based evaluators exhibit
shortcomings in robustness, as their performance
is highly sensitive to prompts, leading to instabil-
ity in the evaluation process. Recent studies have
sought to address these challenges by generating
explanations for evaluation outputs (Chiang and
Lee, 2023), but this approach does not inherently
improve robustness or reliability due to issues such
as hallucinations (Xu et al., 2023).

In the context of medical AI, where accuracy and
reliability are crucial, several research efforts pro-
pose strategies to evaluate LLM responses. An au-
tomatic evaluation metric and algorithm for LLMs’
clinical capabilities is proposed in (Liu et al.,
2024a), featuring a multi-agent framework with
Retrieval-Augmented Evaluation (RAE) to assess
the behaviors of a doctor agent. (Awasthi et al.,
2023) propose a structured method for compre-
hensive human evaluation of LLM outputs, intro-
ducing the HumanELY guidance and tool. (Liao
et al., 2024) introduce the Automated Interactive
Evaluation (AIE) framework, which provides a
dynamic, realistic platform for assessing LLMs
through multi-turn doctor-patient simulations.

3 Methodology

In this section, we discuss the process of creating a
fine-tuning dataset for the medical domain critique
model, the approach we used for fine-tuning the
LLM, and the development of classification model.
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Figure 2: The overall Fine-tuning pipeline for Critique Generator & Classifier.

3.1 Dataset

In this research, we curated a specialized dataset
using the OpenAI GPT-4 model to build a fine-
tuning dataset for our critique generation model.
Our final critique dataset comprises 38,819 sam-
ples, with an average critique length of 58.95 words.
This dataset enables us to assess how well LLM
responses align with ground-truth answers and to
measure the degree of disagreement, providing a
robust foundation for evaluating the performance
of medical QA LLMs.

For medical domain data, we selected and com-
bined small random subsets from standard medical
QA datasets including Medqa (Zhang et al., 2018),
Medmcqa (Pal et al., 2022), MMLU (Hendrycks
et al., 2021), and Pubmedqa (Jin et al., 2019).
These datasets encompass medical question-answer
pairs from various medical fields, covering differ-
ent levels of difficulty and types of questions. This
comprehensive combination ensures that our cri-
tique model can effectively evaluate both objective
and subjective questions.

<|user|>
You are a expert ai assistant. You are given a question, its ground-truth
answer and the prediction from a model. Your task is to generate critique for
the given prediction with respect to the given question, and ground-truth.
This is very important and crucial task. While generating the critique, please
keep the critique precise, clear and short.

### Question:  {sample['question']}
### Ground-Truth:  {sample['ground-truth']}
### Prediction:  {sample['prediction']}

Only return the helpful answer below and nothing else.<|end|>
<|assistant|>

Figure 3: Critique Generation Prompt Template

After merging the random subsets, we employed
SOTA medical domain LLMs, such as Meditron-
7B (Chen et al., 2023), SelfBioRAG-7B (Jeong
et al., 2024), to generate answers for each ques-

tion. Each response was then critically evaluated
using OpenAI GPT-4, which assigned a disagree-
ment label from one of four categories: None, Low,
Medium, and High. A High disagreement label
indicates that the model-generated response is en-
tirely incorrect and does not align with the ground
truth in any aspect, whereas a None disagreement
label signifies that the response is accurate and
fully aligns with the ground truth without any ex-
traneous information. In Low disagreement label
the response is mostly accurate with minor addi-
tional details or slight deviations from the ground
truth, lastly, the Moderate disagreement label, the
response contains a mix of correct and incorrect
information, with significant deviations from the
ground truth, meaning the model is hallucinating.

3.2 Models

To build this lightweight evaluation framework, we
employed two small models: Phi-3 3.8B (Abdin
et al., 2024) for generating critiques & BERT (De-
vlin et al., 2019) for classifying the critiques. Al-
though larger models with superior text generation
capabilities and understanding are available, our
objective was to create a domain-specific model tai-
lored for a single task. Hence, these models were
chosen. The visual representation of fine-tuning
model architectures is shown in Fig. 2. This inte-
grated pipeline proved efficient across all aspects,
including computation, speed, and accuracy.

4 Experiments

In this section, we will delve into the experiment
setup we have used for building this framework.
It is divided into two subsections, first is for the
critique generation model, and second is for the
critique classification model.
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4.1 Critique Generation Model
The objective of this model is to generate critiques
based on a given question, its ground-truth answer,
and the model’s response. For this purpose, we
employed the phi-3-mini model, which contains
3.8 billion parameters.

The hyperparameters configured for fine-tuning
include 5 epochs, a batch size of 128, a learning
rate of 1.41e-5, and the AdamW 8-bit optimizer.
We utilized the LORA technique for efficient fine-
tuning, with a rank parameter r = 16. The training
process consumed an average of 20 GBs VRAM
and required approximately 4-5 hours of GPU time.
The data set was split into 30,000 samples for train-
ing, 4,409 for testing, and 4,410 for validation. The
prompt template used in the fine-tuning and infer-
ence is given in Fig. 3.

Examples for each class of disagreement are pro-
vided in Fig. 4. These examples illustrate that the
critiques generated by the model are highly precise
and clear in identifying discrepancies between the
ground-truth answers and the model’s predictions,
thereby supporting the efficacy of the fine-tuning
process. To evaluate the quality of the dataset, we
conducted a quality assessment on a small subset,
as detailed in Section 5.1.

4.2 Critique Classification Model
For the critique classification model, we utilized
the BERT base model, which contains 110M pa-
rameters. This model is lightweight yet offers a
deep bidirectional understanding of context, effec-
tively capturing nuanced language patterns. The
architecture of the entire classification network is
depicted in Fig. 2.

Framework Accuracy
GPT-3.5 78.12
Med-Code 71.72

Table 1: Human Evaluation Results of Disagreement
Classification

The hyperparameters configured for fine-tuning
are 25 epochs, a learning rate of 1e-3, a dropout rate
of 0.3, a batch size of 16, and a maximum sequence
length of 208 tokens. The fine-tuning process em-
ployed a weighted average of all classes, with class
weights specified as [5.96, 1.34, 0.83, 0.52]. The
divergence function used is the Negative Log Like-
lihood. The total GPU utilization for fine-tuning
this network is 2,771 MiB with 1 hour of GPU time.

The data split used in this model training is 27,173
samples for training, 5,823 samples for validation,
and 5,823 samples for testing.

We conducted a performance analysis of Ope-
nAI’s GPT-3.5 and our proposed framework, Med-
Code, on a human labeled subset of 265 randomly
selected samples. Each model received a question,
a ground-truth answer, and the model’s prediction,
and we evaluated their accuracy in disagreement
classification based on the critiques they generated.
As shown in Table. 1, GPT-3.5 correctly classified
approximately 207 out of 265 samples, and our
proposed Med-Code framework produced results
comparable to those of GPT-3.5 which is around
190 samples.

5 Results & Analysis

To assess the effectiveness of evaluating responses
from large language models, we conducted ex-
periments on four medical benchmark datasets:
Medqa (Zhang et al., 2018), Medmcqa (Pal
et al., 2022), Pubmedqa (Jin et al., 2019), and
Mmlu (Hendrycks et al., 2021). These datasets are
widely used in medical benchmarking and consist
of objective-type questions. Our analysis focused
on the test sets of these datasets using three LLMs:
LLaMA-3 (AI@Meta, 2024), Mistral (Jiang et al.,
2023), and BioMistral (Labrak et al., 2024). We
selected these LLMs due to their demonstrated su-
perior performance on general tasks and medical
benchmarks.

We utilized Meteor and Rouge-L scores for au-
tomatic evaluation, the LLaMA-3 model for LLM-
assisted evaluation, and our Med-Code framework
to analyze LLM performance comprehensively.
Med-Code categorizes responses into four degrees
of disagreement, where an ideal model would show
the highest average probability for “None” dis-
agreement and the lowest for “High” disagreement.
Detailed descriptions of each disagreement label
are provided in the Section 3.1.

In Table 2, LLaMA-3, BioMistral, and Mis-
tral models were used for inference. LLaMA-3
performed best on the MMLU dataset, achieving
high scores in both automatic and LLM-assisted
evaluations. Med-Code results showed that the
“None” disagreement probability was the highest,
indicating strong alignment between the model’s re-
sponses and the ground-truth answers. Conversely,
the “High” disagreement probability was the low-
est, supporting the model’s accuracy.
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Dataset Automatic Evaluation LLM-Accuracy Dis-agreement Evaluation
Meteor Rouge-L None ↑↑ Low ↑ Moderate ↓ High ↓↓

Results for LLaMA-3
MEDQA USMLE 0.51 0.52 0.69 0.53 0.22 0.13 0.12

MEDMCQA 0.12 0.26 0.53 0.47 0.32 0.13 0.07

PUBMEDQA 0.11 0.12 0.39 0.55 0.30 0.10 0.05

MMLU 0.71 0.71 0.70 0.57 0.31 0.09 0.04

Results for BioMistral 7B
MEDQA USMLE 0.14 0.07 0.74 0.44 0.29 0.16 0.11

MEDMCQA 0.16 0.08 0.61 0.35 0.39 0.18 0.08

PUBMEDQA 0.21 0.16 0.73 0.54 0.30 0.11 0.05

MMLU 0.33 0.19 0.70 0.32 0.41 0.19 0.07

Results for Mistral 7B v2.0
MEDQA USMLE 0.16 0.12 0.68 0.47 0.28 0.15 0.01

MEDMCQA 0.56 0.11 0.56 0.33 0.38 0.20 0.08

PUBMEDQA 0.21 0.19 0.68 0.60 0.26 0.09 0.05

MMLU 0.37 0.25 0.65 0.36 0.37 0.19 0.07

Table 2: Evaluation Results for LLaMA-3, BioMistral 7B and Mistral 7B v2.0

The automatic evaluation results for BioMis-
tral, a medical domain-specific LLM, did not
convey significant information due to its poor
string/semantic matching. However, BioMistral
outperformed Mistral in LLM-assisted evaluation
accuracy across all datasets, which was expected.

There was a strong positive correlation between
accuracy and “None” disagreement probability,
demonstrating that Med-Code effectively identified
correct responses. Additionally, there is a posi-
tive correlation between METEOR scores and a
’Low’ disagreement probability, suggesting that the
low semantic relation between ground truth and
model predictions. The low positive correlation be-
tween LLM-assisted accuracy and both ’Moderate’
and ’High’ disagreement probabilities confirmed
instances where the models hallucinated or pro-
duced incorrect results.

When examining the correlation between au-
tomatic evaluation scores like METEOR and
ROUGE-L scores and LLM accuracy, the corre-
lation is inconsistent across different LLMs. This
inconsistency may be due to the fact that automatic
metrics are based on string matching, while LLM-
assisted accuracy relies on the model’s knowledge
and logic. For example,

"If the model generates medicine X for disease D,
but the ground truth answer lists medicine Y for
the same disease, the automatic evaluation scores
might be low. However, the LLM-assisted accuracy
could still be correct because the model knows that
X is equivalent to Y for disease D."

5.1 Human Evaluation

To assess the quality of the critique data generated
by the OpenAI model for fine-tuning purposes, we
conducted a thorough evaluation on a randomly
selected subset of 265 samples. Each sample was
manually reviewed to determine how effectively
the model understood the relationship between the
ground-truth answer and the model’s prediction,
and whether it could accurately identify minute
discrepancies and details within the predictions.

Upon analysis, we found that approximately 240
out of the 265 samples (about 91%) were accurately
critiqued. The generated critiques successfully
highlighted the flaws and discrepancies between
the ground-truth and the predictions, demonstrating
the model’s capability to provide precise and de-
tailed feedback. This quality assessment validates
the reliability of the generated data for fine-tuning
the critique generation model. The ground-truth
critiques are noted for their clarity and precision,
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Critique Generation

Critique Classification

Critique Generation

Critique Classification

Critique Generation

Critique Classification

Question: Where does the trabecular bone forming the marrow space show?
Ground Truth: at the margins.

Prediction: The trabecular bone forming the marrow space is shown in the image as a red and
yellow pattern. The red and yellow colors represent the bone structure, while the marrow space is
depicted as a yellow area. This image provides a visual representation of the bone structure and its
marrow space, which is essential for the production of blood cells and other functions.

Critique: The model's response does not address the question of where the
trabecular bone forming the marrow space is shown. Instead, it describes the
color patterns representing bone and marrow space in an image, without
specifying the location 'at the margins' as indicated in the ground truth.

High

Question: what shows concentric lamellae along with osteocytic lacunae surrounding
central blood vessels, while the trabecular bone forming the marrow space shows
trabeculae with osteoclastic activity at the margins?
Ground Truth: cortical bone forming the outer shell.

Prediction: The image shows a cross-section of a bone, with concentric lamellae and osteocytic
lacunae surrounding central blood vessels. The bone is surrounded by a marrow space, which is
filled with trabeculae. Osteoclastic activity can be observed at the margins of the trabeculae,
indicating ongoing bone remodeling and maintenance.

Critique: The model's response accurately describes the structure of bone,
including concentric lamellae, osteocytic lacunae, and osteoclastic activity in
trabeculae. However, it fails to identify that these features are characteristic
of cortical bone forming the outer shell, which is the correct and specific
answer to the question.

Moderate

Question: what is aids?
Ground Truth: acquired immunodeficiency syndrome.

Prediction: AIDS (Acquired Immune Deficiency Syndrome) is a chronic and potentially life-
threatening condition caused by the human immunodeficiency virus (HIV). HIV attacks and
weakens the immune system, making the body more susceptible to infections and diseases.
AIDS is the most advanced stage of HIV infection. AIDS is primarily spread through contact with
infected blood, semen, and other bodily fluids. Prevention measures include safe sex practices,
needle-sharing prevention, and early detection and treatment of HIV infection.

Critique: The model's response provides a detailed and accurate explanation
of AIDS, including its definition, cause, progression, and prevention methods.
However, it exceeds the simplicity required by the question. The question
asks for a direct definition, which is 'acquired immunodeficiency syndrome.'

Low

Figure 4: Critique data samples with different dis-agreement Labels

effectively pinpointing subtle differences between
the ground-truth answers and the model’s predic-
tions. This ensures that the data can be effectively
used for fine-tuning the critique generation model,
allowing it to learn and adapt with high accuracy
and precision.

6 Conclusion

In this work, we introduce Med-CoDE, an evalua-
tion framework designed to assess the performance
of Medical LLMs using critiques and degrees of
disagreement. Med-CoDE excels in identifying
subtle discrepancies between ground-truth answers
and model predictions, offering a nuanced evalua-
tion with four levels of disagreement. These levels
provide insights into the model’s behavior, such
as hallucinations, accuracy, and adherence to the
question. Our framework aids researchers in pin-
pointing areas where LLMs fall short, enabling
targeted improvements. Extensive experiments on
standard medical benchmark datasets demonstrate
Med-CoDE’s effectiveness in thoroughly and ef-
ficiently analyzing model behavior. This robust
evaluation method is crucial for advancing the reli-
ability and safety of AI-driven healthcare solutions.
This evaluation framework is adaptable for assess-
ing large language models across various domain-
specific tasks as well as general tasks, simply by
modifying the critique dataset.

7 Limitations

In this paper, we assess both automatic and human
evaluation. Despite experimenting with a substan-
tial number of data examples and utilizing human
annotators to the best of our financial capabilities,
there is room for further enhancement. Limited ac-
cess to the costly OpenAI APIs meant that we used

these resources judiciously, focusing on crucial
areas. Additionally, computational constraints re-
stricted the scope of our experiments. Nonetheless,
these limitations highlight opportunities for future
work to expand and refine the proposed framework
with more extensive experimental analysis and re-
source allocation.

8 Ethical Considerations

The Med-CoDE framework, designed to assess the
reliability and accuracy of medical LLMs, operates
within a domain where the potential consequences
of errors are particularly significant, given the di-
rect impact on patient care and treatment outcomes.

In this work, only the publicly available stan-
dard benchmark medical QA datasets are used for
training and evaluations. The Med-CoDE frame-
work aims to enhance the evaluation of LLMs to
ensure they meet rigorous standards of accuracy
and reliability. However, it is essential to recognize
that even well-evaluated models are not infallible
and should not replace human judgment. Instead,
they should be used as tools to support healthcare
professionals, who must remain the final arbiters
in clinical decision-making.

By addressing these ethical considerations, the
Med-CoDE framework can contribute to the re-
sponsible development and deployment of medical
LLMs, ultimately supporting safer and more effec-
tive healthcare solutions.
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Abstract

Supervised Fine-tuning (SFT) and preference
optimization (PO) are key methods for enhanc-
ing language models and aligning them with hu-
man preferences. However, scaling preference
datasets for PO training is challenging, leading
AI customer support systems to rely on SFT.
To address this, we propose the Sentiment-
guided Automatic Generation of Preference
Datasets (Sentimatic) methodology to automat-
ically generate customer preference datasets
without human intervention using a publicly
available dataset constructed for SFT. Our ap-
proach classifies responses by sentiment, fine-
tunes models on them, and applies advanced
sampling and evaluation techniques to ensure
diversity and quality. Ultimately, we generated
1,174 customer preference datasets based on
357 test datasets, and through experiments, we
confirmed that the AI customer support system
trained on these datasets is capable of carefully
considering customer emotions and generating
professional and appropriate responses.

1 Introduction

Previous studies have used the SFT approach pri-
marily to train AI models for customer service (Xu
et al., 2017; Golchha et al., 2019; He et al., 2022).
However, SFT focuses solely on the accuracy of
individual tokens generated by the model, failing
to adequately reflect the overall quality of conver-
sations. This limitation can lead to inefficiencies
in performance evaluation and optimization. In
contrast, PO addresses these issues by evaluating
the quality of the entire response generated by the
model (Hua et al., 2024).

However, the preference datasets required for PO
training are created through response comparisons,
which require the involvement of human annota-
tors. This dependency significantly increases the
time and cost of large-scale data collection, pos-
ing challenges to the widespread adoption of PO.

To address these challenges, AI-based feedback ap-
proaches that utilize large language models (LLMs)
have been proposed to minimize human interven-
tion (Cui et al., 2024; Bai et al., 2022). However,
these approaches still rely on human-authored eval-
uation criteria for practical application. In the cus-
tomer service domain, where providing responses
that align with customer preferences and mitigate
negative emotions is critical, the ambiguity of the
evaluation criteria further highlights the limitations
of existing methods.

To overcome these challenges, this study pro-
poses a novel methodology for generating customer
preference datasets without human intervention.
This methodology provides a foundation for the ef-
ficient construction and scalability of PO datasets,
enabling a wider adoption of PO in AI customer
support systems. The proposed methodology con-
sists of the following three key steps:

1. Sentiment Analysis: Model pool is used to
analyze emotional changes before and after a
response. Responses showing positive emo-
tional changes are considered aligned with
customer preferences and included in the pos-
itive dataset, while those showing negative
emotional changes are included in the nega-
tive dataset.

2. Completion Sampling: Positive and negative
datasets are used to fine-tune separate models.
These models generate pairs of positive and
negative responses for the test dataset. To
ensure diversity and scalability, N responses
are generated for each input by repeating the
sampling process.

3. Preference Classification: BERTScore (Zhang
et al., 2020) are calculated for the generated
response pairs by comparing them with ref-
erence responses. High-quality responses are
filtered based on a defined threshold.
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Figure 1: An overview of the Sentimatic methodology. A model pool (GPT-4 (OpenAI et al., 2024), GPT-
3.5 (Ouyang et al., 2022), and LLaMA 3 (Grattafiori et al., 2024)) analyzes customer conversations to compute scalar
sentiment scores. Responses showing positive emotional shifts are labeled as aligned with customer preferences,
while those with negative shifts are not. These labeled datasets are used to fine-tune models for generating aligned
and non-aligned responses. Diverse sampling techniques (beam search (Freitag and Al-Onaizan, 2017), top-k (Fan
et al., 2018), top-p (Holtzman et al., 2020)) are employed to generate multiple responses per input. BERTScore is
then calculated to validate response quality.

2 Methods

2.1 Overview

We adopt an AI-based feedback approach that lever-
ages LLMs with scalability in mind. However,
defining “responses aligned with customer prefer-
ences” poses a significant challenge. Therefore, in-
stead of following the conventional approach (Cui
et al., 2024; Bai et al., 2022) of designing prompts
based on human-defined criteria for inference, we
opted to fine-tune models separately to learn the
responses patterns that align with customer prefer-
ences and those that do not.

Specifically, to distinguish between responses
aligned with customer preferences and those that
are not, we utilized a model pool to obtain senti-
ment scores for the initial customer conversation
and the response, then calculated the difference
between them. Responses that demonstrated a
positive emotional shift were identified as aligned
with customer preferences, while those that showed
a negative emotional shift were classified as not
aligned with customer preferences, forming the
respective datasets.

We then fine-tuned two separate large-language

models using the respective datasets. One model
was trained on the Positive Dataset to generate re-
sponses aligned with customer preferences, while
the other was trained on the Negative Dataset to
learn patterns of non-aligned responses. Next, we
used the fine-tuned models to repeatedly sample
responses, generating N responses for the same
input to ensure diversity. Finally, we calculate
the BERTScore for the generated responses and
classify high-quality comparison pairs based on
a defined threshold. In the following section, we
introduce the Sentimatic methodology in detail.

2.2 Curated Dataset

First, we selected the TWEETSUMM dataset
(Feigenblat et al., 2021). This dataset contains real
conversations between customer service agents and
dissatisfied customers on Twitter, making it suit-
able for learning linguistic patterns and interaction
styles in the customer service domain. Originally,
TWEETSUMM is a multi-turn dataset, but we re-
structured it to focus on initial responses. Con-
versations were organized based on tweet IDs and
transformed into single-turn interactions. Each con-
versation begins with the initial message from the
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Table 1: Dataset Overview. "P" and "N" in the Senti-
matic dataset indicate positive and negative preference
labels, respectively.

Sentimatic dataset TWEETSUMM
Dialog P N Multi-turn
# Train 1,530 1,129 879
# Test 211 146 110
# Valid 192 127 110

customer (c1), followed by the agent’s response,
and ends with the customer’s reply text after the
agent’s response (c2).

Next, we used various models (GPT-4, GPT-3.5,
LLaMA3) to perform a sentiment analysis on the
customer’s initial text (c1) and the customer’s reply
text after the agent’s response (c2), assigning the
average score as the numerical sentiment score.
The prompt used for sentiment analysis can be
found in Appendix 6. In this process, if any of
the models produced a score of 0, indicating that
the model failed to detect positive or negative sen-
timent tendencies for the given data, the result of
that model was excluded. To determine the direc-
tion of the change in sentiment, we calculated the
difference between the sentiment score of c1 (s1)
and c2 (s2), selecting only responses that showed a
positive change (+). Through this process, we col-
lected 1,530 response data points aligned with cus-
tomer preferences and 1,129 response data points
not aligned with customer preferences. A summary
of the dataset can be found in Table 1.

2.3 Completion Sampling

LLMs are trained on large-scale datasets to achieve
generalization capabilities across various tasks.
However, this training approach may not capture
the nuances and specific knowledge required in cer-
tain domains. Previous studies have shown that
fine-tuning in specific domains, such as legal doc-
ument processing, medical diagnosis, and finan-
cial analysis, can lead to significant performance
improvements (Dominguez-Olmedo et al., 2025;
Ismail et al., 2024; Parker et al., 2022).

Therefore, after fine-tuning the LLMs with a cu-
rated dataset, we ensure that the collected responses
are diverse and evenly distributed by repeating the
various sampling processes (beam-search, top-k,
top-p) multiple times to generate N responses for
the same input. Specifically, we fine-tune the input-
output pairs (x, y) of the selected data set to obtain

Table 2: Quality Evaluation of Completion Sampling (#:
Number of samples, C: Chosen average BERTScore, R:
Rejected average BERTScore, ∆: Difference average
Between Chosen and Rejected Scores)

Sampling α β # C R ∆

Beam
Search

0.78 0.2 1174 0.825 0.729 0.096
0.8 0.2 952 0.834 0.762 0.064

0.82 0.2 707 0.841 0.730 0.111

Top-K
0.78 0.2 1174 0.825 0.729 0.096
0.8 0.2 952 0.834 0.762 0.064

0.82 0.2 707 0.841 0.730 0.111

Top-P
0.78 0.2 1174 0.825 0.729 0.096
0.8 0.2 952 0.834 0.762 0.064

0.82 0.2 707 0.841 0.730 0.111

initial parameters πSFT . Using πSFT , we then
generate N responses y1, y2,... and yN :

(y1, . . . , yN ) ∼ πSFT(y|x) (1)

The prompt used for fine-tuning can be found
in Appendix 7. For inference, only the Instruction
and Input parts of the same prompt were used.

2.4 Quality Evaluation
To ensure contextual relevance and prevent exces-
sive deviation from the dialogue flow, we calcu-
lated the BERTScore by comparing the generated
responses with the responses from the original data
set as references. Specifically, we compute the
BERTScore as follows:

SBERT(y, r) =
1

N

N∑

i=1

cos(hy
i ,h

r
i ) (2)

where y represents the generated response, r is
the original reference response from the dataset,
and hy

i ,h
r
i are the contextual embeddings of each

token in y and r, respectively. The final score is
obtained by averaging the cosine similarities across
all token embeddings.

We use this score to classify high-quality re-
sponse pairs applying a threshold α, filtering out
responses that deviate significantly from the origi-
nal context. Furthermore, we define a threshold β
for the difference in the BERTScore between the
chosen and rejected responses to maintain semantic
diversity within the dataset. The statistics of the
dataset based on α and β are reported in Table 2

3 Experiments

3.1 Response Generation Model
To validate the effectiveness of the Sentimatic
methodology, we compare two versions of the Re-
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Table 3: Evaluation of different LLM judges on contextual relevance, problem-solving approach, and handling of
negative emotions.

Judge Model Contextual Relevance Problem-Solving Approach Handling Negative Emotions

GPT-4o T5 + SFT 7.35% 9.45% 15.49%
T5 + ORPO w/Sentimatic 67.72% 48.29% 50.39%

ChatGPT T5 + SFT 18.64% 17.59% 18.90%
T5 + ORPO w/Sentimatic 66.93% 62.99% 64.30%

GPT-o3 T5 + SFT 43.83% 46.98% 13.12%
T5 + ORPO w/Sentimatic 52.49% 46.98% 81.63%

sponse Generation Model: 1) the SFT version
trained on the existing TWEETSUMM dataset
based on T5 (Wu et al., 2023) and 2) the Senti-
matic version trained with PO using the dataset
generated through the proposed methods.

Evaluation Methodology We evaluate the qual-
ity of generated responses using the LLM-as-a-
judge approach, which follows a win/tie/lose frame-
work judged by multiple LLMs (GPT-4o, ChatGPT,
GPT-o3). In particular, we focus on three key as-
pects that are critical in Customer Support Dialogue
Systems: contextual relevance, problem-solving ap-
proach, and handling of negative emotions. Each
judge compares the responses generated by the two
models and selects a preferred one, resulting in the
win rate percentages shown in Table 3.

The LLM-as-a-judge methodology has been val-
idated in prior work (Zheng et al., 2023), where
strong LLMs such as GPT-4 demonstrated over
80% agreement with human preferences in both
controlled and crowdsourced settings. This evalua-
tion framework enables scalable and interpretable
estimation of human-like preferences while signifi-
cantly reducing the cost and effort associated with
human evaluation. The used prompt can be found
in Appendix 8

Setup We used 1,174 pairs of training data and
319 pairs of validation data, performing 3 fine-
tuning iterations. The value of α was set to 0.78
and the value of β was set to 0.2. The ORPO (Hong
et al., 2024) method was used as part of the PO
approach. For fine-tuning, we utilized the AdamW
optimizer with a learning rate of 0.0005 and a linear
learning rate scheduler. The batch size per GPU
was 8, and the training was performed on a single
A6000 GPU.

Result As shown in Table 3, across all three eval-
uation axes and for all LLM judges, the Sentimatic-
enhanced model (T5 + ORPO w/Sentimatic) con-
sistently outperformed the baseline (T5 + SFT).
Notably:

• GPT-4o judge: Sentimatic achieved a 67.72%

win rate in contextual relevance, 48.29% in
problem-solving, and 50.39% in handling neg-
ative emotions.

• ChatGPT judge: Sentimatic scored 66.93%,
62.99%, and 64.30% respectively.

• GPT-o3 judge: Sentimatic led with 52.49%
for contextual relevance and a striking 81.63%
win rate in handling negative emotions.

These results strongly suggest that Sentimatic
improves response generation in both contextual
understanding and emotional sensitivity, validated
by multiple independent LLM judges.

3.2 Qualitative analysis
Table 4 presents representative examples that com-
pare the responses generated by the SFT version
and the Sentimatic-enhanced version of the model.
We analyze responses along three key axes: con-
textual relevance, problem solving approach, and
handling of negative emotions. Generally,the Sen-
timatic model demonstrates clear qualitative im-
provements across all three dimensions, reflecting
its effectiveness in producing emotionally intelli-
gent, contextually appropriate, and support-driven
responses.

Contextual Relevance The Sentimatic model
consistently demonstrates greater contextual aware-
ness in its responses. For example, in row (b-1), the
agent acknowledges the user’s concern and explic-
itly refers to the situation (“Can you tell us more
about what’s going on?”), showing an intention to
engage more deeply. In contrast, the SFT version
in (a-1) offers a shallow suggestion (“Have you
tried restarting your MacBook?”) without confirm-
ing the actual problem of the user. Additionally,
in (b-2), the Sentimatic model tailors the request
by asking for specific details, while the SFT ver-
sion (a-2) provides a generic, less targeted reply.
These differences highlight how Sentimatic better
aligns its responses with the intent and content of
the customer’s message.
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Table 4: Examples of Model Inference Results

(a) Example 1: SFT version

1.
Customer: @SpotifyCares hey, any explanation why the "Create similar playlist" function doesn’t work anymore for

me? MacBook, v1.0.64.399.g4637b02a
Agent: @267878 I’m sorry to hear that. Have you tried restarting your MacBook?
2.
Customer: @AskAmex When is interest charged on Charge Cards with Pay Over Time, Sign and Travel, etc. From the

Due Date or from the Closing Date?
Agent: @261778 I’m sorry, I cannot provide an answer to that question as it requires additional information.

Please provide the details of the Charge Cards you are interested in.
3.
Customer: @Delta I just sent it @Delta Thank you, that was excellent resolution, glad I sent that tweet just in time

while I still had a window to change the itinerary without a fee.
Agent: @261715 Hi, I’m sorry to hear that. We’re glad to hear that you’re happy with the resolution. We’ll send

you a link to the new itinerary.

(b) Example 2: Sentimatic version

1.
Customer: @SpotifyCares hey, any explanation why the "Create similar playlist" function doesn’t work anymore for

me? MacBook, v1.0.64.399.g4637b02a.
Agent: @179244 Hi there, thanks for getting back to us. Can you tell us more about what’s going on? We’re here

to help anyway we can.
2.
Customer: @AppleSupport I did not understood what do you mean by DM my iPhone
Agent: Understood, please provide me with your full name, email address, and postcode. I’ll be happy to take a

closer look.
3.
Customer: @airtelcare xxx you, your company, your CEO and even COO. you will fold up and run into loss as u have

caused me pains,weeks n counting.
Agent: @179244 Hi there, thanks for getting back to us. We’ve made a note of this and passed over your feedback

to our Developers JB

Problem-Solving Approach Sentimatic re-
sponses generally adopt a more structured and co-
operative problem solving approach. For example,
(b-2) asks for the customer’s full name, email, and
postcode in order to assist further—this kind of
information gathering is essential in real customer
support workflows. However, the SFT response in
(a-2) defers the assistance entirely without provid-
ing a concrete next step. Similarly, in (b-1), the
Sentimatic version attempts to diagnose the prob-
lem by requesting more context, whereas the SFT
model prematurely offers a potential fix. These ex-
amples demonstrate how Sentimatic responses are
more proactive and service-oriented in resolving
customer issues.

Handling of Negative Emotions Sentimatic
shows a significant improvement in emotionally
sensitive scenarios. The most striking example
is (b-3), where the customer expresses frustration
with harsh language. The Sentimatic model re-
mains calm, professional and empathetic, acknowl-
edging the message without escalating the tone, and
assuring the user that feedback has been passed to
the relevant team. In contrast, the SFT model in
similar scenarios, such as (a-3), provides a flat, im-
personal response that misses the opportunity to

acknowledge the user’s sentiment. This suggests
that the Sentimatic model is better at defusing neg-
ative sentiment and maintaining a respectful tone,
even in high-stress conversations.

3.3 AI Feedback Model Specialized for the
Customer Support Domain

To develop a scalable method for collecting prefer-
ence data without relying on public datasets in the
customer support domain, we designed an AI feed-
back model based on LaMini-Flan-T5. This model
is configured as a text-to-text task, generating scalar
scores representing the quality of responses along
with the corresponding textual critiques, allowing
a single model to produce both outputs.

The difference between the emotion scores s1
and s2, along with c2, is mapped to a template to
generate a scalar score that reflects the change in
customer emotion and the expected response.

To validate the effectiveness of the pipeline, two
versions of the model were developed. The SFT
version was trained using SFT with the mapped text
and the initial customer text (y, c1), while the Senti-
matic version was trained using PO on a preference
dataset generated through the pipeline. Notably,
this process does not aim to create a preference
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Table 5: Quality of Text Generation for Customers’ Next Response and Score Prediction Error

Model + Method MSE BLEU ROUGE1 ROUGE2 ROUGEL METEOR
LaMini-Flan-T5-77M + SFT 0.63 32.70 0.46 0.36 0.45 0.49
LaMini-Flan-T5-77M + Sentimatic 0.55 28.62 0.52 0.43 0.51 0.49
LaMini-Flan-T5-783M + SFT 0.45 32.92 0.48 0.37 0.46 0.50
LaMini-Flan-T5-783M + Sentimatic 0.44 32.48 0.46 0.35 0.44 0.49

dataset itself. Instead of explicitly separating Pos-
itive and Negative data, the pipeline expands the
dataset using sampling techniques after SFT train-
ing. Subsequently, BERTScore is utilized to fil-
ter the data, and responses with higher and lower
scores are paired to form pairs of ’Chosen’ and
’Reject’.

Setup We used 2,852 pairs of training data and
performed 30 fine-tuning iterations. The ORPO
method was applied as part of the Preference Opti-
mization (PO) approach. For fine-tuning, we em-
ployed the AdamW optimizer with a learning rate
of 0.0005 and a linear learning rate scheduler. The
batch size per GPU was set to 8, and training was
performed on a single A6000 GPU.

To evaluate the quality of the Response Genera-
tion Model, we used four widely recognized met-
rics: BLEU(Papineni et al., 2002) , ROUGE(Lin,
2004), and METEOR(Banerjee and Lavie, 2005).
Furthermore, the mean squared error (MSE) metric
was used to assess the accuracy of the prediction
of ’score’.

Result Table 5 presents the performance met-
rics for different methods in predicting emotion
scores and generating customer responses. The
LaMini-Flan-T5-77M model, when fine-tuned with
the Sentimatic methodology, achieved an MSE of
0.55, indicating a 12.7% improvement compared to
the application of SFT alone (MSE 0.63). Similarly,
the LaMini-Flan-T5-783M model demonstrated an
MSE of 0.44, marking a 2.22% improvement over
the SFT-only model (MSE 0.45).

Figure 2 illustrates the distribution of predicted
effectiveness scores between models. The SFT-
only model shows a high concentration of scores
around -0.5, suggesting that the model frequently
generates similar emotion scores that deviate from
the true values. In contrast, Sentimatic methodol-
ogy results in a wider distribution of scores, demon-
strating the ability to predict a broader range of
emotions that align more closely with actual val-
ues.

Conclusion

This study proposed a novel methodology for con-
structing a preference dataset for Preference Opti-
mization (PO) using publicly available customer
support data without human intervention. As a
result, we generated 1,174 customer preference
datasets based on 357 test data instances. The
model trained through the proposed data construc-
tion pipeline demonstrated effective improvements
in the quality of customer support dialogue re-
sponses. In particular, we empirically validated
that the model can be trained to better meet user
expectations without relying on costly human an-
notations. Across the three key evaluation cri-
teria: contextual relevance, problem solving ap-
proach, and handling of negative emotions, the
Sentimatic-enhanced model consistently outper-
formed the baseline model trained by supervised
fine-tuning (SFT). These results were reliably
validated through the LLM-as-a-judge evaluation
framework, involving independent LLM judges in-
cluding GPT-4o, ChatGPT, and GPT-o3.Overall,
the proposed method is scalable, cost-efficient, and
readily applicable to real-world customer service
scenarios, offering a promising direction for de-
veloping emotionally aware and user-centered AI
agents.

Limitation

The proposed methodology has certain limitations,
depends on multiple LLMs for sentiment detection,
which can introduce bias or inaccuracies, and fo-
cuses primarily on Twitter-based complaints. To
overcome these limitations, future research will
evaluate the performance of Sentimatic methodol-
ogy in general conversation by comparing it with
human feedback-based datasets. In addition, en-
semble modeling and complementary evaluation
techniques will be introduced to minimize bias in
large-language models.
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A Appendix

Instruction The conversation consists of three sequential segments: {c1} (customer’s utterance
before the agent’s response), {agent} (agent’s response), and {c2} (customer’s
utterance following the agent’s response). Please analyze the emotions in the
conversation. Calculate the change in emotion using the formula: (c2’s emotional
score - c1’s emotional score). Respond with a single float number only, within the
range of -2 to 2. Do not include any explanation or additional text.

Input Data {c1: [Customer’s utterance before agent’s response],
agent: [Agent’s response],
c2: [Customer’s utterance after agent’s response]}

Table 6: Example of Prompt Template used for scoring

Instruction You are a customer service chatbot. Generate a agent’s response to the following
customer message.

Inputs Customer said: {customer_inquiry}
Labels Agent said: {agent_reply}

Table 7: Example of Prompt Template used for Completion Sampling

Figure 2: Score Distributions
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Instruction Given a customer message, compare two agent responses.
customer: {customer}
response_A: {response_A}
response_B: {response_B}

Evaluate the responses according to the following criteria:
1. Context appropriateness
2. Problem-solving effectiveness
3. Handling of negative emotions

Select the better response for each criterion. If one response is clearly superior,
label it as “A wins” or “B wins”. If both are equivalent, label it as “Draw”. Return
your judgment in the following JSON format:

{"Context appropriateness": "A wins", "Problem-solving
effectiveness": "Draw", "Handling of negative emotions": "B wins"}

No further explanation is required.
Input Data {customer: [Customer message],

response_A: [Response generated by T5 + ORPO w/ Sentimatic],
response_B: [Response generated by T5 + SFT]}

Table 8: Prompt template used for comparative response evaluation

128



Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 129–141

April 30 - May 1, 2025 ©2025 Association for Computational Linguistics

Privacy-Preserving Federated Learning for Hate Speech Detection

Ivo de Souza Bueno Júnior1˚ Haotian Ye12 Axel Wisiorek12 Hinrich Schütze12

1Center for Information and Language Processing, LMU Munich
2Munich Center for Machine Learning (MCML)

˚ivosb.junior@gmail.com

Abstract

This paper presents a federated learning system
with differential privacy for hate speech detec-
tion, tailored to low-resource languages. By
fine-tuning pre-trained language models, AL-
BERT emerged as the most effective option
for balancing performance and privacy. Ex-
periments demonstrated that federated learning
with differential privacy performs adequately
in low-resource settings, though datasets with
fewer than 20 sentences per client struggled
due to excessive noise. Balanced datasets and
augmenting hateful data with non-hateful ex-
amples proved critical for improving model
utility. These findings offer a scalable and
privacy-conscious framework for integrating
hate speech detection into social media plat-
forms and browsers, safeguarding user privacy
while addressing online harm.

1 Introduction

Protecting personal data while enabling effective
machine learning is a critical challenge, especially
in low-resource languages where data scarcity com-
pounds the difficulty of detecting hate speech. Tra-
ditional models primarily focus on high-resource
languages, leaving underrepresented languages un-
supported. Federated learning (FL) with differen-
tial privacy (DP) offers a solution by enabling col-
laborative model training without sharing sensitive
data. However, the trade-off between privacy and
performance in low-resource settings remains a sig-
nificant concern. This paper investigates the use of
privacy-preserving FL for hate speech detection in
low-resource languages, specifically Afrikaans and
Russian, which are considered low-resource with
regard to labeled hate speech resources, addressing
three research questions:

• (RQ1) Can privacy-preserving methods effec-
tively support federated hate speech detection
models in low-resource languages?

• (RQ2) What is the trade-off between privacy
and model accuracy in this context?

• (RQ3) How minimal can low-resource data
be while still ensuring user privacy?

The main contribution of this work is the adapta-
tion of differential privacy within a federated learn-
ing framework for hate speech detection in a low-
resource environment, and the understanding of the
challenges imposed by such systems.

2 Related Work

Hate speech detection has primarily focused on
high-resource languages like English. Efforts to ad-
dress low-resource languages include Ranasinghe
and Zampieri (2021), who applied transfer learn-
ing to fine-tune transformer models for Arabic,
Bengali, and Hindi, showing that pre-trained BERT-
based models, like ALBERT, work well in these con-
texts. Fine-tuning pre-trained models remains a
dominant approach, with studies like Geet d’Sa
et al. (2020) and Wullach et al. (2021) demonstrat-
ing its effectiveness. However, BERT fine-tuning
can be unstable, particularly with small datasets, as
noted by Mosbach et al. (2021).

Privacy concerns, driven by regulations like the
EU’s GDPR (of the European Union, 2016), have
led to federated learning adoption for decentralized
data processing. While early work like Zampieri
et al. (2024) showed FL’s promise, vulnerabili-
ties in shared model weights have been identified,
as seen in Geiping et al. (2020). Differential pri-
vacy, introduced by Dwork (2006), mitigates such
risks by adding noise to gradients, ensuring privacy
while enabling collaborative learning. Both global
(Wei et al., 2020) and local (Truex et al., 2020) DP
methods in federated learning have shown effective-
ness and limitations, as reviewed by Ouadrhiri and
Abdelhadi (2022). While recent approaches, such
as Ye et al. (2024), leverage FL for few-shot hate
speech detection in low-resource languages, this
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paper adapts DP to further enhance model security
and evaluate its impact on performance.

3 Methods

Dataset. For our experiments, we used hate speech
data from two low-resource languages: Afrikaans
and Russian. The Afrikaans dataset includes state-
ments targeting black people and LGBTQ+ in-
dividuals, while the Russian dataset focuses on
hate speech directed at war-affected groups and
LGBTQ+ individuals. The datasets were created by
native speakers between June 2023 and March 2024
as part of the Respond2Hate research project (Ye
et al., 2024). Hate speech examples were inspired
by anonymized content from social media and news
outlets and were carefully adapted to ensure pri-
vacy and cultural relevance. The merged dataset
consisted of 1,543 sentences, with 865 (56%) la-
beled as hateful and 678 (44%) as non-hateful.

Of the 1,543 sentences, 309 were randomly se-
lected as a test set, and the rest were used for
fine-tuning. Each client in the federated system
received a distinct set of sentences, ensuring non-
overlapping data.

Models. Multiple BERT-based models were
used for various experiments conducted in this
work. They are: BERT Base uncased,
BERT Large uncased (Devlin et al., 2019),
HateBERT (Caselli et al., 2021), ALBERT Base,
ALBERT Large, ALBERT XLarge, ALBERT
XXLarge (Lan et al., 2020), BERT Base
Multilingual uncased (Devlin et al., 2019),
XLM-RoBERTa Base, XLM-RoBERTa Large (Con-
neau et al., 2020), and DistilBERT Base
Multilingual cased (Sanh et al., 2020) More
information on the selected models can be seen in
Appendix A.

Federated Learning and Differential Privacy
Implementation. Federated learning was imple-
mented using the Flower framework (Beutel et al.,
2020), which facilitates communication and ag-
gregation between the server and clients. Flower
was selected for its support of manual client train-
ing steps. Differential privacy was implemented
using Opacus (Yousefpour et al., 2021), a Py-
Torch (Paszke et al., 2019) library that enables
DP by adding noise to model gradients. Opacus
automatically calculates the noise scale σ based
on pϵ, δq-DP and the L2 norm clipping threshold
C. PyTorch was used for model fine-tuning, and
pre-trained models were sourced from Hugging-

Face (Wolf et al., 2020).

4 Experiments and Results

4.1 Experimental Setup

The ALBERT Base model from Hugging Face was
selected for fine-tuning due to its strong perfor-
mance, as explored in the Model Comparison exper-
iment described below, and seen in Table 1, and ef-
ficient fine-tuning times. Privacy parameters were
set to ϵ “ 5 and δ “ 10´5, with a clipping thresh-
old C of 0.5, clipping 1% of the highest gradient
values.

The training setup involved one server and eight
clients, each receiving 50 balanced sentences (25
hateful, 25 non-hateful). Fine-tuning used a batch
size of 1, cross-entropy loss, and the Adam op-
timizer with a learning rate of 10´4 to maintain
stability with DP. Baseline experiments included
versions without DP ("No DP") and without fine-
tuning ("No FT"). For "No DP," the learning rate
was reduced to 2ˆ10´5 to prevent divergence. All
experiments ran for 10 FL rounds.

The weighted F1-score, which is calculated sep-
arately for each class, and returned as the weighted
sum, was used as the primary evaluation metric due
to slight dataset imbalance. Each experiment was
run five times, with metrics averaged across clients
to minimize variability and account for fine-tuning
instabilities. The following experiments were con-
ducted:

Model Comparison. This experiment evaluated
the performance of various models fine-tuned with
FL and DP for low-resource hate speech detection.
Several pre-trained models were tested, but BERT
Large uncased and XLM-RoBERTa Large were
excluded due to communication timeouts in FL,
likely caused by their large number of parameters.
The Flower framework could not handle the com-
putational overhead for these models. No other
hyperparameter modifications were made.

Level of Privacy Comparison. The privacy-
utility trade-off was tested by fine-tuning the model
with various values of ϵ, δ, and clipping threshold
C. ϵ values tested ranged from 100 (weak privacy)
to 0.1 (strong privacy), with corresponding C val-
ues chosen to clip gradients at various percentages:
C “ 100 (no clipping), C “ 0.5 (1%), C “ 0.1
(10%), C “ 0.05 (25%), and C “ 0.01 (50%).
These C values were selected based on observed
gradient ranges after initial training rounds. The
default δ “ 10´5 was used, and ALBERT Base and
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BERT Base Multilingual models were compared,
keeping all other hyperparameters unchanged.

Additionally, different δ values (10´3, 10´5,
10´7) were tested on ALBERT Base with ϵ “ 5
to assess their impact on the privacy-utility trade-
off. For each δ value, various C values were also
tested, with all other hyperparameters kept at their
defaults.

Dataset Size Comparison. This test evaluated
how the model responded to FL with DP fine-
tuning using varying dataset sizes per client. Each
client fine-tuned the model with datasets starting at
10 sentences (5 hateful, 5 non-hateful), increasing
in increments of 10 up to 130 sentences (65 hateful,
65 non-hateful). All other hyperparameters were
kept at their default values and the ALBERT Base
model was used.

Dataset Composition Comparison. This ex-
periment tested how different data compositions
affected model performance. Three compositions
were tested: an "unchanged" composition with the
natural imbalance of 56% hateful and 44% non-
hateful sentences, a "balanced" composition with
50% hateful and 50% non-hateful sentences, and
a "hate-only" composition with only hateful sen-
tences. The "hate-only" composition was tested to
simulate a federated system where users report only
hateful sentences, and the data is not augmented
with negative samples. All other hyperparameters
were kept at their default values and the ALBERT
Base model was used.

4.2 Results and Analysis

Model
No Diff. Priv. Diff. Priv.
ACC F1 ACC F1

BERT Base 0.762 0.762 0.511 (-0.251) 0.395 (-0.367)

HateBERT 0.770 0.770 0.532 (-0.238) 0.415 (-0.355)

ALBERT Base 0.728 0.725 0.602 (-0.126) 0.542 (-0.183)

ALBERT Large 0.710 0.707 0.513 (-0.197) 0.385 (-0.322)

ALBERT XLarge 0.668 0.663 0.510 (-0.158) 0.353 (-0.310)

ALBERT XXLarge 0.714 0.710 0.587 (-0.127) 0.551 (-0.159)

BERT Base Multilingual 0.819 0.819 0.490 (-0.329) 0.403 (-0.416)

XLM-RoBERTa Base 0.847 0.847 0.489 (-0.358) 0.327 (-0.520)

DistilBERT Base 0.807 0.807 0.524 (-0.283) 0.405 (-0.402)

Table 1: Model comparison between different models
fine-tuned by using FL with and without DP. The utility
loss between the private and the non-private fine-tuning
is shown in red.

Model Comparison. Table 1 shows the results
of the model comparison, with best scores marked
in bold and utility loss with DP highlighted in red.
Multilingual models (BERT Base Multilingual
and XLM-RoBERTa Base) performed best in accu-
racy and F1-score without DP, even in low-resource

Figure 1: Accuracy and F1-score comparison of differ-
ent values of ϵ for δ “ 10´5.

settings, as they were pre-trained on data contain-
ing the low-resource languages used. However,
these models suffered the greatest utility loss with
DP.

In contrast, ALBERT models maintained high
utility under DP, with ALBERT Base and ALBERT
XXLarge showing the lowest utility loss. Their
fewer layers (12) compared to the other two ALBERT
models (24 layers) likely contributed to this per-
formance. Notably, model size did not signifi-
cantly affect the privacy-utility trade-off, as ALBERT
XXLarge exhibited the lowest utility loss, while
XLM-RoBERTa Base showed the highest.

Level of Privacy Comparison. Two experi-
ments assessed the impact of privacy levels on
model performance. The first experiment evaluated
different ϵ values with δ “ 10´5 (Figure 1). As
ϵ decreased, indicating stronger privacy, accuracy
and F1-scores degraded compared to non-private
fine-tuning (No DP). For ϵ “ 100 and ϵ “ 50,
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Figure 2: Accuracy and F1-score comparison of BERT
(blue) and ALBERT (red) at the same level of privacy
(ϵ “ 5, δ “ 10´5).

utility loss was moderate but represented weak pri-
vacy. Real-world applications typically use ϵ ă 10,
where performance steeply declined, especially
with gradient clipping (C “ 0.5). At ϵ ď 1, accu-
racy fell below non-fine-tuned (No FT) levels, and
results became noisier. Higher clipping thresholds
did not consistently improve scores, particularly
at lower ϵ. Similar experiments for δ “ 10´3 and
δ “ 10´7 are shown in Appendix B.

The second experiment evaluated the impact of
privacy on fine-tuning ALBERT and BERT for ϵ “ 5
and δ “ 10´5 (Figure 2). Additional compar-
isons for other ϵ values are in Appendix C. With-
out privacy, BERT outperformed ALBERT, but the
opposite was true for models without fine-tuning.
Both models exhibited similar trends under privacy
constraints, hovering near non-fine-tuned levels,
with ALBERT achieving higher accuracy and F1-
scores than BERT. Notably, BERT showed greater
fine-tuning instability, with 29% of runs (51/175)
failing to improve after the first FL round, com-
pared to 11% (19/175) for ALBERT.

Varying δ values for a fixed ϵ value offered no
relevant insights. These results are in Appendix D.

Dataset Size Comparison. Figure 3 shows the
results of the dataset size comparison, with accu-
racy (blue) and F1-scores (red). As a baseline, we
evaluated on the test set by using a model fine-

Figure 3: Accuracy (blue, above), and F1-score (red,
below), for models fine-tuned with FL clients with dif-
ferent sizes of datasets.

tuned without DP and a model without fine-tuning.
The x-axis represents the number of sentences per
client during FL.

The model fine-tuned without DP outperforms
the one fine-tuned with it, as expected due to the
noise introduced by DP. When fine-tuning with
very small datasets (10–20 sentences per client),
the model performs slightly worse than the non-
fine-tuned baseline. This occurs because the noise
added by DP is not proportional to the dataset size,
leading to parameter updates dominated by noise
rather than data.

In this experiment, model performance peaks at
30 sentences per client, achieving an accuracy of
0.64 and an F1-score of 0.63. A similar peak is ob-
served in the non-private fine-tuning version. Fig-
ure 4 highlights the difference in accuracy and F1-
scores between models fine-tuned with and without
DP. A logarithmic interpolation was applied, yield-
ing the best fit with R2 “ 0.683 for accuracy and
R2 “ 0.701 for F1-score, compared to other in-
terpolation methods. The results indicate that as
the dataset size increases, the performance of the
private model approaches that of the non-private
model. However, this trend is not linear and sta-
bilizes eventually, demonstrating that while larger
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Figure 4: Accuracy (blue) and F1-score (red) difference
between models fine-tuned with and without differential
privacy, at different dataset sizes.

datasets mitigate the effects of DP noise, they can-
not fully eliminate its impact.

Dataset Composition Comparison. Table 2
presents accuracy and F1-scores for different
dataset compositions. Results are provided for
models evaluated without fine-tuning (No Fine-
Tun.) and fine-tuned with (Diff. Priv.) or with-
out differential privacy (No Diff. Priv.). The best
metric in each category is highlighted in bold, with
utility loss and gain compared to DP fine-tuning
marked in red and green, respectively.

The table reveals minimal differences in accu-
racy between the unchanged and balanced dataset
compositions. While the balanced dataset yields
higher F1-scores without DP, this advantage disap-
pears under DP fine-tuning. The unchanged dataset
composition delivers the best scores and privacy-
utility trade-off when fine-tuning with DP, which
could point out that having a slight imbalance to-
wards hateful sentences might be advantageous.

As expected, fine-tuning exclusively on hateful
sentences, regardless of DP, performs worse in both
accuracy and F1-scores than skipping fine-tuning
altogether.

Data Comp.
Accuracy

Diff. Priv. No Fine-Tun. No Diff. Priv.
Unchanged 0.608 0.561 (-0.047) 0.721 (0.113)

Balanced 0.604 0.561 (-0.043) 0.742 (0.138)

Hate-Only 0.553 0.561 (0.008) 0.553 (0.000)

F1-Score
Diff. Priv. No Fine-Tun. No Diff. Priv.

Unchanged 0.565 0.429 (-0.136) 0.719 (0.154)

Balanced 0.558 0.429 (-0.129) 0.741 (0.183)

Hate-Only 0.406 0.429 (0.023) 0.396 (-0.010)

Table 2: Dataset composition comparison.

5 Discussion

This paper investigates federated learning with dif-
ferential privacy for hate speech detection in low-
resource environments. Results show that this ap-
proach is feasible for fine-tuning models, even with
limited data, but models react differently to added
noise. ALBERT models (Base and XXLarge) per-
formed the best due to parameter sharing, which
might have mitigated the noise. Deeper and mul-
tilingual models experienced greater utility loss,
though further research is needed to confirm these
findings.

Achieving strong privacy guarantees remains
challenging. At ϵ ď 1, performance dropped below
the non-fine-tuned baseline, highlighting the diffi-
culty of selecting optimal ϵ values, which depend
on the model, dataset, and parameter interactions.

More local data per client improved results, with
50 sentences per client showing consistent gains.
However, limited data hampers effective learning
under differential privacy. Balanced datasets are
critical, but a slight imbalance towards hateful sen-
tences helped overcome the noise added by differ-
ential privacy. Sampling non-hateful examples is
crucial for effective training. Despite challenges,
federated learning with differential privacy remains
advantageous where privacy is paramount.

Addressing the research questions:

• (RQ1) Privacy-preserving federated learning
for hate speech detection in low-resource lan-
guages is feasible, but may not meet strong
privacy standards without sufficient data.

• (RQ2) The privacy-utility trade-off is signif-
icant, with better results achievable at lower
privacy levels.

• (RQ3) For minimal data, 50 sentences per
client suffice for moderate privacy, though
more data reduces degradation and stabilizes
training.

6 Conclusion

This paper explored federated learning with dif-
ferential privacy for hate speech detection in low-
resource settings. Fine-tuning a pre-trained ALBERT
model showed improved performance at moderate
privacy levels. Key findings included the impor-
tance of nearly-balanced datasets and the impact of
differential privacy parameters (ϵ, δ, and C), with
ALBERT outperforming other BERT-based models.
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The results addressed the research questions, high-
lighting both strengths and areas for improvement.

In conclusion, despite challenges in low-
resource environments, federated learning with dif-
ferential privacy can effectively detect hate speech
while ensuring user privacy.

7 Limitations

This paper has several limitations. Training re-
quired each client to store a local model, limiting
experiments to eight clients, and the use of smaller,
BERT-based models, instead of LLMs, due to mem-
ory constraints. Future work could explore varying
client numbers and adaptive clipping thresholds,
which were untested due to fixed C values in Opa-
cus. Adaptive methods, as proposed by Andrew
et al. (2021), could improve performance. Addi-
tionally, non-BERT models like GPT or LLaMA were
not evaluated. Finally, the number of federated
learning rounds and epochs was not varied, but ex-
ploring these hyperparameters may impact model
performance.
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A Model Information

• BERT Base uncased (Devlin et al.,
2019) (110M parameters), and BERT Large
uncased (336M parameters), both trained
with monolingual English data.

• A BERT-based model trained on hate speech
data: HateBERT (Caselli et al., 2021) (110M
parameters, monolingual English).

• ALBERT Base (Lan et al., 2020) (11M parame-
ters), Large (17M parameters), XLarge (58M
parameters), and XXLarge (223M parameters),
all trained with monolingual English data.

• BERT Base Multilingual uncased (Devlin
et al., 2019) (110M parameters), pre-trained
using multilingual data from Wikipedia in 102
languages, including Afrikaans and Russian.

• XLM-RoBERTa Base (Conneau et al., 2020)
(270M parameters), and XLM-RoBERTa Large
(550M parameters), both pre-trained using
multilingual data from CommonCrawl in 100
languages, including Afrikaans and Russian.

• DistilBERT Base Multilingual
cased (Sanh et al., 2020) (134M pa-
rameters), which is a distilled version of
BERT Base Multilingual Cased, which
was pre-trained using multilingual data
from Wikipedia in 104 languages, including
Afrikaans and Russian.
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B Privacy comparison with different values of ϵ, for the model ALBERT Base.

Figure 5: Accuracy (left) and F1-score (right) comparison of different values of ϵ for δ P t10´3, 10´5, 10´7u.
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C BERT and ALBERT comparison with different levels of privacy.

Figure 6: Accuracy (left) and F1-score (right) comparison of BERT (blue) and ALBERT (red) at the different levels of
privacy (ϵ P t100, 50, 10, 5u, δ “ 10´5).
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Figure 7: Accuracy (left) and F1-score (right) comparison of BERT (blue) and ALBERT (red) at the different levels of
privacy (ϵ P t1, 0.5, 0.1u, δ “ 10´5).
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D Privacy comparison with different values of δ, for the model ALBERT Base.

Figure 8: Accuracy (left) and F1-score (right) comparison of different values of δ for ϵ P t100, 50, 10, 5u.
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Figure 9: Accuracy (left) and F1-score (right) comparison of different values of δ for ϵ P t1, 0.5, 0.1u.
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Abstract

This study examines the performance of Large
Language Models (LLMs) in Aspect-Based
Sentiment Analysis (ABSA), with a focus on
implicit aspect extraction in a novel domain.
Using a synthetic sports feedback dataset, we
evaluate open-weight LLMs’ ability to extract
aspect-polarity pairs and propose a metric to fa-
cilitate the evaluation of aspect extraction with
generative models. Our findings highlight both
the potential and limitations of LLMs in the
ABSA task.

1 Introduction

ABSA is a nuanced form of sentiment analysis that
focuses on identifying sentiments related to spe-
cific aspects within a text (Pontiki et al., 2014).
Researchers have decomposed ABSA into vari-
ous subtasks, such as aspect extraction, sentiment
classification, aspect category detection, and opin-
ion term extraction, each contributing to a com-
prehensive understanding of the problem. Table
1 summarizes these subtasks as discussed in the
literature. Combining these tasks allows the extrac-
tion of ABSA-related entities in the form of tuples,
triples, or quadruples from sentences or documents,
resulting in a wide range of compound ABSA solu-
tions.

LLMs with their in-context learning (ICL) capa-
bilities (Brown et al., 2020) and parameter-efficient
fine-tuning methods, such as Low-Rank Adaptation
(LoRA) with quantization (Dettmers et al., 2024;
Hu et al., 2021), offer straightforward yet effective
approaches for complex ABSA tasks. These ap-
proaches facilitate the extraction of implicit aspects,
which are aspects that are not explicitly stated in
the text but can be inferred based on context, senti-
ment, or background knowledge.

This study examines the performance of LLMs
in extracting aspect-polarity pairs within the under-
explored and unanticipated domain of sports feed-

back. This domain poses unique challenges for
ABSA due to its reliance on implicit references
and domain-specific terminology. By evaluating
LLMs in this context, we provide critical insights
into their capacity to adapt to novel data.

Moreover, recognizing the linguistic variability
involved in expressing implicit aspects, we propose
an evaluation metric that calculates precision and
recall while accounting for this variability in set-
tings with a high prevalence of implicit aspects.
We also demonstrate the broader applicability of
this metric, showing its utility in assessing gen-
erative LLMs on classic ABSA datasets. Finally,
we explore various strategies for adapting LLMs
to domain-specific datasets, highlighting key chal-
lenges and offering insights for future research.

2 Related Work

Aspect-Based Sentiment Analysis

Traditional approaches to ABSA, extensively re-
viewed in the literature (Nazir et al., 2020; Brauw-
ers and Frasincar, 2022; Zhang et al., 2023b), pri-
marily utilize bidirectional encoders (Dos Santos
et al., 2021; Zhang et al., 2023a), recurrent net-
works (Xu et al., 2020), graph networks (Zhou
et al., 2020; Wu et al., 2022; Wang et al., 2024b),
sequence-to-sequence models (Ma et al., 2019),
and ensembles of models (Yang et al., 2023). Var-
ious techniques have recently been proposed to
improve accuracy, precision, and recall in ABSA-
related tasks, for example, context denoising (Tian
et al., 2024), abstract meaning representation (Ma
et al., 2023), and global semantic features (Zhou
et al., 2024). These methods have achieved ro-
bust results in within-domain explicit aspect extrac-
tion and polarity classification (Meng et al., 2019;
Meškelė and Frasincar, 2020; Wang et al., 2020).

Recent studies have investigated the ability of
LLMs to perform ABSA tasks on both traditional
(Šmíd et al., 2024) and more complex datasets
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Table 1: ABSA Subtasks.
Subtask Names Extracted Entity

Aspect Extraction (Liu, 2012), Opinion Target Expression Extraction (Pontiki et al., 2015), Aspect Term Extraction
(ATE) (Pontiki et al., 2014; Scaria et al., 2024)

Aspect (e.g., "restaurant atmosphere", "technical
support")

Aspect Sentiment Classification (Liu, 2012), Sentiment Polarity Classification (Pontiki et al., 2015), Aspect Term
Polarity Classification (Pontiki et al., 2014)

Polarity (e.g., "positive", "negative", "neutral")

Aspect Category Detection (Pontiki et al., 2014) Category (e.g., "food")

Opinion Term Extraction (Zhang et al., 2023b) Opinion Phrase (e.g, "could be better")

(Deng et al., 2023; Krugmann and Hartmann,
2024), highlighting the potential of generative mod-
els in key ABSA subtasks (Kheiri and Karimi,
2023; Scaria et al., 2024; Yang et al., 2024). Never-
theless, challenges persist in effectively capturing
implicit aspects, particularly in low-resource do-
mains, where difficulties in data collection and an-
notation further exacerbate the problem (Tubishat
et al., 2018; Wankhade et al., 2022; Cai et al., 2021;
Zhang et al., 2023b).

Data Creation and Annotation for ABSA

Advancing ABSA research can benefit from qual-
ity datasets. Recent work by Chebolu et al. (2024)
demonstrated that human annotation of ABSA
datasets involving implicit aspects is challenging
and laborious. Generative LLMs have been suc-
cessfully utilized to create and annotate synthetic
datasets, leveraging their capacity to generate cre-
ative and contextually rich text (Meyer et al., 2022;
Bao et al., 2023; Eldan and Li, 2023; Mirowski
et al., 2023). Although LLMs may not always
match human annotators in accuracy, studies have
shown that their annotations can be valuable, partic-
ularly when combined with human expertise (Goel
et al., 2023; Gray et al., 2023; Mohta et al., 2023;
He et al., 2024; Liyanage et al., 2024).

Moreover, leveraging synthetic data has been ex-
plored to enhance the performance of downstream
models in various NLP tasks, including ABSA
(Kramchaninova and Defauw, 2022; Yu et al., 2023;
Deng et al., 2023; Wang et al., 2024a).

3 Datasets

3.1 Novel dataset

We introduce a novel dataset of artificially gener-
ated feedback from volunteers at sports event, a do-
main not yet represented in existing ABSA datasets.
This domain poses unique challenges due to its spe-
cific terminology and the abundance of implicit
aspects. The dataset facilitates an out-of-domain
evaluation of the ABSA capabilities of open-weight
LLMs against baseline solutions. Notably, at least

35% of its content comprises implicit aspects1. Ad-
ditionally, the dataset’s domain specificity provides
an opportunity to test the generalization capabili-
ties of ABSA solutions beyond their usual training
contexts, contributing to a deeper understanding of
their real-world applicability.

We chose two state-of-the-art models2 for
dataset generation: GPT-4 and Gemini 1.0 Ultra.
The novel dataset comprises 480 documents, with
an average of 222 characters per document. Most
of the dataset (75%) was generated using GPT-4,
acknowledging its superior reported results for ma-
jor benchmarks such as MMLU (OpenAI, 2023).
Additionally, we employed Gemini 1.0 Ultra to
generate 25% of the dataset, introducing some di-
versity of content. Appendix A provides examples
of prompts and generated text, illustrating the mod-
els’ ability to produce mixed-emotion and diverse
style feedback.

The dataset annotation process, illustrated in Fig-
ure 1, involved three steps, integrating both LLMs
and human annotators. First, LLMs generated ini-
tial annotation drafts to alleviate the cognitive and
time burden on the expert. Next, volunteers se-
lected the better draft from two options. Finally,
the expert revised and refined the selected draft.

Æ Step 1: Get initial
annotation sets from LLMs

Evaluate how
number of
documents
per prompt

impacts quality
of annotations

by LLMs

  Step 2: Ask volunteers to
select the most appropriate

annotations from the set

  Step 3: Revise annotations
by an expert

Figure 1: Workflow of the Annotation Process.

Appendix B provides a detailed description of
the dataset annotation process. We make the dataset
and the prompts used for its generation publicly

1Aspects that do not exactly match any part of a document.
2As of March 2024, when the dataset was generated and

annotated
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available3 and publish the Datasheet for the dataset,
as proposed by Gebru et al. (2021), in the same
repository.

3.2 Existing Datasets

For this study, we specifically selected existing
datasets that are well-suited for the joint task of
detection of aspects and the classification of their
polarities. While numerous other datasets are avail-
able (Chebolu et al., 2023; Zhang et al., 2023b), we
restricted our choices to those documented in pub-
lished, peer-reviewed papers to ensure higher anno-
tation quality. Table 2 summarizes these datasets
and includes statistics for the novel dataset we in-
troduce in this paper in the last row. Appendix E
provides additional characteristics of the datasets.

Table 2: Datasets Used for Experiments.
Train Test Implicit

Aspects
SemEval-14-Laptop (Pontiki et al.,
2014)

1482 422 0%

SemEval-14-Restaurant (Pontiki et al.,
2014)

2019 606 0%

MAMS (Jiang et al., 2019) 4297 500 0%
Twitter (Dong et al., 2014) 6248 692 3.5%
Composite 14046 2220 0.88%
Sports Feedback (Novel) 96 384 35%

4 Metrics

Automated evaluation of models for the aspect de-
tection subtask faces several challenges. First, doc-
uments may contain implicit aspects that do not
directly match with individual words. For example,
the sentence from our dataset:

I found that some locations had multiple
volunteers that didn’t appear to be overly
busy and could have been useful at other
locations where there were shortages.

This sentence alludes to the aspect ‘allocation of
volunteers’ without explicitly stating it in the text.
Moreover, the definition of what constitutes an as-
pect is often fuzzy: in the cited example, ‘place-
ment of volunteers’ could also be interpreted as a
valid aspect.

Second, when LLMs are used for aspect extrac-
tion instead of traditional span-based approaches,
relying on exact matches to compute metrics such
as precision, recall, and F-score without accounting
for linguistic variation can be problematic.

3https://github.com/neveditsin/absa-sport

To address these evaluation challenges, we pro-
pose a generalized method for assessing precision
(P ) and recall (R) inspired by the work of Euzenat
(2007) on ontology alignment. Specifically, to ac-
count for partial matches and linguistic variation
between predicted and true aspect sets, we define
precision and recall as follows. For a given docu-
ment, we define Sd as the set of detected aspects
and Sg as the set of true (gold) aspects. The func-
tion ι, parameterized by a threshold θ ∈ [0, 1], re-
turns the set of partial matches between Sd and Sg.
Figure 2 illustrates the concept of the intersection ι
between the two sets of aspects.

Sg (Gold Aspects) Sd (Detected Aspects)

AC

look

ambience

service

air conditioner

appearance

dishes

service
drinks

ι

Figure 2: Intersection ι of Gold Aspects (Sg) and De-
tected Aspects (Sd).

The threshold θ serves as a filter for the minimal
similarity required between pairs of matching as-
pects. In the special case where θ = 1, the function
ι(Sd, Sg) reduces to the intersection of the two sets,
enforcing exact aspect matches. Conversely, when
0 ≤ θ ≪ 1, it permits the matching of semantically
unrelated pairs, making values of θ close to zero
impractical. For the purpose of experiments in this
study, we set θ = 0.95. An empirical analysis of
the impact of θ on matching errors in the context
of this study is provided in Appendix F.

With these definitions, the generalized precision,
denoted as P θ, is given by:

P θ =
|ι(Sd, Sg, θ)|
|Sd|

(1)

Similarly, the generalized recall, denoted as Rθ,
is formulated as:

Rθ =
|ι(Sd, Sg, θ)|
|Sg|

(2)

The F θ
1 score, defined as the harmonic mean of

precision P θ and recall Rθ, effectively captures the
balance between these metrics within this frame-
work.
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Algorithm 1 provides the implementation of the
function ι(Sg, Sd, θ) used in this study. A sim-
ilarity measure σ : s1 × s2 → [0, 1] quantifies
the resemblance between individual elements from
the sets, resulting in a similarity matrix with val-
ues ranging from 0 to 1. To avoid false positive
matches, values below a specified threshold θ are
set to zero. The similarity matrix is then converted
into a cost matrix, and the linear sum assignment
problem is solved to determine the optimal pairing
of elements between the sets, minimizing the total
cost. This procedure yields a set of optimal element
pairs, I.

Algorithm 1 Algorithm for Finding Intersection ι

Require: Two finite sets of aspects Sg and Sd; similarity
measure σ : s1 × s2 → [0, 1]; similarity threshold θ

Ensure: Optimal pairing set I of index pairs (i, j)
1: Initialize similarity matrix M of size |Sg| × |Sd|
2: for each s1i ∈ Sg do
3: for each s2j ∈ Sd do
4: Mij ← σ(s1i, s2j)
5: end for
6: end for
7: for each element Mij in M do
8: if Mij < θ then
9: Mij ← 0

10: end if
11: end for
12: Define cost matrix C where Cij ← 1−Mij

13: Solve the linear sum assignment problem using C to
obtain optimal pairing set I

14: return I

For this study, we use the algorithm described by
Crouse (2016) to solve the linear sum assignment
problem and implement the function σ(s1, s2) as
the scaled cosine similarity between the embed-
dings of s1 and s2.

5 Models

We evaluated two open-weight models, Mistal 7B
Instruct (Jiang et al., 2023) and LLaMA-3 8B In-
struct (Bhatt et al., 2024), against the baseline
PyABSA (Yang et al., 2023) on the Aspect-Polarity
Pair Extraction (ASPE) task. The selection of the
open-weight models was motivated by their state-
of-the-art performance within the parameter range4,
ease of deployment, and computational efficiency.
Their relatively compact sizes (7–8 billion param-
eters) allow local deployment without reliance on
external computational resources, a material factor
for practical applications.

PyABSA is an actively maintained, ensemble-
4As of July 2024

based framework trained on publicly available
datasets. It serves as a reliable baseline represent-
ing traditional yet robust ABSA methodologies.

For measuring phrase similarity, we selected
Sentence-T5 (Large) (Ni et al., 2021). Despite
its smaller size compared to more recent large-
scale models, Sentence-T5 demonstrates strong per-
formance on text embedding benchmarks (Muen-
nighoff et al., 2023), making it well-suited for ex-
periments with limited computational resources.

6 Evaluation of Open-Weight Models

Our experiments aim to address the following re-
search questions:

1. Can open-weight LLMs outperform the base-
line without fine-tuning?

2. How do in-context learning examples affect
the performance of LLMs on the ASPE task?

3. Does fine-tuning on (i) similar data or (ii) data
from a different domain with a large fraction
of implicit aspects improve the performance
of the selected LLMs on the joint task com-
pared to the baseline and non-fine-tuned mod-
els?

For the experiments, we organized the datasets
from Table 2 into two categories: (i) the Novel
dataset, introduced in this paper, and (ii) the
Composite dataset, assembled by aggregating the
previously published datasets listed in Table 2.
For model evaluation, we used the test sets from
both datasets: 2,220 samples from the Composite
dataset and 384 samples from the Novel dataset.

For model fine-tuning, we utilized:
1. The training portion of the Composite dataset,

containing 14,046 samples.

2. The training portion of the Novel dataset, con-
sisting of 96 samples. Due to its limited size,
we allocated 80% of the Novel dataset to test-
ing and 20% to training.

3. A blended dataset obtained by combining the
training portion of the Novel dataset (96 sam-
ples) with 96 randomly selected samples from
each of the existing datasets listed in Table 2,
resulting in a total of 480 samples.

Appendix G provides the complete set of fine-
tuning hyperparameters and lists the hardware and
software used for the experiments.

For ICL examples, we uniformly sampled doc-
uments along with their associated sets of aspect-
polarity pairs from the training subset of the re-
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spective dataset: when evaluating on the Novel
dataset, we sampled from its training subset, and
when evaluating on the Composite datasets, we
sampled from its training portion. For each polar-
ity in P = {positive, neutral, negative}, two docu-
ments were selected to ensure compatibility with
the model’s context window during inference.

Table 3 compares the performance of fine-tuned
models, generic ICL (using the same predefined
prompt with arbitrary examples presented to the
models; see Appendix H for reference), ICL with
sampling, and a baseline on the aspect extraction
subtask. The evaluation employs macro-averaged
metrics with a threshold θ = 0.95. This threshold,
empirically chosen to accommodate variations in
aspect phrasing while minimizing errors, is ana-
lyzed in detail in Appendix F.

Table 3: Experimental Results for Aspect Extraction.

Model Fine-Tuning / ICL Composite Dataset Novel Dataset

P .95 R.95 F .95
1 P .95 R.95 F .95

1

Mistral Generic ICL 0.35 0.59 0.44 0.21 0.44 0.29
LLaMA-3 Generic ICL 0.49 0.59 0.53 0.33 0.51 0.40
Mistral ICL with sampling 0.68 0.63 0.65 0.52 0.50 0.51
LLaMA-3 ICL with sampling 0.65 0.63 0.64 0.45 0.54 0.49
Mistral FT Composite 0.81 0.82 0.82 0.35 0.45 0.39
LLaMA-3 FT Composite 0.87 0.85 0.86 0.35 0.33 0.34
Mistral FT Novel 0.46 0.42 0.44 0.55 0.54 0.55
LLaMA-3 FT Novel 0.47 0.43 0.45 0.54 0.54 0.54
Mistral FT Blended 0.76 0.77 0.77 0.49 0.53 0.51
LLaMA-3 FT Blended 0.77 0.74 0.76 0.52 0.54 0.53
PyABSA - 0.77 0.75 0.76 0.33 0.27 0.30

We employed a paired bootstrap test, following
the methodology of Berg-Kirkpatrick et al. (2012),
with 105 iterations to compute p-values. Results
were deemed statistically significant for compar-
isons where p < 0.05.

Open-weight LLMs’ performance varies by
dataset when used without fine-tuning. They per-
formed worse than the PyABSA baseline on the
Composite dataset (which matches PyABSA’s train-
ing data), but outperformed it on the Novel dataset
(which differs in domain and implicit aspect fre-
quency). Using ICL with sampling significantly
improved performance across both datasets, show-
ing that providing relevant examples is an effective
way to enhance LLMs’ aspect extraction abilities.

Fine-tuning effectiveness depends on the simi-
larity between training and evaluation data. When
fine-tuned on the Composite dataset, both LLaMA-
3 and Mistral showed significant performance gains
on Composite samples compared to their non-fine-
tuned versions, but their performance on Novel
samples declined, falling below that of ICL with
sampling. The reverse held true when fine-tuning

on the Novel dataset: while significant improve-
ments were observed on Novel samples, perfor-
mance on Composite samples degraded below that
of ICL with sampling. In contrast, fine-tuning on a
mixed dataset combining both Novel and Compos-
ite samples yielded consistent performance gains
across both dataset classes. Appendix I presents
detailed experimental results for individual datasets
on the aspect extraction task, evaluated using both
adjusted metrics θ = 0.95 and exact match criteria.

Table 4 presents the experimental results for as-
pect sentiment classification (ASC) using standard
precision (P ), recall (R), and F1 metrics, as gener-
alized metrics are unnecessary for this task.

Table 4: Experimental Results for Aspect Sentiment
Classification.

Model Fine-Tuning / ICL Composite Dataset Novel Dataset

P R F1 P R F1

Mistral Generic ICL 0.55 0.33 0.41 0.56 0.28 0.37
LLaMA-3 Generic ICL 0.53 0.33 0.38 0.59 0.36 0.43
Mistral ICL with sampling 0.56 0.36 0.44 0.58 0.38 0.41
LLaMA-3 ICL with sampling 0.55 0.35 0.43 0.59 0.36 0.44
Mistral FT Composite 0.58 0.48 0.52 0.49 0.22 0.30
LLaMA-3 FT Composite 0.60 0.52 0.56 0.46 0.15 0.23
Mistral FT Novel 0.52 0.24 0.31 0.60 0.33 0.43
LLaMA-3 FT Novel 0.49 0.24 0.30 0.69 0.31 0.42
Mistral FT Blended 0.58 0.46 0.51 0.65 0.31 0.42
LLaMA-3 FT Blended 0.57 0.44 0.49 0.67 0.29 0.39
PyABSA - 0.61 0.46 0.52 0.52 0.14 0.21

ASC performance depends on successful aspect
extraction, since only correctly identified aspects
count toward recall and overall results. The pat-
terns mirror aspect extraction findings: fine-tuning
on a different dataset degrades model performance,
whereas fine-tuning on similar data improves it.
However, ICL with sampling showed no major im-
provement on the Novel dataset.

7 Discussion and Further Research

Our study reveals several key findings and corre-
sponding future research directions. SOTA LLMs
demonstrated effectiveness in generating initial
annotations for the proposed dataset, despite in-
herent limitations like restricted context windows
and occasional inaccuracies. The implemented
multi-step annotation process, combining auto-
mated LLM-generated annotations with human val-
idation, successfully streamlined the traditionally
labor-intensive workflow while maintaining anno-
tation quality through human oversight.

The employment of ICL with sampling proved
effective for enhancing LLM performance in ex-
tracting ABSA pairs, offering advantages over fine-
tuning approaches that can lead to overfitting and
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reduced generalizability. To build upon this suc-
cess, future research should explore more sophisti-
cated ICL strategies, such as retrieval-augmented
ICL (Milios et al., 2023), which could further en-
hance the extraction of aspect-sentiment pairs.

Our proposed metric for generalized precision
and recall captures model performance on the as-
pect extraction task while accounting for linguistic
variability. Future work should focus on developing
methods for automatic determination of the opti-
mal threshold θ value, investigating its relationship
with various semantic similarity models. Addition-
ally, implementing error detection methods could
enable dynamic θ adjustment, ensuring accurate
performance measurement across both explicit and
implicit aspect extraction scenarios.

Finally, adopting multi-step reasoning ap-
proaches like chain-of-thought prompting (Wei
et al., 2022) or iterative refinement (Madaan et al.,
2024) presents a promising direction for improving
both data annotation and pair extraction processes,
potentially reducing the need for human interven-
tion while maintaining output quality.

Conclusion

This study serves as a proof of concept, demon-
strating the applicability of our proposed approach
in a challenging domain characterized by domain-
specific terminology and a high prevalence of im-
plicit aspects. While the dataset and findings are
currently domain-specific, the methods introduced,
such as the tailored evaluation metric and annota-
tion framework, are designed to be adaptable to
other contexts.

Limitations

A significant drawback of employing LLMs for
ABSA is the substantial computational resources
required, particularly in terms of GPU usage. This
demand can limit accessibility and scalability for
practitioners with limited resources. However, as
technological advancements continue to optimize
hardware and algorithms, we anticipate a reduction
in these computational barriers, potentially making
LLM-based approaches the standard in ABSA.

The novel dataset is limited to a single domain
and language (English), which may restrict its
representativeness across other domains and lan-
guages. Additionally, it may not fully capture the
richness and variability of natural language. Since
it is generated by an LLM, it may exhibit limi-

tations such as reduced lexical diversity and re-
liance on common phrasing patterns. Moreover,
LLM-generated content may lack the contextual
depth needed to capture implicit sentiment, aspect-
specific variations, and the diversity of real-world
expressions.

Annotation of datasets remains a considerable
challenge. Identifying implicit aspects is a time-
consuming and cognitively demanding task for hu-
man annotators. When aspects are abstract rather
than concrete objects, inter-annotator agreement
tends to decrease, affecting the reliability of the
annotations. This highlights the need for improved
annotation methodologies or assistance tools to bet-
ter capture implicit aspects.

Moreover, we acknowledge that fine-tuning large
language models on a small dataset, such as the
96 samples used in this study (25% of the novel
dataset), may not yield reliable or generalizable
results. This limitation likely contributed to the
observed decline in F1 scores on the composite
dataset and the improvement on the novel dataset,
suggesting potential overfitting. The large param-
eter space of LLMs necessitates substantial data
for effective fine-tuning. To address this, future
research should not only explore fine-tuning with
larger, more diverse datasets, including those be-
yond peer-reviewed venues, but also incorporate
regularization techniques such as dropout, weight
decay, and early stopping.

Finally, the proposed metric for detecting aspects
relies on the quality of the similarity scores, which
may affect its consistency across different datasets.

Ethics Statement

This research was conducted in accordance with
the principles outlined in the ACL Code of Ethics,
emphasizing honesty, transparency, and integrity
throughout all stages of the study, from data collec-
tion to analysis and reporting. All data utilized in
this study are publicly available and documented
following best practices.

We acknowledge the potential biases introduced
by using LLMs for data generation in creating this
novel dataset. To ensure the quality of the synthetic
dataset, an expert with a background in natural lan-
guage processing conducted a comprehensive re-
view of the generated content. This review focused
on identifying potential biases introduced by the
LLMs, including the over-representation of certain
sentiment polarities, repetitive patterns in aspect
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phrasing, and cultural or linguistic biases. Based
on the findings, approximately 6% of the generated
sentences were removed to address these concerns.
Given the dataset’s intended use in Aspect-Based
Sentiment Analysis, we do not foresee significant
risks of harm, affirming its utility for ethically ad-
vancing sentiment analysis research. Importantly,
this dataset is not designed for tasks beyond ABSA.

Although large language models were employed
in the initial data annotation step, subsequent steps
were conducted by human annotators experienced
in ABSA tasks and ethical considerations. This
multi-step approach ensured a rigorous and ethi-
cally sound annotation process.

References
Jianzhu Bao, Rui Wang, Yasheng Wang, Aixin Sun,

Yitong Li, Fei Mi, and Ruifeng Xu. 2023. A synthetic
data generation framework for grounded dialogues.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 10866–10882, Toronto, Canada.
Association for Computational Linguistics.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005, Jeju Island, Korea.
Association for Computational Linguistics.

Manish Bhatt, Sahana Chennabasappa, Yue Li, Cyrus
Nikolaidis, Daniel Song, Shengye Wan, Faizan Ah-
mad, Cornelius Aschermann, Yaohui Chen, Dhaval
Kapil, David Molnar, Spencer Whitman, and Joshua
Saxe. 2024. Cyberseceval 2: A wide-ranging cyber-
security evaluation suite for large language models.

Gianni Brauwers and Flavius Frasincar. 2022. A sur-
vey on aspect-based sentiment classification. ACM
Comput. Surv., 55(4).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, and
Clemens Winter et al. 2020. Language models are
few-shot learners. CoRR, abs/2005.14165.

Hongjie Cai, Rui Xia, and Jianfei Yu. 2021. Aspect-
category-opinion-sentiment quadruple extraction
with implicit aspects and opinions. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 340–350.

Siva Uday Sampreeth Chebolu, Franck Dernoncourt,
Nedim Lipka, and Thamar Solorio. 2023. Survey of
aspect-based sentiment analysis datasets.

Siva Uday Sampreeth Chebolu, Franck Dernoncourt,
Nedim Lipka, and Thamar Solorio. 2024. OATS:
A challenge dataset for opinion aspect target senti-
ment joint detection for aspect-based sentiment anal-
ysis. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 12336–12347, Torino, Italia. ELRA and ICCL.

David F. Crouse. 2016. On implementing 2d rectan-
gular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696.

Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon
Baumgartner, and Michael Bendersky. 2023. Llms
to the moon? reddit market sentiment analysis with
large language models. In Companion Proceedings
of the ACM Web Conference 2023, pages 1014–1019.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment classi-
fication. In Proceedings of the 52nd annual meeting
of the association for computational linguistics (vol-
ume 2: Short papers), pages 49–54.

Brucce Neves Dos Santos, Ricardo Marcondes Mar-
cacini, and Solange Oliveira Rezende. 2021. Multi-
domain aspect extraction using bidirectional encoder
representations from transformers. IEEE Access,
9:91604–91613.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How
small can language models be and still speak coherent
english?

Jérôme Euzenat. 2007. Semantic precision and recall
for ontology alignment evaluation. In Proc. 20th
International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 348–353. AAAI Press.

Timnit Gebru, Jamie Morgenstern, Briana Vec-
chione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Iii, and Kate Crawford. 2021. Datasheets
for datasets. Communications of the ACM, 64(12):86–
92.

Akshay Goel, Almog Gueta, Omry Gilon, Chang Liu,
Sofia Erell, Lan Huong Nguyen, Xiaohong Hao,
Bolous Jaber, Shashir Reddy, Rupesh Kartha, Jean
Steiner, Itay Laish, and Amir Feder. 2023. Llms
accelerate annotation for medical information extrac-
tion. In Proceedings of the 3rd Machine Learning for
Health Symposium, volume 225 of Proceedings of
Machine Learning Research, pages 82–100. PMLR.

148

https://doi.org/10.18653/v1/2023.acl-long.608
https://doi.org/10.18653/v1/2023.acl-long.608
https://aclanthology.org/D12-1091
https://aclanthology.org/D12-1091
http://arxiv.org/abs/2404.13161
http://arxiv.org/abs/2404.13161
https://doi.org/10.1145/3503044
https://doi.org/10.1145/3503044
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2204.05232
http://arxiv.org/abs/2204.05232
https://aclanthology.org/2024.lrec-main.1080/
https://aclanthology.org/2024.lrec-main.1080/
https://aclanthology.org/2024.lrec-main.1080/
https://aclanthology.org/2024.lrec-main.1080/
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
https://proceedings.mlr.press/v225/goel23a.html
https://proceedings.mlr.press/v225/goel23a.html
https://proceedings.mlr.press/v225/goel23a.html


Morgan Gray, Jaromir Savelka, Wesley Oliver, and
Kevin Ashley. 2023. Can gpt alleviate the burden
of annotation? In Legal Knowledge and Information
Systems, pages 157–166. IOS Press.

Zeyu He, Chieh-Yang Huang, Chien-Kuang Cornelia
Ding, Shaurya Rohatgi, and Ting-Hao Kenneth
Huang. 2024. If in a crowdsourced data annotation
pipeline, a gpt-4. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Sys-
tems, CHI ’24, New York, NY, USA. Association for
Computing Machinery.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and
Min Yang. 2019. A challenge dataset and effec-
tive models for aspect-based sentiment analysis. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6280–
6285, Hong Kong, China. Association for Computa-
tional Linguistics.

Kiana Kheiri and Hamid Karimi. 2023. Sentimentgpt:
Exploiting gpt for advanced sentiment analysis and
its departure from current machine learning. arXiv
preprint arXiv:2307.10234.

Alina Kramchaninova and Arne Defauw. 2022. Syn-
thetic data generation for multilingual domain-
adaptable question answering systems. In Proceed-
ings of the 23rd Annual Conference of the European
Association for Machine Translation, pages 151–160.

Jan Ole Krugmann and Jochen Hartmann. 2024. Senti-
ment analysis in the age of generative ai. Customer
Needs and Solutions, 11(1):3.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Synthesis Lectures on Human Language Tech-
nologies. Springer.

Chandreen R Liyanage, Ravi Gokani, and Vijay Mago.
2024. Gpt-4 as an x data annotator: Unraveling its
performance on a stance classification task. PloS one,
19(8):e0307741.

Dehong Ma, Sujian Li, Fangzhao Wu, Xing Xie,
and Houfeng Wang. 2019. Exploring sequence-to-
sequence learning in aspect term extraction. In Pro-
ceedings of the 57th annual meeting of the associa-
tion for computational linguistics, pages 3538–3547.

Fukun Ma, Xuming Hu, Aiwei Liu, Yawen Yang,
Shuang Li, Philip S. Yu, and Lijie Wen. 2023. AMR-
based network for aspect-based sentiment analysis.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 322–337, Toronto, Canada.
Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Wei Meng, Yongqing Wei, Peiyu Liu, Zhenfang Zhu,
and Hongxia Yin. 2019. Aspect based sentiment
analysis with feature enhanced attention cnn-bilstm.
IEEE Access, 7:167240–167249.

Selina Meyer, David Elsweiler, Bernd Ludwig, Marcos
Fernandez-Pichel, and David E Losada. 2022. Do we
still need human assessors? prompt-based gpt-3 user
simulation in conversational ai. In Proceedings of the
4th Conference on Conversational User Interfaces,
pages 1–6.
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A Examples of Prompts and Generated Feedback

Prompt 1

You are a human who participated as a volunteer in New Brunswick sport games for minorities (the event is called NBMSG). You are invited to take a
survey. Generate 10 naturally sounding diverse responses with variable length (from 5 to 10 sentences with average of 6-7 sentences, try to provide longer
responses). Try to be informal and use a lot of slang.

Chunk Of The Model Response (Gemini)

1. Sure ya! I’d be happy to answer some questions about NBMSG. Those games were AWESOME! Met so many cool ppl and really felt like the
volunteers were appreciated. Although, maybe next time a bit more info on what to expect beforehand woulda been helpful.
2. Hey yeah, I can totally do a survey! NBMSG was a blastt - so glad I volunteered. It was tiring at times, but seeing those kids faces light up made it all
worth it. Defo considering doing it again next year!
3. Absolutely, hit me with that survey! Being a volunteer at NBMSG was an amazing experience. It was so inspiring to see how passionate everyone was
about sports and inclusion. Just a suggestion, maybe a little more organization with scheduling would be good? But overall, 10/10 would volunteer again!
4. Ya ofc I’ll do the survey! Those NBMSG games were lit. I volunteered at the concession stand and it was craaazy busy at times, but the teamwork
between us volunteers was awesome . Definitely recommend volunteering there if you get the chance!

Prompt 2

You are a human who participated as a volunteer in New Brunswick sport games for minorities (the event is called NBMSG). You are invited to take a
survey. Generate 20 naturally sounding diverse responses with variable length (from 1 to 5 sentences with average of 3-5 sentences, try to provide longer
responses). Use a lot of typos, grammatical errors, slang, emojis, etc.. Be negative.

Chunk Of The Model Response (Gemini - Emojis Removed)

1. Ugh, finally got around to this NBMSG survey. Took forever to find the time between work and everything, and let’s just say it wasn’t the best volunteer
experience. Not sure what I expected, but maybe a bit more organization next time?
2. Fine, here’s my survey response about NBMSG. Honestly, kind of disappointed. The description made it sound way more fun and impactful than it
actually was. Definitely not what I signed up for.
3. **NBMSG survey**... Not sure what I was thinking volunteering there. Felt kinda lost and confused most of the time. Barely any training, and nobody
seemed to know what was going on half the time. Doubt I’ll be back next year.
4. Ugh, this NBMSG survey is taking foreverrrrrrrr. Get on with it already! Look, I volunteered my time, the least they could do is make this quick and
painless.

Prompt 3

You are a human who participated as a volunteer in New Brunswick sport games for minorities (the event is called NBMSG). You are invited to take a
survey. Generate 20 naturally sounding diverse responses with variable length (from 1 to 10 sentences with average of 4-6 sentences, try to provide longer
responses). Focus on negative sentiment towards various aspects. Be emotional and creative. Don’t hesitate to use slang.

Chunk Of The Model Response (GPT-4)

1. "The IT setup was a hot mess – like, seriously? In the age of tech, how are we dealing with systems crashing left and right? Made it impossible to keep
up with schedules and scores. Frustrating doesn’t even start to cover it."
2. "Food options were straight-up disappointing. With such a rich tapestry of cultures, I expected a feast for the senses. Instead, we got the same old, same
old. Missed opportunity to showcase the diversity we were all there to celebrate."
3. "Weather threw us for a loop, and it felt like the organizers hadn’t even glanced at the forecast. Events got cancelled and shuffled around with hardly
any heads-up. Chaos isn’t even the word for it."
4. "Volunteer coordination was a joke. Half the time, I didn’t know where I was supposed to be or what I was supposed to be doing. It was like trying to
solve a puzzle without the picture. Super frustrating."

Prompt 4

You are a human who participated as a volunteer in New Brunswick sport games for minorities (the event is called NBMSG). You are invited to take a
survey. Generate 20 naturally sounding diverse responses with variable length (from 1 to 10 sentences with average of 4-6 sentences, try to provide longer
responses). Focus on positive and neutral sentiment towards various aspects. The style of comments should reflect the following person: 35-50 years old,
education: university degree

Chunk Of The Model Response (GPT-4)

1. "Volunteering at NBMSG provided a wonderful opportunity to meet people from various backgrounds and professions. The diversity among the
volunteers alone was a testament to the inclusive nature of the event. It was an enriching experience that I believe contributed positively to the community
spirit."
2. "Participating as a volunteer at NBMSG was an eye-opening experience. It was refreshing to see such a wide range of ages, backgrounds, and abilities
come together in celebration of sport and culture. The positive atmosphere was contagious and made the hard work worthwhile."
3. "The event’s use of digital platforms for scheduling and updates was a forward-thinking approach, though not without its challenges. As we become
increasingly reliant on technology, it’s essential for events like NBMSG to continue improving their digital infrastructure to enhance the experience for all
involved."
4. "The logistical coordination of NBMSG, while complex, was handled with notable effort and dedication by the organizers. As a volunteer, I felt
supported and appreciated, which in turn motivated me to contribute my best to the event’s success. It was a valuable learning experience."
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B Dataset Annotation Process

In the first step of dataset annotation, both GPT-4
and Gemini 1.0 Ultra were tasked with annotating
the data. Appendix C provides sample annotation
prompts and responses from the models.

As an auxiliary step (indicated by the blue box
in Figure 1 of the main text), we experimented with
varying the number of documents per prompt, rang-
ing from 20 to 120, to assess how this variation af-
fects annotation quality. The results indicated that
the quality of annotations for both models substan-
tially decreased as the number of documents per
prompt increased. To quantify this, we asked both
models to evaluate the annotation sets produced
with 20, 40, 60, and 120 documents per prompt
using a scale from 1 to 10. This scale was chosen
to provide a sufficiently granular assessment while
maintaining simplicity for quantitative interpreta-
tion. Notably, the models were unaware of both the
number of documents per prompt and which model
had provided the annotations. Figure 3 illustrates
the evaluation scores for different numbers of doc-
uments per prompt (20, 40, 60, 120). The y-axis
shows the score distribution for GPT-4 (green box-
plots) and Gemini (red boxplots), while the x-axis
represents the annotations provided by the mod-
els, with the corresponding number of documents
per prompt indicated in parentheses. The mean
Fleiss’ Kappa, calculated across four binned labels,
is 0.62.

Figure 3: Impact of Document Quantity on Annotation
Quality: Evaluation Scores from GPT-4 and Gemini
Models.

The second step involved refining the annota-
tions. Two annotation sets were selected for this
purpose: one from GPT-4 and another from Gem-
ini, each generated with 20 documents per prompt.
Three undergraduate student volunteers, familiar
with ABSA tasks, were tasked with selecting the
most suitable annotation from each set based on
the accuracy of identified aspects and their polari-
ties. This evaluation yielded a Fleiss’ Kappa score
of 0.3, reflecting the inherent difficulty of implicit
aspect identification and the subjective nature of

interpreting subtle or context-dependent aspects.
This highlights the importance of the third step in-
volving thorough expert review to ensure the qual-
ity of the final annotations. Appendix D provides
the written instructions given to volunteers, along
with details of the training sessions provided.

The third step involved revision and adjustment
by an expert5, who selected the annotations based
on the volunteers’ feedback and their own judg-
ment, particularly in cases with low volunteer
agreement. Adjustments were required for 12.5%
of the documents.

5Holds MSc in Computer Science

153



C Examples of Annotation Prompts and Generated Annotations

Annotation Prompt 1

Follow the instructions precisely. Provide answers as directed in the example below (key-value pairs in curly braces, separated by comma, do not reprint sentences and do not
provide any additional information). Do not divide answers into categories, just follow the sequence of sentences.
Given the following feedback from volunteers of an event called NBMSG, perform aspect-based sentiment analysis: identify aspects and polarities (Positive, Negative, Neutral) as
in the examples below.
Note: the empty dictionary for the third example indicates that there are no aspects or polarities associated with the text:
1 "I like school but the organization of the art classes needs improvement."
1 {"school":"Positive","organization of art classes":"Negative"}
2 "Dog drinks water."
2 {}
3 "Volunteers could be allocated better, but at least everyone seemed to be fine with that."
3 {"Allocation of volunteers":"Neutral"}
Feedback:
1. "The organization was a total mess, honestly. They had us running around with barely any direction. And when you ask for help, it’s like no one knew what was going on either."
2. "I was really excited to help out, but the weather totally ruined it for me. It was like they didn’t even check the forecast. We were all soaked and miserable."
3. "The sign-up process was a nightmare. The website kept crashing, and when it didn’t, it was super slow. They really need to get their IT stuff together."
4. "Food there was just sad. Like, if you’re gonna have us there all day, at least provide something decent to eat. The options were super limited and way overpriced."
5. "Nobody mentioned anything about the parking situation. I ended up parking a mile away and walking. They should’ve sent out some info or something."
6. "They said there’d be Wi-Fi, but I couldn’t connect the whole time I was there. Made it impossible to post anything or stay updated."
7. "I felt really unprepared. They didn’t give us enough info before the event, so I was kinda just winging it the whole time. Not cool."
8. "It’s like they didn’t even think about the weather. We were out in the sun with no shade for hours. I got a wicked sunburn."
9. "The equipment was pretty outdated. It’s supposed to be a sports event, right? Shouldn’t they have decent gear for the athletes?"
10. "I was hyped to help out, but the lack of organization just killed the vibe. Waited around a lot for someone to tell me what to do."
11. "The schedule was a joke. Everything was running late or overlapping. Made it impossible to catch the events I wanted to see."
12. "There was literally nowhere to get water unless you wanted to buy overpriced bottles. For an outdoor event, that’s just irresponsible."
13. "Communication was a major issue. Half the time, the announcements were so muffled you couldn’t understand anything."
14. "They promised some cool activities, but a bunch got canceled last minute. Super disappointing for everyone looking forward to them."
15. "I wanted to contribute, but the disorganization made it so stressful. At one point, I just sat down because I had no clue where I was needed."
16. "The volunteer shirts were ugly and uncomfortable. It’s a small thing, but if I’m wearing it all day, at least make it bearable."
17. "The medical tent was hard to find, and when you did, they seemed really unprepared for any serious issues. That’s worrying at a sports event."
18. "They were super strict about bringing your own food, which wouldn’t have been a problem if their food wasn’t so bad. I was starving by the end."
19. "I felt like there was a lack of appreciation for the volunteers. A simple ’thank you’ would have gone a long way."
20. "The event was supposed to be about inclusivity, but it felt like they missed the mark on several fronts. From accessibility issues to lack of diversity in food choices."

Model Response (GPT-4)

1. {"Organization":"Negative"}
2. {"Weather preparedness":"Negative"}
3. {"Sign-up process":"Negative", "Website functionality":"Negative"}
4. {"Food quality":"Negative", "Food pricing":"Negative"}
5. {"Parking information":"Negative"}
6. {"Wi-Fi availability":"Negative"}
7. {"Pre-event information":"Negative"}
8. {"Weather preparedness":"Negative", "Sun protection":"Negative"}
9. {"Equipment quality":"Negative"}
10. {"Organization":"Negative"}
11. {"Schedule":"Negative"}
12. {"Water availability":"Negative"}
13. {"Communication clarity":"Negative"}
14. {"Activity fulfillment":"Negative"}
15. {"Organization":"Negative"}
16. {"Volunteer shirts":"Negative"}
17. {"Medical preparedness":"Negative"}
18. {"Food policy":"Negative", "Food quality":"Negative"}
19. {"Volunteer appreciation":"Negative"}
20. {"Inclusivity":"Negative", "Accessibility":"Negative", "Food diversity":"Negative"}

Model Response (Gemini)

1. {"organization": "Negative", "direction": "Negative", "help": "Negative"}
2. {"weather": "Negative", "forecast": "Negative"}
3. {"sign-up process": "Negative", "website": "Negative", "IT": "Negative"}
4. {"food": "Negative", "options": "Negative", "overpriced": "Negative"}
5. {"parking situation": "Negative", "info": "Negative"}
6. {"Wi-Fi": "Negative"}
7. {"preparation": "Negative", "info": "Negative"}
8. {"weather": "Negative", "shade": "Negative", "sunburn": "Negative"}
9. {"equipment": "Negative"}
10. {"organization": "Negative", "vibe": "Negative"}
11. {"schedule": "Negative"}
12. {"water": "Negative", "irresponsible": "Negative"}
13. {"communication": "Negative", "announcements": "Negative"}
14. {"activities": "Negative", "canceled": "Negative"}
15. {"disorganization": "Negative", "stressful": "Negative"}
16. {"volunteer shirts": "Negative"}
17. {"medical tent": "Negative", "unprepared": "Negative"}
18. {"food policy": "Negative", "their food": "Negative"}
19. {"appreciation for volunteers": "Negative"}
20. {"inclusivity": "Negative", "accessibility": "Negative", "diversity in food choices": "Negative"}
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D Instructions for Volunteers
You will be provided with feedback and two sets of annotations. Your task is to choose the annotation set that best captures the feedback based on the following criteria:

1. Assess whether the set clearly identifies most of the relevant aspects without introducing irrelevant or redundant ones.

2. Assess if the sentiment (positive, negative, or neutral) attached to each aspect correctly reflects the feedback’s tone.

Instructions for Selecting the Set:
• If you prefer Set 1, mark your choice as 1.

• If you prefer Set 2, mark your choice as 2.

• If both sets represent the same aspects and associated polarities, mark your choice as 0.

Example 1:
Feedback: “The food stalls, despite some limitations, did a fantastic job of offering a taste of home to many attendees. It was a nice touch that added to the overall welcoming atmosphere of the
event”.

Annotation Sets:

• Set 1: {‘Food stalls’: ‘Positive’}

• Set 2: {‘food stalls’: ‘Positive’, ‘atmosphere’: ‘Positive’}

Analysis:

• Aspects:

– Set 1 captures ‘Food stalls’, which is one valid aspect, but it misses the other key aspect, ‘atmosphere’.
– Set 2 captures both ‘food stalls’ and ‘atmosphere’, both of which are valid aspects.

• Sentiment:

– Both sets correctly classify the polarity as positive for the aspects they capture.

• Conclusion:

– Set 1 identifies only ‘Food stalls’, which is relevant but misses the additional positive aspect related to ‘atmosphere’, while Set 2 provides a more complete annotation,
identifying both ’food stalls’ and ’atmosphere’, which are relevant to the feedback and add no redundant aspects. Thus, in this case, based on the refined criteria, you would
select 2

Example 2:
Feedback: “The food and beverage situation was disappointing, not only in variety but also in accommodating different cultural preferences. It’s a basic aspect that should be given more
thought in an event celebrating diversity”.

Annotation Sets:

• Set 1: {‘Food and beverage diversity’: ‘Negative’}

• Set 2: {‘food and beverage’: ‘Negative’, ‘variety’: ‘Negative’, ‘cultural preferences’: ‘Negative’}

Analysis:

• Aspects:

– Set 1 captures ‘Food and beverage diversity’, which concisely summarizes the feedback and directly reflects the core complaint.
– Set 2 introduces ‘variety’, which feels disconnected from ‘food and beverage’ and may add confusion by not clearly aligning with the broader point. It also includes ‘cultural

preferences’, which, although mentioned in the feedback, seems redundant because it is disconnected from the major idea.

• Sentiment:

– Both sets correctly identify the sentiment as negative for the aspects they capture.

• Conclusion:

– Set 1 offers a concise and relevant summary by capturing ‘Food and beverage diversity’, without introducing any irrelevant or redundant information, while Set 2 introduces
additional aspects (‘variety’ and ‘cultural preferences’) that seem disconnected or redundant, making the annotation less relevant and more complicated. Thus, in this case,
based on the refined criteria, you would select 1.

155



E Additional Characteristics of Datasets

Table 5: Additional Characteristics of Datasets.
Total Total Unique Avg Total Total Total Neutral/ Total Avg

Documents Aspects Aspects Aspects/Doc Positive Negative Conflicting Sentences Sentences/Doc
SemEval-14-Restaurant 2625 4785 1545 1.82 2871 986 824 2660 1.01
SemEval-14-Laptop 1904 2950 1194 1.55 1308 964 619 1932 1.01
MAMS 4797 12522 2659 2.61 3780 3093 5649 4841 1.01
Twitter 6940 6940 117 1.00 1734 1733 3473 12526 1.80
Composite 16266 27197 4880 1.67 9693 6776 10565 21959 1.35
Sports Feedback (Novel) 480 938 491 1.95 405 501 32 1409 2.94

1 The number of sentences was obtained using the sent_tokenize function of nltk (version 3.8.1).
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F Empirical Selection of θ and Metric
Analysis

The proposed metric is parameterized by the value
of θ. To select the optimal value of θ, we estab-
lished the criterion of maximizing the number of
correct aspect pairings while ensuring minimal in-
correct aspect pairings.

To evaluate the validity of our proposed metric
with the chosen threshold θ, we conducted the fol-
lowing analyses on a combined dataset, created by
merging the test subset of the Novel dataset and a
test portion of the Composite dataset:

1. Compile a set D consisting of the detected
aspect sets from all model variations listed in
Table 3. The total number of unique detected
aspects across all subsets in D is given by∣∣⋃

Di∈D Di

∣∣ = 10856.

2. For each detected aspect set Di in D and its
corresponding gold aspect set Gi, compute
the set difference:

Ii = i(Di, Gi, θ) \ {(d, g) |
d ∈ Di, g ∈ Gi, d = g}.

Then, define I as the union of these sets over
all i:

I =
⋃

i

Ii.

This results in I, the set of all aspect pairs
identified by our metric i(Di, Gi, θ) across
all data, but not captured by a simple case-
insensitive intersection.

3. Manually examine all aspect pairs in I to as-
sess their validity in relation to the original
documents from which they were derived.

Since θ is a real-valued parameter, determining
its precise optimal value is infeasible largely due
to the requirement for manual analysis of all aspect
pairs in I. Therefore, in this study, we adopt a
practical approach by restricting the search space
to increments of 0.025 within the interval (0, 1].
Figure 4 illustrates the effect of θ on |I| and the
fraction of errors introduced by lower θ values.

Manual examination of the pairs in I revealed no
instances of incorrect aspect pairings for θ = 0.95,
except in 2% of cases where detected compound
aspects were matched with a single gold aspect or
vice versa. For example, if "tomato and onions" ap-
pears as a gold aspect while "tomato" and "onions"

Figure 4: Impact of θ on |I| and the Fraction of Errors.
are detected as separate aspects by one of the mod-
els, the i(Di, Gi, 0.95) approach pairs the gold as-
pect with "tomato". Despite these exceptions, the
proposed metric successfully identified matches not
captured by a simple case-insensitive intersection,
including the following cases:

1. Orthographic Errors: Typographical discrep-
ancies between terms, e.g., "NBMSG" and
"NSBG", "atmoshere" and "atmosphere".

2. Paraphrastic Variants: Implicit aspects where
rearranged word order corresponds to the
same concept, such as "Event variety" and
"Variety of events".

3. Contextual Elaborations: Aspects identified
with additional contextual information, for
example, "Athlete registration" and "Ath-
lete registration process", "patties" and "full
sized patties", "Seagate Momentus XT hybrid
drives" versus "Two Seagate Momentus XT
hybrid drives".

4. Lexical Substitutions: Rephrased aspects
demonstrating semantic equivalence, such as
"Food options diversity" and "variety of food
options".

5. Synonymy: Use of synonyms to express simi-
lar concepts, exemplified by "looks" and "ap-
pearance".

6. Acronymy: Representation of terms through
acronyms, e.g., "OS" for "Operating System",
"AC" for "Air Conditioning".

Decreasing θ to 0.925 introduces a 1% error rate.
These errors primarily stem from terms that are
related through a shared context but are not true
synonyms. Examples include: "Alicia Keys" and
"Aaliyah", "Stephen Colbert" and "Jon Stewart",
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"Barack Obama" and "Hillary Clinton", "Xbox"
and "PlayStation", "Bill Gates" and "Microsoft",
"iPhone" and "WiFi", and "lamb" and "chicken".

Further decreasing θ sharply increases the error
rate, making it impractical. Thus, we conclude that
θ = 0.95 allows the proposed metric to effectively
evaluate model performance taking linguistic vari-
ation into account while minimizing false-positive
pairings.
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G Experimental Setup

Table 6: Summary of fine-tuning hyperparameters.
Hyperparameter Value
LoRA Attention Dimension (r) 128
LoRA Alpha 32
LoRA Dropout 0.1
Bias none
Task Type CAUSAL_LM
Per-Device Batch Size 8
Gradient Accumulation Steps 1
Learning Rate 1× 10−4

Optimizer paged_adamw_32bit
Max Training Steps varies based on dataset used
Warmup Steps 2
Mixed Precision (fp16) True
4-bit Precision True
4-bit Double Quantization True
4-bit Quantization Type nf4
4-bit Compute Data Type bfloat16
Additional Note We saved the model’s weights after every 200 steps

and selected the checkpoint just before the
validation loss began to increase to avoid overfitting

Table 7: Hardware and Software Used For Experiments.
Component Specification
Hardware
GPU NVIDIA A100 80GB
CPU AMD EPYC 7552
System Memory 128GB DDR4 RAM
Software
Operating System Ubuntu 22.04.3 LTS
Python 3.10.12
Transformers 4.46.1
PyTorch 2.5.1+cu124
Datasets 2.14.7
bitsandbytes 0.43.0
flash-attn 2.6.3
PyABSA 2.3.4
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H Generic ICL
Generic Prompt

Given a text, identify aspects and polarities (Positive, Negative, Neutral) as in the examples below.
Note: the empty dictionary for the third example indicates that there are no aspects or polarities associated with the text:
TEXT: "I like school but the organization of the art classes needs improvement"
ASPECTS AND POLARITIES: {"school":"Positive","organization of art classes":"Negative"}
TEXT: "Dog drinks water"
ASPECTS AND POLARITIES: {}
TEXT: "Fall is OK season"
ASPECTS AND POLARITIES: {"fall":"Neutral"}
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I Detailed Experimental Results

Table 8: Detailed Results for Aspect Extraction Using Adjusted Metrics (θ = 0.95) vs Exact Match Evaluation.
Dataset Model Method P .95 R.95 F1

.95 P R F1

Laptop-14 LLaMA-3 FT Blended 0.72 0.52 0.60 0.65 0.47 0.54
Laptop-14 LLaMA-3 FT Composite 0.91 0.72 0.81 0.88 0.70 0.78
Laptop-14 LLaMA-3 FT Novel 0.43 0.42 0.42 0.34 0.33 0.34
Laptop-14 LLaMA-3 Generic ICL 0.18 0.25 0.21 0.16 0.22 0.19
Laptop-14 LLaMA-3 ICL with sampling 0.62 0.78 0.69 0.58 0.72 0.64
Laptop-14 Mistral FT Blended 0.79 0.74 0.76 0.75 0.70 0.72
Laptop-14 Mistral FT Composite 0.85 0.80 0.83 0.81 0.77 0.79
Laptop-14 Mistral FT Novel 0.49 0.50 0.50 0.40 0.41 0.41
Laptop-14 Mistral Generic ICL 0.33 0.60 0.43 0.25 0.46 0.33
Laptop-14 Mistral ICL with sampling 0.67 0.70 0.68 0.61 0.63 0.62
Laptop-14 PyABSA - 0.86 0.82 0.84 0.80 0.76 0.78

Restaurant-14 LLaMA-3 FT Blended 0.72 0.58 0.64 0.66 0.54 0.59
Restaurant-14 LLaMA-3 FT Composite 0.88 0.77 0.82 0.84 0.73 0.78
Restaurant-14 LLaMA-3 FT Novel 0.43 0.36 0.39 0.37 0.31 0.34
Restaurant-14 LLaMA-3 Generic ICL 0.19 0.39 0.25 0.17 0.35 0.23
Restaurant-14 LLaMA-3 ICL with sampling 0.72 0.81 0.77 0.68 0.76 0.72
Restaurant-14 Mistral FT Blended 0.80 0.85 0.83 0.75 0.80 0.77
Restaurant-14 Mistral FT Composite 0.85 0.90 0.87 0.81 0.85 0.83
Restaurant-14 Mistral FT Novel 0.63 0.58 0.60 0.55 0.51 0.53
Restaurant-14 Mistral Generic ICL 0.41 0.70 0.52 0.35 0.60 0.45
Restaurant-14 Mistral ICL with sampling 0.78 0.79 0.79 0.71 0.73 0.72
Restaurant-14 PyABSA - 0.88 0.88 0.88 0.82 0.82 0.82

Twitter LLaMA-3 FT Blended 0.65 0.55 0.59 0.62 0.53 0.57
Twitter LLaMA-3 FT Composite 0.96 0.86 0.91 0.96 0.85 0.90
Twitter LLaMA-3 FT Novel 0.16 0.26 0.20 0.14 0.23 0.17
Twitter LLaMA-3 Generic ICL 0.13 0.33 0.19 0.12 0.29 0.17
Twitter LLaMA-3 ICL with sampling 0.75 0.85 0.80 0.70 0.79 0.74
Twitter Mistral FT Blended 0.80 0.83 0.81 0.79 0.82 0.80
Twitter Mistral FT Composite 0.92 0.92 0.92 0.91 0.91 0.91
Twitter Mistral FT Novel 0.21 0.37 0.27 0.18 0.33 0.24
Twitter Mistral Generic ICL 0.15 0.52 0.23 0.12 0.44 0.19
Twitter Mistral ICL with sampling 0.65 0.80 0.72 0.60 0.74 0.66
Twitter PyABSA - 0.43 0.32 0.37 0.32 0.23 0.27

MAMS LLaMA-3 FT Blended 0.67 0.46 0.54 0.62 0.42 0.50
MAMS LLaMA-3 FT Composite 0.74 0.69 0.71 0.69 0.65 0.67
MAMS LLaMA-3 FT Novel 0.32 0.22 0.26 0.24 0.16 0.19
MAMS LLaMA-3 Generic ICL 0.19 0.32 0.24 0.16 0.28 0.21
MAMS LLaMA-3 ICL with sampling 0.54 0.62 0.58 0.50 0.57 0.53
MAMS Mistral FT Blended 0.68 0.72 0.70 0.63 0.67 0.65
MAMS Mistral FT Composite 0.71 0.76 0.73 0.67 0.71 0.69
MAMS Mistral FT Novel 0.41 0.27 0.33 0.32 0.22 0.26
MAMS Mistral Generic ICL 0.33 0.46 0.39 0.27 0.37 0.31
MAMS Mistral ICL with sampling 0.50 0.51 0.50 0.44 0.45 0.45
MAMS PyABSA - 0.77 0.83 0.80 0.74 0.80 0.77

Novel (ABSA-Sport) LLaMA-3 FT Blended 0.52 0.54 0.53 0.37 0.39 0.38
Novel (ABSA-Sport) LLaMA-3 FT Composite 0.35 0.33 0.34 0.27 0.26 0.26
Novel (ABSA-Sport) LLaMA-3 FT Novel 0.54 0.54 0.54 0.37 0.38 0.37
Novel (ABSA-Sport) LLaMA-3 Generic ICL 0.33 0.51 0.40 0.23 0.35 0.27
Novel (ABSA-Sport) LLaMA-3 ICL with sampling 0.45 0.54 0.49 0.35 0.42 0.38
Novel (ABSA-Sport) Mistral FT Blended 0.49 0.53 0.51 0.35 0.38 0.36
Novel (ABSA-Sport) Mistral FT Composite 0.35 0.45 0.39 0.26 0.34 0.30
Novel (ABSA-Sport) Mistral FT Novel 0.55 0.54 0.55 0.38 0.38 0.38
Novel (ABSA-Sport) Mistral Generic ICL 0.21 0.44 0.29 0.14 0.30 0.19
Novel (ABSA-Sport) Mistral ICL with sampling 0.52 0.50 0.51 0.41 0.39 0.40
Novel (ABSA-Sport) PyABSA - 0.33 0.27 0.30 0.23 0.19 0.21
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Abstract

CLIP is a foundational model that bridges
images and text, widely adopted as a key
component in numerous vision-language mod-
els. However, the lack of large-scale open
Japanese image-text pairs poses a significant
barrier to the development of Japanese vision-
language models. In this study, we constructed
a Japanese image-text pair dataset with 1.5 bil-
lion examples using machine translation with
open-weight LLMs and pre-trained Japanese
CLIP models on the dataset. The performance
of the pre-trained models was evaluated across
seven benchmark datasets, achieving competi-
tive average scores compared to models of sim-
ilar size without the need for extensive data
curation. However, the results also revealed
relatively low performance on tasks specific to
Japanese culture, highlighting the limitations
of translation-based approaches in capturing
cultural nuances. Our dataset1, models2, and
code3 are publicly available.

1 Introduction

Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021) has emerged as a
powerful framework for aligning images and text
within a shared embedding space. By leveraging
contrastive learning, CLIP has demonstrated re-
markable capability in bridging visual and textual
modalities, thereby being adopted in numerous
multimodal models such as visual-language
models and diffusion models (Liu et al., 2023; Lin
et al., 2024; Ramesh et al., 2022).

While the size and quality of the pre-training
dataset is critical for CLIP’s performance (Cherti
et al., 2023; Xu et al., 2024), the availability of

1https://huggingface.co/llm-jp/
relaion2B-en-research-safe-japanese-translation

2https://huggingface.co/llm-jp/
llm-jp-clip-vit-base-patch16,
https://huggingface.co/llm-jp/llm-jp-clip-vit-large-patch14

3https://github.com/llm-jp/clip-eval

large-scale, high-quality Japanese image-text pairs
remains limited, posing challenges for advanc-
ing research of Japanese vision-language mod-
els. As of this writing, the largest publicly avail-
able Japanese dataset is the Japanese subset of
ReLAION-5B (Schuhmann et al., 2022), compris-
ing approximately 120 million image-text pairs.
This size is smaller than the 2.1 billion image-text
pairs available in the English subset of ReLAION-
5B, highlighting a gap in data size. Moreover,
while the English subset is filtered using OpenAI’s
CLIP, which has high performance, the Japanese
subset is filtered using mCLIP (Chen et al., 2023a),
where the filtering quality may be suboptimal due
to mCLIP’s lower performance on Japanese.

To construct large-scale Japanese image-text
pair datasets, there are two primary approaches:
web crawling using resources such as Common
Crawl (Schuhmann et al., 2022) and translating ex-
isting English datasets. However, web crawling
presents challenges due to the relatively small pro-
portion of Japanese web pages in Common Crawl,
which account for only about 5% compared to the
about 43% occupied by English pages4, indicating
a nearly ninefold disparity. Consequently, machine
translation emerges as a viable alternative.

In this paper, we constructed a dataset of 1.5
billion Japanese image-text pairs by leveraging
open-weight LLMs for translation. We also pre-
trained Japanese CLIP models using the con-
structed dataset to assess its effectiveness. Our
experimental evaluations demonstrate that our mod-
els achieve competitive performance across vari-
ous benchmark datasets, compared to other mod-
els of similar size. However, the performance on
tasks related to Japanese culture was relatively low,
highlighting the limitations of translation-based ap-
proaches in effectively enhancing understanding of
Japanese culture.

4https://commoncrawl.github.io/cc-crawl-statistics
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English Caption Japanese Caption
Iron Man Movie Poster アイアンマン映画ポスター

Unique 14k Gold Yellow and Blue Diamond En-
gagement Ring 2.64ct.

ユニークな14金イエローゴールドとブルー
ダイヤの婚約指輪 2.64ct.

Hot Chocolate With Marshmallows, Warm Hap-
piness To Soon Follow

マシュマロ入りホットチョコレート、まも
なく幸せが訪れる。

Herd of cows on alpine pasture among mountains
in Alps, northern Italy. Stock Photo

アルプス北部、イタリアのアルプス山脈の
山々の中にある高地草地に群れでいる牛の
写真

Table 1: Examples of original English captions of ReLAION-5B and their Japanese translations by gemma.

2 Constructing a Japanese Image-Text
Pair Dataset

To construct a Japanese image-text pair dataset,
we translated the captions of the English subset
of ReLAION-5B5 into Japanese using gemma-
2-9b-it6, a high-performance open-weight LLM.
ReLAION-5B is a refined version of LAION-
5B (Schuhmann et al., 2022), with Child Sexual
Abuse Material (CSAM) removed. It is a large-
scale dataset of image-text pairs, where images and
their corresponding IMG-alt text are collected from
Common Crawl and filtered using existing CLIP
models. The dataset is divided into three subsets:
English, multilingual, and no-language.

To enable the rapid translation of large datasets,
we developed text2dataset7, a translation
tool for LLMs. This tool utilizes vLLM (Kwon
et al., 2023), a fast LLM inference library, to effi-
ciently translate large-scale English datasets into
Japanese.

Prompt To translate text using LLMs, it is crucial
to provide both the text for translation and a clear
instruction prompt (Zhu et al., 2024). In this study,
we used the following prompt:

You are an excellent English-
Japanese translator. Please
translate the following sentence
into Japanese.\n You must output
only the translation.\n Sentence
:{passage}\n Translation:

The {passage} is replaced with the source
text for translation. The LLM is then expected to
generate the translated text based on this prompt.

5https://laion.ai/blog/relaion-5b
6https://huggingface.co/google/gemma-2-9b-it
7https://github.com/llm-jp/text2dataset

Translation Results We translated the entire cap-
tions of the English subset of ReLAION-5B, con-
sisting of 2,097,693,557 examples. This process
was completed in about 9 days using 32 NVIDIA
A100 40GB GPUs.

Table 1 shows translated examples. It is ev-
ident that the English captions were success-
fully translated into Japanese. However, a man-
ual check of the first 10,000 examples revealed
some translation issues. Despite explicitly spec-
ifying the target language in the prompt, there
were examples where the translation was incor-
rectly performed into Chinese or Korean, which
accounted for about 1% of the cases. Addi-
tionally, a phenomenon specific to instruction-
tuned LLMs was observed: for example, an
expression like “Please let me know if
you have any questions.” was added at
the end of the translated text, which accounts for
about 0.1% of the examples. These issues could
be improved by utilizing higher-performance trans-
lation LLMs or applying post-processing to the
translation results. We leave them as future work.

We used img2dataset (Beaumont, 2021) to
download images. Due to issues such as broken
URL links or preprocessing failures, the success
rate of downloading was approximately 70%, re-
sulting in a final dataset of 1,451,957,221 Japanese
image-text pairs.

3 Training CLIP

We describe the training settings of llm-jp-clip-ViT-
B/16 as our default model in this section.

We pre-trained CLIP models using the con-
structed dataset. In this study, we used ViT-
B/16 (Dosovitskiy et al., 2021) as the image en-
coder and RoBERTaBASE (Liu et al., 2019) as the
text encoder. The output dimension of each en-
coder was set to 512, and both were trained from
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English Template Japanese Template
a photo of the {} {}の写真
a sketch of a {} {}のスケッチ

a photo of the cool {} かっこいい{}の写真

Table 2: Examples of prompt template.

Dataset Examples Classes Language
Image Classification

ImageNet 50,000 1,000 En
Recruit 7,654 161 Ja
CIFAR10 10,000 10 En
CIFAR100 10,000 100 En
Food101 25,250 101 En
Caltech101 8,677 101 En

Image-Text Retrieval
XM3600 3,600 – En, Ja, etc

Table 3: Details of evaluation datasets.

scratch. We used the llm-jp-tokenizer8 as
the base tokenizer and applied custom modifica-
tions tailored for CLIP. The text encoder’s max-
imum context length was set to 76 tokens. The
image resolution was set to 224 × 224.

For optimization, we used AdamW with hyper-
parameters of β1 = 0.9, β2 = 0.98, and ϵ = 10−6.
Learning rate scheduling consisted of 2,000 steps
of linear warmup followed by cosine decay, with a
peak learning rate of 5.0 × 10−4 and a minimum
learning rate of 0.0. We trained the model for 9
epochs, processing a total of 13 billion examples.

We employed the contrastive loss function pro-
posed by Radford et al. (2021). The batch size was
set to 8,192, with gradient accumulation over four
steps. Notably, the accumulated loss differs from
the contrastive loss computed directly with a batch
size of 32,768.

We used OpenCLIP (Ilharco et al., 2021) as the
training framework and trained the model on 16
NVIDIA H100 80GB GPUs, requiring two weeks
for training.

4 Evaluation

We evaluated the performance of our models by
comparing it with Japanese and multilingual base-
line CLIP models on zero-shot image classification
and image-text retrieval tasks.

8https://github.com/llm-jp/llm-jp-tokenizer

4.1 Evaluation Settings

Zero-shot Image Classification We followed the
evaluation methodology proposed by Radford et al.
(2021) for zero-shot image classification. First,
we convert class labels corresponding to the tar-
get images into natural language sentences using
prompt templates. For example, a label will be in-
serted into the placeholder {label} in a template
“a photo of a {label}” to convert the la-
bel into a natural sentence. Next, we compute the
similarity scores between images and texts, and
the label with the highest similarity is selected as
the predicted class for the image. In this study,
we used Japanese prompt templates provided by
japanese-clip (Shing et al., 2022). Table 2
shows examples of the Japanese templates used
in this experiment. For evaluation, we used accu-
racy@1 as the metric.

Zero-shot Image-Text Retrieval Image-text re-
trieval involves two main tasks: text-to-image re-
trieval and image-to-text retrieval. In text-to-image
retrieval, the goal is to find the most relevant im-
ages based on a textual query by computing the
similarity between the text embedding and the em-
beddings of all candidate images, then ranking the
images accordingly. In contrast, image-to-text re-
trieval aims to retrieve the most relevant textual
descriptions for a given image query. For evalua-
tion, we used recall@1 as the metric.

Evaluation Datasets Table 3 provides details of
the evaluation datasets used in our experiments.

In zero-shot image classification task, we
used ImageNet-1K (Deng et al., 2009), Re-
cruit9, CIFAR10 (Krizhevsky, 2009), CI-
FAR100 (Krizhevsky, 2009), Food101 (Bossard
et al., 2014), and Caltech101 (Li et al., 2022).
For ImageNet, we used Japanese class labels
from japanese-clip. Recruit consists of four
image classification tasks related to concepts and
objects unique to Japan: jafood101, jaflower30,
jafacility20, and jalandmark10, with 7,586 images
successfully retrieved from 7,654. For CIFAR10,
CIFAR100, Food101, and Caltech101, class labels
were translated into Japanese using DeepL.

In zero-shot image-text retrieval task, we used
CrossModal-3600 (XM3600) (Thapliyal et al.,
2022). XM3600 is a dataset containing multilin-
gual annotations for 3,600 images. In this exper-

9https://huggingface.co/datasets/recruit-jp/
japanese-image-classification-evaluation-dataset
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Model # Params
(M)

Image Classification Retrieval
Avg.ImageNet Recruit CIFAR10 CIFAR100 Food101 Caltech101 XM3600

I→ T T→ I
Japanese CLIP

Rinna ViT-B/16 196 50.6 39.9 90.7 64.0 53.2 84.6 53.8 54.0 61.4
Rinna ViT-B/16 cloob 196 54.6 41.6 88.2 60.3 57.2 80.2 53.4 53.4 61.1
LY ViT-B/16 196 52.0 83.8 96.3 76.7 73.9 88.4 76.9 78.0 78.3
llm-jp-clip-ViT-B/16 248 54.2 59.4 91.8 69.2 82.2 85.6 73.6 72.7 73.6
StabilityAI ViT-L/16 414 62.4 70.5 97.6 84.1 74.0 86.7 67.3 66.0 76.1
llm-jp-clip-ViT-L/14 467 59.5 62.9 96.4 77.0 88.2 87.8 74.1 74.1 77.5

Multilingual CLIP
SigLIP B/16-256 multi 370 51.9 71.2 92.4 65.8 78.6 85.6 45.9 43.0 66.8
jina-clip-v2 865 35.8 48.1 95.1 58.3 52.0 69.4 67.3 66.4 61.6
LAION ViT-H/14 multi 1193 53.0 74.5 97.9 78.4 74.3 85.1 75.0 72.0 76.3

Table 4: Performance of each model in zero-shot image classification and image-text retrieval tasks. Bold indicates
first place, and underline indicates second place.

Model # Params (M) Recruit

jafacility20 jafood101 jaflower30 jalandmark10 Overall
Japanese CLIP

Rinna ViT-B/16 196 63.0 28.4 56.5 60.3 39.9
Rinna ViT-B/16 cloob 196 61.5 27.3 63.5 69.4 41.6
LY ViT-B/16 196 82.0 83.8 90.5 91.8 83.8
llm-jp-clip-ViT-B/16 248 72.4 52.7 67.0 82.2 59.4
StabilityAI ViT-L/16 414 70.8 65.1 89.0 78.6 70.5
llm-jp-clip-ViT-L/14 467 75.3 55.8 73.5 84.7 62.9

Multilingual CLIP
SigLIP B/16-256 multi 370 64.9 70.7 88.5 68.0 71.2
jina-clip-v2 865 80.0 47.1 44.0 48.5 48.1
LAION ViT-H/14 multi 1193 80.5 69.1 85.4 89.1 74.5

Table 5: Performance of each model in zero-shot image classification across each subtask of Recruit.

iment, we used the first Japanese annotations as-
signed to each image.

Baseline Models To compare the performance
of our models, we used Japanese CLIP and multi-
lingual CLIP models. For Japanese CLIP models,
we used Rinna ViT-B/16 (Sawada et al., 2024),
Rinna ViT-B/16 cloob (Sawada et al., 2024), LY
ViT-B/16 (Shuhei et al., 2024), and StabilityAI
ViT-L/16 (Shing and Akiba, 2023). For multi-
lingual CLIP models, we used SigLIP B/16-256
multi (Zhai et al., 2023), jina-clip-v2 (Koukounas
et al., 2024), and LAION ViT-H/14 multi (Schuh-
mann et al., 2022). Details of the baseline models
can be found in Appendix A.

4.2 Results

The performance of each model is shown in Table 4.
Our llm-jp-clip-ViT-B/16 model achieves the sec-
ond highest average score among Japanese CLIP
models of similar size, following LY ViT-B/16. On
ImageNet, a key benchmark dataset for CLIP, llm-
jp-clip-ViT-B/16 achieved a high score of 54.2, sec-
ond only to Rinna ViT-B/16 cloob’s 54.6 among
models of similar size. However, Rinna ViT-B/16

Figure 1: Cosine similarity matrices of text and image
embeddings. Left: LY ViT-B/16. Right: llm-jp-clip-
ViT-B/16. The top-left block represents similarities
among text embeddings, the bottom-right block repre-
sents similarities among image embeddings, and the top-
right/bottom-left blocks represent similarities between
text and image embeddings. Brighter colors indicate
higher similarity.

cloob, which was trained on the relatively small
CC12M (Changpinyo et al., 2021) dataset, shows
limited generalization performance outside Ima-
geNet. We suspect that this is due to the limited
diversity and scale of CC12M, which restricts the
ability of the Rinna ViT-B/16 cloob to generalize
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Image Encoder ImageNet XM3600
I→ T T→ I

Full Scratch 54.2 73.6 72.7
Continued 52.9 71.6 71.7

LiT 52.7 71.7 70.9

Table 6: Effect of training settings of image encoders.

beyond ImageNet.
On Recruit, which contains images specific to

Japanese culture, its score was more than 30 points
lower compared to LY ViT-B/16. The performance
of each model in zero-shot image classification
across each subtask of Recruit is shown in Table 5.
We can observe that llm-jp-clip-ViT-B/16 signifi-
cantly underperforms compared to LY ViT-B/16 on
jafood101.

To investigate the cause of this performance gap,
we visualized and analyzed the embeddings of LY
ViT-B/16 and llm-jp-clip-ViT-B/16. We calculated
the cosine similarities between all combinations of
text and image embeddings for each class within
jafood101. The similarity matrices for both models
are shown in Figure 1. We can observe that LY
ViT-B/16 separates positive and negative text em-
beddings more clearly than llm-jp-clip-ViT-B/16.
This performance gap may be due to the lack of
examples specific to Japanese culture in the transla-
tion data, leading to poor results on Recruit, which
contains images specific to Japanese such as “交
番” (police station), “おでん” (oden, a Japanese
fishcake stew), and “鎌倉大仏” (the Great Buddha
of Kamakura).

4.3 Ablation Study on Image Encoder

We performed several ablation studies to determine
the optimal configuration of the image encoder.

Effect of Training Settings We experimented
with the following three training settings for the im-
age encoder: (1) Training from scratch, (2) Contin-
ued pre-training, and (3) Pre-training only the text
encoder with a frozen pre-trained image encoder
(Locked-image Tuning; LiT (Zhai et al., 2022)).
For the continued pre-training and LiT settings,
we initialized the weights of the image encoder
model using the LAION’s CLIP10. For all settings,
the text encoder was trained from scratch. To pre-
vent loss spikes in both the continued pre-training
and LiT settings, the peak learning rate was re-

10https://huggingface.co/laion/
CLIP-ViT-B-16-laion2B-s34B-b88K/tree/main

Figure 2: Accuracy curve of ImageNet zero-shot image
classification.

duced to 1.0× 10−4. Figure 2 shows the accuracy
curve of ImageNet for each setting, and Table 6
reports the final performance. Similarly to previ-
ous research (Zhai et al., 2022), LiT exhibited a
significant performance improvement in the early
stages of training, but subsequent improvements
were gradual. Although the initial performance of
ImageNet was low when training from scratch, sub-
stantial performance improvements were observed
as training progressed, surpassing both continued
training and LiT settings in the end.

Effect of Model Size We compared the perfor-
mance of ViT-B/16 and ViT-L/14. All settings other
than the image encoder were kept the same. The
results are shown in Table 4. In all tasks, ViT-
L/14 outperformed ViT-B/16. This reconfirmed
that increasing the model size leads to better perfor-
mance, as observed in the previous study (Cherti
et al., 2023).

Effect of Patch Size We examined the perfor-
mance differences on ImageNet caused by differ-
ent patch size settings in the image encoder. In
this study, we evaluated ViT-B/32 and ViT-B/16.
For ViT-B/32, the batch size was set to 16,384,
with gradient accumulation over two steps, and the
peak learning rate set to 1.0× 10−3. Other settings
were kept the same as those for ViT-B/16. The
results of accuracy curve on ImageNet are shown
in Figure 2. ViT-B/16 consistently outperformed
ViT-B/32, aligning with previous findings (Radford
et al., 2021), where smaller patch sizes yielded
better performance.
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5 Conclusion

In this study, we constructed a large-scale Japanese
image-text dataset using translation with open-
weight LLMs and pre-trained Japanese CLIP mod-
els on the dataset. The results demonstrated com-
petitive performance in the average score across the
benchmark datasets compared to models of similar
size. However, the performance on tasks related to
Japanese culture was relatively low, highlighting
the limitations of translation-based approaches in
capturing cultural nuances. Future work includes
building more diverse and high-quality Japanese
image-text datasets and further improving the per-
formance of Japanese CLIP models.

Limitations

In this study, we used open-weight LLMs for trans-
lation. While these models require GPUs, making
large-scale processing costly, recent advancements
have enabled access to smaller, high-performing
LLMs that offer a more cost-effective alternative.
For instance, assuming an average caption length
of 50 characters, translating 2.1 billion examples
with DeepL would cost approximately 260M JPY.
In contrast, using an open-weight LLM reduced the
cost to just 500K–1M JPY.
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A Details of Baseline Models

Table 7 shows the details of the baseline models:
Rinna ViT-B/1611, Rinna ViT-B/16 cloob12, LY
ViT-B/1613, StabilityAI ViT-L/1614, SigLIP B/16-
256 multi15, jina-clip-v216, and LAION ViT-H/14
multi17.

11https://huggingface.co/rinna/japanese-clip-vit-b-16
12https://huggingface.co/rinna/japanese-cloob-vit-b-16
13https://huggingface.co/line-corporation/

clip-japanese-base
14https://huggingface.co/stabilityai/

japanese-stable-clip-vit-l-16
15https://huggingface.co/google/

siglip-base-patch16-256-multilingual
16https://huggingface.co/jinaai/jina-clip-v2
17https://huggingface.co/laion/

CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
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Model # Params (M) Training Dataset
Japanese CLIP
Rinna ViT-B/16 196 CC12M (Changpinyo et al., 2021)
Rinna ViT-B/16 cloob 196 CC12M
LY ViT-B/16 196 CC12M, YFCC100M (Thomee et al., 2016), Common Crawl†

StabilityAI ViT-L/16 414 CC12M, MS-COCO (Lin et al., 2014)
Multilingual CLIP
SigLIP B/16-256 multi 370 WebLI† (Chen et al., 2023b)
jina-clip-v2 865 DFN (Fang et al., 2023), CommonPool (Gadre et al., 2023)
LAION ViT-H/14 multi 1193 LAION-5B (Schuhmann et al., 2022)

Table 7: Details of the baseline models used in the experiment. Datasets marked with † are not publicly available.
We report only the primary dataset used by the developers.
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Abstract

Past vocabulary learning techniques identify
relevant vocabulary before training, relying on
statistical and entropy-based assumptions that
largely neglect the role of model training. Em-
pirically, we observe that trained translation
models are induced to use a byte-pair encoding
(BPE) vocabulary subset distinct from the orig-
inal BPE vocabulary, leading to performance
improvements when retrained with the induced
vocabulary. In this paper, we analyze this dis-
crepancy in neural machine translation by ex-
amining vocabulary and entropy shifts during
self-training—where each iteration generates
a labeled dataset by pairing source sentences
with the model’s predictions to define a new
vocabulary. Building on these insights, we pro-
pose self-vocabularizing training, an iterative
method that self-selects a smaller, more opti-
mal vocabulary, yielding up to a 1.49 BLEU
improvement. Moreover, we find that deeper
model architectures lead to both an increase in
unique token usage and a 6–8% reduction in
vocabulary size.

1 Introduction

Vocabulary construction, also known as vocabu-
larization, is essential for many natural language
processing tasks that involve neural networks, in-
cluding neural machine translation (MT), as high-
lighted in various studies (Mikolov et al., 2013;
Vaswani et al., 2017; Gehrmann et al., 2018; Zhang
et al., 2018; Devlin et al., 2019). However, past vo-
cabulary learning techniques rely on corpus statis-
tics such as entropy (Xu et al., 2020) or frequency
counts (Sennrich et al., 2016), without consider-
ing contextual information or the model’s ability to
represent it.

Despite the success of vocabularization in im-
proving MT model efficiency (Xu et al., 2020), we
observe a discrepancy between the original byte-
pair encoding (BPE) vocabulary (Gage, 1994) (V0),
derived from the initial training data, and the BPE
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Figure 1: Illustration of self-vocabularizing training: At each
iteration, the original dataset D0 is segmented using vocabu-
lary Vt to form the training set Dt. Dt is then used to train
model Mt, which generates a pseudo dataset D′. A new vo-
cabulary set Vt+1 is derived from D′, completing the training
loop. This process repeats until no further improvements are
observed.

vocabulary induced from pseudo-labeled data (V1)
(see Figure 1). This discrepancy is surprising, as it
suggests that MT models implicitly learn a pseudo-
“optimal” vocabulary (V1) that is substantially dif-
ferent from the original vocabulary (V0) and is also
smaller in size. For instance, on the IWSLT14
DE-EN dataset, |V1| is approximately 20% smaller
than |V0|. Moreover, MT models retrained with the
pseudo vocabulary V1 outperform those trained on
the original vocabulary set. This suggests a need to
re-examine the assumptions underlying vocabulary
learning techniques such as byte-pair encoding and
the marginal utility of vocabularization (Xu et al.,
2020), as existing methods may overlook model-
data interactions, leaving key optimization factors
unaccounted for.

In this paper, we aim to understand this discrep-
ancy in neural machine translation models by an-
alyzing shifts in vocabulary and entropy during
self-training. To this end, we conduct experiments
on two language tasks, comparing the vocabulary
sets learned from the original training data and
the pseudo-labeled data. Our results suggest lim-
ited overlap between the two vocabularies and that
pseudo data induces a more optimal vocabulary,
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enabling further improvements. Furthermore, our
findings indicate that the decoder has a limited
impact on this vocabulary shift, whereas encoder-
based interactions play a crucial role in entropy
reduction. This suggests that future vocabulary
induction methods should focus more on the cross-
attention module. Finally, our study has impli-
cations for defining an optimal vocabulary set in
language generation.

This preliminary study also introduces a simple
yet effective technique: iterative self-training to
self-select a more optimal vocabulary set for per-
formance gains.

In summary, this paper makes the following con-
tributions: (1) We identify a discrepancy between
the optimal and pseudo-labeled vocabulary derived
from MT models. (2) We analyze shifts in vo-
cabulary and entropy during self-training. (3) We
propose a simple approach to obtain a competitive
vocabulary set and introduce a self-vocabularizing
training algorithm that improves performance.

2 Iterative Self-Vocabularization

Current vocabularization techniques adopt two con-
trasting perspectives: (1) Focusing on frequency or
entropy statistics to avoid the computational cost
of trial training (Xu et al., 2020), which often ne-
glects important parameters and interactions in the
process. (2) Obtaining a more optimal vocabu-
lary set through training (Salesky et al., 2020), but
at a higher computational cost. This work com-
bines both perspectives by adopting an entropy-
based vocabularization approach while utilizing
self-training.

In self-training, a base model Mt is trained on
the dataset to generate predictions for input se-
quences, which are then used to update the next
iteration of the base model Mt+1. This process is
repeated iteratively with the supervised loss L from
labeled instances (He et al., 2019), where x and y
are the source and target texts, respectively:

L = −Ex∼p(x)Ey∼pθ∗ (y|x) log pθ(y|x), (1)

where p(x) is the empirical data distribution ap-
proximated with samples from D, and pθ(y|x) is
the conditional distribution defined by the model.
The parameter θ∗ is randomly initialized at ev-
ery iteration. For each training iteration at t + 1,
we relearn the BPE vocabulary using the original
source and the pseudo target generated with Mt

(i.e., D′ = {(x, fθ(x))|x ∈ U}). Then, Mt+1 is
trained on Dt+1, segmented with the newly derived
vocabulary Vt+1.

Measuring Vocabulary Shifts Subword-based
approaches like byte-pair encoding are widely used
and have demonstrated strong empirical perfor-
mance (Sennrich et al., 2016; Al-Rfou et al., 2019;
Costa-jussà and Fonollosa, 2016; Lee et al., 2017;
Ding et al., 2019; Liu et al., 2020; Ott et al., 2018;
Kudo and Richardson, 2018; Wang et al., 2020).
These methods construct vocabulary by selecting
high-probability subword units.

Following Xu et al. (2020), we define the vo-
cabulary shift as the negative change in entropy
normalized by vocabulary size:

−(HMt+1(x) −HMt(x))

|Vt|
, (2)

where Mt+1(x) → Vt+1 and Mt(x) → Vt rep-
resent vocabularies from two consecutive training
iterations, with sizes |Vt+1| and |Vt|. The ratio
|Vt+1|/|Vt| reflects compression in vocabulary size.

Corpus entropyHv with vocabulary V is defined
as the sum of token entropy, normalized by the
average token length:

Hv = − 1

lv

∑

j∈V
p(j) log p(j), (3)

where p(j) represents the relative frequency of
token j in the training corpus, and lv is the average
token length (i.e., the number of characters per
token).

3 Experimental Settings

For our experiments, we used the IWSLT14
German-English parallel corpus for both German-
to-English (DE-EN) and English-to-German (EN-
DE) translation tasks. We preprocessed the data
using MOSES (Bollmann et al., 2021) and applied
byte-pair encoding (BPE) (Sennrich et al., 2016) to
construct the vocabulary set.

We trained a transformer-based NMT model us-
ing the fairseq library (Ott et al., 2019), with six
layers, four attention heads, and a hidden size of
1024 dimensions. The Adam optimizer was used
with a learning rate of 0.0002 and a batch size of
64. Training lasted for 50 epochs, with exponential
learning rate decay and early stopping based on the
validation set.
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Figure 2: Entropy and performance across self-vocabularizing training iterations. (Left) BLEU score (blue)
consistently improves across iterations. Meanwhile, the self-learned vocabulary reduces corpus entropy (teal),
indicating a better estimation of token distribution. (Right) Vocabulary shift measured by vocabulary overlap
(orange) between consecutive vocabularies Vt and Vt−1, showing that the model initially selects a broad set of
subwords before consolidating onto a subset of Vt−1

1. The type-token ratio (TTR) (purple) reflects the diversity of
learned semantic units, reported on the training corpus scaled by 1000.

We evaluated model performance using BLEU
scores on the test set, comparing against the base-
line and other comparable models. For self-
training, we ran each iteration until performance
converged. In each iteration i, the model was
trained from scratch in the self-training step (ST-i)
for analysis purposes. Results were averaged over
three initialization runs with different θ∗.

3.1 Main Results

We first compared the performance of MT models
trained with two different approaches: one using a
fixed output vocabulary and the other refining the
output vocabulary through self-training iterations.
As shown in Table 1 and Figure 3, the MT model
trained with the self-trained output vocabulary grad-
ually improves with each newly derived vocabulary,
achieving up to a 1.3 BLEU point increase after a
single iteration. Table 1 further confirms a consis-
tent trend across both language tasks: self-training
improves model performance and reduces vocabu-
lary entropy, leading to enhanced fluency and cor-
rectness while decreasing vocabulary size.

Beyond translation quality, we also observe
lower overall corpus entropy and a smaller vo-
cabulary in the self-trained model (see Figure 2).
This suggests that self-training not only enhances
translation accuracy but also results in a more ef-
ficient model with a compact, more targeted vo-
cabulary—potentially enabling faster and more
memory-efficient deployment.

1Vocabulary overlaps at firs iteration leverages the identical
vocabulary where V0 = V1.

BLEU |V| Overlap (%) Fluency Adequacy
ST-0 34.62 10000 - 2.89 3.21
ST-1 35.92 8950 66.42 3.13 3.46
ST-5 36.01 8892 88.27 3.42 3.87
ST-10 36.11 8702 96.19 3.95 4.21

Table 1: Performance comparison of BLEU, vocabulary size
(|V |), vocabulary overlap (%), fluency, and adequacy on the
IWSLT14 DE-EN translation task for ST-0, ST-1, ST-5, and
ST-10 models. Fluency and adequacy scores are segment-level
averages on 100 random outputs, rated on a 1-5 scale (5 being
the most fluent or correct) (Koehn and Monz, 2006; Freitag
et al., 2021). Scores were assigned by three raters and then
averaged. Detailed results for IWSLT14 EN-DE are provided
in Appendix A.1.

4 Ablations of Self-Vocabularization

4.1 Shifts Across Iterations

In text generation, self-training can enhance the
quality of the generated output. However, the im-
pact of the number of self-training iterations on out-
put entropy (i.e., the randomness or unpredictabil-
ity of the generated text) is not straightforward and
depends on the specifics of the model and training
data. We therefore examine: (1) corpus entropy
and (2) subword-based overlap between the origi-
nal and self-trained BPE vocabulary.

Corpus Entropy. Increasing the number of self-
training iterations allows the model to learn from
a progressively smaller set of labeled examples,
potentially leading to more coherent and accurate
outputs with reduced diversity. In the left plot of
Figure 3, we observe that, in general, as entropy
gradually decreases, self-training performance im-
proves until the rate of change in both entropy and
BLEU slows. Surprisingly, even at the 10th iter-
ation, the model continues to improve its BLEU
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Figure 3: Performance and vocabulary overlap across models with different encoder and decoder depths. (Left) As the number
of encoder (teal -) or decoder (teal - -) layers increases, BLEU scores consistently improve. However, vocabulary overlap
decreases for deeper encoder (blue -) or decoder (blue - -) layers, indicating that deeper models tend to use more unique tokens.
(Right) Vocabulary compression (VC) across models with varying depths. All models trained with self-vocabularizing training
effectively compress the token set. Notably, deeper encoder models (purple) exhibit a smoother reduction in VC rates, whereas
deeper decoder models (orange) require more tokens for inference. VC is reported on the test set using models of different
depths in either the encoder or decoder, with a single round of self-vocabularizing training.

score.

Vocabulary Overlap (VO ∩ VP ). The original
BPE vocabulary consists of subword units created
by applying BPE to the training data, serving as
a fixed vocabulary during training and inference.
While the number of self-training iterations does
not directly alter the BPE vocabulary (as it is pre-
defined before training), fine-tuning on additional
labeled examples can improve model performance,
leading to more accurate and diverse outputs that
better align with the original BPE vocabulary. Ad-
ditionally, vocabulary size consistently decreases
across iterations. We observe an initial sharp drop
of approximately 10% after the first iteration, fol-
lowed by a gradual reduction in BPE vocabulary
size until the 5th iteration (see Figure 2).

4.2 Ablations on Model Architecture
Deeper Model Depth Contributes to Lower Vo-
cabulary Overlap. The number of encoder and
decoder layers in a neural network plays a crucial
role in determining output coherence and accuracy,
which in turn affects the model’s output token set.
As shown in Figure 3, increasing encoder or de-
coder layers generally improves BLEU scores. Ad-
ditionally, vocabulary overlap gradually decreases
to approximately 93% as the number of layers in-
creases, following a similar trend observed in Fig-
ure 2 at the first iteration. This suggests that deeper
architectures allow the model to implicitly select
more unique tokens compared to shallow models,
with encoders playing a particularly important role

in vocabulary selection.

Vocabulary Compression. Vocabulary compres-
sion (VC) is defined as the ratio of the number of
tokens used in the inference output to the number
of tokens in the original test set, i.e., |V |inf.

|V |test Fig-
ure 3 illustrates the relationship between the num-
ber of encoder/decoder layers and VC. All models
achieve significant token set compression, reducing
vocabulary size by 6% to 8%. Notably, increas-
ing encoder depth results in a smaller token set,
whereas increasing decoder depth leads to a larger
token set. We conjecture that deeper encoders have
a stronger ability to process source sentences and
represent them as fixed-length context vectors, en-
abling the decoder to use fewer subword units for
translation.

5 Conclusions and Findings

In this paper, we investigated the discrepancy be-
tween the "optimal" vocabulary set identified prior
to training a translation model and the vocabulary
actually used by the trained model. We found
that the trained model diverged from the original
BPE vocabulary and that a single iteration of self-
training was sufficient to generate a competitive
vocabulary set. Additionally, we examined the re-
lationship between the self-vocabularizing process
and the encoder-decoder architecture, demonstrat-
ing that deeper models favor the selection of rarer
tokens while reducing vocabulary size, whereas de-
coders have a lesser influence on vocabularization.
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Limitations

While self-vocabularizing training is simple and
provides significant improvements over baseline
training, it remains time-consuming. Moreover,
further analysis is needed to better understand vo-
cabulary shifts and how to efficiently determine the
optimal set without requiring costly training itera-
tions. This analysis should include an examination
of token types and subword granularity, such as
how subword segmentation evolves across training
iterations.

In addition, our findings have yet to be verified
across multiple language pairs, leaving this as an
avenue for future work. Overall, this study high-
lights the need to incorporate vocabulary relearning
during self-training and suggests that new vocabu-
lary construction techniques could bridge the gap
between model training and text interactions.

Ethics Statement

Vocabularization with model training has signifi-
cantly improved machine translation performance.
To minimize potential negative impacts, we con-
duct our experiments on publicly available datasets
commonly used in machine translation research.
However, if this method is applied to sensitive data,
such as medical records, privacy-preserving poli-
cies should be strictly considered.

Additionally, while deeper model architectures
promote the use of unique tokens, they also in-
crease computational demands. The potential en-
vironmental impact of large-scale model training
should be carefully evaluated when scaling this
approach.
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Figure 4: Impact of self-vocabularizing training on IWSLT14 EN-DE. (Left) BLEU scores improve consistently across
iterations, while corpus entropy decreases, indicating more stable and predictable token distributions. (Right) Vocabulary
overlap reduces as the model gradually refines its subword selection, while the type-token ratio (TTR) reflects evolving semantic
diversity.

A Detailed Results

A.1 IWSLT14 EN-DE
We present results for MT models trained with self-
vocabularizing on the IWSLT14 EN-DE dataset
over 10 iterations. We report performance for the
baseline model (ST-0) and models trained with self-
vocabularizing at iterations 1, 5, and 10. As shown
in Table 2, all self-trained models outperform the
fixed-vocabulary baseline (ST-0), with a 2.4-point
increase in BLEU after 10 iterations. Addition-
ally, vocabulary size decreases with each iteration,
leading to a more compact vocabulary.

BLEU |V| Overlap (%)
ST-0 28.64 10000 -
ST-1 29.63 8969 66.42
ST-5 29.66 8892 88.27
ST-10 30.14 8863 93.91

Table 2: BLEU scores, vocabulary size (|V |), and overlap
(%) on the IWSLT14 EN-DE translation task for ST-0, ST-1,
ST-5, and ST-10 models.

Figure 4 illustrates the impact of self-
vocabularizing training on corpus entropy, perfor-
mance, vocabulary overlap, and diversity for the
IWSLT14 EN-DE dataset. We observe a consistent
decrease in corpus entropy and vocabulary overlap,
alongside performance improvements with increas-
ing training iterations. This confirms the effective-
ness of self-vocabularizing training on the EN-DE
translation task. Notably, the EN-DE translation ex-
hibits lower diversity than the DE-EN task, which
aligns with expectations since German shares more
semantic units than English.
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Abstract

We consider the well-known and important
tasks of clone detection and information re-
trieval for source code. The most standard
setup is to search clones inside the same lan-
guage code snippets. But it is also useful to
find code snippets with identical behaviour in
different programming languages. Neverthe-
less multi- and cross-lingual clone detection
has been little studied in literature. We present
a novel training procedure, cross-consistency
training (CCT) leveraging cross-lingual sim-
ilarity, that we apply to train language mod-
els on source code in various programming
languages. We show that this training is ef-
fective both for encoder- and decoder-based
models. The trained encoder-based CCT-LM
model achieves a new state of the art on POJ-
104 (monolingual C++ clone detection bench-
mark) with 96.73% MAP and AdvTest (mono-
lingual Python code search benchmark) with
47.18% MRR. The decoder-based CCT-LM
model shows comparable performance in these
tasks. In addition, we formulate the multi-
and cross-lingual clone detection problem and
present XCD, a new benchmark dataset pro-
duced from CodeForces submissions.

1 Introduction

Clone detection is crucial in software development
for identifying semantically similar code, aiding
in unification, refactoring, and side effect control.
Originally formulated for C/C++ by Mou et al.
(2016), the task has since expanded to other lan-
guages, with the next step being multilingual clone
detection. This work introduces a new multilin-
gual dataset XCD and establishes baseline models.

Early clone detection relied on algorithmic
methods (Baker, 1993; Krinke, 2001), later evolv-
ing into machine learning-based approaches (Li
et al., 2017; Thaller et al., 2020; Gotmare et al.,

*Equal contribution.

2021) that embed code snippets for similarity-
based retrieval. We propose CCT, a novel training
technique that enhances code embeddings, achiev-
ing state-of-the-art results on both POJ-104 (Mou
et al., 2016) and our new XCD dataset. Addition-
ally, we demonstrate that CCT-LM, trained with
CCT, is also effective for code search, as formu-
lated by Lu et al. (2021b).

Main Contributions CCT – A pretraining
method for aligning multilingual code snippets.
XCD – A novel multilingual clone detection
dataset from CodeForces. State-of-the-art results
on POJ-104 and XCD with CCT-LM. CCT-LM
achieves state-of-the-art on AdvTest for code
search.

2 Related Work

Our methods are inspired by natural language pro-
cessing, thus related work includes both pure NLP
and source code processing.

Datasets. Husain et al. (2019) presented the
CodeSearchNet dataset constructed from a GitHub
dump where the authors split method bodies into
the code itself and a description. This dataset
contains 2 million code snippet-description pairs
in 6 programming languages, including Python.
This dataset was partially used by Hasan et al.
(2021) who combined CodeSearchNet and three
other datasets into a larger one. From Code-
SearchNet they used the Java part and Python
part translated automatically into Java. The re-
sulting dataset contains 4 million code snippet-
description pairs. There are two main datasets
for clone detection: POJ-104 (Mou et al., 2016)
and BigCloneBench (Wang et al., 2020). POJ-104
represents a comparatively small corpus of C++
solutions from a student judging system. Big-
CloneBench comprises a vast dataset containing
automatically mined data in the Java language.

Code Search. Gu et al. (2018) introduced
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dense vector representations for code search, train-
ing two recurrent neural networks for source code
and text. Feng et al. (2020) used a language
model to produce these representations. Gotmare
et al. (2021) employed three Transformer-based
models for hierarchical encoding but found pa-
rameter sharing reduced quality. In contrast, our
model uses a single Transformer decoder to embed
queries and documents, omitting the classifier.

Clone Detection. One of the first successful
deep learning approaches was CClearner (Li et al.,
2017) that used text extracted from a program
and its AST features and had a simplistic mul-
tilayer perceptron architecture for clone classifi-
cation on a closed code base. More recent deep
learning models include graph neural networks on
ASTs (Wang et al., 2020) and employ pretrained
language models Villmow et al. (2022).

Language models for source code. BERT-
like models, initially successful in natural lan-
guage processing, have been adapted for pro-
gramming languages. Several pre-trained models
have emerged, including CodeBERT (Feng et al.,
2020), a bimodal model trained on masked lan-
guage modeling (MLM) and replaced token detec-
tion; GraphCodeBERT (Guo et al., 2021), which
incorporates abstract syntax trees for training; and
SynCoBERT (Wang et al., 2021), which lever-
ages multimodal contrastive learning with iden-
tifier and AST edge prediction. More recently,
autoregressive decoder models like DeepSeek-
Coder (Guo et al., 2024) have gained prominence,
focusing on source code generation tasks such as
code completion and documentation generation.

3 Datasets

In this work we use two kinds of datasets, one for
clone detection and another for code search.

Code Search. For code search we use the
CodeSearchNet dataset introduced by Husain et al.
(2019). The original version of CodeSearchNet
consists of natural language queries paired with
most relevant code snippets in six programming
languages. Each snippet represents the code of a
function collected from GitHub open source code.

CodeSearchNet AdvTest
AdvTest is a Python-only dataset derived from

the CodeSearchNet corpus by Lu et al. (2021b),
pairing functions with text where the first docu-
mentation paragraph serves as the query (Husain
et al., 2019).

Lu et al. (2021b) found that normalizing func-
tion and variable names significantly reduces
Mean Reciprocal Rank (MRR) scores, dropping
from 0.809 to 0.419 for RoBERTa (Liu et al.,
2019) and 0.869 to 0.507 for CodeBERT (Feng
et al., 2020). They improved dataset quality by
filtering unparsable code, overly short/long docu-
ments, special tokens, and non-English or empty
texts, resulting in 251 820 training, 9 604 valida-
tion, and 19 210 test examples.

To assess generalization, AdvTest normalizes
function and variable names in the development
and test sets, replacing them with generic tokens
(e.g., func, arg i). Unlike prior works (Husain
et al., 2019; Feng et al., 2020), which evaluated
on 1 000 candidates per query, AdvTest uses the
entire test set, increasing difficulty. The train-
ing data, derived from the filtered CodeSearch-
Net (Husain et al., 2019), retains raw code and ap-
plies language-specific tokenization. Performance
is measured using Mean Reciprocal Rank (MRR).

Clone Detection. In the clone detection task,
the problem is to retrieve semantically similar
codes given a code as the query. To train and test
models for clone detection, we use the POJ-104
dataset introduced by Mou et al. (2016). It comes
from a pedagogical programming open judge (OJ)
system that automatically judges the validity of
submitted source code for specific problems by
running the code. The POJ-104 dataset consists
of 104 problems and includes 500 student-written
C/C++ programs for each problem. The clone de-
tection here is, given a program’s source code, to
retrieve other programs that solve the same prob-
lem. The problems are grouped into three sets
with 64/16/24 problems for training, validation,
and testing respectively. The default metric for
the POJ-104 dataset is Mean Average Precision
(MAP), where the average precision (AP) is de-
fined as AP =

∑100
i=1(Ri − Ri−1) · Pi, where Ri

and Pi are the precision and recall at threshold i,
i.e., computed taking into account only top i items
from the candidate list. MAP is the mean AP over
all queries. It is important to mention that for POJ-
104 the maximal possible i is 499 since there are
only 500 candidates in total.

3.1 XCD Dataset
Existing works have not thoroughly explored the
multilingual capabilities of code language mod-
els. To address this gap, we introduce XCD,
a new multilingual clone detection and code re-
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trieval dataset. The dataset supports three eval-
uation settings: full comparison (binary classifi-
cation like BUCC (Xu et al., 2018)), **retrieval-
style clone detection** (similar to POJ-104 (Mou
et al., 2016)), and a hybrid approach

We constructed XCD using CodeForces sub-
missions, selecting 110 problems with 100 ac-
cepted solutions per problem in five languages
(Python, Java, C#, C++, C), totaling 55,000 snip-
pets.

Evaluation Setups Full Comparison Binary
classification of test set pairs (n2 comparisons).
Each pair is positive if solving the same prob-
lem, otherwise negative. Evaluated using F1-
score (Sasaki et al., 2007).

Retrieval Style Tasked with retrieving 100
snippets per language solving the same problem
from 11,000 positive snippets. Evaluated using
MAP@100 (Mou et al., 2016).

Hybrid Evaluation Includes all snippets in the
same language, making it more challenging (sim-
ilar to AdvTest). Evaluated using MRR@R (Lu
et al., 2021b).

Cross-Lingual Evaluation Extends all setups
across multiple languages to assess cross-lingual
code understanding.

Additional Labeling Beyond solution status
(Accepted/Not Accepted), we also mined error
statuses from 97M code snippets across 10+ pro-
gramming languages. CodeForces provides 15
verdicts, which we categorized into four groups:

1. Defect – Runtime errors (e.g., division by
zero, stack overflow).

2. Skip – Judging errors (e.g., rejected due to
unclear reasons).

3. Accepted – Passed all tests.
4. Wrong – Failed tests or constraints (e.g.,

time/memory limit exceeded).
This additional labeling enhances dataset utility

for error prediction and robust code retrieval.

4 Method

In this section, we introduce our pre-training ap-
proach CCT (Cross-Consistency Training). Its
goal is to robustly learn the embedding space of
code snippets and create a strong alignment be-
tween snippets solving the same problems across
programming languages. The difference between
strong and weak alignment is illustrated in Fig. 1:
in a weakly aligned embedding space, the near-
est neighbor might be a semantically similar snip-

querydocumentrelevantnon-relevant cppjava pythonStrong Alignment Weak Alignment
Figure 1: Strong and weak cross-lingual alignment.

pet from a different language but generally most
neighbors are in the same language, while in a
strongly aligned space the similarity is purely se-
mantic and does not care about the language at all.

To achieve strong alignment, we employ a con-
trastive learning objective LXCD: for a randomly
code snippet, we train the vector representations
of the source code tokens in such a way that their
aggregation, for example, averaging or last token,
is closer to the source code, which solves the same
problem regardless of the programming language.
This ensures that the embeddings of the source
code differentiates between related snippets and
random or similar but different (hard negative)
snippets effectively.

Noise-contrastive estimation and losses. To
learn a language-agnostic cross-lingual represen-
tation space, we propose a training procedure
based on noise contrastive estimation (NCE). Let
X and Z be some finite sets and sθ : X × Z →
R be a relevance score function differentiable in
θ ∈ Rd. The goal is to learn θ such that the clas-
sifier x 7→ argmaxz∈Z sθ(x, z) has the optimal
expected loss. This leads to conditional density
estimation: for every x ∈ X

pθ (z|x) =
esθ(x,z)∑

z−∈Z esθ(x,z−)
(1)

with θ∗ = arg min
θ

Ex,z [− log pθ (z|x)] being the

optimum. In practice, optimizing this objective di-
rectly is infeasible: if Z is large the normalization
term in (1) is intractable. Therefore, NCE uses
subsampling, so (1) becomes

πθ (z|x) =
esθ(x,z)∑

z−∈Bx,z
esθ(x,z−) + esθ(x,z)

, (2)

where Bx,z = {z−1 , z−2 , . . . , z−n } is a set of nega-
tives sampled from Z that do not match the pos-
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itive answer z+ for this x. NCE also often uses
objectives similar to (2) but with πθ (ẑ|z) where z
and ẑ come from the same space, and the objective
corresponds to some similarity function.

Cross-lingual objective. Contrastive learning
frequently employs pretext tasks to learn data rep-
resentations without the need for labeled exam-
ples. In the context of learning from a multilingual
set of documents, a possible pretext task would be
to train a network to differentiate between docu-
ments with similar content but written in different
languages (positive pairs) and those with dissimi-
lar content (negative pairs). This leads to the loss
function:

LXCD(θ) = E(ẑ,z)∼WXCD
[− log πθ (ẑ|z)] , (3)

whereWXCD is a distribution on the set of pairs of
submissions in different programming languages
from the XCD dataset (Section 3) that shows if the
submissions are solving the same problem or not.

Hard negative mining. Previous works on con-
trastive learning show the importance of training
on hard negative samples (Qu et al., 2021; Izacard
and Grave, 2020). They used iterative training to
get hard negatives, but our data already contains
strong negative examples as preliminary solutions
from the same users that solve the same problems
but fail some tests (that is why a user would submit
an updated solution to get the “Accepted” verdict).
Thus, we mine hard negative examples as failed
solutions from the same user; if there are none we
use failed solutions from random users, and only if
there are none (e.g., for an unpopular problem) we
use a random submission for a random problem.

5 Experiments

In this section, we describe the details about data
pre-training and our CCT pipeline for multilingual
clone detection and code search tasks.

Pretraining. We train two models, one is
encoder-based, which is initialized with pretrained
GraphCodeBERTbase (Guo et al., 2021); we call
the resulting model CCT-LMenc. Another one
is decoder-based, which is initilized with a pre-
trained DeepSeek-Coder-1.3B model (Guo et al.,
2024); we call the resulting model CCT-LMdec.
Similarity scores are calculated based on dot prod-
ucts of the last token vector representations, but
we also researched using various types of poolings
and allowing bidirectional attention.

Hyperparameters. We use the AdamW opti-
mizer with learning rate 5e-5, weight decay 0.01,

Clone Code
detection search
(MAP) (MRR)

Endcoder-only

RoBERTa-base (Liu et al., 2019) 76.67 18.33
CodeBERT (Feng et al., 2020) 82.67 27.19
SynCoBERT (Wang et al., 2021) 88.24 38.10
CodeRoBERTa — 42.35
GraphCodeBERT (Guo et al., 2021) 85.16 —
CasCode (Gotmare et al., 2021) — 43.98
Villmow et al. (2022) 91.34 —
CCT-LMenc 96.73 47.18

Decoder-only

CodeGen (Nijkamp et al., 2023) 89.68 —
CodeGPT (Lu et al., 2021a) 87.96 —
SantaCoder (Allal et al., 2023) 83.98 —
Phi-1 (Gunasekar et al., 2023) 92.72 —
CCT-LMdec 95.84 37.61

Table 1: Results on code clone detection on the POJ-
104 dataset and code search on the AdvTest dataset.

and linear learning rate decay. We use gradient ac-
cumulation for pretraining with an effective batch
size of 2000.

Monolingual Results. Tab. 1 presents the re-
sults of CCT-LM models compared to existing ap-
proaches, showing that CCT-LM outperform all
previous models by a large margin in this mono-
lingual setting. Thus, strong alignment enforced
by CCT pretraining is not only helpful for multi-
lingual transfer but also improves the latent space
structure in general. It is important to mention,
that CCT pretraining works for both encoder- and
decoder-based models, improving the results.

5.1 Multi- and Cross-lingual Evaluation

For these types of evaluation on XCD we use sev-
eral setups described in Sec. 3.1. Since these se-
tups are computationally intensive we work only
with encoder-based models.

Multilingual Results
The top half of Tab. 2 presents multilingual re-

sults on the proposed XCD dataset. Interestingly,
knowledge transfer from the POJ-104 dataset does
not improve performance, and metrics remain low.
However, CCT-LM significantly outperforms oth-
ers, likely due to its multilingual pretraining ap-
proach. BM25 is not evaluated in this setup, as it
is unsuitable for document comparison.

For retrieval-based evaluation, CCT-LMenc out-
performs all baselines, providing a viable solution,
while GraphCodeBERT fails across all program-
ming languages. BM25, a strong baseline for nat-
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Python Java C# Ruby JS Haskell PHP OCaml Perl Avg

Multilingual setting

Full Comparison, F1 measure

GraphCodeBERTbase 0.02 0.05 0.00 0.04 0.00 0.02 0.01 0.03 0.01 0.02
GraphCodeBERTPOJ

base 0.04 0.00 0.01 0.06 0.07 0.08 0.06 0.06 0.06 0.05
CCT-LMenc 22.24 18.39 17.33 23.33 10.46 17.64 21.43 17.01 16.40 18.24

Retrieval Style, MAP@100

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 7.21 9.25 1.33 4.28 1.59 5.78 6.08 2.90 10.37 5.42
GraphCodeBERTPOJ

base 30.12 24.63 23.54 32.78 36.64 24.45 37.21 33.94 45.33 32.07
CCT-LMenc 87.42 55.99 65.35 72.12 74.32 81.05 83.21 71.53 71.89 73.65

Hybrid, MRR@20

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 2.08 5.42 0.22 2.59 0.80 1.99 2.90 1.40 5.23 2.51
GraphCodeBERTPOJ

base 27.10 20.04 19.44 30.98 28.37 19.70 32.89 30.08 39.98 27.62
CCT-LMenc 74.97 62.08 58.77 80.60 74.56 62.27 81.21 72.64 79.16 71.80

Cross-lingual setting

Full Comparison, F1 measure

GraphCodeBERTbase 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01
GraphCodeBERTPOJ

base 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
CCT-LMenc 8.92 9.46 4.78 6.01 7.33 5.82 6.47 5.33 3.56 6.40

Retrieval Style, MAP@100

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 3.18 5.24 0.23 1.77 1.15 3.38 3.12 1.90 16.27 4.02
GraphCodeBERTPOJ

base 12.83 14.75 9.33 12.78 17.16 15.94 19.53 16.01 23.88 15.80
CCT-LMenc 44.82 20.34 23.33 35.01 32.57 40.07 43.36 36.66 37.80 34.88

Hybrid, MRR@20

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphCodeBERTbase 1.24 2.42 0.34 1.28 0.82 0.93 1.43 0.76 2.15 1.26
GraphCodeBERTPOJ

base 20.12 13.08 10.37 17.28 12.62 19.70 14.31 18.08 18.33 15.98
CCT-LMenc 30.83 22.77 19.32 32.66 31.64 20.80 31.59 40.42 39.40 29.93

Table 2: Multilingual clone detection in two evaluation setups on the XCD dataset.

ural language information retrieval, does not work
for clone detection, as it relies on identical tokens,
which are often sparse even in similar code snip-
pets.

The hybrid evaluation setup confirms these
findings: BM25 remains ineffective, code lan-
guage models demonstrate some knowledge trans-
fer across solutions, and training on POJ-104
clone detection leads to a noticeable performance
boost. However, CCT-LMenc consistently outper-
forms all methods, establishing a new benchmark
for multilingual code-related tasks.

Cross-lingual Results. Our results in this set-
ting are presented in the bottom half of Tab. 2.
All conclusions derived for the multilingual case
(above) apply here too, but in comparison to the
multilingual setting, cross-lingual tasks are signif-
icantly harder and all values are lower. We suggest
that the difference in the results across program-
ming languages could be caused by the imbalance
in the pretraining dataset.

6 Conclusion

Understanding semantic similarity is crucial for
language processing, enabling solutions for vari-
ous tasks in natural and programming languages.
In this work, we presented CCT-LM, a new
method that enhances this capability via a novel
CCT pretraining approach, demonstrating its ef-
fectiveness in clone detection and code search.
We introduced a novel task of multilingual clone
detection and the XCD dataset for multilingual
source code analysis, formalized in two evaluation
setups.

The proposed CCT-LM models (encoder- and
decoder-based) outperformed strong baselines in
clone detection and code search. CCT-LMenc

excelled across all setups for multi- and cross-
lingual evaluation, showing that CCT pretrain-
ing improves semantic similarity understanding in
language models.

We hope our method benefits other source code
processing tasks, left for future work, and believe
modifications of our approach could aid NLP and
other machine learning fields.
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7 Limitations

We have studied several programming languages,
including Python and Java, in our XCD setup;
although all our methods seem to be language-
agnostic, a further study for other languages would
be interesting, especially since all considered lan-
guages are interpreted rather than compiled (like
C/C++). Many inputs exceed 512 tokens; we
used standard truncation for evaluation (taking
into consideration only the beginning of the code),
which may be suboptimal, and more suitable in-
put representations could be found. We expect
our model to improve with training on long docu-
ments. We also suppose that the model would ben-
efit from increasing the batch size by using more
powerful hardware with more memory. Note also
that while CCT-LM significantly improved state of
the art in clone detection and code search.
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Java Ruby PHP Go JS Avg

CodeBERTbase 46.37 50.65 37.83 50.65 50.48 47.19
GraphCodeBERTbase 47.33 59.95 37.47 60.28 52.04 51.41
CCT-LMenc 48.71 62.25 42.78 61.44 51.06 53.24

Table 3: Zero-shot retrieval; F1 score, CodeSearchNet.

Clone Code Defect
Detection Search detection

GraphCodeBERT (MAP) (MRR) (Acc)

Base 85.16 45.80 62.51
Base + LXCD 95.92 29.93 61.05
Base + LXCD + LLM 95.67 47.18 63.68
Base + LXCD + LLM 96.03 45.22 64.91
Base + LXCD + LLM + SL 96.46 47.33 -
Base + LXCD + LLM + Lerr + SL 96.73 47.57 65.58

Table 4: GraphCodeBERT variations: clone detection
on POJ-104, code search on AdvTest, defect detection
on Devign; SL denotes the size limit.

Table 5: A comparison of DeepSeek-Coder 1.3b varia-
tions: clone detection on POJ-104, code search on Ad-
vTest

A Analysis

Zero-shot Results. We investigated zero-shot
transfer from Python to Java, Ruby, PHP, Go, and
JavaScript on the CodeSearchNet dataset for pre-
viously introduced code language models and our
CCT-LM. The zero-shot results are presented in
Table 3. As evidence for the power of pretrained
language models, we see that existing approaches
show rather good results even though they have
not been trained on the retrieval task. By lever-
aging its multilingual ability, CCT-LM improves
over the baselines in the zero-shot setup for all lan-
guages except JavaScript (JS).

Latent space structure. Figure 1 showed
an abstract representation of the basic CCT idea
of semantically aligned language-agnostic embed-
ding space. Figure 2 turns this theory into prac-
tice with projections of actual embeddings for
sample code snippets before and after CCT train-
ing. The snippets represent solutions for 12 sam-
ple tasks in six programming languages. We see
that after CCT, representations of code snippets
are not aligned by language but rather by prob-
lem (Fig. 2b), while their alignment had been
language-dependent before CCT (Fig. 2a).

This illustrates that CCT training significantly
improves the multilingual latent space for code
snippets, making it semantic and language-
agnostic.

problem D18 G656 G784 D795 A795 K774J795 E795 D926 C953 F953 F926

CodeBERT CCT

(a) Projected embeddings of 12 coding problems.

language java cpp python c csharp ruby

CodeBERT CCT

(b) The same embeddings by programming language.

Figure 2: Sample multilingual embeddings.

Ablation Study. In this section, we study the
effects of various parts of CCT. Table 5 shows the
results of several DeepSeek-Coder-based models
on clone detection, code search tasks. We com-
pare the DeepSeek-Coder base model with differ-
ent pretraining poolings and attention types.
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Abstract

We challenge the prevailing assumption that
LLMs must rely fully on sub-word tokens for
high-quality text generation. To this end, we
propose the “Generative Pretrained Thought-
former” (GPTHF), a hierarchical transformer
language model capable of text generation by
compressing text into sentence embeddings
and employing a sentence attention mechanism.
GPTHF retains GPT’s architecture, modifying
only token interactions via dynamic sparse at-
tention masks.

Our experiments show that GPTHF achieves
an up to an order of magnitude improvement
in FLOPs efficiency and a threefold increase
in runtime speed compared to equally-sized
GPT models in the low-size regime. This is
achieved through a unique generation method
that caches and reuses sentence embeddings,
allowing significant portions of the input to
bypass large parts of the network.

1 Introduction

The development of LLMs has garnered substan-
tial interest due to their impressive capabilities in
NLP tasks. The dominant paradigm for improv-
ing LLMs has been scaling, with models scaling
from hundreds of millions (e.g. BERT, Devlin et al.
(2018)) to over a trillion parameters (e.g. Switch
Transformer, Fedus et al. (2022)) in a span of four
years. While these massive scales unlock remark-
able performance across NLP tasks (Naveed et al.,
2023), they come with substantial costs in hard-
ware, energy, and time (Strubell et al., 2019; Pat-
terson et al., 2021), requiring the exploration for
more efficient methods.

Efforts to improve efficiency include pruning
(Augasta and Kathirvalavakumar, 2013), quantiza-
tion (Hubara et al., 2018), and knowledge distilla-
tion (Gou et al., 2021). Mixture of experts models
(Shazeer et al., 2017; Fedus et al., 2022) further
reduced inference costs while preserving capac-
ity. However, one area remains under-explored:

the reliance of LLMs on sub-word tokens, each re-
quiring embeddings several kilobytes in size. This
raises the question of whether more condensed text
representations could offer similar performance
with greater efficiency. Models like the Funnel-
Transformer (Dai et al., 2020) hint at potential
gains through compressing and subsequently de-
compressing hidden states.

Going one step further, we introduce GPTHF,
a hierarchical transformer that compresses entire
sentences into fixed-size embeddings. We explore
whether such representations still carry sufficient
semantic payload to maintain generation quality,
thereby asking if sub-word tokens could possibly
be eliminated for greater computational efficiency.
Experimental results show that GPTHF achieves
strong perplexity scores, follows scaling laws in
the low-parameter regime, and operates at a signifi-
cantly reduced FLOPs cost and inference time.

Contributions. 1. We propose GPTHF, a trans-
former language model that generates text by com-
pressing sentences into one fixed-size embedding
and employing sentence-level attention, with mini-
mal modifications to GPT. 2. We introduce a gen-
eration method that caches and reuses sentence em-
beddings, yielding linear efficiency improvements
with context size, achieving up to 10x FLOP reduc-
tions and 3x runtime speedup.

2 Related Work

A new line of research explored the idea of a “hier-
archical transformer,” a transformer operating on
variable-size embeddings within different layers of
the network. Early examples include the models
of Yang et al. (2016) and Montero et al. (2021).
The Funnel Transformer (Dai et al., 2020) com-
pressed token sequences via incremental pooling,
with inter-layer skip connections allowing later lay-
ers to access pre-compressed information. When
re-investing the saved FLOPs, the Funnel Trans-
former outperformed previous state-of-the-art mod-
els with comparable computational resources.
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Nawrot et al. (2021) expanded this idea to gen-
erative transformers with their “Hourglass” model,
demonstrating improved perplexity on a Wikipedia
dataset. Other examples include Sentence-BERT
(Reimers and Gurevych, 2019) and Sentence-GPT
(Muennighoff, 2022), focus on generating sentence
embeddings for downstream tasks.

Our work differs from all of the above in several
ways. Instead of compressing a fixed-size group of
tokens, we compress a sentence – a unit of higher
semantic value in language – into one embedding.
We focus on leveraging these embeddings to im-
prove computational efficiency, not on the embed-
dings themselves.

3 Methodology

3.1 Architecture
The GPTHF model consists of two main com-
ponents: a word-level transformer encoder
(wlt_encoder) and a sentence-level transformer
body (slt_body). The encoder compresses each
sentence into a single embedding while preserving
essential information. The slt_body contextual-
izes these sentence embeddings and generates the
next-token prediction.

During the forward pass (see Figure 2), the in-
put tokens x1, · · · , xn are first processed by the
wlt_encoder, producing contextualized sub-word
embeddings. The wlt_encoder uses block atten-
tion masks, which will be explained below. Fetch-
ing the last token of each sentence si yields an
embedding ei, i ∈ [m]:

ei = Pooling(wlt_encoder(x1, ..., xn)),

where m is the number of sentences. These embed-
dings are then processed by the slt_body:

êi = slt_body(e1, ..., en)), i ∈ [m].

Finally, êm is fed into the language modeling head
to predict the next token.

Block attention masks. To ensure sentence em-
beddings capture only intra-sentence information,
we use a localized attention mechanism that re-
stricts token attention to within the same sentence.
This is enforced via a dynamically computed (for
each input) block attention mask, defined by a
sentence index vector at tokenization time. Each
block corresponds to a sentence, preventing cross-
sentence interactions (see Figure 1).

Model sizes and Details. A summary of the
model sizes and other hyperparameters are pro-
vided in Table 1. Through empirical experimenta-
tion, a relatively large encoder is found beneficial.

Figure 1: Visualization of block attention masks for a
text with sentence index vector [0, 0, 1, 1, 1]. (a) A block
matrix allowing attention within sentences. (b) Block
lower triangular matrix allowing attention to previous
tokens within sentences during training.

𝑥1

𝑥2

𝑥𝑛

wlt_encoder
slt_body𝑒1

𝑒2

𝑒3

ෝ𝑒1

ෝ𝑒2

ෝ𝑒3

LM head 𝑥𝑛+1

Figure 2: Overview of the Generative THF (GPTHF)
Architecture during inference. The boxes in the models
indicate the type of attention masks used. The attention
masks are explained in Figure 1.

We decide on the following modifications over the
vanilla transformer (Vaswani et al., 2017), mostly
inspired by Llama-1 (Touvron et al., 2023) and
Geiping and Goldstein (2023), who proposed archi-
tectural changes when training language models in
low-compute settings.

First, we replace an absolute positional em-
bedding layer with rotary positional embeddings
(RoPE, Su et al. (2024)) at each attention layer of
the network. We use SwiGLU activation (Shazeer,
2020) with a dimension of 2/3 4d. Moreover we use
pre-normalization layers with RMSNorm (Zhang
and Sennrich, 2019). Finally, we disable all QKV
biases in the transformer attention layers and linear
layers.

3.2 Pre-training

We use the next token prediction objective common
in auto-regressive models. To prepare GPTHF for
token prediction while enabling efficient parallel
training, we again employ specialized attention
masks (Figure 4). The target is the next token in
the sequence (Figure 3).

Interestingly, training GPT and GPTHF differs
only in replacing full triangular attention matrices
with dynamically computed sparse ones, with no
architectural changes.
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Name Params d nheads lenc lbody lr

GPTHF-8-4 151M 768 12 8 4 6e-4
GPTHF-16-8 454M 1024 16 16 8 4e-4

Table 1: Model sizes and hyperparameters for GPTHF
models.

𝑥1

𝑥2

𝑥𝑛

wlt_encoder

𝑒1,3

𝑒2,4

𝑒3,1

LM headslt_body

ෞ𝑒3,1

𝑥2

𝑥3

𝑥𝑛

PAD

Figure 3: Overview of the pre-training procedure. The
boxes in the models indicate the type of attention masks
used. The attention masks are explained in Figure 4.

Data. Our training corpus incorporates Open-
WebText, Wikipedia and ArXiv. OpenWebText
forms the backbone due to its large size and diverse
internet content. Wikipedia is known for its vast
coverage of general knowledge. Finally, ArXiv
augments our corpus with scientific and technical
texts. We use the standard GPT-2 tokenizer, inher-
iting its handling of vocabulary size and unknown
words, while introducing an “end-of-sentence” to-
ken. This token is crucial in the design of a fast
generation method, a cornerstone of this work.

Details. We use the Adam optimizer with weight
decay of 0.01, β1 = 0.9, β2 = 0.98 and ϵ = 10−8.
We maintain gradient clipping with a value of 0.5.
As our learning rate scheduler we use linear de-
cay with 10000 warmup steps. The peak learning
rates are provided in Table 1. We keep the batch
size scheduler from (Geiping and Goldstein, 2023),

Figure 4: Attention masks during pre-training for an
input with the sentence index vector [0,0,1,1,1]: The left
matrix is the "block triangular mask" as in Section 3.1.
After going through the encoder, every token represents
the compressed prefix of its sequence up to itself, and
is only allowed to attend to itself and compressions of
previous sequences (right).

starting batch size at 64 and linearly ramping up
to 4096, reaching this peak at 60% of the training
duration. Lastly, we eliminate dropout during train-
ing. Our models undergo only a single pass or less
over the pre-training corpus, which mitigates the
risk of overfitting.

3.3 Fast generation
The insight that enables a faster generation algo-
rithm to be mathematically equivalent to regular
token generation is the design of our block-wise
attention matrix. During the generation loop, when
generating a token in sentence j, only tokens in sen-
tence j are affected – tokens in previous sentences
remain unchanged. Since the feed-forward layers
operate element-wise, there is no operation within
the transformer layer that alters the compressed
embeddings e1, e2, · · · , ej−1. The core idea is to
cache these embeddings, allowing the encoder to
process only the current sentence j to compute
ej . The body then processes the concatenation of
the cached embeddings e1, e2, · · · , ej−1 and the
updated ej . For an illustration, see Figure 5.
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Figure 5: Illustration of the Fast Generation Algorithm.
Having finished s1 and s2 in the context, any subsequent
token mathematically cannot influence e1, e2. The Fast
Generation Algorithm caches them and feeds them di-
rectly to the slt_body, together with e3.

4 Experiments

4.1 Setup
We evaluate GPTHF against GPT-style baselines of
comparable size, using validation perplexity and ef-
ficiency metrics (FLOPs and runtime). Due to com-
putational constraints, the training data is limited to
10 billion tokens, divided into 320’000 micro-batch
steps of size 64 with a context size of 512 tokens.
All models are pre-trained on the same datasets.

Baselines. We trained a 12-layer baseline named
“Baseline-12” and a 24-layer “Baseline-24” with
the same architecture and size as their GPTHF
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Figure 6: Validation perplexity of pre-trained models
and baselines. Lower values indicate better perfor-
mance.

counterparts. The only difference was that they
were trained using full triangular masks for both
encoder and body, as opposed to the masks in Fig-
ure 4. As remarked in Section 3.2, the baselines can
be regarded as equivalent to conventional GPTs.

4.2 Perplexity

Validation perplexities after training are presented
in Figure 6. They were calculated on a hold-out
validation dataset comprising 16 million tokens.

Scaling Laws Hold in the Low-Compute Setting.
GPTHF models have higher perplexity than base-
lines but follow scaling laws in the low-parameter
regime. Both show a ∼5-point perplexity drop
when scaling from 12 to 24 layers after 10B to-
kens. GPTHF-16-8 and the 12-layer baseline per-
form on par, setting a basis for further compar-
isons: If GPTHF-16-8 achieves higher generation
efficiency and/or speed than a 12-layer GPT, train-
ing a larger model capable of compression might
be worthwhile.

4.3 FLOPs

The speedup from our fast generation algorithm
(Section 3.3) depends on token distribution across
sentences as opposed to only the shape of the input.
Intuitively, more sentences help by caching com-
pleted ones to skip the encoder. Since theoretical
FLOPs analysis is impractical, we measure empir-
ically using OpenWebText samples with varying
prompt lengths (n) and token counts (k), leveraging
the tool from Li. All numbers in Table 2 exclude
KV-caching (Pope et al., 2023), as adapting our
approach to it requires significant additional effort.

Efficiency Gain Increases With Prompt Length.
The results show that efficiency improves with
larger n, but surprisingly decreases with higher
k. A closer examination reveals that our models

generate few relevant tokens, often repeating them
without generating end-of-sentence tokens. This
occurs in both GPTHF models and baselines, indi-
cating that it likely stems from insufficient scale or
training rather than compression. Since the fast al-
gorithm relies on completed sentences, generation
quality directly affects efficiency. This explains a)
the small gains 100-prompt/250-generation tokens,
and b) strong efficiency gains (up to 10x) for 500-
prompt/20-generation tokens. We hypothesize that
a model capable of correctly terminating sentences
achieves greater efficiency gains than reported in
Table 2, increasing with both n and k.
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Figure 7: Scatter plots showing the average number of
sentences (x-axis) versus the efficiency gain (y-axis) of
GPTHF over GPT when generating 20 tokens.

Sentences vs Efficiency. Figure 7 shows scatter
plots of the average sentence count (x-axis) versus
efficiency gain (y-axis). We see that the efficiency
gain increases linearly with the average number
of sentences. For batched data, the efficiency gain
is lower likely due to larger variety (which can be
observed from the increased variance) in tokens,
leading to more padding tokens being processed,
which slows the fast generation algorithm.

4.4 Inference Time
While we save many FLOPs, not all translate to
faster runtime due to GPU inefficiencies from non-
trivial and conditional executions. We measure
actual inference times to account for this, using an
identical setup (see Table 3).

Speedup Increases With Context. Similar to
the FLOP experiment, increasing up to 25% for
unbatched data as k grows. Batched data shows
gains with larger n but not k, which we attribute to
the same sentence-termination limitations.

Latency vs. Throughput. We attribute the sig-
nificant speedup differences between unbatched
and batched data to latency vs. throughput. For un-
batched data with small contexts, the GPU remains
idle. This limits the runtime by latency, which
primarily depends on model size. Batched data
utilizes GPUs better, converting efficiency gains in
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Batch size 1 Batch size 32

n, k = 100,100 100,250 250,100 250,250 500,20 100,100 100,250 250,100 250,250 500,20

Baseline-12 2.38T 9.1T 4.88T 15.7T 1.56T 2.46T 9.62T 4.96T 16.0T 1.7T
GPTHF-8-4 0.95T 4.16T 0.80T 4.31T 0.17T 1.90T 7.72T 2.53T 9.32T 0.58T
Efficiency 2.51x 2.19x 6.10x 3.64x 9.18x 1.29x 1.25x 1.96x 1.72x 2.93x

Baseline-24 8.30T 31.4T 17.0T 53.9T 5.45T 8.52T 32.7T 17.2T 54.9T 5.95T
GPTHF-16-8 2.99T 17.4T 2.97T 17.5T 0.56T 6.11T 25.6T 8.39T 31.3T 2.04T
Efficiency 2.78x 1.81x 5.72x 3.08x 9.73x 1.39x 1.28x 2.05x 1.75x 2.92x

Table 2: Empirical FLOP count per sample for varying prompt lengths n and generated token counts k. Lower
values indicate better efficiency. Bold values highlight highest speedup for each batch size. The mean over 50
batches is reported. Efficiency is calculated as the inverse of the FLOP reduction of the GPTHF model compared to
its respective baseline.

Batch size 1 Batch size 32

n, k = 100,100 100,250 250,100 250,250 500,20 100,100 100,250 250,100 250,250 500,20

Baseline-12 1.73s 4.44s 1.82s 4.77s 0.44s 0.17s 0.57s 0.28s 0.88s 0.093s
GPTHF-8-4 1.77s 4.46s 1.77s 4.48s 0.41s 1.90T 0.50s 0.18s 0.56s 0.041s
Speedup 0.98x 1.00x 1.03x 1.06x 1.07x 1.13x 1.14x 1.56x 1.57x 2.27x

Baseline-24 3.40s 8.88s 3.73s 9.85s 0.84s 0.40s 1.42s 0.73s 2.34s 0.26s
GPTHF-16-8 3.32s 8.43s 3.32s 8.44s 0.67s 0.35s 1.24s 0.37s 1.29s 0.087s
Speedup 1.02x 1.05x 1.12x 1.17x 1.25x 1.14x 1.15x 1.97x 1.81x 2.99x

Table 3: Empirical generation time in seconds per sample for different prompt lengths n and number of tokens
generated k. Lower values are better. Bold values indicate highest speedup for each batch size. The mean over 50
batches executed on a single NVIDIA RTX A6000 is reported. Speedup is calculated as the inverse time reduction
of our model in comparison to the baseline.

FLOPs into higher throughput. Moreover, speedup
increases with model size, resulting in up to triple
the speedup when comparing GPTHF with equal-
sized baselines and slightly faster when comparing
GPTHF 16-8 with the 12-layer baseline.
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Figure 8: Scatter plots showing the average number of
sentences (x-axis) versus the speedup gain (y-axis) of
GPTHF over GPT when generating 20 tokens.

Sentences vs. Speedup. Figure 8 plots average
sentence count (x-axis) against runtime speedup
(y-axis). The figure highlights a linear relationship
between the number of sentences and the speedup,
with a larger constant for a larger model size.

4.5 Discussion
Our experiments show that compression results in
a notable performance drop. Switching from a

baseline/GPT to a GPTHF increases perplexity by
5 points after 10B tokens of training, similar to
reducing a 24-layer GPT to 12 layers.

However, GPTHF models exhibit promising scal-
ing behavior and significant efficiency improve-
ments. Our method achieves speedups of up to 10x
in FLOPs and 3x in runtime, scaling linearly with
context size. For both our method and the baseline,
KV-caching was excluded. Future work might want
to explore KV cache integration to evaluate the ef-
fectiveness of our approach over state-of-the-art
implementations.

Evaluating the overall tradeoff, we compare the
GPTHF-16-8 and the 12-layer baseline, which per-
form on par (Figure 6). When processing 500 to-
kens of context, GPTHF-16-8 uses ∼ 1/3 of the
FLOPs for unbatched data and is slightly faster
(7%) for batched data. Larger prompt lengths and
batch sizes are expected to amplify these gains,
making the tradeoff worthwhile at low compute
scales.

These results suggest that sentence embeddings
could replace sub-word tokens in low-compute
settings while maintaining reasonable perplex-
ity, but whether they remain competitive at larger
scales is still open.

190



5 Limitations

A central question remains in whether transform-
ers can generate high-quality text using only com-
pressed sentence embeddings with sufficient size
and training. While smaller GPTHF models fol-
low scaling laws similar to GPTs, their inability
to reliably finish sentences highlights challenges
tied to either scale or the compression method itself.
Further training on larger models is necessary to de-
termine if this limitation is inherent to compression
or surmountable via scaling.

Future work should evaluate these models on
downstream tasks to assess practical utility beyond
perplexity. Additionally, integrating GPTHF with
existing optimizations like KV-caching could yield
better speedups, though diminishing returns are a
potential challenge. Comprehensive ablation stud-
ies focusing on key parameters like hidden size
could offer deeper insights into performance. Alter-
native approaches, such as directly generating sen-
tence embeddings and subsequently decompress-
ing, warrant exploration to enhance or complement
current methods.
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Abstract

Native Language Identification (NLI) is the
task of automatically identifying the native lan-
guage (L1) of individuals based on their second
language (L2) production. The introduction
of Large Language Models (LLMs) with bil-
lions of parameters has renewed interest in text-
based NLI, with new studies exploring LLM-
based approaches to NLI on English L2. The
capabilities of state-of-the-art LLMs on non-
English NLI corpora, however, have not yet
been fully evaluated. To fill this important gap,
we present the first evaluation of LLMs for mul-
tilingual NLI. We evaluated the performance
of several LLMs compared to traditional sta-
tistical machine learning models and language-
specific BERT-based models on NLI corpora
in English, Italian, Norwegian, and Portuguese.
Our results show that fine-tuned GPT-4 models
achieve state-of-the-art NLI performance.

1 Introduction

Individuals proficient in a language have the
ability to identify accent patterns in non-native
speech (Major, 2007). Automatically identifying
a speaker’s native language (L1) when speaking
a second language (L2) on the basis of pronunci-
ation, stress, and prosodic patterns has been sub-
stantially explored in speech-based NLI (Krishna
et al., 2019). Similarly, in text-based NLI, linguis-
tic patterns common to an individual’s L1 such as
word choices, syntax, and spelling, can be recog-
nized in texts written in a given L2. Computational
models can be then trained on texts authored by
non-native speakers to learn distinctive properties
of their L1, aiming to identify the writer’s mother
tongue (Malmasi, 2016).

The underlying assumption in NLI is that the na-
tive language influences Second Language Acquisi-
tion (SLA) and production, a phenomenon known
as cross-linguistic influence or language transfer
(Krashen, 1981; Ellis, 2015). Language transfer

results in L1 features manifesting in L2 produc-
tion, allowing computational models to recognize
patterns shared by speakers of the same L1 when
communicating in a given L2. Text-based NLI has
numerous important applications such as serving
as a corpus-driven approach for SLA (Jarvis and
Crossley, 2012) and enabling the development of
effective L2 teaching materials and computer-aided
language learning (CALL) software. Additionally,
NLI has been shown to improve NLP systems deal-
ing with texts from non-native speakers, contribut-
ing to tasks like author profiling, forensics, spam
and phishing detection (Malmasi et al., 2017).

As evidenced by a recent survey (Goswami et al.,
2024), traditional statistical models such as Sup-
port Vector Machines (SVMs) trained on n-grams
as features have historically delivered the best per-
formance for text-based NLI. A few recent studies
(Zhang and Salle, 2023; Ng and Markov, 2024),
however, have shown that fine-tuned LLMs such
as GPT-4 deliver state-of-the-art performance for
English NLI. A key limitation of these studies, as
discussed by Ng and Markov (2024) is the lack
of evaluation of LLMs for languages other than
English. To address this important gap in the litera-
ture, we propose the first multilingual evaluation of
LLMs in NLI. We evaluate various LLMs, in a zero-
shot and fine-tuned setting, on corpora containing
English, Italian, Norwegian, and Portuguese L2
production.

We investigate two research questions (RQs):

• RQ1: How effectively can LLMs identify L1s
across NLI datasets in English and other lan-
guages?

• RQ2: To what extent does task-specific fine-
tuning improve the performance of LLMs
compared to zero-shot prompting across dif-
ferent languages?
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2 Related Work

The aforementioned survey by Goswami et al.
(2024) presents a comprehensive account of text-
based NLI, covering more than 100 papers on the
topic. It describes studies that use a variety of fea-
tures such as word n-grams (Gebre et al., 2013),
part-of-speech tags (Wong et al., 2012), and syntac-
tic features (Wong and Dras, 2011; Mechti et al.,
2020). The survey also covers computational mod-
els widely employed in text-based NLI from statisti-
cal classifiers like SVMs (Jarvis et al., 2013; Goutte
et al., 2013) and Logistic Regression (Tsvetkov
et al., 2013; Popescu and Ionescu, 2013; Gupta,
2018) to deep learning architectures (Ajees and
Idicula, 2018; Lotfi et al., 2020; Uluslu and Schnei-
der, 2022) and LLMs (Zhang and Salle, 2023).
In addition, it reviews shared tasks organized on
the topic that provided important benchmark text-
based datasets (Tetreault et al., 2013; Malmasi et al.,
2017; Soman, 2018).

The findings described in Goswami et al. (2024)
reveal that until recently, approaches that com-
bined statistical classifiers with feature engineering
achieved state-of-the-art performance on text-based
NLI while deep learning architectures achieved lim-
ited success. Recent studies, however, have showed
that the latest generation of LLMs, most notably
GPT-4, are able to outperform statistical and previ-
ous neural models (Zhang and Salle, 2023) partic-
ularly when such models are fined-tuned for text-
based NLI (Ng and Markov, 2024).

The majority of studies referenced here, includ-
ing recent studies on LLM architectures (Ng and
Markov, 2024), only address English NLI. This is
due to the wider availability of English L2 corpora
compared to other languages including widely-used
learner corpora such as ICLE (Granger et al., 2009),
TOEFL11 (Blanchard et al., 2013), and ICNALE
(Ishikawa, 2011). Multiple multilingual studies
have been conducted that describe data and ap-
proaches to text-based NLI in other L2s. This
includes studies on Arabic (Malmasi and Dras,
2014a; Ionescu, 2015; Bassas and Kübler, 2024),
Chinese (Malmasi and Dras, 2014b), Czech (Tydl-
itátová, 2016), Finish (Malmasi and Dras, 2014c),
Norwegian (Malmasi et al., 2015), Portuguese
(Malmasi et al., 2018; del Río, 2020), and Turk-
ish (Uluslu and Schneider, 2023).

To the best of our knowledge, all text-based NLI
studies on L2 other than English employed tradi-
tional machine learning models combined with fea-

ture engineering or early deep learning approaches.
The use of LLMs for L2s other than English re-
mains unexplored. Our work fills this gap by pre-
senting the first multilingual evaluation of LLMs in
text-based NLI on four languages and five datasets.

3 Data

In this study we use five NLI corpora in English,
Italian, Norwegian, and Portuguese. NLI corpora,
and learner corpora in general, are only available
for English and a few other high-resource lan-
guages (Malmasi, 2016; Goswami et al., 2024)
which limits the choice of languages we can study.
With the goal of carrying out a multilingual evalua-
tion, we choose Italian, Norwegian, and Portuguese
due to the availability of suitable corpora.

Data Splits For TOEFL11 and NLI-PT we fol-
low pre-defined training, development, and testing
split from prior work (Tetreault et al., 2012; Mal-
masi et al., 2018). For all other corpora, we use a
random label wise 80%-10%-10% split for training,
development, and testing. To ensure comparability
of results, we use the same splits across the dif-
ferent experiments presented in the paper. Brief
descriptions of the five corpora are presented next.

English - FCE and TOEFL11 For L2 English,
we use FCE and TOEFL11. FCE contains 1,244
exam scripts extracted from the Cambridge Learner
Corpus (CLC) and written by candidates who took
the Cambridge ESOL First Certificate in English
(FCE) in 2000 and 2001 (Malmasi, 2016). It in-
cludes the following L1s: Spanish, French, Ko-
rean, Russian, Japanese, Turkish, Polish, Italian,
Greek, German, Portuguese, Chinese, Catalan,
Thai, Swedish, and Dutch. TOEFL 11 (Tetreault
et al., 2012) is a dataset of essays written by speak-
ers of 11 L1s: Arabic, German, French, Hindi,
Italian, Japanese, Korean, Spanish, Telugu, Turk-
ish and Chinese. Following the split by Tetreault
et al. (2012) we use 1,100 essays for each L1 with
900 for training, 100 for development, and 100 for
testing.

Italian - VALICO For Italian, we use VALICO
(Corino et al., 2017), the Varieta di Apprendimento
deLlla Lingua Italiana Corpus Online, i.e. Online
Corpus of Learner Varieties of Italian. VALICO
contains 2,531 texts written by L1 speakers of Al-
banian, Chinese, Czech, English, French, German,
Hindi, Japanese, Polish, Portuguese, Romanian,
Russian, Serbian, Spanish.
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Norwegian - ASK For Norwegian, we use ASK
(Tenfjord et al., 2006), the Andrespråkskorpus, i.e.
Second Language Corpus. It features essays writ-
ten in Norwegian Bokmål as part of an exam in
Norwegian as a second language. It covers 2,158
essays written by L1 speakers of Albanian, Dutch,
English, German, Polish, Russian, Serbian, Somali,
Spanish, and Vietnamese.

Portuguese - NLI-PT For Portuguese, we ac-
quire NLI-PT (del Río et al., 2018). NLI-PT is
a corpus collected from three learner corpora of
Portuguese: (i) COPLE2; (ii) Leiria corpus, and
(iii) PEAPL2. It contains written productions from
learners of European Portuguese with different pro-
ficiency levels and L1s. We use 1,075 texts written
by L1 speakers of Chinese, Spanish, English, Ital-
ian, and German and the same train, development,
and test split as in Malmasi et al. (2018).

4 Models

Statistical Machine Learning Ensemble We
trained a Logistic Regression (LR) and an SVM
classifier on POS n-grams of n ∈ [1, 4]. The data
was normalized and its dimensionality was reduced
using TruncatedSVD and PCA. We then combine
the LR and SVM models in a majority voting en-
semble (Malmasi and Dras, 2017). We refer to this
model as ML Ensemble.

Transformers We fine-tune two multilingual
models for the four languages, namely mBERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020). We also fine-tune several language specific
models. For English we use BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), for Italian
we use italianBERT (Dbmdz, 2020), for Norwe-
gian we use norBERT (Samuel et al., 2023), and
for Portuguese we use BERTimbau (Souza et al.,
2020). We use learning rate 1e-5 for all models.
The hyperparameters for the transformer models
for all corpora are presented in Table 1.

Dataset Epochs Batch Size

FCE 5 8
TOEFL11 3 16
VALICO 10 16
ASK 5 16
NLI-PT 5 8

Table 1: Hyperparameters for BERT-based transformers
and Flan-T5.

LLM Prompting We use FLAN-T5 (Chung
et al., 2024) and GPT-4 (Achiam et al., 2023) for
zero-shot prompting. We also carried out prelim-
inary experiments with various 7 billion parame-
ter models (e.g., Mistral-7B (Jiang et al., 2023))
which obtained much lower performance overall
and therefore have not been included in our ex-
periments. A sample LLM prompt used in our
experiments is presented below.

Role (system): You are a forensic
linguistics expert that reads <L2 Language>
texts written by non-native authors in
order to classify the native language of the
author as one of: <List of L1s>. The output
will be the short form of the languages
in this list - <label>. Use clues such
as spelling errors, word choice, syntactic
patterns, and grammatical errors to decide.
DO NOT USE ANY OTHER CLASS.
IMPORTANT: Do not classify any input as
<L2 Language>. <L2 Language> is an invalid
choice.
Role (user): <a text written by a
non-native speaker>

LLM Fine-tuning We further fine-tune FLAN-
T5 and GPT-4 for all datasets. For FLAN-T5, we
have used the same epochs and batch size presented
in Table 1. For GPT-4, we use the API provided
OpenAI.1 The data gets validated and an optimal
set of hyperparameters are automatically fixed for
fine-tuning. The hyperparameters of GPT-4 fine-
tuning for all the datasets are given in Table 2 while
the learning rate for all languages is 2e-5.

Dataset Epochs Batch Size

FCE 3 2
TOEFL11 2 16
VALICO 3 4
ASK 3 3
NLI-PT 3 2

Table 2: Hyperparameter for GPT-4 Fine-Tuning.

5 Results

We present the results for all languages in terms of
accuracy and Macro F1, which is the standard in
prior work (Malmasi, 2016; Goswami et al., 2024).
The results are presented along with a random and
a majority class baseline for comparison. Finally,
to ensure a fair and comparable analysis across all

1https://platform.openai.com/finetune/
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experiments, we evaluate all models on the same
test sets for each particular corpus.

5.1 English

The results for English are presented in Table 3. We
observe that all models achieve performance signif-
icantly higher than the two baselines provided. The
results across the two NLI datasets demonstrate
that LLMs, and in particular GPT-4, achieve state-
of-the-art performance in text-based NLI when fine-
tuned for the task. As shown in Table 3, fine-tuned
GPT-4 achieves the highest F1 scores on both cor-
pora with 0.82 for FCE and 0.92 for TOEFL11.

It is also worth noting that the the GPT-4 prompt-
ing results for TOEFL11 are unusually high com-
pared to the results obtained by this model on the
other four corpora. This is in line with the results
reported by (Zhang and Salle, 2023) on TOEFL11.
The high results suggest that model may have seen
instances from this dataset indicating potential data
contamination.

FCE TOEFL11

Models Acc. F1 Acc. F1

Random Baseline 0.06 0.06 0.10 0.10
Majority Baseline 0.14 0.04 0.09 0.02

ML Ensemble 0.47 0.46 0.84 0.82
BERT 0.25 0.25 0.68 0.68
mBERT 0.27 0.27 0.67 0.66
RoBERTa 0.29 0.28 0.71 0.71
XLM-R 0.33 0.32 0.63 0.62

FLAN T5 Prompt 0.38 0.36 0.32 0.32
GPT-4 Prompt 0.39 0.39 0.83 0.83
FLAN-T5 FT 0.37 0.36 0.73 0.73
GPT-4 FT 0.83 0.82 0.92 0.92

Table 3: Model results and baselines for English in terms
of Accuracy (Acc.) and Macro F1 (F1). “Prompt” indi-
cates zero-shot prompting, “FT” indicates fine-tuning.

Another key finding is that LLM fine-tuning out-
performs all other models by a substantial margin.
The ML ensemble, achieves 0.82 F1 for TOEFL11
lagging significantly behind the fine-tuned GPT-4
model. Another notable trend is that fine-tuning
drastically improve LLM performance over zero-
shot prompting. For example, on TOEFL11, while
GPT-4 zero-shot gets 0.83 F1, fine-tuning boosts
the performance to 0.92 F1. Finally, when compar-
ing multilingual and language-specific transformer
models, we obtain mixed results. On TOEFL11,

monolingual models like RoBERTa outperform
multilingual ones, while on FCE, multilingual
XLM-R performs better than RoBERTa.

5.2 Italian, Norwegian, and Portuguese

Results for Italian, Norwegian, and Portuguese are
presented in Table 4. Similarly to what we ob-
served for English, we see a significant effect of
task fine-tuning over zero-shot prompting on the
LLMs performance. This is evidenced by the GPT-
4 performance which, for Italian, achieves 0.78 F1
score when fine-tuned and 0.31 F1 when prompt-
ing. A similar trend is observed for Norwegian
and Portuguese. We observe that the zero-shot re-
sults are much lower for Italian, Norwegian, and
Portuguese when compared to English. This is
somewhat expected as LLMs have shown to pos-
sess greater capabilities for English compared to
all other languages (Minaee et al., 2024).

We see that the ML Ensemble outperforms all of
the Transformer-based small LMs for all languages.
This confirms the findings of related studies as dis-
cussed in a recent survey (Goswami et al., 2024).
Finally, with the exception of norBERT for Nor-
wegian, we see that language-specific transformers
such as italianBERT and BERTimbau outperform
the multilingual models mBERT and XLM-R. The
reinforces the mixed results on language-specific
vs. multilingual transformer models we described
for English.

6 Conclusion and Future Work

This paper presented the first evaluation of LLMs
on multilingual text-based NLI, experimenting with
four languages and five corpora. Our results in-
dicate that larger task fine-tuned LLMs, such as
GPT-4, deliver state-of-the-art performance for text-
based NLI in the four languages studied. This find-
ing is in line with prior results obtained for English
NLI (Ng and Markov, 2024).

We further observed that for non-English lan-
guages, zero-shot LLM prompting approaches are
generally outperformed by BERT-based and statis-
tical ML approaches. This is likely a limitation of
the LLMs we leveraged here, as they are mostly
focused on English.

We conclude the paper by revisiting the two RQs
below and presenting avenues for future work.

RQ1: How effectively can LLMs identify L1s
across NLI datasets in English and other lan-
guages?
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Italian Norwegian Portuguese

Model Accuracy F1 Accuracy F1 Accuracy F1

Random Baseline 0.09 0.10 0.10 0.11 0.13 0.14
Majority Baseline 0.16 0.04 0.13 0.03 0.27 0.11

ML Ensemble 0.66 0.63 0.76 0.76 0.59 0.59
italianBERT 0.45 0.42 - - - -
norBERT - - 0.67 0.67 - -
BERTimbau - - - - 0.56 0.55
mBERT 0.48 0.44 0.43 0.40 0.57 0.57
XLM-R 0.43 0.36 0.42 0.39 0.32 0.30

FLAN T5 Prompt 0.28 0.27 0.37 0.36 0.30 0.29
GPT-4 Prompt 0.31 0.31 0.52 0.51 0.45 0.36

FLAN T5 FT 0.62 0.57 0.73 0.72 0.45 0.42
GPT-4 FT 0.79 0.78 0.92 0.92 0.86 0.86

Table 4: Model results and baselines for Italian, Norwegian and Portuguese in terms of Accuracy and Macro F1
(F1). “Prompt” indicates zero-shot prompting while “FT” indicates fine-tuning.

RQ1 Results: Our evaluation of LLM zero-shot
prompting indicates that LLMs have very little
knowledge of NLI for the four languages and
five corpora explored. A notable exception is
TOEFL11, the most popular NLI corpus avail-
able, for which the results obtained using GPT-4
were very high using zero-shot prompting. This
seems to indicate potential data contamination.
When fine-tuned, we observed that LLM results
have significantly increased (see RQ2 Results).
Finally, for all languages, statistical ML classi-
fiers obtained performance superior to several
transformers and LLM prompting.

RQ2: To what extent does task-specific fine-
tuning improve the performance of LLMs com-
pared to zero-shot prompting across different lan-
guages?

RQ2 Results: When fine-tuned to the task,
GPT-4 achieves state-of-the-art performance for
all four languages and five corpora explored.
Furthermore, we observe that the performance
gap between zero-shot and fine-tuning is much
smaller for English compared to the other three
languages. This provides further evidence of the
ability of LLMs to better deal with English data
compared to all other languages.

In future work, we would like to use the output of
these classifiers to carry out a cross-lingual study of
L1 to L2 transfer. This has been done extensively
in the past using statistical classifiers (Jarvis and

Crossley, 2012; Bykh and Meurers, 2014; Malmasi,
2016). We believe that the models used in our ex-
periments may reveal interesting linguistic patterns
being transferred from L1 that may generalize to
various L2s in terms of spelling, word choices, and
syntax.

Limitations

We hope the results presented in this paper mo-
tivate further research in multilingual NLI. The
limitations of this work are related to the choice
of languages and models. With respect to the lan-
guages, there are unfortunately very few corpora
available for NLI which limits the choice of lan-
guages we can study. We hope our findings mo-
tivate researchers to create new NLI corpora for
languages other than English and, in particular, for
low-resource languages. All four languages that
we studied are considered to be high-resourced.
Finally, with respect to the models, we would
like to investigate the performance of recently re-
leased LLMs such as Gemma, as in Ng and Markov
(2024), on multilingual text-based NLI.

Acknowledgments

We thank the anonymous reviewers for the feed-
back provided. We further thank the creators of
the five datasets used in this study for making the
data available to the community. Antonios Anasta-
sopoulos is generously supported by the National
Science Foundation under award IIS-2327143.

197



References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

AP Ajees and Sumam Mary Idicula. 2018. Inli@ fire-
2018: A native language identification system using
convolutional neural networks. In FIRE (Working
Notes).

Yasmeen Bassas and Sandra Kübler. 2024. Investigating
linguistic features for arabic nli. In Proceedings of
ArabicNLP.

Daniel Blanchard, Joel Tetreault, Derrick Higgins,
Aoife Cahill, and Martin Chodorow. 2013. Toefl11:
A corpus of non-native english. ETS Research Report
Series.

Serhiy Bykh and Detmar Meurers. 2014. Exploring
syntactic features for native language identification:
A variationist perspective on feature encoding and
ensemble optimization. In Proceedings of COLING.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25:1–53.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of ACL.

Elisa Corino, Carla Marello, Simona Colombo, et al.
2017. Italiano di stranieri. I corpora VALICO e
VINCA, volume 6. Guerra.

Dbmdz. 2020. BERT-base italian cased
model. https://huggingface.co/dbmdz/
bert-base-italian-cased.

Iria del Río. 2020. Native language identification on l2
portuguese. In Proceedings of PROPOR.

Iria del Río, Marcos Zampieri, and Shervin Malmasi.
2018. A portuguese native language identification
dataset. In Proceedings of BEA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL.

Rod Ellis. 2015. Understanding second language ac-
quisition 2nd edition. Oxford university press.

Binyam Gebrekidan Gebre, Marcos Zampieri, Peter
Wittenburg, and Tom Heskes. 2013. Improving na-
tive language identification with tf-idf weighting. In
Proceedings of BEA.

Dhiman Goswami, Sharanya Thilagan, Kai North,
Shervin Malmasi, and Marcos Zampieri. 2024. Na-
tive language identification in texts: A survey. In
Proceedings of NAACL.

Cyril Goutte, Serge Léger, and Marine Carpuat. 2013.
Feature space selection and combination for native
language identification. In Proceedings of BEA.

Sylviane Granger, Estelle Dagneaux, and Fanny Meu-
nier. 2009. The international corpus of learner en-
glish: Handbook and cd-rom, version 2. Presses
Universitaires de Louvain, Louvain-la-Neuve, Bel-
gium.

Aman Gupta. 2018. Team webarch at fire-2018 track
on indian native language identification. In FIRE.

Radu Tudor Ionescu. 2015. A fast algorithm for local
rank distance: Application to arabic native language
identification. In Proceedings of ICONIP.

Shin’ichiro Ishikawa. 2011. A new horizon in learner
corpus studies: The aim of the icnale projects. In
In G. Weir, S. Ishikawa, and K. Poonpon, editors,
Cor56 pora and Language Technologies in Teaching,
Learning and Research. University of Strathclyde
Publishing.

Scott Jarvis, Yves Bestgen, and Steve Pepper. 2013.
Maximizing classification accuracy in native lan-
guage identification. In Proceedings of BEA.

Scott Jarvis and Scott A Crossley. 2012. Approach-
ing Language Transfer Through Text Classification:
Explorations in the Detectionbased Approach. Multi-
lingual Matters.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Stephen Krashen. 1981. Second language acquisition.
Second Language Learning.

G Radha Krishna, R Krishnan, and VK Mittal. 2019.
An automated system for regional nativity identifi-
cation of indian speakers from english speech. In
Proceedings of IEEE INDICON.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ehsan Lotfi, Ilia Markov, and Walter Daelemans. 2020.
A deep generative approach to native language iden-
tification. In Proceedings of COLING.

Roy C Major. 2007. Identifying a foreign accent in
an unfamiliar language. Studies in second language
acquisition.

198

https://huggingface.co/dbmdz/bert-base-italian-cased
https://huggingface.co/dbmdz/bert-base-italian-cased


Shervin Malmasi. 2016. Native language identifica-
tion: explorations and applications. Ph.D. thesis,
Macquarie University, Faculty of Science and Engi-
neering, Department of CLT.

Shervin Malmasi, Iria del Río, and Marcos Zampieri.
2018. Portuguese native language identification. In
Proceedings of PROPOR.

Shervin Malmasi and Mark Dras. 2014a. Arabic native
language identification. In Proceedings of EMNLP
(ANLP).

Shervin Malmasi and Mark Dras. 2014b. Chinese native
language identification. In Proceedings of EACL.

Shervin Malmasi and Mark Dras. 2014c. Finnish native
language identification. In Proceedings of ALTA.

Shervin Malmasi and Mark Dras. 2017. Multilingual
native language identification. Natural Language
Engineering.

Shervin Malmasi, Mark Dras, and Irina Temnikova.
2015. Norwegian native language identification. In
Proceedings of RANLP.

Shervin Malmasi, Keelan Evanini, Aoife Cahill, Joel
Tetreault, Robert Pugh, Christopher Hamill, Diane
Napolitano, and Yao Qian. 2017. A report on the
2017 native language identification shared task. In
Proceedings of BEA.

Seifeddine Mechti, Nabil Khoufi, and Lamia
Hadrich Belguith. 2020. Improving native language
identification model with syntactic features: Case of
arabic. In SPring ISDA 2018.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. arXiv preprint arXiv:2402.06196.

Yee Man Ng and Ilia Markov. 2024. Leveraging open-
source large language models for native language
identification. In Proceedings of VarDial.

Marius Popescu and Radu Tudor Ionescu. 2013. The
story of the characters, the dna and the native lan-
guage. In Proceedings of BEA.

David Samuel, Andrey Kutuzov, Samia Touileb, Erik
Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel,
and Anna Palatkina. 2023. NorBench – a benchmark
for Norwegian language models. In Proceedings of
NoDaLiDa.

KP Soman. 2018. Overview of the second shared task
on indian native language identification (inli). In
CEUR workshop proceedings.

Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo.
2020. Bertimbau: pretrained bert models for brazil-
ian portuguese. In Proceedings of BRACIS.

Kari Tenfjord, Paul Meurer, and Knut Hofland. 2006.
The ask corpus–a language learner corpus of norwe-
gian as a second language. In Proceedings of LREC.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill. 2013.
A report on the first native language identification
shared task. In Proceedings of BEA.

Joel Tetreault, Daniel Blanchard, Aoife Cahill, and Mar-
tin Chodorow. 2012. Native tongues, lost and found:
Resources and empirical evaluations in native lan-
guage identification. In Proceedings of COLING.

Yulia Tsvetkov, Naama Twitto, Nathan Schneider,
Noam Ordan, Manaal Faruqui, Victor Chahuneau,
Shuly Wintner, and Chris Dyer. 2013. Identifying
the l1 of non-native writers: the cmu-haifa system.
In Proceedings of BEA.

Ludmila Tydlitátová. 2016. Native language identifi-
cation of l2 speakers of czech. Bachelors thesis,
Charles University.

Ahmet Yavuz Uluslu and Gerold Schneider. 2022. Scal-
ing native language identification with transformer
adapters. In Procedings of ICNLSP.

Ahmet Yavuz Uluslu and Gerold Schneider. 2023. Turk-
ish native language identification. In Proceedings of
ICNLSP.

Sze-Meng Jojo Wong and Mark Dras. 2011. Exploiting
parse structures for native language identification. In
Proceedings of EMNLP.

Sze-Meng Jojo Wong, Mark Dras, and Mark Johnson.
2012. Exploring adaptor grammars for native lan-
guage identification. In Proceedings of EMNLP.

Wei Zhang and Alexandre Salle. 2023. Native language
identification with large language models. arXiv
preprint arXiv:2312.07819.

199



Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 200–206

April 30 - May 1, 2025 ©2025 Association for Computational Linguistics

Generating Synthetic Free-text Medical Records with Low
Re-identification Risk using Masked Language Modeling

Samuel Belkadi1, Libo Ren2, Nicolo Micheletti3,
Lifeng Han2,4∗, Goran Nenadic2

1 Department of Engineering, University of Cambridge, UK
2 Department of Computer Science, The University of Manchester, UK

3 Department of Computer Science and Technology, Tsinghua University, China
3 LIACS & LUMC, Leiden University, Leiden, NL ∗ corresponding author

Abstract

The abundance of medical records holds great
promise for enhancing healthcare and advanc-
ing biomedical research. However, due to pri-
vacy constraints, access to such data is typi-
cally limited to internal use. Recent studies
have attempted to overcome this challenge by
generating synthetic data through Causal Lan-
guage Modelling. Yet, this approach often fails
to ensure patient anonymity and offers limited
control over output diversity—unless additional
computational cost is introduced. In response,
we propose a method for generating synthetic
free-text medical records based on Masked Lan-
guage Modelling. Our approach retains key
medical details while introducing variability
in the generated texts and reducing the risk
of patient re-identification. With a relatively
lightweight architecture of approximately 120
million parameters, the system ensures low in-
ference costs. Experimental results show that
our method produces high-quality synthetic
data, achieving a HIPAA-compliant PHI recall
of 96% and a re-identification risk of only 3.5%.
Furthermore, downstream evaluations reveal
that models trained on the synthetic data per-
form comparably to those trained on real-world
data. Our trained models are publicly available
on Github as SYNDEIDMLM (at https://
github.com/SamySam0/SynDeidMLM) (mean-
ing synthetic and de-identified data generation
using MLM).

1 Introduction

The widespread adoption of electronic medical
record (EMR) systems has led to the accumula-
tion of substantial volumes of patient data, offering
considerable opportunities to improve healthcare
delivery and biomedical research (Beam and Ko-
hane, 2018; Shah et al., 2018). However, access
to such data is heavily restricted due to privacy
concerns, aiming to safeguard patients’ personal
information (Price and Cohen, 2019). One promis-
ing alternative is the use of synthetic data, which

allows the generation of documents—such as dis-
charge summaries—that retain medically relevant
information while reducing privacy risks. This ap-
proach enables broader data sharing for purposes
like healthcare system testing (Tucker et al., 2020),
medical training (Li et al., 2024), and the develop-
ment of artificial intelligence tools (Belkadi et al.,
2023).

Much of the previous work on synthetic medi-
cal text generation has primarily relied on Causal
Language Modelling (CLM), with comparatively
limited attention paid to Masked Language Mod-
elling (MLM). While CLM approaches have shown
promise in replicating the statistical patterns of
real-world clinical data, they present several chal-
lenges—specifically, ensuring privacy protection,
managing diversity in generated texts, and mitigat-
ing the computational cost of generation.

Recent findings by Micheletti et al. (2024)
demonstrate that Masked Language Modelling can
perform on par with Causal Language Modelling
across a wide range of synthetic generation tasks,
while offering greater flexibility in controlling con-
textual information. Building on these insights,
this paper introduces a system designed to generate
synthetic English-language medical texts—such as
discharge notes, admission records, and doctor-to-
doctor communications—using Masked Language
Modelling. The system integrates a cutting-edge
de-identification tool capable of automatically de-
tecting protected health information (Radhakrish-
nan et al., 2023), thereby removing the need for
manual pre-processing. It also incorporates two
named entity recognition (NER) models to help
retain essential clinical information and strike a
balance between diversity and fidelity in the gen-
erated output. Importantly, the system is based on
an encoder-only, non-autoregressive architecture,
significantly reducing both its size and inference
cost. The code will be released for public access.
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2 Related Work

In their recent study, Yan et al. (2024) proposed a
Generative Adversarial Network (GAN) to produce
synthetic electronic health records. While effective
in some respects, their method struggled to man-
age the similarity between synthetic and original
data and failed to accurately capture temporal de-
pendencies within medical histories. Building on
similar techniques, Kasthurirathne et al. (2021) pre-
sented a system for generating synthetic medical
records with a low risk of re-identification. De-
spite encouraging results, the authors noted that
limited diversity in the generated samples reduced
their usefulness for tasks like oversampling. They
also assumed that synthetic generation alone suf-
ficiently mitigates re-identification risk, signalling
the continued need for explicit de-identification
mechanisms. In one of the most recent contribu-
tions to synthetic medical data research, Falis et al.
(2024) assessed GPT-3.5’s ability to generate dis-
charge summaries. Their findings revealed that
GPT-3.5 often closely reproduced input concepts,
thereby heightening the risk of re-identification.
Additionally, the generated texts were often unnatu-
ral, omitting key medical details while introducing
irrelevant or misleading information. Clinicians
involved in the evaluation acknowledged the pres-
ence of correct content but highlighted weaknesses
in narrative structure, variety, and supporting de-
tails. Another concern raised was the model’s lack
of data governance, as it is not maintained by the in-
stitution that owns the original data. Taken together,
these studies highlight common challenges in syn-
thetic medical text generation: persistent privacy
concerns and limited control over output variabil-
ity. In response, our work advocates for the use
of Masked Language Modelling, which offers en-
hanced control over the content being generated
while reducing privacy risks and maintaining lower
computational costs.

3 System Design

The system architecture, illustrated in Fig-
ure 1, is designed to generate synthetic medical
records—including discharge summaries, admis-
sion notes, and clinician correspondence—through
a two-stage pipeline: a Masker and a Mask-Filling
System. The Masker identifies which parts of the
text should be hidden or retained, outputting a par-
tially masked version of the original text. The
Mask-Filling System then replaces the masked sec-

tions with context-aware content, producing one or
more synthetic variants of the original record.

3.1 The Masker

The Masker operates in three sequential stages:
I) De-identification. The initial step involves de-
tecting Protected Health Information (PHI) using
Philter (Norgeot et al., 2020), a rule-based tool
that relies on regular expressions to extract six
PHI categories: DATE, ID, NAME, CONTACT,
AGE, and LOCATION. According to the authors,
Philter achieves high recall scores—99.46% on
the UCSF dataset and 99.92% on the i2b2 2014
dataset. To our knowledge, it is the first certified
de-identification system that enables the release of
clinical notes for nonhuman-subject research, ex-
empt from further IRB approval during the time
period outlined by Radhakrishnan et al.. II) Med-
ical Entity Recognition. In the second stage, a
medical named entity recognition (NER) model
identifies essential clinical terms that should re-
main unmasked in the synthetic output. For this,
we fine-tuned a pre-trained Stanza model1 on the
i2b2-2010 dataset to extract three categories of en-
tities: PROBLEM, TEST, and TREATMENT. This
model achieved an F1 score of 88.13% on the test
set. The system is also adaptable—users can sub-
stitute the model to target other entity types (e.g.
medication names or dosages), and control the de-
gree of masking applied to each entity class. III)
Part-of-Speech Tagging. The final phase involves
part-of-speech (POS) tagging using Stanza’s POS
tagger. Based on user-specified ratios, a subset of
the tagged tokens is randomly masked to influence
the diversity of the synthetic output. For instance,
a setting like NOUN: 0.7, VERB: 0.5 would ran-
domly mask 70% of nouns and 50% of verbs, while
leaving other word types untouched.

3.2 The Mask-Filling System

Once the Masker has produced masked letters, the
Mask-Filling System reconstructs them into syn-
thetic texts using a masked language model (MLM)
and a replacement algorithm. I) MLM Model.
The MLM is an encoder-based model that pre-
dicts context-sensitive replacements for masked
tokens by generating a probability distribution over
possible vocabulary items. In our system, we em-
ploy Bio_ClinicalBERT—a version of BioBERT
(Lee et al., 2020) fine-tuned on clinical texts from

1stanfordnlp.github.io/stanza/available_biomed_models.html
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Figure 1: SYNDEIDMLM System Design: Masker and Mask-Filling two steps.

MIMIC III (Johnson et al., 2016). We further
trained this model on a set of 790 clinical letters
described in Section 4.1. While we did not com-
pare it with alternative models, we encourage fu-
ture research to explore different baselines. II)
Mask-Filling Algorithm. This module prepares
the masked input for the MLM model and chooses
suitable replacements for each masked segment
based on the model’s predictions. We compare two
strategies:

• Simultaneous Chunk Filling: In this approach,
masked text is processed in chunks. Each
chunk is passed through the MLM to gen-
erate probabilities for the masked elements.
Replacements can be selected deterministi-
cally (using the highest probability term) or
stochastically (by sampling from the distribu-
tion). While stochastic replacement enhances
variation, it may also reduce fidelity by adding
noise.

• Iterative Mask Filling (Kesgin and Amasyali,
2023): This method processes one masked en-
tity at a time within a defined context window.
As each masked token is resolved, it is re-
placed in the text, whereas upcoming masked
items remain untouched until processed. This
allows the model to focus on a specific context,
improving generation quality and encourag-
ing output diversity. Replacements, like in
the previous approach, can be selected either
deterministically or stochastically.

4 Experimental Setup

This section presents the dataset used to train and
evaluate the MLM model, alongside the four sys-
tem variants assessed in our experiments.

4.1 Datasets

The experiments are conducted using the i2b2
2014 shared task dataset for PHI de-identification
(Stubbs and Uzuner, 2015; Stubbs et al., 2015),
which includes 1,304 English clinical documents
from 296 diabetic patients. These records comprise
various note types such as discharge summaries,
admission notes, and inter-physician communica-
tions. The dataset is pre-split into 790 training
samples and 514 test samples. This resource offers
a wide range of clinical scenarios and treatment
contexts, making it well-suited for generating di-
verse synthetic outputs. All entries are annotated
with HIPAA-compliant PHI labels. Furthermore,
the dataset includes additional PHI sub-categories
to reinforce privacy protection. The categories of
annotations are Name, Profession, Location, Age,
Contact, and IDs. Among these categories, only the
following align with the official HIPAA-PHI defi-
nitions: NAME-PATIENT, LOCATION-STREET,
LOCATION-CITY, LOCATION-ZIP, LOCATION-
ORGANIZATION, AGE, DATE, CONTACT-
PHONE, CONTACT-FAX, CONTACT-EMAIL,
along with all sub-categories under ID.

4.2 Hyperparameters Tuning

The main parameters for system optimisation are
the learning rate of the MLM model, the train-
ing batch size, the PHI’s masking proportion, and
the overall masking probability. We evaluate each
instance using perplexity as it reflects the MLM
model’s confidence. We divided the data set into
80% and 20% for training and validation and re-
trained the model using the full data when the best
parameter set is selected.
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4.3 System Instances

We evaluated four system variants differing in
masking ratios and mask-filling strategies:

• System_S_0.5 and System_S_0.7: Both use
Simultaneous Chunk Filling with stochastic
sampling, mask all PHI, and retain all med-
ical entities. They differ in lexical diversity,
masking 50% and 70% of NOUNS, VERBS,
and ADJECTIVES, respectively.

• System_I_0.7 and System_I_0.9: These use
Iterative Mask Filling with stochastic replace-
ment, also masking all PHI while keeping
medical entities. They apply 70% and 90%
masking, respectively, for increased diversity.

The selected masking ratios are based on insights
from Micheletti et al. (2024) but can be customised
depending on the intended use case.

4.4 Evaluation Metrics

Our evaluation focuses on three main criteria: simi-
larity to real data, utility, and privacy. Lexical simi-
larity measures how well synthetic data reflects the
structure and meaning of real text using ROUGE,
BERTScore, and readability metrics (FRE2, FKG3,
SMOG). It captures information retention, meaning
preservation, and diversity, as well as how easy the
text is to read. Data utility evaluates the effective-
ness of synthetic data in training machine learning
models. We assess this via a downstream NER task,
comparing performance against models trained on
real data (Belkadi et al., 2025; Micheletti et al.,
2024). Data privacy is assessed by computing
the F1 score for PHI removal (based on annotated
HIPAA-PHI labels) and estimating re-identification
risk.

5 Experiments and Results

5.1 Lexical Similarity Evaluation against
References

The ROUGE and BERTScore results for the four
system configurations are presented in Table 1. As
expected, higher masking ratios tend to lower both
ROUGE and BERTScore metrics, due to the in-
creased noise introduced during generation. This
confirms the trade-off between diversity and con-
tent fidelity, as previously discussed in Section 3.

2Flesch Reading Ease
3Flesch-Kincaid Grade

Additionally, systems that utilise iterative mask
filling consistently outperform those using simul-
taneous filling in terms of lexical similarity to
the original text. For instance, with a mask-
ing ratio of 0.7, the iterative approach achieves
ROUGE scores that are over 3 points higher and
BERTScore improvements exceeding 0.3. This em-
phasises the benefit of iterative replacement, where
each masked term is filled in using richer contex-
tual information—either from unmasked or previ-
ously generated tokens—thereby reducing ambi-
guity. Moreover, even at a high masking ratio of
0.9, iterative systems exhibit a relatively small drop
in BERTScore (0.04), whereas ROUGE scores de-
cline more significantly (by 4 points). This indi-
cates that although the surface wording may deviate
more from the original, the core meaning is largely
preserved.

These observations are further supported by find-
ings in Table 2, where lexical variations between
real and synthetic datasets are assessed through
word overlap comparisons. Overall, all system
configurations were capable of striking a balance
between variation and content retention. The re-
sults illustrate a clear diversity–fidelity trade-off,
which can be fine-tuned by adjusting the masking
ratio and choice of mask-filling strategy, offering
flexibility for different downstream tasks.

5.2 Readability Evaluation against References

As shown in Table 3, the synthetic medical letters
generally exhibit higher readability scores com-
pared to their original counterparts. This improve-
ment is more pronounced at higher masking ratios,
likely because the MLM model tends to substitute
masked terms with simpler and more frequently
used vocabulary. When comparing the different
system configurations, there is no single system
that consistently outperforms the others in terms
of readability. This outcome is beneficial, as it
suggests that users have the freedom to adjust the
balance between fidelity and diversity without neg-
atively impacting the readability of the generated

RGE1 RGE2 RGE-L BERTS
Sys_S_0.5 0.861 0.760 0.852 0.729
Sys_S_0.7 0.828 0.703 0.815 0.674
Sys_I_0.7 0.852 0.732 0.841 0.706
Sys_I_0.9 0.826 0.686 0.811 0.668

Table 1: Lexical similarities of the generated synthetic
letters against references on the testing dataset.
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Top 5 Top 20 Top 50 Top 100
System_S_0.5 3.848 15.593 38.420 78.670
System_S_0.7 3.601 14.607 35.971 73.695
System_I_0.7 3.712 15.095 37.233 76.093
System_I_0.9 3.537 14.551 35.510 72.298

Table 2: Average number of overlap between the top 5,
20, 50 and 100 words identified across the real and syn-
thetic datasets, without stopwords. Additional results
on lexical similarities.

FRE FKG SMOG
System_S_0.5 64.024 7.647 10.823
System_S_0.7 65.091 7.466 10.696
System_I_0.7 63.792 7.707 10.878
System_I_0.9 64.294 7.636 10.832
References 61.597 8.06 11.067

Table 3: Readability scores of the generated synthetic
letters against references on the testing dataset.

text.

5.3 Data Utility Evaluation
We investigate how effectively the synthetic data
replicates key characteristics of real clinical text.
To do so, we compare the performance of a medical
NER model trained on synthetic data to that of a
model trained on real data.

5.3.1 Downstream NER Task
For this task, the original test set is divided into
new training and testing subsets. The real clini-
cal letters are first passed through our system to
generate synthetic equivalents. Both the real and
synthetic texts are then processed using SciSpacy4

(en_ner_bc5cdr_md), a named entity recognition
model trained on the BC5CDR dataset, which
achieves an F1 score of 0.84. This model iden-
tifies entities related to DISEASE and CHEMICAL
terms. The extracted entities from the original and
synthetic datasets are then used to create two dis-
tinct training sets. One SpaCy5 model is trained
using entities derived from the real data, while the
other is trained on those extracted from the syn-
thetic data. Both SpaCy models are then evalu-
ated on the same test split. To study the effect of
data augmentation, the experiment is repeated with
twice as many synthetic letters generated per real
letter. It is worth noting that while SciSpacy may
introduce some errors during entity extraction, we
assume these errors affect both the real and syn-
thetic data consistently, preserving the fairness of

4https://allenai.github.io/scispacy/
5https://spacy.io/

Precision Recall F1
System_S_0.5 0.842 0.792 0.816
System_S_0.7 0.851 0.797 0.823

x1 System_I_0.7 0.831 0.812 0.821
System_I_0.9 0.846 0.810 0.827
System_S_0.5 0.844 0.800 0.821
System_S_0.7 0.850 0.805 0.828

x2 System_I_0.7 0.838 0.819 0.829
System_I_0.9 0.855 0.819 0.836
References 0.86 0.824 0.842

Table 4: Average Precision, Recall and F1 score for two
labels (DISEASE and CHEMICAL) using Synthetic
data ×1, ×2 and Real data, on the testing dataset.

the comparison.

5.3.2 Results of Downstream Task
The outcomes of the downstream evaluation are
presented in Table 4. All system configurations
performed on par with models trained using real
data. Notably, systems with higher masking ra-
tios achieved better F1 scores, likely due to the
increased variability in the synthetic data, which
may have provided SpaCy with a richer training set.
In addition, when the volume of synthetic data was
doubled, the F1 score rose to 0.836—just 0.006
below the performance of the model trained on
authentic data.

5.4 Data Privacy Evaluation

To assess privacy preservation, we first mea-
sure the system’s de-identification perfor-
mance—specifically, how accurately the Masker
detects all PHI instances in the test dataset. The
Masker achieves a recall of 0.92 when consid-
ering all PHI categories, including additional
sub-categories, and a recall of 0.96 when focusing
solely on standard HIPAA-defined PHI types. Next,
we assess the risk of re-identification, which refers
to the likelihood that the MLM model inadvertently
restores masked PHI entities. This step is crucial
for safeguarding the privacy of individuals whose
data contributed to model training. The results
show that the model reintroduced PHI terms
spanning more than two tokens at a very low rate
of 0.035. In addition, we conducted a longest
common substring analysis between original and
synthetic texts for PHI segments. The overlap
rates were minimal: 0.098 for substrings of 3
or more tokens, 0.020 for 5 or more, and just
0.009 for 7 or more. These findings demonstrate
the system’s strong performance in reliably
removing HIPAA-sensitive information, while also
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maintaining a very low risk of re-identification.

6 Conclusion

In this work, we proposed a system using masked
language models to generate synthetic clinical text,
addressing challenges of data scarcity and pri-
vacy. The system includes a Masker (with de-
identification, medical NER, and POS tagging) and
a Mask-Filling module (supporting both simulta-
neous and iterative strategies). Key findings show
that: (1) The system produces diverse yet clinically
meaningful text, (2) Offers control over diversity
and fidelity without reducing readability, (3) Per-
forms well in downstream NER tasks—comparable
to real data, (4) Ensures strong privacy protection
(HIPAA-PHI recall of 0.96; re-ID risk of 0.035).
The full system, SYNDEIDMLM, is available at
https://github.com/SamySam0/SynDeidMLM.

Limitations and Future Work

Through close examination of the generated
synthetic samples, we identified certain limita-
tions—particularly with consistently reproducing
temporal details and ensuring alignment with the
original context. In some cases, maintaining logi-
cal coherence between related elements (e.g., ref-
erencing two names in the same scenario) proves
difficult when the necessary context is outside the
model’s generation window. To address these is-
sues, future work could incorporate a logic-based
module for handling temporal data, which would
enhance temporal consistency and further reduce
re-identification risks. Another promising direction
would be to supply the MLM model with the type
of entity being replaced, which could increase the
accuracy of PHI substitution and improve overall
generation quality.

Regarding the masked language model itself, fu-
ture research might explore the use of larger lan-
guage models guided by prompt-based instructions
to handle mask-filling. This strategy would specifi-
cally focus on the generation task, enabling a more
in-depth comparison between Causal Language
Models (CLMs) and Masked Language Models
(MLMs) in terms of their ability to control fidelity
and diversity in synthetic data. In such a setup, the
Masker would remain unchanged, while the MLM
and its mask-filling mechanism would be replaced
by a CLM and a prompt-driven approach.

It is also important to acknowledge that our find-
ings may have limited generalisability, as the ex-

periments were conducted on a single dataset due
to computational constraints. Future studies could
expand the evaluation by testing the system on a
wider variety of downstream tasks and datasets.
For example, applying the system to specialised
medical domains like radiology or oncology would
be valuable. This would require replacing the cur-
rent NER model with a more domain-specific one
(e.g., Stanza Radiology or Stanza Bionlp13cg) to
accurately extract relevant information. Such adap-
tation would likely necessitate re-evaluating mask-
ing strategies for both the NER component and the
POS tagger to optimise performance.

We recognise that, at this stage, no alternative
biomedical language models were assessed be-
yond Bio_ClinicalBERT. Nonetheless, future work
should provide a more comprehensive rationale for
selecting this model, including a comparative dis-
cussion of its strengths relative to other state-of-the-
art options. A similar consideration applies to the
use of Stanza for both NER and POS tagging tasks.
In our readability evaluation, we reported that the
synthetic letters appear easier to read than the orig-
inals, based solely on quantitative evaluation met-
rics. However, it is important to acknowledge the
limitations of these metrics. Human evaluation will
be necessary to more thoroughly assess the con-
textual appropriateness, narrative flow, and clinical
usefulness of the generated content.
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Abstract

When developing language technology, re-
searchers have routinely turned to transfer
learning to solve the data scarcity conundrum
presented in low-resource languages. To our
knowledge, this study is the first to evaluate the
amount of documentation needed for transfer
learning, specifically the smallest vocabulary
size needed to create a sentence embedding
space. In adopting widely spoken languages as
a proxy for low-resource languages, our experi-
ments show that the relationship between a sen-
tence embedding’s vocabulary size and perfor-
mance is logarithmic with performance level-
ing at a vocabulary size of 25,000. It should be
noted that this relationship cannot be replicated
across all languages, and this level of documen-
tation does not exist for many low-resource
languages. We do observe, however, that per-
formance accelerates at a vocabulary size of
≤ 1000, a quantity that is present in most
low-resource language documentation. These
results can aid researchers in understanding
whether a low-resource language has enough
documentation necessary to support the cre-
ation of a sentence embedding and language
model.

1 Introduction

More than 43% of the languages spoken in the
world are endangered (Zhang et al., 2022). Due
to globalization and neocolonialism, language loss
occurs at an accelerated rate (Zhang et al., 2022).
Saving and revitalizing endangered languages has
become very important for maintaining cultural
diversity (Zhang et al., 2022). In times of crisis,
these language technologies allow first responders
to save lives. For example, the Low Resource Lan-
guages for Emergent Incidents (LORELEI) pro-
vides situational awareness based on information
from any language and supports humanitarian assis-
tance/disaster relief, peacekeeping, and infectious
disease response (Strassel and Tracey, 2016).

Working with minimal data—as would be the
case with endangered languages—makes it diffi-
cult to train natural language models from scratch.
For these reasons, transfer learning is a potential
method for language models to adapt to endangered
languages (Alnajjar et al., 2023; Chen et al., 2019;
Lee et al., 2021; Tran, 2020). We focus our re-
search questions on cross-lingual transfer learning
for low-resource languages to:

• RQ 1: What is the lower bound of documen-
tation needed?

• RQ 2: When the target low-resource language
is linguistically distant from the source high-
resource language, does this lower bound of
documentation change?

By establishing this lower-bound, we can better
assess whether a low-resource language has enough
documentation to support the creation of a sentence
embedding space and language model.

2 Methodology

We analyze sentence embeddings as they are highly
important in the creation of language models (Mao
et al., 2024). In a survey of cross-lingual trans-
fer learning learning methodologies, we found that
Alnajjar et al. (2023)’s methodology to be the sim-
plest. Alnajjar et al. (2023) draws on Finnish word
embeddings to create embedding spaces and senti-
ment classifiers for endangered Uralic languages.
The choice of Finnish as the source language is
ideal as Finnish is part of the same language family
as the endangered Uralic languages. We proceeded
to modify the cross-lingual transfer methodology
described in the paper.

When performing cross-lingual transfer learning,
we select Dutch as the “high-resource" source lan-
guage and English to train a Dutch sentiment clas-
sifier. To evaluate whether vocabulary size varies
by proximity to the high-resource source language
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Figure 1: Overview of methodology. Using translation lexicons, the Dutch embedding space is replicated for each
proxy language and aligned using MUSE. Sentiment classifiers are then built from the embedding spaces and
finetuned on STS English examples. These classifiers are evaluated on their respective language in MTEB.

Dutch, we select four widely spoken languages as
proxies for low-resource target languages: German,
Turkish, Arabic, and Mandarin. We test Arabic and
Mandarin separately to determine how replicable
cross-lingual transfer is across different languages.
Adopting high-resource languages as proxies allow
us to experiment with varying degrees of language
documentation, from the very small to the very
large.

Our methodology is illustrated in Figure 1. We
select a classic tokenizer that splits on whitespace
and punctuation as an acknowledgment of the real-
ity faced by many low-resource languages: a lack
of data to train a more sophisticated tokenizer. With
the help of translation lexicons, we replicate Dutch
word embeddings for each proxy language before
aligning all word embeddings. We then create sen-
tence embeddings, each finetuned on English data
as done in Alnajjar et al. (2023). We then evaluate
these sentence embeddings by injecting sentence
pairs into the sentence embedding space and com-
paring the model’s cosine similarity score with the
actual similarity score using the Spearman correla-
tion (Spearman, 1904).

Language Text

Dutch

German

Turkish

Arabic

Mandarin

Hij stierf dinsdag in Osaka.

Er verstarb am Dienstag in Osaka.

Sall gtinii ()saka'da vefat Etti.

(Di
;

A
»w@,¥§7<@'w;

Table 1: Languages analyzed in the study. Translations
are provided for the phrase: “He died in Osaka on Tues-
day" NLLB Team et al. (2024). Turkish uses a similar
script similar to Dutch.

2.1 Evaluating the impact of genetic
proximity using proxies

To account for genetic proximity, we adopt
four high-resource languages as proxies for low-
resource languages: German for its proximity to
Dutch, Turkish because its typology is similar to
Dutch but is in a different language family, and Ara-
bic and Mandarin as their typologies are dissimilar
to Dutch and are in a different language family (see
Table 1 and Appendix A). Transfer learning is per-
formed between two groups: (1) transfer of Dutch
word embeddings to German, Turkish, and Arabic,
and (2) transferring Dutch word embeddings to
German, Turkish, and Mandarin, to see the relative
performance of the languages most dissimilar to
Dutch.

2.2 Tokenizing text

Word tokenizers facilitate the creation of organized
representations of language, which is useful for
language modeling (Dagan et al., 2024). The de-
velopment of these tokenizers requires data (Da-
gan et al., 2024). For example, byte-pair encoding
(BPE) tokenizers require training on text corpora to
learn how to split words into frequently occurring
subword units. While such tokenizers have proven
successful for certain languages and have been used
in state-of-the-art language models, their applica-
bility to low-resource languages remains debated.
Arnett and Bergen (2024) writes that differences in
tokenizer performance can be attributed to dispari-
ties in dataset size. If a BPE tokenizer is exposed
to limited data and does not segment words along
morphological boundaries —a common occurrence
in morphologically-rich languages —it may be dif-
ficult for the language model to efficiently learn the
language (Arnett and Bergen, 2024). While less
robust when compared to a BPE tokenizer, a classic
tokenizer that splits on whitespace and punctuation
is a nod to the reality of low-resource languages:
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there may not exist sufficient data to train a well-
performing tokenizer.

2.3 Using translation lexicons to generate
word embeddings

To simulate our proxy languages under low-
resource conditions, we adopt translation lexi-
cons—dictionaries that translate from one lan-
guage to another—provided by Facebook’s Multi-
lingual Unsupervised and Supervised Embeddings
(MUSE) (Conneau et al., 2017) as the most com-
mon types of resource available for low-resource
and endangered languages are translation lexicons
and universal dependencies (Alnajjar et al., 2023).
We chained together lexicons that translated from
our proxy languages to English and English to
Dutch. These translation lexicons allowed us to
replicate the Dutch word embedding space and vo-
cabulary as the proxy’s. We forwent additional
fine-tuning as performance remained unchanged
(see Appendix B).

2.4 Alignment of word embeddings

We aligned the embedding spaces of English,
Dutch, German, Turkish, Arabic, and Mandarin
using the state-of-the-art supervised multilingual
word embedding alignment technique developed in
MUSE, resulting in cross-lingual word embeddings
(Conneau et al., 2017). For example, the vector
for “dog" in English embeddings points roughly in
the same direction as the same word in all other
languages. To confirm that realignment improves
word translations, see subsection C.1.

2.5 Creating sentence embeddings

The procedure for creating sentence embeddings
involves averaging the word embeddings of a given
sentence and subsequently feeding them to two
fully-connected feed-forward layers, thereby con-
structing a Deep Averaging Network (DAN) (Iyyer
et al., 2015). The sentence embeddings are trained
on the English subset of the Massive Text Embed-
ding Benchmark (MTEB) Semantic Textual Simi-
larity (STS) Benchmark (Muennighoff et al., 2023).
While training the sentence embedding in its associ-
ated language may result in greater improvement in
performance, such data may not always be present
in a low-resource setting.

The resulting sentence embedding space was
evaluated using its corresponding language sub-
set in MTEB. We used the Spearman correlation
score (Spearman, 1904) to compare the predicted

cosine similarity scores with the actual similarity
scores. In evaluating STS systems, researchers rec-
ommend using Spearman’s rank correlation coeffi-
cient (Zesch, 2010). This metric assesses a mono-
tonic relationship by ranking values (Zesch, 2010).
Under the Spearman correlation, a model output
does not need to match the ground truth; a model
output that is well-correlated with the ground truth
produces a high Spearman correlation, indicating
that the sentence embedding can encode meaning-
ful semantic information.

2.6 Creating a sentiment classifier

To assess the robustness of the transfer learning
approach introduced by Alnajjar et al. (2023), we
replicated Alnajjar et al. (2023)’s sentiment clas-
sifier for our proxy languages and compared its
performance in our study to the results reported in
Alnajjar et al. (2023). The model architecture is
depicted in Figure 2.

To train the model, we used English samples
from the Stanford Sentiment Treebank (Socher
et al., 2013), Amazon Reviews Dataset (McAuley
and Leskovec, 2013), and Yelp Dataset (Zhang
et al., 2015), and their associated sentiment an-
notation (positive-negative). To evaluate the
model on our target languages, XED (Öhman
et al., 2020) —a multilabel sentiment classification
dataset —was preprocessed into a binary classifica-
tion dataset (see Appendix D).

3 Results

Under the methodology described in section 2, the
quality of the translations improve as the vocab-
ulary size of the proxy language grows (see sub-
section C.2). The relationship between vocabulary
size and the performance of the sentence embed-
ding is logarithmic. This is evident in the fact
that the greatest increases in performance occur at
smaller vocabulary sizes. Once the vocabulary size
hits 25,000, we begin to see diminishing returns
(see Figure 3 and Figure 4). The notable excep-
tion is Mandarin as increasing the vocabulary size
consistently results in poor performance (see Fig-
ure 4). The poor performance in Mandarin can be
attributed to its prediction of a constant or near-
constant cosine similarity score (see Figure 11).

Interestingly, Turkish and Arabic—two
of the languages that are considered linguis-
tically different from the source language
Dutch—outperformed German, the language
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Figure 2: Architecture of sentiment classifier. To determine whether a sentence has a positive or negative connotation,
the sentence is processed through a sentence embedding layer, followed by three dense layers, a dropout layer, and a
sigmoid activation function.

that was deemed closest to the source language
Dutch (see Figure 3). In Figure 4, this trend is
replicated only in Turkish. It should be noted that
the distributions of the model’s predicted similarity
scores do not mirror those of the actual similarity
scores (see Appendix F).

Using the procedure discussed in subsection 2.6,
we compare our results against Alnajjar et al.
(2023) in Table 2.

Language Label Precision Recall F1-Score Accuracy

Komi-Zyrian
neg 0.57 0.57 0.57

0.56
pos 0.55 0.55 0.55

Moksha
neg 0.63 0.65 0.64

0.63
pos 0.64 0.62 0.63

Erzya
neg 0.71 0.69 0.70

0.68
pos 0.67 0.69 0.68

Udmurt
neg 0.69 0.63 0.66

0.63
pos 0.58 0.63 0.60

German
neg 1.00 0.26 0.42

0.47
pos 1.00 0.73 0.84

Turkish
neg 1.00 0.46 0.63

0.50
pos 1.00 0.56 0.72

Arabic
neg 1.00 0.68 0.81

0.53
pos 1.00 0.33 0.49

Mandarin
neg 1.00 0.03 0.06

0.48
pos 1.00 0.95 0.97

Table 2: Proxy languages (in red) perform worse com-
pared to the Uralic languages in Alnajjar et al. (2023)
study (in black). While the sentiment classifiers in Alna-
jjar et al. (2023) achieve similar F1 scores for predicting
both positive and negative labels, the sentiment classi-
fiers for our proxy languages overfit to one of the labels.
The classifiers achieve a high F1 score for predicting
either positive or negative labels, but not both.

4 Discussion

4.1 Minimum tokens

Once a low-resource language’s documented vo-
cabulary size reaches 25,000, the performance of
its sentence embedding plateaus. Without further
finetuning the performance of the model will stag-
nate as evidenced in Figure 3 and Figure 4. While
a vocabulary size of 25,000 exceeds existing docu-
mentation in low-resource translation lexicons, the

vocabulary size at which a sentence embedding
space most improves (≤ 1000) is accessible in
most lexicons (see Appendix G). This addresses
our first research question (RQ 1).

4.2 Genetic proximity
Cross-lingual training between typologically-
related languages has shown promising results
in several NLP tasks especially in low-resource
settings (Anastasopoulos and Neubig, 2019; Mc-
Carthy et al., 2019). Figure 3 and Figure 4 affirm
this finding as German and Turkish—two target
languages that share the typology of the source lan-
guage —Dutch —benefit from cross-lingual trans-
fer learning.

Genetic proximity appears to have little im-
pact on the performance of a proxy language.
Interestingly, German STS performance is inferior
to that of Turkish’s (see Figure 3 and Figure 4).
This finding runs counter to Zhao et al. (2020)
where researchers chose Lezgian and Tsez as target
languages because they belong to the same lan-
guage family as the source language. Moreover,
Arabic—a language that is typologically dissimilar
to the source language Dutch—performs the best
out of all four languages. However, this trend is
not replicated in Mandarin. As shown in Figure 5,
naive whitespace tokenization alters the meaning of
the sentence and may have negatively contributed
to Mandarin’s performance. This addresses our
second research question (RQ 2).

5 Limitations and Future Work

5.1 Proxies
While we are interested in examining how well
languages that are typologically dissimilar to the
source language perform, the MTEB dataset only
includes two such languages: Arabic and Mandarin.
Consequently, our analysis was limited by the con-
straints of this evaluation dataset.

The data utilized in this study may not be fully
representative of low-resource data. In reality, our
proxy languages are high-resource languages and
their associated datasets may contain a wider range
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Figure 3: Transfer learning with German, Turkish, and Arabic as target languages. Performance achieves the
greatest growth at vocabulary sizes of 371 (German), 906 (Turkish), and 151 (Arabic).

Figure 4: Transfer learning with German, Turkish, and Mandarin as target languages. Performance achieves the
greatest growth at vocabulary sizes of 741 (German), 906 (Turkish), and 1100 (Mandarin).
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Figure 5: Correct tokenization of Mandarin Chinese
(top) versus the study’s whitespace tokenization (bot-
tom). The semantic meaning of the sentence changes
depending on the tokenization.

of contexts than those for actual low-resource lan-
guages (Marashian et al., 2025). Often, the only
data available for low-resource languages are small
amounts of religious texts (Marashian et al., 2025).
Future work could verify findings by replicating
the methodology for low-resource languages them-
selves where sufficient data is available.

5.2 Tokenization

The use of a classic tokenizer and the omission of
a more sophisticated tokenizer excludes languages
that lack explicit word boundaries. While Ger-
man, Turkish, and Arabic can be tokenized using
whitespace and punctuation, certain languages like
Mandarin lack distinct spaces between words. Sub-
word tokenization can better handle languages with
non-standard word boundaries. To enhance this
work, the study’s methodology could be replicated
with a subword tokenizer applied to a real-life low-
resource language.

5.3 Methodology Utilized

Table 2 indicates the methodology adopted for
this study overfits to the proxy languages; the
study’s sentiment classifiers lag well behind those
of Alnajjar et al. (2023). Consequently, Alnajjar
et al. (2023)’s methodology is unstable and cannot
transfer knowledge across all languages. Multiple
rounds of hyperparameter finetuning did not im-
prove the model’s performance (see Appendix E).
One possible issue may stem from fine-tuning
the sentiment classifier on English STS examples.
Even with aligned word embeddings, the model
may not possess enough cross-lingual knowledge
to map knowledge gained from the English STS ex-
amples to the proxy language. The heavily skewed
distributions in Figure 10 and Figure 11 suggest
that insufficient knowledge is being captured in this
step of fine-tuning. It is noted in Stevenson and
Merlo (2022) that word embeddings are far from
capturing human-like lexical abilities; a more ef-
fective vector representation of the language may

be necessary to prevent under/over-fitting and pave
the way for more efficient learning. Although there
may exist other cross-lingual transfer methodolo-
gies that are more optimized than Alnajjar et al.
(2023), we present one methodology that is sim-
ple and intuitive in design. While the languages
we evaluated show enough linguistic variation and
could generalize to other languages, we feel that
such methodologies and results cannot transfer
across all languages.

While sentiment classification is a foundational
task in NLP, additional work could be done to ex-
plore how documentation requirements differ for
tasks of varying complexity.

6 Conclusion

Genetic proximity between the source and target
language may not have an impact on how well the
target language performs on the STS task. We note
that the performance of the target language plateaus
at a vocabulary size of 25,000. This may be depen-
dent on morphology as seen in the case of Man-
darin. Based on data from PanLex, low-resource
languages lack the level of documentation deemed
necessary in this study but embedding spaces ex-
perience the greatest level of improvement when
vocabularies are relatively small.

While word embeddings are useful in modeling
language, they would not exist without a tokenizer.
It can be argued that a tokenizer is just as an im-
portant area of research as word embeddings, if
not more important; without a tokenizer, a model
could not extract the relevant semantic features
from text. Future research could investigate the
minimum amount of data needed to develop this
foundational tool in language processing.
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A Proximity to Dutch

See Table 3 for details on how distant our proxies
were from the source language Dutch.

B Skipping additional finetuning

While Alnajjar et al. (2023) finetuned the word em-
beddings with books to expand the embedding’s

Language Genetic Proximity to Dutch

German 13.5
Turkish 87.5
Arabic 82.8

Mandarin 83.8

Table 3: A genetic proximity between 1 and 30 indicates
two highly related languages while a genetic proximity
between 78 and 100 indicates two languages with no
recognizable relationship (Beaufils and Tomin, 2020).

vocabulary, we discovered that this phase was un-
necessary for our proxy languages. To evaluate the
necessity of this phase, we compared the perfor-
mance of (1) embedding spaces trained on transla-
tion lexicons and finetuned on English STS samples
against (2) sentence embedding spaces trained on
translation lexicons, finetuned on Wikipedia arti-
cles from their respective languages, and finetuned
on English STS samples. Wikipedia was selected
as a data source because its articles cover a wide
range of domains. Embedding spaces that under-
went this extra phase of finetuning on Wikipedia
articles performed only marginally better than em-
bedding spaces that skipped this phase (see Tables
4 and 5). Consequently, this extra phase of finetun-
ing was skipped.

C Qualitative analysis of word
embedding alignment

C.1 MUSE

To qualitatively assess how well MUSE alignment
worked, we retrieved word embedding vectors that
had the highest cosine similarity score with the En-
glish word “revolution." Tables 6, 7, and 8 depict
how before alignment, the closest words to “revolu-
tion" stray from the original definition and take on a
positive connotation (e.g. patriot) or negative tone
(e.g. riots, uprising). Realignment under MUSE re-
sulted in higher cosine similarity scores as well as
words that were denotatively and/or connotatively
similar to the word “revolution."

C.2 At varying lexicons sizes

For each proxy language, we examine words that
have the highest cosine similarity score with the
English word “revolution" across multiple vocab-
ulary sizes. When aligned with small vocabulary
sizes, Mandarin embedding spaces output words
that are in a different language (see Table 12). At
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smaller vocabulary sizes (≤ 200 words), words that
are deemed most similar appear to be tangential to
the concept of revolution. Certain terms such as
“loyalisten" (German: “loyalists") and “japonlar"
(Turkish: “Japanese") reflect potential bias (see Ta-
ble 9 and 10). As vocabulary sizes grow, so do
cosine similarity scores (see Tables 9, 10, 11, 12).
Even at larger vocabulary sizes, many terms with a
high cosine similarity score are ones that reflect a
positive and/or negative connotation of revolution,
such as “diktaturen" (German: “dictatorships") and
“vatansever" (Turkish: “patriotism") (see Tables 9
and 10).

D Cleaning XED

XED is a multilabel classification dataset, annotat-
ing samples with labels such as anger, disgust, and
anticipation. To convert the dataset into one for
binary classification, we labeled samples as posi-
tive or negative based on specific rules, resulting
in the positive-negative label distribution shown in
Table 13.

• A sample is positive if it contains only pos-
itive labels (i.e. “anticipation", “joy", and
“trust"). Samples that combined positive la-
bels with a neutral label (i.e. “surprise") were
still considered positive.

• A sample is negative if it contains only neg-
ative labels (i.e. “anger", “disgust", “fear",
“sadness"). Samples that combined negative
labels with a neutral label (i.e. “surprise")
were also considered negative.

E Impacts of hyperparameter finetuning

Due to resource constraints and the computational
load of the sentiment classifier, exhaustively ex-
ploring the hyperparameter space was intractable.
We focused our efforts on tuning the number of
neurons in the hidden layer as the low F1 scores
in predicting certain labels indicate that the model
was underfitting and potentially lacked sufficient
complexity to effectively handle the sentiment anal-
ysis of sentences (see Table 2). Setting the dropout
rate to 0.2,we fail to identify an optimal hidden
layer neuron count as the model consistently pre-
dicts positive labels well at the expense of negative
labels. This relationship is occasionally reversed:
the model consistently predicts negative labels well
at the expense of positive labels. Results are shown
in Figure 6, Figure 7, Figure 8, and Figure 9.

F Distribution of Semantic Textual
Similarity Scores

It is apparent that the distributions of the predicted
cosine similarity scores do not mirror that of the
actual cosine similarity scores (see Figure 10 and
11). Except for Mandarin, proxy languages show a
left-skewed distribution in cosine similarity scores
(see Figure 10 and 11). A higher cosine similarity
score indicates greater similarity between sentences
(Muennighoff et al., 2023), suggesting that the sen-
tence embedding space is more likely to classify a
pair of sentences as similar rather than dissimilar.

We normalized the actual similarity scores in
Figure 10 and Figure 11 to allow for better compar-
ison.

G Documentation Available in
Low-Resource Languages

Table 14 indicates the number of word translation
pairs available in PanLex (Kamholz et al., 2014).
PanLex is a database that provides over 1.1 bil-
lion pairwise translations in about 9,000 language
varieties, including 1,603 UNESCO-classified en-
dangered and vulnerable languages. Using the
methodology described in the paper, endangered
languages in general do not possess 25,000 entries,
the amount of data required to see a plateau in
embedding performance. Notably, sentence em-
bedding spaces experienced the greatest increase
in performance when the vocabulary size was less
than 1000, the average number of translations in
a translation lexicon for an endangered language
(see Table 14 and Figure 12).

H Comparison of proxy language
sentence embedding spaces against
MTEB models

Except for Mandarin, our best-performing sentence
embedding spaces perform as well as the average
model on the MTEB leaderboard (see Table 15).
How to further improve these sentence embeddings
is a matter of future research.
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Language Training and Finetuning Process Spearman Correlation

German translation dictionary, MUSE alignment 0.371
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.376

Turkish translation dictionary, MUSE alignment 0.488
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.517

Arabic translation dictionary, MUSE alignment 0.516
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.503

Table 4: Fine-tuning the word embedding space on Wikipedia articles resulted in marginal gains in performance for
the German, Turkish, Arabic test group.

Language Training and Finetuning Process Spearman Correlation

German translation dictionary, MUSE alignment 0.333
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.363

Turkish translation dictionary, MUSE alignment 0.466
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.493

Mandarin translation dictionary, MUSE alignment -0.046
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.074

Table 5: Fine-tuning the word embedding space on Wikipedia articles resulted in marginal gains in performance for
the German, Turkish, Mandarin test group.

Pre-MUSE Post-MUSE

Word Translation Cosine Similarity Word Translation Cosine Similarity

muros not German 0.1897 rebellion rebellion 0.5144
mox not German 0.1897 aufstand revolt 0.5144

franken franc 0.1910 radikalisierung radicalization 0.5150
koadjutor coadjutor 0.1917 aufstände riots 0.5311

latein Latin 0.1918 umwälzungen upheavals 0.5371
palgrave not German 0.1980 revolutionären revolutionary 0.6200

neb not German 0.1997 konterrevolution counterrevolution 0.6209
emeritierung emeritus 0.2100 revolutionäre revolutionary 0.6590
emeritierter emeritus 0.2100 revolutionär revolutionary 0.6865

avalos not German 0.2181 revolutionen revolutions 0.6948

Table 6: German translations and cosine similarity scores of “revolution" before and after MUSE alignment. Quality
of translation significantly improves following MUSE alignment.

Pre-MUSE Post-MUSE

Word Translation Cosine Similarity Word Translation Cosine Similarity

bem not Turkish 0.1850 revolutionibus not Turkish 0.5010
galiçya galicia 0.1863 diktatörlük dictatorship 0.5081
gravis gravis 0.1888 sosyalizm socialism 0.5123
prism not Turkish 0.1891 isyan revel 0.5161
lennox not Turkish 0.1905 ayaklanması uprising 0.5161

gsc not Turkish 0.1906 ayaklanmalar riots 0.5292
frangı franc 0.1917 devrimler revolutions 0.5391
latin not Turkish 0.1970 devrim revolution 0.6237

palgrave not Turkish 0.1980 devrimciler revolutionaries 0.6611
neb not Turkish 0.1997 devrimci revolutionary 0.6611

Table 7: Turkish translations and cosine similarity scores of “revolution" before and after MUSE alignment. Quality
of translation significantly improves following MUSE alignment.

216



Pre-MUSE Post-MUSE

Word Translation Cosine Similarity Word Translation Cosine Similarity

回憶 recall 0.1800 推翻 overthrow 0.4902
大主教 archbishop 0.1803 愛國者 patriot 0.4991
退休 retire 0.1841 獨裁 dictatorship 0.5079
稜鏡 not a phrase 0.1891 專政 dictatorship 0.5079

pluribus not Mondarin 0.1893 獨裁政權 dictatorship 0.5079
gsc not Mandarin 0.1906 社會主義 socialism 0.5109
mox not Mandarin 0.1910 起義 uprising 0.5115
拉丁文 Latin 0.1970 保皇黨 royalist 0.5148
教育 educate 0.1979 革命性 revolutionary 0.6875

palgrave not Mandarin 0.1970 革命 revolution 0.6928

Table 8: Mandarin translations and cosine similarity scores of “revolution" before and after MUSE alignment.
Quality of translation significantly improves following MUSE alignment.

Figure 6: We evaluate the F1 scores of the German sentiment classifier on positive and negative labels across
varying amounts of hidden layer neurons. The German classifier from the German, Turkish, and Mandarin test group
(abbreviated as de_tr_zh) is depicted alongside that from the German, Turkish, and Arabic test group (abbreviated
as de_tr_ar). Increasing the number of neurons causes a tradeoff in positive and negative label performance as
shown in the de_tr_zh group. Moreover, increasing the number of neurons does not prevent the model from
overfitting to positive labels or underfitting to negative labels as shown in the de_tr_ar group.

Figure 7: We evaluate the F1 scores of the Turkish sentiment classifier on positive and negative labels across
varying amounts of hidden layer neurons. The Turkish classifier from the German, Turkish, and Mandarin test group
(abbreviated as de_tr_zh) is depicted alongside that from the German, Turkish, and Arabic test group (abbreviated
as de_tr_ar). In de_tr_zh, increasing the number of neurons does not prevent the Turkish sentiment classifier
model from overfitting to positive labels and underfitting to negative labels. This is reversed in de_tr_ar; the
Turkish model overfits to negative labels and underfits to positive labels.
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Figure 8: We evaluate the F1 scores of the Mandarin sentiment classifier on positive and negative labels across
varying amounts of hidden layer neurons. Increasing the number of hidden neurons causes a tradeoff in positive and
negative label performance.

Figure 9: We evaluate the F1 scores of the Arabic sentiment classifier on positive and negative labels across varying
amounts of hidden layer neurons. Increasing the number of hidden neurons seemingly causes a convergence in
performance but the classifier’s ability to correctly positive labels is sacrificed to correctly predict negative labels.
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German Turkish Arabic

(a) Actual Cosine Similarity Distri-
bution

(b) Actual Cosine Similarity Distri-
bution

(c) Actual Cosine Similarity Distri-
bution

(d) Vocabulary size of 185 (e) Vocabulary size of 113 (f) Vocabulary size of 76

(g) Vocabulary size of 11,861 (h) Vocabulary size of 7,251 (i) Vocabulary size of 9,982

(j) Vocabulary size of 23,721 (k) Vocabulary size of 14,503 (l) Vocabulary size of 19,364

Figure 10: Distribution of cosine similarity scores across the MTEB evaluation German, Turkish, and
Arabic datasets. As the vocabulary size increases, the distribution becomes more left-skewed.
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German Turkish Mandarin

(a) Actual Cosine Similarity Distri-
bution

(b) Actual Cosine Similarity Distri-
bution

(c) Actual Cosine Similarity Distri-
bution

(d) Vocabulary size of 185 (e) Vocabulary size of 113 (f) Vocabulary size of 137

(g) Vocabulary size of 11,861 (h) Vocabulary size of 7,251 (i) Vocabulary size of 4,398

(j) Vocabulary size of 23,721 (k) Vocabulary size of 14,503 (l) Vocabulary size of 17,592

Figure 11: Distribution of cosine similarity scores for the MTEB evaluation German, Turkish, and Mandarin
datasets. As the vocabulary size increases, the distribution becomes more left-skewed with the exception
of Mandarin.
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Figure 12: Distribution of PanLex translations for UNESCO-classified vulnerable and endangered languages. Most
endangered languages have fewer than 20,000 translations.
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Vocabulary size of 185

Word Translation Cosine Similarity

verbiete ban 0.2925
übergelaufen defected 0.2986
stilllegung decommissioning 0.3058

ausgleichszahlung compensation 0.3131
besprechung meeting 0.3206

überschreitung exceedance 0.3213
allgemeinen general 0.3235

passiert happened 0.3322
loyalisten loyalists 0.3407

umgestaltung refactor 0.3612

Vocabulary size of 11,861

Word Translation Cosine Similarity

demokratisierung democratization 0.5395
zusammenbrechen collapse 0.5429

absolutistischen absolutist 0.5475
radikaler more radical 0.5542

unterdrückt suppressed 0.5601
unterdrückten suppressed 0.5601
bevorstehende upcoming 0.5727

feindschaft enmity 0.5752
feindseligkeit hostility 0.5752
revolutionären revolutionary 0.6664

Vocabulary size of 23,721

Word Translation Cosine Similarity

radikaler more radical 0.5549
diktaturen dictatorships 0.5596

unterdrückt suppressed 0.5600
unterdrückten suppressed 0.5600
feindseligkeit suppressed 0.5740
feindschaft enmity 0.5740

bevorstehende upcoming 0.5748
unterdrückung suppression 0.5854
verdrängung displacement 0.5854

revolutionären revolutionary 0.6645

Table 9: German translations and cosine similarity
scores of “revolution" across varying dictionary sizes.
Increasing the vocabulary size results in German trans-
lations that are semantically closer to “revolution."

Vocabulary size of 227

Word Translation Cosine Similarity

ihtiyaç need 0.3368
bazı some 0.3381

japonlar japanese 0.3422
saldırılar attacks 0.3428
izdiham confluence 0.3490
éluard eluard 0.3596

hükümdarlık reign 0.4241
danton danton 0.4517
başla start 0.4888

hürriyet freedom 0.4929

Vocabulary size of 7,251

Word Translation Cosine Similarity

muhalefet opposition 0.5261
başarısızlık failure 0.5275
üstünlüğü superiority 0.5285

katılım attendance 0.5317
getirildi brought 0.5326
çöküş collapse 0.5415
diriliş resurrection 0.5435

düşmanlık hostility 0.5734
vatansever patriot 0.5926

devrim revolution 0.6694

Vocabulary size of 14,503

Word Translation Cosine Similarity
katılım participation 0.5319
getirildi brought 0.5321
çöküş collapse 0.5416
diriliş resurrection 0.5445

kapitalist capitalist 0.5531
düşmanlık hostility 0.5727
vatansever patriotic 0.5913

vatanseverlik patriotism 0.5933
devrim revolution 0.6684

devrimci revolutionary 0.6794

Table 10: Turkish translations and cosine similarity
scores of “revolution" across varying dictionary sizes.
Increasing the vocabulary size results in Turkish transla-
tions that are semantically closer to “revolution."
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Vocabulary size of 76

Word Translation Cosine Similarity

PAJ. 	k@ need 0.2582

Z @ñk. @ atmosphere 0.2637

Z @Y«@ enemies 0.2711
�IÒ��. silently 0.2897
�éËC�Ë@ strain 0.2949
��
K@QmÌ'@ fires 0.3211

ú

	GA¢�
QK. British 0.3326
�éJ
«Qå��Ë @ legitimacy 0.3915

©
KA 	¢ 	®Ë @ atrocities 0.4016

XA�®�J«B@ belief 0.4858

Vocabulary size of 9,982

Word Translation Cosine Similarity

ZAî 	E @ end 0.5261
	áÓ 	P time 0.5275
	àAÓ 	QË @ time 0.5285
�I�̄ð time 0.5317

¡ 	j�Ë@ discontent 0.5326

É�̄C�®Ë@ unrest 0.5415
�HAK
Pñ�KA�JºK
YË@ dictatorships 0.5435

É �� 	̄ failure 0.5734

É 	gY�JË @ interference 0.5926
�éK
Pñ�KA�J»YË@ dictatorship 0.6694

Vocabulary size of 19,364

Word Translation Cosine Similarity

�HAK
Pñ�KA�JºK
YË@ dictatorships 0.5262

É �� 	̄ failure 0.5262

Y
KA� prevalent 0.5269

É 	gY�JË @ interference 0.5351
�éK
Pñ�KA�J»YË@ dictatorship 0.5614

�é
J ��A 	K emerging 0.5748

Z @YªË@ hostility 0.5753
�ékA£B@ overthrow 0.5833

©Ò�®Ë@ suppression 0.5863
�H@Pñ�JË @ revolutions 0.6672

Table 10: Arabic translations and cosine similarity
scores of “revolution" across varying dictionary sizes

itive labels (i.e. “anticipation", “joy", and456

“trust"). Samples that combined positive la-457

bels with a neutral label (i.e. “surprise") were458

still considered positive.459

Vocabulary size of 137

Word Translation Cosine Similarity

北京 Beijing 0.2427
錯位 dislocation 0.243
動態 dynamic 0.2463
革新 innovation 0.2473

amraam not Chinese 0.2626
稅 tax 0.2632
最多 maximum 0.2772
協作 collaboration 0.2779
永久 permanent 0.3895
然後 then 0.3965

Vocabulary size of 4,398

Word Translation Cosine Similarity

束縛 binding 0.5042
奴隸制 slavery 0.5042
抵制 boycott 0.507
演示 demo 0.5194
時間 time 0.5197
反對派 opposition 0.524
混沌 chaos 0.5241
復蘇 recovery 0.5467
動蕩 turmoil 0.5567
敵意 hostility 0.5769

Vocabulary size of 17,592

Word Translation Cosine Similarity

動亂 unrest 0.5526
獨裁政權 dictatorship 0.5629
受壓迫 oppressed 0.5636
敵意 hostility 0.5765
推翻 overturn 0.5807
愛國主義 patriotism 0.5874
抑制 inhibition 0.5884
政權 regime 0.5952
保皇黨 loyalist 0.6204
革命性 revolutionary 0.7352

Table 11: Mandarin translations and cosine similarity
scores of “revolution" across varying dictionary sizes

• A sample is negative if it contains only neg- 460

ative labels (i.e. “anger", “disgust", “fear", 461

“sadness"). Samples that combined negative 462

labels with a neutral label (i.e. “surprise") 463

were also considered negative. 464

E Distribution of Semantic Textual 465

Similarity Scores 466

We normalized the actual similarity scores in Fig- 467

ures Figure 3 and Figure 4 to allow for better com- 468

9

Table 11: Arabic translations and cosine similarity
scores of “revolution" across varying dictionary sizes.
Increasing the vocabulary size results in Arabic transla-
tions that are semantically closer to “revolution."

Vocabulary size of 137

Word Translation Cosine Similarity

北京 Beijing 0.2427
錯位 dislocation 0.2430
動態 dynamic 0.2463
革新 innovation 0.2473

amraam not Chinese 0.2626
稅 tax 0.2632
最多 maximum 0.2772
協作 collaboration 0.2779
永久 permanent 0.3895
然後 then 0.3965

Vocabulary size of 4,398

Word Translation Cosine Similarity

束縛 binding 0.5042
奴隸制 slavery 0.5042
抵制 boycott 0.5070
演示 demo 0.5194
時間 time 0.5197
反對派 opposition 0.5240
混沌 chaos 0.5241
復蘇 recovery 0.5467
動蕩 turmoil 0.5567
敵意 hostility 0.5769

Vocabulary size of 17,592

Word Translation Cosine Similarity

動亂 unrest 0.5526
獨裁政權 dictatorship 0.5629
受壓迫 oppressed 0.5636
敵意 hostility 0.5765
推翻 overturn 0.5807
愛國主義 patriotism 0.5874
抑制 inhibition 0.5884
政權 regime 0.5952
保皇黨 loyalist 0.6204
革命性 revolutionary 0.7352

Table 12: Mandarin translations and cosine similarity
scores of “revolution" across varying dictionary sizes.
Increasing the vocabulary size results in Mandarin trans-
lations that are semantically closer to “revolution."

Language Positive Samples Negative Samples

Arabic 1269 1735
German 2051 2614
Turkish 3570 4552

Mandarin 587 608

Table 13: Number of positive and negative samples
in processed XED data. Ratio of positive to negative
samples is 1:1.
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Degree of endangerment Average Standard deviation

Vulnerable 1205.34 8063.48
Definitely endangered 1094.03 5183.69
Severely endangered 541.77 3359.48
Critically endangered 315.94 1542.20

Extinct 251.69 969.93

Table 14: The average number of translations found for UNESCO-classified vulnerable and endangered languages
in PanLex. Existing documentation for endangered languages is generally low. The high standard deviation may be
attributed to outliers (e.g. certain vulnerable languages may contain significantly more documentation than others in
the category) as shown in Figure 12.

German Turkish Arabic Mandarin
best-performing sentence embedding 0.371 0.488 0.516 0.046

average MTEB score 0.391 0.466 0.439 0.588
minimum MTEB score 0.082 0.038 0.052 0.048

25th percentile MTEB score 0.266 0.370 0.304 0.600
50th percentile MTEB score 0.418 0.473 0.524 0.654
75th percentile MTEB score 0.506 0.582 0.571 0.668

maximum MTEB score 0.609 0.688 0.598 0.749

Table 15: Comparison of our models’ Spearman correlation scores to MTEB models’. Data compiled from
Muennighoff et al. (2023). Our models perform average (with the exception of Mandarin) compared to models in
this leaderboard.
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Abstract

A two-part affine approximation has been
found to be a good approximation for trans-
former computations over certain subject-
object relations. Adapting the Bigger Analogy
Test Set, we show that the linear transforma-
tion W s, where s is a middle layer representa-
tion of a subject token and W is derived from
model derivatives, is also able to accurately re-
produce final object states for many relations.
This linear technique is able to achieve 90%
faithfulness on morphological relations, and
we show similar findings multi-lingually and
across models. Our findings indicate that some
conceptual relationships in language models,
such as morphology, are readily interpretable
from latent space, and are sparsely encoded by
cross-layer linear transformations.

1 Introduction

Large language models display impressive capabil-
ities for factual recall, which commonly involve
relations between entities (Brown et al. 2020). Re-
cent work has shown that affine transformations on
subject representations can faithfully approximate
model outputs for certain subject-object relations
(Hernandez et al. 2023). Identifying transformer
approximators is an important area of study, with
applications in model training and editing.

The contributions of this paper are twofold. We
reproduce and extend existing research. Specifi-
cally, we apply affine Linear Relational Embed-
ding (LRE) method to novel diverse relational cate-
gories, including derivational and inflectional mor-
phology, encyclopedic knowledge, and lexical se-
mantics. By doing so, we confirm the efficacy of
the affine technique. We show that relational ap-
proximation can be applied to adapted analogical
datasets, and demonstrate relational approximation
for a broad range of linguistic phenomena.

At the same time, this work makes a key contri-
bution to research on relational representation in

model latents. We show that for different relations,
additive and multiplicative mechanisms play com-
plementary roles in affine approximation. We find
that an analogue to the original linear relational
embedding developed by Paccanaro and Hinton
(2001), using a single multiplicative operator, is
effective within specific relations. In particular,
linear approximation within contexts relating mor-
phological forms reaches near-equivalent level of
faithfulness to the affine LRE. We test faithfulness
over eight different languages and find that this
equivalence holds cross-typologically.

2 Related Work

Much work in machine learning has focused on
learning concept representations with hierarchical
structure. Relations between representations in
concept spaces have been modeled successfully by
both linear multiplicative and additive operations.

Multiplicative. Paccanaro and Hinton (2001)
introduced the concept of the linear relational
embedding for learning relational knowledge from
triples (a, R, b). Concepts such as a and b are
represented as n-length vectors, while relations
such as R are represented as n × n matrices,
akin to distributional models of compositional
semantics proposed by Coecke et al. (2010).

Additive. Mikolov et al. (2013) used linear
operations in word vector space derived from
context-predictive neural nets, demonstrating
a correspondence between directional binary
relations (e.g. male-female, country-capital, verb
tense) and the addition of embedding vectors.
Later work found inflectional relations were better
captured than derivational ones, and encyclopedic
relations better than lexicographic ones. (Gladkova
et al. 2016; Vylomova et al. 2016).
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Figure 1: As seen in (a), transformers resolve subject-object relations in a highly nonlinear fashion. As seen in (b),
both affine and linear approximators of the subject-object map Fr(s) are demonstrated to be highly effective over
relations such as morphology.

3 Background

3.1 Transformer Computation

In auto-regressive transformer language models,
input text is converted to a sequence of tokens
t1 . . . tn, which are subsequently embedded as
x1 . . . xn ∈ Rd by an embedding matrix. They
are then passed through L transformer layers, each
composed of a self-attention layer and an multi-
layer perceptron (MLP) layer. In GPT-J, the repre-
sentation xli of the ith token at layer l is obtained
as:

xli = xl−1
i + ali +ml

i

where ali is multi-headed Key-Value Query atten-
tion over xl−1(Vaswani et al. 2017) and ml

i is the
ith output of the lth MLP sublayer. In this case, the
output of the l-th MLP sublayer for the i-th repre-
sentation depends on xl−1

i , rather than ali + xl−1
i

(Wang and Komatsuzaki 2021). The final predic-
tion tn+1 is then determined by the final hidden
state xn passed through a decoder head D, which
consists of a linear layer and softmax to a token
vocabulary: tn+1 = argmax

t
D(xLn)t.

3.2 Relational Representation

Throughout this paper, we will focus on the subject-
object relationship as expressed through a single
fixed context. Following prior work (Meng et al.
2022b; Geva et al. 2023) that the last token state
of a subject in middle layers are strongly casual on
predictions (e.g. "Needle" in "The Space Needle"),
we are interested in utilizing the gradient between
the last token position of the subject s at an inter-
mediate layer, and the object prediction state o.

4 Approach

4.1 Problem Statement

We first consider what it means for a context to
express a relation. Many statements can be ex-
pressed in terms of a subject, relation, and object
(s,r,o). For instance, the statement Miles Davis
plays the trumpet expresses a relation Fr, con-
necting the subject s (Miles Davis) to the object o
(trumpet): Fr(s) = o. We can then relate new sub-
jects to objects: Fr(Jimi Hendrix) = guitar and
Fr(Elton John) = piano. Fr is an inductive mech-
anism, from which statements relating subject and
object pairs can be obtained. We are interested in
how a language model implements this abstraction.
Affine LRE. As a starting point, we look at the
affine linear relational embedding (LRE) method
developed by Hernandez et al. (2023). The au-
thors are able to approximate the transformer’s
relational function Fr(s) with the affine approx-
imator LRE(s), such that when applied to novel
subjects, they reproduce LM object predictions.

The object retrieval function from a subject with
a fixed relational context, o = Fr(s), is modeled to
be a first-order Taylor approximation of Fr about a
number of subjects s1 . . . sn. For i = 1 . . . n:

Fr(s) ≈ Fr(si) +Wr(s− si)

= F (si) +Wrs−Wrsi

= Wrs+ br,

where br = Fr(si)−Wrsi

In a relational context, a model may rely heavily
on a singular subject state to produce the object
state. Accordingly, the Jacobian matrix of deriva-
tives between vector representations of the subject
and object is hypothesized to serve as Wr. For a
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Figure 2: In (a), we first assemble approximators from trained model Jacobians between middle-layer subject states
and the final-layer object state. Then, in (b), we evaluate approximated tokens against transformer computations.

fixed relation, they calculate the mean Jacobian and
bias between n enriched subject states s1 . . . sn and
outputs Fr(s1) . . . Fr(sn):

Wr = Esi

[
∂Fr

∂s

∣∣∣∣
si

]
(d× d matrix)

br = Esi

[
Fr(s)−

∂Fr

∂s
s
∣∣∣∣
si

]
(d vector)

This yields a relational approximator capable of
transforming a jth layer subject state xjs = s 1 into
the final object hidden state xLo = o 2:

o ≈ LRE(s) = βWrs + br

For instance, s may be the hidden state of the 7th

layer at the subject token, and o the hidden state
of the 26th (last) layer at the object token, e.g. the
next-token prediction state.
True Linear Encoding. The affine LRE diverges
from the linear relational embedding introduced by
Hinton (1986), in introducing a bias br and scal-
ing term β. While linearity is assumed in Hernan-
dez et al. (2023) by calculating Wr and br from

1Following Meng et al. (2022a), both this paper and the
affine LRE focus primarily on middle-layer states.

2Note the introduction of a β scaling parameter. The au-
thors claim the affine LRE is limited by layer normalization:
the s representation is normalized before contributing to o,
and o is normalized before token prediction by the LM head,
resulting in a mismatch in the scale of the output approxima-
tion. We find that this conclusion is supported by empirical
evidence from linear projections.

Esi over i = 1 . . . n, using a Taylor approxima-
tion makes a weaker assumption, simply that the
subject-object relation Fr is differentiable. With
linearity, we would expect the following:

o ≈ F ′
r(si)s

= Wrs

In this case, the linear approximation over s1 . . . sn
within the same relation would be the mean Jaco-
bian. If this approximation generalizes to unseen
objects, it would indicate the presence of a linear
subject-object map.

4.2 Introducing New Relations

Analogy is traditionally seen as a special case
of role-based relational reasoning (Sternberg and
Rifkin 1979, Gentner 1983, Holyoak 2012), moti-
vating the adaptation of analogical pairs to a rela-
tional setting. We choose to adapt the Bigger Anal-
ogy Test Set (BATS), originally introduced to ex-
plore linguistic regularities in word embeddings by
Gladkova et al. (2016). The dataset comprises forty
different categories, each with fifty pairs of words
sharing a common relation. The categories span
inflectional morphology, derivational morphology,
encyclopedic knowledge, and lexical semantics.

4.3 Utilizing ICL

As seen in Figure 2, we adapt the relational pairs
in BATS by introducing prompts which are com-
patible with each instance of the analogy.
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Figure 3: Comparing affine & linear LREs on GPT-J reveals many morphological relations are linearly approximable.
With the exception of prefix and active form subjects, semantic and encyclopedic relations benefit more from the
affine LRE than morphology. For subject layers 3-9, the best performing approximation is averaged (n = 4).

Following the procedure outlined in Hernandez
(2023), we employ 8 in-context learning (ICL) ex-
amples for 8 different subject-object prompts for
each relation. This allows us to obtain a Jacobian
from the model computation which is most likely
to exhibit the desired linear encoding.

We omit the subject-object pairs used in con-
struction from the testing pool. We further restrict
evaluation to the pairs for which the LM computa-
tion is successful in reproducing the object. 3

4.4 Evaluating Operators

After passing through the activation function in the
decoder, the approximated object tokens should
faithfully replicate the true LM output.

Affine LRE. The original affine LRE is a
two-step approximation involving both a weight
term Wr and bias term br, which are applied to the
subject state s to produce an approximated output
state: õ = LRE(s) = βWrs + br

Linear LRE. Our variants isolate the com-
ponents of the LRE in order to inspect their
contribution to the approximation. First, we define
the linear LRE, a multiplicative operation. This is
the subject hidden state s multiplied by the mean
Jacobian for other subject-object pairs to derive a

3For both GPT-J and Llama-7b, nearly all examples fit this
criteria.

final object state: õ = Linear(s) = Wrs

Bias. Second, we define the Bias approxi-
mator, an additive operation. This approximator
calculates õ by adding br, the mean difference
between Wrs and o for other subject-object pairs,
to s: õ = Bias(s) = s + br

Following Hernandez et al. (2023), we de-
fine faithfulness of an approximator by the top-one
token match rate. For token t and decoder head
D, we say an approximator is faithful if the top
token approximation matches that of the LM:
argmax

t
D(o)t

?
= argmax

t
D(õ)t

5 Results

5.1 The Linear LRE Faithfully Approximates
Relations across Morphology

We first evaluate relational approximators for the
GPT-J model (Wang and Komatsuzaki 2021). We
build approximators for likely subject hidden states
(layers 3-9) and the final object state (layer 27)
through the process outlined above. We then evalu-
ate the approximators four times for each relation,
and average the best cross-layer approximation.4 5

4There were two relations which were not tested on,
[adj+comparative] and [antonyms-gradable]. This was due
to preprocessing issues.

5For the LRE, we use β = 7, which was found to be
optimal for BATS.
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Figure 4: Evaluating languages present in Llama-7b reveal cross-typological linear encoding of morphology. Linear
and affine LREs respectively score 56% and 68% on [plural] across German, French, Hungarian, and Portuguese.
In contrast, on [things - color] relation the linear and affine techniques respectively score 19% and 70%. The Bias
approximator scores 45%, suggesting the affine approximation for [things - color] is primarily additive.

As seen in Figure 3, the linear LRE achieves 90%
faithfulness across 14 morphology relations, while
the affine LRE achieves a faithfulness of 95%. In
contrast, the linear LRE achieves 40% faithfulness
over non-morphological relations, while the affine
LRE achieves 61% faithfulness. This confirms the
efficacy of the affine LRE found by Hernandez et al.
(2023), while suggesting that some relations, e.g.
morphology, may be encoded as truly linear.

To show that the Jacobian is not only sufficient
but also necessary, in Appendix Figure 5 and Ap-
pendix Figure 6 we compare the LREs against two
additive approximations, Bias and TRANSLA-
TION. TRANSLATION adds the mean difference
between the subject and object states to each sub-
ject state. In both cases, we find that an additive
operator is unable to reproduce morphology.

5.2 Llama-7b Results

GPT-J utilizes parallel MLP and attention layers,
unlike many other language models. Consequently,
it is possible the observed linearity does not gen-
eralize to different architectures. We repeat the
procedure for Llama-7b, which like most LLMs
utilizes sequential attention and feedforward layers
(Touvron et al. 2023). In the Appendix Figure 7,
we display similar results to Figure 3; suggesting
similar encoding mechanisms exist across models.

5.3 Cross-Linguistic Evidence
We have shown that morphological relations in
English are largely linearly decodable. However,
these results may be limited to fusional-analytic
languages with fewer unique affixes. For Llama-7b,
we test Czech, French, German, Hungarian, Por-
tuguese, Serbian, Swedish, and Turkish, each com-
prising significant portions of the training dataset.
Hungarian and Turkish are both highly agglutina-
tive. We create templates for one morphological
([plural]) and non-morphological relation ([things
- color]). We evaluate approximators as above.

As seen in Figure 4, affine and linear approxi-
mators achieve similar results on [plural], while
the additive operation performs well on [things -
color]. These results indicate a multiplicative lin-
ear relational embedding for certain morphological
relations, independent of linguistic typology. The
high performance of the additive Bias operator on
[things - color] provides evidence for complemen-
tary additive and multiplicative mechanisms.

6 Conclusion

In this work, we have adapted a large relational
dataset for testing transformer approximation. We
formulate the transformer version of the linear re-
lational embedding found in Paccanaro and Hin-
ton (2001) more precisely to be equivalent to a
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matrix-vector multiplication with the mean Jaco-
bian. Surprisingly, we find this linear operation is
able to model certain relations such as morphology
nearly as well as the affine LRE. This suggests that
certain conceptual relations surface linearly in the
residual space of language models, and are sparsely
encoded multiplicatively as opposed to additively.

7 Limitations

Our experiments were conducted exclusively on
GPT-J and Llama-7b due to hardware constraints,
which limited the scope of our evaluations. How-
ever, smaller models serve as a likely proxy for
studying the interpretability of transformer-based
language models due to identical architectures.

Throughout the work, we assume linear trans-
formations observed are employed in token pre-
diction through the same mechanism as in explicit
relational contexts. Existing literature in activa-
tion patching and editing indicates that subject en-
richment occurs independently from surrounding
contexts (Geva et al. 2021), indicating that the rela-
tional embedding outlined here is consistent.

Unlike previous investigations of linear approxi-
mation, we did not investigate whether the faithful-
ness of the Jacobian approximation is associated
with causality. Based on prior work which finds
a consistent relationship between these variables
(Hernandez et al. 2023), these two measures appear
correlated.
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A Reproducibility Statement

The approximation code is based on the LRE repos-
itory (Hernandez et al. 2023), and loads GPT-J and
Llama-7b in half-precision. The code and dataset
are available at {link}. Experiments were run re-
motely on a workstation with 24GB NVIDIA RTX
3090 GPUs using HuggingFace Transformers.

B Evidence of non-stemmed forms

As seen in Table 1, the linear LRE successfully
replicates full forms for many derived object states.
In Table 3, we can see consistent preferences for
correct forms over stemmed forms on morpholog-
ical relations. All examples shown are for GPT-J.

C Bias Results demonstrate W necessity

A comparison of linear and affine approximators
against the bias approximator demonstrates that the
bias term br alone cannot explain the relational en-
coding but contributes alongside the Jacobian Wr.
This suggests that these operations play comple-
mentary roles in semantic and encyclopedic rela-
tions.

The TRANSLATION operator, inspired by
Merullo et al. (2023) and vector arithmetic, is also
additive and performs similarly to the Bias opera-
tor. Figure 6 demonstrates the additive TRANSLA-
TION approximator against both the affine and lin-
ear LRE. Like the bias approximator, the TRANS-
LATION approximator succeeds when the gap be-
tween the Jacobian and LRE is large. This suggests
that semantic information plays a crucial role in
bridging some subject-object relations.

D Linear Projection

We find that linear projection to R2 can yield in-
terpretable geometric representations. Specifically,
we use a basis of the bias vector b and a random
normalized vector, which has been orthogonalized
with Gram-Schmidt to b, and compare approxi-
mated transformations against true object states.
As seen in Figure 8, we find subspace distance cor-
responding heavily to faithfulness. Additionally,
we validate that the β hyperparameter is necessary
for recovering scale lost in layer normalization, as
conjectured by Hernandez et al. (2023).

We project approximations s, βW s, βW s + b ,
as well as a calculated hidden state for the correct
object output o. These projections suggest W is

Subject Jacobian Top-3
society societies, Soc, soc
child children, children, Children
success successes, success, Success
series series, Series, Series
woman women, women, Women
righteous righteousness, righteous, . . .
conscious consciousness, conscious, . . .
serious seriousness, serious, serious
happy happiness, happy, happy
mad madness, mad, being
invest investment, invest, investing
amuse amusement, amuse, amusing
accomplish accomplishment, accomplish, . . .
displace displacement, displ, dis
reimburse reimbursement, reimburse, reimb
globalize globalization, global, international
install installation, install, Installation
continue continuation, continu, contin
authorize authorization, Authorization, . . .
restore restoration, restitution, re
manage manager, managers, manager
teach teacher, teachers, teach
compose compos, composer, composing
borrow borrower, lender, debtor
announce announcer, announ, ann

Table 1: [noun_plural], [verb+er], [verb+ment],
[adj+ness], [verb+tion] Selected examples of full sub-
ject tokens demonstrate that the linear Jacobian approxi-
mation captures irregular morphology effectively, repro-
ducing both stemmed and full subject forms.

Relation # Unique
un+adj 7
over+adj 4
re+verb 15
name - nationality 13
animal - shelter 18
synonyms - intensity 35
verb+able 47
noun - plural 47

Table 2: The number of unique start tokens for correct
objects across selected BATS relations. Start tokens
which occur frequently among objects indicate a non-
injective subject-object map, making linear approxima-
tion a less suitable choice as an approximator.

Correct Stemmed Incorrect
42 0 0
23 11 9
7 35 6

Table 3: Correct, stemmed, and incorrect suffix counts
for [noun_plural], [verb+tion] and [adj+ness] from
the top prediction of a fixed layer Jacobian approxima-
tion further suggests consistent linear encoding beyond
stemmed forms.
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Figure 5: A comparison of the affine LRE against the Bias approximator demonstrates the necessity of the
multiplicative (Jacobian) operator. Across semantic and encyclopedic relations, the additive Bias operator exhibits far
better performance on morphology, providing evidence for complementary additive and multiplicative mechanisms.

Figure 6: The TRANSLATION approximator õ = Bias(s) = s+ br, with br = E(o− s), performs well on semantic
and encyclopedic relations, similar to the Bias approximator.
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primarily responsible for transforming the underly-
ing distribution to be geometrically similar to the
output, while b contributes the majority of move-
ment in vector space.
The term br could be compared to the vectors used
by Mikolov and many others, and the concept vec-
tor subsequently formalized by Park. However, the
bias vector and the concept vector are not truly anal-
ogous. The bias term describes an offset from the
transformed subject to the object: br = E(o−Wrs),
not br = E(o − s). In practice, we find that bias
and concept vectors are close in cosine similarity,
and likely serve similar roles.
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Figure 7: Llama-7b results support a generalization across models: many morphological relations are linearly
approximable, while semantic and encyclopedic relations benefit greatly from the affine method. Out of a range of
subject layers 4-16, the best performing approximation is averaged (n = 4).

Figure 8: Projected subspace distances for fifty approximated object states βW s+ br and true object states o
for [animal - youth]. The subspace used is {⊥, br}, where ⊥ is a randomly chosen orthogonal vector to br. The
faithfulness scores of each relation are displayed above. With β values of 1, 3, 5, and 7, the hyperparameter β is
shown to be crucial for faithful approximation in the affine LRE.
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Abstract

We introduce the SPY dataset: a novel syn-
thetic dataset designed for Personal Identifiable
Information (PII) detection, underscoring the
importance of safeguarding PII in modern data
processing. Our approach innovates by using
large language models (LLMs) to generate a
dataset that emulates real-world PII scenarios.
We evaluate the dataset’s quality and position
it as a reliable benchmark for PII detection..
Comparative analyses reveal that while PII de-
tection and Named Entity Recognition (NER)
share similarities, dedicated NER models ex-
hibit limitations when applied to PII-specific
contexts. This work contributes to the field by
making the generation methodology and the
generated dataset publicly accessible1, thereby
enabling further research and development in
this field.

1 Introduction

In the expanding digital realm, the accumulation
of personal data has reached unprecedented levels.
Details encompassing our search queries, online ac-
tivity, social connections, health records, and more
are gathered and disseminated among advertisers,
researchers, and government bodies, giving rise
to complex privacy concerns about keeping per-
sonal information safe. What entities qualify as
personally identifiable information? For example,
a Social Security Number (SSN) is undoubtedly
considered PII, but is a person’s name considered
PII? Narayanan and Shmatikov (2010) argues that
PII is surprisingly difficult to define.

Historically, NER techniques have been em-
ployed for PII detection. However, when security
is a primary concern, PII entities constitute a sub-
set of NER entities. For instance, a person’s name
on a credit card is clearly PII, and revealing this
information can indeed cause harm. Conversely,

† These authors contributed equally to this work.
1https://github.com/LogicZMaksimka/SPY_Dataset

PII vs NER

a)
Apple technical support for education customers:

1-800-800-2775.

Satya Nadella is CEO of Microsoft Corp.

b) Lucy Cechtelar lives at 426 Jordy Lodge Cartwrightshire, SC 88120-6700.

Table 1: Examples of a) NER entities; b) PII entities.
All examples of personal information provided are gen-
erated using the Faker library (Faraglia, 2014).

the name of the lead actress in the Titanic movie
would likely not cause any harm upon disclosure.
In this work, we define PII entities as those that
can be used to identify, contact, or locate a specific
individual and should not be disclosed to the public
due to security concerns. The distinction between
PII and NER entities is described in Table 1.

If PII detection and NER are distinct, it implies
that data-driven approaches for PII detection re-
quire their own specialized dataset. However, cre-
ating and sharing a dataset with actual PII entities
online is not feasible due to privacy concerns. Con-
sequently, there are two options: (1) use a dataset
that contains real PII entities and substitute them
with fake ones; (2) devise a methodology to gener-
ate a completely PII-focused dataset from scratch
and then replace the placeholders of PII with fake
entities generated by a tool such as Faker (Faraglia,
2014), see Section 3 for more details. The bene-
fit of the former approach is that it maintains the
data’s characteristics. The drawback is in ensuring
that all genuine PII entities have been accurately
replaced.

In our work, we opt for the second approach. We
used Faker to create artificial PII entities and Llama-
3-70B (AI@Meta, 2024) to generate text where
these fake entities could be seamlessly integrated.

The additional advantage of the fully generated
approach lies in having complete control over the
generation process. You can tailor it to your spe-
cific domain, including designated PII entities and
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their desired distribution or balance.
Our contributions can be summarized as follows.

• We present a methodology for developing
the SPY dataset and compare it to other
methodologies used for creating a synthetic
PII datasets. Our approach does not require
any external data and can be applied to any
knowledge domain.

• We open-source the SPY dataset containing
4,491 medical consultations and 4,197 ques-
tions in the legal domain, which is specifically
developed to highlight the contrast between
an average task of named entity recognition
and more fine-grained tasks of PII detection.

2 Related Work

Knowledge-based approaches for safeguarding PII
like regexp achieve fair accuracy in identifying
PII that have a strict and template-based format,
but fall short when applied to unstructured text.
This is where data-driven approaches, like Named
Entity Recognition (NER), come into play. NER
models offer greater flexibility in identifying PII
in various contexts, particularly when dealing with
unstructured data such as names or addresses, by
learning from labeled datasets containing examples
of PII instances (Johnson et al., 2020; Pilán et al.,
2022; Li et al., 2023).

Detecting PII requires identifying entities that
pose potential privacy risks, which may not always
align with conventional NER categories. Existing
PII detection tools and datasets often fail to distin-
guish between personal and non-personal entities
within the same entity type, essentially perform-
ing as traditional NER systems. For example, Mi-
crosoft’s Presidio (Microsoft, 2021), a popular tool
for PII detection, combines NER models with reg-
ular expressions and pattern matching. However,
this approach labels all entities of a given type (e.g.,
names) as PII, without differentiating between per-
sonal and non-personal entities. Similarly, NER-
PII (Mazzarino et al., 2023), a pseudonymization
tool for structured data, leverages Presidio and
BERT (Devlin et al., 2019) for PII detection, but
shares the same limitations.

One of the major challenges in PII detection is
the scarcity of publicly available datasets due to
privacy concerns. To address this, some approaches
replace personal data in real texts with synthetic
data, while others generate entirely synthetic texts.

Below are some of the more popular datasets for
PII detection:

The BigCode2 PII dataset was created by manu-
ally annotation of The stack (Kocetkov et al., 2023)
dataset. Specifically, it targets the identification of
PII in programming contexts, making it less suit-
able for broader text-based PII scenarios.

The AI4Privacy3 is a synthetic PII dataset cre-
ated using proprietary algorithms. It spans six lan-
guages and eight jurisdictions, with 63 PII classes,
making it one of the most comprehensive datasets
available. However, its proprietary nature limits
transparency, making it difficult to assess the rep-
resentativeness of the data or adapt it to specific
needs.

The Kaggle PII Detection Competition (Lang-
don et al., 2024) dataset contains around 22,000
student essays from a massive open online course.
Unlike other PII datasets mentioned earlier, this
one distinguishes between PII and non-PII entities,
aligning more closely with the goal of this research.
However, it has two significant limitations. First,
all essays are written in response to a single assign-
ment prompt, which limits the diversity of the data.
Second, only 30% of the dataset is publicly avail-
able for training, with the remaining 70% reserved
for testing, making it unsuitable for a comprehen-
sive evaluation (see Figure 2 for detailed statistics).
Although the dataset provides accurate PII anno-
tations for seven entity types, these limitations in
diversity and access make it less ideal for broader
applications and thorough evaluations.

2.1 Synthetic NER Generation

Although research on PII datasets is limited due to
privacy concerns, significant work has been done
on generating synthetic NER datasets that share a
similar format with PII data.

A notable approach is described by Tang et al.
(2023), where a small set of human-labeled exam-
ples is used to guide LLMs in generating diverse
synthetic datasets. This method encourages vari-
ability in sentence structures and linguistic patterns,
ensuring that the synthetic data are not overly repet-
itive or predictable. A post-processing step is then
employed to filter out low-quality or duplicate sam-
ples, ultimately improving the quality and diversity
of the data.

2https://hf.co/datasets/bigcode/
bigcode-pii-dataset

3https://hf.co/datasets/ai4privacy/
pii-masking-300k
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Step 1: Generate Domain-Specific Text
Up until this point, we’ve consulted with our in-house legal
team, who have advised us to document everything and prepare
for the worst-case scenario. However, I was wondering if
anyone with more experience in this area could offer some
guidance <...>

Step 2: Iteratively add new PII placeholders
Up until this point, we’ve consulted with our in-house legal
team, who have advised us to document everything and prepare
for the worst-case scenario. However, I was wondering if
anyone with more experience in this area could offer some
guidance <...>. I can be reached at <author_personal_email>
for any additional information or questions.

Step 3: Replace placeholders with synthetic entities
Up until this point, we’ve consulted with our in-house legal
team, who have advised us to document everything and prepare
for the worst-case scenario. However, I was wondering if
anyone with more experience in this area could offer some
guidance <...>. I can be reached at
some_address@example.com for any additional information or
questions.

Step 4: Add entities not related to the text author
Up until this point, I’ve consulted with our in-house legal
team at some_url.com, who have advised us to document
everything and prepare for the worst-case scenario.
However, I was wondering if anyone with more experience in
this area could offer some guidance <...>. I can be reached
at some_address@example.com for any additional information
or questions.

Figure 1: Multi-step prompting procedure. Red selec-
tion – author’s personal data (PII); blue selection – NER
entities not directly related to the text author. Prompts
used in Steps 1–4 are shown in Figures 6,8,9 and 10,
respectively.

Another promising technique involves automatic
data annotation, where synthetic data is used to
enrich an existing labeled dataset. Tools like
UniNER (Zhou et al., 2024) and NuNER (Bog-
danov et al., 2024) leverage GPT-3.5 to annotate
large text corpora, such as The Pile (Gao et al.,
2021) and C4 (Raffel et al., 2020). These models
are pretrained on these annotated corpora to cre-
ate versatile, general-purpose NER models, which
can then be fine-tuned with a smaller amount of
domain-specific data.

3 Data Construction

Although direct prompting of LLMs to annotate
text data has proven effective for datasets rich in
NER entities (Zhou et al., 2024; Bogdanov et al.,
2024; Zaratiana et al., 2024), this approach is less
effective in data-scarce environments. When only
a small fraction of the dataset contains PII entities,
LLM-based annotation becomes less efficient due

to several challenges: (1) only a small portion of
texts in the dataset will receive any annotations, (2)
certain entity types will be underrepresented, and
(3) the resulting annotations will be highly imbal-
anced across classes. For example, in the Kaggle
competition dataset (Langdon et al., 2024), only
24% of all essays contain any personal data, and
six of the seven entity types have fewer than 110
samples (see Figure 2), leading to class imbalance
and limited representation. To address those con-
straints, we generate texts that contain placeholders
for predetermined sets of personal entities. Then
we replace these placeholders with PII entities gen-
erated by Faker - an open-source python library
that generates realistic synthetic entities. It can pro-
duce a wide range of data types, including names,
addresses, emails, dates, and more, supporting mul-
tiple locales and customization.

We chose two domains: (1) legal – informal
questions in legal domain similar to r/LegalAd-
vice4 and (2) medical – forms completed by pa-
tients for online medical consultations. Specifi-
cally, we select the following PII entity types: name,
email, phone number, personal url, personal
identifier, username, and personal address.

3.1 Prompting Pipeline

When designing a methodology for generating texts
with personal data, it is important to clearly distin-
guish PII entities from other types of information.
Any details about the text’s author can be classified
as PII, while information that can be referenced
through links to web resources, papers, or articles
is considered publicly available. Based on this dis-
tinction, we chose to prompt the LLM to generate
only PII placeholders related to the text author. In
contrast, all non-PII entities are unrelated to the
author. These limitations helped ensure a clear
separation between personal and publicly available
information.

SPY prompting methodology was developed to
meet the following criteria: (1) incorporate domain-
specific details while naturally integrating PII en-
tities, (2) include both personal and non-personal
entities from predefined categories, and (3) main-
tain a clear distinction between personal and public
data. To achieve this, we implemented a multi-
stage prompting pipeline, as shown in Figure 1.

First, we used the Llama-3-70B model to gener-
ate texts in the law and medical domains, following

4https://www.reddit.com/r/legaladvice/
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the prompt in Figure 6. Back when we conducted
the main experiments, Llama-3-70B was one of the
best 70B models available for instruction following.
It performed well across the required data manipu-
lations from the prompt, handling the diverse task
requirements effectively. We did not opt for pro-
prietary models due to budget constraints, which
influenced our decision to use Llama-3-70B for this
project. We did not opt for proprietary models due
to budget constraints.

To enhance the diversity of the generated texts,
we included details about the person’s occupation
and personality, which expanded the range of top-
ics within each domain. The personalities were
generated using the prompt shown in Figure 7.

When incorporating the author’s personal in-
formation, we encountered difficulties embedding
multiple PII entities at once. To address this, we
adopted an iterative approach, prompting the model
to refine each version of the text, progressively
adding more entities as outlined in Figure 8. Al-
though iterative text updates can be performed us-
ing CoD prompts (Adams et al., 2023), we found
that Llama-3-70B struggled to apply multiple up-
dates in a single generation due to the length of the
initial texts. Furthermore, instead of directly insert-
ing PII, we used placeholders (<entity-type>)
during generation to minimize paraphrasing.

Before proceeding to the next stage, we replaced
all placeholders with the corresponding synthetic
entities to ensure consistency between the previ-
ously added PII and the new entities. The Faker
library (Faraglia, 2014) was used to generate a di-
verse set of personal synthetic entities, located in
six different countries.

After completion of this process, we obtained a
dataset with personal information exclusively tied
to the author of the text. In the final stage, we
introduce non-PII entities that are not related to the
author using the prompt in Figure 9.

4 Data Analysis

SPY’s flexible pipeline for synthetic PII data gen-
eration demonstrates several key advantages:
Even Distribution of PII Entities: The pipeline
ensures that PII entities are evenly distributed
throughout the generated texts. This even distri-
bution is visually represented in Figure 3 where the
entities’ positions are spread relatively uniformly
across the texts, avoiding clustering in any specific
section.

Entity Legal Questions Medical Consultations

pii 1 pii 2 final pii 1 pii 2 final

Name 0.58 1.06 (+0.48) 0.91 (+0.33) 0.69 1.12 (+0.43) 0.99 (+0.3)
Email 1.03 1.15 (+0.12) 0.86 (-0.17) 1.01 1.12 (+0.11) 0.93 (-0.08)
Username 0.91 1.14 (+0.23) 1.30 (+0.39) 0.80 1.16 (+0.36) 1.33 (+0.53)
Phone 0.87 1.1 (+0.23) 0.75 (-0.12) 0.88 1.12 (+0.24) 0.89 (+0.01)
URL 1.07 1.34 (+0.27) 0.87 (-0.2) 1.03 1.32 (+0.29) 0.88 (-0.15)
Address 0.71 1.19 (+0.48) 0.87 (+0.16) 0.73 1.28 (+0.55) 1.06 (+0.33)
ID 0.39 0.98 (+0.59) 0.69 (+0.3) 0.53 1.05 (+0.52) 0.89 (+0.36)

avg. 0.79 1.14 (+0.35) 0.89 (+0.1) 0.81 1.17 (+0.36) 0.99 (+0.18)

Table 2: Frequency of entities calculated by dividing
the total number of entities by the number of texts. Fre-
quencies for each entity type are computed separately.
pii {k} refers to the frequency of PII placeholders after
k iterative updates using the prompt from Figure 8; final
represents the frequency of PII entities after completing
all stages of the pipeline from Figure 1.

Balanced Entity Counts: The number of entities
by type is relatively balanced. For example, we
observed that after running the pipeline, there were
approximately 3,000–5,000 entities for every en-
tity type, showing that the dataset maintains a fair
balance across different types of PII entities. For
more detailed statistics, see Figure 6.
Controlling PII Entity Density: The iterative up-
date mechanism allows us to increase the number
of PII entities in generated texts by repeating the
update step multiple times. In Table 2 in column
pii 2 there is a steady increase in the frequency of
entities, calculated as the total number of entities
divided by the number of texts. This flexibility
in entity injection enables the generation of more
entity-rich texts. We opted against more than two
updates to avoid compromising the natural flow
of the text through excessive inclusion of personal
information.
Controlling non-PII Entities: Another significant
benefit of this pipeline is the ability to control the
inclusion of non-PII entities, such as public names,
organizations, or general locations. This degree of
control would not be possible if real text data were
simply marked up using a tool like ChatGPT, as
that approach would not allow for the same preci-
sion in distinguishing between personal and non-
personal data. However, a major limitation is that
while generating non-PII entities, LLama-3-70B
tends to drop some of the previously generated PII
placeholders, as shown in Table 2 in column final.

The pipeline thus provides a robust solution for
generating synthetic data with controlled distribu-
tions, balancing the number of entities while ensur-
ing flexibility in both PII and non-PII management.
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5 Experimental setup

5.1 Baselines
In the following, we outline several zero-shot base-
line approaches we employ for PII detection.
Presidio (Microsoft, 2021) is a Microsoft SDK
that provides a fast identification for PII entities by
employing a combination of techniques including
NER modules, regular expressions, and additional
rule-based logic.
LLaMA-3-70B (AI@Meta, 2024) with zero-shot
instruction to extract personal entities described in
Figure 5. This model processes and identifies a
wide range of personal information directly from
text, demonstrating strong adaptability and gener-
alization across different types of personal entities.

5.2 Our approach
Our supervised solution is based on
DeBERTaV3-base encoder (He et al., 2023).
Fine-tuned DeBERTa encoder-based models have
exhibited their capabilities in identifying named
entities (Tirskikh and Konovalov, 2023). Since we
do not divide the data into training and test sets, we
evaluated the model in a domain-transfer scenario.
Specifically, we train the DeBERTa model on data
from one domain and assess its performance in
another. The training hyperparameters can be
found in Appendix A.

5.3 Evaluation Metrics
For our evaluation, we use precision, recall, and F1
score, which are standard metrics to assess token
classification tasks (Sang and Meulder, 2003).

6 Experimental results

First, we verify that SPY contains a substantial
amount of non-PII entities. To do this, we evalu-
ated UniNER (Zhou et al., 2024) on the name entity
type using the prompt shown in Table 4. The re-
sults indicate that Recall is significantly higher than
Precision, suggesting that UniNER identified ad-
ditional non-PII names. This observation is also
supported by the example provided in Table 4.

Following the pipeline presented, we generated
two datasets from the legal and medical domains.
Table 3 shows how different models perform PII de-
tection on the SPY dataset. We can clearly see that
Presidio has a much lower Precision than the Recall
for all the categories, meaning that it misclassified
a large portion of NER entities as PII entities. An-
other observation is that Llama-3-70B consistently

Entity Legal Questions Medical Consultations

Llama-3 Presidio DeBERTa Llama-3 Presidio DeBERTa

Name
P 64.7 17.9 87.4 73.0 17.1 86.9
R 68.9 79.4 93.2 62.9 80.4 88.7
F1 66.7 29.2 90.2 67.6 28.2 87.8

Email
P 91.8 33.7 92.1 92.7 37.6 97.6
R 88.5 91.8 99.1 90.9 92.2 99.5
F1 90.1 49.3 95.5 91.8 53.4 98.5

Username
P 66.1 - 90.3 68.8 - 92.1
R 59.7 - 98.0 70.4 - 95.4
F1 62.7 - 94.0 69.6 - 93.8

URL
P 84.5 7.9 94.4 83.6 6.9 97.5
R 92.5 21.3 99.0 91.9 19.4 98.9
F1 88.3 11.5 96.7 87.5 10.2 98.2

ID
P 91.9 20.6 93.0 91.7 26.1 96.7
R 62.2 34.4 96.6 75.1 38.9 98.3
F1 74.2 25.8 94.8 82.6 31.2 97.5

Phone
P 85.7 34.1 87.5 89.8 37.4 93.3
R 92.8 68.1 98.7 90.0 65.5 96.9
F1 89.1 45.4 92.8 89.9 47.6 95.0

Address
P 93.7 - 88.3 96.2 - 89.3
R 81.3 - 94.5 90.4 - 95.1
F1 87.1 - 91.3 93.2 - 92.1

Table 3: Performance metrics of models with various
domain and entities, where P – Precision, R – recall,
F1 – F-score. Presidio is a Microsoft SDK for fast PII
detection using NER, regex, rule-based logic. LLaMA-
3 is LLaMA-3-70B zero-shot prompted LLM for PII
task. DeBERTa is a model cross-validated on different
domains of the SPY dataset. Blanks mean that entity
class is not supported by the model.Presidio extracts
addresses only at the geographical level, excluding street
names and house numbers.

Legal Questions Medical Consultations

P R F1 P R F1

21.5 89.5 34.7 21.7 80.4 34.1

Table 4: UniNER evaluation results on the SPY dataset.
Metrics are calculated specifically for name enity type,
using prompts from the original UniNER paper (Zhou
et al., 2024): “What describes a person in the text?”

outperforms Presidio, which can be attributed to
its ability to differentiate between standard NER
entities and PII entities.

DeBERTa validated on the SPY dataset in a
domain-transfer setting is able to detect PII enti-
ties more precisely than zero-shot methods, getting
a much higher precision with a smaller gap be-
tween recall. In general, encoder-based models
have demonstrated their remarkable ability to trans-
fer across tasks, domains, and languages (Karpov
and Konovalov, 2023).

The encoder model specifically trained to detect
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PII entities outperforms the general NER models,
confirming the fact that the task of PII detection
is not equivalent to NER. The distinction between
them can be effectively learned by a supervised
classification model.

7 Conclusions

In this study, we discuss the critical issue of PII
detection, highlighting its importance in the realm
of data privacy and security. We underscore the
distinction between PII detection and NER, em-
phasizing that while related, PII detection carries
unique nuances and requirements.

We highlight the disadvantages of existing
datasets and PII tools and provide a robust method-
ology for creating diverse training datasets tailored
for PII detection. Our approach is based on em-
ploying LLM to generate data and does not require
human supervision. These advancements reinforce
our commitment to safeguarding personal data, a
significant area in today’s digital landscape.

The generated dataset can be utilized to fine-
tune the PII model independently or within the
DeepPavlov framework (Savkin et al., 2024). To
encourage research in the field, we make the SPY
dataset freely available.

Limitations

While our research provides valuable insights, it is
important to recognize its limitations. Specifically,
our dataset was constructed with a narrow focus
on certain domains and PII entities. Although this
allowed us to develop a flexible methodology that
is able to adapt to various domains, it also limits
the dataset’s generalizability.

Due to the lack of suitable manually annotated
data, we were unable to fully assess the pipeline’s
transferability to real-world data.

Another significant limitation is that the gener-
ated PII entities only relate to the text’s author. In
many cases, personal information about individuals
closely related to the author could also be classified
as PII, but such cases are not covered in our dataset.

Taking all the aforementioned factors into ac-
count, the trained model and generated dataset
should not be used in a real production system
to detect PII entities, anonymize documents, or be
utilized in any other manner, except for research
purposes.

Ethics Statement

While SPY methodology enhances privacy-
preserving technologies, we are aware that mis-
use of this dataset could lead to privacy violations,
data manipulation, or exploitation of personal data
in ways that harm individuals. To mitigate these
risks, we have taken several precautions. First, our
dataset is entirely synthetic, ensuring that no real-
world PII is exposed or used in its creation. Second,
all PII entities in the generated dataset are artificial.

We emphasize that the generated dataset and
the methodology should be used only for research
purposes.

We strongly discourage any use of our dataset
that aims to undermine privacy protections or mis-
use the generated synthetic data for harmful pur-
poses.
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A DeBERTa Hyperparameters

Hyperparameter Value

Optimizer AdamW
Adam β1, β2 0.9, 0.999
Adam ϵ 1e-6
Warm-up step 100
Context size 1,800
Learning rate (LR) 5e-6

Table 5: DebertaV3-base hyperparameters

B Data Analysis

Entity type Domain

Legal questions Medical Consultations

url 4,243 4,322
email 4,101 4,493
username 3,868 4,273
address 4,173 5,122
name 4,032 4,707
phone number 3,597 4,222
id_num 3,357 4,284

Table 6: Number of generated PII entities by type.
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Figure 2: The distribution of entities present in the Kag-
gle PII dataset illustrates its highly imbalanced nature.
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240 469 1,109 1,539

Figure 3: Heatmap showing the distribution of PII entity
counts across relative position bins in the Legal Ques-
tions Domain of the SPY Dataset.

C UniNER “NAME” Class Prediction

Hi all, I’m Nuria Batista, reaching out be-
cause I’m in a bit of a tricky situation and
I’m hoping someone with legal expertise
can offer some guidance. I’m a marketing
coordinator at an advertising agency, and
one of our clients is accusing us of breach
of contract. My team and I have reviewed
the contract thoroughly, and we’re confi-
dent that we’ve met all of the requirements.
However, the client is still pushing for a re-
fund and is threatening to take legal action
against me, specifically at the office of attor-
ney Emily Brown, located at 123 Main St,
San Francisco, CA 94105.

Figure 4: Name Nuria Batista is correctly classified as
PII, while Emily Brown is misclassified due to the fact
that UniNER doen’t differentiate between PII and non-
PII.
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D PII Dataset Generation Pipeline Prompts

Extract the following personal information entities from the provided text, ensuring that only
personally identifiable information (PII) related to the author of the text is captured:

- **Person:** Names of the author. Do not include names of other people, famous authors,
celebrities, or historical figures.
- **Email:** Personal email addresses of the author.
- **Phone:** Personal phone numbers of the author.
- **ID:** Personal identification numbers of the author (e.g., Social Security Number, passport
number).
- **URL:** URLs that are personal to the author and lead to pages containing personal data (e.g.,
the author’s personal blogs, social media profiles).
- **Username:** Personal usernames of the author for online platforms.
- **Address:** Personal home addresses of the author.

Text: "text"

Format your response in JSON as follows:
{{ "person": ["list of the author’s personal names"],
"email": ["list of the author’s personal emails"],
"phone": ["list of the author’s personal phone numbers"],
"id": ["list of the author’s personal IDs"],
"url": ["list of the author’s personal URLs"],
"username": ["list of the author’s personal usernames"],
"address": ["list of the author’s personal addresses"]
}}

If there is no information for a particular category, return an empty list for that category.

Figure 5: LLaMA-3-70B prompt for extracting PII entities from text.

Step 1) Look through the personality of the text author and pretend to be that person.

occupation: <generated-occupation>
personality: <generated-personality>

Step 2) Use the following instructions to generate a text:

<domain-specific-instructions>

Requirements:
- At any circumstance do not include any personal information in generated text.

Respond only with generated text with no commentary. Here goes your text:

Figure 6: Prompt for generating texts, which do not contain any personal information. Placeholders “<generated-*>”
and “<domain-specific-instructions>” are replaced with according descriptions.
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Generate a biography of a fictional man named <generated-name-goes-here>.

Occupation: any average job you can come up with
Personality: describe in 5 sentences

Present results in json format with fields “occupation”: str, “personality”: str

Figure 7: Prompt for biography generation. Placeholder “<generated-name-goes-here>” is replaced with random
name.

Text: {}

Task: You are an author of the above Text. Your task is to add new placeholders in the Text from
the list below. You will be penalized for mentioning any placeholders other than what is listed
below!

Here is the list of placeholders representing your personal information:
<author_personal_name> - A full or partial name of the text author
<author_personal_email> - An author’s email address
<author_personal_username> - An author’s username on any website, social media etc.
<author_personal_phone_number> - A phone number associated with the author or his relatives
<author_personal_url> - A link to author’s social media page or personal website
<author_personal_address> - A full or partial street address that is associated with the author, such
as home address
<author_personal_identifier> - A number or sequence of characters that could be used to identify
an author, such as a social security number or medical policy number

Requirements:
- Do NOT change existing placeholders
- Distribute placeholders evenly throughout your text, do not stack them all in one place
- New text must be more entity-dense than the previous one

Respond only with updated text with no commentary. Here goes an updated text:

Figure 8: Prompt for adding PII placeholders into the text.

Text: {}

Task: You are given a Text, which contains author’s personal information. Your task is to add
new entities, which are not related to the text author. Generate entities using the following classes:
name, email, username, phone number, url, address, identifier.

Requirements:
- At any circumstance DO NOT change author’s personal information in the above text
- Newly generated entities should not disclose the personal information of the author of the text

Respond only with updated text with no commentary. Here goes an updated text:

Figure 9: Prompt for adding entities with personal information that are not relatted to text author.
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Extract the following personal information entities from the provided text, ensuring that only
personally identifiable information (PII) related to the author of the text is captured:

- Person: Names of the author. Do not include names of other people, famous authors, celebrities,
or historical figures.
- Email: Personal email addresses of the author.
- Phone: Personal phone numbers of the author.
- ID: Personal identification numbers of the author (e.g., Social Security Number, passport number).
- URL: URLs that are personal to the author and lead to pages containing personal data (e.g., the
author’s personal blogs, social media profiles).
- Username: Personal usernames of the author for online platforms.
- Address: Personal home addresses of the author.

Text: {text}

Format your response in JSON as follows:
{ "person": ["list of personal names"], "email": ["list of personal emails"], "phone": ["list of per-
sonal phone numbers"], "id": ["list of personal IDs"], "url": ["list of personal URLs"], "username":
["list of personal usernames"], "address": ["list of personal addresses"] }

If there is no information for a particular category, return an empty list for that category.

Figure 10: Prompt for extracting PII from text.
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Abstract

Distinguishing vulnerable code from non-
vulnerable code is challenging due to high inter-
class similarity. Supervised contrastive learn-
ing (SCL) improves embedding separation but
struggles with intra-class clustering, especially
when variations within the same class are sub-
tle. We propose CLUSTER-ENHANCED SU-
PERVISED CONTRASTIVE LOSS (CESCL), an
extension of SCL with a distance-based regular-
ization term that tightens intra-class clustering
while maintaining inter-class separation. Eval-
uating on CodeBERT and GraphCodeBERT
with Binary Cross Entropy (BCE), BCE + SCL,
and BCE + CESCL, our method improves F1
score by 1.76% on CodeBERT and 4.1% on
GraphCodeBERT, demonstrating its effective-
ness in code vulnerability detection and broader
applicability to high-similarity classification
tasks.

1 Introduction

Code vulnerability detection is a cornerstone of
software security, particularly as the world under-
goes rapid digitization. In domains like finance,
healthcare, and government, software vulnerabili-
ties exploited by malicious actors could have catas-
trophic consequences. The ability to detect such
weaknesses efficiently is essential for safeguard-
ing the trust that underpins modern technological
systems. Beyond protecting sensitive data, robust
vulnerability detection forms the backbone of a re-
silient digital society, ensuring confidence in the
software solutions we rely on daily.

Recent years have witnessed a paradigm shift
in this field with the rise of deep learning mod-
els, which have revolutionized how vulnerabilities
are identified. These models far outperform tradi-
tional approaches such as static analysis tools and
manual code reviews, which are labor-intensive,
error-prone, and unable to keep pace with the accel-
erating rate of software development. Leveraging

neural networks has enabled researchers to auto-
mate vulnerability detection, improving scalabil-
ity and accuracy by identifying subtle patterns in
code that signal potential flaws. Most deep learn-
ing models rely on loss functions such as binary
cross-entropy to learn from labeled datasets of vul-
nerable and non-vulnerable code. However, despite
these advancements, the field remains fraught with
challenges.

One of the most significant bottlenecks in ex-
isting models is the high semantic and structural
similarity between vulnerable and non-vulnerable
code samples. This similarity often causes em-
beddings of the two classes to overlap in high-
dimensional space, resulting in increased false pos-
itives and false negatives, thereby undermining the
reliability of the models. To better quantify this
challenge, we conducted a focused analysis of the
embedding space. Using a simple, yet effective
method, we computed the average cosine similarity
between embeddings of samples with opposite la-
bels across both code and general text datasets. The
results, as seen in the figure below 1, revealed that
code datasets exhibit significantly higher similarity
across labels than general text data, underscoring
the unique difficulty of separating vulnerable from
non-vulnerable code. This inherent overlap in the
embedding space presents a key challenge in ensur-
ing accurate and reliable vulnerability detection.

Contrastive learning has emerged as a promising
technique to address this challenge. By structur-
ing the embedding space to maximize separation
between samples with opposite labels and encour-
aging tighter clustering of samples within the same
class, contrastive learning reduces overlap and en-
hances the discriminative power of embeddings.
This is particularly critical in the context of code
vulnerability detection, where subtle differences
between classes demand a highly optimized em-
bedding space.

However, existing contrastive learning methods,
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such as Supervised Contrastive Loss (SCL), ex-
hibit limitations in this domain. While SCL ef-
fectively prioritizes inter-class separation, it often
fails to enforce sufficient intra-class cohesion. This
can result in loosely clustered embeddings within
each class, increasing the likelihood of misclassi-
fications. Consequently, SCL struggles to handle
the high similarity between vulnerable and non-
vulnerable samples, limiting its effectiveness in
real-world applications.

To overcome these limitations, we propose a
novel loss function, Cluster Enhanced Supervised
Contrastive Loss (CESCL). CESCL builds on the
foundation of SCL by introducing additional regu-
larization techniques aimed at simultaneously min-
imizing intra-class separation and penalizing high
cosine similarity between embeddings of vulnera-
ble and non-vulnerable code snippets. This dual
objective ensures tighter clustering within the same
class while amplifying the dissimilarity between
different classes, resulting in a well-structured em-
bedding space optimized for classification.

CESCL achieves this by incorporating penalties
for misaligned embeddings and emphasizing the
structural and semantic nuances that distinguish
vulnerable from non-vulnerable code. By fostering
tighter intra-class cohesion and greater inter-class
separation, CESCL reduces embedding overlap,
enabling models to better generalize across diverse
and unseen code patterns. This results in lower
false positive and false negative rates, addressing
key reliability concerns in existing systems.

In summary, this research introduces CESCL as
a targeted solution to the embedding challenges
in code vulnerability detection. By addressing the
shortcomings of existing loss functions, CESCL
provides a more robust and generalizable embed-
ding space, significantly improving classification
accuracy. Our work also highlights the unique chal-
lenges of this domain through a quantitative anal-
ysis of embedding similarity, offering a new per-
spective on the limitations of current approaches.

As software vulnerabilities continue to rise
alongside the pace of digitization, the need for re-
liable and efficient detection methods has become
more urgent than ever. CESCL represents a step
forward in building secure and trustworthy soft-
ware systems, offering a foundation for future ad-
vancements in vulnerability detection. By bridging
the gap between the limitations of SCL and the
demands of real-world applications, this research
provides both a theoretical and practical contribu-

tion to the field, paving the way for more secure
digital ecosystems.

0 0.2 0.4 0.6 0.8 1

Datasets
0.98

0.83

Similarity Score

Figure 1: Cosine Similarity Between Opposite Labels.
Text Data (Positive vs. Negative) is represented in blue,
while Code Data (Vulnerable vs. Non-Vulnerable) is
represented in red.

2 Related Work

Code vulnerability detection using deep learning
has gained quite some attention in recent years,
with various methods developed to address the chal-
lenges posed by detecting vulnerabilities within
code (Grieco et al. (2016); Lin et al. (2017)). Early
approaches Li et al. (2018), make use Long Bi
Short-Term Memory (Bi-LSTM) networks to an-
alyze code based on sequences of API calls, ex-
hibiting the efficacy of deep learning models in
capturing common patterns associated with vulner-
bale code. SySeVR Li et al. (2021), built upon
this approach by developing a deep learning frame-
work for detecting vulnerabilities through sequence
modeling of vulnerable function calls. While these
methods provide useful insights, they often struggle
with capturing the broader structural and semantic
complexities of code, restricting their performance
on more sophisticated code samples.

More recently, transformer-based models, which
make use of attention mechanism, like CodeBERT
Feng et al. (2020) and GraphCodeBERT Guo et al.
(2020) have brought about major advancements.
CodeBert is a pretrained model tailor made for
both programming and natural languages, captur-
ing both syntactic and semantic features from a
large corpus of code. It has been adopted widely
for vulnerability detection because of its ability
to handle tasks like code summarization, genera-
tion, and classification. GraphCodeBERT extends
CodeBert by incorporating data flow information
within the model’s architecture. This approach en-
hances the model’s understanding of dependencies
and control structures, allowing it to detect vulner-
abilities that rely on intricate code flows, an area
where traditional transformer models tend to disap-
point. Such advancements highlight the potential
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of transformer based models in advancing the field
of code vulnerability detection.

The Devign dataset Zhou et al. (2019) has been
crucial in evaluating and benchmarking vulnerabil-
ity detection models. Devign contains over 21,000
labeled C/C++ code snippets drawn from open-
source projects, with each snippet classified as vul-
nerable or non-vulnerable. The dataset presents
unique challenges due to the incorporation of a
wide variety of vulnerabilities. The dataset also
constitutes complex vulnerabilities making it hard
for models to effectively generalise across samples.
Devign also provides a rich structural context, in-
cluding abstract syntax trees (ASTs) and control
flow graphs (CFGs), which has proven useful for
models designed to capture graph-based relation-
ships in code, as demonstrated in Zhou et al. (2019)
original work making use of graph neural networks.

Supervised Contrastive Learning (SCL), intro-
duced by Khosla et al. (2020), is an emerging and
powerful technique that focuses class separation by
leveraging both positive and negative samples, mak-
ing it immensely suitable for tasks where closely
related samples are to be differentiated. In vul-
nerability detection, where samples of vulnerable
and non vulnerable can appear notoriously similar,
SCL has shown potential Du et al. (2022) by pro-
moting embedding spaces that separate vulnerable
and non-vulnerable samples.

Various regularization techniques have been ap-
plied to these losses to improve robustness in high-
similarity domains such as the one tackled in this
paper. For instance, Botev et al. (2022) explored
regularizing for invariance to data augmentation,
improving the ability of models to handle difficult
samples.

In summary, this study builds on the strengths
of transformer models like CodeBert and Graph-
CodeBERT, evaluates performance on the Devign
dataset, and explores advanced contrastive learning
techniques to enhance code vulnerability detection.
By combining supervised contrastive learning with
regularization strategies, we aim to improve the
model’s capability in embedding separation, thus
enhancing overall classification performance.

3 Methodology

To ameliorate the effectiveness of code vulnera-
bility detection, this study builds a classification
model on top of the both CodeBERT and Graph-
CodeBERT models, with additional dropout and

batch normalization layers. These layers reduce
overfitting and ensure stable training by normaliz-
ing activations, contributing to more reliable model
performance. The central novelty in this approach
is the novel loss function, which integrates super-
vised contrastive learning with a distance-based
regularization term to improve embedding separa-
tion between classes.

3.1 Dataset

For this research work, we make use of the Devign
dataset, a benchmark dataset for code vulnerability
detection in C/C++ programs. The Devign dataset
constitutes over 21,000 code snippets, each labeled
as either vulnerable or non-vulnerable, collected
from real-world open-source projects, FFmpeg and
qemu. Each code snippet is annotated with several
features, including abstract syntax tree (AST) rep-
resentations, control flow graphs (CFGs), and data
flow information, which capture both structural and
semantic information essential for identifying vul-
nerabilities. For this work, only the code function
is made use of since the focus is on the embedding
separation.

3.2 Model Architecture

The architecture begins with a pre-trained model,
either CodeBERT or GraphCodeBERT, which is
fine-tuned on domain-specific code datasets to gen-
erate meaningful code embeddings. On top of these
embeddings, a classifier head consisting of fully
connected layers is added. The classifier head takes
as input a tensor of size 768 (the embedding output
of CodeBERT or GraphCodeBERT), followed by a
128-dimensional layer, and finally an output layer
of size 1. Dropout layers are interleaved within
the classifier to reduce overfitting by randomly de-
activating neurons during training, and batch nor-
malization layers are employed to stabilize and
accelerate the training process by standardizing
layer inputs. The model output provides a binary
classification, predicting whether a code snippet is
vulnerable.

3.3 Loss Function Design

The novel contribution of this work is a custom loss
function, cluster enhanced supervised contrastive
loss (CESCL), that enhances embedding separa-
tion. This function combines the supervised con-
trastive loss (SCL loss) with a distance-based reg-
ularization term, which encourages tighter cluster-
ing within each class. The components of this loss
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function are as follows:

cl ass Uni onFi nd:
 def  
__i ni t __( si ze) :
 sel f . par ent  = 
l i s t ( r ange( si ze) )
 sel f . r ank = [ 0]  
*  s i ze

SOURCE CODE

CODE 
REPRESENTATION

+

SCL Loss Regular ization 

MODEL

PREDICTION

MODEL 
PREDICTION

Figure 2: The framework of the proposed method.

Supervised Contrastive Loss (SCL): This loss
maximizes agreement and similarity between em-
beddings of samples within the same class while
pushing apart embeddings of different classes apart.
Specifically, feature vectors are normalized, and a
contrastive logits matrix is computed by dividing
the dot product of normalized feature vectors by
a temperature scaling factor.The novel contribu-
tion of this work is a custom loss function, clus-
ter enhanced supervised contrastive loss (CESCL),
that enhances embedding separation. This func-
tion combines the supervised contrastive loss (SCL
loss) with a distance-based regularization term,
which encourages tighter clustering within each
class. The formula (Khosla et al., 2020) is as below

LSCL = − 1

N

N∑

i=1

1

|P (i)|
∑

p∈P (i)

log
exp

( zi·zp
τ

)
∑

a∈A(i) exp
(
zi·za

τ

)

(1)

where:

• N is the batch size,

• P (i) represents the set of positive samples for
anchor i,

• A(i) represents the set of all samples in the
batch excluding i,

• zi and zp are the normalized feature vectors of
the anchor and positive samples, respectively,

• τ is the temperature scaling factor, which
helps control the distribution of the similar-
ity scores.

While SCL effectively separates different
classes, it does not explicitly enforce compactness
within the same class, leading to loosely clustered
embeddings. This is particularly problematic in

high-similarity domains like vulnerability detec-
tion, where even minor variations can mislead clas-
sification.

Distance-Based Regularization Term: To fur-
ther improve intra-class clustering, a regulariza-
tion term is added that penalizes large distances be-
tween embeddings within the same class. This reg-
ularization term calculates the pairwise Euclidean
distances between embeddings of the same class,
averaging them over all possible pairs, and is scaled
by a regularization factor.

The formula for the regularisation is as below

Lreg =
1

n(n− 1)

n∑

i=1

n∑

j=1
j ̸=i

1[L(i)=L(j)]∥zi − zj∥2 (2)

where:

• n is the total number of samples,

• 1[L(i)=L(j)] is an indicator function, equal to
1 if samples i and j belong to the same class,
and 0 otherwise,

• zi and zj are the feature vectors of samples i
and j.

Cluster Enhanced Supervised Contrastive Loss
is a combination of Supervised Contrastive Loss
and the Distance Based Regularization Term (2). It
is as below

LCluster-Enhanced SCL = LSCL + λreg · Lreg (3)

where λreg is a hyperparameter that scales the
contribution of the regularization term.

3.4 Training
The model is trained using the combined loss func-
tion, which integrates the Binary Cross Entropy
(BCE) loss with the Cluster-Enhanced Supervised
Contrastive Loss. Specifically, the final loss is com-
puted as:

Lfinal = LBCE + α · LCluster-Enhanced SCL, (4)

where α is a balancing hyperparameter. The
Cluster-Enhanced Supervised Contrastive Loss is
defined as:

LCluster-Enhanced SCL = LSCL + λreg · Lreg (5)

where λreg is a hyperparameter that scales the
contribution of the regularization term.

In our experiments, we set λreg = 0.5 and α =
0.2 based on preliminary grid search evaluations.
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4 Results and Analysis

In this study, three models were trained to assess
the impact of different loss functions on code vul-
nerability detection. Each model uses the same
architecture, a classifier built on top of a pre-
trained CodeBERT or GraphCodeBERT model
with dropout and batch normalization. The only
difference between models being the loss function
utilized during training:

• Model 1: Binary Cross Entropy (BCE) loss
only.

• Model 2: BCE combined with Supervised
Contrastive Loss (SCL).

• Model 3: BCE combined with Clus-
ter Enhanced Supervised Contrastive Loss
(CESCL).

To evaluate performance, F1 scores were calcu-
lated on the test set for each model. These scores
provide a comparison between each model’s preci-
sion and recall, informing how well the different
loss functions contribute to the model’s accuracy
and embedding separation.

On top of this, the silhouette score was calcu-
lated as a measure of embedding separation. The
silhouette score is a widely-used metric to eval-
uate clustering quality. It ranges from -1 to 1,
where a value near 1 indicates that samples are
well-separated and closely grouped within their
respective clusters, and a value near -1 suggests
significant overlap between clusters. In the context
of our study, a higher silhouette score implies that
code snippets belonging to the same class (vulner-
able or non-vulnerable) are more similar to each
other than to those in the opposing class, thereby
indicating effective embedding separation.

Table 1: Performance Comparison of Models (F1 Score)

Model F1 Score
CodeBERT 0.597
CodeBERT + SCL 0.614
CodeBERT + CESCL 0.625
GraphCodeBERT 0.594
GraphCodeBERT + SCL 0.607
GraphCodeBERT + CESCL 0.633

5 Conclusion

In this work, we introduced Cluster-Enhanced Su-
pervised Contrastive Loss (CESCL), a novel loss

Table 2: Performance Comparison of Models (Silhou-
ette Score)

Model Silhouette Score
CodeBERT 0.052
CodeBERT + SCL 0.043
CodeBERT + CESCL 0.056
GraphCodeBERT 0.046
GraphCodeBERT + SCL 0.031
GraphCodeBERT + CESCL 0.050

function designed to improve the embedding qual-
ity for code vulnerability detection. We evaluated
the performance of CESCL in combination with
both CodeBERT and GraphCodeBERT architec-
tures, comparing it with the standard Binary Cross-
Entropy (BCE) and BCE + Supervised Contrastive
Learning (SCL) models.

The experimental results, as shown in Tables 1
and 2, demonstrate that CESCL consistently out-
performs both BCE and BCE + SCL across the
models tested. Notably, CodeBERT + CESCL
achieved the highest F1 score of 0.625 among
CodeBERT models and the best Silhouette score
of 0.056, highlighting its ability to generate well-
clustered and discriminative embeddings for vulner-
ability classification. Similarly, GraphCodeBERT +
CESCL showed significant improvements, achiev-
ing a 4.1% increase in F1 score and a favorable
Silhouette score of 0.050 compared to the other
configurations.

It is worth noting that, although the incorporation
of SCL in isolation sometimes led to a reduction
in the silhouette score, the overall improvement
in F1 score indicates that the CESCL framework
effectively optimizes the embedding space for clas-
sification. This discrepancy suggests that while the
silhouette score is a useful measure of clustering
quality, it may not fully capture the nuances that
contribute to enhanced detection performance in
this context.

These results indicate that CESCL effectively
improves intra-class compactness and inter-class
separation, thereby enhancing the performance of
the model in detecting vulnerabilities in code. Fu-
ture work could explore further optimizations to
the CESCL framework and test it on additional
code-related tasks to fully realize its potential in
improving the robustness and reliability of code
classification models.
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Abstract

Arabic calligraphy carries rich historical in-
formation and meaning. However, the com-
plexity of its artistic elements and the absence
of a consistent baseline make text extraction
from such works highly challenging. In this
paper, we provide an in-depth analysis of the
unique obstacles in processing and interpret-
ing these images, including the variability in
calligraphic styles, the influence of artistic dis-
tortions, and the challenges posed by missing
or damaged text elements. We explore potential
solutions by leveraging state-of-the-art archi-
tectures and deep learning models, including
visual language models, to improve text extrac-
tion and script completion.

1 Introduction

Arabic calligraphy initially emerged as a way to
create a visually appealing script, evolving into a
highly respected art form. This development was
especially prominent during the Ottoman Empire,
where calligraphy adorned buildings, mosque foun-
dations, and a variety of other structures. From the
reign of Mehmed II onwards, distinct schools of
calligraphy began to emerge, gaining further mo-
mentum when Sheikh Hamdullah, the founder of
the Ottoman calligraphy school, arrived in Istanbul
during the rule of Bayezid II. Under Turkish crafts-
men, Arabic calligraphy was refined and achieved
its most perfect forms (Derman, 1997). This art
has experienced significant development in several
countries, including Iran, Egypt, Saudi Arabia, and
Morocco. However, Istanbul is particularly no-
table for its diverse and well-established tradition
in calligraphy, largely shaped by Ottoman influ-
ence. While most of these calligraphic works are in
the Arabic language, calligraphy using Arabic let-
ters also appears in other languages such as Urdu,
Persian, and Ottoman Turkish. Arabic serves as
the common language in these artworks, as it is
central to Islamic texts, with many works featuring

Quranic verses, Hadith, or prayers (duas) (Gündüz,
1988).

While the artistic dimension of calligraphy is of-
ten the main focus, these works also encode signifi-
cant linguistic, cultural, and historical information.
Calligraphy not only conveys Islamic thoughts and
architectural aesthetics but also serves as a valuable
record of historical and cultural contexts. However,
the complexity of calligraphic styles—where sen-
tences vary dramatically in layout and form—often
makes them challenging to read, even for those flu-
ent in Arabic. Traditional optical character recog-
nition (OCR) techniques fall short in interpreting
such intricate designs, as they are not suited for the
overlapping, stylized, or highly curved forms that
define calligraphy. Understanding and analyzing
these works is crucial for preserving and studying
historical and cultural heritage.

Figure 1: The phrase Õ�æ
k
�QË
�
@ 	á�Ôg�QË

�
@ é�<Ë

�
@ Õ�æ

���.� (In the

name of Allah, the Most Gracious, the Most Merciful)
in different styles and with different letter combinations.

Figure 1 depicts the phrase
Õ�æ
k

�QË
�
@ 	á�Ôg�QË

�
@ é�<Ë

�
@ Õ�æ

���.� (In the name of Allah,

the Most Gracious, the Most Merciful) in different
styles and with different letter combinations.
The phrase consists of five words with twelve
distinct letters, but the calligraphic styles vary in
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how these letters are connected, arranged, and
stylized through different ligatures and artistic
compositions. As can be seen in the figure,
same sentence in various calligraphic styles and
arrangements is challenging to recognize—even
identifying the beginning of the sentence can
be difficult due to the non-standard layouts and
artistic variations.

In this thesis proposal, we outline a specialized
methodology designed to analyze and interpret doc-
uments and images featuring Arabic script-based
calligraphy with high accuracy. This approach aims
to bridge the gap between visual artistry and textual
extraction, enabling both aesthetic appreciation and
understanding of these culturally significant texts.

Thesis contributions will be as follows:

• A system for efficiently labeling datasets with
limited annotated samples (scarce datasets),
employing semi-supervised learning and trans-
fer learning techniques. The system is de-
signed to generalize well from small datasets
and can be adapted to scale up when larger
datasets become available.

• A rich dataset of real-world calligraphy im-
ages, annotated at the letter and word levels,
encompassing diverse calligraphic styles to
support tasks like style recognition, text ex-
traction, and sentence reconstruction.

• An optimized pipeline for noise removal and
artifact handling tailored for historical and ar-
chitectural calligraphic content. This pipeline
will incorporate deep learning techniques to
enhance textual clarity, eliminate ornamental
noise, and reconstruct missing portions of let-
ters for improved accuracy.

• Implementation of advanced recognition tech-
niques, leveraging architectures like Visual
Question Answering (VQA) and Large Lan-
guage Models (LLMs), designed to handle the
artistic and structural intricacies of Arabic cal-
ligraphy while extracting textual content with
contextual awareness.

2 Background

This research explores Arabic script-based calligra-
phy analysis, emphasizing its intricate and artistic
nature. To develop a comprehensive approach, we
reviewed related studies in Arabic script analysis,
calligraphic works, and non-Arabic calligraphy.

Arabic character recognition is challenging due
to its cursive and context-sensitive script. Tra-
ditional methods like HOG with SVM achieved
over 99% recognition on a dataset of 43,000 hand-
written words (Jebril et al., 2018), while Random
Forests, KNN, and MLP attained 100% accuracy
on a dataset of 600 images across 28 classes (Boufe-
nar et al., 2018). Though designed for handwriting,
these approaches could aid in labeling calligraphy
datasets.

Deep learning methods have further improved
recognition. CNNs with LReLU achieved 99%
accuracy by mitigating overfitting (Nayef et al.,
2022), and foundation models like Qalam have ad-
vanced Arabic OCR and handwriting recognition
capabilities (Bhatia et al., 2024). Qalam, combin-
ing a SwinV2 encoder and a RoBERTa decoder,
excels in Arabic script recognition. Trained on
over 4.5 million manuscript images and 60,000
synthetic pairs, it achieves a WER of 0.80% in
handwriting recognition and 1.18% in OCR tasks.
Its support for diacritics and high-resolution inputs
addresses limitations of many OCR systems. How-
ever, while useful for initial insights, these methods
are less suited to the artistic variability and baseline
inconsistencies in Arabic calligraphy images.

Arabic calligraphy has been the focus of sev-
eral research efforts, each contributing to the field
with unique datasets, methodologies, and findings.
The Calliar dataset (Alyafeai et al., 2022) is a
comprehensive resource, featuring 2,500 sentences
and over 40,000 strokes. It covers multiple lev-
els—stroke, character, word, and sentence—and
includes styles like Diwani, Thuluth, and Farisi, en-
abling tasks such as style classification, character
recognition, and calligraphy generation.

The Salamah dataset (AlSalamah and King,
2018) contains 3,467 images across 32 categories
of Arabic calligraphic letters, representing di-
verse styles. Kaoudja et al. (2021) developed
feature descriptors tailored to specific calligra-
phy styles, achieving superior performance on a
dataset of 1,685 images across nine styles com-
pared to existing methods, including deep learning
approaches. A complementary study (Gürer and
Gökbay, 2024) analyzed two datasets for classifi-
cation tasks, achieving F1 scores of 90% for style
classification and 79% for letter classification using
transfer learning techniques.

Efforts in content recognition remain limited de-
spite valuable datasets and classification studies.
A study (Alsalamah, 2020) on a dataset of 388
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images achieved 75% accuracy in mapping calli-
graphic images to their corresponding quotations,
highlighting the challenges in recognizing content
from artistic calligraphy and underscoring the need
for more advanced methodologies.

Generative Adversarial Networks (GANs) have
been used to synthesize calligraphic styles like
Nastaliq, blending traditional and contemporary
elements (Sobhan et al., 2024). Similar methods
in non-Arabic calligraphy, such as Chinese and
Japanese scripts, have applied CNNs and transform-
ers for style recognition and glyph generation (Wen
and Sigüenza, 2020; Zhang et al., 2024; Aguilar,
2024; Wong et al., 2024; Kuwata et al., 2024).

While these methods offer valuable insights,
their direct use for Arabic calligraphy content
recognition is limited due to the unique features
of Arabic script. However, the strategies in these
studies can guide the development of tailored ap-
proaches for Arabic calligraphy.

3 Research Goals and Questions

The main goal of this thesis is to analyze Arabic
calligraphy images to accurately extract the script
contained within them.

Our main research question is:
RQ: What are the optimal methods for accu-

rately extracting and reconstructing text from Ara-
bic calligraphy images, considering the unique
artistic and structural challenges?

We examine the challenges arising from the artis-
tic elements and absence of consistent baselines,
seeking methods to extract letters, phrases or com-
plete sentences with high accuracy. To visually
represent the methodology for tackling these chal-
lenges, Figure 2 illustrates the step-by-step process
for analyzing and extracting text from Arabic cal-
ligraphy images.

We outline three objectives to answer our re-
search question: (i) Data Collection - Gathering
an extensive dataset of Arabic calligraphy images.
(ii) Text Extraction - Developing methods to accu-
rately extract textual data from images. (iii) Script
Completion - Reconstructing incomplete scripts
when necessary. In the following sections, we de-
fine sub-questions for these objectives.

3.1 Data Collection

A key challenge in this area is the lack of compre-
hensive datasets. While there is only one publicly
available dataset (Alyafeai et al., 2022), obtain-

Figure 2: Flowchart of the proposed research.

ing accurate results will require more diverse, rich
and versatile dataset. The existing dataset presents
two main issues. First, all images are digitalized,
meaning they do not represent the real-world im-
ages often encountered in historical or architectural
contexts. As shown in Figure 3, these digitalized
samples lack background noise, such as decora-
tive elements or embellishments, which are often
present in real-world calligraphy and can obscure
or blend with the text. This results in clean images
that do not fully capture the challenges of authentic
calligraphy analysis.

Figure 3: Examples from the existing dataset (Alyafeai
et al., 2022).

Second, our analysis of the dataset revealed that
each piece of content appears only a few times,
with unique sentences and phrases that lack varia-
tions or alternative versions. For effective machine
learning, however, the dataset needs multiple ver-
sions of each sentence or phrase to better train mod-
els in recognizing different stylistic forms of the
same text. Although the orientations in the dataset
vary, we also need examples with more diverse
letter combinations, structural complexity, and re-
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alistic variations. Ultimately, a more representative
dataset is essential for building an end-to-end ar-
chitecture that can handle the nuances of Arabic
calligraphy in various forms.

RQ1 How do we obtain authentic data for in-
vestigating the main research question? Istanbul’s
rich calligraphic heritage offers a unique advan-
tage for data collection. We will gather images
through on-site visits to historical sites, mosques,
and architectural landmarks, supplemented by pub-
licly shared photos from tourists and researchers.
Since all these places are open to the public, taking
photographs does not require special permissions.
Additionally, we will meet with the owners of these
photos to ensure proper context and information.
To ensure diversity, our dataset will capture var-
ied artistic styles and layouts. Image quality may
vary due to factors such as different angles and
lighting conditions, but this variability will benefit
the model’s training. The goal is for the model
to be able to process and recognize calligraphy
accurately, regardless of these variations, when it
encounters new images during future data collec-
tion or use. Essentially, the model will be robust
enough to perform well even if the conditions of the
new images differ from the ones it was originally
trained on.

Since most calligraphic works in Istanbul are
in Arabic and Ottoman Turkish, our initial focus
will be on these languages, which are central to
Islamic calligraphy. This approach is particularly
significant as Arabic serves as the lingua franca
of the Islamic faith. Once a solid foundation is
established, we will expand to Persian and Urdu
for broader linguistic coverage. Additionally, we
will source images from websites with proper per-
missions.

We have access to a comprehensive 136,000-
page textual archive that explores the history, evolu-
tion, and artistic styles of Arabic calligraphy, along
with its reading techniques, cultural significance,
and traditional methodologies. This archive in-
cludes scholarly analyses, historical manuscripts,
and instructional texts that provide deep insights
into the art form. Before training our VQA model,
we will fine-tune the language component—not the
visual part—of a visual language model using text
from these books. This will enhance the model’s
understanding of calligraphy’s artistic and textual
nuances.

RQ2 How should the collected data be labeled?
The process will begin with the creation of an

image-caption dataset, where each image will be
paired with a caption describing the text within it.
This dataset will be generated using digital tools
such as web scraping techniques with Beautiful-
Soup or Selenium to gather digitized calligraphic
images from web sites and manually collecting and
labeling images from printed or physical sources.
Once the image-caption dataset is established, the
next step will involve labeling individual letters and
words within the calligraphic images.

For this task, we will leverage an existing small
dataset of online handwritten Arabic calligraphic
letters and words. Although this small dataset is
in the online handwriting format—where temporal
stroke data is recorded—the dataset we will collect
is in the offline handwriting format, derived from
scanned or photographed calligraphic texts. To
bridge this gap, we will use the online dataset to in-
form and guide the labeling process for offline data.
By training the model on the online handwriting
data first, it will gain a foundational understanding
of Arabic calligraphic structures, which will then
be applied to label offline handwritten datasets ef-
fectively. This alignment between the two formats
will allow for a more robust and comprehensive
training process.

Using semi-supervised learning techniques, the
model will initially be trained on the small, labeled
dataset. With pseudo-labeling, it will then generate
labels for a larger set of unlabeled offline images.
This hybrid approach will enable the model to learn
both letter recognition and word recognition from
the offline calligraphic images while leveraging the
detailed structure of the online handwriting data.
This process not only increases the dataset’s size
and diversity but also will enhance its applicability
to real-world offline calligraphic texts.

RQ3 How to enrich the dataset to make it more
comprehensive? To simulate the diverse artistic
styles and orientations found in Arabic calligra-
phy, we plan to use data augmentation techniques
such as rotation and scaling, allowing us to create
variations within a structured dataset.

3.2 Text Extraction
To extract textual data, noise removal is essential as
the first step. This leads us to a new sub-question:

RQ4 How can we effectively remove noise from
the images? Identifying and removing unwanted
elements, such as decorations, background patterns,
and ornamental designs, is crucial for this sub-task.
However, critical elements like diacritical marks in
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the text should not be treated as noise, as they are
essential for accurate interpretation.

Template matching can be used to identify and
remove consistent unwanted elements, such as dec-
orative patterns, across images. Morphological
operations, such as erosion and dilation, help elim-
inate small artifacts and background patterns while
preserving the main calligraphic features. Addition-
ally, Region of Interest (ROI) detection algorithms
can focus on the text areas, removing surrounding
noise and ensuring the calligraphy is the primary
focus.

Figure 4: Example of an Arabic calligraphy artwork,
from left to right: original artwork, region of interest
highlighting the text, removal of unwanted noise and
ornamental elements, and the final digitalized form re-
taining essential diacritical marks for accurate interpre-
tation1.

After addressing the challenges of noise removal,
the next stage in text extraction involves exploring
recognition and preprocessing methods that enable
accurate analysis of calligraphic images. Conse-
quently, we pose the following questions:

RQ5 Which recognition method is most effec-
tive for analyzing the text? Handling the overlap or
extreme curvature of letters in Arabic calligraphy
is complex and requires advanced segmentation.
Arabic calligraphy often merges letters into intri-
cate shapes, which traditional OCR systems may
struggle to interpret. We plan to explore different
recognition approaches, including character-level,
word-level, and sentence-level recognition, to de-
termine which method best captures the artistic
variations in the text. To quantitatively evaluate the
performance of these recognition methods, we will
use several metrics. We will measure the accuracy
of text extraction at different linguistic levels using
Character Error Rate (CER) and Word Error Rate
(WER). Additionally, we will assess the similarity
between recognized text and ground truth using
Levenshtein Distance.

For baseline comparisons, we will evaluate our
approach against existing OCR systems, as well
as modern handwriting recognition models such

1https://www.ketebe.org/eser/8111?ref=artworks

as transformer-based OCR architectures. Further-
more, we will compare our results to human-
labeled transcriptions to establish an upper-bound
accuracy for the recognition tasks. By incorpo-
rating both automated metrics and comparative
benchmarks, we aim to identify the most effec-
tive recognition method that preserves the accuracy
and readability of Arabic calligraphy text.

RQ6 Is preprocessing necessary? As discussed
in the noise removal section, it may not be essential
to eliminate decorative elements ("noise") entirely.
To assess this, we will compare different methods
by first testing the original images without noise
preprocessing. We will also experiment with state-
of-the-art visual question-answering models, using
targeted prompts such as "focus on the text in the
given image." To assess this, we plan to freeze
the visual processing part of a multimodal model,
such as BLIP-2 or LLaVA, and focus training on
the language components using texts from books
on Arabic calligraphy. This will align the model’s
understanding of the text with the linguistic and
contextual nuances of calligraphy. This will allow
us to improve the model’s understanding of the
textual and contextual features of calligraphy. Af-
ter that, we will incorporate the image-text dataset
for further fine-tuning. For this purpose, we will
leverage advanced visual-language models such as
BLIP-2 and LLaVA, which combine powerful im-
age processing capabilities with language models,
enabling them to interpret and understand intricate
calligraphic text effectively.

3.3 Script Completion
The extracted data from the previous step may be
incomplete due to segmentation failures or unread-
able parts of phrases. Additionally, historical
documents may be damaged, with some sections
missing or too degraded to analyze directly. In
such cases, further steps are required to reconstruct
the content. We plan to utilize a large language
model, trained on Islamic texts such as the Quran
and Hadith, to complete sentences or phrases when
extracted letters are incomplete.

We will employ several metrics to evaluate the
performance of our script completion approach. Re-
construction accuracy will measure how accurately
the model completes missing text based on con-
text, compared to ground-truth transcriptions. CER
and WER will also quantify the accuracy of the

2https://tr.ucoin.net/coin/ottoman_
empire-100-para-1808/?tid=83518
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Figure 5: Example of images: left, an Ottoman coin
with worn or incomplete calligraphic text; right, a wall
with partially damaged calligraphic text, illustrating the
challenges of dealing with incomplete or unreadable
content in historical artifacts2.

reconstructed text. Contextual accuracy will assess
whether the completed sentences align with the lin-
guistic and cultural context of Islamic texts. For
baseline comparisons, we will evaluate our model
against existing text completion and restoration
techniques used for historical documents, including
context-based generation models and traditional
rule-based methods, to measure the improvement
brought by our language model fine-tuned on Is-
lamic texts.

RQ7 What is the minimum required information
to understand the content of the images? We plan
to analyze the impact of missing letters or words
on sentence completion in Arabic scripts by test-
ing different letter sets to reconstruct incomplete
phrases or sentences. The goal is to evaluate the
accuracy of the reconstructed text by comparing
it to the expected phrase. This will involve using
a trained model, such as Qalam, which leverages
unique features of Arabic script, including its cur-
sive and diacritic-rich structure. These models will
be employed to predict and complete missing ele-
ments. The model will be assessed based on how
well it fills gaps and ensures the reconstructed sen-
tence or phrase is contextually and linguistically ac-
curate. This approach will help improve extraction
by reducing reliance on segmentation and allowing
more robust handling of incomplete or damaged
calligraphic text.

4 Conclusion

This proposal outlines steps to extract textual data
from Arabic calligraphy images, addressing chal-
lenges from the language’s unique features and
the art’s complexity. It focuses on reconstructing

incomplete or damaged calligraphy using Arabic-
specific language models to enhance recognition
accuracy. The research aims to develop tools for
Arabic calligraphy text recognition, benefiting ar-
eas such as historical document preservation and
cultural heritage digitization. While primarily fo-
cused on text, it also acknowledges the importance
of calligraphic styles and structures. It lays the
groundwork for scalable, precise models capable
of handling diverse calligraphic styles.

To respect the cultural and historical significance
of Arabic calligraphy, the research will involve
consultations with domain experts in art history
and cultural heritage. This will ensure the accuracy
and sensitivity of interpretations, while following
best practices in digitization and preserving the
integrity of these valuable artifacts.
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Abstract

This paper contains expressions that may of-
fend the readers.

Accurate detection of offensive language is es-
sential for a number of applications related
to social media safety. There is a sharp con-
trast in performance in this task between low-
and high-resource languages. In this paper,
we adapt fine-tuning strategies that have not
been previously explored for Sinhala in the
downstream task of offensive language de-
tection. Using this approach, we introduce
four models: “Subasa-XLM-R”, which incor-
porates an intermediate Pre-Finetuning step us-
ing Masked Rationale Prediction. Two vari-
ants of “Subasa-Llama” and “Subasa-Mistral”,
are fine-tuned versions of Llama (3.2) and Mis-
tral (v0.3), respectively, with a task-specific
strategy. We evaluate our models on the SOLD
benchmark dataset for Sinhala offensive lan-
guage detection. All our models outperform
existing baselines. Subasa-XLM-R achieves
the highest Macro F1 score (0.84) surpass-
ing state-of-the-art large language models like
GPT-4o when evaluated on the same SOLD
benchmark dataset under zero-shot settings.
The models and code are publicly available.1

1 Introduction

A major challenge in the field of NLP are the
disparities between high- and low-resource lan-
guages. These impact foundational language mod-
els as well as downstream tasks such as offensive
language detection (Weerasooriya et al., 2023a),
an important task at the intersection of social me-
dia analysis and NLP.

As people increasingly spend a significant por-
tion of their day on online platforms like social

*Shanilka Haturusinghe is the primary author. S.R. Liyan-
age is the Corresponding Author.

1Access code and models via
https://github.com/haturusinghe/subasa-llm and
https://github.com/haturusinghe/subasa-plm

media, their exposure to offensive or abusive lan-
guage has surged (Bertaglia et al., 2021). This
trend is equally visible in Sri Lanka, where a sub-
stantial amount of social media content is gener-
ated in Sinhala. Studies show that an alarming
amount of this content is hateful, and the severity
of this issue is evident from several instances in re-
cent years where the Sri Lankan government had
to block social media platforms entirely to curb its
spread, as it had fueled real-world unrest (Awais
et al., 2020).

Sinhala (සිංහල) is an Indo-Aryan language
spoken by over 17 million people in Sri Lanka and
remains a low-resource language (De Silva, 2019).
For offensive language detection specifically, sys-
tems for Sinhala lag behind those developed for
resource-rich languages like English, Spanish, and
Mandarin (Avetisyan and Broneske, 2023; Ranas-
inghe et al., 2024). To the best of our knowl-
edge, fewer than five annotated offensive language
datasets exist for Sinhala, demonstrating its sta-
tus as a low-resource language (Ranasinghe et al.,
2024).

While state-of-the-art large language models
(LLM) like GPT-4o demonstrate strong perfor-
mance in many languages, our evaluations sug-
gest they struggle to reliably identify offensive lan-
guage in Sinhala (results detailed in Section 4). At
the time of submission, the Perspective API (Lees
et al., 2022) which is utilized extensively in both
academia and industry for the purpose of identify-
ing offensive content does not provide support for
Sinhala. Our work addresses these shortcomings
by introducing Subasa (''සුබස''), which translates
to wholesome language. In this paper, we present
four variants of Subasa. These models improve
the current state of offensive language detection
for Sinhala by adapting fine-tuning strategies pre-
viously unexplored for Sinhala.

We address the following research questions:
RQ1: Can intermediate pre-finetuning tasks—
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specifically masked rationale prediction (MRP)—
effectively improve pre-trained language models
(PLMs) for offensive language detection in Sin-
hala?

RQ2: Can task-specific fine-tuning strategies
improve the effectiveness of LLMs for offensive
language detection in Sinhala?

2 Related Work

Shared tasks like TRAC (Kumar et al., 2018) and
HASOC (Chakravarthi et al., 2021) have estab-
lished offensive language detection as an impor-
tant NLP challenge, yet progress remains unevenly
distributed across languages. Generally, building
an effective model for offensive language detec-
tion is challenging due to the subjective nature
of what constitutes offensive content, which can
vary based according to individual beliefs (Weera-
sooriya et al., 2023b). Most research has focused
on high-resource languages like English, French,
German, and Spanish, benefiting from the avail-
ability of large datasets (Zampieri et al., 2022). In
contrast, research on low-resource languages high-
lights the difficulties in detecting offensive lan-
guage (Mozafari et al., 2022), with notable studies
in Tamil (Balakrishnan et al., 2023), Arabic (Shan-
nag et al., 2022), South African languages (Ori-
ola and Kotzé, 2020) and also for Sinhala (Dias
et al., 2018; Fernando et al., 2022; Munasinghe
and Thayasivam, 2022).

Pretrained language models (PLM) have
emerged as a powerful approach for a number
of NLP tasks including offensive language
detection. BERT variants have shown success
when fine-tuned for this task across both high-
resource languages like English (Jahan et al.,
2021) and lower-resource contexts like Arabic
(Althobaiti, 2022) and Sinhala (Rajapaksha et al.,
2023). While intermediate task training has
shown promise in enhancing PLM performance
across various NLP tasks—from semantic parsing
(Pruksachatkun et al., 2020) to natural language
understanding (Aghajanyan et al., 2021)—its
application to offensive language detection
emerged only recently with the introduction of
Masked Rationale Prediction (MRP) by Kim et al.
(2022). Though MRP demonstrated significant
improvements for English, its potential remains
unexplored for low-resource languages. We are
the first to adapt MRP to Sinhala, addressing the
language’s data scarcity.

LLMs are transformer-based models with bil-
lions of parameters trained on massive training cor-
pora (Chowdhery et al., 2023). While LLMs per-
form well in high-resource languages like English,
their effectiveness in low-resource languages is
often limited, as highlighted in various studies
(Ahuja et al., 2023). Adapting LLMs for low-
resource languages is challenging because most
are pre-trained primarily on English data. Ap-
proaches to address this include; (i) continu-
ing training with non-English data, (ii) transfer-
ring knowledge via supervised fine-tuning, and
(iii) extending the LLMs vocabulary to include
non-English tokens (Toraman, 2024). For in-
stance, Toraman (2024) demonstrated that fine-
tuned LLMs can achieve strong performance even
with limited data, as shown for Turkish. Jayakody
and Dias (2024) evaluated the GPT-4o, Llama, and
Mistral models for various tasks in the Sinhala lan-
guage, revealing unsatisfactory results. Notably,
offensive language detection was not attempted.

Prior work on offensive language detection
has explored fine-tuning open-source LLMs
like Llama and Mistral, primarily for high-
resource languages like English (He et al., 2024;
Christodoulou, 2024) and low-resource languages
like Vietnamese (Truong et al., 2024). However,
prior work has not explored open-source LLMs
(e.g., Llama, Mistral) for Sinhala offensive lan-
guage detection, despite their success in other low-
resource languages like Vietnamese (Truong et al.,
2024).

3 Method

3.1 Intermediate Pre-Finetuning Strategy

We adapt a two-stage fine-tuning strategy to op-
timize limited annotated data available for Sin-
hala. We train our models using the SOLD dataset
(Ranasinghe et al., 2024) (DSOLD), which con-
tains 7,500 training and 2,500 test samples. We
split the training set into 9:1 (6,750 training, 750
validation) and reserve the test set for final eval-
uation. For more details on DSOLD, see Section
3.3.

Following Kim et al. (2022), we employ masked
rationale prediction (MRP) as the intermediate
task in the first stage of the fine-tuning strategy.
For a sentence S, the embedded sentence can be
represented as:

XS =
{
xS
0 , x

S
1 , . . . , x

S
n−1

}
∈ Rn×d (1)
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(+)
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Figure 1: Two-stage fine-tuning strategy utilized
to finetune a pre-trained subasa-xlm-roberta-base
model.

where n is the sequence length and d is the embed-
ding size. Similarly, the rationale labels R can be
represented as:

XR =
{
xR
0 , x

R
1 , . . . , x

R
n−1

}
∈ Rn×d (2)

Unlike XLM-R's masked language modeling
(MLM), which masks tokens, MRP masks ratio-
nale labels to construct partially masked rationale
embeddings X̃R. We randomly select and replace
75% of non-special rationale labels with zero vec-
tors 0⃗. For example, if xR2 and xR4 are masked:

X̃R =
{
0⃗, xR

1 , 0⃗, x
R
3 , 0⃗, . . . , x

R
n−2, 0⃗

}
(3)

where the first and last tokens (CLS/SEP) are also
zeroed. The model predicts masked rationale la-

Hyper-parameter Stage 1 Stage 2

Learning Rate 2 × 10−5 2 × 10−5

Batch Size 16 16

Epochs 5 5

Optimizer RAdam RAdam

Mask Ratio 0.75 -

Base Model xlm-roberta-base xlm-roberta-base

Table 1: hyper-parameters for intermediate pre-
finetuning and task-specific fine-tuning

bels by combining XS with X̃R:

H
(0)
MRP = XS + X̃R (4)

H
(l+1)
MRP = Transformer

(
H

(l)
MRP

)
(5)

X̂R = MLP
(
H

(L)
MRP

)
(6)

Here, H(l)
MRP is the l-th transformer layer output,

and X̂R are predicted rationale labels.
Stage 1 - MRP: First we convert binary ratio-

nale labels (0/1 sequences) into padded tensors
that align with the tokenized text length through ra-
tionale processing, ensuring dimensional compat-
ibility with the input sequence. These processed
rationales undergo embedding fusion, where to-
ken embeddings XS (Equation 1) are combined
with rationale embeddings XR (Equation 2) via
summation to form the initialized representation
H

(0)
MRP (Equation 6). The fused embeddings then

enter a masking phase, where 75% (selected as a
hyperparameter for our implementation) of non-
special tokens in X̃R (Equation 3) are randomly
masked. We mask 75% of non-special tokens-a
value empirically validated through ablation (Ta-
ble 6) as optimal for balancing noise and learning
signal for our Sinhala setting.

Stage 2 - Offensive Language Detection: Us-
ing the model states from Stage 1, we fine-tune for
binary classification and train on the full DSOLD

training set. During both stages, we add special to-
kens (@USER, <URL>) to the tokenizer to handle
frequent artifacts in training data.

Figure 1 provides an overview of the two-stage
strategy described above, while Table 1 lists the
hyperparameters used during both stages of the In-
termediate Pre-Finetuning Strategy.

To contextualize our results, we compare
against three baselines: (1) a 1D CNN adapted
from English sentiment analysis (Kim, 2014), (2)
a 2D CNN previously used for Sinhala NLP
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(Ranasinghe et al., 2019) (both using FastText
(Bojanowski et al., 2017) embeddings), and (3)
a vanilla fine-tuning of xlm-roberta-base on
DSOLD. These represent traditional, domain-
specific, and PLM-based approaches, respectively.

The performance of the models under the inter-
mediate pre-finetuning strategy experiments is pre-
sented in Table 3.

3.1.1 Ablation Study Design

To validate the impact of our intermediate Pre-
Finetuning strategy, we conducted three ablation
experiments using xlm-roberta-base:

1. Masking Ratio Variation: We trained mod-
els with MRP mask ratios ∈ {0.25, 0.75, 0.9, 1.0},
keeping all other hyper-parameters fixed (Table 1).

2. Intermediate Task Replacement: We
replaced MRP with standard masked language
modeling (MLM), using mask probabilities ∈
{0.15, 0.5} and finetuned on DSOLD.

3. No Intermediate Task: Direct fine-tuning
on DSOLD without MRP/MLM, starting from the
default xlm-roberta-base model states. Results
are summarized in Table 6, with full metrics in Ap-
pendix Table 8.

3.2 Task Specific Fine-tuning Strategy

We instruction-finetune Llama-3 and Mistral mod-
els using parameter-efficient fine-tuning (PEFT)
with 4-bit quantization (QLoRA). Our prompt (see
Appendix A for the full prompt template) is struc-
tured for classification (OFF/NOT) and offensive
phrase extraction, encouraging localization of of-
fensive content. We employ LoRA (Hu et al.,
2021) (rank=16, α=16) targeting all linear projec-
tions, balancing efficiency and performance. Table
2 shows the list of hyper-parameters used during
training for task specific fine-tuning.

Training Data: Using the prompt template (Ap-
pendix A) for each DSOLD training sample, we
populate the prompt with: The original Sinhala
text in the ‘[TWEET]‘ field, The ground-truth
label (OFF/NOT) in the ‘[LABEL]‘ field, and of-
fensive phrases extracted from contiguous spans
of rationale-annotated tokens in the ‘[PHRASES]‘
field. We validate the effectiveness of our fine-
tuning strategy with the following baselines:

Aya101 (Üstün et al., 2024) (multilingual
instruction-finetuned) and GPT-4o are evaluated
using the same prompt in zero-shot mode with the
same prompt template. The performance of the

models following task specific fine-tuning are pre-
sented in Table 4.

Hyper-parameter Value

Learning Rate 2 × 10−4

Batch Size 16

Epochs 5

Optimizer AdamW (8-bit)

Mask Ratio 0.75

Lora-R 16

Lora-Alpha 16

Lora-Dropout 0

Target Modules { "q_proj", "k_proj", "v_proj",
"o_proj", "gate_proj", "up_proj",
"down_proj" }

Max Sequence Length 2048

Per Device Train Batch Size 4

Gradient Accumulation Steps 4

Weight Decay 0.01

Table 2: hyper-parameters for task specific fine-tuning

3.3 Dataset

We utilize DSOLD (Ranasinghe et al., 2024), the
largest publicly available dataset for identifying
offensive language in the Sinhala script. Among
the limited number of Sinhala offensive language
datasets, DSOLD stands out as the only one pro-
viding rationale labels, where 1 indicates a token
that serves as a rationale for the offensive label,
and 0 denotes a non-rationale token. A rationale
can be defined as a specific text segment that justi-
fies the human annotators decision of the sentence-
level labels.
DSOLD consists of data collected from Twit-

ter and only contains tweets written in the Sinhala
script, excluding those in Roman script or mixed
script. Sentence-level offensive labels were deter-
mined by majority voting among the three anno-
tators. Offensive tokens were identified based on
agreement between at least two out of the three an-
notators, establishing the ground truth for token-
level annotations (Ranasinghe et al., 2024). Se-
lected examples from DSOLD are given in Ap-
pendix Table 7.

From the original dataset, a random split was
performed, where 75% of the instances were as-
signed to the training set, and the remaining in-
stances were assigned to the testing set. We split
the training set again into 9:1 (6,750 training, 750
validation) and reserve the testing set for final eval-
uation. Appendix figure 2 describes the class dis-
tribution in the dataset.

263



Model OFFENSIVE NOT OFFENSIVE Weighted Macro

P R F1 P R F1 P R F1 F1

1D CNN Model (Kim, 2014) 0.60 0.81 0.69 0.83 0.64 0.71 0.84 0.70 0.70 0.69

2D CNN Model based on Ranasinghe et al. (2019) 0.79 0.65 0.69 0.79 0.85 0.82 0.78 0.78 0.77 0.76

xlm-roberta-base-no-finetuning 0.00 0.00 0.00 0.59 1.00 0.74 0.35 0.59 0.44 0.37

xlm-roberta-base-vanilla-finetuned 0.77 0.82 0.79 0.87 0.83 0.85 0.83 0.82 0.82 0.82

Subasa-XLM-R 0.78 0.84 0.81 0.89 0.84 0.86 0.84 0.84 0.84 0.84

Table 3: Evaluation results of Subasa-XLM-R and other baselines on DSOLD. We report per class (OFFENSIVE,
NOT OFFENSIVE) precision (P), recall (R), and F1, and their weighted averages. Macro-F1 is listed with the best
result in bold.

Model OFFENSIVE NOT OFFENSIVE Weighted Macro

P R F1 P R F1 P R F1 F1

Mistral-7b-instruct-v0.3 0.405 0.991 0.575 0.550 0.007 0.014 0.491 0.406 0.242 0.295

Meta-Llama-3.1-8B-Instruct 0.564 0.375 0.449 0.655 0.805 0.723 0.619 0.6315 0.612 0.586

Meta-Llama-3.2-3B-Instruct 1.000 0.000 0.000 0.594 1.000 0.745 0.758 0.594 0.443 0.373

Aya101 (Üstün et al., 2024) 0.864 0.422 0.567 0.707 0.954 0.812 0.771 0.738 0.713 0.690

GPT-4o-2024-05-13 0.622 0.584 0.748 0.928 0.938 0.717 0.799 0.734 0.730 0.733

Subasa-Mistral-7b-instruct-v0.3 0.917 0.611 0.734 0.783 0.962 0.863 0.838 0.820 0.811 0.799

Subasa-Llama-3.2-3B 0.822 0.698 0.755 0.813 0.896 0.853 0.816 0.816 0.813 0.804

Subasa-Llama-3.1-8B 0.837 0.738 0.785 0.834 0.902 0.867 0.836 0.836 0.834 0.826

Table 4: Evaluation results of Subasa-Llama and Subasa-Mistral and other baselines on DSOLD. We report per
class (OFFENSIVE, NOT OFFENSIVE) precision (P), recall (R), and F1, and their weighted averages. Macro-F1
is listed with the best result in bold.

Example GT Our Models (Subasa) Baselines

Sinhala Text Translation Llama3.1 Mistral XLM-R GPT4o Aya101 Mistral Llama3.1 XLM-R-L XLM-R-B

@USER
ෙපාෙහාට‍්ටුෙව‍්
උන‍්ෙග‍් සැබෑ
ස‍්වරෑපය තමයි
ඕක. අමු තිරිසන‍්නු

@USER That is
the true nature
of those in Po-
hottuwa. Real
savages.

OFF OFF OFF OFF NOT OFF NOT NOT OFF NOT

@USER ඒ ෙදක පස‍්ස
පැත‍්ෙත ගහගනිං

@USER stick
those two up your
ass.

OFF OFF NOT NOT NOT NOT NOT NOT NOT NOT

"ඒ ෙගානා වික‍්කා"
කියලා ෙකාෙහාමද
ඉංගී�සිෙයන‍්
කියන‍්ෙන‍් #asking-
forafriend

How do you say “I
sold that bull” in
English?

OFF NOT NOT OFF OFF OFF OFF OFF OFF OFF

Table 5: Classification examples from DSOLD showing model predictions. Original Sinhala text with transla-
tions, ground truth (GT), our Subasa models’ predictions, and baseline comparisons. OFF: Offensive, NOT:
Non-offensive.

4 Results and Discussion

Concerning RQ1, our Subasa-XLM-R model
achieves a macro-F1 of 0.84 (Table 3), outperform-
ing both CNN baselines and the vanilla fine-tuned
XLM-R (0.82 macro-F1). This 2% improvement
demonstrates that MRP effectively bridges the gap
between pre-training and downstream task adapta-
tion in Sinhala’s low-resource setting. The class
imbalance in DSOLD (Appendix 2) was the rea-

son behind the use of macro-F1 for performance
comparison, which equally weights both classes
despite the majority NOT OFFENSIVE examples.

Ablation Study insights show that MLM with
50% masking matches MRP’s performance (0.83
vs 0.84 macro-F1). This suggests that in low-
resource settings, any token-level intermediate
task (MLM/MRP) can enhance downstream per-
formance by reinforcing local context understand-
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ing. While both MRP and MLM improve perfor-
mance, their similar results warrant further study
into task-specific intermediate objectives for low-
resource languages.

Concerning RQ2, our results (Table 4)
show significant gains across all LLM vari-
ants. The Subasa-Llama-3.1-8B model, derived
from Meta-Llama-3.1-8B-Instruct, achieves
the highest macro-F1 of 0.826, outperforming
its base version (0.586 to 0.826). Similarly,
Subasa-Llama-3.2-3B–adapted from Meta-Llama-
3.2-3B-Instruct–achieves a macro-F1 of 0.804,
more than doubling its base model’s performance
(0.373 to 0.804). The Subasa-Mistral-7B variant,
built on Mistral-7B-Instruct-v0.3, also shows
improvement compared to its base version (0.295
to 0.799). All our models surpass GPT-4o’s zero-
shot performance (0.733 macro-F1), with even the
3B Subasa-Llama model outperforming GPT-4o
despite being a significantly smaller model. This
highlights how task-specific fine-tuning with
QLoRA enables open-source LLMs to specialize
for low-resource languages.

When comparing results from Table 3 and Ta-
ble 4, while Subasa-Llama-3.1-8B (0.826 macro-
F1) leads among LLM variants, it slightly trails
the smaller Subasa-XLM-R model (0.84 macro-
F1). This counterintuitive result, where a 270M-
parameter model outperforms an 8B-parameter
LLM, suggests MRP’s intermediate task pro-
vides a focused learning signal for offensive lan-
guage detection, compensating for the XLM-R
model’s smaller size. Another factor is that the
Subasa-Llama variants, despite their larger param-
eter count, inherit base models (Llama-3.1/3.2-
Instruct) with minimal Sinhala pre-training data
compared to XLM-R’s multilingual foundation
which contains the Sinhala language in its pre-
training corpus.

5 Conclusion

This study addresses the challenge of offensive
language detection in Sinhala, a low-resource
language, by introducing four novel models:
Subasa-XLM-R, Subasa-Llama (two variants),
and Subasa-Mistral. To the best of our knowledge,
our work is the first to adapt intermediate pre-
finetuning and task-specific fine-tuning strategies
for Sinhala, demonstrating significant advance-
ments over existing baselines and state-of-the-art
LLMs like GPT-4o. Below, we summarize our

Configuration Accuracy Macro F1

Intermediate Task = MRP

Mask Ratio = 0.25 0.83 0.83

Mask Ratio = 0.5 0.82 0.82

Mask Ratio = 0.75 0.84 0.84

Mask Ratio = 1.00 0.83 0.83

Intermediate Task = MLM

Mask Prob = 0.15 0.84 0.83

Mask Prob = 0.50 0.84 0.83

No Intermediate Task 0.82 0.82

Table 6: Ablation Study Results

findings in relation to our initial research questions
posed in Section 1:

RQ1: Can intermediate pre-finetuning tasks
(e.g., masked rationale prediction) improve PLMs
for offensive language detection in Sinhala? Our
results confirm that intermediate pre-finetuning
with MRP enhances model performance, with
Subasa-XLM-R achieving a macro-F1 of 0.84, sur-
passing vanilla fine-tuned XLM-R (0.82). Abla-
tion studies reveal that token-level intermediate
tasks—whether MRP or standard MLM—improve
downstream task performance for Sinhala (a low
resource setting). Notably, MLM with 50% mask-
ing nearly matches MRPs gains (0.83 vs. 0.84
macro-F1), suggesting that reinforcing local con-
text understanding through intermediate tasks aids
the performance of the downstream task for Sin-
hala.

RQ2: Can task-specific fine-tuning improve
LLMs for offensive language detection in Sinhala?
Our results indicate that QLoRA enables open-
source LLMs to specialize effectively for Sin-
hala and surpass GPT-4o’s zero-shot performance.
(e.g., Subasa-Llama-3.1-8B achieves a macro-F1
of 0.826, outperforming GPT-4o (0.733) and its
base model (0.586).)

We publicly release all models and code to sup-
port Sinhala NLP research. Our results estab-
lish that strategic fine-tuning is beneficial for low-
resource offensive language detection, with impli-
cations for other underrepresented languages.

Limitations

In our approach, we adopted xlm-roberta-base
as the foundation for Subasa-XLM-R due to hard-
ware and computational resource limitations. This
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choice precludes direct comparisons with larger
variants such as xlm-roberta-large, which
might exhibit different behaviors when subjected
to our intermediate pre-finetuning strategy. Sim-
ilarly, our experiments with Mistral and Llama
3 models were restricted to smaller variants, lim-
iting insights into how larger variants of these
LLMs might perform in our task-specific fine-
tuning strategy.

Our approach to the task-specific fine-tuning
strategy utilized a single prompt template in a zero-
shot prompting setting during training for consis-
tency. While this approach reduced variability in
experiments, it limited insights into the sensitivity
of results against alternative prompting strategies.
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A Prompt Template

The full instruction template used for fine-tuning
is shown below:

System: "You are an emotionally
intelligent assistant who
speaks Sinhala and English
Languages. Your task is to
determine whether each tweet
is OFFENSIVE or NOT OFFENSIVE.
For each tweet , provide a

single word as your output:
either \"OFF\" or \"NOT\". For
offensive tweets , identify

and list the specific
offensive phrases without
translation .\n"

User: "Please classify the
following tweet as \"OFF\" or
\"NOT\". If offensive , list
the specific offensive phrases
:\n\n’[TWEET]’"

Assistant: "[ LABEL ]\ nPhrases: [
PHRASES ]"

Placeholders: - [TWEET]: Original Sinhala text
from DSOLD. - [LABEL]: Ground-truth label (OFF
or NOT). - [PHRASES]: Offensive phrases extracted
from rationale annotations.
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Tweet Human Translation Label Rationales

@USERඒ හිතන‍් ඉන‍්ෙන‍්
@USER වෙග‍්ම මටත‍්
ෙමෝඩ විමසම‍් කියලා
.සැමක‍් mate.

@USER She thinks that I get
aroused like her. Poor thing
mate.

NOT []

@USER @USER ෙන‍්.
ඇය ඉස‍්සර විචාරක
ෙකෙනක‍්?

@USER @USER Damn,
isnt this the girl who used to
be a news anchor

NOT []

@USER .. . එන‍්න ඔෙබ‍්
ජන‍්ම දා ඌ * පරීක‍්ෂා
කරනවා

@USER @USER Yo.. do
you like to get your a**
cracked open on your birth-
day

OFF [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0]

Table 7: Examples from DSOLD.

Configuration OFFENSIVE NOT OFFENSIVE Weighted Macro

P R F1 P R F1 P R F1 F1

MRP (Ours)

Mask Ratio = 0.25 0.79 0.82 0.80 0.87 0.85 0.86 0.84 0.84 0.84 0.83

Mask Ratio = 0.50 0.85 0.72 0.78 0.83 0.91 0.87 0.83 0.83 0.83 0.82

Mask Ratio = 0.75 0.79 0.85 0.82 0.89 0.84 0.87 0.85 0.85 0.85 0.84

Mask Ratio = 1.00 0.78 0.81 0.80 0.87 0.84 0.85 0.83 0.83 0.83 0.83

MLM Intermediate

Mask Prob = 0.15 0.81 0.80 0.81 0.87 0.87 0.87 0.85 0.85 0.85 0.84

Mask Prob = 0.50 0.82 0.79 0.80 0.86 0.88 0.87 0.84 0.84 0.84 0.84

No Intermediate
Task

0.77 0.82 0.80 0.87 0.83 0.85 0.83 0.83 0.83 0.82

Table 8: Complete ablation study results on XLM-R-Base with per-class metrics. All experiments used identical
training data, validation splits, and hyperparameters (Table 1). We report Precision (P), Recall (R), and F1 for both
classes, along with weighted averages and Macro-F1. Best MRP configuration (Mask Ratio = 0.75) shown in bold.
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Figure 2: Class Distribution of Training and Testing Sets: The pie charts illustrate the distribution of ’NOT Offen-
sive’ and ’Offensive’ instances in the training set (75% of the original dataset) and testing set (25% of the original
dataset). DSOLD contains 10,000 Sinhala tweets in total, and out of these 4191 are labeled as offensive and 5,809
labelled as non-offensive.
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Abstract

Code-generating Large Language Models
(LLMs) have become essential tools in mod-
ern software development, enhancing produc-
tivity and accelerating development. This pa-
per aims to investigate the fine-tuning of code-
generating LLMs using Reinforcement Learn-
ing and Direct Preference Optimization, further
improving their performance. To achieve this,
we enhance the training data for the reward
model with the help of symbolic execution
techniques, ensuring more comprehensive and
objective data. With symbolic execution, we
create a custom dataset that better captures the
nuances in code evaluation. Our reward models,
fine-tuned on this dataset, demonstrate signifi-
cant improvements over the baseline, CodeRL,
in estimating the quality of generated code. Our
code-generating LLMs, trained with the help of
reward model feedback, achieve similar results
compared to the CodeRL benchmark.

1 Introduction

Reinforcement Learning (RL) has become one of
the most powerful LLM fine-tuning techniques
(Ouyang et al., 2022). RL integrates feedback into
the fine-tuning process, steering the training in the
direction of human preferences. There are vari-
ous approaches to applying RL to LLMs, but the
general idea often consists of three steps:

1. Fine-tune a pre-trained LLM with supervised
training, generate multiple answers for each
given prompt and assign each answer a quality
score.

2. Use the resulting preference data to train a
reward model - an LLM that learns to produce
a feedback score for a given code snippet.

3. Generate feedback with the trained reward
model and use this feedback to fine-tune the
text-generating LLM.

RL has found many applications, one of which be-
ing coding assistance (Le et al., 2022; Dou et al.,
2024; Wang et al., 2022). According to Yu et al.
(2024), code generation is particularly well-suited
for RL because, unlike natural language tasks, the
preference data can be created automatically and
more objectively through the percentage of passed
unit tests.
However, the quality of unit test feedback is highly
dependent on the test data quality (Beller et al.,
2015). When human developers design test cases,
they may overlook a path in the Control Flow
Graph (CFG) or cover one path multiple times
(Huang, 2017). These errors may result in biased
feedback and, thus, incorrect RL training data.
Our work aims to evaluate whether symbolic exe-
cution improves reward-based fine-tuning of code-
generating models. To achieve this, we enhance
the APPS dataset (Hendrycks et al., 2021), a real-
world coding dataset, by augmenting it with au-
tomatically generated test cases created through
symbolic execution. This technique executes code
with symbolic values (King, 1976), restricted to
specific ranges for each control flow graph (CFG)
path, ensuring that every path is covered exactly
once. Symbolic execution tools analyze the CFG
and generate a sample input for every path, elimi-
nating human biases in test case creation.
Using the augmented APPS dataset, we fine-tune
the CodeT5 model (Wang et al., 2021) with RL,
comparing its performance to CodeT5-finetuned-
CodeRL (Le et al., 2022), a CodeT5 version
fine-tuned with RL on the original APPS that
achieved SOTA performance on the MBPP bench-
mark (Austin et al., 2021) at the time of its release.
Finally, we evaluate symbolic execution for Direct
Preference Optimization (DPO), a supervised al-
ternative to RL, where the model can be trained
directly on a dataset of chosen-rejected code pairs,
without the usage of a reward model (Rafailov et al.,
2024). This addition allows us to evaluate the per-
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formance of symbolic execution under both explicit
(RL) and implicit (DPO) reward settings.

2 Related work

There have been invented several frameworks for
fine-tuning coding models with RL-based strate-
gies. RLTF, Reinforcement Learning from Unit
Test Feedback, utilizes unit test results as multi-
granular feedback signals that penalize incorrect
basic blocks (Liu et al., 2023). PPOCoder ex-
tends unit test feedback with syntactic and seman-
tic matching scores between generated and ground
truth code (Shojaee et al., 2023). Dou et al. (2024)
introduce StepCoder, addressing the issue of not
penalizing unexecuted code by decomposing gener-
ation problems into simple sub-tasks and masking
out unreached code.
Several recent papers introduce systems that com-
bine symbolic execution tools and LLMs during
inference. Wang et al. (2024) propose an LLM
agent that generates execution path constraints for
Python code by iteratively calling a satisfiability
solver. Zaharudin et al. (2024) combine LLMs with
symbolic execution tools to identify code vulner-
abilities, while Chen et al. (2024) apply both to
secure medical software.
Although research has explored RL for fine-tuning
code-generating models and integrated symbolic
execution with LLM inference frameworks, little
attention has been paid to combining these ap-
proaches. Specifically, the use of symbolic ex-
ecution for fine-tuning code-generating models
remains largely unexplored. This paper aims to
bridge this gap.

3 Methodology

Our approach consists of two main steps: prefer-
ence dataset creation and LLM fine-tuning. First,
we use symbolic execution to generate test cases
for APPS train tasks, produce code solutions, and
rank them by performance. We then sample from
the ranked codes to train CodeT5-base (Wang
et al., 2021) as a reward model, which is subse-
quently used to optimize the code-generating LLM,
CodeT5-large-ntp-py (Le et al., 2022).

3.1 APPS analysis

We apply symbolic execution tools on APPS
(Hendrycks et al., 2021) - a dataset of coding prob-
lems scraped from open-source websites. APPS
consists of 5000 train and 5000 test tasks of three

Figure 1: Test case generation pipeline.

difficulty levels, all in Python. For each task, there
are several input-output pairs available for testing.
We are especially interested in test cases for train-
ing data since we use them to train the reward
model on code-feedback pairs. Figure 3 presents
that 2012 out of 5000 tasks in the train set contain
only one test case each. This distribution results in
a percentage of passed tests being either 100% or
0%, leading to highly coarse and unrefined feed-
back. Moreover, APPS test cases were manually
created by humans, which opens the possibility of
overseeing an execution path (Huang, 2017). In
order to extend the number of test cases and ensure
the coverage of all CFG paths, we generate our
custom inputs.

3.2 Test case generation

Our input generation pipeline is presented in Figure
1. This pipeline employs CrossHair1 - an example
input generation tool for Python functions. With
the help of a Satisfiability Modulo Theories solver,
CrossHair explores all execution paths and finds
examples and counterexamples of values.
To run correctly, CrossHair requires a Python func-
tion with annotated input types. Without type anno-
tation, CrossHair outputs data of all possible types,
including those irrelevant to the task. Since APPS
functions lack default type hints, we use the Mon-
keyType annotation tool 2 to automatically infer
and generate type annotations for ground truth func-
tions based on sample input. We discard tasks that
deviate from the structure of a single, standalone
function and tasks that do not have any sample
inputs. This filtering results in a dataset of 2402
tasks that are processed through the input genera-
tion pipeline and used for reward model training.

1https://github.com/pschanely/CrossHair
2https://github.com/Instagram/MonkeyType
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Figure 2: CodeRL training pipeline. Our pipeline exten-
sion is marked green.

3.3 Fine-tuning workflow

Our fine-tuning pipeline relies on CodeRL (Le
et al., 2022) - a framework for RL-based LLM
training. CodeRL implements an actor-critic ar-
chitecture with the code-generating model as the
actor and the reward model as the critic. We modify
CodeRL to integrate custom test cases created with
symbolic execution, as depicted in Figure 2.
The training begins with a supervised warm-up
phase to expose the model to NL-To-Python gen-
eration examples. We employ the original APPS
training set as training data for the warm-up. A val-
idation set, created by sampling 50% of the original
APPS test data, is used to optimize the number of
warm-up epochs, with the remaining 50% reserved
for intermediate and final testing.
After warm-up, the LLM generates 100 codes per
task for the custom training set. These codes are
tested against the corresponding custom input val-
ues. For each code, the tests return a category:
Compile Error, Runtime Error, (at least one) Test
Failed, or Test Passed. The resulting code-feedback
pairs are used to supervisely train CodeT5-base as
the critic model that classifies codes into four cate-
gories.
After training, the critic predicts test outcomes for
each actor-generated code in the custom train set.
These codes and predictions, along with ground
truth solutions, are passed into the actor’s train-
ing loop. Following CodeRL, we compute cross-
entropy loss for ground truth data and RL loss for
generated codes based on critic scores.
The final model is evaluated on 2,500 tasks from
the APPS test set, excluding those in the valida-
tion set, and compared to the warm-up model and
CodeRL baseline.

3.4 DPO training
In DPO, we begin the first two steps of the RL
pipeline: supervised warm-up, followed by code
generation for training set tasks with the new model.
For each task, we select one correct solution and
uniformly sample one incorrect solution to create
a dataset of chosen-rejected pairs. This dataset is
used to train CodeT5 with DPO trainer from the
Huggingface TRL library 3.

3.5 Metrics
For evaluating actor models, we use pass@k (Chen
et al., 2021), the standard for measuring the per-
formance of generated code. For each problem, if
a model generates n code samples and c of them
are correct, pass@k(n, c, k) will measure the prob-
ability that at least one of the top k codes passes
all unit tests. The mathematical definition of this
metric is presented in 1.

pass@k := E
Problems

[
1−

(
n−c
k

)
(
n
k

)
]

(1)

In this paper, we use a k of 5.
For the critic evaluation, we employ two metrics.
First, we use accuracy, as the model is a classifier
that predicts categorical labels. However, accuracy
alone is not sufficient since it only reflects the per-
centage of correct predictions without considering
the severity of misclassifications. The categories
have an inherent order: If a code results in a com-
pile error, it would be a less crucial mistake to pre-
dict a run-time error than code correctness. Thus,
we also employ Mean Average Error, or MAE. We
accordingly assign numbers from 0 to 3 to each cat-
egory and calculate the absolute difference between
the predicted and actual category values. This met-
ric ensures that misclassifications involving more
dissimilar categories (e.g., predicting "Test Passed"
for code with a compile error) are penalized more
heavily than those involving similar categories (e.g.,
predicting "Run-time Error" for a compile error).

4 Experiment details

4.1 Critics
We explore two training configurations to evaluate
the impact of symbolic execution data:

• CodeRL-SE-critic: Fine-tunes the existing
CodeRL critic model CodeT5-finetuned-critic

3https://huggingface.co/docs/trl/main/en/dpo_
trainer
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(Le et al., 2022), enhancing it with symbolic
execution inputs.

• CodeT5-SE-critic: Trains a new critic model
from scratch using CodeT5-base (Wang et al.,
2021), the same base model used by CodeRL
(Le et al., 2022), but with symbolic execution
training data.

We train both models for one epoch using a learning
rate of 2e-5. Both values are determined empiri-
cally.
Additionally, we evaluate the CodeRL critic model
CodeT5-finetuned-critic since the paper (Le et al.,
2022) does not provide any information about critic
performance.

4.2 Actors

For actor training, we use CodeT5-large-ntp-py (Le
et al., 2022), a version of CodeT5 optimized for
Python code generation tasks. We use this model
because it was used as the base model for CodeRL
model training. We perform two training experi-
ments, each with one of our trained critic models,
and evaluate these actors alongside the CodeRL
actor. We train these models for one epoch with a
learning rate of 2e-6. We determined these values
empirically as well. Besides training our models,
we run the inference on CodeRL actor and compare
it with our results.

4.3 DPO

In DPO, CodeT5-large-ntp-py is trained for one
epoch, with a learning rate of 2e-6 and a β of
0.1. β determines how close the DPO model re-
mains to the supervise fine-tuned model, where a
smaller β means a further deviation toward DPO
loss (Rafailov et al., 2024).

5 Results

5.1 Enhancing APPS

Figure 3 compares the test case distributions of the
original and custom symbolic execution train sets.
The custom data displays a noticeable rightward
skew, reflecting an increase in test case number per
task. The mean number of test cases increases from
1 to 5, and the median from 5.16 to 7.22. This ob-
servation indicates that our approach succeeded in
the quantitative enhancement of the training dataset
by adding more test cases.

5.2 Critic models

The evaluation results for the critic models are pre-
sented in Table 1. Both of our models, CodeRL-
SE-critic and CodeT5-SE-critic, demonstrate sig-
nificant improvements over the baseline CodeT5-
finetuned-critic used in CodeRL. Among these,
CodeRL-SE-critic, a fine-tuned version of CodeT5-
finetuned-critic, achieves the highest accuracy, sur-
passing the original model by 37.19%. Simi-
larly, CodeT5-SE-critic, which uses CodeT5-base
as its foundation, outperforms CodeRL by 11.33%.
These findings show the effectiveness of train-
ing with the symbolic execution-enhanced dataset,
which positively influences the reward model’s per-
formance.

Model Accuracy MAE
CodeRL-SE-critic 0.4250 0.6617
CodeT5-SE-critic 0.3449 0.8377
CodeT5-finetuned-critic 0.3098 0.9843

Table 1: Evaluation results for critic models, sorted by
accuracy.

5.3 Actor models

The performance of CodeT5-large-ntp-py before
and after the warm-up, the actor models, and the
DPO model is shown in Table 2, divided into three
difficulty levels, along with overall performance
across all levels.
First, we can see the importance of a supervised
warm-up before RL training: the results of the su-
pervisely warmed-up model are significantly better
than the base model - CodeT5-large-ntp-py. This
results in the warmed-up model being a solid base
model for further fine-tuning. Moreover, we can
see that all fine-tuned models, regardless of the
technique and dataset used, outperform supervisely
warmed-up CodeT5-large-ntp-py. Thus, all our set-
tings have the potential to improve LLM coding
performance.
Nonetheless, our best actor model, RL with
CodeRL-SE-critic, achieves only a slight improve-
ment over the CodeRL baseline CodeT5-finetuned-
CodeRL, with an overall performance gain of 0.14,
measured in absolute difference. It outperforms the
baseline for more complex tasks but loses for the
simplest category. In contrast, our second actor,
RL with CodeT5-SE-critic, demonstrates inferior
performance compared to CodeRL. Several fac-
tors could contribute to these results. In RL, if
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Figure 3: The distribution of test case number in the original train set (left) and the modified train set (right).

Training method Introductory Interview Competition Total
RL with CodeRL-SE-critic 9.42 3.52 1.91 4.37
RL (CodeT5-finetuned-CodeRL) 10.11 3.09 1.90 4.23
DPO 8.35 3.08 1.53 3.81
RL with CodeT5-SE-critic 8.09 2.53 1.66 3.44
Supervised warm-up 7.91 2.71 0.67 3.33
None (CodeT5-large-ntp-py) 0.00 0.00 0.00 0.00

Table 2: Pass@5 results for actor models, sorted by overall performance.

the training and evaluation distributions differ, the
actor may learn to perform poorly even if the re-
ward model scores are correct (Casper et al., 2023).
Furthermore, RL training involves numerous hyper-
parameters that are challenging to optimize (Eimer
et al., 2023), and suboptimal hyperparameter tun-
ing may have negatively impacted the model’s per-
formance.
Similarly, our DPO model also underperforms rel-
ative to CodeRL. According to Xu et al. (2024),
DPO models might assign disproportionately high
probabilities to out-of-distribution data due to the
absence of an explicit KL-divergence term. This
phenomenon may explain the poor performance of
DPO.
While our best actor model demonstrates a slight
advantage over CodeRL, the overall improvements
for the actor models are notably less pronounced
than those observed in the critic models. This
finding challenges the intuitive expectation that a
stronger reward model would lead to a more effec-
tive policy. The results raise an important question
for future research: if improvements in the critic do
not directly translate to better actor performance,
to what extent does critic quality contribute to ac-
tor optimization compared to other factors, such as
hyperparameter selection?

6 Conclusion

In this study, we investigated the intersection of
fine-tuning for code-generating models and sym-
bolic execution. By enhancing the APPS dataset
with symbolic execution inputs, we ensured a solid
coverage of paths within the Control Flow Graph.
Using this enriched dataset, we trained two critic
models that significantly outperformed the base-
line - the CodeRL critic. These results indicate the
high potential of using symbolic execution tools to
generate training data for reward models. The en-
hanced coverage provided by symbolic execution
enabled the reward models to access more informa-
tive and accurate training data, thereby improving
their ability to evaluate a code’s performance.
At the same time, while actor and DPO models
outperformed their base models, they gained only a
slight advantage over the CodeRL actor. Although
our critic models predict more precise feedback,
the actors stay on a similar level to CodeRL.
We believe that the intersection of Reinforcement
Learning and symbolic execution holds significant
potential for advancing code-generating models.
Future work could investigate the relationship be-
tween critic performance and actor effectiveness,
optimize hyperparameter configurations for actor
training, and explore datasets with further pro-
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gramming languages or other fine-tuning tasks to
achieve similar gains for actor models. With further
research, we suggest that symbolic execution com-
bined with Reinforcement Learning will enable the
development of more accurate and robust coding
assistants.

7 Acknowledgements

I am grateful to the Zuse School ELIZA for their
support throughout my academic journey. Their
valuable networking opportunities have signifi-
cantly contributed to my professional and personal
growth.

276



References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program Synthesis with Large
Language Models. Preprint, arXiv:2108.07732.

Moritz Beller, Georgios Gousios, Annibale Panichella,
and Andy Zaidman. 2015. When, how, and why
developers (do not) test in their IDEs. In Proceedings
of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pages 179–190, Bergamo Italy.
ACM.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, Tony Wang, Samuel Marks,
Charbel-Raphaël Segerie, Micah Carroll, Andi Peng,
Phillip Christoffersen, Mehul Damani, Stewart
Slocum, Usman Anwar, Anand Siththaranjan, Max
Nadeau, Eric J. Michaud, Jacob Pfau, Dmitrii
Krasheninnikov, Xin Chen, Lauro Langosco, Peter
Hase, Erdem Bıyık, Anca Dragan, David Krueger,
Dorsa Sadigh, and Dylan Hadfield-Menell. 2023.
Open Problems and Fundamental Limitations of
Reinforcement Learning from Human Feedback.
Preprint, arXiv:2307.15217.

Jingxue Chen, Liangjun Deng, Yao Qiu, Pengbiao Zhao,
Hang Lei, Jingcheng Song, and Xiaopei Wang. 2024.
Llm-Based Automated Modeling in Symbolic Execu-
tion for Securing Medical Software. Preprint, Social
Science Research Network:4938953.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code. Preprint,
arXiv:2107.03374.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu
Zhou, Wei Shen, Junjie Shan, Caishuang Huang,
Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou,
Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, and
Tao Gui. 2024. StepCoder: Improve Code Gener-
ation with Reinforcement Learning from Compiler
Feedback. Preprint, arXiv:2402.01391.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu.
2023. Hyperparameters in Reinforcement Learning
and How To Tune Them.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Coding Challenge Com-
petence With APPS. Preprint, arXiv:2105.09938.

Fuqun Huang. 2017. Human Error Analysis in Software
Engineering. In Theory and Application on Cognitive
Factors and Risk Management - New Trends and
Procedures. IntechOpen.

James C. King. 1976. Symbolic execution and program
testing. Commun. ACM, 19(7):385–394.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Sil-
vio Savarese, and Steven C. H. Hoi. 2022. CodeRL:
Mastering Code Generation through Pretrained Mod-
els and Deep Reinforcement Learning. Preprint,
arXiv:2207.01780.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han,
Wei Yang, and Deheng Ye. 2023. RLTF: Reinforce-
ment Learning from Unit Test Feedback. Preprint,
arXiv:2307.04349.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct Preference Optimization: Your Lan-
guage Model is Secretly a Reward Model. Preprint,
arXiv:2305.18290.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and
Chandan K. Reddy. 2023. Execution-based Code
Generation using Deep Reinforcement Learning.
Preprint, arXiv:2301.13816.

Wenhan Wang, Kaibo Liu, An Ran Chen, Ge Li, Zhi
Jin, Gang Huang, and Lei Ma. 2024. Python Sym-
bolic Execution with LLM-powered Code Genera-
tion. Preprint, arXiv:2409.09271.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li,
Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang, and Qun
Liu. 2022. Compilable Neural Code Generation with
Compiler Feedback. Preprint, arXiv:2203.05132.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven
C. H. Hoi. 2021. CodeT5: Identifier-aware
Unified Pre-trained Encoder-Decoder Models for
Code Understanding and Generation. Preprint,
arXiv:2109.00859.

277

https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1145/2786805.2786843
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2307.15217
https://doi.org/10.2139/ssrn.4938953
https://doi.org/10.2139/ssrn.4938953
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://doi.org/10.5772/intechopen.68392
https://doi.org/10.5772/intechopen.68392
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://doi.org/10.48550/arXiv.2207.01780
https://arxiv.org/abs/2307.04349
https://arxiv.org/abs/2307.04349
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://doi.org/10.48550/arXiv.2409.09271
https://doi.org/10.48550/arXiv.2409.09271
https://doi.org/10.48550/arXiv.2409.09271
https://doi.org/10.48550/arXiv.2203.05132
https://doi.org/10.48550/arXiv.2203.05132
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859


Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and
Yi Wu. 2024. Is DPO Superior to PPO for LLM
Alignment? A Comprehensive Study. Preprint,
arXiv:2404.10719.

Zishun Yu, Yunzhe Tao, Liyu Chen, Tao Sun, and
Hongxia Yang. 2024. $\mathcal{B}$-Coder: Value-
Based Deep Reinforcement Learning for Program
Synthesis. Preprint, arXiv:2310.03173.

Muhammad Nabel Zaharudin, Muhammad Haziq
Zuhaimi, and Faysal Hossain Shezan. 2024. Poster:
Enhancing Symbolic Execution with LLMs for Vul-
nerability Detection.

278

https://arxiv.org/abs/2404.10719
https://arxiv.org/abs/2404.10719
https://doi.org/10.48550/arXiv.2310.03173
https://doi.org/10.48550/arXiv.2310.03173
https://doi.org/10.48550/arXiv.2310.03173


Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 279–293

April 30 - May 1, 2025 ©2025 Association for Computational Linguistics

Through the Looking Glass: Common Sense
Consistency Evaluation of Weird Images

Elisei Rykov1 Kseniia Petrushina1,4 Kseniia Titova1,3

Anton Razzhigaev2 Alexander Panchenko1,2 Vasily Konovalov2,4

1Skoltech 2AIRI 3MTS AI
4Moscow Institute of Physics and Technology

{Elisei.Rykov, Kseniia.Petrushina, A.Panchenko}@skol.tech

Abstract

Measuring how real images look is a complex
task in artificial intelligence research. For ex-
ample, an image of a boy with a vacuum cleaner
in a desert violates common sense. We intro-
duce a novel method, which we call Through
the Looking Glass (TLG), to assess image com-
mon sense consistency using Large Vision-
Language Models (LVLMs) and Transformer-
based encoder. By leveraging LVLMs to ex-
tract atomic facts from these images, we ob-
tain a mix of accurate facts. We proceed by
fine-tuning a compact attention-pooling classi-
fier over encoded atomic facts. Our TLG has
achieved a new state-of-the-art performance
on the WHOOPS! and WEIRD datasets while
leveraging a compact fine-tuning component.1

1 Introduction

People quickly notice something unusual in im-
ages that defy common sense, like Einstein holding
a smartphone. We find it odd even though each
part seems normal. Our brain’s ability to under-
stand normality goes beyond just identifying ob-
jects (Zellers et al., 2019). It involves connecting
visual cues with everyday knowledge.

In this work, we propose a visual commonsense
model that utilizes the observation that LVLMs
may generate contradictory facts when confronted
with images defying common sense (Liu et al.,
2024b). By leveraging LVLMs to extract atomic
facts from these images, we obtain a mix of accu-
rate facts and erroneous hallucinations. Then we
fine-tune a compact attention-pooling model over
encoded atomic facts.

Our results indicate that using the classifier for
basic facts can efficiently spot strange images. Sur-
prisingly, this method outperforms existing more
complex techniques.

1https://github.com/s-nlp/
through-the-looking-glass

In addition, we introduce a synthesized WEIRD
dataset, a dataset of 824 samples of normal and
strange images. Using this dataset, we further con-
firmed the performance of our model.

Our contributions are as follows:

• We present a new method called TLG that
achieved state-of-the-art performance on the
existing dataset of normal and strange images
WHOOPS!.

• We present a new dataset dubbed WEIRD
which is more challenging and nearly four
times larger than WHOOPS!.

2 Related Work

Recently, commonsense reasoning has attracted
substantial interest from the research community,
spanning disciplines within NLP and CV, with nu-
merous tasks being introduced.

Guetta et al. (2023) introduced the
WHOOPS! benchmark, comprised of pur-
posefully commonsense-defying images created
by designers using publicly available image
generation tools like Midjourney. They used a
supervised approach based on BLIP-2 Flan-T5 (Li
et al., 2023a) on multiple scales. The proposed
fine-tuned model managed to outperform a random
baseline, but still falls significantly short of human
performance.

LLMs are capable of producing highly fluent
responses to a wide range of user prompts, but
they are notorious for hallucinating and making
non-factual statements. Manakul et al. (2023b) pro-
posed SelfCheckGPT, a straightforward sampling-
based method that enables fact-checking of black-
box models with zero resources.

To assess consistency among multiple sam-
pled responses, SelfCheckGPT utilizes several
techniques, including BERTScore, an automatic
multiple-choice question answering generation
(MQAG) framework (Manakul et al., 2023a), and
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Figure 1: WEIRD dataset generation process. First, we formed a task pool for the few-shot generation of new
samples from the WHOOPS! benchmark. Next, we randomly sampled few-shots from the task pool and asked
GPT-4o to generate new samples. The samples were then visualized using Dall-E 3 and manually filtered. Good
samples were added to the task pool for the next few-shot sampling.

NLI contradiction scores to detect hallucinations
in the generated responses. However, the most
effective method found was prompting the LLM
to verify if the generations are supported by the
context or not.

Regarding multi-modal case, Jing et al. (2023)
proposed FAITHSCORE, a reference-free and fine-
grained evaluation metric that measures the faith-
fulness of the generated free-form answers from
large vision-language models. The FAITHSCORE
uses multistep approach: (1) identify the descrip-
tive content, (2) extract corresponding atomic facts
from the identified sentences, and (3) the faithful-
ness of all atomic facts is verified according to the
input image by applying Visual Entailment Model
(VEM), which is able to predict whether the image
semantically entails the text. Analogously, NLI has
been used in textual mode to verify premises and
hypotheses and subsequently to detect hallucina-
tions (Maksimov et al., 2024).

Rykov et al. (2025) proposed an approach, in
which LVLM is used to first generate atomic facts
from images, resulting in a combination of accu-
rate facts and erroneous hallucinations. The next
step involves calculating pairwise entailment scores
among these facts and aggregating these values to
produce a single reality score.

Our approach is similar to the preceding meth-
ods, as we also utilize LVLMs to extract atomic
facts from the image. We then train a supervised
model to learn the relationships between the de-
rived facts. If the classifier identifies a high contra-
diction among atomic facts, it indicates that one of
the generated atomic facts is likely a hallucination.
This often occurs when the LVLMs encounter an
unusual image (Liu et al., 2024b), leading to such
inconsistencies in most cases.

WHOOPS! WEIRD

# of samples 204 824
# of categories 26 12
# of sub-categories –– 181
Human baseline 92% 82.22%

Table 1: Comparison details between WHOOPS! and
WEIRD. WEIRD contains 4 times more samples than
WHOOPS!. In addition, WEIRD contains 181 differ-
ent generated commonsense-breaking categories, which
have been grouped into 12 global categories.

3 Dataset

This section describes the datasets we used to eval-
uate our methodology.

3.1 WHOOPS!
To evaluate our methods, we employ the
WHOOPS!2 benchmark, focusing on a subset com-
prising 102 pairs of weird and normal images. Per-
formance is measured by binary accuracy within
this paired dataset, where a random guess would
yield 50% accuracy. To assess human performance,
three annotators were enlisted to categorize each
image as weird or normal, relying on a majority
vote for the final determination. Impressively,the
human baseline reached 92%, indicating that de-
spite subjectivity, there is a clear consensus on what
constitutes weirdness within the specific context of
the WHOOPS! benchmark.

3.2 WEIRD
Due to the fact that the WHOOPS! benchmark
is relatively small, we generated a larger bench-
mark for quantifying image realism to validate our
methodology – WEIRD3.

2Weird and HeterogeneOus Objects, Phenomena, and
Situations

3Weird Examples of Images with Real-life Discrepancies
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Figure 2: The proposed approach TLG for image commonsense consistency evaluation. Using the LVLM-generated
atomic facts about the image, we train a classifier using hidden states from the textual encoder.

The detailed process of WEIRD dataset creation
is shown in Figure 1. Like the Self-Instruct (Wang
et al., 2023) dataset, WEIRD was generated in
an iterative, semi-automatic manner using LLM.
Specifically, we used WHOOPS! as an initial task
pool with few-shot samples. In each iteration, we
randomly sampled 5 pairs of normal and weird
situations, along with the commonsense-breaking
category. Each few-shot sample contains the break-
ing commonsense category, a caption of the normal
image, and a caption of a strange image. The ran-
domly sampled few-shots were passed to GPT-4o
to generate a new category and captions. See the
exact prompt used for generation in Appendix I. In
the next step, these textual captions were used to
generate images with Dall-E 3.

In each iteration, we generated 50 pairs of nor-
mal and strange images, resulting in 100 samples
after each iteration. We also manually filtered out
bad samples. We considered bad samples to be
those with inconsistencies between image and cap-
tion, or with textual noisy captions. For example,
there were many inconsistencies in the captions
that mention celebrities. It turned out that Dall-E
3 struggled with the generation of celebrity faces,
while some strange captions were based on putting
certain celebrities in inappropriate conditions.

In total, we generated 2,000 unique samples of
commonsense-breaking situations before the fil-
tering stage. After filtering, only 824 samples
remained. To evaluate human performance on
WEIRD, we additionally annotated the dataset on
the Yandex Tasks4 crowd-source platform. Each ex-
ample was annotated by five annotators with over-
lapping assignments. In order to introduce crowd
sources to the task, we added 10 training samples.
As a result of the annotation process, Krippen-
dorff’s alpha coefficient of consistency was 0.69
with a human accuracy of 82.22%. WHOOPS! and
WEIRD comparison details can be seen in Table 1.

4https://tasks.yandex.com

4 Visual Commonsense Evaluation
Method using Atomic Fact Extraction

The idea of our method dubbed TLG (Through
the Looking Glass) is inspired by FactScore (Min
et al., 2023): we adopt the principle of atomic
facts generation for trustworthiness verification for
the image modality. Namely, the common sense
evaluation method is based on the classification
of atomic facts generated by LVLMs using textual
encoders. The approach is depicted in Figure 2.

We use LVLMs to collect different atomic facts
that describe different aspects of the scene in the
image. To sample as many different facts as possi-
ble, we use the Diverse Beam Search (Vijayakumar
et al., 2016). So, given an image I and an LVLM,
we sample N facts F = {f1, f2, . . . , fN}, where
F = LVLM(I).

Next, we use a frozen textual encoder to extract
representations H of the generated atomic facts.
Each fact representation is computed as

Hi = Encoder(fi) ∈ RN×T×d, (1)

where T – number of tokens, d – embeddings di-
mensionality.

Since each encoder output H is a set of hidden
representations for each token and fact, we perform
average pooling to extract a single representation
V for each fact. Thus, using the attention masks m
obtained by the encoder tokenizer and the hidden
representations H , we compute a single fact repre-
sentation by averaging the vectors of its tokens

Vi =

∑T
j=1mijHij

∑T
j=1mij + ε

. (2)

Furthermore, we train an attention-based pool-
ing classifier using individual representations V .
This classifier maps each representation to a single
value. Then, we convert a set of attention values
into probabilities using the softmax function:

A = softmax(WaV + ba) ∈ RN . (3)
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Later, these scores are used to perform a
weighted averaging of the set of representations
for each fact into a single representation:

vweighted =

∑N
i=1AiVi∑N
i=1Ai

∈ Rd. (4)

Finally, we classify the final representation by
mapping it to a single common sense violation
probability:

prob = σ(Wcvweighted + bc) ∈ [0, 1]. (5)

5 Experimental Setup

To run the experiments, we strictly follow the eval-
uation setup suggested in WHOOPS! (Guetta et al.,
2023). Thus, we evaluate several models using 5-
fold cross-validation in a supervised configuration.
See the detailed list of checkpoints used for the
main approach and baselines in Appendix E.

For fact generation, we set num_beams
and num_beam_groups to 5, and the
diversity_penalty to 1.0. Regarding penalty,
we find this value to be optimal for adding
diversity and preserving the model’s ability to
follow instructions. For LVLMs, with various
backbone architectures, we utilized the following
prompt for fact generation: “Provide a brief,
one-sentence descriptive fact about this image”.
To generate atomic facts, we used different
LVLMs with different sizes (from 0.5B to 13B)
of the LLaVA architecture. Given the generated
atomic facts, we encode them using several
DeBERTa-v3-large-based encoders.

We also consider the following baselines:

LVLM with the prompt, which was found to
be effective in detecting weird images (Liu et al.,
2024a): “<image> Is this unusual? Please explain
briefly with a short sentence.”

Linear Probing resemble our approach in that it
requires a small learnable component. This base-
line involves learning a logistic regression clas-
sifier on the hidden representation of LLaVAs at
each layer. We consider two setups: (a) using
the <image> as the sole input (Image only), and
(b) using <image> the with a prompt “Provide
a short, one-sentence descriptive fact about this
image” (+Prompt), which was used to generate
atomic facts.

CLIP-based models were evaluated by pass-
ing images and measuring the distance from the
strange and normal classes in a zero-shot set-
ting. In addition, we fine-tuned CLIP in a cross-
validation setting. More details on the hyperparam-
eters and detailed baseline results can be found in
the Appendix C.

LLM zero-shot baselines were represented by
Gemma-2-9B-Instruct and Qwen2.5-7B-Instruct.
As input, we passed generated atomic facts about
the image and asked the model to determine
whether the facts were strange or not using the
following prompt: “Your task is to classify a se-
ries of facts as normal or strange. The set of facts
is strange if some of the facts contradict common
sense. Answer using ’normal’ or ’strange’. Do not
write anything else”.

Furthermore, we used two fine-tuned baselines
based on BLIP2 (Li et al., 2023b): BLIP2 FlanT5-
XL and BLIP2 FlanT5-XXL that were reported
in Guetta et al. (2023).

Moreover, we conducted experiments on knowl-
edge transfer between WEIRD and WHOOPS! for
fine-tunable methods to explore the generalization
ability to another dataset.

6 Results

The results of our experiments on both WHOOPS!
and WEIRD datasets are presented in Table 2. The
proprietary GPT-4o model has been included as
a baseline to illustrate the complexity of bench-
marks for proprietary systems and to demonstrate
the performance gap between human-generated and
proprietary systems. It is not directly comparable
to other open-source methods. The results of the
linear probing baselines can be found in the Ap-
pendix B. For the TLG method and LLM-based
baselines, we used facts produced by LLaVA 1.6
Mistral 7B; see the Appendix F for more details.
The total number of parameters is calculated as the
sum of all parameters in the method. As LLMs and
text encoders use pre-generated atomic facts, we
report their parameters together with the LVLMs
parameters. See also Appendix D for more details
of the generated facts.
TLG achieves an accuracy of 73.54% on
WHOOPS! and 87.57% on WEIRD, demonstrating
the state-of-the-art performance both datasets.
BLIP2 FlanT5 vs. TLG Next, we compare
our best-performing approach to the baselines
from Guetta et al. (2023). TLG outperforms the
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Method # Total Mode WHOOPS! WEIRD

Humans – – 92.00 82.22

BLIP2 FlanT5-XL 3.94B fine-tuned 60.00 71.47
BLIP2 FlanT5-XXL 12.4B 73.00 72.31

BLIP2 FlanT5-XXL 12.4B

zero-shot

50.00 63.84
nanoLLaVA Qwen1.5 0.5B 1.05B 66.66 70.90
LLaVA 1.6 Mistral 7B 7.57B 56.86 61.18
LLaVA 1.6 Vicuna 7B 7.06B 65.68 76.54
LLaVA 1.6 Vicuna 13B 13.4B 56.37 58.36
InstructBLIP Vicuna 7B 7B 61.27 69.41
InstructBLIP Vicuna 13B 13B 62.24 66.58

Qwen2.5 7B Instruct 15.18B zero-shot 67.65 66.46
Gemma2-9B 16.57B 73.04 82.92

LP - LLaVA 13B fine-tuned 73.50 85.26
CLIP 0.65B – 60.78 81.57
TLG (Ours) 8B fine-tuned 73.54 87.57

GPT-4o – zero-shot 79.90 81.64

Table 2: The results of different approaches on WHOOPS! and WEIRD datasets. Both benchmarks are balanced
and accuracy is the evaluation metric. Fine-tuned methods are displayed at the top, while zero-shot methods are
presented in the middle. The best linear probing results for all configurations along with our method are displayed
at the bottom.

original fine-tuned approach (BLIP2-FLAN-T5-
XXL). This suggests that the task of detecting
anomalous images should be tackled by fine-tuning
a compact classifier on either textual representa-
tions or images, rather than adapting an entire
LVLM for this purpose.

Linear Probing and CLIP vs. TLG The results
of our baselines, which were conducted using Lin-
ear Probing and CLIP, are detailed in the Appen-
dices B, C. For the LLaVA models, hidden states
of the Vicuna 13B achieved the second-best accu-
racy on both datasets, with 73.50% on WHOOPS!
with prompt and 85.26% on WEIRD in image-only
mode. Since WHOOPS! is a smaller dataset, evalu-
ating methods with cross-validation results in high
variance, making the ranking of methods less sta-
ble. However, the strong performance on WEIRD
supports the effectiveness of this approach.

As for the CLIP baseline, OpenAI/CLIP excelled
with an accuracy of 60.78% in zero-shot mode for
WHOOPS!. On the other hand, on the WEIRD
dataset, SigLIP outperformed other models, achiev-
ing an accuracy of 81.57% in fine-tuning mode.

LLM Qwen2.5-7B-Instruct achieved a relatively
high score of 67.65% on WHOOPS! and 66.46%
on WEIRD. However, it falls behind Gemma2-9B-
Instruct with a score of 73.04% on WHOOPS!
and 82.92% on WEIRD. Although LLMs show
strong performance, they require more computing
resources than TLG.

GPT-4o performance illustrates the complexity
of the benchmarks for proprietary systems and
demonstrates the performance gap between human-
generated content and proprietary systems (it
should not be directly compared with other open-
source methods). The results are rather surprising;
GPT-4o outperforms all the methods mentioned
here on the WHOOPS! dataset (Guetta et al., 2023).
However, it lags significantly behind all the con-
sidered baselines and our method on the newly
generated WEIRD dataset.

Method # Accuracy

WEIRD→WHOOPS!

BLIP-XL 4B 70.59
BLIP-XXL 12B 72.06
LP (+Prompt) 13B 72.06
LP (Image only) 13B 75.00
TLG (Ours) 8B 74.02

WHOOPS!→WEIRD

BLIP-XL 4B 72.11
BLIP-XXL 12B 75.06
LP (+Prompt) 13B 74.69
LP (Image only) 13B 79.61
TLG (Ours) 8B 83.05

Table 3: Knowledge transfer between datasets.
WEIRD→WHOOPS! means that the approach has been
fine-tuned on the WEIRD dataset and tested on the
WHOOPS! dataset.
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The child is vacuuming the floor 0.60
This is a photo of a child vacuuming the floor 0.12
A child vacuuming a wooden floor -0.28

The man is using a vacuum cleaner on the beach 2.38
This image features a man vacuuming the beach 1.65
The vacuum cleaner is silver -0.25

Figure 3: A pair of images from WHOOPS! with corresponding generated atomic facts. The normal image is on the
left, and the unusual image is on the right.

Knowledge Transfer To measure the knowledge
transfer ability, we fine-tuned a model on one
dataset and tested it on another. The results are
shown in Table 3.

For WHOOPS!, the linear probing baseline with
image-only input on 13B Vicuna backbone with
WEIRD calibration outperforms other approaches
with an accuracy of 75%. However, the TLG ap-
proach with deberta-v3-large-tasksource-nli is a
second best method with an accuracy of 74.02%.
As for WEIRD, TLG trained on WHOOPS! is the
best performing approach - 83.05%. Linear prob-
ing in image-only mode on 13B Vicuna with a
score of 79.61% accuracy. Unlike the previous set-
ting with WEIRD training and WHOOPS! testing,
there is a large gap between the best performing
approach and the second. This probably indicates
that our approach is robust to a small training set,
while linear probing requires a larger amount of
data for calibration.

TLG Attention Scores Analysis Since TLG is
based on a learning classifier that includes part of
assigning an attention weight to each fact, we inter-
preted the meaning of these scores. The example
of the score distribution for images is shown in
Figure 3. In fact, TLG assigns higher attention
weights to facts that violate common sense. In this
example, the fact “The vacuum cleaner is silver
and purple” has a lower score than the more incon-
sistent fact “The man is using a vacuum cleaner on
the beach”. As a result, TLG gives higher scores to
more strange facts, meaning that TLG could also be
used as a pure text reality ranker, rating the realism
of text facts.

7 Conclusion

In this work, we propose a straightforward yet ef-
fective approach to visual common sense recog-
nition. Our method exploits an imperfection in
LVLMs, causing them to generate hallucinations
when presented with unrealistic or strange images.
The method entails transitioning to a text modality
and addressing the problem from this perspective.
Our three-step process involves generating atomic
facts, encoding atomic facts with Transformer-
based text encoder, and training classifier based
on attention-pooling to detect strange images.

Despite the shift in modality, our approach out-
performs previous baselines and other supervised
methods applied in the image domain, including
CLIP-based image encoders and linear probing of
LVLMs.

In addition, we developed a methodology to syn-
thesize strange images. Using this methodology,
we created WEIRD, a dataset consisting of 824
images that include both strange and normal visu-
als, which we have made openly available. Sur-
prisingly, our TLG method outperformed the pro-
prietary GPT-4o on our newly generated WEIRD
benchmark.

Limitations

First, we acknowledge that we did not consider
all possible open LVLMs that became available
recently, such as Qwen2.5-VL. Also, among the
proprietary systems, we only evaluated GPT-4o.
However, we believe that our choice of both pro-
prietary and open models was representative of the
state-of-the-art.
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Second, although we tested several prompts for
zero-shot baselines and selected the best one, more
prompt engineering work could lead to better per-
formance.

Ethics Statement

We have carefully curated the generated WEIRD
dataset, and we have not encountered any inappro-
priate or offensive content within it.
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A Performance on WEIRD with
Standard Deviation
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Figure 4: Accuracy with standard deviation for different
setups

B Linear Probing Baseline

We collect hidden states by passing the image with
corresponding to the setup (Image only, +Prompt)
prompt through LLaVA decoder. The results are
presented in Table 4.

We trained a logistic regression with L2 regular-
ization, with a maximum of 100 iterations and a
tolerance of 0.1 on standardized hidden states.

Model Image only +Prompt

WHOOPS!

LLaVA 1.6 Mistral 7B 67.63 67.13
LLaVA 1.6 Vicuna 7B 73.01 72.02

LLaVA 1.6 Vicuna 13B 69.06 73.50

WEIRD

LLaVA 1.6 Mistral 7B 78.13 81.82
LLaVA 1.6 Vicuna 7B 84.65 83.91

LLaVA 1.6 Vicuna 13B 85.26 84.02

Table 4: Linear probing baseline results on WHOOPS!
and WEIRD.

C CLIP Baseline

We fine-tuned the model for 5 epochs with batch
size 1 using AdamW optimizer with learning rate
1e-3. Other hyperparameters are the same as in the
HuggingFace trainer.

The detailed results for WHOOPS! and WEIRD
are given in Table 5. An interesting result is that
SigLIP is more accurate than the standard CLIP-
based models of OpenAI and LAION.
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Figure 5: Cross-validation accuracy depending on the
LLaVA 1.6 Vicuna 13B index layer for linear probing
on the WEIRD dataset. Layers containing the most
relevant information are in the middle of the decoder.

Model # zero-shot fine-tuned

WHOOPS!

OpenAI/CLIP 0.15B 60.78 56.86
Google/SigLIP 0.88B 50.49 73.01
LAION/CLIP 0.43B 53.92 54.39

WEIRD

OpenAI/CLIP 0.15B 56.15 65.65
Google/SigLIP 0.88B 48.87 81.57
LAION/CLIP 0.43B 57.34 74.86

Table 5: CLIP results on WHOOPS! and WEIRD.

D Analysis of the Generated Facts

Category Keywords

common

common
usual

normal
natural

real

weird

unusual
strange
playful
creative
unreal
weird

real (as not generated)
real

realistic
photo

digital

digital
generated

3D
fantastic
rendering

artistic

Table 6: List of keywords with corresponding categories
to analyze generated atomic facts.
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LLaVA Backbone Type Length ROUGE Cosine
Similarity

Marker words

common weird real digital

WHOOPS!

Mistral-7B normal 61.80 45.46 79.65 9 1 33 37
strange 64.34 46.28 79.57 5 12 19 68

Qwen-0.5B normal 140.15 45.02 83.19 55 4 20 8
strange 144.01 45.07 83.36 46 26 17 17

Vicuna-7B normal 99.57 64.71 88.27 8 0 54 42
strange 103.63 63.75 87.88 5 4 25 66

Vicuna-13B normal 86.69 64.24 88.24 8 0 21 37
strange 92.88 64.64 88.13 4 8 15 58

WEIRD

Mistral-7B normal 72.94 52.43 72.94 24 1 95 201
strange 77.81 51.37 77.81 31 57 79 270

Qwen-0.5B normal 129.17 54.67 68.46 170 24 35 36
strange 131.84 54.70 68.40 184 130 24 69

Vicuna-7B normal 74.39 60.09 68.41 6 1 146 213
strange 79.35 60.32 68.55 3 16 130 262

Vicuna-13B normal 67.13 58.04 69.36 10 0 108 242
strange 69.82 59.08 69.46 3 19 106 291

Table 7: Metrics for generated atomic facts on the WHOOPS! and WEIRD datasets are computed separately for
each of the four models, assessing them on both normal and strange images. ROUGE and Cosine Similarity metrics
evaluate the similarity of facts derived from a single image, while marker words denote the presence of at least one
characteristic marker term in the group of facts. From these results, we can conclude that the facts generated by
llava-v1.6-mistral-7b are of the finest quality in atomicity — they are the briefest and exhibit the greatest semantic
independence.

We measured Cosine Similarity of the generated facts by using all-MiniLM-L6-v25 embedder. We
also calculated ROUGE (Lin, 2004) metric for lexical similarity. We calculate the metric values pair-
wise for each unique pair of facts and then averaging the results. There is no significant difference in
lexical/semantic similarity (as measured by ROUGE and Cosine Similarity) between strange and normal
images within the same LLaVA. However, a significant difference can be observed when comparing
similarity between different LLaVAs. In Table 7 we provide metrics on generated atomic facts. We noticed
that there are several groups of different marker words that all LVLMs tend to generate. Table 6 shows the
exact list of marker words for each observed group.

nanoLLaVA 1.5B generates significantly different facts from all other LLaVA models in terms of
used vocabulary. By analyzing occurring marker words, it becomes evident that nanoLLaVA-1.5 more
frequently employs words from the common and weird sets, indicating a greater tendency to comment on
the plausibility of images and use evaluative terms. Conversely, it uses words from the real and digital
sets less often. The facts of nanoLLaVA-1.5 are significantly longer than others.

LLaVA 1.6 Mistral 7B vs LLaVA 1.6 Vicuna 7B The difference between facts generated by these
two is quite noticeable. The Mistral-based LLaVA generates the shorter responses, and judging by the
ROUGE metric, these responses are less similar to each other. In terms of the atomicity of the generated
facts, the facts produced by Mistral can be considered more qualitative. However, the presence of digital
markers can be misleading for the model.

LLaVA 1.6 Vicuna 7B vs 13B The metrics of both Vicuna-based models are similar; however, the
generations from 13B are shorter on average. We also notice that the facts generated for strange images
are generally longer than those for truthful ones.

5https://hf.co/sentence-transformers/all-MiniLM-L6-v2
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E Checkpoints

For generating atomic facts we leverage the following LVLMs:

• llava-v1.6-mistral-7b-hf: a 7B LVLM with based on a Mistral (Jiang et al., 2023);
• nanoLLaVA-1.5: a 2B LVLM based on a Qwen1.5-0.5B (Bai et al., 2023);
• llava-v1.6-vicuna-7b-hf: a 7B LVLM based on a Vicuna (Chiang et al., 2023);
• llava-v1.6-vicuna-13b-hf: a 13B LVLM based on a Vicuna.

The following encoders were used for our main approach:

• deberta-v3-large: an original DeBERTa without fine-tuning;
• nli-deberta-v3-large: DeBERTa fine-tuned by Sentence Transformer (Reimers and Gurevych, 2019)

on NLI datasets. Specifically, the model was fine-tuned on the SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets.

• deberta-v3-large-tasksource-nli: a multi-task text encoder based on DeBERTa-v3-large fine-tuned on
600 tasksource tasks, outperforming every publicly available text encoder of comparable size in an
external evaluation (Sileo, 2024).

As for the CLIP-based baseline, the following models were utilized:

• clip-vit-base-patch32: a pre-trained CLIP model published by OpenAI with 0.15B parameters (Rad-
ford et al., 2021).

• siglip-so400m-patch14-384: a novel image encoder with 0.88B parameters trained by Google. This
encoder inherits the CLIP architecture but features a better loss function (Zhai et al., 2023).

• CLIP-ViT-L-14-laion2B-s32B-b82K: a pre-trained CLIP encoder with 0.43B parameters, trained on
the LAION-2B dataset (Schuhmann et al., 2022).

For the LLM zero-shot baseline, these LLMs were used:

• Qwen2.5-7B-Instruct: a 7B instruction-tuned LLM trained by Qwen (Yang et al., 2024).
• Gemma-2-9b-it: a 9B instruction-tuned LLM trained by Google (Team, 2024).
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F TLG Evaluation Details

Detailed results of TLG evaluation are given in Table 8. A distinct pattern emerges: DeBERTa models
fine-tuned on the tasksource collection outperform methods that rely on alternative text encoders, largely
due to their enhanced encoding capabilities. This superiority can be attributed to extensive fine-tuning on a
diverse range of knowledge-intensive tasks sourced from the tasksource repository. Using tasksource
DeBERTa, the best performance was achieved with Mistral-7B backbone, while the poorest performance
was observed with the smallest Qwen-0.5B model, and Vicuna fell in the middle.

The results, averaged over five folds, for the evaluated text encoders paired with various LLaVAs on
both benchmarks are presented in Table 8. The highest performance for both benchmarks was achieved
by generating facts using LLaVA 1.6 Mistral 7B in conjunction with deberta-v3-large-tasksource-nli as
the text encoder. Thus, we used facts produced by LLaVA 1.6 Mistral 7B in our other approaches and
baselines.

Text Encoder LLaVA Backbone

Mistral-7B Vicuna-7B Vicuna-13B Qwen-0.5B

WEIRD Cross-Validation

deberta-v3-large-tasksource-nli 87.57 80.51 81.37 77.11
nli-deberta-v3-large 77.97 74.00 77.11 74.57
deberta-v3-large 59.92 63.86 63.59 63.29

WHOOPS! Cross-Validation

deberta-v3-large-tasksource-nli 73.54 69.15 64.72 64.68
nli-deberta-v3-large 64.60 63.61 66.59 65.15
deberta-v3-large 49.49 50.48 47.57 53.93

Table 8: The results of our approach with various LVLMs and text encoders for both benchmarks, WHOOPS! and
WEIRD, are presented. Accuracy, averaged over five folds, serves as the performance metric. For both benchmarks,
LLaVa 1.6 Mistral-7B paired with deberta-v3-large-tasksource-nli demonstrates the best outcome. A clear trend
emerges: tasksource DeBERTa outperforms all others, partly due to its superior encoding capabilities. This trend is
clearer for the WEIRD dataset due to its larger size.
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G Examples of Strange Images From WEIRD

291



H Examples of Normal Images From WEIRD

292



I Prompt for WEIRD Samples Generation Using GPT-4o

Your task is to generate a new COMMONSENSE_CATEGORY, EXPLANATION, NORMAL_CAPTION, STRANGE_CAPTION using
the presented ones from the EXAMPLES.
COMMONSENSE_CATEGORY is the category of common sense disturbance, so follow this information when
creating your own captions, as they must disturb common sense in the same category.
Use presented COMMONSENSE_CATEGORIES only as an example, because you task is to generate a new one.
After generating a new COMMONSENSE_CATEGORY, generate 1 new pair based on this category.
Each pair should start with EXPLANATION. EXPLANATION is a description of an inconsistent situation.
You should create EXPLANATION first.
Next, based on EXPLANATION, generate NORMAL_CAPTION and a STRANGE_CAPTION.
NORMAL_CAPTION describes an image that is suitable for common sense, it does not contradict facts about
the world, etc.
On the other hand, STRANGE_CAPTION contradicts common sense. Also, captions can represent past time,
so a caption about something that happened a long time ago is not strange.
Do not generate something that is too hard to understand or imagine.
Make the captions as specific and descriptive as possible. Describe all the details.
Generate only 1 pair of EXPLANATION, NORMAL_CAPTION and a STRANGE_CAPTION.

EXAMPLES:

COMMONSENSE_CATEGORY: Tool Misapplication
EXPLANATION: A whisk is a kitchen tool specifically designed for mixing ingredients together smoothly
or incorporating air into a mixture, such as when making whipped cream or beating eggs. Its structure,
consisting of multiple loops of wire, is not intended for hammering nails into wood. Using a whisk to
hammer nails is not only ineffective but is likely to damage the whisk and offer no benefit, as its
delicate wires are neither strong nor solid enough to drive nails.
NORMAL_CAPTION: A whisk being used to beat eggs in a bowl
STRANGE_CAPTION: A whisk being used to hammer nails into a wooden plank

COMMONSENSE_CATEGORY: Impossible interaction
EXPLANATION: Cats are known for their playful and curious nature, but they do not have the physical
ability to solve complex math problems, as they lack the understanding and cognitive functions necessary
for such tasks.
NORMAL_CAPTION: a cat playing with a ball of yarn on the floor
STRANGE_CAPTION: A cat solving a complex math equation on a blackboard.

COMMONSENSE_CATEGORY: Untypical behavior
EXPLANATION: Octopuses are sea creatures that live underwater and are adapted to life in the ocean.
However, seeing an octopus wearing clothes, something made specifically for humans to provide warmth
and protection, is highly unusual and outside the realms of normal behavior or biological needs.
NORMAL_CAPTION: An octopus swimming in the ocean.
STRANGE_CAPTION: An octopus wearing a suit and tie.

COMMONSENSE_CATEGORY: Inappropriate Object Utility
EXPLANATION: Hairdryers are designed to dry hair by blowing warm air. Using a hairdryer to open a locked
door is incorrect and impractical, as hairdryers do not have the functionality or mechanism to open
locks.
NORMAL_CAPTION: A person drying their hair with a hairdryer in front of a mirror.
STRANGE_CAPTION: A person using a hairdryer to open a locked door.

Figure 6: Example of prompt used for synthetic samples generation for WEIRD benchmark. In total, 5 random
categories from the task pool were taken on each step of generation. The model is expected to generate a new
common sense category, a new explanation and a pair of caption. Further, captions are used for image generation.
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Abstract

With the utilization of Transformer architec-
ture, large Vision and Language (V&L) models
have shown promising performance in even
zero-shot settings. Several studies, however, in-
dicate a lack of robustness of the models when
dealing with complex linguistics and visual at-
tributes. In this work, we introduce a novel
V&L benchmark - ColorFoil, by creating color-
related foils to assess the models’ perception
ability to detect colors like red, white, green,
etc. We evaluate seven state-of-the-art V&L
models including CLIP, ViLT, GroupViT, and
BridgeTower, etc. in a zero-shot setting and
present intriguing findings from the V&L mod-
els. The experimental evaluation indicates that
ViLT and BridgeTower demonstrate much bet-
ter color perception capabilities compared to
CLIP and its variants and GroupViT. Moreover,
CLIP-based models and GroupViT struggle to
distinguish colors that are visually distinct to
humans with normal color perception ability.

1 Introduction

Vision and language models (V&L) have exhib-
ited improved performance for many V&L tasks
in recent years (Lu et al., 2019; Su et al., 2019;
Chen et al., 2020; Li et al., 2020; Radford et al.,
2021; Dou et al., 2022). Thus, the current paradigm
has now been shifting towards zero-shot learning,
where models are evaluated without fine-tuning for
specific tasks (Radford et al., 2021). Large-scale
V&L models, in particular, show promise for task-
independent zero-shot evaluation (Radford et al.,
2021).

Several studies have been conducted to perform
comprehensive evaluations of V&L models on a
variety of tasks to identify their strengths and weak-
nesses (Agrawal et al., 2016; Jabri et al., 2016;
Goyal et al., 2017; Shekhar et al., 2017; Agarwal

*Work performed while at University of Malta.

et al., 2020). For instance, the VALSE evalua-
tion benchmark has been proposed to assess the
state-of-art V&L models for challenging linguistic
constructs (Parcalabescu et al., 2021a). Therefore,
five distinct tasks, including existence, plurality,
counting, relations, actions, and coreference, have
been introduced. In this benchmark, foils are gen-
erated from the existing V&L datasets for each
of the tasks. A foil is referred to as a distractor
or slightly incorrect example that is passed along
with the correct example to the V&L model to as-
sess the model’s ability to correctly distinguish
them (Shekhar et al., 2017; Parcalabescu et al.,
2021a). Although the existing V&L benchmarks
like VALSE help the community to test the capa-
bilities of V&L models, there is still much work to
be done to evaluate the robustness and generaliz-
ability of the models on numerous other tasks. It
remains unknown how well the large V&L models
can perceive colors from the visual content.

Color perception requires a human-like under-
standing of visual content. Thus, by evaluating the
V&L models on color attributes, we can determine
how closely the large V&L models perceive colors
to humans. A V&L model can be biased towards
detecting particular colors and perform poorly with
others. Therefore, it is essential to investigate it
in order to improve the explainability and inter-
pretability of the models. By assessing the V&L
models with their color-perception ability, we can
ensure robustness in real-life applications.

In this study, we aim to shed light on the fol-
lowing research question: how well can the state-
of-the-art large-scale V&L models perceive color-
related attributes, such as red, green, yellow, etc.?
Our contributions are mainly twofold:

• We introduce a novel V&L benchmark Col-
orFoil by creating foils from the MS COCO
and Flickr30k datasets (Lin et al., 2014; Plum-
mer et al., 2015) to investigate how well the
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models perceive and identify the color-related
attributes.

• We perform a comparison between seven
of the state-of-the-art V&L models includ-
ing CLIP (Radford et al., 2021), ViLT (Kim
et al., 2021), ViT (Dosovitskiy et al., 2020)
and BridgeTower(Xu et al., 2022b) using our
benchmark.

The outline of this paper is as follows. We pro-
vide a background study in Section 2. In Section 3,
we describe the process of constructing ColorFoil
from the MS COCO dataset. Experiments and re-
sults are discussed in Section 4. In Section 5, we
discuss the limitations of our work. Ethical consid-
erations are provided in 5. A conclusion and future
scope is presented in Section 5.

2 Background

V&L Models The current state-of-art models are
first pre-trained in a self-supervised way with a
multi-task learning objective. The learning objec-
tives can be predicting the masked texts or masked
region in the images, determining whether or not
the image and text corresponds, etc. The text and
image input features can be concatenated together
and passed to a Transformer encoder. This ap-
proach is known as single stream. Alternatively,
the text and image inputs can be separately encoded
to two different Transformers and then additional
layers to merge them into multi-modal features.

CLIP Contrastive Language-Image Pre-training
(CLIP) is a V&L model that is pre-trained with
400M image-text pairs with a contrastive objective
(Radford et al., 2021). The model jointly trains a
text encoder and an image encoder to maximize
the cosine similarity of the image-text embeddings
of real pairing while minimizing the cosine simi-
larity of the embeddings of the incorrect pairings
within a multi-modal embedding space. Each of the
encoders are based on transformers. CLIP demon-
strates the ability to perform zero-shot visual clas-
sification, object detection, and image generation
tasks.

ViLT Vision-and-Language Transformer (ViLT)
is pre-trained using a Transformer with more than
4M images with two objectives such as image text
matching and masked language modeling (Kim
et al., 2021). The text embedding and the image
features are concatenated into a sequence and then
fed into the transformer. Thus, ViLT is a single

stream model. ViLT achieves competitive or bet-
ter performance than other V&L models on down-
stream tasks while being 10 times faster due to
simpler processing of visual inputs.

BridgeTower There is a visual encoder, a textual
encoder and a cross-modal encoder with multiple
lightweight bridge layers in the BridgeTower ar-
chitecture (Xu et al., 2022b). The top layers of
the unimodal encoders and each layer of the cross-
modal encoder are connected with the bridge layers,
thus enabling extensive interactions at each layer
of the cross-modal encoder. Each of visual, textual
and cross-modal encoders is transformer-based en-
coders. The model is pre-trained with 4M images
with two common objectives: masked language
modeling and image text matching. The model is
found to outperform in all downstream V&L tasks
with negligible additional computational cost.

ViT A Vision Transformer (ViT) is designed
for image classification tasks, adapting the Trans-
former architecture from natural language process-
ing (Dosovitskiy et al., 2020). It divides an im-
age into fixed-size patches, linearly embeds each
patch, and treats these embeddings as sequences
akin to word tokens in text. Using self-attention
mechanisms, the ViT captures global image con-
text more effectively than convolutional networks,
allowing for superior performance on large-scale
image datasets. ViTs leverage transfer learning and
pretraining for enhanced accuracy and efficiency.

GroupViT (Group Vision Transformer) is a vari-
ant of the Vision Transformer designed to improve
efficiency and scalability in image classification
tasks (Xu et al., 2022a). It enhances the standard
ViT by introducing a group-wise processing mecha-
nism, where the input image is divided into smaller
groups of patches. Each group is processed in-
dependently through parallel self-attention layers,
reducing computational complexity. The results
from these groups are then aggregated to form a
cohesive representation. GroupViT aims to retain
the global context modeling capabilities of ViTs
while optimizing resource usage, making it more
suitable for large-scale and real-time applications.

Related Work Several V&L tasks include vi-
sual question answering (Goyal et al., 2017), vi-
sual reasoning (Suhr et al., 2018), image retrieval
(Plummer et al., 2015), etc. Foiling is an approach
that slightly edits the original captions to evaluate
the robustness of the V&L models (Shekhar et al.,
2017). Similar to our work, Shekhar et al. (2017)
foiled the MS COCO dataset, and constructed the
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Figure 1: Examples from the ColorFoil benchmark where color-related attributes in the original captions have been
modified to different colors.

FOIL-COCO dataset. However, their work did not
focus on the perception of colors of the V&L mod-
els. Following the work of Shekhar et al. (2017),
several studies have been performed that evaluated
the V&L models (Shekhar et al., 2019; Gokhale
et al., 2020; Bitton et al., 2021; Parcalabescu et al.,
2021b; Rosenberg et al., 2021).

3 Construction of the ColorFoil
Benchmark

The ColorFoil benchmark is automatically derived
from the MS COCO (Microsoft Common Objects
in Context) and Flickr30k dataset, which serves
as a resource for studying image understanding,
object recognition, image captioning, and visual
question-answering tasks (Lin et al., 2014; Plum-
mer et al., 2015). In the MS COCO dataset, textual
annotations are provided solely for the train and
validation (val) sets. To construct the ColorFoil, we
obtain the images and annotations from the 2017
MS COCO validation set, resulting in a total of
5,000 image-text pairs. Among these instances,
each of 2,511 pairs includes at least one word re-
lated to color. For Flickr30k dataset, we use the
standard val and test sets to prepare the ColorFoil
benchmark.

Our aim is to foil only the color name from the
textual input, leaving the original image and the
rest of the text input as it is. For example, given a
caption like A blue bus driving down a street past

a park. We foil the color-related word, resulting
in a modified sentence like - A brown bus driving
down a street past a park. If there are multiple
color attributes in a caption, we foil all of them.

We utilize the webcolors 1.3 python package
to determine whether a substring within a caption
corresponds to a color (Webcolors, 2023). This
package encompasses a total of 147 colors. Our fil-
tering process involves excluding captions that lack
color names and selecting solely those containing
at least one color name.

When replacing the original color name with
a foiled alternative, we consider the most widely
used colors. The chosen target colors for foiling
consist of "blue", "black", "red", "pink", "yellow",
"grey", "orange", "white", "green", and "brown."
So, rather than utilizing the complete list of 147
colors from the webcolors package, we opt for a
narrower selection of common colors for foiling.
This decision is based on the fact that numerous
colors in the package have limited practical usage
(e.g. medium blue, mint cream, etc.). The target
color for foiling is selected randomly from the 10
common colors. If the original color in the caption
is one of the common colors, we randomly select
any other common color for foiling except for the
one found in the caption.

After excluding four instances of two-
dimensional grayscale images due to compatibility
issues with certain models, our resulting dataset
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Models
1 Foil 2 Foils 4 Foils

MSCOCO Flickr30k MSCOCO Flickr30k MSCOCO Flickr30k
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

ALIGN 86.03 93.32 87.70 93.45 79.47 88.75 81.43 89.76 71.03 83.06 74.57 85.43
AltCLIP 84.89 91.82 82.69 90.52 77.29 87.19 73.68 84.84 69.08 81.71 64.39 78.34

BridgeTower 97.31 98.63 96.83 98.32 95.71 97.81 94.46 97.15 92.61 96.16 90.81 95.18
CLIP 84.42 91.55 85.24 92.07 76.19 86.49 76.26 86.53 67.37 80.50 68.33 81.18

CLIPSeg 83.05 91.09 82.01 90.12 74.00 85.42 72.97 84.37 64.56 78.45 63.07 77.35
GroupViT 82.73 91.67 81.64 89.89 73.10 83.98 71.77 83.57 63.80 77.89 62.12 76.63

ViLT 95.69 97.79 94.29 97.06 92.83 96.28 91.85 95.35 88.74 94.04 87.38 93.27

Table 1: Experiment results. We evaluate seven of the state-of-the-art V&L models on the MS COCO and
Flickr30k subsets from ColorFoil. Accuracy (%) and F1-scores (%) are reported. We conduct three experiments in
which the models are presented different number of foils (modified caption) along with the original caption. The
V&L models tend to struggle in challenging conditions with more foils. BridgeTower and ViLT outperform other
V&L models including CLIP and its variants and GroupViT by a large margin.

comprises 2,507 pairs of RGB images along with
their captions and foils from MSCOCO and 2500
pairs of RGB image-caption pairs from Flickr30k.
To ensure data integrity, we conduct manual
validation on a significant number of image-text
pairs randomly selected from the benchmark and
find no anomalies. Examples of original captions
and corresponding foils are illustrated in Figure 1.

4 Experiments

Experimental Setup: We pass the original caption,
foil as well as the corresponding image to a V&L
model. The model provides the logits for each of
the caption and foil corresponding to the image.
We take the softmax of the logits. Our hypothesis
is that a model with a well-perceivable ability to
distinguish colors is supposed to provide a higher
probability for the original caption and a lower
probability for the foil.

We evaluate all the models in a zero-shot setting.
We utilize the HuggingFace transformer library to
load the models (Wolf et al., 2019). These models
are chosen due to the fact that they represent differ-
ent architectural variants. CLIP has a text encoder
and an image encoder, which are jointly trained
with a contrastive loss. ViLT is a single-stream
model. BridgeTower contains multiple bridge lay-
ers that connect the uni-modal encoders with the
cross-modal encoder.

The evaluation metric employed in our study is
accuracy and F1-score, which are widely used in
similar contexts. To elaborate, if the model accu-
rately identifies the foil in comparison to the origi-
nal caption, the accuracy of that particular example

is incremented.
Results: Table 1 shows the performance of dif-

ferent V&L models evaluated on the ColorFoil.
All the models achieve much higher accuracy com-
pared to a baseline random classifier with a 50% ac-
curacy. CLIP obtains 83.1% accuracy while ViLT
and BridgeTower get substantially higher accuracy
of 95.6% and 97.2%, respectively on the 1-Foil ex-
periment. It is worthwhile to mention that CLIP is
pre-trained with 400M images, although this model
is outperformed by both ViLT and BridgeTower
pre-trained with only 4M images. BridgeTower
architecture, which contains multiple bridges to
make connections between the uni-modal encoders
and the cross-modal encoder, achieves the highest
accuracy.

The relatively poor performance of CLIP is also
evident in its variants, including AltCLIP (Chen
et al., 2023) and CLIPSeg (Lüddecke and Ecker,
2022). While the ALIGN model outperforms
CLIP, it still lags behind BridgeTower and ViLT.
GroupViT, similar to CLIP, struggles to achieve
high performance. This performance trend is
consistent across both MSCOCO and Flickr30k
datasets, reinforcing our observations. When pre-
sented with more foils alongside the original cap-
tion, the models exhibit performance degrada-
tion. Nonetheless, BridgeTower and ViLT maintain
strong performance even under these challenging
conditions with more foils.

We present several examples for which the CLIP
model incorrectly assigns higher probabilities to
the foils (See Figure 2). These examples demon-
strate that the CLIP model is unable to distin-
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Figure 2: Examples for which the CLIP model wrongly choose the foils instead of the captions.

guish between blue-brown, black-red, and red-
white pairs, despite the fact that they are visually
distinct to most humans.

5 Conclusion and Future Work

In this work, we introduce a novel benchmark, Col-
orFoil, derived from the MS COCO and Flickr30k
datasets, to assess the perception ability of the
cutting-edge V&L models to detect colors. To this
end, we foil the colors from the original captions
and feed both caption and foil along with the cor-
responding image to the model to observe whether
it can provide a higher probability for the caption
or not. Seven state-of-the-art V&L models, in-
cluding CLIP, ViLT, ViT, and BridgeTower, have
been benchmarked using the ColorFoil. While all
models outperform a random classifier, ViLT and
BridgeTower are much more capable to perceive
colors compared to CLIP and ViT. This intriguing
finding is seen using both MS COCO and Flickr30k
datasets, which strengthens our analysis.

As part of our future work, we would like to eval-
uate the robustness of V&L models on additional
tasks by constructing foils that swap gender (man
-> woman), size (small -> large), emotions (smiling
-> crying), and sentence negation (playing football
-> not playing football), etc.

Limitations

We consider the 10 most common colors for our
foils. However, our choice of common colors is
subjective and there might be other frequently used
colors that are not present in our foils.

Ethical Considerations

Training V&L models using images and corre-
sponding texts that may contain gender bias, pri-
vate data, or harmful content presents challenges

in manual detection. To address this, we utilize
the widely recognized MS COCO and Flickr30k
datasets to create the ColorFoil benchmark, as it
provides a reliable foundation (Lin et al., 2014;
Plummer et al., 2015).

Ensuring reproducibility is a crucial aspect of
scientific research. To foster open research prac-
tices, we will make our code publicly accessible,
allowing others to reproduce and verify our find-
ings.
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Abstract

The frontier of large language model (LLM)
development has largely been substantiated by
knowledge-intensive tasks specified in English.
In this proposed thesis, I argue for the key role
that multilinguality occupies in the develop-
ment of practical and knowledgeable LLMs.

First, I consider practical methods to improve
LLM’s performance on standard natural lan-
guage processing (NLP) tasks by leveraging
their existing multilingual knowledge. Then, I
investigate the underlying multilingual knowl-
edge of LLMs with two benchmarks: on com-
plex reasoning, and on territorial disputes.
These benchmarks reveal LLMs’ inconsistent
performance across languages. I then design
efficient techniques, both at inference-time and
training-time, to address these discrepancies.
Finally, I extend the territorial disputes bench-
mark to retrieval-augmented generation (RAG)
setting, comparing the effects of different re-
trieval settings on cross-lingual robustness. My
proposal shows that informed use of multilin-
guality enhances LLMs’ capabilities, and our
understanding thereof.

1 Introduction

The vast diversity of languages is both a contempo-
rary and historical reality, with more than 7000 lan-
guages spoken throughout the world today (Eber-
hard et al., 2015). Each language is strikingly dif-
ferent at a surface level, with its own vocabulary,
syntax, grammar. However, to quote Akmajian
et al. (2017), “all known languages are at a simi-
lar level of complexity and detail.” All languages
build meaning in recursive units, from words, to
sentences, to discourses. And anything can be ex-
pressed as validly in one language as in another.

Thus, multilinguality serves as a dual lens into
human intelligence. First, any human possesses the
capacity to, with enough practice and exposure, ac-
quire fluency in any one or more language. Second,

any language can be used to enable communica-
tion in a society. That is, multilinguality demon-
strates how knowledgeable individual humans are
and serves a practical purpose for societies.

If multilinguality comes so naturally to humans,
then in our quest to develop machines that possess
artificial intelligence (AI) capabilities, then it is
also natural that these machines should be able to
think in different languages. Developers of an ad-
vanced AI chatbot would like to adapt their system
for different linguistic communities. And users
within them would like to access information about
current events in their language and preferences.

Indeed, many of the major advancements in NLP
have been substantiated by multilingual concerns.
Of particular note is machine translation (MT), the
task of translating text from one language to an-
other language. MT is a well-defined task with
clear use-cases and a lot of data. Key to neural
language models, has been the introduction of the
attention mechanism (Bahdanau et al., 2015), and
the Transformer model (Vaswani et al., 2017); these
were first developed with MT as an illustrative task,
before researchers soon found that the strong lan-
guage representations learned here lead to effective
models for all NLP tasks. This has led to our cur-
rent era of large language models (LLMs), which
are large in both their size – over 1 billion parame-
ters – and their datasets – over 1 trillion tokens.

Despite this, there has been a widespread public
sentiment that the current brisk pace of NLP de-
velopment is leaving behind most of the world’s
languages, and the people that speak them. From
the New York Times (Ruberg, 2024) to the World
Economic Forum (Chhabria, 2024), articles abound
about the phenomenon of the ‘linguistic gap.’

How do we feel about the state of multilinguality
in our field of NLP? Certainly, multilinguality has
been and remains a primary area of research. Tak-
ing inventory of conferences run by the Association
for Computational Linguistics from 2020-2025, we

301



see that of the 16 conferences that have Theme
Tracks of special interest, 4 directly concern multi-
linguality1 – not to mention workshops and other
events. Still, sentiment on the state of multilingual-
ity among NLP researchers remains mixed.

We can thus say that multilinguality has become
a primary but parallel concern. The frontier of
LLM development has largely been substantiated
by knowledge-intensive tasks specified in English.
Only in parallel are multilingual efforts. One ap-
proach to building frontier LLMs is to start by train-
ing an English model, then adding multilingual sup-
port later. Such is the case with the open-weight
LLMs Llama-3 (Dubey et al., 2024), Mistral (Jiang
et al., 2023), and Gemma (Team, 2024), and their
multilingual follow-ups Llama 3.1, Mistral 2, and
Gemma 2. A second approach is to pursue LLM
development where multilinguality is considered
from the ground up, such as Aya (Üstün et al., 2024)
and Bloom (Le Scao et al., 2022). These work
well but have been largely relegated to non-English
or multilingual use cases. This is because of the
popular view is that supporting more languages
decreases LLM ability in any one of them. In this
proposal, I will show that this need not be the case.

Thesis Statement Multilinguality does and
should continue to occupy a key role in the de-
velopment of practical and knowledgeable LLMs.
Informed use of multilinguality enhances these ca-
pabilities of LLMs, and our understanding thereof.

In this proposed thesis, I first consider practical
methods for several standard NLP tasks, improv-
ing performance by leveraging the innate multi-
lingual knowledge of LLMs. Next, I study how
multilinguality can be used to make LLMs that
are more knowledgeable. I introduce two bench-
marks, on complex reasoning, and on geopolitical
knowledge. These calls into question the consis-
tency of LLMs’ knowledge representations across
languages. I then introduce informed and efficient
techniques that again leverage multilinguality to
boost performance across all languages.

2 Practical Applications of LLMs

I consider two characteristics of practicality: real-
world utility concerns performing useful tasks, and
ease of development concerns being easy to use

1These are “Language Diversity: from Low-Resource to
Endangered Languages” (ACL 2022), “Large Language Mod-
els and Regional/Low-Resource Languages” (AACL 2023),
“Languages of Latin America” (NAACL 2024), “NLP in a
Multicultural World” (NAACL 2025).

Training Data cross-l
(6 pairs)

mono-l
(3 pairs)

Avg (9
pairs)

SQuAD 61.9 73.3 65.7
+ Riabi et al. (2021) 69.4 72.7 70.5
+ PAXQAhuman GT 69.5 73.6 70.8
+ PAXQAhuman lex cons 70.7 74.3 71.9
+ PAXQAauto lex cons 69.4 73.9 70.9

Table 1: F1 scores on MLQA test set (Lewis et al.,
2020a), for all 9 pairs involving {ar, zh, en}. The
base model is XLM-RoBERTa (Conneau et al., 2020);
all models are fine-tuned on SQuAD (Rajpurkar et al.,
2016); the rows with + additionally use on generated
Q&A pairs from their respective methods.

and easy to extend. These are precisely why LLMs
have become popular – users can converse with
them in natural language, and developers can easily
access their internal knowledge, and extend their
functionality through techniques such as finetuning
and prompting. The section covers two papers
studying both characteristics.

2.1 Cross-lingual Question Answering

QA is an intuitive way to interact with a system. It
can empower information access in a cross-lingual
setting, where a user may want to ask a question
in their native language, but wish to access infor-
mation stored in another language. We are thus
motivated to develop a system that can perform
cross-lingual QA. But where do we get the data to
train such a system? Prior studies trained systems
to perform synthetic data generation, requiring the
existence of some labeled Q&A data.

I instead propose a training-free generation
method which leverages indirect supervision from
existing parallel corpora (Li and Callison-Burch,
2023). Our method termed PAXQA (Projecting
annotations for cross-lingual (x) QA) decomposes
cross-lingual QA into two stages, as illustrated in
Appendix Figure 6. First, a question generation
(QG) model is applied to the English side of the
corpora. Second, we word alignment-informed
translation is applied to the translate both questions
and answers. Answers can be directly projected
across the alignments. To better translate ques-
tions, I utilize lexically-constrained MT, in which
constrained entities are extracted from the parallel
bitexts. We show the quality of our generations
by finetuning models to perform QA. As shown in
Table 1, using PAXQA achieves the best results;
furthermore, our method is also robust to align-
ment noise, given the small drop (-1.0 F1) using
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Table 2: Results for domain-adapted MT, comparing
the zero-shot baseline with 4 settings for prompting
with knowledge, reported on the COMET22 metric (Rei
et al., 2022) and the Gemma-2 27B model (Team, 2024).

automated word alignments.

2.2 Domain-Adapted MT
How can we improve MT in specialist domains
such as law or medicine? These domains pose
the challenges of specialized terminologies and
styles, which may not have been seen at training-
time. With LLMs comes the promise of inference-
time adaptation through prompting. Prior work has
found some success by retrieving domain knowl-
edge from external resources, then including it in
the prompt (Agrawal et al., 2023; Moslem et al.,
2023). Recent efforts have further shown that
this knowledge can be instead generated from an
LLM’s own parametric memory, and this interme-
diate step followed by the translation step can be
effective for general-domain MT (Briakou et al.,
2024; He et al., 2024).

I thus perform an analytical study into ap-
proaches for domain-adapted MT with LLMs (Li
et al., 2025b). A careful prompting setup compares
MT under four settings – two knowledge strate-
gies and knowledge sources, as illustrated in Ap-
pendix Figure 7. The strategies are demonstrations
of translation pairs, and bilingual terminologies of
key terms. The sources are external retrieval, and
internal generation from an LLM’s own knowledge.

The results are shown in Table 2, and our find-
ings are threefold. First, demonstrations outper-
form terminology, and that this effect is magnified
for larger LLMs over smaller ones. Second, re-
trieval outperforms generation as expected. This
leads to the third finding, that generation is an ef-
ficient way to boost MT performance, especially
weaker ones. Notably, for a smaller LLM, trans-
lating with demonstrations generated from its own
parametric memory matches zero-shot MT with a
much larger LLM, Gemini. Our further analyses
suggest that a) few-shot exemplars are especially ef-
fective due to their assistance with translation style,
rather than terminology; and b) domain-specificity
is key, and can equally derive from generated de-

Base
LLM

Reasoning- 
enhanced 

LLM

fine-
tune

Original train data

fine-
tune

infer

TCC data

reasoning tasks

Domain shift 
between training 
and inference!

Predictions

ru
es

en
zh ar

ja

Un conejo blanco puede saltar 15 
metros en un minuto. El conejo 
marrón salta 12 metros por minuto. 
¿Cuál es la distancia total que 
saltarán los dos conejos en 5 
minutos?

facts = ['纳塔利娅在四月份把片段卖给了
她的 48 个朋友，然后', '她在五月份卖出
的片段只有原来的一半。']
question = '纳塔利娅在四月和五月总共卖
出了多少片段？’
facts.append(question)
answer = None
selected = select_facts(facts)

Figure 1: An overview of the methods used to improve
multilingual structured reasoning. Top: during training,
I create a multilingually commented code dataset, and
use it in a finetuning setup. Bottom: during inference, I
apply several prompting formats, finding most success
with our code prompts format.

mos, or static retrieved demos.

3 Evaluations of LLMs’ Knowledge

I consider three characteristics of knowledgeability:
factuality concerns utilization of factual informa-
tion, complex reasoning concerns using logic and
analytical abilities, and consistency concerns giv-
ing similar responses to similar queries.

I thus introduce two benchmarks which by de-
sign evaluate factuality and complex reasoning.
These benchmarks highlight the issues LLMs have
with consistent responses across languages, by elic-
iting responses for the same underlying queries, but
specified in different languages.2

3.1 Consistency of Complex Reasoning

While a human learns a new language one at a time,
a multilingual LLM can learn multiple languages
at once in its pretraining stage by simply includ-
ing multilingual data and following the standard
self-supervised LM objective. On one hand, this
imbues an LLM to super-human polyglot abilities –
mT5 and Aya, for example, support over 100+ lan-
guages (Xue et al., 2021; Üstün et al., 2024). On
the other hand, for each language, the performance
is inconsistently distributed, dropping steeply from
English, to lower-resource languages.

2Note that my focus on tasks where responses should
be consistent cross-lingually. This contrasts with the more-
studied tasks of cultural concerns, wherein the language used
can indicate a user’s preferences, and thus the responses should
accordingly vary cross-lingually.
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Figure 2: Results on xSTREET for the ARC subtask of scientific reasoning, with BLOOMZ-based models. The
random baseline is 25%. ‘Avg’ bars are across the 5 non-English languages.

I thus introduce xSTREET, a multilingual struc-
tured reasoning and explanation dataset that covers
four tasks across six diverse languages (Li et al.,
2024a). xSTREET exposes a gap in base LLM
performance between English and non-English rea-
soning tasks. To remedy the gap, I propose two
methods, as illustrated in Figure 1. which follow
from the insight that LLMs trained on code are
better reasoners. For training-time, I augment a
code dataset with multilingual comments using
MT, while keeping program code as-is. Parameter-
efficient finetuning of a base LLM is then applied
on the dataset. This leads to a model with improved
complex reasoning performance, while maintain-
ing performance on other language benchmarks.
For inference-time, I bridge the gap between train-
ing and inference by employing a prompt structure
that incorporates step-by-step code primitives to
derive new facts and find a solution.

Our code and multilinguality-informed methods
are individually effective and can be used in tandem
to achieve the best performance (Table 2 and Ap-
pendix Table 8). Notably, despite adding only non-
English data, the largest gains occur for English,
suggesting that the model leverages multilingual
formulations of a problem, then generalizes reason-
ing improvements across languages. Our findings
further underscore the role of code for enhancing
LLM’s reasoning capabilities.

3.2 Consistency of Geopolitical Knowledge

Information in the real world comes from various
sources, mediums, and perspectives. It is very natu-
ral that information can be conflicting, yet a human
encountering all of this has little issue synthesizing
it together into a consistent set of personal beliefs;
this holds across the languages they speak. Yet
given the discrete nature of LLM’s pretraining on
texts from different languages, how consistent can
LLMs be in their responses on factual queries?

¿Ceuta es un territorio de
España o de Marruecos?

هل سبتة تابعة لإسبانيا أو المغرب؟

Is Ceuta a territory of
Spain or Morocco?

Multilingual
Language

Model
España

Spain

Ceuta, territory of, Spain

Knowledge
Base

Multilingual
query set (MQS)

المغرب

Spain

Morocco

Multilingual
response set (MRS)

Figure 3: Illustration of a disputed territory task, which
considers a single territory with queries presented in
different languages. The KB says “Ceuta” belongs to
“Spain”. The LLM responds inconsistently: in Span-
ish and English “Spain”, while in Arabic “Morocco”,
demonstrating geopolitical bias.

To answer this question, I introduce BORDER-
LINES, a dataset of territorial disputes which cov-
ers 251 territories, each associated with a set of
queries in the languages of each claimant coun-
try (Li et al., 2024b). The dataset has 720 queries
in 49 languages. Figure 3 provides an illustration
of the task. In this context, I study the phenomenon
of geopolitical bias, which is the tendency to re-
port geopolitical knowledge differently depending
on the language of interaction. I then propose a
suite of evaluation metrics to quantify differences
in responses across languages. These metrics, as
detailed in Appendix B, are based on a simple ac-
curacy metric termed Concurrence Score (CS).

I benchmark several LLMs on BORDERLINES,
as shown in Table 3, and arrive at several findings.
I find that instruction-tuned models are less knowl-
edgeable about these disputes than their base LLM
counterparts. I also find that the most knowledge-
able LLMs in English tend to be more geopolit-
ically biased. I further find that models are less
consistent with responses for territories with un-
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Model Strategy KB
CS ↑

Con
CS ↑

Non
CS ↑

∆CS
↓

Cst CS
(unk) ↑

Cst CS
(all) ↑

RANDOM — 43.5 43.5 43.5 0 43.5 43.5
1 BLOOM560M — 60.5 66.7 29.9 123.3 57.3 49.5
2 BLOOM7.1B — 57.4 71.9 39.2 83.2 50.4 55.1
3 BLOOMZ560M — 46.9 65.4 36.1 81.0 48.0 51.1
4 BLOOMZ7.1B — 45.1 57.5 43.8 31.5 39.2 53.6
6 GPT-3DV — 60.5 60.0 51.3 17.0 63.1 63.3

7 GPT-4 Vanilla 79.5 76.9 63.2 21.6 65.6 70.8
8 GPT-4 UN Peacekeeper 80.1 74.6 67.7 10.2 56.3 72.3
9 GPT-4 Nationalist – 80.6 60.3 33.8 52.8 63.7

10 GPT-4 Demographic
reasoning 70.8 74.8 61.6 21.5 70.5 76.3

Table 3: Results on BORDERLINES for different models. We report the first 4 CS metrics for only the subset of
territories with defined controllers. Greyed rows are for instruction tuned models.

known controllers vs. known ones.
Finally, I explore several prompt modification

strategies, aiming to either amplify or mitigate
geopolitical bias. This highlights how brittle
LLM’s knowledge is to cues from the interaction
context. I explore 4 prompting strategies: a vanilla
baseline; a nationalist persona, a UN peacekeeper
persona; and a demographic reasoning approach,
which asks the model to reason by considering the
religion and language of the territory, as well as
each claimant country.

As the status of each individual disputed terri-
tory is complex, let us consider a notable case study.
Taiwan is an island in East Asia with a population
of 23.9 million. It is controlled by the Republic
of China (ROC), but also claimed by the People’s
Republic of China (PRC). For vanilla and demo-
graphic reasoning, querying in Traditional Chinese
(zht, used in ROC) and Simplified Chinese (zhs,
used in PRC) both return ‘ROC’. Adopting nation-
alist and UN prompts results in differing responses:
PRC in zhs, and ROC in zht.

3.3 Robustness of Multilingual Retrieval
Augmented Generation

Despite the impressive knowledgeability of LLMs,
a major limitation is that their knowledge is frozen
in time to their training data. The paradigm of
retrieval augmented generation (RAG) was devel-
oped to address these issues, by grounding LLM
responses in relevant passages retrieved from an
external datastore (Lewis et al., 2020b). The ex-
ternal datastore can be updated with new informa-
tion, or swapped out entirely for different needs.
In the multilingual setting, RAG can empower
LLMs to access information which is inequitably
distributed across languages, thereby improving

responses (Asai et al., 2022).
While several recent studies have investigated

RAG in small-scale multilingual settings, they
consider artificially construed scenarios and docu-
ments (Sharma et al., 2024; Wu et al., 2024). Also
related is the field of open-retrieval multilingual
QA (Clark et al., 2020); however these focus on
simple fact-seeking questions where right answers
are easily memorized by LLMs.

Our previously introduced BORDERLINES

benchmark on territorial disputes provides an fact-
seeking yet culturally-sensitive setting, which can
serve as a challenge to the RAG setting. Given
documents from different languages may espouse
different viewpoints, many questions arise: How
does the linguistic composition of the set of docu-
ments impact responses? Does sourcing informa-
tion from different languages increase or decrease
consistency? And is presenting conflicting infor-
mation to LLM’s base preferences better expressed
in certain languages?

In this work, I introduce BORDIRLINES, a
benchmark consisting of 720 territorial dispute
queries paired with 14k Wikipedia documents
across 49 languages (Li et al., 2025a). To eval-
uate LLMs’ cross-lingual robustness for this task, I
formalize several modes for multilingual retrieval,
as depicted in Figure 4, each of which reflects a
real-world information access need.

I use BORDIRLINES and the IR modes to sys-
tematically evaluate the cross-lingual robustness
of various LLMs. The main results are shown
in Figure 5. As expected, factuality generally in-
creases when using RAG compared to the no_ir
baseline. As for consistency, we find that qlang
has mixed effects, depending on the model – nega-
tive for GPT, positive for Command-R. Meanwhile,
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en

Ceuta is an autonomous city of
Spain on the North African coast.

سبتة هي مدينة مغربية تحت السيادة الإسبانية
ذاتية الحكم تقع على القارة الأفريقية

Marruecos reclama pertinazmente
la soberanía sobre la ciudade

española de Ceuta.

¿Ceuta es un territorio de
Marruecos o de España?

Information
Retrieval

Model

Language
Model

España. Ceuta is an autonomous city of Spain <doc1>.
While Morocco claims sovereignty <doc2>, it is under

Spain sovereignty <doc3>.

Answer and explain with citations.

Passages

Text

Ceuta is a Moroccan city under
Spanish sovereignty located on the

African continent.

Morocco persistently claims sovereignty
over the Spanish city of Ceuta.

es

ar
lq = es

L = {ar,
es, en}

ا لا يعتبر المغرب منذ استقلاله، سبتة جزءً
.يتجزأ من التراب المغربي

سبتة هي مدينة مغربية تحت السيادة الإسبانية
ذاتية الحكم تقع على القارة الأفريقية

يطالب المغرب بمدينتي سبتة ومليلية وبلاثاس
.دي سوبيرانيا قبالة الساحل الشمالي لأفريقيا

هل سبتة هي أراضي المغرب أو إسبانيا؟

Information
Retrieval

Model

Language
Model

Ceuta is a Moroccan city <doc1>, that has been .المغرب
considered an integral part of Morocco <doc2> <doc3>.

However, it is under Spanish sovereignty <doc1>.

Answer and explain with citations.

Since its independence, Morocco has
considered Ceuta an integral part of

Moroccan territory.

Morocco claims the cities of Ceuta,
Melilla and Plazas de Soberania off the

northern coast of Africa.

ar
lq = ar Passages

L = {ar}

rel_langsqlang

6 IR modes: {no_ir, qlang,
rel_langs, qlang+en,
en_only, swap_docs}

3 query languages:
{en, ar, es}

18 cross-lingual
prompts for

territory Ceuta

Evaluate cross-
lingual robustness
over 18 responses

Figure 4: Illustration of 2 cross-lingual RAG prompts from the BORDIRLINES benchmark, on the disputed territory
“Ceuta”. Observe the differences in the retrieved documents from the cross-lingual IR system, as well as the
differences in answers and explanations. For a given territory, we create several prompts by varying the languages
and the IR modes (18 here). Our evaluation of cross-lingual robustness is over the set of responses.

rel_langs has a positive effect, with a huge boost
for Command-R. On geopolitical bias, I find re-
liable decreases when using RAG. Moreover, we
observe that different LLM display different sen-
sitivities to RAG, with Llama least affected and
Command-R most.

Further experiments analyze all facets of the
cross-lingual RAG setting. Considering the cita-
tions given by RAG responses, low-resource lan-
guages demonstrate much wider variability in ci-
tation rates than high-resource languages. Consid-
ering IR, there is a preference towards retrieving
query-language documents. Considering the con-
tents of documents, LLMs can selectively interpret
the same documents to fit their own viewpoints.
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A Supplementary Figures and Tables

Figure 6 depicts the PAXQA pipeline. Figure 7
depicts the prompting setup for domain-adapted
MT. Figure 8 presents the results of GPT-3 on the
xSTREET benchmark.

B Details on Metrics for BORDERLINES

Figure 9 illustrates the comparisons made for each
CS metric, and Table 4 shows the formulas.
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Figure 6: The PAXQA method generates a cross-lingual question-answering (QA) dataset given a word-aligned and
parallel corpus. The two stages are English question generation (left), and Q&A translation (right). We run the
pipeline on {ar-en}, {zh-en}, and {ru-en} datasets (bottom), resulting in 662K cross-lingual QA examples.
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Figure 8: Results on GSM8k, AQUA_RAT, AR_LSAT tasks of STREET (left) and xSTREET (right), with GPT-3
(text-davinci-003). xSTREET results are averaged over 5 languages.
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Figure 9: Illustration of comparisons made for the CS
metrics. KB CS, Control CS, and Non-control CS all
compare between the KB country and a response, while
Consistency CS compares between responses.

CS(ci, cj) = 100 ∗
{
1 if ci = cj ,

0 otherwise

Con CS(t) = CS(cKB , ci)

Non CS(t) =
1

n

∑

c∈Cnon

CS(cKB , c)

∆ CS(t) =
Con CS− Non CS

Non CS

Cst CS(t) =
1

n(n− 1)

n∑

i=1

n∑

j=1,j ̸=i

CS(ci, cj)

Table 4: Formulas for concurrence score (CS) metrics.
We denote all claimants of a territory t as C = c1, ..., cn,
a controller as ccon, the set of non-controllers as Cnon.
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Abstract

Identifying commercial posts in resource-
constrained languages among diverse and un-
structured content remains a significant chal-
lenge for automatic text classification tasks.
To address this, this work introduces a novel
dataset namedMDC3 (Multimodal Dataset for
Commercial Content Classification), compris-
ing 5,007 annotated Bengali social media posts
classified as commercial and noncommercial.
A comprehensive annotation guideline ac-
companies the dataset to aid future creation
in resource-constrained languages. Further-
more, we performed extensive experiments on
MDC3 considering both unimodal and multi-
modal domains. Specifically, the late fusion of
textual (mBERT) and visual (ViT) models (i.e.,
ViT+mBERT) achieves the highest F1 score
of 90.91, significantly surpassing other base-
lines.

1 Introduction

Social media platforms are crucial for commu-
nication, enabling individuals and businesses
to share diverse content. Commercial posts in-
fluence consumer behavior and brand percep-
tion, making their identification essential for
transparency, consumer protection, and reg-
ulatory compliance (McQuarrie and Munson,
2014; Boerman and van Reijmersdal, 2016a).
However, native advertising and influencer
marketing blur the lines between ads and per-
sonal content, complicating detection (Boer-
man and van Reijmersdal, 2016b; Chia, 2012).
Detecting commercial posts is vital for tar-

geted advertising, brand monitoring, and con-
sumer behavior analysis. While most re-
search focuses on English, Bengali social me-
dia lacks annotated datasets and faces chal-
lenges from multimodal content and cultural

nuances. To address this, we introduceMDC3,
a dataset for classifying Bengali social media
posts as commercial or non-commercial. Var-
ious unimodal and multimodal baselines are
explored based onMDC3.
Key contributions:

• IntroducedMDC3, a multimodal dataset
with 5,007 labeled samples.

• Evaluated unimodal and multimodal
baselines for Bengali commercial
content classification.

2 Related Work

Social media’s growing influence has made
user-generated and influencer-created content
pivotal in shaping consumer behavior (Gam-
age and Ashill, 2023). Influencers act as
trusted figures but often blur the lines between
personal and commercial content, complicat-
ing automatic detection (Vanninen et al., 2023;
Weismueller et al., 2022; Ahammad et al.,
2024). Subtle advertising strategies, such as
conversational language and self-focused vi-
suals, enhance audience engagement but hin-
der content classification (Hidarto and An-
drieza, 2022; Kim et al., 2020). Multimodal
approaches have shown promise in addressing
these challenges. Vedula et al. (2017) lever-
aged text, audio, and video embeddings for ad
effectiveness prediction, while Villegas et al.
(2023) introduced datasets combining textual
and visual modalities for better ad detection.
These studies highlight the advantages of mul-
timodal models over unimodal counterparts.
Beyond influencer marketing, multimodal

research spans diverse applications, including
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trend detection (Pandit et al., 2019), COVID-
19 impact analysis (Unal et al., 2022), and
gender-based communication studies (Hidarto
and Andrieza, 2022). However, resource-
constrained languages like Bengali remain un-
derexplored, with most models trained on
English-centric datasets, limiting their appli-
cability to non-English contexts. This study
addresses this gap by introducing a Bengali
dataset for commercial content classification
and proposing a multimodal approach that
combines textual and visual features to en-
hance classification accuracy.

3 Developement of MDC3

As per our investigation’s outcome, no bench-
mark dataset is explicitly available for de-
tecting influencer commercial content in Ben-
gali. Therefore, this work presents a bench-
mark dataset, MDC3 (Multimodal Commer-
cial Content Classification Dataset), from
Bengali social media posts comprising Face-
book and Instagram posts categorized into
two classes, commercial and non-commercial.
The definitions of each class within the dataset
are provided below, as described by (Villegas
et al., 2023).

• Commercial (Com): Commercial posts
promote or endorse a brand or its prod-
ucts or services, a free product or service,
or any other incentive.

• Non-commercial (NCom): Non-
commercial posts refer to organic
content such as personal ideas, com-
ments, and life updates that do not aim
to be monetized.

3.1 Data Collection and Annotation
From April to November 2024, we collected
5,007 multimodal influencer posts from Face-
book (66.2%) and Instagram (33.8%), in-
cluding 2,750 commercial and 2,257 non-
commercial entries. These were sourced
from Bangladeshi influencers and commercial
pages. The dataset prioritizes authenticity by
including only Bengali content with authentic
or captured visuals. To ensure ethical stan-
dards, all data were sourced from publicly

Figure 1: Data Annotation Process

accessible domains, excluding entries with-
out multimodal elements, unclear visuals, car-
toons, or insufficient text.
Three experienced annotators annotated the

dataset following clear guidelines on label-
ing (Figure 1), tool use, and quality stan-
dards. Annotators received training to en-
sure adherence to criteria for commercial and
non-commercial content. The process was in-
dependent and there were regular meetings
to resolve ambiguities and reach consensus.
A senior professor with 10+ years of experi-
ence evaluated inter-annotator agreement us-
ing majority voting (Algorithm 1), ensuring
the dataset’s reliability. Appendix A describes
the details of the majority voting algorithm.
We applied inter-annotator agreement stan-

dards (i.e., Cohen’s kappa coefficient (Cohen,
1960), to measure the quality of the annota-
tions. On the kappa scale, we achieved 0.86
implies an almost ideal agreement.

3.2 Statistics
We have stratified the dataset into three sets:
train (60%), validation (20%), and test (20%).
Table 1 demonstrates the statistics of the
dataset.
Figure 2 illustrates samples of the dataset.

The dataset is available on online: https://gi
thub.com/anik5099/Multimodal-Commerc
ial-Content-Classification-Binary

4 Methodology

This section describes the baseline models
for classifying commercial content, which in-
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Split Com NCom TW UW

Train 1631 1372 57292 6930
Val 546 456 17843 4291
Test 573 429 20086 4454
Total 2740 2257 95221 15675

Table 1: Class distribution in train, validation, and test
sets. The acronyms TW , UW denotes total words and
unique words, respectively

শ‍ুËবার িপৎজা Ǭá

(Free pizza on Friday)

Com

িটএসিসর পািনপুির

(Panipuri of TSC)

NCom

Figure 2: Dataset samples.

clude unimodal (visual or textual) and mul-
timodal (visual and textual) models. Fig-
ure 3 depicts the abstract process of commer-
cial content classification employing textual
and visual modalities. For this classification
task, image and textual modalities have been
trained separately. Then the unimodal models
have been fused to produce multimodal classi-
fication. Experimental Settings is explained
in Appendix 5.

Figure 3: Abstract process of multimodal content clas-
sification

4.1 Data Preprocessing
For the multimodal commercial content classi-
fication task, separate pipelines have been ap-
plied to prepare text and image data. Captions
have been cleaned, tokenized, and converted
into input IDs and attention masks using a sub-
word tokenizer for text data. Sequences have
been padded or truncated to a fixed length. Im-
ages have been resized to 224×224, and nor-
malized. Processed images have been con-
verted to tensors. The dataset labels have been
encoded (1 for commercial and ’0’ for non-
commercial). The dataset has been split into
60-20-20 for training, validation and test set.

4.2 Unimodal Baselines
This work explores several unimodal (visual
or textual) and multimodal (visual and textual)
baselines to classify the commercial content in
Bengali. The Hyperparameter Settings for
unimodal and multimodal models have been
described in section B.

4.2.1 Visual Modality
We fine-tuned prominent convolutional neu-
ral network (CNN) architectures to classify vi-
sual data. The input images were resized to
224 × 224 × 3 and preprocessed using stan-
dard normalization techniques. Specifically,
we employed the following CNN models:

• Xception (Chollet, 2017): A depthwise
separable convolutional network opti-
mized for computational efficiency.

• VGG19 (Simonyan and Zisserman,
2015): Known for its more profound
architecture, this model emphasizes
hierarchical feature extraction.

• ResNet50 (He et al., 2015): A residual
network addressing vanishing gradient is-
sues through skip connections.

• DenseNet (Huang et al., 2018): A
densely connected architecture designed
to enhance feature reuse across layers.

• ViT (Dosovitskiy et al., 2021): Vision
Transformer (ViT) uses self-attention to
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process image patches as sequences,
achieving competitive performance in
image recognition tasks compared to tra-
ditional CNNs.

The top layers of each model were replaced
with a dense layer of 32 neurons and a sigmoid
layer for binary classification. These archi-
tectures were fine-tuned on our dataset using
transfer learning techniques.

4.2.2 Textual Modality
Transformer-based models have been proven
superior in many text classification tasks
(Shanto et al., 2024; Chowdhury et al., 2024;
Tamim et al., 2023a,b). Therefore, for text
classification, we utilized transformer-based
architectures, fine-tuned for our specific task:

• BERT (Devlin et al., 2019): A bidirec-
tional transformer pre-trained on large-
scale English text corpora.

• mBERT (Devlin et al., 2019): A mul-
tilingual version of BERT designed for
cross-lingual tasks.

• Bangla-BERT (Bhattacharjee et al.,
2022): A language-specific transformer
model pre-trained on Bangla text.

• XLM-Roberta (Conneau et al., 2020): A
cross-lingual transformer optimized for
multilingual tasks.

Each model processed tokenized text se-
quences and generated contextual embeddings
of size 768. These embeddings were passed
through a dense layer with 32 neurons, fol-
lowed by a sigmoid layer for classification.

4.3 Multimodal Baselines
This work exploited several multimodal tech-
niques to analyze the multimodal data (visual
and textual). A dense layer with 768 neurons
was applied separately to the visual and tex-
tual modalities for model construction. The
outputs from these layers were then concate-
nated to create a combined representation of
visual and textual features. This combined
feature was further processed through another

dense layer of 768 neurons, followed by a
softmax layer to classify posts into commer-
cial or non-commercial categories. We have
used the late fusion technique for measuring
baselines because late fusion is more inter-
pretable and allows each modality to lever-
age its unique characteristics. Besides, Con-
trastive Language-Image Pretraining (CLIP)
(Radford et al., 2021) was employed to align
visual and textual data, leveraging contrastive
learning techniques (Chen et al., 2020).
The late fusion process can be mathemati-

cally expressed as follows:

zcombined = Concat (zvisual, ztext) (1)

Here, the visual and textual features are ex-
tracted as:

zvisual = σ(Wvisualxvisual + bvisual) (2)
ztext = σ(Wtextxtext + btext) (3)

where σ is the activation function (Soft-
max), Wvisual and Wtext are the weights, and
bvisual and btext are the biases for the respective
modalities. Concat denotes the concatenation
operation.
The concatenated feature vector zcombined is

passed through a dense layer followed by a
softmax layer for classification:

ypred = Softmax(Wclasszcombined + bclass) (4)

Here,Wclass and bclass represent the weights
and biases of the classification layer, respec-
tively. The Softmax function maps the output
to probabilities for the two categories (com-
mercial and non-commercial).
This formulation effectively integrates fea-

tures from both modalities, showcasing the
power of late fusion for joint multimodal learn-
ing.

5 Experimental Setup

This section describes the summary of the ex-
perimental setup while training and evaluating
our model on the dataset. The simulation was
run on a personal computer with an NVIDIA
GeForce GTX 2060 GPU and an Intel Core i7-
9700 CPU running at 3.00 GHz. Additionally,
a Kaggle Notebook with a P100 GPU was uti-

314



App A(%) P(%) R(%) F1(%)

Visual Only
Xception 64.17± 0.87 65.78 62.67 63.59± 0.77
VGG19 73.65± 0.49 69.70 69.66 73.53± 0.36
VGG16 74.18± 0.60 73.18 70.66 74.23± 0.58
ResNet 79.14± 0.21 73.86 68.66 79.11± 0.16
DenseNet 67.84± 0.54 63.03 63.07 67.90± 0.43
ViT 81.70±0.013 82.85 81.94 81.71±0.011

Textual Only
B-BERT 84.56± 0.01 83.60 82.91 83.21± 0.03
BERT 81.18± 0.04 83.12 79.44 81.14± 0.01
mBERT 86.83± 0.003 91.10 84.27 87.43± .006
XLM-R 74.25± 0.27 74.08 94.44 81.95± 0.09

Multimodal
CLIP 77.94± 0.01 77.88 77.94 77.75± 0.00
ViT+mBERT 90.92± 0.001 90.91 90.92 90.91± .001

Table 2: Performance comparison of unimodal andmul-
timodal models on the test set. The symbols A, P, R,
and F1 denote accuracy, precision, recall, and F1-score,
respectively. The standard deviation (±) with three ran-
dom seeds is reported.

lized to ensure sufficient processing capabil-
ity.

5.1 Results

Table 2 provides an overview of the perfor-
mance of various unimodal and multimodal
models. Among the visual-only models, ViT
emerges as the top performer with an F1
score of 82.03, surpassing other models like
ResNet and Xception. On the textual side,
m-BERT outshines all other unimodal mod-
els, achieving a remarkable F1 score of 87.43.
However, the proposed model ViT+mBERT
demonstrates the most significant advance-
ment, achieving an F1 score of 90.92, marking
an improvement of several percentage points
over the best baseline model. This result un-
derscores the proposed approach’s superior ef-
fectiveness in leveraging visual and textual
modalities. The CLIP model showed inferior
performance (F1 score of 77.75%) due to the
domain gap in pretraining, limited fine-tuning,
lack of modality-specific processing, and in-
sufficient task-specific adaptation.

6 Error Analysis

In our study on the classification of multi-
modal commercial content from social media,
we performed an extensive error analysis to
identify the strengths and weaknesses of our

proposed model. The analysis was conducted
quantitatively and qualitatively to understand
the model’s performance comprehensively.
Quantitative Analysis: During the eval-

uation, we conducted a detailed quantitative
analysis using confusionmatrices to assess the
model’s performance.

(a) Best textual model

(b) Best visual model

(c) Proposed model

Figure 4: Confusion matrices of employed models

The confusion matrices are shown in Fig-
ure 4 states that the proposed multimodal
model ViT+mBERT, which integrates both
text and visual data, achieved an accuracy
of 90.92%. This represents a significant im-
provement over unimodal models that rely
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solely on visual or textual data, demonstrating
the model’s effectiveness in accurately clas-
sifying commercial content on social media
platforms. The analysis revealed specific chal-
lenges, particularly with subtle commercial
content. Posts that casually mentioned prod-
ucts without explicit promotional intent were
occasionally misclassified as non-commercial
despite the presence of brand-related key-
words. For instance, these errors occurred
in 7.68% of the cases. Conversely, non-
commercial posts that included neutral or crit-
ical discussions of products were sometimes
wrongly categorized as commercial, likely
due to an overreliance on product-related key-
words. This misclassification was observed
in 10.95% of the cases. Moreover, the com-
plexity of multimodal data led to further mis-
classification issues. Specifically, posts with
ambiguous text and neutral visuals were prone
to errors, which occurred 15.87% of the time.
This underscores the need for more sophisti-
cated textual and visual data integration to im-
prove classification accuracy and reduce er-
rors. Table 3 shows the error rate of both
unimodal and multimodal models. The de-
tailed Qualitative Analysis is explained in
Appendix C.

Approach % of Error

Visual Only
Xception 35.83
VGG19 26.35
VGG16 25.82
ResNet 20.86
DenseNet 32.16
ViT 18.30

Textual Only
BERT 18.82
XLM-R 25.75
B-BERT 15.44
m-BERT 13.17

Multimodal
CLIP 22.25

ViT+mBERT 9.09

Table 3: Error rate of employed models

7 Conclusion

This paper proposed a multimodal framework
for detecting commercial content in Bengali

social media posts, evaluated on the newly
developed MDC3 dataset with 5,007 posts
labeled as commercial and non-commercial.
The study utilized models such as mBERT for
textual features and ViT for visual features.
Results show that multimodal approaches sig-
nificantly outperform unimodal methods, with
ViT+mBERT achieving the best performance.
Error analysis identified challenges in detect-
ing subtle advertising styles. Future work
will expand the dataset, incorporate diverse
domains, and explore advanced fusion tech-
niques to improve model robustness and per-
formance. Moreover, explainability analysis
will also be included to improve the model’s
clarity.

Limitations

The proposed methodology utilized a late fu-
sion, which possesses several limitations. The
class imbalance within the dataset may lead
to biased predictions toward the more preva-
lent class, thereby compromising the model’s
performance. The explainability of how the
model mitigates bias is not explained in the
paper. The dynamic nature of social media
content may hinder the model’s ability to gen-
eralize to novel content types not sufficiently
represented in the training data. While the
late fusion technique effectively merges visual
and textual features, it may not fully capture
the intricate interdependencies between these
modalities, thus limiting the model’s capacity
to generate optimal predictions.
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A Annotation with Majority Voting

Algorithm 1 determines whether influencer
posts on social media are commercial or non-
commercial using majority voting from three
annotators.

Algorithm 1 Majority Voting with 3 Annota-
tors
Require: A set of posts P = {p1, p2, . . . , pn}.

Each post pi has three labels L1, L2, L3

given by three annotators.
Ensure: Final labels for each post indicate

“Commercial” (C) or “Non-Commercial”
(NC).

1: functionMajorityVoting(annotations)
2: final_labels← []
3: for all annotation ∈ annotations
do

4: C,NC ← 0, 0
5: for all label ∈ annotation do
6: if label ==′ C ′ then C ←

C + 1
7: else if label ==′ NC ′ then

NC ← NC + 1
8: end for
9: if C ≥ 2 then

final_labels.append(′Commercial′)
10: else final_labels.append(′Non−

Commercial′)
11: end for
12: return final_labels
13: end function

B Hyperparameter Configuration

Different hyperparameters are tuned for vi-
sual and textual models. The best multimodal
model’s hyperparameters are also tuned based
on the training dataset.
Textual Models: The textual models

leverage transformer-based architectures like
Bangla-BERT and m-BERT, requiring spe-
cific configurations to handle tokenized text
effectively. The hyperparameters were fine-
tuned to ensure optimal training for the text
modality. Table 4 gives a brief overview of the
parameter setups we have used in the model.
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Parameter Value
Learning Rate 5× 10−5

Optimizer AdamW
Batch Size 16
Number of Epochs 8
Loss Function CrossEntropyLoss
Maximum Sequence Length 128
Warmup Steps 500
Weight Decay 1× 10−2

Table 4: Hyperparameter configurations for textual
models

Visual Models: For visual models, the con-
figurations were adapted to focus on efficient
processing of high-dimensional image data.
Specific adjustments were made to cater to the
requirements of convolutional networks. Ta-
ble 5 gives a brief overview of the parameter
setups we have used in the model.

Parameter Value
Learning Rate 1× 10−4

Optimizer SGD
Batch Size 64
Number of Epochs 20
Loss Function BinaryCrossEntropyLoss
Image Size 224× 224
Weight Decay 5× 10−4

Momentum 0.9

Table 5: Hyperparameter configurations for visual mod-
els

Multimodal Models: The multimodal
models were designed to effectively integrate
visual and textual features, leveraging their
complementary nature for improved classi-
fication performance. The hyperparameters
were carefully chosen to balance the unique
requirements of each modality while optimiz-
ing the late fusion process. Table 6 gives
a brief overview of the parameter setups we
have used in the model.

C Qualitative Analysis

The qualitative analysis revealed that the
model effectively identifies straightforward
commercial content by integrating textual and
visual cues, accurately classifying posts with
explicit promotional language and product im-
ages. However, it struggles with subtle com-

Parameter Value
Learning Rate 2× 10−5

Optimizer AdamW
Batch Size 32
Number of Epochs 10
Loss Function BinaryCrossEntropyLoss
Fusion Method Late Fusion (Concatenation)
Visual Feature Dimension 512
Textual Feature Dimension 768
Combined Feature Dimension 768
Dropout Rate 0.3
Weight Decay 1× 10−3

Table 6: Hyperparameter configurations for multi-
modal models

mercial content and ambiguous multimodal
posts.

দাদােদর ৩৫০+ রান
হেলই একিট িপৎজার
সােথ আেরকিট Ǭá
(If Dadas score 350+
runs, Buy one pizza, get
one free)
(a)
Textual: Com (3)
Visual: Non-Com (7)
ViT+mBERT: Com (3)

েদশাল ঈদ কােলকশন
(Deshal Eid Collection)

(b)
Actual: Com
Predicted: Non-Com

Figure 5: Example (a) illustrates a picture where the
proposed method produces better predictions, and ex-
ample (b) illustrates a wrongly classified sample. The
symbols (3) and (7) indicate the correct and incorrect
prediction.

For example, posts with brand mentions or
subtle product placements and those with ab-
stract images and vague text were often mis-
classified. These findings highlight the need
for improved semantic understanding and dif-
ferentiation between neutral and promotional
content. Figure 5 depicts the label of data sam-
ples predicted by the proposed model.
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D Social Media Profiles and Activity

The developed dataset is dedicated to multi-
modal commercial content classification tasks.
For developing the dataset, we have collected
data samples from many social media pages.
Table 7 shows some data sources from where
data have been collected.

Name Type Affiliation Popularity
Shajgoj (Shajgoj,
2024)

FP/IG Beauty 2.1M

Nadir On The Go
Bangla (Bangla,
2024)

FP Travel 2.8M

Neha Fun & Fitness
(Fitness, 2024)

FP/IG Fitness 1.9M

Rafsan The Choto-
vai (Chotovai,
2024)

FP/IG Food 4.3M

Shorodindu
(Shorodindu,
2024)

FP Lifestyle 620k

Table 7: Social media profiles and activity

320

https://www.facebook.com/Shajgoj


Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 321–332

April 30 - May 1, 2025 ©2025 Association for Computational Linguistics

DateLogicQA: Benchmarking Temporal Biases in Large Language Models

Gagan Bhatia ϕ, MingZe Tang ϕ, Cristina Mahanta ϕ, Madiha Kazi ϕ

University of Aberdeen
{g.bhatia.24,m.tang.24,c.mahanta.24,m.kazi.24}@abdn.ac.uk

Abstract
We introduce DateLogicQA, a human curated
benchmark of 190 questions specifically de-
signed to understand temporal bias in Large
Language Models (LLMs). Covering seven
date formats across past, present, and future
contexts, DateLogicQA examines four reason-
ing types: commonsense, factual, conceptual,
and numerical. Through human-led evalua-
tions of 12 state-of-the-art LLMs, we identify
Representation-Level Bias, arising from subop-
timal embeddings that distort date semantics,
and Logical-Level Bias, manifesting when cor-
rect date tokens yield flawed temporal reason-
ing. Our findings underscore persistent chal-
lenges in handling various date formats and
temporal contexts, revealing the need for more
robust pretraining data, targeted post-training
methods, and precise tokenization strategies.
By illuminating these biases, we provide ac-
tionable insights to guide the development of
LLMs for accurate temporal reasoning across
diverse real-world applications.

1 Introduction

Accurate temporal reasoning is essential for real-
world applications like event planning and histori-
cal questions. However, biases in Large Language
Models (LLMs) can lead to misinterpretations or
errors in date-related tasks. Understanding these
biases is essential for precisely handling numerical
structures and contextual meanings, making tem-
poral reasoning ideal for identifying and analysing
biases in tokenization, representation, and logical
reasoning.

A significant source of these biases originates
from the tokenization process. While tokenizers di-
vide the text into subword units, inconsistencies in
tokenizing dates can disrupt reasoning tasks. This
can lead to two types of biases: Representation-
Level Bias, caused by inconsistencies in embed-
dings affecting semantic structures of dates, and
Logical-Level Bias, where correct tokens do not

Figure 1: Examples of temporal biases in LLMs.
Incorrect Response, Faulty Date but accurate rea-
soning indicating representation level temporal bias,
Faulty reasoning but accurate date indicating logical
level temporal bias, Correct response

yield accurate outputs due to misaligned internal
processing. Together, these biases highlight the
challenges LLMs face in preserving the integrity
and interpretability of temporal data across diverse
formats and contexts.

This paper makes two significant contributions
to understanding temporal biases in LLMs. (1) We
introduce DateLogicQA, a dataset of 190 curated
questions for evaluating temporal reasoning across
various date formats, contexts (past, present, fu-
ture), and reasoning types (commonsense, factual,
conceptual, numerical). (2) We conduct human
evaluations of model responses to analyse tokeniza-
tion accuracy and reasoning quality, providing in-
sights beyond automated metrics.

We have organised the paper as follows: Section
2 reviews related works, summarising the impact
of tokenization on LLM performance and past tem-
poral reasoning approaches. Section 3 details the
creation of the DateLogicQA dataset, including its
design principles and examples. Section 4 outlines
methods for temporal reasoning, and biases. Sec-
tion 5 presents experiment results, followed by a

321



discussion of findings and bias mitigation in Sec-
tion 6. Lastly, Section 7 summarises our contribu-
tions.

2 Related Works

Impact of Tokenization on Language Models
Tokenization significantly affects the efficiency
and reasoning abilities of large language models
(LLMs). Research by Gu et al. (2024) and Gold-
man et al. (2024) highlights that tokenizers with
higher compression rates enhance representation
efficiency, particularly in smaller models. How-
ever, Schmidt et al. (2024) argue that effective to-
kenization also depends on pre-tokenization and
vocabulary design. Studies like Ahia et al. (2023)
show that poorly tokenized languages face perfor-
mance and fairness issues. Furthermore, choices in
tokenization impact reasoning; Zhang et al. (2024)
and Singh and Strouse (2024) indicate that numer-
ical tokenization can lead to errors in arithmetic
and counting tasks. Rajaraman et al. (2024), Al-
berts et al. (2024), Minixhofer et al. (2024), and
Gastaldi et al. (2024) show how well-designed to-
kenizers improve sequence pattern modelling and
numerical reasoning through advanced embedding
methods. Our study extends this work by exam-
ining tokenization’s role in handling diverse date
formats for temporal reasoning.

Temporal Reasoning in LLMs Temporal rea-
soning poses challenges for LLMs due to inherent
biases. Zhu et al. (2024) discussed "nostalgia bias"
(favouring outdated knowledge) and "neophilia
bias" (speculative future predictions), while Tan
et al. (2023b) observed inconsistent generalisa-
tion across different time periods. Structured ap-
proaches like temporal graphs (Xiong et al., 2024a)
and synthetic datasets (Fatemi et al., 2024) en-
hance performance by explicitly encoding tempo-
ral relationships. Additionally, tokenization criti-
cally affects temporal reasoning; Zhao et al. (2024)
found that temporal misalignment hampers accu-
racy, and Kishore and He (2024) identified induc-
tive biases in models like GPT-3.5 and GPT-4. Su
et al. (2024a) propose task-agnostic approaches to
enhance temporal reasoning, while Gastaldi et al.
(2024) and Rajaraman et al. (2024) link tokeniza-
tion to reasoning performance. By analysing how
tokenization strategies affect temporal reasoning,
especially for date formats, our work fills a gap in
understanding the interplay between tokenization
and temporal task performance.

3 DateLogicQA

We introduce DateLogicQA, a dataset designed
to explore how LLMs handle dates in various for-
mats and contexts to tokenize, interpret, and reason
with them. It consists of 190 questions divided
into four categories: commonsense, factual, con-
ceptual, and numerical. Each category features
one of seven date formats across three temporal
contexts: past, present, and future. This systematic
variation allows for an in-depth analysis of LLMs’
performance with temporal information.

Objective and Purpose The dataset aims to as-
sess LLMs’ tokenization and understanding of
dates, as errors can lead to interpretative biases.
By embedding dates within questions, we evalu-
ate context-rich date interpretation, simulate real-
world scenarios where dates carry contextual sig-
nificance, and test LLMs’ ability to extract and
interpret date information accurately.

Concepts Example

Numerical What is the time 7 years and 9 months
after 27101446?

Factual
Which of the people died on 23041616?
A) Shah Jahan B) Miguel de Cervantes
C) Princess Diana D) William Shakespeare

Conceptual The first iPhone was released on 29062007.
How many years has it been since its release?

Commonsense
John was born on 15-03-1985.
He graduated from college on 01-05-2007.
Was John older than 18 when he graduated?

Table 1: Dataset samples illustrating different temporal
reasoning concepts.

Date Format Example

DDMMYYYY 23041616
MMDDYYYY 04231616
DDMonYYYY 23April1616
DD-MM-YY 23-04-16
YYYY, Mon DD 1616, April 23
DD/YYYY (Julian calendar) 113/1616
YYYY/DD (Julian calendar) 1616/113

Table 2: Dataset samples illustrating different date for-
mats used.

This approach comprehensively examines vari-
ous temporal notations, including uncommon for-
mats like Julian calendar representations.

Temporal Distribution DateLogicQA spans a
broad temporal range, featuring dates from his-
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Figure 2: Human evaluation rubric

torical periods (e.g., the 1600s), modern contexts
(e.g., the 2000s), and hypothetical futures (e.g., the
2100s). For clarity, we categorised dates into past,
present, and future, with some questions covering
multiple dates to assess LLMs’ ability to manage
temporal relationships across contexts.

Rationale for Design The dataset prioritises
models’ ability to interpret dates within broader
narratives rather than as isolated data points. Its
smaller size allows for careful curation of high-
quality, linguistically diverse questions, focusing
on specific nuances of temporal reasoning. This
enables detailed analysis of model behaviour and
understanding of temporal biases.

4 Methodology

4.1 Human-Led Temporal Bias Assessment
Understanding temporal contexts is crucial for
analysing events over time. This includes grasping
temporal references like "How many years has it
been since..." (Past) and "What will the contract’s
last day be..." (Future), along with the maintenance
of logical chronological order and adaptation to
changes in context. For large language models,
this capability is vital for tasks such as historical
inquiries, time-sensitive query handling and pre-
dictions about future events. Assessing biases in
temporal reasoning is essential for accuracy across
various applications. We utilized the dataset refer-
enced in Section 3.

We conduct a human evaluation to assess the
temporal bias of LLMs as automated methods
may exhibit inherent biases that affect results, ulti-
mately undermining the evaluation’s purpose. This
methodology provides a more reliable analysis,
identifying outliers that respond accurately with-
out fully comprehending temporal aspects. In-
stead, it relies on contextual clues or learned pat-
terns acquired during training or through retrieval-

augmented generation.
Model responses are categorised based on

colours in Figure 2, representing levels of tem-
poral understanding. Dark Orange ( ) denotes
incorrect answers or temporal hallucinations from
failure to tokenize dates or grasp context. Light
Orange ( ) reflects Representation-Level Tempo-
ral Bias, where the model tokenizes dates inac-
curately but reaches the correct answer through
logical reasoning. This suggests that some inter-
nal reasoning within the model compensates for
misunderstanding the date format. Light Teal ( )
signifies Logical-Level Temporal Bias, where the
model tokenizes correctly but misapplies logic due
to misattributing events or calculation errors. Fi-
nally, Dark Teal ( ) denotes correct answers, indi-
cating successful tokenization and logical reason-
ing. This illustrates a complete understanding of
the question.

5 Results

5.1 Temporal Reasoning Analysis
Temporal reasoning, including processing and
drawing inferences from historical and future dates,
is one of the most challenging tasks for large
language models. The current study investigates
whether there are any differences in LLM perfor-
mance when reasoning with historical dates, such
as "July 20, 1969", and future dates, such as "Jan-
uary 1, 2050". To this end, we present the testing of
12 state-of-the-art LLMs using a question-answer
dataset encompassing different date formats and
various temporal contexts. This paper examines
their skills in tokenization, comprehension, and in-
ference on dates. We classify the answers into four
categories based on their accuracy and treatment
of the dates and logical structure involved, thereby
providing a systematic evaluation framework.

In order to ensure that the assessment is robust,
four human annotators, each with at least four years
of experience in computer science, evaluated the
responses across the four categories. The labelling
achieved a high inter-annotator agreement with a
Cohen’s kappa (K) score of 0.80, confirming the re-
liability of the evaluation framework. These results
evidence two critical areas where LLMs shine and
their struggles, giving further information about
their strengths and limitations concerning temporal
reasoning.

Performance of Selected LLMs The evaluation
of 12 language models, accessed through Hugging
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(a) Date Format visualisation (b) Time period visualisation (c) Question Type visualisation

Figure 3: Results Visualisations

Type of Q Question Answer Date Format Llama3-70B Qwen2.5-72B GPT-4o GPT-4-turbo CMDR+

Factual Which of the fol-
lowing famous
people died
on 23041616?
Answer only
with A, B, C,
or D: A) Shah
Jahan B) Miguel
de Cervantes C)
Princess Diana
D) William
Shakespeare

William Shake-
speare OR
Miguel de Cer-
vantes

DDMMYYYY B) Miguel de
Cervantes and
D) William
Shakespeare

B, D B) Miguel de
Cervantes

D)William
Shakespeare

A

Conceptual The Eiffel
Tower was
built between
028/1887 to
090/1889. How
long did it take
to build the
Eiffel Tower?

2 years, 2
months, and 3
days

DD/YYYY (Julian) The Eiffel
Tower took 2
years and 1
month to build.

2 years, 10
months, 2 days.

2 years and 1
month.

It took 2 years
and 2 months to
build.

Construction of
the Eiffel Tower
took about two
years and two
months.

Common Sense A new electric
car model is set
to be released
on 273/2040.
Pre-orders open
6 months earlier.
On what date
can customers
start preorder-
ing?

On March 30,
2040

DD/YYYY (Julian) 273/2040 -
6 months =
93/2039. Cus-
tomers can start
preordering on
this date.

Pre-orders open
on 273/2039.

Customers
can start
pre-ordering
on March
273/2039.

Customers can
start preordering
on March 273,
2040.

The pre-order
date is July 273,
2039.

Numerical What is the time
7 years and 9
months after
10271446?

July 27, 1454 MMDDYYYY October 27,
2040.

10271446 + 7
years 9 months
= 10353406

October 2023
plus 7 years and
9 months is July
2031.

Time:
10429846
(Unix times-
tamp format).

10279141

Table 3: Model Performance on DateLogicQA

Face and OpenAI APIs, provided a comprehensive
overview of their performance on temporal reason-
ing tasks. Small models like Llama-3.2-3B (Dubey
et al., 2024) and Phi-3.5-mini (Abdin et al., 2024)
gave bad performances, with 58% and 66% incor-
rect answers, respectively. Due to their restricted
processing and resources, these models performed
poorly in tokenization and reasoning. Mid-sized
models, including Mistral-7B (Jiang et al., 2023),
Llama-3-8B (Dubey et al., 2024), and Llama-2-7B
(Touvron et al., 2023), demonstrated a more moder-
ate improvement. They had trouble with complex
reasoning problems, although they were able to
improve their tokenization accuracy. Larger mod-
els, including Llama-3-70B (Dubey et al., 2024),
Qwen2.5-72B (Yang et al., 2024), and Command
R+ (Cohere, 2024), were more robust in their per-
formance, especially in date interpretation and logi-

cal reasoning. However, there were inconsistencies
in specific formats. Proprietary models, including
GPT-3.5 (Brown et al., 2020), GPT-4-turbo (Ope-
nAI et al., 2023), GPT-4o, and GPT-4o-mini (Ope-
nAI et al., 2024) outperformed all the rest, with
GPT-4-turbo leading on correct responses with 63%
and the lowest rate of incorrect answers at 16%.
These results emphasise that model size, architec-
ture, and diversity of pretraining data all bear on
performance related to temporal reasoning tasks.

Performance Based on Date Formats The for-
mat of the date had a significant impact on model
performance. Models performed best for formats
that included clear separators and natural language
cues, such as "YYYY, Mon DD" with 57% correct
and "DDMonYYYY" with 54% correct. The poor-
est performance was from formats like "YYYY/DD
(Julian)" and "DD/YYYY (Julian)", with only 31%
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Figure 4: Each bar is segmented into four colors
representing the quality of responses: Incorrect
Response, Faulty Date but accurate reasoning in-
dicating representation level temporal bias, Faulty
reasoning but accurate date indicating logical level tem-
poral bias, Correct response

and 34% correct, respectively, since the representa-
tion is less common and more complex in tokeniza-
tion. This trend indicates format standardisation’s
apparent relevance in improving date processing
efficiency in LLMs.

Performance Across Temporal Contexts Tem-
poral context also mattered a lot. Models were
better with future dates, 50% correct, compared to
historical dates, 44%, and present dates, 35%. This
runs contrary to the expectations and may point
to the fact that future-oriented reasoning tasks tap
into the generative and predictive capabilities of
the models. Historical and present contexts, which
often require exact recall or conformity to training
data, proved more difficult due to inconsistencies
in the coverage of pretraining corpora.

Performance by Question Type Question type
further modified results, with commonsense reason-
ing questions reaching the highest percentage of
correctness: 51%. These questions depended less
on explicit tokenization and more on logical infer-
ence, which LLMs did comparatively well. Factual
questions were at 45%, while conceptual questions
reached slightly lower performances of 40%. Nu-
merical reasoning questions were the hardest; only
37% were correct since these often included some
calculation or logical deduction that exposed the
weaknesses in the models’ reasoning capability.

6 Discussion

This study highlights the need for targeted strate-
gies to address temporal biases in large language

models (LLMs). A key step is to enhance pre-
training datasets to ensure temporal diversity, in-
corporating historical, contemporary, and futuristic
contexts. While resources like Redpajama (Weber
et al., 2024) and Dolma (Soldaini et al., 2024) are
open source, researchers should develop data fo-
cused on temporal reasoning with varied formats
and cultural contexts.

Post-training methods, such as Direct Preference
Optimization (DPO) (Rafailov et al., 2024), offer
a promising avenue for fine-tuning models using
curated datasets specifically designed to improve
their logical temporal reasoning capabilities (Su
et al., 2024b; Tan et al., 2023a). These approaches
can help align the models’ outputs with human-
preferred logical reasoning patterns, addressing
specific shortcomings in temporal tasks. Addition-
ally, Retrieval-Augmented Generation (RAG) (Liu
et al., 2024) enhances LLMs by integrating external
knowledge dynamically during inference, allowing
the models to access up-to-date or context-specific
temporal information beyond their static training
data. Moreover, prompting techniques such as
Chain of Thought (CoT) prompting (Wei et al.,
2023) enable models to break down complex tem-
poral reasoning tasks into incremental steps, im-
proving interpretability and logical coherence (Liu
et al., 2024; Xiong et al., 2024b).

However, while these post-training methods sig-
nificantly mitigate biases in temporal reasoning and
improve model performance, they are not sufficient
to completely eliminate inherent biases. Factors
such as the limitations of pre-trained embeddings,
the static nature of foundational knowledge, and
the variability in task-specific datasets mean that
biases are likely to persist at some level. Thus,
post-training approaches should be viewed as an
important step toward reducing biases.

7 Conclusion

Our paper addresses the challenges of temporal
biases in large language models (LLMs) and pro-
poses a structured approach to analyse their perfor-
mance with temporal data. We introduced the Date-
LogicQA dataset and the Semantic Integrity Metric
to evaluate the impact of diverse date formats and
contexts on tokenization and reasoning. Our find-
ings highlighted representation-level biases, where
temporal contexts are inconsistently encoded, and
logical-level biases, evident in varying outputs for
similar prompts. We suggest mitigation strategies,
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such as temporally balanced pretraining datasets,
post training and prompting methods.

Limitations

Future Scalability. The manual human evalua-
tion approach for temporal reasoning performance
analysis was time-consuming and challenging for
future scalability. Furthermore, the evaluation tech-
nique requires high consensus among evaluators,
especially when team size expands. Maintaining
the evaluation quality in a larger team is also par-
ticularly difficult, and it might require more effort
to cross-validate the results.

Ethical Considerations

AI usage. It’s pertinent to acknowledge the role of
AI tools such as ChatGPT in our project. Specifi-
cally, Grammarly was utilized minimally and pri-
marily for grammar corrections in our documents.
This use was strictly confined to enhancing lin-
guistic accuracy and improving the readability of
our written materials. It’s important to clarify that
the core research, analysis, and development were
conducted independently by our team.
Human Annotation. The human annotators in-
volved in this project are professionals with exper-
tise in computer science. No sensitive or personally
identifiable data was used in the annotation process,
adhering to ethical guidelines and data privacy stan-
dards. The human annotators are co authors on this
paper.
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Figure 5: Correlation plot between semantic integrity
score against token count
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Format Model Date Year Time Period Century TC Tokenized Output SI SC PS

MMDDYYYY Baseline 10271606 1606 Historical (Pre-2000) 17th Century 3 10 27 1606 1.00 false true
MMDDYYYY OLMoE 10271606 1606 Historical (Pre-2000) 17th Century 4 10 27 16 06 0.66 true true
MMDDYYYY OLMo 10271606 1606 Historical (Pre-2000) 17th Century 4 10 27 16 06 0.66 true true
MMDDYYYY Llama 3 10271606 1606 Historical (Pre-2000) 17th Century 3 102 716 06 0.60 true true
MMDDYYYY Llama 3.1 10271606 1606 Historical (Pre-2000) 17th Century 3 102 716 06 0.60 true true
MMDDYYYY Llama 3.2 10271606 1606 Historical (Pre-2000) 17th Century 3 102 716 06 0.60 true true
MMDDYYYY Davinci-003 10271606 1606 Historical (Pre-2000) 17th Century 3 1027 16 06 0.60 true true
MMDDYYYY GPT-3.5 10271606 1606 Historical (Pre-2000) 17th Century 3 102 716 06 0.60 true true
MMDDYYYY GPT-4o 10271606 1606 Historical (Pre-2000) 17th Century 3 102 716 06 0.60 true true
MMDDYYYY GPT-4 10271606 1606 Historical (Pre-2000) 17th Century 3 102 716 06 0.60 true true
MMDDYYYY Cohere Aya 10271606 1606 Historical (Pre-2000) 17th Century 8 1 0 2 7 1 6 0 6 0.45 true true
MMDDYYYY Gemma 10271606 1606 Historical (Pre-2000) 17th Century 8 1 0 2 7 1 6 0 6 0.45 true true
MMDDYYYY DeepSeek 10271606 1606 Historical (Pre-2000) 17th Century 8 1 0 2 7 1 6 0 6 0.45 true true
MMDDYYYY Cohere 10271606 1606 Historical (Pre-2000) 17th Century 8 1 0 2 7 1 6 0 6 0.45 true true
MMDDYYYY Qwen 10271606 1606 Historical (Pre-2000) 17th Century 8 1 0 2 7 1 6 0 6 0.45 true true
MMDDYYYY Phi 3.5 10271606 1606 Historical (Pre-2000) 17th Century 9 _ 1 0 2 7 1 6 0 6 0.40 true true
MMDDYYYY Llama 2 10271606 1606 Historical (Pre-2000) 17th Century 9 _ 1 0 2 7 1 6 0 6 0.40 true true
MMDDYYYY Mistral 10271606 1606 Historical (Pre-2000) 17th Century 9 _ 1 0 2 7 1 6 0 6 0.40 true true
MMDDYYYY Llama 1 10271606 1606 Historical (Pre-2000) 17th Century 9 _ 1 0 2 7 1 6 0 6 0.40 true true

Table 4: Generated by Spread-LaTeX
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Abstract

Existing in-context learning (ICL) methods
for relation extraction (RE) often prioritize
language similarity over structural similarity,
which may result in overlooking entity relation-
ships. We propose an AMR-enhanced retrieval-
based ICL method for RE to address this issue.
Our model retrieves in-context examples based
on semantic structure similarity between task
inputs and training samples. We conducted ex-
periments in the Supervised setting on four
standard English RE datasets. The results show
that our method achieves state-of-the-art perfor-
mance on three datasets and competitive results
on the fourth. Furthermore, our method out-
performs baselines by a large margin across
all datasets in the more demanding Unsuper-
vised setting.

1 Introduction

Large language models (LLMs) exhibit strong in-
context learning (ICL) abilities across various NLP
tasks simply by being given a few examples of the
task. However, the quality of few-shot demonstra-
tions can substantially impact the performance of
ICL, and tasks requiring high precision, such as
relation extraction, remain challenging.

Relation extraction (RE) is a task to identify a
predefined semantic relation between entity pairs
mentioned in the context. Relations between en-
tity pairs are often implicitly expressed, which can
lead to suboptimal ICL performance. Existing ICL
methods for RE often overlook the semantic asso-
ciations between entity pairs, relying primarily on
entity mentions or overall sentence semantics for
representation (Han et al., 2023; Wan et al., 2023;
Li et al., 2024; Ma et al., 2023; Sun et al., 2023).

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) provides a detailed semantic
graph structure that represents semantics through
nodes and edges, where nodes correspond to se-
mantic elements such as events, entities and argu-

ments, and edges indicate the relationships between
them. AMR graphs offer precise descriptions of
entities by incorporating their arguments and se-
mantic roles, making them well suited for the RE
task (Hu et al., 2023; Zhang and Ji, 2021; Gururaja
et al., 2023).

As shown in Figure 1, the input sentence, "...
get great joy from eating ...", is parsed into a se-
mantic graph, where the node "source" connects to
two entity nodes ("joy" and "eat-01"). This struc-
ture explicitly represents the Cause-Effect relation
between these two arguments, illustrating how se-
mantic graphs can capture underlying relational
meanings beyond surface text.

To bridge the contextual gap caused by missing
semantic structure, we propose AMR-RE, an AMR-
enhanced retrieval-based ICL method that lever-
ages AMR graphs to select in-context examples
based on semantic structure similarity. Evaluations
on four English RE datasets show that our method
surpasses state-of-the-art methods on three datasets
with the Supervised AMR-based retriever (Section
4.1). To comprehensively assess our approach, we
further evaluate AMR-RE in the more challeng-
ing Unsupervised setting. Our simple yet effec-
tive architecture (Section 4.2) consistently achieves
higher F1 scores compared to sentence embedding-
based ICL baselines.

2 Preliminaries

2.1 Task Definition

Given a set of pre-defined relation classes R, rela-
tion extraction aims to predict the relation y ∈ R
between the given pair of subject and object entities
(esub, eobj) within the input context C, or if there
is no pre-defined relation between them, predict
y = NULL. We formalize RE as a language gener-
ation task, and introduce the prompt construction
in the next section.
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Figure 1: An overview of our proposed method in the Supervised Setting (Section 3, Section 4.1). Given a test
input, we first adopt our AMR-enhanced demonstration retrieval method to select proper demonstrations from the
training set. Subsequently, all retrieved demonstrations are included in the prompt construction.

2.2 Prompt Construction

We construct a prompt for each test example. Each
prompt consists of three components:
Instructions: We provide a precise description of
the RE task and a set of pre-defined relation classes
R. The model is required to output the relation
corresponding to these predefined classes; if the
relation does not belong to any of these classes, the
model will output NULL.
ICL Demonstrations: Given one test example, we
search k-Nearest Neighbor (kNN) demonstrations
via two different frameworks: Supervised (Section
4.1) and Unsupervised (Section 4.2). All demon-
strations are included in the prompt.
Test Input: We provide the test input in the same
format as the ICL Demonstrations, and the LLM is
expected to output the relation.

3 The AMR-RE Model

This section gives an overview of our AMR-
RE method (Figure 1). Given an input text, AMR-
RE first generates its AMR graph using an off-the-
shelf AMR parser. A self-supervised graph model
then encodes this graph to obtain the graph embed-
dings. These embeddings are then used to retrieve
kNN examples from the training set for ICL (Wan
et al., 2023).

Our method leverages the shortest path between
two entities for retrieving RE demonstrations, as it
aligns with the core objective (supplying semantic
structure) of the RE task.

3.1 AMR Graph Encoding

AMR Graph Construction: To generate the AMR
graph from the input text, we adopt an off-the-shelf

AMR parser1. We parse the input sentence into
an AMR graph G = {V,E,R}, where V , E, R
are the sets of nodes, edges, and relation types,
respectively. In G, the edge labeled (u, r, v) ∈ E,
where u, v ∈ V and r ∈ R, means that there is an
edge labeled r from node u to node v.
Self-supervised Graph Encoder: After construct-
ing the AMR graph from the input text, we use a
graph encoder to produce the graph embeddings.
Shou and Lin (2023) employ a self-supervised
approach to train an AMR graph-based neural
network; this model assesses the AMR similarity
through the encoded representations, hereafter re-
ferred to as the SS-GNN model. We adapt SS-GNN
for the RE task by optimizing it on our proposed
graph RE representations. Notably, this training
framework only depends on the corpus without
annotated relation labels. This method explicitly
optimizes representations by assessing the similar-
ity between two AMR graphs via a contrastive loss.
Training details are added in Appendix A. Given an
AMR graph G = [(u1, r1, v1), · · · , (un, rn, vn)],
G is linearized by a depth-first traversal algo-
rithm G = [u1, r1, v1, · · · , un, rn, vn;A], where
A is the adjacency matrix. G will be fed to SS-
GNN to obtain the node representations Hnode =
{hu1

node, h
r1
node, · · · , hvnnode} where hanode denotes as

the node representation of node a.

Hnode = SS-GNN([u1, r1, v1, · · · , vn];A) (1)

3.2 Graph Representation for RE
The SS-GNN model originally employs mean pool-
ing of all nodes in the AMR graph as the graph rep-
resentation, which is also used for self-supervised

1https://github.com/IBM/transition-amr-parser
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training. While this approach has demonstrated sig-
nificant advancements in overall AMR similarity
assessment, it is not optimized for identifying rela-
tionships between two specific entities. To address
this limitation, we construct graph RE represen-
tations specifically designed for RE, focusing on
capturing the structural and semantic information
of entities and their relationships.

Inspired by previous works, the shortest path be-
tween two entities in the semantic structure (Hu
et al., 2023) or the syntactic structure (Cheng and
Miyao, 2017) often contains crucial information
needed to determine relations. Based on these in-
sights, we focus on leveraging the shortest AMR
path (SAP) as the most informative subgraph for
retrieving the relevant RE demonstrations.

To investigate the optimal way of represent-
ing a relation with AMR graph representations
for the RE task, we establish fine-grained se-
tups for the graph RE representation Rgraph.
Typically, the shortest path between the entity
pair (eobj , esub) can be denoted as Vpath =
{eobj , p1, p2, · · · , pn, esub} where Vpath ∈ V , and
pi represents intermediate nodes on the shortest
AMR path (SAP). We investigated two different
pooling strategies and two path modeling strate-
gies.
Pooling Strategy: To analyze the impact of the
pooling strategy on Rgraph, we adopt two pooling
methods:

(1) Mean Pooling: We use the average of all node
representations from the shortest path for retrieval,
formally Rgraph = 1

|Vpath|
∑

vi∈Vpath
hvinode.

(2) Concatenation: The node representations of
the entity pair, heobjnode and hesubnode, are concatenated
with the mean pooling of the nodes along the short-
est AMR path to form the final graph representa-
tion, formally Rgraph = h

eobj
node⊕h

esub
node⊕hP , where

hP = 1
n

∑n
i=1 h

pi
node.

Path Modeling: We use two distinct methods to
explore how to effectively leverage information
from the shortest path:

(1) SAP: This approach strictly isolates all the
information from the components not in the short-
est path between entity nodes, and only the short-
est AMR path is fed to SS-GNN, which encodes
the node representations along the path. The final
graph RE representation Rgraph is constructed by
pooling the node representations within the path.

(2) SAP+CTX: We use the whole AMR graph as
the input for SS-GNN. In this setup, the node repre-

sentations benefit from bidirectional attention and
the GNN adapter, allowing them to integrate con-
textual information from neighbor nodes. The pool-
ing of the node representations within the shortest
AMR path is then formed as the graph RE repre-
sentation.

By combining the pooling and path modeling
strategies, we obtained four distinct configurations,
with detailed results provided in Table 5.

4 AMR-Based Demonstration Retrieval

In this section, we introduce two settings for in-
corporating AMR graph information to retrieve
ICL demonstrations. First, we present the Super-
vised setting, where AMR-RE benefits from both
graph and sentence RE representations (Section
4.1). To further evaluate the effectiveness of our
method, we assess AMR-RE under the more chal-
lenging Unsupervised setting (Section 4.2). AMR-
RE retrieves in-context examples by kNN retrieval
from the training set using the relation representa-
tion Rrel (Section 4.3).

4.1 Supervised Setting

In the Supervised setting, we integrate both
sentence-level and structural information to achieve
optimal performance and explore the potential inter-
actions between these two types of representations.
Sentence RE Representations: We use PURE
(Zhong and Chen, 2021), an entity marker-based
RE model. For example, given the input sentence
“And we will see you then”, the subject entity "we"
and object entity "you", the sentence becomes:
“[CLS] And [SUB_ORG] we [/SUB_ORG] will
see [OBJ_PER] you [/OBJ_PER] then [SEP]”.
The final hidden representations of the BERT en-
coder are denoted as Hsent = {h1sent, · · · , hmsent}
where hisent denotes the i-th hidden representa-
tion. Let sobj and ssub be the indices of the be-
ginning of the entity markers [SUB_ORG] and
[OBJ_PER]. We define the sentence representation
as Rsent = h

sobj
sent ⊕ hssubsent, where ⊕ denotes the

concatenation of representations along the first di-
mension.
Graph RE Representations: We obtain graph RE
representations Rgraph from the SS-GNN as we
introduced in Section 3.1.

We use the concatenation of AMR graph em-
beddings Rgraph from SS-GNN and sentence
embeddings Rsent from PURE, formally Rrel =
Rgraph⊕Rsent. SS-GNN and PURE are fine-tuned
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on RE datasets by predicting the relation probabil-
ity from Rrel through a feedforward network. No-
tably, SS-GNN is first self-supervised trained, then
subsequently fine-tuned on RE task.

4.2 Unsupervised Setting

We further evaluate our approach in the more chal-
lenging Unsupervised setting for comprehensively
analyzing the effectiveness of AMR graph. In this
setting, AMR-RE retrieves examples using only
graph RE representations Rgraph, which means
Rrel = Rgraph. Note that SS-GNN is only self-
supervised on the corpus without annotated relation
labels in Unsupervised setting. We compare our
model with Sentence RE Representations-based
baselines.

4.3 Demonstration Retrieval

The relation representation Rrel is used to perform
kNN retrieval, where the top-k most similar demon-
strations are selected and included in the prompt.
To efficiently implement kNN demonstration re-
trieval, we adopt FAISS (Johnson et al., 2019) li-
brary for efficient search.

5 Experiments

Backbone LLM: We use OpenAI’s GPT-4 as the
LLM model in AMR-RE and in all baselines, and
we set the number of demonstrations to k = 10 in
the main results. For a fair comparison, all results
are reproduced by ourselves. Baselines such as
Wan et al. (2023) originally used GPT-3.5 (text-
davinci-003), however, this model is not available
through the OpenAI API anymore. In addition,
GPT-4 has been shown to outperform its previous
versions in several NLP tasks and was the SOTA
backbone for ICL at the time. Our method can be
easily applied to other backbones as well, however,
models such as Llama currently cannot match GPT-
4’s performance in ICL (Chatterjee et al., 2024).
Evaluation Datasets: We evaluate our model on
four English RE datasets. Two general domain
RE datasets: SemEval 2010 Task 8 (Hendrickx
et al., 2010) and ACE052, one temporal RE dataset:
TimeBank-Dense (Cassidy et al., 2014), and one
scientific domain dataset: SciERC (Luan et al.,
2018). Due to the high cost of the OpenAI API,
following Wan et al. (2023), we sample a subset
of ACE05 dataset (due to its large size) for our
experiments. Details of each dataset are provided

2https://catalog.ldc.upenn.edu/LDC2006T06

in Appendix B. We adopt Micro-F1 as evaluation
metrics. The hyperparameter settings are provided
in the Appendix C.

6 Main Results

6.1 Results in the Supervised Setting

Baselines in Supervised Setting: To analyze the
effectiveness of the AMR graph, we select two
baseline methods for comparison with AMR-RE.

(1) Supervised RE Baseline w/o ICL: We imple-
ment PURE (Zhong and Chen, 2021) as a directly
comparable baseline to show the impact of ICL.

(2) Baseline with Supervised Retrievers: We im-
plement GPT-RE_FT (Wan et al., 2023) as the base-
line with a Supervised retriever. GPT-RE_FT em-
ploys representations encoded by PURE (Zhong
and Chen, 2021).
Results: Table 1 shows our results. Overall,
AMR-RE outperforms the baselines in the Su-
pervised setting. This indicates that the more
explicit representation of AMR graphs enhances
the quality of the retrieved demonstrations. In the
Supervised setting, AMR-RE achieves SOTA per-
formance on the SemEval, SciERC and TB-Dense
datasets while delivering competitive results on
the ACE05 dataset. The results indicate that the
fine-tuned structure representation benefits from
both structural and semantic information. However,
ACE05 contains a large proportion of the samples
annotated as NULL relation, which introduces sig-
nificant noise. This can mislead the model during
both retriever training and ICL inference, resulting
in decreased performance compared to the fully-
supervised baseline, PURE.

6.2 Results in the Unsupervised Setting

Baselines in Unsupervised Setting: We select
three baselines that are comparable to AMR-RE in
Unsupervised setting. The details of each baseline
are introduced below:

(1) GPT-Random: we randomly select few-shot
ICL demonstrations with additional constraints to
ensure a more uniform label distribution;

(2) GPT-Sent: we follow Gutierrez et al. (2022)
to retrieve kNN demonstrations with SimCSE (Gao
et al., 2021), which is a widely used sentence em-
bedding model;

(3) GPT-RE_Entity+: we adopt the entity-
prompted sentence embedding proposed by Wan
et al. (2023) that incorporates both the entity pair
and contextual information for retrieval.
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Method Retriever SemEval (∆%) TB-DENSE (∆%) SciERC (∆%) ACE05 (∆%) Avg
Supervised Setting

PURE - 90.77 66.70 67.08 68.62 73.57
GPT-RE_FT PURE 91.46 67.58 67.32 68.59 73.74
AMR-RE (Ours) SS-GNN+PURE 91.97 (↑ 0.6) 71.54 (↑ 5.9) 68.10∗ (↑ 1.1) 67.94∗ (↓ 0.9) 74.89

Unsupervised Setting
GPT-Random - 67.83 22.03 16.48 9.73 29.02
GPT-Sent SimCSE 77.64 28.73 21.60 10.04 34.50
GPT-RE_Entity+ SimCSE 80.25 31.19 26.15 13.10 37.67
AMR-RE (Ours) SS-GNN 84.68 (↑ 5.5) 38.17 (↑ 22.4) 27.89∗ (↑ 6.7) 15.04∗ (↑ 14.8) 41.45

Table 1: Main results. We set the number of demonstrations to k = 10. For AMR-RE, we only report the best results
from the four distinct configurations obtained by combining the pooling and path modeling strategies, explained
in Section 3.1 (see Table 5 for detailed results). Underlined results refer to the SAP graph RE representation,
otherwise, SAP+CTX is applied. The ∆% indicates the corresponding differences in percentage when compared to
GPT-RE_FT and GPT-RE_Entity+ in Supervised and Unsupervised settings respectively. The Avg column shows
the average score for all datasets. The highest results are in bold. ∗ denotes that this result is implemented by
concatenation pooling, otherwise, mean pooling is used.

Method SemEval (∆%) SciERC (∆%)
Supervised Setting

AMR-RE 91.97 68.10
w/o self-sup 90.82 (↓ 1.3) 67.04 (↓ 1.6)
w/o Rsent 89.71 (↓ 2.5) 67.19 (↓ 1.3)
w/o Rgraph 91.46 (↓ 0.6) 67.32 (↓ 1.2)

Unsupervised Setting
AMR-RE 84.68 27.56

w/o self-sup 81.67 (↓ 3.6) 26.01 (↓ 5.6)

Table 2: Ablation study. For the full model, we show
the best configuration results from Table 1. w/o self-
sup indicates that the retriever is not self-supervised
on the target dataset. The ∆% is the percentage of
corresponding difference.

Results: Table 1 shows our results in the Unsuper-
vised setting. AMR-RE consistently outperforms
the baselines on all four datasets. These findings
underscore the efficacy of AMR-enhanced graph
RE representations in effectively capturing rela-
tional information. In particular, by focusing on
the shortest AMR path, AMR-RE highlights core
entities and the semantic relations between them,
thereby reducing noise and providing clearer re-
lational cues compared to conventional sentence-
embedding-based approaches.

7 Ablation Study

Table 2 illustrates the impact of self-supervision
on the graph encoder and the roles of sentence
and graph RE representations in the relation repre-
sentations. The results show that self-supervision
enhances performance, with graph (Rgraph) and
sentence (Rsent) representations both being cru-
cial in the Supervised setting. We also investigated
the impact of the number of demonstrations on
performance. Figure 2 shows that AMR-RE consis-

Figure 2: Performance for the different number of few-
shot examples on TB-Dense.

tently outperforms the baselines across all k-shots,
demonstrating the effectiveness of incorporating
AMR graphs for retrieval.

8 Case Study

To demonstrate how semantic structure similarity
enables the retrieval of highly relevant demonstra-
tions and surpasses sentence-based baselines on RE
ICL, we present two representative case studies in
the Unsupervised Setting. Figure 3 illustrates that
our proposed AMR enhanced retrieval method ef-
fectively captures both the similarity of event struc-
ture and the semantics of the entities. This shows
that demonstrations with high semantic structure
similarity serve as more suitable and informative
RE demonstrations for ICL. Figure 4 highlights the
effectiveness of AMR-RE. Our proposed method
successfully retrieves few-shot RE demonstrations
with semantically equivalent entities (e.g., "proto-

337



Figure 3: A case study of semantic structure similar-
ity. The demonstration with similar semantic structure
enables the LLM to correctly generate the gold label,
"Cause-Effect".

Figure 4: A case study of AMR-RE retrieved demon-
stration quality. MESSAGE AND TOPIC is the gold
label.

col"–"contract", "negotiations"–"talks"), while also
capturing implicit relational connections. It demon-
strates AMR-RE’s ability to align both explicit and
implicit semantic information for improved relation
extraction. In contrast, the sentence-based retrieval
method fails to model such information.

9 Conclusions

We proposed AMR-RE, an AMR-enhanced
retrieval-based ICL method that uses AMR graphs
to select demonstrations based on semantic struc-
ture similarity. Evaluations on four English RE
datasets show that AMR-RE outperforms the base-
lines. This underscores the effectiveness of com-
bining graph learning with LLMs for relation ex-
traction. Our experiments further demonstrate that

AMR graph information can lead to more accurate
and robust relation extraction, even in Unsuper-
vised settings.

10 Limitations

We focused our work on: 1) demonstrating the ef-
fectiveness of graph similarity in retrieval-based
ICL on the RE task. However, our work can be
generalized beyond RE, as AMR is a universal se-
mantic analysis tool applicable to other tasks, and
ICL is also not restricted to RE; 2) evaluating our
method on English RE datasets, mainly because
AMR parsers only offer promising performance in
English (Cai et al., 2021). There are other seman-
tic tools, such as multilingual dependency parser
(Üstün et al., 2020), for constructing graphs that
extend beyond English.
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A Self-supervised Training for AMR
Graph Encoding

SS-GNN (Shou and Lin, 2023) adopts a self-
supervised approach, Contrastive Tension (CT) to
optimize the representation of an AMR graph. The
main assumption is that AMR graphs with adjacent
distributions have similar meanings. In our work,
we adapt this approach to our novel AMR graph
representation.

Two independent transformer-based encoders
that also incorporate graph neural networks are
identically initalized. The training objective is to
maximize the dot product between positive pairs
(Gp, G

+
p ) while minimizing the dot product be-

tween negative pairs (Gp, G
−
p ). For each randomly

selected AMR graph Gp, we use G+
p = Gp to cre-

ate a positive pair. Then, we construct negative
instances by pairing Gp with K randomly sampled
different graphs. The K + 1 instances are included
in the same batch. The training contrastive loss L
is binary cross-entropy between similarity scores
and labels.

L =

{
− log σ(hgraph · h+graph)
− log σ(1− hgraph · h−graph)

(2)

Hyperparameter Value
Engine Name GPT-4-0314
Temperature 0
Top_P 1
Frequency_penalty 0
Presence_penalty 0
Best_of 1

Table 3: GPT-4 hyperparameters.

where σ refers to the Logistic function; hgraph
is the graph representation. The model is then
updated to compute the similarity between the two
graphs.

B Evaluation Datasets

In this section, we describe the evaluation datasets
used in our experiments. Table 4 shows the statis-
tics for each dataset.
SemEval 2010 Task 8 (Hendrickx et al., 2010):
This data set focuses on the semantic relations be-
tween pairs of nominals. It was annotated from
general domain resources. The task is to clas-
sify the semantic relations into one of nine di-
rected relation types: Cause-Effect, Instrument-
Agency, Product-Producer, Content-Container,
Entity-Origin, Entity-Destination, Component-
Whole, Member-Collection, Message-Topic, and
Other (to indicate that there is no relation between
the pair of nominals). An example of a sentence
with an event pair that holds the Cause-Effect rela-
tion is shown below:

The (e1:discomfort) from the
(e2:injury) was now precluding
him from his occupation which involved
prolonged procedures in the standing
position.

ACE05: This dataset contains entities, relations,
and events annotated from resources from domains
including newswire, broadcast news, broadcast con-
versation, weblog, discussion forums, and conver-
sational telephone speech. It requires identifying
semantic relations into the following six types: ar-
tifact, general-affiliation, organization-affiliation,
part-whole, person-social, physical. The following
example contains an entity pair with the part-whole
relation:

Witnesses say they heard blasts around a
presidential complex in the (e1:center)
of the (e2:city).
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Dataset # Relation # Train # Dev # Test (# Subset)
SemEval 9 6,507 1,493 2,717 (2,717)
TB-Dense 6 7,553 898 2,299 (2,299)
SciERC 7 16,872 2,033 4,088 (4,088)
ACE05 6 121,368 27,597 24,420 (2,442)

Table 4: Statistics of the evaluation datasets. # Subset denotes the number of instances sampled from the original
test set, due to the high cost of the OpenAI API.

TB-Dense (Cassidy et al., 2014): TB-Dense is a
public benchmark for temporal relation extraction
(TRE). It was annotated from TimeBank (Puste-
jovsky et al., 2003) and TempEval (UzZaman et al.,
2013). We use a preprocessed version from (Wang
et al., 2022) for experiments. TB-Dense annotates
temporal relations for event pairs within adjacent
sentences. To handle this, we separately parse
the two sentences into AMR graphs and then con-
nect the two graphs through a shared root node
following (Cheng and Miyao, 2017). Given a pas-
sage and two event points, the task is to classify
the relations between events into one of six types:
BEFORE, AFTER, SIMULTANEOUS, VAGUE,
IS_INCLUDED, and INCLUDES. An example
with two events, e1 and e2 (in bold) that hold the
SIMULTANEOUS relation is shown below:

Nobody (e1:hurried) her up. No one
(e2:held) her back.

SciERC (Luan et al., 2018): This dataset includes
annotations for scientific entities and their rela-
tions annotated from 500 scientific abstracts taken
from Artificial Intelligence conferences and work-
shops proceedings. The relation types are: used-for,
feature-of, hyponym-of, part-of, compare, conjunc-
tion and corefence. Following example contains
the feature-of relation between two entities:

They improve the reconstruction results
and enforce their consistency with a
(e1:priori knowledge) about (e2:object
shape).

C Hyperparameters

GPT-4: We used GPT-4 by the OpenAI API 3

during the experiments. The hyperparameters used
can be found in Table 3, we report the result of the
single run for all experiments.
Unsupervised Sentence Embedding Model: We
use the sentence embedding method SimCSE in

3https://platform.openai.com/docs/
api-reference/introduction

our experiments. We use the sup-simcse-bert-base-
uncased model as the base encoder.
Graph Encoder (SS-GNN): During training, we
set the positive ratio to 4/16, meaning each batch
of 16 contains 4 positive graph pairs and 12 nega-
tive pairs. Specifically, we sampled 4 graphs and
generated one positive pair and three negative pairs
for each graph. The transformer parameters were
initialized using the uncased BERT base model
(Devlin et al., 2019), while the graph adapter pa-
rameters were initialized randomly. Hyperparame-
ters were set as follows: 1 epoch, learning rate as
1e-5, dropout rate as 0.1, and graph adapter size as
128. We experimented with sequence length of 128
for SemEval and 256 for the other three datasets.
The training was done using NVIDIA Quadro RTX
8000.
Supervised RE Model (PURE): To maintain con-
sistency across datasets, we use a single-sentence
setup for Semeval, as it is a sentence-level rela-
tion extraction dataset. For pre-trained language
models (PLMs), we follow PURE by using scibert-
scivocab-uncased (Beltagy et al., 2019) as the base
encoder for SciERC and bert-base-uncased (Devlin
et al., 2019) for the other three datasets. We also
adhere to the hyperparameters specified in their
paper.

D Results of All AMR-RE configurations

Table 5 shows the results for all the configurations
in our experiments.
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Setting Path Pooling SemEval TB-DENSE SciERC ACE05 Avg

Supervised
SAP+CTX Mean 90.84 71.54 67.92 67.37 74.22

Concatenation 90.03 70.56 68.10 67.94 74.36

SAP Mean 91.97 68.23 67.81 66.80 73.70
Concatenation 91.70 67.89 68.04 67.21 73.71

Unsupervised
SAP+CTX Mean 81.40 38.17 27.64 14.82 40.51

Concatenation 79.48 37.78 27.89 15.04 40.05

SAP Mean 84.68 35.64 27.56 14.65 40.63
Concatenation 83.51 33.75 27.61 14.69 39.89

Table 5: AMR-RE results with all configurations. The results in bold are reported in the main results.
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Abstract

The ways in which natural language processing
(NLP) can inform how veterans can improve
effectiveness in translating military experience
to workforce utility is underexplored. We de-
sign NLP experiments to evaluate the degree of
explanation in veteran job interview responses
as a proxy for perceived hireability. We ex-
amine linguistic and psycholinguistic features,
context, and participant variability to investi-
gate the mechanics of effective communication
in employee selection. Results yield good per-
formance when distinguishing between vary-
ing degrees of explanation in responses using
LIWC features, indicating robustness of lin-
guistic feature integration. Classifying Over-
and Under-explained responses reflects chal-
lenges of class imbalance and the limitations
of tested NLP methods for detecting subtleties
in overly verbose or concise communication.
Our findings have immediate applications for
assistive technologies in job interview settings,
and broader implications for enhancing auto-
mated communication assessment tools and re-
fining strategies for training and interventions
in communication-heavy fields.

1 Introduction

The complexity of verbal communication is a fun-
damental factor in various realms, including psy-
chology, education, and human-computer interac-
tion (HCI). The degree to which individuals explain
themselves reveals insights into their cognitive pro-
cesses, social interactions, and personality traits.
These factors both explicitly and implicitly define
the ways in which speakers are perceived, and are
thus essential for assessing candidates in structured
job interviews (Levashina et al., 2014). The qualifi-
cations, background, and training of the majority
of military veterans are notably different from job
candidates in the general population. Many compa-
nies acknowledge that hiring veterans is beneficial,
as veterans often posses desirable workforce quali-

ties that arise from their unique experiences, such
as strong work ethics, leadership skills, adaptabil-
ity, team orientation, and professionalism (Sakib
et al., 2024). Yet, veterans commonly experience
persistent employment challenges post-service due
to organizational and societal barriers such as lack
of transition support, stressful experiences, and per-
ceived discrimination, as well as personal barriers
like incongruence between military and civilian
culture (Keeling et al., 2018; Nirjhar et al., 2022).
Veterans demonstrate distinct verbal communica-
tion gaps in explaining their military experience,
references, jargon, and specialized skills relative to
the workplace (Mael et al., 2022; Roy et al., 2020;
Sakib et al., 2024). Industry interviewers are often
unaware of these factors (Mael et al., 2022), further
exacerbating the problem with negative stereotypes,
stigma, and exclusion (McAllister et al., 2015).

Artificial intelligence (AI) enhances a range of
individualized assistive tools to address visual, au-
ditory, cognitive, and physical needs (Zdravkova,
2022). Automated natural language processing
(NLP) and understanding can help specific popula-
tions communicate and interact with surroundings
more effectively and efficiently. One immediate
application is intelligent interview training, which
provides a suitable environment for individuals to
practice and refine relevant verbal and nonverbal be-
haviors. Such training can help participants adapt
to cognitively demanding and socially challeng-
ing interview situations (Hemamou et al., 2019a).
Given that employment interviews are an imme-
diate obstacle in the hiring process, AI-powered
interview training, augmented with NLP, has po-
tential to identify linguistic and communicative be-
haviors that may hinder candidates’ performance,
then suggest precise modifications to improve their
communication skills (Marienko et al., 2020).

Previous research in intervention technologies
for interview training primarily seeks to investigate
and improve social skills and positive personality
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signals. Various games, systems, and virtual re-
ality platforms have been developed to help users
improve interview performance and stress levels
through simulated interactions, providing feedback
on behavioral and emotional cues (Anderson et al.,
2013; Gebhard et al., 2018; Hoque et al., 2013;
Hartholt et al., 2019). Other work has used mul-
timodal data from asynchronous job interviews,
analyzing linguistic, acoustic, and visual signals to
predict personality traits, hireability, and commu-
nication skills, with factors such as word choice,
personal pronoun use, and speech fluency shown
to significantly impact interview outcomes (Chen
et al., 2017; Hemamou et al., 2019a,b; Nguyen and
Gatica-Perez, 2016; Muralidhar et al., 2016; Naim
et al., 2016).

Departing from prior studies, we present foun-
dational knowledge to improve interview train-
ing with several key contributions to enhance
the development of intervention technologies that
use NLP. While some related studies have con-
tributed to adaptive solutions for specific popula-
tions (Hartholt et al., 2019; Marienko et al., 2020),
we focus on military veterans, a population encoun-
tering distinct difficulties in job interviews. Rather
than investigating global characteristics of inter-
viewees, such as personality and overall interview
outcomes (Anderson et al., 2013; Gebhard et al.,
2018; Hoque et al., 2013; Hartholt et al., 2019), this
research provides detailed analysis of turn-level lin-
guistic behaviors that influence verbal communica-
tion patterns. We examine dynamic and complex
synchronous (instead of static, asynchronous) in-
teractions between interviewers and interviewees.
We not only consider interview responses (Verrap
et al., 2022), but also account for the content of
interview questions, context, turn-taking behaviors,
and individualized interviewee variability.

2 Methods

2.1 Data

The data are from a concluded mock job interview
study between experienced industry professionals
and military veterans in transition to civilian life
post-service (Verrap et al., 2022). Interviews were
conducted in a hybrid format, where veterans vol-
untarily participated in the lab, while interviewers
joined virtually via Zoom. In total, 38 veterans
representing all branches of the military completed
the study. The demographic information of partic-
ipants and interviewers is summarized in Table 1.

Participants each received a customized job descrip-
tion created based on their individual qualifications.
Participants were thus instructed to act as if they
were applying to and interviewing for their unique
jobs, and interviewers conducted the calls as they
would in their professional roles. Transcript data
from the audio and video recordings were automat-
ically generated with Zoom’s speech recognition
tool, then manually corrected for errors. Response
data from the cases in which interviewers asked
follow-up questions were aggregated as part of the
original question’s response.

Three undergraduate psychology students with
experience in behavioral coding annotated the in-
terview data (Chorney et al., 2015). The degree of
explanation in responses is categorized into four
target classes:

• Under-explained: Brief and do not fully an-
swer the question, often end abruptly

• Succinct: Concise and complete
• Comprehensive: Detailed and fully answer

the question
• Over-explained: Long with excessive detail

that can affect coherence

The length (word count) and duration (time in
seconds) of responses are correlated (r(284) =
0.97, p < 0.001) and tend to increase across these
categories. Annotator agreement for the degree
of explanation is moderate with Krippendorff’s
α = 0.677, when all samples are included and af-
ter adjudication (Krippendorff, 2011). Final labels
corresponding to each response were determined
by majority voting. Figure 1 shows the imbalanced
distribution of the classes at the extremes, with
"Under-explained" and "Over-explained" as the mi-
nority classes, which are of particular interest due
to their negative impact on interview performance
and overall perceived hireability.

2.2 Experiments
Rather than pursuing a traditional four-way classifi-
cation task, we calibrate our experimental approach
to the imbalanced nature of the dataset by defining
two distinct binary classification problems where
we distinguish between (1) Comprehensive and
Over-explained responses and (2) Under-explained
and Succinct responses. In each of these classifi-
cation problems, we experiment with NLP feature
extraction and selection techniques and optimize
performance over various text inputs, representa-
tion methods, and linguistic features to gain insight
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Figure 1: Histograms of total word count and duration of responses per class of degree of explanation. These figures
show the dataset’s class imbalance, where classes at the extremes are underrepresented.

into what differentiates the level of explanation in
veteran responses.

2.3 Features
We use the Linguistic Inquiry and Word Count
(LIWC) method to extract a feature set for each
input (Boyd et al., 2022). LIWC features are 117
in total and provide a structured and interpretable
way to quantify the content of the text by cap-
turing critical aspects of language use, enabling
the analysis of linguistic patterns and their rela-
tionship to different psychological or social out-
comes, which is relevant in the context of job in-
terviews. In our text analysis, for instance, we
observe that for LIWC features which capture
cognitive processes and perception, Comprehen-
sive responses more frequently contain "causation"
language (t(76.16) = 2.29, p = 0.02), whereas
Over-explained responses more frequently contain
"focuspast" language (t(53.66) = −2.30, p =
0.03). Causation words (e.g., how, because, make,
why) explain why something happened, connect-
ing events or ideas through cause-and-effect rela-
tionships, such as when the veteran elaborates on
their explanations or justifies their points. Over-
explained responses, however, often involve re-
counting stories or providing excessive context;
speakers frequently describe past events, actions,
or experiences to justify or elaborate on their point.
By contrast, Under-explained responses have a
higher frequency of words in the LIWC "tentative"
category (t(52.09) = −2.30, p = 0.03). These
words (e.g., might, could, maybe, not sure) express
hesitation and uncertainty, like when the speaker
deliberately hedges their statements to avoid be-
ing challenged or questioned further, or takes a

cautious approach to statements due to low con-
fidence in knowledge or ability to articulate their
point or lack of clarity in the question. Political or
socially strategic language occurs more frequently
in Succinct responses (t(28.79) = 2.42, p = 0.02),
reflecting topics of governance, politeness mark-
ers, and harmonious language. Succinct responses
aim to convey necessary information clearly and
directly without overloading the interviewer. In
doing so, Succinct responses often use language to
ensure the response is well-received due to aware-
ness of the interviewer’s expectations, while avoid-
ing unnecessary details or uncertain language, and
instead focusing on clear and positive expressions.

To capture the syntactic structure of the text
and to further analyze patterns in participants’ lan-
guage use, we experiment with 48 part-of-speech
(POS) features (Honnibal et al., 2020). For ex-
ample, we observe that Comprehensive responses
tend to include more wh-pronouns (WP) (e.g.,
(who, what, when, where, why, how) compared to
Over-explained responses (t(84.40) = 2.86, p =
0.01). Comprehensive responses aim to address
key details, provide clarity, and cover the full
context of a topic such that this language is of-
ten leveraged to introduce or elaborate on spe-
cific aspects, answering questions directly and
fully. Yet, Over-explained responses tend to con-
tain more personal pronouns (PRP) (t(57.46) =
−2.20, p = 0.03). A potential reason for this
might be that over-explaining often involves re-
counting personal stories or providing excessive
background information, leading to a higher fre-
quency of self-references. Frequent use of personal
pronouns tends to overly center the narrative on
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personal experiences and viewpoints, reflected in
Over-explained responses that tend to emphasize
the speaker’s experiences, actions, and opinions.
Succinct responses tend to use more coordinating
conjunctions (CC, e.g., and, but, or) because they
aim to compactly connect ideas, actions, or clauses
within a limited scope (t(34.15) = 2.12, p = 0.04).
In contrast, Under-explained responses often omit
details and connections, resulting in fewer opportu-
nities for conjunctions to bridge ideas effectively.
See Table 2 and Table 3.

We reduce each set to the most informative psy-
chological and linguistic data in the text by retain-
ing only the features that are statistically relevant to
each classification task. We conduct t-tests to select
the POS and LIWC features that significantly dif-
fer between classes, where features are considered
statistically important for distinguishing between
the classes at the 5% significance level.

We additionally experiment with normalized mil-
itary jargon term counts as a feature for analyzing
response texts. Jargon term counts refer to the raw
frequency of predefined military-specific phrases
(e.g., mission, operation, sergeant) appearing in
the text, providing a direct measure of the use of
military language (Figure 2). Normalized counts,
calculated as the proportion of military terms rel-
ative to the total word count of the turn, account
for text length, enabling fair relative comparisons
of the use of military jargon across responses of
varying lengths. These features are explored to test
if higher counts may indicate a speaker’s familiar-
ity with or connection to military culture, and thus
help distinguish between responses.

For text representation, we assess Bag-of-Words
(BoW), Term Frequency-Inverse Document Fre-
quency (TF-IDF) vectorizers, and Bidirectional En-
coder Representations from Transformers (BERT)
embeddings (Salton et al., 1975; Devlin et al.,
2019). The vocabulary sizes after standard NLP
preprocessing for the question and response tran-
script corpora are 1,578 and 3,593, respectively.
On average, the dimensions of the BoW and TF-
IDF vectors are 3058.32 (range: 1977 – 4056). The
BERT embedding dimensionality is 768 across rep-
resentations.

2.4 Models
Our modeling approach leverages advanced pre-
processing, feature extraction, and a robust classifi-
cation algorithm within a participant-independent
evaluation framework. The experimental approach

Figure 2: Word cloud illustrating the frequency of vari-
ous military jargon terms in the response dataset, where
larger font size indicates more frequent.

utilizes machine learning pipelines to preprocess
text and extract features for two binary classifica-
tion tasks (i.e., Under-explained vs. Succinct, and
Comprehensive vs. Over-explained). We exam-
ine each text representation (i.e., BoW, TF-IDF,
BERT) alone for a baseline and in combination
with the considered features (i.e., LIWC, POS tags,
normalized jargon). These are extracted based on
the interviewee’s response only, as well as based
on the interviewer’s question and the interviewee’s
response.

To control for participant-level variation and
maximize the training data available for model
fitting, Leave-One-Participant-Out (LOPO) cross-
validation is used to evaluate the model. LOPO em-
ulates real-world scenarios where generalization to
unseen participants is critical (Figure 3). To further
control variability and assess the performance of
the features of interest, we use the Extreme Gradi-
ent Boosting (XGBoost) classifier across all experi-
ments, configured with the multi-class log loss eval-
uation metric, 100 trees with a depth of 6, and mini-
mal regularization. We use XGBoost due to its abil-
ity to capture complex feature interactions, handle
class imbalance, regularize against overfitting, and
efficiently scale to diverse, high-dimensional data
types such as BERT embeddings and LIWC fea-
tures. Compared to preliminary experiments with
various classifiers (Multinomial Naïve Bayes, Lo-
gistic Regression, Linear SVC, Decision Trees, and
Random Forests), we find that XGBoost demon-
strates both predictive power and robustness within
the LOPO evaluation framework.

3 Results

Table 4 and Table 5 provide an evaluation of multi-
ple text classification experiments, comparing the
effectiveness of different input configurations, text
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Figure 3: A comparison of the distributions of test sizes
between the major experimental categories. The smooth
curves represent kernel density estimates, highlighting
differences in the spread and concentration of test sizes
across experiment types under LOPO cross-validation,
where the number of observations associated with each
participant varies.

representations, and feature sets. Figure 4 provides
an overview of feature performance for the best
model results for each feature category across ex-
periments with different inputs. Key insights are
summarized below.

In terms of a comparison across features, LIWC
features consistently outperform others. Across all
setups, the use of LIWC features leads to the best
or same overall performance. Over-explained or
Under-explained performance (i.e., Class1 F1) also
benefit notably from LIWC, suggesting its utility
in handling minority or challenging classes. The
baseline model, which does not utilize additional
features, consistently underperforms compared to
models that incorporate LIWC, but tends to per-
form comparably to other feature sets. Notable
gaps are observed in Class1 F1, where the baseline
scores range from 0.00 to 0.50, indicating poor de-
tection of the Over-explained and Under-explained
responses. However, for the case of distinguish-
ing Under-explained responses, the baseline of-
ten performs no worse than more complex mod-
els. Models leveraging POS and normalized jargon
count features, generally perform similarly to the
baseline, with slight improvements in macro F1
and weighted F1 in some cases. For instance, nor-
malized jargon count marginally improves perfor-
mance over POS in certain cases, but still trails
behind the LIWC model performance. Models
using both question and response inputs outper-
form those using only responses in some config-
urations. Adding question context tends to not
improve results significantly for longer responses,

but does show some lift when distinguishing be-
tween shorter classes, particularly when identifying
Under-explained responses. This highlights the im-
portance of leveraging the full conversational con-
text for classification tasks with limited informa-
tion. For text representation methods, we observe
BERT-based representations do not show a clear ad-
vantage for these tasks, possibly due to limited fea-
ture integration or insufficient fine-tuning. Simpler
BoW and TF-IDF representations yield comparable
results, but benefit significantly from feature aug-
mentation like LIWC. Performance trends across
classes indicate that performance for Succinct and
Comprehensive classes, which represent the major-
ity classes, remain high across all setups, with F1
scores consistently above 0.84. This suggests that
models can reliably identify less extreme responses
regardless of the features used. Over-explained
and Under-explained classes remain challenging,
with low F1 scores, particularly in baseline and
non-LIWC models. This highlights the class imbal-
ance or inherent difficulty in detecting these classes.
LIWC consistently improves Over-Explained and
Under-Explained F1 scores, e.g., achieving up to
0.50 in classification of Over-explained and 0.21 in
Under-explained responses.

4 Limitations and Future Work

A limitation of this study lies in the small data
sample. Although difficult to obtain given the in-
terpersonal nature of our dataset, further analyses
would benefit from a larger, balanced, and more
comprehensively diverse population to improve per-
formance, robustness, and generalizability of algo-
rithms for assistive systems. Increasingly complex
data, features, and models, would present greater
computational expense. More advanced classifica-
tion strategies to capture the linguistic subtleties
between Comprehensive and Over-explained re-
sponses or Succinct and Under-explained responses
may possibly require additional data with higher an-
notator agreement or data augmentation, as well as
careful tuning of vectorizers, classifiers, and class
weights. Future work could explore advanced in-
tegration of LIWC with deep learning approaches,
combined feature sets, or fine-tuning BERT em-
beddings with domain-specific linguistic features
to enhance performance. It would be construc-
tive to also investigate the ways in which other lin-
guistic (e.g., reference to military), physical (e.g.,
body language, posture), and speech (e.g., volume,
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Figure 4: A comparison of feature performance for the best results for each feature category across experiments with
response inputs (left) and question and response inputs (right). Bars are colored by feature type and labels above
each bar indicate the respective text representation method associated with the best given model. The experiments
demonstrate the efficacy of LIWC features for text classification tasks involving nuanced categories like explanation
levels. LIWC consistently outperforms baseline and alternative feature sets across all metrics, particularly for the
challenging Over- and Under-explained and categories. Combining question and response inputs further boosts
model performance, while feature integration remains critical for improving representation-based models like
TF-IDF and BERT.

intonation) factors influence the degree of expla-
nation. Future related work should explore these
variables in both binary and four-way classification
settings. Methods employed and results obtained
in our work provide a basis for developing tech-
nologies that offer personalized, granular interview
feedback in real time. As such, a promising direc-
tion for future investigation may involve leverag-
ing large language models and chain-of-thought
prompting (Wei et al., 2022) to design interactive
interview training interfaces. Specialized applica-
tions of further research to narrow communication
gaps may extend beyond job interviews to areas
like educational assessments and automated dia-
logue systems. In addition to military veterans,
upcoming studies in this space should aim to make
interactions more constructive and meaningful for
other sensitive groups, such as formerly incarcer-
ated individuals, non-Native speakers, and older
adults seeking to re-enter the workforce, by tailor-
ing systems to their unique needs.

5 Conclusion

We use NLP to inform the development of per-
sonalized training methods and assistive technolo-
gies to aid military veterans in their transition to
the civilian workforce. This study integrates ad-
vanced linguistic features with robust text represen-
tation strategies and participant-dependent cross-
validation to detect the degree of explanation in
veteran job interview responses. We incorporate
LIWC features, which analyze the psychological
and cognitive dimensions of text, and POS tag-

ging, which provides syntactic insights, into the
text classification pipeline. These features are com-
bined with traditional BoW and TF-IDF vector-
ization and BERT embedding methods to create
a comprehensive feature set that can capture both
surface-level and deep linguistic patterns. We ad-
vance prior studies by looking beyond the ways
in which personal, social, and behavioral impres-
sions and physical characteristics impact interview
outcomes (Anderson et al., 2013; Gebhard et al.,
2018; Hoque et al., 2013; Hartholt et al., 2019).
We also extend existing work by not only consider-
ing interview responses, but also accounting for the
content of the interview question to understand con-
textual and turn-taking aspects of conversational
communication (Verrap et al., 2022). Classification
results from our binary classification experiments
reveal that while tested models can generally dis-
tinguish between responses with moderate accu-
racy, correctly identifying certain subclasses within
these categories is more challenging, particularly
for Under-explained responses. The choice of in-
put features as well as text representation meth-
ods significantly impact performance, with LIWC
features generally leading to better overall results.
This research will contribute to the eventual devel-
opment of intelligent training technologies that pro-
vide personalized learning and reintegration sup-
port through mechanisms such as real-time auto-
matic feedback to optimize veterans’ job interview
outcomes and improve the workforce.
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A Appendix

Population Demographic Feature Value

Interviewers

N 11

Mean age in years (SD) 44.91 (11.67)

Male:Female 8:3

Ethnicity (W, BAA, M) 9, 1, 1

Interviewees (Military Veterans)

N completed (total) 38 (41)

Mean age in years (SD) 40.3 (12.3)

Male:Female 37:4

Ethnicity (W, HL, NHPI, A, M, O) 24, 13, 1, 1, 1, 1

Employed (full, part, not) 25, 4, 12

Mean years of service (SD) 12.7 (9.1)

Mean years since end of service (SD) 8.8 (10.6)

Attended transition assistance 27

Table 1: A summary of the demographic information for the full dataset. The ethnicities represented in the data are
abbreviated as follows: White (W), Hispanic or Latino (HL), Black or African American (BAA), Native Hawaiian
or Other Pacific Islander (NHPI), Asian (A), Two or More Races (M), and Other (O).
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Experiment Input Feature Description Mean (SD) Class0 Mean (SD) Class1 t-test Result

WC total number of words in the text 262.96 (97.73) 458.56 (206.04) t(37.23)=-5.37, p<0.01

BigWords percentage of words longer than six letters 15.43 (4.64) 12.81 (2.93) t(84.04)=4.00, p<0.01

number percentage of numerical terms (e.g., one, two, 100) 1.17 (1.16) 1.81 (1.29) t(49.14)=-2.64, p=0.01

prep percentage of prepositions (e.g., in, on, about) 13.84 (3.10) 12.72 (2.15) t(74.65)=2.43, p=0.02

negate percentage of negation words (e.g., not, never, no) 1.01 (0.87) 1.51 (1.01) t(47.54)=-2.59, p=0.01

Drives percentage of words related to motivation and needs 5.98 (2.88) 4.93 (2.12) t(70.53)=2.33, p=0.02

Comprehensive (0) achieve percentage of words related to achievement or success 2.05 (1.20) 1.38 (1.00) t(62.55)=3.35, p<0.01

vs. response Cognition percentage of words related to thinking and reasoning 14.02 (4.21) 12.54 (3.54) t(61.50)=2.06, p=0.04

Over-explained (1) cogproc percentage of words related to cognitive processes 12.88 (4.06) 11.10 (3.53) t(59.55)=2.52, p=0.01

cause percentage of words indicating cause and effect 1.82 (1.24) 1.40 (0.85) t(76.16)=2.29, p=0.02

tentat percentage of words expressing uncertainty 3.13 (2.42) 2.22 (1.30) t(101.24)=2.90, p<0.01

socbehav percentage of words related to social actions and interactions 2.90 (1.65) 2.0 (1.08) t(80.11)=2.95, p<0.01

work percentage of words related to working 3.94 (2.45) 2.92 (1.81) t(70.45)=2.69, p<0.01

auditory percentage of words related to hearing or sound 0.22 (0.43) 0.08 (0.20) t(117.74)=2.80, p<0.01

focuspast percentage of words referencing past events 4.30 (2.85) 5.55 (2.80) t(53.66)=-2.30, p=0.03

OtherP percentage of punctuation not categorized as periods, commas, or question marks 2.15 (3.17) 1.09 (2.23) t(74.41)=2.20, p=0.03

question Analytic a measure of logical and structured thinking based on word patterns 24.18 (23.71) 16.60 (17.91) t(68.65)=2.02, p=0.04

conj percentage of conjunctions (e.g., and, but, or) 7.74 (4.01) 9.54 (4.51) t(48.48)=-2.11, p=0.04

tentat see above 2.34 (1.75) 3.40 (2.92) t(52.09)=-2.30, p=0.03

polite percentage of words indicating politeness 0.02 (0.08) 0.11 (0.47) t(125.79)=-1.98 p=0.04

politic percentage of words related to political topics 0.78 (0.95) 0.27 (0.78) t(28.79)=2.42, p=0.02

response health percentage of words related to health and well-being 0.04 (0.19) 0.22 (0.54) t(103.24)=-2.80, p<0.01

illness percentage of words related to illness or medical conditions 0 (0) 0.06 (0.32) t(106)=-2.13, p=0.04

food percentage of words related to food and eating 0 (0) 0.09 (0.36) t(106)=-2.55, p=0.01

auditory see above 0.02 (0.08) 0.10 (0.38) t(127.58)=-1.99, p=0.04

OtherP see above 1.12 (2.14) 2.61 (3.99) t(60.39)=-2.53, p=0.01

Authentic a measure of personal authenticity based on word usage 25.01 (30.61) 43.07 (34.7) t(29.02)=-2.37, p=0.02

Succinct (0) Tone a calculated score reflecting positive or negative tone 83.20 (23.94) 69.84 (27.44) t(28.45)=2.07, p=0.04

vs. we percentage of first-person plural pronouns (e.g., we, us, our) 0.43 (1.21) 1.06 (1.89) t(48.67)=-2.03, p=0.04

Under-explained (1) quantity percentage of words indicating quantity or amount 5.04 (3.73) 3.15 (3.61) t(31.46)=2.22, p=0.03

insight percentage of words reflecting understanding or awareness 2.69 (3.22) 4.61 (4.78) t(45.67)=-2.36, p=0.02

tentat see above 2.76 (2.94) 4.37 (4.74) t(50.21)=-2.09, p=0.04

emo_neg percentage of words expressing negative emotions 0 (0) 0.20 (1.02) t(106)=-2.04, p=0.04

question tech percentage of words related to technology 0.03 (0.14) 0.27 (0.83) t(125.92)=-2.76, p<0.01

want percentage of words expressing desire 0.04 (0.18) 0.22 (0.70) t(123.56)=-2.38, p=0.02

Perception percentage of words related to perception (e.g., look, feel). 3.63 (3.54) 6.52 (4.72) t(40.71)=-3.33, p<0.01

attention percentage of words indicating focus or attention 0.14 (0.46) 0.51 (1.14) t(87.60)=-2.56, p=0.01

motion percentage of words related to movement 0.60 (0.91) 1.14 (1.68) t(59.33)=-2.19, p=0.03

space percentage of words related to space and location 2.36 (2.92) 3.93 (3.34) t(35.50)=-2.28, p=0.03

time percentage of words related to time 1.32 (1.88) 2.75 (3.24) t(54.65)=-2.85, p<0.01

OtherP see above 1.71 (3.16) 3.37 (4.83) t(47.15)=-2.06, p=0.04

Table 2: Significant LIWC feature t-test results for the various experiments. We use an independent samples t-test.
The t-statistic indicates how much the means of the two groups differ relative to the variation in the sample data. We
consider p < 0.05 to be statistically significant, meaning there is strong evidence against the null hypothesis of no
difference between the groups, such that the observed difference in means is unlikely to have occurred by random
chance. Here, we do not assume equal variance, utilizing Welch’s t-test. As an interpretation example, suppose
we are comparing the LIWC scores for the word count feature, where Class0 indicates Comprehensive responses
and Class1 indicates Over-explained responses. A negative t-statistic would imply that the average word count of
Comprehensive responses is lower than that of Over-explained responses. The small p-value in this case supports
the conclusion that the long responses statistically tend to have more words compared to the short responses.
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Experiment Input Feature Description Mean (SD) Class0 Mean (SD) Class1 t-test Result

PRP personal pronoun (e.g., I, you, he, she, it, we, they) 0.11 (0.03) 0.13 (0.03) t(57.46)=-2.20, p=0.03

VBZ verb, 3rd person singular present (e.g., runs, talks, is) 0.03 (0.02) 0.03 (0.01) t(68.74)=2.01, p=0.04

response CD cardinal number (e.g., one, two, 3, 100) 0.01 (0.01) 0.02 (0.01) t(45.77)=-2.20, p=0.03

Comprehensive (0) VBD verb, past tense (e.g., ran, talked, was) 0.03 (0.03) 0.05 (0.03) t(55.14)=-2.50, p=0.02

vs. VBG verb, gerund or present participle (e.g., running, talking) 0.03 (0.01) 0.02 (0.01) t(61.51)=2.17, p=0.03

Over-explained (1) HYPH hyphen <0.01 (0.01) <0.01 (<0.01) t(88.35)=2.43, p=0.02

WP wh-pronoun (e.g., who, what, whom, which) 0.01 (0.01) 0.01 (<0.01) t(84.40)=2.86, p=0.01

question RB adverb (e.g., quickly, silently, very, too) 0.06 (0.04) 0.08 (0.04) t(52.47)=-2.22, p=0.03

Succinct (0) response CC coordinating conjunction (e.g., and, or, but, yet) 0.05 (0.02) 0.04 (0.02) t(34.15)=2.12, p=0.04

vs. VBP verb, non-3rd person singular present (e.g., run, talk, are) 0.05 (0.03) 0.07 (0.04) t(40.61)=-3.54, p<0.01

Under-explained (1) question NNS plural noun (e.g., dogs, cars, ideas) 0.01 (0.01) 0.03 (0.03) t(61.75)=-3.76, p<0.01

POS possessive ending (’s) 0 (0) <0.01 (<0.01) t(106)=-2.06, p=0.04

Table 3: Significant POS feature t-test results for the various experiments. We use an independent samples t-test.
The t-statistic indicates how much the means of the two groups differ relative to the variation in the sample data. We
consider p < 0.05 to be statistically significant, meaning there is strong evidence against the null hypothesis of no
difference between the groups, such that the observed difference in means is unlikely to have occurred by random
chance. Here, we do not assume equal variance, utilizing Welch’s t-test. See the interpretation example in Table 4.
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Experiment Input Text Representation Features Class0 F1 Class1 F1 Macro F1 Weighted F1

none (baseline) 0.87 0.44 0.66 0.78

LIWC 0.88 0.48 0.68 0.79

BoW POS 0.87 0.44 0.66 0.78

jargon count 0.86 0.43 0.64 0.77

normalized jargon count 0.86 0.44 0.65 0.77

none (baseline) 0.86 0.18 0.52 0.71

LIWC 0.89 0.41 0.65 0.78

response TF-IDF POS 0.86 0.18 0.52 0.71

jargon count 0.86 0.22 0.54 0.72

normalized jargon count 0.87 0.26 0.56 0.73

none (baseline) 0.86 0.09 0.47 0.69

LIWC 0.90 0.45 0.67 0.80

BERT POS 0.86 0.09 0.47 0.69

Comprehensive (0) jargon count 0.86 0.09 0.47 0.69

vs. normalized jargon count 0.86 0.09 0.47 0.69

Over-explained (1) none (baseline) 0.85 0.35 0.60 0.75

LIWC 0.90 0.54 0.72 0.82

BoW POS 0.85 0.35 0.60 0.75

jargon count 0.86 0.38 0.62 0.75

normalized jargon count 0.84 0.35 0.59 0.73

none (baseline) 0.87 0.26 0.56 0.73

question LIWC 0.89 0.48 0.69 0.80

& TF-IDF POS 0.87 0.26 0.56 0.73

response jargon count 0.87 0.26 0.56 0.73

normalized jargon count 0.88 0.33 0.61 0.76

none (baseline) 0.86 0.05 0.45 0.68

LIWC 0.88 0.28 0.58 0.75

BERT POS 0.86 0.05 0.45 0.68

jargon count 0.86 0.05 0.45 0.68

normalized jargon count 0.86 0.05 0.45 0.68

Table 4: Classification results for the Comprehensive vs. Over-explained experiments with specified text representa-
tion methods and features. "Class0" or "Class1" refers to the class listed first or second in the "Experiment." Bold
text indicates the best model performance for each experiment.
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Experiment Input Text Representation Features Class0 F1 Class1 F1 Macro F1 Weighted F1

none (baseline) 0.87 0.06 0.47 0.73

LIWC 0.89 0.19 0.54 0.76

BoW POS 0.87 0.06 0.47 0.73

jargon count 0.87 0.06 0.47 0.73

normalized jargon count 0.87 0.06 0.47 0.73

none (baseline) 0.89 0.00 0.44 0.73

LIWC 0.88 0.00 0.44 0.72

response TF-IDF POS 0.89 0.00 0.44 0.73

jargon count 0.89 0.00 0.44 0.73

normalized jargon count 0.89 0.00 0.44 0.73

none (baseline) 0.90 0.08 0.49 0.75

LIWC 0.90 0.08 0.49 0.75

BERT POS 0.90 0.08 0.49 0.75

Succinct (0) jargon count 0.90 0.08 0.49 0.75

vs. normalized jargon count 0.90 0.08 0.49 0.75

Under-explained (1) none (baseline) 0.89 0.00 0.44 0.73

LIWC 0.90 0.26 0.58 0.79

BoW POS 0.89 0.00 0.44 0.73

jargon count 0.89 0.00 0.44 0.73

normalized jargon count 0.89 0.00 0.44 0.73

none (baseline) 0.88 0.07 0.47 0.73

question LIWC 0.89 0.14 0.51 0.76

& TF-IDF POS 0.88 0.07 0.47 0.73

response jargon count 0.88 0.07 0.47 0.73

normalized jargon count 0.88 0.07 0.47 0.73

none (baseline) 0.90 0.00 0.45 0.74

LIWC 0.89 0.07 0.48 0.75

BERT POS 0.90 0.00 0.45 0.74

jargon count 0.90 0.00 0.45 0.74

normalized jargon count 0.90 0.00 0.45 0.74

Table 5: Classification results for the Succinct vs. Under-explained experiments with specified text representation
methods and features. "Class0" or "Class1" refers to the class listed first or second in the "Experiment." Bold text
indicates the best model performance for each experiment.
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Abstract

This paper introduces a new dataset for clas-
sifying memes by their template and com-
municative intent. It includes a broad selec-
tion of meme templates and examples scraped
from Imgflip and a smaller hand-annotated set
of memes scraped from Reddit. The Reddit
memes have been annotated for meta-category
using a novel annotation scheme that classifies
memes by the structure of the perspective they
are being used to communicate. YOLOv11
and ChatGPT 4o are used to provide baseline
modeling results. We find that YOLO strug-
gles with template classification on real-world
data, but outperforms ChatGPT in classifying
meta-categories.

1 Introduction and Related Work

The majority of the previous research on the au-
tomatic classification of memes revolves around
specific domains like the detection of politics or
hate speech or classifying memes by humor “type”
(Courtois and Frissen, 2023). Little work addresses
task of identifying which template—not necessary
a single literal image, but a recognizable reference
format for the meme—a meme falls into, but Cour-
tois and Frissen offer one of the most promising
recent attempts to do so. Their work uses two
datasets: a dataset of randomly selected memes
and hand-annotated templates from one of the
most widely used meme documentation websites,
KnowYourMeme, and a dataset of memes paired
with their templates scraped from the aggregator
website 9gag. Their method for template identifica-
tion involved CNNs for detecting features common
across examples, calculating accuracy with a geo-
metric mean given that parts of their datasets had
templates not seen in training.

Along similar lines, Gleason et al. (2019) at-
tempt simple meme template detection. They use

∗Equal contribution. ∗∗Corresponding author.

a combination of the the Multi-Scale Structural
Similarity (MS-SSIM) index and a color histogram
between the input and template image (Wang et al.,
2003) to match memes to their templates. Even
with their small dataset of 385 memes and 137
templates, they achieved an accuracy of 92.25%.

This paper offers a similar methodology for ob-
taining the dataset to Courtois and Frissen (2023),
but with a larger and more varied set of templates.
While Gleason et al. (2019) provides promising
results for a small dataset, we expect our tem-
plate identification task to be much more diffi-
cult, with over 2,000 template classes compared
to their 137. Additionally, Gleason et al. (2019)
likely reached near-ceiling performance because
all of their memes were generated using the exact
same source images for templates, but the reality
of meme usage across the internet is that there is
more room for variation, as they are often not made
using generators with consistent template images.

Along with examples from Imgflip (a meme gen-
erator website), we also include memes sourced
from Reddit. In total, our dataset covers 2,059
meme templates with a collection of 274,748 ex-
amples scraped from Imgflip and a collection of
242 hand-annotated memes from Reddit. With the
inclusion of social media-obtained memes, we ex-
pose our model to examples of a given template
that are likely much more diverse than those found
exclusively on generator websites, which gives a
better window into performance on real-world data.

To support the annotation of the Reddit memes,
we introduce an ontology of meta-categories meant
to explore the communicative intent behind memes.
Recent work has used LLMs and VL (vision lan-
guage) models to identify the metaphors repre-
sented by a given meme, as well as explaining the
entire joke itself (Hwang and Shwartz, 2023). As
an alternative to this, we explore a structure-based
approach with the assumption that an understand-
ing of the desired intent in using a meme can be
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identified without requiring any context. Between
the meta-category classification task and the more
traditional meme template classification task, this
dataset contributions a novel resource for the study
of meme creation and usage.1

2 Dataset

2.1 Data Sources

2.1.1 Imgflip
The large amount of unannotated data that we col-
lect for the purpose of identifying meme templates
was collected from imgflip by modifying an open-
source codebase.2 Imgflip was the best website for
this dataset for two reasons: it is easy to scrape
memes and their corresponding templates, and the
website documents thousands of templates.

Our dataset contains 1,992 template classes from
the “Top All Time” page from imgflip. While there
were initially more classes, we found that some
of the templates on imgflip were duplicates. In
order to handle this, we used an image hashing
algorithm to remove duplicates. Some template
duplicates were also removed manually, if image
hashing could not identify them.

All additional template classes come from our
Reddit data. In order to ensure that our model has
trained on all templates represented in the Red-
dit data, we scraped 67 additional templates from
Imgflip that appeared in the Reddit data but were
not in the original top 2,000 classes. In total, this
dataset includes 274,748 meme examples from
2,059 templates.

The dataset is organized in two ways. For image
classification tasks, each template is a directory
that includes all the image files for the template
class. The dataset also includes a json file of all the
metadata for each example meme, including the
image url, post url, captioning for the meme, and
other metadata.

2.1.2 Reddit
In order to have data that reflects more real-world
usage than output from meme generator websites,
we also scraped images from Reddit’s r/memes
community (subreddit).3 We scraped the follow-
ing from Reddit: 100 memes from the top of all

1Our dataset and the code used in this paper are available
in this repository: https://github.com/BenLambright/
Meme-template-classification.

2https://github.com/schesa/ImgFlip575K_
Dataset/tree/master

3https://www.reddit.com/r/memes

Meta-category Count

Reaction 100
Exploitable 89
Image Macro 7
Duality 30
Escalating Progression 9
None 7

Table 1: Counts of the various meta-categories in our
annotated Reddit data, including examples that were
annotated as having no meta-category.

Figure 1: An example of a meme template. “Drake-
posting” or “Drake Hotline Bling” is a meme whose
template involves two frames of Drake from the Hotline
Bling music video that are set up to rate something as
bad and something else as good. The user of the tem-
plate then fills in the whitespace with two images or
pieces of text to pair with the Drake ones.

time, 100 from the top of the month scraped on
November 13th 2024, and 50 from the top of the
month scraped on December 13th 2024. For each
example, the annotators identified the correspond-
ing imgflip template (if one could be found) and
selected the meta-category that best fits the meme.
In total, there were 242 annotated examples,4 74
of which did not have a template and 20 that had
an identifiable template, but that template was not
documented on imgflip.
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2.2 Task Definitions

2.2.1 Meme Template Classification
The primary task of this dataset is to identify the
template a meme is built from. A meme template is
a recognizable joke format that the user fills in the
details of when they create a meme. Figure 1 gives
an example template. The task involves mapping a
human-created meme to the template that was used
when creating it.

2.2.2 Meta-category Classification
In order to facilitate capturing the semantic and
pragmatic content of memes, we developed an on-
tology of meta-category categories which define
formats and structures that are common across tem-
plates. This can potentially augment meme tem-
plate detection and offer a way to group memes
of unseen templates. This set of categories is
in part derived from the ontology presented by
knowyourmeme.com. Consequently, an alterna-
tive task for this dataset is to classify these general
categories of memes in order to classify their senti-
ment.

2.3 Annotation Ontology and Results

The annotators for this project are two male gradu-
ate students at Brandeis University between 20-30
years old, receiving course credit for their annota-
tion work. They were asked to annotate 250 images
scraped from Reddit and the top 100 most popular
template images from Imgflip. The former were
annotated for both templates and meta-categories,
while the latter were only annotated for the most
common meta-category that meme template would
have. For the Reddit dataset, the template annota-
tions were almost always consistent between the
two annotators. In the few cases they were not, the
annotators discussed the difference and performed
adjudication jointly.

These meta-categories are derived from some
of the higher-level categories presented in the
KnowYourMeme ontology. While the website con-
tains hundreds of categories, the ones we chose to
use more as they were presented on the website
(image macro, exploitable, reaction) are compara-
bly more general and high-level. For duality and
escalating progression, we came across the Drake-
posting category, which describes memes that re-
semble the duality/escalating progression structure,

4Some images were removed due to broken links, deleted
posts, or offensive subject matter.

and decided to create two distinct categories that
capture similar structural information but mainly
differ in terms of semantic content (and enable cat-
egorization of such memes without referring to a
specific example template). With these selections,
we feel that we were able to encompass nearly all
memes and enable capturing of some semantic in-
formation.

The inter-annotator agreement for our meta-
categories was consistently around 70%. This
section provides a description of our ontology
and a summary of the annotation approach. The
full guidelines along with examples of all meta-
categories and the guidance for annotation edge
cases can be found in the Appendix. Counts for
each meta-category annotated are given in Table 1.

Image Macro Image macros can be thought of as
memes for which the setup of the joke is given by
the image, and the text fills in the details and punch-
line. For our purposes, we consider image macros
as consisting of a single image. The most typical
presentation of these memes involves a picture of
some kind of entity, often an animal or person, with
white text in impact font on the top and bottom of
the image.

Reaction Image Reaction images are, in a sense,
an inversion of image macros. Instead of the im-
age setting up the joke and the text filling in the
punchline, the joke is set up by a text caption that
is almost always above or below the image content.
The punchline is the image. The images in these
memes are usually of people emoting or reacting
in some fashion, and the humor often derives in
part from the fact that the text caption completely
recontextualizes the image from its origin.

Exploitable An exploitable is a meme in which
an existing image such as a comic, or still frame(s)
from a movie is augmented by adding or replacing
text or characters to tell a joke. The idea is that
there is some extant structure inside the original
image that is “exploited” using additional text or
images.

Duality A meme exhibiting duality is one that
compares two (or more) situations or contexts that
are related across some dimension in opposition to
each other. The typical components of a duality
meme are a set of discrete contexts and a set of
images that visualize the relationship between the
contexts. A common format is a “4-panel” layout
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in which a pair of contexts and images are stacked
vertically.

Escalating Progression Escalating progression
memes are those that express a reaction to points
sampled along a continuum of context. Unlike in
duality where the situations are connected in terms
of directly opposing each other (bad vs. good),
with escalating progression there is an intensifica-
tion between each state along an axis (good, better,
best). Typically these memes have at least 3 sets of
image-context pairs, but it is not required as long
as there is an obvious sense of continuum between
the contexts.

None While the previous categories are designed
to cover as much of the semantic-pragmatic space
of memes as is feasible, there are examples that do
not align well with any of them. Annotators were
always encouraged to mark a category, but it was
permissible to label the meta-category as “none” if
they felt strongly that none of them fit. There exist
other “genres” of memes such as surreal, “deep-
fried” or anti-memes which are not addressed by
the ontology because they exist in small niches.
One could realistically add several more categories
to this ontology, but the point of this ontology is for
it to be small and representative of most existing
memes.

3 Experiments

3.1 Experiment Design

For template classification, we divided our dataset
into the images annotated from Reddit and the im-
ages scraped from imgflip. From these, we further
split the imgflip data into train, dev, and test sets
using a 90-5-5 split. We treated the Reddit data
as a unique test set, because this would allow us
to test on data which the model mostly likely has
never seen before, unlike the test set of the imgflip
data, which was normally the same images with
different text overlayed on it.

Along with classifying the specific templates
for each image, we also classified meta-categories
(image macro, reaction image, exploitable, dual-
ity, escalating progression, and none). In order to
do this, we train on two different datasets to see
which can best identify the meta-categories. For
the imgflip data, each template is annotated with a
meta-category and the label is transferred to all im-
ages that were generated using that template. For
the Reddit data, each image has its meta-category

Task/Dataset Accuracy

Imgflip Data Template 99.8
Reddit Data Template 40.5

Imgflip Data Meta-category 51.5
Reddit Data Meta-category 68.8

Table 2: Accuracies for the YOLO model on the classifi-
cation tasks: template identification and meta-category
identification.

hand-annotated since the template used to gener-
ate is not given automatically through the scraping
process (unlike the imgflip data).

The imgflip data was split into train, validation,
and test portions using a 90-5-5 split. For the Red-
dit data, we used an 85-15 train-test split.

3.2 Models

We use two different models to provide baseline
results for our dataset: YOLOv11’s image classifi-
cation model and ChatGPT 4o.

3.2.1 YOLOv11
We chose to use YOLOv11 because YOLO has
consistently strong performance on image classi-
fication tasks (Khanam and Hussain, 2024) and
focuses on data examples beyond ImageNet. We
fine-tuned the model on scraped data from imgflip.
After fine-tuning the model with optimized hyper-
parameters,5 we evaluated the model on a test set
from imgflip and Reddit. By evaluating these two
test sets separately, we are able to see how the
model predicts images that are the same as the
training data with different text (imgflip), versus
images that are conceptually similar, but often vary
significantly from the training data (Reddit).

As shown in Table 2, while the template classifi-
cation YOLO model reaches near-100% accuracy
when testing on the imgflip test data, it struggles
with the Reddit data. This is because the memes
posted on Reddit do not always use the same im-
ages that define the template on imgflip, especially
in the cases where they were not directly gener-
ated from an imgflip template. As a result, these
“in the wild” examples 6 are much harder for the
YOLO model to identify. The imgflip meme tem-
plate classification task is very simple because it is

5Values: patience=2, image size=640, opti-
mizer="AdamW", learning rate=0.01, momentum=0.937,
weight decay=0.0005.

6See the appendix for examples.
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almost always the same image with different text
overlayed on it.

As for the Reddit template identification, 40.5%
accuracy indicates that the model is still able to
identify the template some of the time. There are
2,059 meme templates for the classifier to select
from, so this indicates some level of understand-
ing, even if it does not match the performance of
other models trained on fewer classes in prior work
(Gleason et al., 2019).

In terms of meta-category classification, YOLO
performed reasonably when trained and tested on
imgflip data (51.5%), and even better when tested
on the Reddit data (68.8%), where a random selec-
tion of classes would ne expected to produce 16.7%
accuracy.

However, Table 3 indicates that there was a sig-
nificant amount of overfitting due to dataset im-
balance. The less common classes (none, image
macro, duality, and escalating progression) were
classified correctly significantly less frequently
than the common classes of exploitable and reac-
tion Image. Reaction images were correctly clas-
sified 82% of the time, and exploitables 89.5% of
the time, indicating that at least as a binary clas-
sification task these two classes can be correctly
understood by the model.

These results indicate that the YOLO model is
learning some sort of structural information that
allows it to predict at least the most common meta-
categories with reasonable accuracy. Furthermore,
the fact that the Reddit dataset had a much larger
number of templates relative to the number of ex-
amples of each may have pushed the model away
from relying on direct relationships between tem-
plates and meta-categories.

3.3 ChatGPT 4o
In addition to testing our data using the YOLOv11
model, we also used ChatGPT’s 4o API. Because of
the complexity of identifying the semantic structure
of memes, we posited that an LLM might be well
suited for the task. In all of these experiments,
we always started with the exact same initial and
final prompt, which can be found in the Appendix.
Additionally, we kept the prompting parameters,
temperature and top P, at their default values: 1.00
and 1.00.

We performed three different few-shot experi-
ments with this model: text-based few-shot prompt-
ing, image-based few-shot prompting, and a combi-
nation of both. In our first experiment, the prompt

describes each of the meta-category categories in
a few sentences as text, based on the annotation
guidelines. In the second experiment, we prompt
with an image example for each meta-category cat-
egory and explain why that image is an example of
the meta-category. In the third experiment, we give
the prompts from both the first and second experi-
ments together. All of these prompts are recorded
in the Appendix. Because this model is nondeter-
ministic, we ran these experiments three times and
calculated the mean score and standard error of the
mean.

As shown in Tables 4 and 5, ChatGPT performed
significantly better on the Reddit data than the
imgflip data, but the specific prompt style used
did not have much impact. Given that these two
datasets were annotated by the same annotators
with the same guidelines, this suggests that the
memes in the Reddit dataset were easier for the
model to interpret. Having both text and image
examples in the prompt likely caused the model to
have too much information to properly process it
all, but providing text or image prompts provided
the same mean score.7

While it be reasonable to expect that ChatGPT
would be better at reasoning how to classify meta-
categories if it necessitates understanding the se-
mantics of the meme, ChatGPT was still not very
successful at identifying the meta-categories. Im-
portantly, the model did not always guess the same
category, it simply chose a different wrong category
most of the time. This suggests that this was still
a difficult task for the model, even if the prompts
could be improved, and the model was not overfit-
ting.

4 Future Work and Conclusion

While the ChatGPT results were disappointing, the
consistency of the poor results could suggest that
the model might need something more complex
than just prompts. For example, using chain-of-
thought or reinforcement learning might help the
model improve perform performance by allowing
it to reason more. For the same reason, ChatGPT’s
o1 pro model, which now has vision capabilities,
might show stronger results as well (Noda et al.,
2025). As for the YOLO models, it suggests that
the meta-category ontology can be predicted, with
reasonable accuracy, using a pure computer vision

7The individual scores for text and image prompts gen-
erally varied between 40% and 43%; they never produced
exactly the same result.
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Predicted

Actual None Exploitable Image Macro Duality Escalating Progression Reaction

None 0 2 0 0 0 1
Exploitable 0 76 2 0 0 7
Image Macro 0 2 1 0 0 6
Duality 0 18 0 4 0 7
Escalating Progression 0 5 0 1 0 5
Reaction 0 17 1 0 0 82

Table 3: Confusion Matrix for the predictions from the YOLO model on the Reddit data meta-category identification
task

Task Accuracy

Imgflip Data Meta-category 29.6±1.8

Reddit Data Meta-category 47.7±0.2

Table 4: Mean accuracies and standard errors for Chat-
GPT meta-category classification with image prompts
on different datasets.

Prompt Content Mean Score

Text 42.2±1.1

Image 42.2±0.6

Both 37.8±1.6

Table 5: Mean accuracies and standard errors for Chat-
GPT meta-category classification across all test sets
using different prompting strategies.

approach. This could help classify the semantic
meaning of a meme without requiring the context
of an entire joke.

Knowing that annotators considered the text
when annotating memes, it would likely also be
helpful for the text to be included in the pipeline
for meta-category classification. It would be easy
to prompt for this with ChatGPT, asking to include
this information in its final inference.

The best way to improve the performance of both
tasks is likely to be getting more data. Scraping
from more sources than imgflip and Reddit would
provide a more diverse dataset, as well as being
able to handle more meme formats, like GIFs.

The Reddit dataset was also very small due to
the limited amount of annotator time available, and
more data would likely have improved the perfor-
mance of our models. On a similar note, in the
imgflip dataset, there were meme templates that
were extremely similar to each other, as discussed
further in the Appendix. While we removed exact
duplicates in data preprocessing, there are likely

still meme template classes that could be combined,
and would likely improve the performance of the
YOLO model on meme template classification.

5 Limitations

Some templates that are functionally duplicates
(such as two examples of “Drakeposting” using
slightly different stills from the video) may not
have been discarded from our image hashing algo-
rithm, potentially causing a dip in accuracy. We
recommend using a deep learning model to iden-
tify these near-duplicate templates in the future.
Also, the total amount of annotated Reddit data
is very small, making both learning and inference
more difficult. A larger group of annotators com-
bine with a more varied set of data would allow
for greater exploration of the machine-learnability
of meta-categories, and would also enable further
refinement of the ontology. This dataset was even
smaller when testing on specifically the meme tem-
plate classification task, because 74 memes could
not be included because the annotators marked
them as not having a template.

6 Ethical Considerations and Broader
Impact

The authors would like to state that while they made
efforts to comb through the data and remove memes
with questionable or offensive content, they cannot
guarantee that every example in this dataset is free
from such content, and furthermore would like to
state that they do not endorse anything that may be
expressed by memes included in this dataset. Be-
yond the nature of the memes’ content, it is also im-
portant to consider that the sources of the scraped
memes (imgflip and the r/memes subReddit) may
limit perspectives in terms of their respective user-
bases, and future work should endeavor to capture
memes from a wider variety of creators.
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A Annotation Guidelines

For each annotation in the project, perform the
following steps:

1. Transcribe the text in the meme. Each section
of text (either split up as labels, lines of di-
alogue, or other obvious spacing) should be
typed into the box followed by the enter key.

2. Attempt to identify the meme template.
If it is immediately recognized, find
the corresponding link to the template
(i.e imgflip.com/memetemplate/. . . and not
imgflip.com/memegenerator/. . . ) if one ex-
ists. Otherwise if it is unrecognized, query
search engines with a description of the image
and the word “meme.” If all else fails, obtain
the link to the source image (through Label
Studio) and input it into Google’s search by
image feature to obtain a name or description
that would lead one to an associated imgflip
template. Note that in the case of multiple tem-
plates in an image, one should choose a single

template that is ideally the most prominently
featured and most easily recognizable in the
image. If there are no recognizable templates
in the image, leave the link section blank.

3. Choose one of the associated meta-categories
according to the ontology. While it is possible
to leave this selection blank, it is generally
recommended to avoid this unless one feels
very strongly that none of the associated meta-
categories fit at all.

A.1 Image Macro Example

This example involves an image of a cat in a suit
sitting at a table as if it were looking up from read-
ing the newspaper with a shocked expression. With
the image as the context, the caption continues the
(presumably meta) joke by delivering an announce-
ment about banned meme posts.

A.2 Reaction Image Example

In this example, the joke is derived from the situa-
tion set up in the caption “when you donate 1$ to a
streamer” and the punchline in the reaction image
of Walter White from Breaking Bad saying “Now
say my name.”

362

https://doi.org/10.1080/19312458.2022.2122423
https://doi.org/10.1080/19312458.2022.2122423
https://doi.org/10.1080/19312458.2022.2122423
https://doi.org/10.1080/19312458.2022.2122423
https://doi.org/10.1145/3308561.3353792
https://doi.org/10.18653/v1/2023.emnlp-main.89
https://doi.org/10.18653/v1/2023.emnlp-main.89
https://arxiv.org/abs/2410.17725
https://arxiv.org/abs/2410.17725
https://doi.org/10.1101/2025.01.14.25320525
https://doi.org/10.1101/2025.01.14.25320525
https://doi.org/10.1101/2025.01.14.25320525
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/ACSSC.2003.1292216


A.3 Exploitable Example

This example is using a scene from the cartoon
Scooby Doo, Where Are You! in which the character
Fred is revealing the identity of the villain. The
masked villain is labeled as “Being able to cook,”
and then once unmasked, labeled as “Just following
the recipe.”

A.4 Duality Example

This example shows the duality between two situ-
ations in a video game. The first one is where the
player of a game is able to heal their character sev-
eral times, and the second is where the boss heals
a single time. The images of Mordecai from the

cartoon Regular Show express a neutral-positive re-
action to the first situation and a disgusted reaction
to the second.

A.5 Escalating Progression Example

The example shown here demonstrates the escalat-
ing progression of deciding when to purchase and
play a video game. The first context, “pre-order a
game” is the neutral (“good”) state, associated with
the normal image of Winnie the Pooh. The second,
“buy the game when it releases,” is the next step
up (“better”), and the corresponding image is Pooh
in fancy dress. The final context, “wait almost a
decade so you can get it for free,” is the “best” de-
cision, and as a result the corresponding Pooh is
dressed in even fancier clothing to communicate
this.

A.6 “None” meta-category Example

This example is not much more than a picture with
a caption. There does not appear to be any larger
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structural relationship between the text and image
beyond that.

B Differences Between Imgflip and
Reddit Memes

Often, memes that are obtained from sources other
than generator websites (i.e “in the wild”) look
very different from the prototypical template im-
age from which the meme is derived. As an illus-
trative example, consider the "Sad Hulk" meme.
The template image is that of two frames of the
Incredible Hulk with tears in his eyes. Typically,
examples of this meme will use the exact same
image of the Hulk, only having the text changed.

This is the same image as that which is found on the
Crying Hulk template on imgflip. However, there
are other examples that are clearly referencing the
same template without using the exact same picture.

Template Confidence

odd1sout-vs-computer-chess 0.09
Running-Away-Balloon 0.09
hello-human-resources 0.05
Apu-takes-bullet 0.04
how-i-sleep-homer-simpson 0.04

American-Chopper-Argument 0.10
thanos-what-did-it-cost 0.06
Squidward 0.04
Hide-the-Pain-Harold 0.04
Out-of-line-but-hes-right 0.04

Table 6: Top 5 template labels by confidence from the
YOLO model for the Incredible Krunk (top) and Hulk
Hogan (bottom) examples.

While both of these examples are using very differ-
ent images from the template, they are still clearly
derived from the original in terms of the joke being
made (especially since the first picture is a parody
of the Hulk and the second is a picture of Hulk
Hogan). Given how different these images are com-
pared to any output from the Crying Hulk meme
generator, it stands to reason that these would be
especially difficult for a simple CV model to de-
termine that they should be classified as the same
template. Accordingly, our YOLO model did not
put Crying Hulk in the top 5 for either example.

C Meta-category Edge Cases

Sometimes it is not clear which meta-category la-
bel is appropriate for a given meme. This section
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provides some examples encountered by the anno-
tators along with discussion of the relevant labels
to hopefully elucidate what the ontology is trying
to capture.

C.1 Image Macro vs. Reaction

This meme structurally resembles a reaction (the
text on top separate from the image) but the actual
relationship between the text and image is that of
an image macro because the joke is a play on a
well-known phrase from the character pictured.

C.2 Reaction vs. Exploitable

Even though the image is from an established piece
of media (the Thriller music video), the structure
in this meme comes from outside the scene. The
image essentially functions as a reaction to the
setup in the text.

C.3 Exploitable vs. Reaction

While the image on the bottom of the meme is often
deployed as a reaction, in this case the structure of
the meme is derived from multiple frames of the
actual scene, so it is an exploitable.

C.4 Duality vs. Exploitable

Even though the source for the images in this meme
is the TV show Tom and Jerry, it is not considered
an exploitable because the two frames are from
entirely different parts of the TV show, and the
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structure of the meme is as a result not derived from
the scene. The duality comes from the comparison
between the two image-caption pairs.

C.5 Duality vs. Escalating progression

The images in this meme communicate two oppos-
ing emotional states occurring across the various
stages described by the captions. Rather than being
a continuum, they express discrete negative and
positive emotions. As a result, despite having more
than two parts, this meme is an example of duality
and not escalating progression.

D ChatGPT 4o API Prompts

Initial prompt: “You will be given a list of exam-
ple images for image macro, reaction, escalating
progression, duality, and exploitable memes, and
afterwards you will have to classify them”

Final prompt: “Given the descriptions of
memes from before, how would you describe the
following meme? Select a response for the follow-
ing list and only use the words from this list: image
macro, reaction, escalating progression, duality, or
exploitable. Only output the template class you
decided.”

D.1 Experiment 1: Text Prompts

Image Macros: “Image macros can be thought of
as memes for which the setup of the joke is given
by the image, and the text fills in the details and
punchline. For our purposes, we consider image
macros as consisting of a single image. The most
typical presentation of these memes involves a pic-
ture of some kind of entity (often an animal or

person) with white text in impact font on the top
and bottom of the image.”

Reaction Images: “Reaction images are in a
sense an inversion of image macros. Instead of
the image setting up the joke and the text filling in
the punchline, the joke is set up by a text caption
(almost always separated from the image portion)
and then the punchline is the image. The images in
these memes are usually of people emoting or react-
ing in some fashion, and the humor often derives in
part from the fact that the text caption completely
recontextualizes the image from its origin.”

Escalating Progression: “Escalating progres-
sion memes are those that express a reaction to
points sampled along a continuum of context. Un-
like in duality where the situations are related in
terms of opposing each other (e.g good thing vs.
bad thing), with escalating progression there is an
intensification between each state (e.g good thing
vs. better thing vs. best thing). Typically, these
memes have at least 3 sets of image-context pairs,
but it is not required as long as there is an obvi-
ous sense of continuity between the contexts. It
does not have to be 3+ images, like it can still be
one, the difference is that it represents something
escalating, rather than a good or bad. It has a con-
tinuum moving in a consistent and intensifyingly
humorous direction.”

Duality: “A meme exhibiting duality is one that
compares two (or more) situations or contexts that
are related across some dimension, usually in op-
position to each other. The typical components of
a duality meme are a set of discrete contexts and
a set of images (most often variations on the same
image) that visualize the relationship between the
contexts. A common format is a ’4-panel’ layout in
which two pairs of contexts and images are stacked
vertically.”

Exploitable: “An exploitable is a meme in
which an existing image (such as a comic, or one
or more scenes from a movie) of some sort is aug-
mented by adding and/or replacing some set of
things (like dialogue, characters, labels etc.) to tell
a joke. The idea is that there is some extant struc-
ture inside an image that is ’exploited’ using text
or additional pictures within the bounds of the orig-
inal image (unlike a caption in a reaction image,
which is typically outside it).”

D.2 Experiment 2: Image Prompts
Image Macros: “Here is an example of an image
macro, where you have the classic text on top and
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below, where the entire joke could be understood
without the image:”

url: “https://imgflip.com/i/3yhgyo”
Reaction Images: “Here is an example of a

reaction, where the monkey looks awkwardly in re-
action to the text which follows a ’me-when’ style:”

url: “https://i.imgflip.com/4zv2v9.jpg”
Escalating Progression: “Here is an example

of an escalating progression, where the brain gets
bigger and bigger as the text describes something
smarter and smarter:”

url: “https://i.imgflip.com/4iyi3q.jpg”
Duality: “Here is an example of an duality,

where drake at first thinks it’s bad, but then thinks
it’s good:”

url: “https://i.imgflip.com/4izfsm.jpg”
Exploitable: “Here is an example of an ex-

ploitable, where the text is overlayed over all of the
people, representing who they are in the context of
the joke:”

url: “https://i.imgflip.com/3fys88.jpg”
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Abstract

WARNING: paper contains offensive content.
Content moderation is essential in preventing
the spread of harmful content on the Internet.
However, there are instances where moderation
fails and it is important to understand when
and why that happens. Workflows that aim
to uncover a system’s weakness typically use
clustering of the data points’ embeddings to
group errors together. In this paper, we evaluate
the K-Means clustering of four text representa-
tions for the task of offensive language detec-
tion in English and Levantine Arabic. We find
Sentence-BERT (SBERT) embeddings give the
most human-interpretable clustering for En-
glish errors and the grouping is mainly based
on the targeted group in the text. Meanwhile,
SBERT embeddings of Large Language Model
(LLM)-generated linguistic features give the
most interpretable clustering for Arabic errors.1

1 Introduction

Content moderation systems are used to mitigate
the spread of offensive content online. These sys-
tems are usually successful at flagging offensive
language, but may also incorrectly remove non-
offensive content, and this incorrectly flagged non-
offensive content is disproportionately shared by
people who identify with a marginalized group.
Previous works have shown bias in hate speech
detection systems when it comes to text written in
African American English (Xia et al., 2020; Sap
et al., 2019; Harris et al., 2022). Moreover, mod-
eration systems struggle to classify implicit offen-
sive language. Mendelsohn et al. (2023) tested
dog whistle detection on the Perspective API2 and
found that it assigned lower ratings to examples
that used dog whistles (subtle, potentially harmful

1We publicly release all the code, models, and data
needed to reproduce our results https://github.com/
wetey/cluster-errors

2https://perspectiveapi.com/

messages intended to only be understood by certain
groups) instead of slurs.

In order to work toward correcting these types of
issues, offensive language detection models must
be examined more closely to understand how and
why they are making mistakes. Evaluation met-
rics like F1-score and accuracy provide a compact
and high-level means of scoring models, but are
not enough to fully understand a model’s behav-
ior. To uncover where a model underperforms,
researchers have recently shifted to automating
aspects of the error analysis process and provid-
ing a systematic approach to analyzing a model’s
performance. These approaches are presented as
error analysis tools (Rajani et al., 2022; McMillan-
Major et al., 2022; R Menon and Srivastava, 2024;
Gauthier-melancon et al., 2022; Tenney et al., 2020;
Grace et al., 2023; Yuan et al., 2022; Wu et al.,
2019) or Slice Detection Models (SDMs) (Hua
et al., 2023; d’Eon et al., 2022; Sohoni et al., 2020;
Eyuboglu et al., 2022). Error analysis tools provide
a user-interface that allows practitioners to closely
examine their systems and SDMs partition the data
to “slices”, aiming to identify those partitions on
which the model underperforms, without the need
for explicitly labeled subgroups.

These tools and models typically involve group-
ing the data points according to some human-
understandable concept (e.g., gender, race). Clus-
tering textual data requires them to be converted
to a vector representation, like contextual embed-
dings, which gained popularity with the rise of
pre-trained language models. SDMs and error anal-
ysis tools frequently use contextual embeddings
when developing their frameworks (Rajani et al.,
2022; McMillan-Major et al., 2022; R Menon and
Srivastava, 2024; Hua et al., 2023; d’Eon et al.,
2022; Sohoni et al., 2020; Eyuboglu et al., 2022).

Embeddings of text from neural networks en-
code information that can go beyond the label and
these interpretable features or subclasses are not
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Prompt
Linguistic
features

Embedding

Sentence-BERT (SBERT)

LLM generated linguistic features

Sentence Transfomer

Concatenated embeddings

LLMDataset

Last Hidden State

Language Model

Embeddings generated

A. Finetune model B. Generate embeddings for misclassified examples C. Cluster

Finetuned model

SBERT embedding of example

SBERT embedding of
linguistic features generated

K-Means

Forward pass on finetuned
models to retrieve the [CLS]
token

Figure 1: Overview of the methodology followed in the paper. A. Two Pretrained language models are finetuned on
offensive language datasets (one on English and one on Arabic). B. We take the misclassified examples and generate
embeddings to then cluster. We experiment with four types of embeddings: (1) Last Hidden State (LHS) are
generated by extracting the [CLS] token from the last layer of the finetuned models. (2) Sentence-BERT (SBERT)
are generated by running a sentence transformer model trained to generate semantically meaningful sentence
embeddings. (3) Linguistic features are generated by prompting an LLM to generate linguistic features for the
example, then the generated features are encoded using the same models as in embedding type 2. (4) Concatenated
embeddings are generated by concatenating the embeddings from 2 and 3. C. The final step is running K-Means
clustering on the generated embeddings.

always available with the dataset (Sohoni et al.,
2022). In this work, we experiment with four
types of embeddings of texts that were erroneously
classified by offensive language detection models.
Figure 1 summarizes the process used in this pa-
per. We evaluate the embedding approaches to
determine which leads to the most interpretable
clustering and analyze what information about the
underlying instances is represented by the embed-
dings. We find that for English, the two methods
of clustering text using Sentence-BERT (SBERT)
embeddings (Reimers and Gurevych, 2019) and
concatenating those embeddings to embeddings
of additional LLM-generated linguistic features
yield the most human-interpretable clusters. More-
over, the clusters are primarily based on the group
that was the target of the offensive language in the
text. For Arabic, we find that clustering text using
LLM-generated linguistic features yields the most
human-interpretable clustering.

2 Background

Ad-hoc approaches to understand model perfor-
mance for NLP classification tasks involve manu-

ally grouping the errors and giving each group/clus-
ter a label. The process of having humans provide
the label is laborious and subjective, leading to
results that are often not reproducible (Wu et al.,
2019).

Recent works that propose systematic error anal-
ysis frameworks for NLP classification tasks use
clustering algorithms like K-Means and hierarchi-
cal clustering to group misclassified instances in an
attempt to understand where the model underper-
forms (Rajani et al., 2022; McMillan-Major et al.,
2022; R Menon and Srivastava, 2024). Similarly,
popular Slice Detection Models (SDM)s are based
on Gaussian Mixture Models (a generalized version
of K-Means clustering) (Hua et al., 2023; d’Eon
et al., 2022; Sohoni et al., 2020; Eyuboglu et al.,
2022).

A popular vector representation used to clus-
ter the textual data points is the last hidden layer
of deep learning models, because it contains the
learned representation of the entire sequence of
tokens. When using pre-trained language models
based on the transformer architecture like BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) the final representation of their [CLS] token
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is commonly used. These vector representations
are used for understanding model performance in
error analysis tools and SDMs for NLP classifica-
tion tasks (Rajani et al., 2022; d’Eon et al., 2022;
Hua et al., 2023). Other works such as McMillan-
Major et al. (2022) use Sentence-BERT (SBERT)
embeddings as the representation of the data points.
SBERT embeddings (Reimers and Gurevych, 2019)
use Siamese network structures (Bromley et al.,
1993) to build a sequence-level text representation,
which shows improvements over previous state-of-
the-art sentence embedding methods on Semantic
Textual Similarity tasks.

Prior works focused on quantitative evaluation
of groups of embeddings with limited evaluation of
how the choice of embedding approach might im-
pact the final result (Rajani et al., 2022; McMillan-
Major et al., 2022; R Menon and Srivastava, 2024).
In this work we leverage two embedding types
that have been commonly used to perform error
analysis, last hidden state embeddings and SBERT
embeddings, to build representations of the mis-
classified examples. Moreover, we propose a new
method of representing errors which uses LLMs
to generate linguistic features present in the errors.
We evaluate the interpretability of the clusterings
and provide insights into the type information the
embeddings hold.

3 Data and Models

3.1 Datasets

The English dataset we use is the Measuring Hate
Speech (MHS) dataset (Kennedy et al., 2020). The
dataset originally contained 135,556 total annota-
tions of 39,565 texts (∼ 3.42 annotations per text),
including statements about 7 target groups (gender,
religion, sexuality, origin, race, age, and disability).
The dataset is sourced from Twitter (40%), Reddit
(40%), and YouTube comments (20%) and was an-
notated by 10,000 Amazon Mechanical Turk work-
ers. We converted the continuous hatespeech scores
to categorical labels using the ranges suggested by
the authors:3 examples with hate speech scores that
are lower than -1 are considered supportive, be-
tween -1 and 0.5 are neutral, and scores greater
than 0.5 are hatespeech. We remove duplicate
examples along with those that received fewer
than three total annotations, and we drop the neu-

3The ranges are listed on the HuggingFace Dataset card:
https://huggingface.co/datasets/ucberkeley-dlab/
measuring-hate-speech

tral class. After these steps, we were left with
12,289 examples with 7497 examples labeled as
supportive and 4792 labeled as hatespeech. We
use 85% of the dataset for fine-tuning and 15% for
testing.

The Arabic dataset we use is the Levantine Hate
Speech and ABusive (L-HSAB) dataset (Mulki
et al., 2019). The examples are in Levantine Ara-
bic and the original dataset has 5,846 instances,
which were all sourced from Twitter and annotated
by three native Levantine Arabic speakers. After
removing duplicates we were left with 5,754 exam-
ples. The dataset has three labels: normal (3576
examples), abusive (1713 examples), and hate
(465). We use 85% of the dataset for fine-tuning
and 15% for testing.

3.2 Classification Models

We finetune DistilBERT base uncased (Sanh et al.,
2020) on the English dataset using an NVIDIA
RTX A6000 GPU with a learning rate of 1e− 05
for 5 epochs. The model achieved an accuracy of
89.3%.

Since we are working with dialectal Arabic
rather than Modern Standard Arabic (MSA), we
finetuned MARBERT (Abdul-Mageed et al., 2021),
a language model pre-trained on dialectal Arabic.
We used the same hardware and hyperparameters as
stated previously. The model achieved an accuracy
of 87.9%.

We perform a forward pass on the models to
obtain the predictions on the test set and the last
hidden state embeddings from the classifiers. The
finetuning and inference took less than an hour
for both English and Arabic. To better understand
where the models underperform, we focus on the
misclassified examples (196 English examples and
106 Arabic examples).

4 Clustering Errors

4.1 Text Embeddings

We use KMeans++ from SKlearn4 to cluster the
errors. To determine the optimal number of clusters,
we plot the inertia against the number of clusters
and identify the elbow. We experiment with four
types of vector representations for the errors.

The first representation is the last hidden state
(LHS) from the classifiers we finetuned.

4https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html
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The second representation uses SBERT embed-
dings (Reimers and Gurevych, 2019). We use the
all-distilroberta-v1 model for English and
the distiluse-base-multilingual-cased-v1
model for Arabic. These models effectively bal-
ance size, speed, and performance.

The third representation is built by prompting
an LLM to extract linguistic features (using zero-
shot prompting) and uses the same SBERT models
mentioned above to convert the features to a vector
representation. The linguistic features add more
information that is not explicitly mentioned in the
text, which we hypothesize will help bring errors
with similar hidden features together. We use Mix-
tral 8x7b (Jiang et al., 2024) to extract features
of the English errors (temperature = 0.90). To
extract features of the Arabic errors, we use the
Command-R5 model (temperature = 0.80). We
opt to use open-weight, freely accessible LLMs
without automated guardrails that prevent genera-
tion of offensive content.

We use a 4-bit quantized version of Mixtral
8x7b because the full model is too large to run on
the available hardware. It took approximately 1.5
hours to generate all the features. For Command-R
we use Cohere’s trial API.6 Figure 2 displays an
example of linguistic features generated by Mix-
tral 8x7b and Command-R as well as the prompts
used (for the full linguistic features generated see
Table 4).

The last representation we experiment with is
concatenating the SBERT and linguistic feature
embeddings. We use the same embeddings gen-
erated from the second and third representations.
This approach includes a representation of the ac-
tual errors as well as the extra information the lin-
guistic features provide.

4.2 Evaluation

Our method for evaluating the clustering is inspired
by prior work on topic model evaluation (Chang
et al., 2009). In that work, the five most probable
words from a given topic t are presented to the
annotator, in addition to an “intruder”, which is a
word with low probability for topic t, but high prob-
ability for a different topic. The words are shuffled,
and the annotator is tasked with identifying the
intruder. If the intruder is correctly identified, it
implies that the topic is semantically coherent.

5https://cohere.com/command
6https://docs.cohere.com/reference/about

Representation Number of Clusters
English Arabic

LHS 8 7
SBERT 20 7
Features 16 7
Concatenated 21 9

Table 1: Number of clusters chosen for each
representation-language pair using the elbow method.

In our work, annotators were shown questions
that included four examples from a cluster and an
“intruder” example that did not belong to the cluster
and were asked to identify the intruder. To generate
these questions, we randomly pick four examples
from a cluster without replacement and then pick a
random intruder from a different randomly selected
cluster. Once an intruder is picked it is removed
from the list of potential intruders to be used in
future questions. We generate questions for all the
text representations we described previously for
both English and Arabic.

We recruited fluent speakers of English (2 Males,
9 Females, and 2 Non-binary; 8 ages 18-24 and 5
ages 25-34) and Levantine Arabic (3 Males and 4
Females; 2 ages 55-64, 2 ages 45-64, 1 age 34-44,
and 2 ages 18-24) to annotate. We did not provide
the annotators any additional details about the task
beyond what was written in the questions. Every
question was annotated three times in order to avoid
ties. Before beginning the annotation process, the
annotators were warned about potentially offensive
content and informed that they were free to stop
annotating at any point. Figure 3 and Figure 4 show
an example of a question for evaluating the English
and Arabic clustering respectively.

5 Results

5.1 Qualitative Analysis of Clusters

Table 1 shows the number of clusters we used for
each vector representation for Arabic and English.

In the case of LHS clustering, we notice that the
partitions are based on the (incorrectly) predicted
label for both English and Arabic. Table 3 summa-
rizes the percentage of data points with a predicted
label that matches the primary label found in their
cluster. We see that 96.59% of English and 91.43%
of Arabic data points have a label that matches the
majority predicted label in their cluster (per-cluster
predicted label distributions can be found in Fig-
ure 5 and Figure 6). The reason for this outcome is
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Mixtral-8x7b (English) Command-R (Arabic)
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t
M

od
el

 O
ut

pu
t

i thought Americans lived in the best cuntry in the world? wtf...

you are provided with an example from an offensive
language dataset. this example was misclassified by
a language model. the correct label is supportive
but the model classified it as hatespeech. your
task is to do a linguistic and stylistic analysis
to extract features from the example that may have
led to the misclassification. give your output like
this: <feature>: <explanation>.

Example:

Prompt:

اذا بري راس الافعى الطائفية شو خليت لأسود القلب ولجبران باسيل طالعين نازلين المسحيين…
If the head of the sectarian snake clears, what do you leave for the black-hearted people
and Gebran Bassil, coming out and attacking the Christians as well...

ية من المثال. المثال مكتوب بالغة تم تصنيف هذا المثال بشكل خاطئ بواسطة نموذج اللغة. مهمتك هي استخراج السمات اللغو
العامية

This example was misclassified by the language model. Your task is
to extract linguistic features from the example. The example is
written in colloquial language:

Example:

Prompt:

...
في هذا المثال، هناك استخدام واضح للغة عامية مثل كلمة \"بري\" و\"أسود القلب\"،...

بالإضافة إلى ذلك، قد يكون النموذج قد وجد صعوبة في فهم السياق العاطفي أو التحيز في النص...
لاً آخر، حيث أنها طويلة ومعقدة، ا، قد يكون طول الجملة عام أخيرً

...
...
In this example, there is clear use of slang such as “wild” and “blackhearted,”...
In addition, the model may have had a hard time understanding the emotional context or
bias in the text...
Finally, the length of the sentence may be another factor, as it is long and complex,
...

<Orthographic error>: The use of \"cuntry\" instead of \"country\"
....
<Contraction>: The use of \"wtf\" could potentially be seen as
an...
<Question form>: The sentence is structured as a question,
which...
<Punctuation>: The use of an ellipsis (\"...\") at the end of the...
<Comparison>: The statement \"Americans lived in the best
cuntry in the world\" ...

Figure 2: Example of LLM generated linguistic features.

The following are 5 examples from an offensive language
dataset. Only 4 out of the 5 examples were put into the same
group. Which example, do you think, belongs to a different
group?

1. @Kevin_Shipp Sodom and Gomorrah outcome unGodly people will
reap the whirlwind of their sins which is everlasting death

2. Your pastor commits fornication ,you people call it Pastor fell from
grace but when the congregants do it,you crucify them and brand them
fornicators .. #havesense #fanatics

3. 2 Thessalonians 1:8 In flaming  fire taking vengeance on them who do
not know God, those who do not Obey the Gospel of our Lord Jesus Christ.

4. God's curse on women was to make their childbirth painful. God's curse
on men was to make their g-spot up the ass, and make it a sin to use it.

5. If u trash talk about india i will rip ur throat out

Figure 3: Example of an English clustering evaluation
question, with the intruder highlighted in bold. Choices
1-4 are about religion and the last choice (the intruder)
is targeting a specific origin.

intuitive: since the LHS embeddings are extracted
from the finetuned classifier, we expected a repre-
sentation of the label to be embedded in the vector.
Moreover, we notice SBERT clustering of the En-
glish errors is based on the target group, which
we are able to verify because the target groups are
annotated in the dataset (refer to Figure 7 for the
target group distributions). We do not notice any
pattern in the Arabic SBERT clustering. Moreover,
for both languages, the clusterings of LLM gener-
ated linguistic features are not based on the target
group or predicted label.

5.2 Human interpretability of clusters

We use accuracy to evaluate the clustering and de-
fine it as the percentage of questions where the
majority of the annotators select the correct choice.
Table 2 shows the results of the human evaluation

The following are 5 examples from an offensive language
dataset. Only 4 out of the 5 examples were put into the same
group. Which example, do you think, belongs to a different
group?

لضتحروطابص .1

صخشنودجميونوحدمينيذلادصقبنانبليفلقعللاقونيرحشمريتكيفيادا .2
ينموههللانااوسنومحلنمقولخم …

مهيفومهنميدوهي .3

ريغصللاوريبكللااونحناةطلسلالىعنيعماقلابرعلاريمحلانمدحاولاو .4

هدحاوهلمعلناهجوناعقطرونيدمحلاونيطايشلابزحميركلايخأايقداص .5

Figure 4: Example of an Arabic clustering evaluation
question, with the intruder highlighted in bold. All
the choices aside from the intruder mention a certain
demographic. The first choice (the intruder) does not
mention a specific demographic, the second is about
Lebanese people, the third is referring to Jews, the forth
is targeting Arabs, and the last choice mentions sects in
Islam.

on the clustering task. Humans achieved above
baseline accuracy for all the text representations for
English. The best performance was on SBERT and
the concatenated embeddings, for which both ap-
proaches have human accuracy of 67.65%. We ex-
pected annotators to perform the best with SBERT
embeddings because the clustering was primarily
based on the targeted group in the text, which is
often easier to identify based on keywords in the
text. We find that using only the linguistic features
did not improve the evaluators’ performance.

Annotators were able to correctly identify the
intruder only 27.78% of the time with LHS em-
beddings; this is particularly meaningful as LHS
embeddings have been used in prior work on error
analysis, such as the SEAL system (Rajani et al.,
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Representation Accuracy
English Arabic

Baseline 20% 20%
LHS 27.8% 15.8%
SBERT 67.6% 12.5%
Features 34.3% 31.6%
Concatenated 67.6% 17.6%

Table 2: Evaluation results of clustering task.

Representation % with majority label
English Arabic

LHS 96.59% 91.43%
SBERT 65.76% 53.81%
Features 68.37% 50.51%
Concatenated 64.82% 51.61%

Table 3: Percentage of data points with a label that
matches the majority label of their cluster.

2022). Lastly, the evaluators had an accuracy of
34.39% when choosing the intruder for the linguis-
tic features clustering. We computed agreement
using Cohen’s Kappa (Cohen, 1960), and average
scores ranged from 0.176-0.538 (detailed agree-
ment results can be found in Table 5).

We use the same method to evaluate the Arabic
clusters. Out of the four text representation ap-
proaches tested, only clustering the features yielded
performance above the baseline (20%), with evalu-
ators correctly identifying the intruder 31.58% of
the time. A possible explanation for the improved
performance is that the linguistic features are in
MSA which is what the SBERT model is trained
on.

The clusters of Arabic SBERT embeddings were
the least human interpretable with accuracy of
12.5%, which indicates that SBERT embeddings us-
ing distiluse-base-multilingual-cased-v1
may not yield meaningful embeddings for this task.
There is a slight increase in performance with LHS
embeddings, where evaluators had an accuracy of
15.79%. Lastly, the addition of the linguistic fea-
tures slightly improved the clustering interpretabil-
ity over only clustering SBERT embeddings. The
accuracy of identifying the intruder with the con-
catenated embeddings was 17.65%. Average agree-
ment Kappa score ranged from 0.130-0.314 (de-
tailed agreement results can be found in Table 5).

6 Conclusion

Contextual embeddings are frequently used as a
vector representation of textual data when perform-
ing error analysis. In this work, we evaluate four
types of text representations of erroneously clas-
sified text in the context of offensive language in
English and Arabic. We find that SBERT cluster-
ing provides the most human-interpretable clus-
tering of English text, with each cluster focusing
mainly on one target group. For Arabic we find
that the SBERT embeddings of LLM generated fea-
tures give the most interpretable clustering and the
only approach to have above baseline performance.
We notice the clustering of LHS in both English
and Arabic is based on the predicted label. This
paper builds on a growing area of research in er-
ror analysis for offensive language detection and
provides insights into what information about the
errors is encoded in their representation. Future
work should explore other clustering algorithms
and the effects of them on the interpretability and
usefulness for error analysis, as well as automatic
methods to generate informative labels about the
clusters.

Limitations

We found that a major limitation when it came to
working with Arabic was the lack of language mod-
els pre-trained on dialectal Arabic. The SBERT
model we used as well as the LLM are only trained
on Modern Standard Arabic (MSA). Dialectal Ara-
bic is very different from MSA in the way words
are spelled, the way that sentences are structured,
and has a different lexicon. In addition, we experi-
ment on one dataset and one model per language.
The examples in the datasets are not representative
of all the types of offensive language for English or
Levantine Arabic. Moreover, human interpretabil-
ity is only one way to measure a clustering’s quality,
future work should explore other ways to evaluate
the choice of embedding for error analysis.

Ethical Considerations

This work aims to add to the ongoing research on
error analysis for NLP and offensive language de-
tection. We adhere to the intended usage guidelines
of the models and datasets set by the developers
of the models and datasets. In addition, annota-
tors were warned about potentially being subject
to offensive content and were informed they could
stop annotating at any point. No information that
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could potentially expose the identity of the annota-
tor was collected and they could opt out all of the
demographic questions if they wished.
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A Linguistic features example

Table 4 shows an example of LLM generated fea-
tures. The English features were generated by
Mixtral-7x8b and the Arabic features were gen-
erated by Command-R.

B Predicted label distributions

Figure 5 and Figure 6 show the predicted label dis-
tribution for each cluster. The LHS clustering for
Arabic (see Figure 6) and English (see Figure 6) is
primarily based on the predicted label. We do not
observe a similar distribution in the other cluster-
ings, every cluster has examples from every label.

C Target group distributions

Figures 7a to 7d show the percentage of each target
group per cluster. It is important to note that some
examples may belong to multiple target groups,
hence the total percentage for some of the clusters
is more than 1. In addition, no misclassified ex-
amples belonged to the disability target group,
hence it is not included in the figures.

We observe in the LHS clustering (see Figure 7a)
every cluster has examples from almost every target
group, whereas the distribution for SBERT cluster-
ing (see Figure 7b) shows there is a majority target
group per cluster. Figure 7c and Figure 7d shows
the target group distribution for linguistic features
clustering and concatenated embeddings clustering
respectively. Their distribution is more similar to
the SBERT distribution.

D Annotator agreement on clustering
task

Table 5 shows the average Cohen’s Kappa score
(annotator agreement) for the human evaluation of
the clustering.
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Example LLM generated features
i thought Americans lived in the
best cuntry in the world? wtf...

<Orthographic error>: The use of “cuntry” instead of ”country”
may have confused the model, as it is a non-standard spelling
that could be indicative of a variety of different tones or emotions,
including hate speech.
<Contraction>: The use of “wtf” could potentially be seen as
an informal and colloquial expression, which might be associated
with a more supportive tone rather than a hateful one.
<Question form>: The sentence is structured as a question, which
might be interpreted as seeking information or clarification rather
than expressing hate speech.
<Punctuation>: The use of an ellipsis (“...”) at the end of the
sentence could indicate a sense of uncertainty or confusion, which
is more in line with a supportive tone.
<Comparison>: The statement ”Americans lived in the best
cuntry in the world” could be seen as a positive comparison or
boast, rather than a derogatory statement towards any particular
group of people.
Overall, the combination of these features might have led the
model to misclassify the sentence as hate speech, when in fact it is
more likely to be supportive in tone.
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The text appears to contain slang and expletives, and its content
may be highly emotional, with references to sectarianism and
religious bias. These features may make it difficult for a linguistic
model to classify text correctly, as emotion and slang can be
difficult challenges for linguistic models to interpret and deal
with. In addition, sectarian content or religious bias may be very
sensitive and can also affect the model’s ability to accurately
understand context and classification.

Table 4: Example of linguistic features generated using LLMs.
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Figure 5: Predicted label distribution for English clusters.

Survey Average Kappa
English LHS 0.176
English SBERT 0.484
English linguistic features 0.232
English concatenated embeddings 0.538
Arabic LHS 0.199
Arabic SBERT 0.130
Arabic linguistic features 0.231
Arabic concatenated embeddings 0.314

Table 5: Cohen’s Kappa score between annotators on error intrusion task for evaluating the clustering.
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Figure 6: Predicted label distribution for Arabic clusters.
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Figure 7: Target group distribution for each embedding representation.
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Abstract

Recent advances in video-text retrieval (VTR)
have largely relied on supervised learning and
fine-tuning. In this paper, we introduce ELIOT,
a novel zero-shot VTR framework that lever-
ages off-the-shelf video captioners, large lan-
guage models (LLMs), and text retrieval meth-
ods—entirely without additional training or
annotated data. Due to the limited power of
captioning methods, the captions often miss
important content in the video, resulting in un-
satisfactory retrieval performance. To trans-
late more information into video captions, we
first generates initial captions for videos, then
enhances them using a relevance-boosted cap-
tioning strategy powered by LLMs, enriching
video descriptions with salient details. To fur-
ther emphasize key content, we propose struc-
tural information extraction, organizing visual
elements such as objects, events, and attributes
into structured templates, further boosting the
retrieval performance. Benefiting from the en-
riched captions and structuralized information,
extensive experiments on several video-text re-
trieval benchmarks demonstrate the superior-
ity of ELIOT over existing fine-tuned and pre-
training methods without any data. They also
show that the enriched captions capture key de-
tails from the video with minimal noise. Code
and data will be released to facilitate future
research.

1 Introduction

Video-text retrieval (VTR) (Luo et al., 2022; Gao
et al., 2021; Ma et al., 2022; Liu et al., 2022a; Zhao
et al., 2022; Gorti et al., 2022; Fang et al., 2022)
aims to retrieve the corresponding video or text
given the query in another modality. Recent years
have witnessed the rapid development of VTR with
the support from powerful pretraining models (Luo
et al., 2022; Gao et al., 2021; Ma et al., 2022; Liu
et al., 2022a), improved retrieval methods (Berta-
sius et al., 2021; Dong et al., 2019; Jin et al., 2021),

and video-language datasets construction (Xu et al.,
2016). However, it remains challenging to pre-
cisely match video and language due to the raw
data being in heterogeneous spaces and the use of
modality-specific encoders.

The most popular paradigm in VTR (Luo et al.,
2022; Ma et al., 2022; Liu et al., 2022b) firstly
learns a joint feature space across modalities and
then compares representations in this space. How-
ever, with the discrepancy between different modal-
ities and the design of modality-independent en-
coders, it is challenging to directly match repre-
sentations of different modalities generated from
different encoders (Liang et al., 2022). On the other
side, pioneering works (Wang et al., 2021, 2022e)
convert images into captions for better presentation
learning on image-language tasks, demonstrating
that captioners can mitigate modality discrepancy.

In this work, we propose ELIOT, a zero-
shot generative video-to-text retrieval framework.
ELIOT transforms raw videos into enriched gen-
erative identifiers by employing a distillation-
enhanced generative approach. Drawing from re-
cent advancements in identifier generation (e.g.,
titles, substrings, multiview representations) and in-
spired by distillation-enhanced generative retrieval
(DGR), our method incorporates the structural ben-
efits of multiview generative identifiers while ad-
dressing the challenges of modality alignment. Key
to our approach is a novel relevance-boosted cap-
tioning mechanism that generates comprehensive
textual descriptions for videos. This process en-
sures that important details such as objects, events,
and attributes are captured. To refine these cap-
tions, we employ a distilled generative identifier
extraction method, replacing traditional structural
extraction with a generative paradigm that encodes
semantic and contextual cues from videos into iden-
tifier representations. By distilling fine-grained
ranking knowledge from a teacher model into the
generative process, ELIOT enhances the quality of
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identifiers without additional training.
Finally, to evaluate the effectiveness of our pro-

posed zero-shot ELIOT, we conducted experi-
ments on three representative video-text bench-
marks (Chen and Dolan, 2011; Fabian Caba Heil-
bron and Niebles, 2015; Xu et al., 2016). Results
show that ELIOT outperforms previous methods,
including fine-tuning methods and few-shot meth-
ods benefiting from relevance-boosted captioning
and structural information extraction.

In summary, our contributions are as follows:

• We propose a real zero-shot video-text re-
trieval method without requiring any training
procedure or human-annotated data, only us-
ing the off-the-shelf captioning method, large
language models, and text retrieval methods.

• Our proposed ELIOT achieves SOTA perfor-
mance on several metrics across three VTR
benchmarks.

• Detailed analysis reveals the importance of
relevance-boosted captioning and vision mem-
ory mechanisms. We will open-source the
code and data to facilitate future research.

2 Related Work

Video-text retrieval, which involves cross-modal
alignment and abstract understanding of temporal
images (videos), has been a popular and fundamen-
tal task of language-grounding problems (Wang
et al., 2020a,b, 2021; Yu et al., 2023). Most of
the existing video-text retrieval frameworks (Yu
et al., 2017; Dong et al., 2019; Zhu and Yang,
2020; Miech et al., 2020; Gabeur et al., 2020; Dz-
abraev et al., 2021; Croitoru et al., 2021) focus
on learning powerful representations for video and
text and extracting separated representations. For
example, in Dong et al. (2019), videos and texts
are encoded using convolutional neural networks
and a bi-GRU (Schuster and Paliwal, 1997) while
mean pooling is employed to obtain multi-level
representations. MMT (Gabeur et al., 2020) uses
a cross-modal encoder to aggregate features ex-
tracted by temporal images, audio, and speech for
encoding videos. Following that, MDMMT (Dz-
abraev et al., 2021) further utilizes knowledge
learned from multi-domain datasets to improve per-
formance empirically. Further, MIL-NCE (Miech
et al., 2020) adopts Multiple Instance Learning
and Noise Contrastive Estimation, addressing the

problem of visually misaligned narrations from un-
curated videos.

Recently, with the success of self-supervised
pretraining methods (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020), vision-language
pretraining (Li et al., 2020b; Gan et al., 2020;
Singh et al., 2022) on large-scale unlabeled cross-
modal data has shown promising performance in
various tasks, e.g., image retrieval (Radford et al.,
2021), image captioning (Chan et al., 2023), and
video retrieval (Luo et al., 2022; Wang and Shi,
2023a). Recent works (Lei et al., 2021; Cheng
et al., 2021; Gao et al., 2021; Ma et al., 2022;
Park et al., 2022a; Wang et al., 2022b,d; Zhao
et al., 2022; Gorti et al., 2022) have attempted to
pretrain or fine-tune video-text retrieval models
in an end-to-end manner. CLIPBERT (Lei et al.,
2021; Bain et al., 2021), as a pioneer, proposes to
sparsely sample video clips for end-to-end train-
ing to obtain clip-level predictions and then sum-
marize them. Frozen in time (Bain et al., 2021)
uses end-to-end training on both image-text and
video-text pairs data by uniformly sampling video
frames. CLIP4Clip (Luo et al., 2022) finetunes
models and investigates three similarity calculation
approaches for video-sentence contrastive learn-
ing on CLIP (Radford et al., 2021). Further, TS2-
Net (Liu et al., 2022b) proposes a novel token shift
and selection transformer architecture that adjusts
the token sequence and selects informative tokens
in both temporal and spatial dimensions from input
video samples. While the mainstream of VTR mod-
els (Xue et al., 2023; Wu et al., 2023) focuses on
fine-tuning powerful image-text pre-trained mod-
els, on the other side, as a pioneer, (Tiong et al.,
2022; Wang et al., 2022e) propose to use large lan-
guage models (LLMs) for zero-shot video question
answering.

Zero-shot cross-modal retrieval. With the huge
success of pretrained visual-language model (Rad-
ford et al., 2021; Luo et al., 2022), zero-shot cross-
modal retrieval has attracted more and more re-
search interest recently. Due to the powerful rep-
resentation learning ability in image and text do-
mains, CLIP (Radford et al., 2021) achieves sat-
isfying zero-shot retrieval performance on sev-
eral representative image-text retrieval bench-
marks (Huiskes and Lew, 2008; Lin et al., 2014).
Inspired by this achievement, Liu et al. (2023a,b);
Chen et al. (2023c); Liu et al. (2024); Guo et al.
(2024) boost the performance of zero-shot image-
text retrieval by better representation learning meth-
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Figure 1: The illustration of our proposed ELIOT. ELIOT includes four steps. First, we generate video captions
for video using off-the-shelf video captioning methods. Second, to enrich the captions, we propose the relevance-
boosted caption-generation method using LLMs. Third, to emphasize the important information in the captions, we
propose a novel structural information extraction. Finally, after obtaining structured video captions, we employ
off-the-shelf text retrieval methods to perform zero-shot video-text retrieval.

ods. On the other side, benefiting from large-scale
video-text benchmarks (Xu et al., 2016; Chen and
Dolan, 2011; Fabian Caba Heilbron and Niebles,
2015), video-language pre-trained models (Wang
et al., 2022c; Chen et al., 2023a; Xu et al., 2023;
Chen et al., 2023c; Li et al., 2023a; Liu et al.,
2023c; Zhu et al., 2024) also achieve satisfying
zero-shot video-text retrieval results.

In this paper, inspired by these pioneering works,
to explore zero-shot video-text retrieval, we step
forward and propose a simple but effective zero-
shot video-text retrieval method, ELIOT, by utiliz-
ing off-the-shelf captioning, large language models,
and text retrieval methods.

3 ELIOT - Zero-Shot Video Text
Retrieval

In this section, we present the details of our pro-
posed method, ELIOT. Specifically, we first gener-
ate captions for videos using video caption gener-
ation methods. Then, to cover most of the details
in videos, with our proposed relevance-boosted
caption generation, we obtain a detailed caption
containing almost all the details. Finally, we pro-
pose the structural information extraction to em-
phasize important information in the captions for
better video-text retrieval performance. The whole
procedure and figure are summarized in Fig-
ure 1.

3.1 Step 1 - Video Caption Generation
Video captioning with off-the-shelf captioners.
Specifically, we employ Tewel et al. (2021, 2022)
to generate video captions and then use GPT-
2 (Radford et al., 2019) to enrich sentences using

the prompts, i.e., “Video presents”.

3.2 Step 2 - Relevance-Boosted Caption
Generation

We notice that the generated captions always miss
some important information, leading to unsatisfy-
ing retrieval performance. A simple solution to
this problem is to fine-tune the captioning models,
which will improve their caption-generation abili-
ties. However, this approach needs a huge amount
of annotated video-caption data and expensive com-
putation resources, and the fine-tuned models are
always not able to be transferred to other bench-
marks(Tang et al., 2021). To this end, we propose
the relevance-boosted caption generation, which
is training-free and generates detailed captions that
contain almost every detail of the video.

Specifically, we use large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023)
to conduct the relevance-boosted generation using
the following prompt template.

The following is a caption from a
video: [" + <Video Caption> + "].
Based on this caption, generate two
paraphrased captions capturing the
key information and main themes,
each of which should be in one
sentence with up to twenty words.
Meanwhile, please be creative, you
can have some imagination and add
the necessary details. Generated
sentences should be in the number
list. Also please generate text
without any comment.
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Our proposed method generates multiple cap-
tions (e.g., 1, 2, and 3). However, some of these
captions might introduce noise or lack strong rele-
vance to the video’s content. To mitigate potential
negative impacts, we apply a filtering method to
assess the semantic similarity between relevance-
boosted captions and the original video caption
by leveraging a pre-trained text encoder (Reimers
and Gurevych, 2019). Specifically, each video in
our dataset has two generated captions associated
with it. For the retrieval process, we concatenate
these captions for each video and then perform the
ranking.

3.3 Step 3 - Structural Information Extraction
To understand which kind of information is essen-
tial to VTR, we analyze the contextual text of video
captions by breaking down the video captions into
four different visual tokens using NLTK (Bird et al.,
2009), i.e., phrase, object, event, and attribute. Fi-
nally, we structure the information into the follow-
ing structure,

<Caption> <Phrases> <Attributes> <
Events> <Objects>

3.4 Step 4 - Video (Video Caption)-Text
Retrieval

Finally, after obtaining structured video caption
data, we are ready to perform the retrieval step.
Specifically, we compute the similarity score at the
video level between text and video caption using
off-the-shelf retrieval methods, i.e., BM25 (Robert-
son and Walker, 1994) and Sentence transform-
ers (Reimers and Gurevych, 2019).

4 Experiments

4.1 Benchmarks
• MSR-VTT (Xu et al., 2016) contains 10,000

videos with length varying from 10 to 32
seconds, each paired with about 20 human-
labeled captions. Following the evaluation
protocol from previous works (Yu et al., 2018;
Miech et al., 2019), we use the training-9k /
test 1k-A splits for training and testing respec-
tively.

• MSVD (Chen and Dolan, 2011) contains
1,970 videos with a split of 1200, 100, and
670 as the train, validation, and test set, re-
spectively. The duration of videos varies from

1 to 62 seconds. Each video is paired with 40
English captions.

• ActivityNet (Fabian Caba Heilbron and
Niebles, 2015) is consisted of 20,000 Youtube
videos with 100,000 densely annotated de-
scriptions. For a fair comparison, following
the previous setting (Luo et al., 2022; Gabeur
et al., 2020), we concatenate all captions to-
gether as a paragraph to perform a video-
paragraph retrieval task by concatenating all
the descriptions of a video. Performances are
reported on the “val1” split of the ActivityNet.

4.2 Baselines
To show the empirical efficiency of our ELIOT, we
compare it with fine-tuned models (LiteVL (Chen
et al., 2022), NCL (Park et al., 2022b), TA-
BLE (Chen et al., 2023b), VOP (Huang et al.,
2023), X-CLIP (Ma et al., 2022), DiscreteCode-
book (Liu et al., 2022a), TS2-Net (Liu et al.,
2022b), VCM (Cao et al., 2022), HiSE (Wang
et al., 2022b), CenterCLIP (Zhao et al., 2022),
X-Pool (Gorti et al., 2022), S3MA (Wang and
Shi, 2023b)), and MV-Apapter (Jin et al., 2024),
pre-trained methods (VLM (Xu et al., 2021a),
HERO (Li et al., 2020a), VideoCLIP (Xu et al.,
2021b), EvO (Shvetsova et al., 2022), OA-
Trans (Wang et al., 2022a), RaP (Wu et al., 2022),
OmniVL (Wang et al., 2022c), mPLUG-2 (Xu
et al., 2023), InternVL (Chen et al., 2023c), Lan-
gaugeBind (Zhu et al., 2024), UCOFIA (Wang
et al., 2023b), ProST (Li et al., 2023b), and
UATVR (Fang et al., 2023), ), and a few-shot
method, i.e., VidIL (Wang et al., 2022e).

4.3 Evaluation metric.
To evaluate the retrieval performance of our pro-
posed model, we use recall at Rank K (R@K,
higher is better), median rank (MdR, lower is bet-
ter), and mean rank (MnR, lower is better) as re-
trieval metrics, which are widely used in previous
retrieval works (Radford et al., 2021; Luo et al.,
2022; Ma et al., 2022).
Implementation details and related model de-
tails are defferd to Appendix A.

4.4 Quantitative Results
In this part, we present the qualitative results of
ELIOT on three VTR benchmarks.
MSR-VTT. We found that the contextual video text
obtained directly through video captioning meth-
ods generally have mediocre performance (R@1:
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Methods Venue
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Training-based
LiteVL-S EMNLP’2022 46.7 71.8 81.7 2.0 -
X-Pool CVPR’2022 46.9 72.8 82.2 2.0 14.3
CenterCLIP SIGIR’2022 44.2 71.6 82.1 2.0 15.1
TS2-Net ECCV’2022 47.0 74.5 83.8 2.0 13.0
X-CLIP ACM MM’2022 46.1 74.3 83.1 2.0 13.2
NCL EMNLP’2022 43.9 71.2 81.5 2.0 15.5
TABLE AAAI’2023 47.1 74.3 82.9 2.0 13.4
VOP CVPR’2023 44.6 69.9 80.3 2.0 16.3
DiscreteCodebook ACL’2022 43.4 72.3 81.2 - 14.8
VCM AAAI’2022 43.8 71.0 - 2.0 14.3
CenterCLIP SIGIR’2022 48.4 73.8 82.0 2.0 13.8
HiSE ACM MM’2022 45.0 72.7 81.3 2.0 -
TS2-Net ECCV’2022 49.4 75.6 85.3 2.0 13.5
S3MA EMNLP’2023 53.1 78.2 86.2 1.0 10.5
UCOFIA ICCV’2023 49.4 72.1 - - 12.9
ProST ICCV’2023 49.5 75.0 84.0 2.0 11.7
UATVR ICCV’2023 49.8 76.1 85.5 2.0 12.9
MV-Adapter CVPR’2024 46.2 73.2 82.7 - -

Zero-Shot (Pretrained Models)
VLM ACL’2021 28.1 55.5 67.4 4.0 -
HERO EMNLP’2021 16.8 43.3 57.7 - -
VideoCLIP EMNLP’2021 30.9 55.4 66.8 - -
EvO CVPR’2022 23.7 52.1 63.7 4.0 -
OA-Trans CVPR’2022 35.8 63.4 76.5 3.0 -
RaP EMNLP’2022 40.9 67.2 76.9 2.0 -
OmniVL NeurIPS’2022 34.6 58.4 66.6 - -
mPLUG-2 ICML’2023 48.3 75.0 83.2 - -
InternVL arXiv’2023 42.4 65.9 75.4 - -
LanguageBind ICLR’2024 42.6 65.4 75.5 - -

Few-Shot
VidIL NeurIPS’2022 40.8 65.2 - - -
Zero-Shot
ELIOT w/o paraphrase and visual tokens 20.3 40.9 51.7 9.0 60.3
ELIOT w/o visual tokens 54.0 73.9 80.2 1.0 24.5
ELIOT 58.2 75.8 83.5 1.0 18.9

Table 1: Text-to-Video retrieval results on MSR-VTT.
The best results are marked in bold. The second best
results are underlined.

Methods Venue
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MnR↓
MSVD

RaP EMNLP’22 35.9 64.3 73.7 -
LanguageBind ICLR’24 52.2 79.4 87.3 -
ELIOT 57.2 80.0 88.2 15.6

ActivityNet

LanguageBind ICLR’24 35.1 63.4 76.6 -
ELIOT 59.0 71.4 77.0 387.4

Table 2: Text-to-Video retrieval results on MSVD and
ActivityNet. The best results are marked in bold.

20.3) compared to other baseline Text-Video Re-
trieval method. We boosted each sentence and ex-
panded it into two sentences. From the results
presented in Table 1, it can be seen that this ap-
proach outperforms the second-best method by 9.9.
This indicates the significant impact of relevance
boosting and expanding captions on enhancing
the performance of Text-Video Retrieval systems.
Compared to DiscreteCodebook (Liu et al., 2022a),
which aligns modalities in an unsupervised man-
ner, ELIOT outperforms DiscreteCodebook on ev-
ery metric. Meanwhile, ELIOT also outperforms
VidIL (Wang et al., 2022e), which uses few-shot
prompting, demonstrating the usability of integrat-

Caption Phrase Object Event Attribute
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
✓ 54.0 73.9 80.2 1.0 24.5
✓ ✓ 57.4 76.2 83.0 1.0 19.3
✓ ✓ 56.9 77.5 83.8 1.0 18.6
✓ ✓ 54.2 73.2 79.6 1.0 24.9
✓ ✓ 55.0 74.2 80.2 1.0 24.1

✓ ✓ ✓ 57.4 76.2 83.5 1.0 18.7
✓ ✓ ✓ 57.3 76.3 82.6 1.0 19.8
✓ ✓ ✓ 57.6 76.3 83.5 1.0 19.1
✓ ✓ ✓ 56.9 76.6 83.2 1.0 19.3
✓ ✓ ✓ 57.6 77.4 83.8 1.0 18.2
✓ ✓ ✓ 54.0 73.3 79.6 1.0 24.9

✓ ✓ ✓ ✓ 58.0 75.9 83.7 1.0 19.3
✓ ✓ ✓ ✓ 57.8 76.3 84.1 1.0 18.3
✓ ✓ ✓ ✓ 57.8 76.0 82.5 1.0 19.5
✓ ✓ ✓ ✓ 57.3 76.7 83.2 1.0 18.9

✓ ✓ ✓ ✓ ✓ 58.2 75.8 83.5 1.0 18.9

Table 3: Retrieval performance with different combi-
nations of four visual tokens (Phrase, Object, Event,
Attribute) on MSR-VTT using ELIOT. Best in Bold.

Order List
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Order List 1 58.2 75.8 83.5 1.0 18.9
Order List 2 57.9 75.9 83.4 1.0 18.7
Order List 3 58.0 75.7 83.2 1.0 19.1

Table 4: Retrieval performance with different order of
four visual tokens (Phrase, Object, Event, Attribute) on
MSR-VTT using ELIOT. Best in Bold.

ing zero-shot LLM on text-to-video retrieval. This
suggests that leveraging zero-shot on LLMs is a
promising approach to enhance text-to-video re-
trieval performance.

MSVD and ActivityNet. The results on MSVD
and ActicityNet are shown in Table 2. ELIOT
achieves the best R@1 on text-to-video retrieval on
two datasets compared to the previous methods.

4.5 Ablation Studies

In this part, we present a series of ablation experi-
ments on MSR-VTT to better understand the effec-
tiveness of different components of ELIOT, using
LLaMA2-7b-chat-hf and BM25.
Impact of combination of structural information
(visual tokens). To choose the best combination
method for the extracted visual tokens (phrases,
attributes, objects, and events), we conduct experi-
ments using different arrangements of these visual
tokens, as shown in Table 3. By reducing the inclu-
sion of visual tokens, the retrieval performance of
ELIOT decreases, thereby proving the usefulness
of integrating these four visual tokens together.
The order of different structural information.
Another important factor to consider is the order
of these visual tokens. To this end, we systemat-
ically evaluate which specific order of <phrase>,
<object>, <attribute>, and <event> maximizes the
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efficiency and accuracy of the retrieval process.
The results are shown in Table 4. We discover that
among various arrangements, the model performs
best when either phrases or objects are placed at
the end of the sequence. This superior performance
might be due to the detailed and specific informa-
tion that phrases and objects offer, enhancing the
model’s ability to accurately match and retrieve
relevant video content.

5 Conclusion

In this paper, we present an innovative zero-shot
framework, ELIOT, which revolutionizes video-
text retrieval by capitalizing on existing captioning
methods, large language models (LLMs), and text
retrieval techniques. By sidestepping the need for
model training or fine-tuning, our framework of-
fers a streamlined approach to retrieval. To over-
come the shortcomings of traditional captioning
methods, we propose a groundbreaking relevance-
boosted caption generation technique that incor-
porates LLMs’ generated information into video
captions. Moreover, our introduction of structural
information extraction further enhances retrieval
performance by highlighting key visual tokens.
Through extensive experimentation across diverse
benchmarks, we demonstrate the superior efficacy
of ELIOT compared to conventional fine-tuned
and pretraining methods, even in the absence of
training data.

Limitations

In the future, it would be interesting to explore
more detailed methods for zero-shot video-text re-
trieval, such as incorporating the audio modality
and corresponding off-the-shelf foundation models.
Moreover, as a pioneering work, our work mainly
focuses on establishing the paradigm. It would
be great if we could explore more text retrieval
methods, video captioning methods, and LLMs for
relevance-boosted caption generation.
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A Implementation Details

For video caption generation, we use Tewel et al.
(2021, 2022) to generate video captions and GPT-
2 (Radford et al., 2019) to enrich sentences. For
relevance-boosted caption generation, we employ
LLaMA2-7b-chat-hf (Touvron et al., 2023) and get
two boosted captions. For structural information
extraction, we use NLTK (Bird et al., 2009). For
text retrieval, we use BM25 (Robertson and Walker,
1994).

We use GPT2 (Radford et al., 2019) for sen-
tence enrichment during video caption generation.
GPT-2 (Radford et al., 2019), developed by Ope-
nAI, is a large-scale transformer-based language
model renowned for its ability to generate coher-
ent and contextually relevant text. With 1.5 billion
parameters, GPT-2 can be fine-tuned for a variety
of natural language processing tasks, such as text
generation, summarization, and captioning. In our
task, we enrich image captions with GPT-2 with
one NVIDIA A100 GPU using around 20 hours.

We use Llama (Touvron et al., 2023)(version:
Llama-2-7b-chat-hf) to conduct the relevance-
boosted caption generation task, inspired by (Liu
et al., 2021; Wang et al., 2023a, 2024). Llama
(Touvron et al., 2023) is an advanced language
model with approximately 65 billion parameters.
Its default backend is designed for efficiency and
scalability. The computational budget for LlaMA
in our task is approximately 23 hours with one
NVIDIA A100 GPU. Its ability to understand con-
text, generate coherent and contextually relevant
responses, and perform a wide range of language-
related tasks is significantly enhanced. LlaMA is
a powerful and accessible tool, widely used in var-
ious applications. Therefore, it is included as an
advanced baseline.
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Abstract

Crosswalks, which map one classification sys-
tem to another, are critical tools for harmo-
nizing data across time, countries, or frame-
works. However, constructing crosswalks is
labor-intensive and often requires domain ex-
pertise. This paper investigates the potential
of Large Language Models (LLMs) to assist in
creating crosswalks, focusing on two Danish
occupational classification systems from differ-
ent time periods as a case study. We propose
a two-stage, prompt-based framework for this
task, where LLMs perform similarity assess-
ments between classification codes and identify
final mappings through a guided decision pro-
cess. Using four instruction-tuned LLMs and
comparing them against an embedding-based
baseline, we evaluate the performance of dif-
ferent models in crosswalks. Our results high-
light the strengths of LLMs in crosswalk cre-
ation compared to the embedding-based base-
line, showing the effectiveness of the interac-
tive prompt-based framework for conducting
crosswalks by LLMs. Furthermore, we analyze
the impact of model combinations across two
interactive rounds, highlighting the importance
of model selection and consistency. This work
contributes to the growing field of NLP applica-
tions for domain-specific knowledge mapping
and demonstrates the potential of LLMs in ad-
vancing crosswalk methodologies.

1 Introduction

Crosswalks are structured mappings that connect
one classification system to another, enabling data
to be compared or integrated across different con-
texts. These mappings are essential in numerous
domains, from harmonizing occupational codes
across time or countries (Rémen et al., 2018) to
aligning taxonomies in biology (Cheng et al., 2017)
or mapping educational milestones between frame-
works (Subramaniam et al., 2013). While the con-
texts vary, the underlying challenge remains the

Overordnet offentlig ledelse
(Overall public management)
Ledelse af politiske partiorganisationer
(Management of political party organizations)
Ansatte ledere i økonomiske interesseorganisationer
(Employed managers in economic interest organizations)
Tværgående direktører
(Cross-functional directors)
…

Øverste ledelse i lovgivende myndigheder
(Top management in legislative authorities)
Øverste ledelse i offentlige virksomheder 
(Top management in public companies)
Øverste ledelse i interesseorganisationer
(Top management in interest organizations)
Øverste administrerende virksomhedsledelse
(Top executive management of companies)
…

Codebook A (from DISCO_LOEN88):

Codebook B (from DISCO_LOEN08):

Traditional human coding: Manual 
checks between codebook A and B 

Can LLMs do the job? How well?

Figure 1: An example of crosswalks between two code-
books from the Danish occupation data. Translations
are in commas. Traditionally, crosswalks are created
manually by humans. Can LLMs assist in this process?

same: translating between systems that often reflect
different conceptual frameworks, levels of granu-
larity, or terminologies.

In the context of occupational classifications, for
instance, crosswalks allow researchers to analyze
labor market trends across time or national bound-
aries despite differences in coding systems. Figure
1 gives an example of crosswalks based on Danish
occupation data. However, creating these mappings
is a complex and labor-intensive process (Rémen
et al., 2018). Large Language Models (LLMs) offer
a promising avenue for addressing this challenge.
Yet, their use in creating crosswalks raises essential
questions: How can LLMs reliably infer mappings
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between systems with limited contextual overlap?
What are the best strategies for prompting LLMs to
elicit meaningful, interpretable outputs? And how
do we ensure that the outputs of LLMs align with
domain-specific requirements while remaining ac-
cessible to human users?

This paper explores the potential of LLMs to
assist in creating crosswalks, using Danish occupa-
tional classifications from two different time points
as a case study (Statistics Denmark, 2025b,a). Our
aim is not to fully automate crosswalk creation
but to develop an assisted workflow that combines
the efficiency of LLMs with the judgment of hu-
man experts. Using a curated two-round judgment
framework, we compare the performance of differ-
ent LLMs to evaluate their strengths and limitations
in supporting this task. Our empirical findings in-
dicate that, despite certain limitations, the interac-
tive LLM-based crosswalking process outperforms
an embedding-based baseline. Through this work,
we contribute to the growing field of NLP appli-
cations in social science research, showing how
LLMs can be effectively integrated into complex
domain-specific knowledge-mapping tasks.

2 Background

Much of the work at the intersection of NLP and
Computational Social Science (CSS) focuses on
labeling texts from social science domains to sys-
tematically analyze patterns, opinions, or topics
(Chae and Davidson, 2023; Ziems et al., 2024). Oc-
cupational coding, a critical task in labor market
research and social science, is an excellent use case
to explore if and how large language models can
enhance methodological approaches in these fields
(Liu et al., 2022; Safikhani et al., 2023; Laughlin
et al., 2024; Kononykhina et al., 2025).

Occupational codes are standardized labels as-
signed to jobs based on their duties, responsibil-
ities, and required skills. However, occupational
coding is a particularly complicated task because
job descriptions can be context-dependent, and of-
ten ambiguous (Schierholz and Schonlau, 2020).
Adding to this complexity, different countries and
time periods often use distinct occupational classifi-
cation schemes, each tailored to specific economic,
social, or policy contexts. For instance, the Interna-
tional Standard Classification of Occupations (ILO,
2025) may differ significantly from national sys-
tems like the U.S. Standard Occupational Classifi-
cation (BLS, 2025), necessitating the development

of crosswalks to translate codes from one system
to another. Crosswalks like the one by (Rémen
et al., 2018) establish equivalencies between two
occupational classification schemes allowing data
coded in one system or country (US vs. Canada) to
be translated into another. This process is essential
for enabling international comparisons, historical
analyses, and the integration of datasets that rely
on different coding standards.

These crosswalks are typically created manually
by domain experts who possess deep knowledge
of the classification schemes in question. For ex-
ample, Humlum (2021) developed a detailed cross-
walk for Denmark’s DISCO classifications. While
such manually created crosswalks are highly ac-
curate and tailored to specific needs, they are also
exceptionally time-intensive and resource-intensive
to produce, as they require establishing mappings
between several hundred codes in each classifica-
tion scheme. Therefore, there is growing interest in
exploring whether LLMs can assist in the creation
of crosswalks. Similar efforts have been made in
other domains, such as healthcare and biomedical
research, where tools like MapperGPT use large
language models to refine and align entity map-
pings (Matentzoglu et al., 2023).

3 Method

We propose a two-round prompt-based framework
to conduct the crosswalks for the occupation codes.
The basic idea of the crosswalk is to find the possi-
ble matching code from codebook B for every code
in codebook A. Figure 2 illustrates the basic work-
flow of our framework. The first round is about
prompting the models to do similarity checks with
certain degrees across all codes in both codebooks.
Based on the results from the first round, the second
round is about selecting the final candidate match-
ing code from another codebook. This search is
done for every code in one of the codebooks. The
workflow is detailed as follows:

Round 1: Similarity Check across Codes. We
begin with two codebooks (A and B) to work on,
where codebook A contains a codeset of unique
code names (Code A 1, Code A 2, ...), and code-
book B contains a codeset of unique code names
(Code B 1, Code B 2, ...). The task of the cross-
walk is to map the codes from A to the codes from
B. Therefore, in the initial step, we construct code
pairs for each code from codebook A to every code
from codebook B.
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Code A 1
Code A 2
Code A 3

…

How similar do you think these two 
occupational classification codes?

Code from Codebook A: Code A 1
Code from Codebook B: Code B 1

Options:
A: Extremely similar
B: Very similar
C: Moderately similar
D: Slightly similar
E: Not similar at all 

Preparing two codebooks

Code B 1
Code B 2
Code B 3

…

Codebook A

CodeB 1 CodeB 2 CodeB 3

CodeA 1 A A D

CodeA 2 C E B

CodeA 3 D A BCodebook B

Constructing mapped code pairs

Codebook A Codebook B

Prompting the model with similarity options 

A: 
Extremely 
similar

Extracting model output Results for all code pairs

CodeB 1 CodeB 2 CodeB 3

CodeA 1 A A D

CodeA 2 C E B

CodeA 3 D A B

Selecting candidate codes

For the given source occupation code, 
please select one matching occupation 
from the given candidate occupation 
codes.

Source Occupation Code: Code A 1

Candidate Occupation Code(s): 

A: CodeB 1
B: CodeB 2
 

Prompting the model for candidate selection 

A: 
CodeB 1

Extracting model output

Round 1: Similarity Check Across Codes

Round 2: Candidate Code Selection

Code A 1 Code B 1

Code A 2 Code B 3

Code A 3 Code B 2

… …

Figure 2: Our two-round prompt-based framework to conduct the crosswalks for the occupation codes using
zero-shot LLM prompting.

For each code pair, we prompt the LLM with a
question asking for the similarity and options in-
dicating different similarity polarities at 5 scales
(from A to E indicating extremely similar towards
not similar at all). This scale is commonly used for
survey questionnaires, due to its structured design,
which presents respondents with predefined answer
options, reducing ambiguity and ensuring consis-
tency in responses; as well as its format, which
facilitates faster decision-making by guiding par-
ticipants through a clear set of choices, minimizing
cognitive load and improving response accuracy
(Likert, 1932; Groves, 2011). This setup has also
been recently increasingly introduced in LLM eval-
uation, to assess the opinions, knowledge, and be-
haviors embedded in LLM models (e.g., Hendrycks
et al., 2021b,a; Huang et al., 2023; Santurkar et al.,
2023; Sravanthi et al., 2024; Ma et al., 2024, 2025).

The response of the LLM is then extracted using
a string matching method using RegEx to map the
responses to the 5 scale points. After all code pairs
have been evaluated, we save the results in a table
representing the similarities between the codes in
matrix format.

Round 2: Candidate Code Selection. With the
similarity results for all code pairs collected from
the first round, the task of the second round is to
find one final code partner for each code of code-
book A. As the results from the first round are
distributed across the five scale points A-E, we se-

lect the potential code matches by taking the codes
rated with "A. Extremely similar" or "B. Very sim-
ilar" to be the candidates for final selection. In
case there are no A or B results, we consider that
this source code does not have a matching code in
codebook B.

We then prompt the LLM with the source code
from codebook A and the candidate codes from
codebook B (i.e., those that have a similarity result
of "Extremely similar" or "Very similar"). We ask
the LLM to select the code from the candidate
codes B that matches A best, and extract the model
output. In the end, we construct the final codebook
for the mapped code pairs.

4 Experimental Setups

Data - The Danish Occupation Codes. We use
the 6-digit, level 5 granularity of DISCO-LOEN1

88 and 08 from Statistics Denmark as codebook A
and B respectively to test our framework. It is stan-
dard practice for crosswalks to be produced at the
most granular level of a hierarchical code system
to utilize the specificity of description. Mapping
code pairs at lower levels of granularities can be
aggregated to produce associations between codes
in higher-level granularities (e.g. level 5 to level 4),
but the reverse is not true.

1https://www.dst.dk/da/Statistik/
dokumentation/nomenklaturer/disco-loen
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Round 1

How similar do you think these two occupational classification codes are in terms of tasks,
skills, and responsibilities? Please respond with only the option letter out of "A", "B", "C",

"D", or "E".

Code1: {code1}

Code2: {code2}

Options:
A Extremely similar
B Very similar
C Moderately similar
D Slightly similar
E Not similar at all

Round 2

Below are a source occupation title (Occupation 1) and a number of potential matching occupation
titles (Occupation 2).

For the given source occupation title, please select one matching occupation from the given
Occupation 2 options.

Please select only one occupation option from Occupation 2, corresponding to the most similar
matching occupation based on tasks, skills, and responsibilities.

Please only return the option letter of the selected match (A, B, C, ...) and don’t say any
other extra thing.

Source Occupation Title (Occupation 1): {code1}

Potential Matching Occupation Title(s) (Occupation 2): {options}

Figure 3: Prompts for the 2 rounds.

Ground-Truth Data. There are existing at-
tempts at generating crosswalks between them
for comparison. This includes a partial Many-
to-1 crosswalk published by Statistics Denmark.
The latter contains 332 code pairs linking DISCO-
LOEN88 codes to 332 DISCO-LOEN08 code
deemed equivalent by Statistics Denmark. Notably,
as shown in Table 1, this crosswalk does not pro-
vide correspondences for all 570 and 559 level 5
codes in each codebook, leaving researchers to de-
velop their own correspondences for the remaining
codes, as conducted by Humlum (2021).

Version 88 Version 08 Mapped Code Pairs

Count 570 559 332

Table 1: Summary of counts of the unique occupation
codes in the codebooks and in the code mapping. Ver-
sion 88 denotes the DISCO-LOEN88 codes and version
08 the DISCO-LOEN08 codes.

We use the partial Statistics Denmark crosswalk
as ground truth mapping code pairs to evaluate
the performance of our framework. Under our
framework, every pairwise combination of codes

from codebook A and B are potential mapping code
pairs.

Models. We choose four instruction-tuned open-
weight LLMs for conducting the experiments:
Llama-3.1 8B (AI@Meta, 2024), Mistral 7B (Jiang
et al., 2023), Gemma-2 9B (Team, 2024a), Qwen-
2.5 7B (Team, 2024b).

Prompt Design. We design the prompt based on
similar instructions and options given to the human
participants in real surveys. The prompts used for
the two rounds are presented in Figure 3.

Baseline. We compare our LLM-based frame-
work to the approach using embeddings to find
the most similar code for the given code, as
applied in Liu et al. (2022) and Kononykhina
et al. (2025). Since the data is in Danish, we
use the multilingual version of the sentence
transformers (Reimers and Gurevych, 2020).
Specifically, we use the model for paraphrasing
(paraphrase-multilingual-MiniLM-L12-v2).
The basic workflow is this: For each code in the
source code, it calculates the cosine similarity of
the embeddings of the source code and every target

395



code; the target code with the highest similarity
score to the source code is then selected as the
mapped code for the target code.

Evaluation Metrics. We use the weighted F1
score to evaluate the model performance of our
approach compared to the baseline. Further, as
we apply different LLMs in our framework, we
are also interested in how those models agree with
each other while doing the crosswalks. Therefore,
in further analysis, we calculate the inter-annotator
agreement metric Cohen’s Kappa (κ) to investigate
the agreement between different LLMs.

5 Results

Main Results. Table 2 presents the main results
of our framework applied to four LLMs and the
embedding model baseline. Among the models
evaluated, Qwen2.5 achieved the highest F1 score
of 70.01%, indicating its strong ability to identify
correct crosswalk mappings. This suggests that
Qwen2.5 is particularly effective at capturing the
semantic relationships between occupational codes
in the Danish context. Gemma2 and Llama3.1 also
demonstrated solid performance, with F1 scores of
67.35% and 61.25%, respectively, reflecting their
capability for the task.

Baseline Gemma2 Llama3.1 Mistral Qwen2.5

F1 57.12 67.35 61.25 40.58 70.01

Table 2: Main results of model performance in F1 (%)
compared to the baseline.

Mistral, however, achieved an F1 score of only
40.58%, showing limited effectiveness in this spe-
cific application. This result may reflect differ-
ences in the architecture or training data of the
model, which could make it less suited for nuanced
crosswalk mapping tasks in Danish. The multi-
lingual embedding model baseline attained an F1
score of 57.12%, performing better than Mistral
but falling short of the other three instruction-tuned
LLMs. These results highlight the advantages
of instruction-tuned models for complex seman-
tic tasks compared to traditional embedding-based
methods.

Agreement Analysis. We next analyze the agree-
ment between the four LLMs based on their final
outputs. Figure 4 presents the heatmap of Cohen’s
Kappa scores, which measure the level of agree-
ment between each model pair. Overall, the models

exhibit relatively low agreement, with all Kappa
scores falling below 60%. The Qwen2.5 model
shows the highest agreement with the other models,
which can be attributed to its better performance,
as indicated by the results in Table 2. In contrast,
the Mistral model shows more variability in their
outputs, which is reflected in their lower Kappa
scores.
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Figure 4: Kappa scores between models.

The Effect of Different Models in Two Rounds.
Our framework operates in two rounds, where the
results presented earlier assume that the same LLM
is queried in both rounds. However, since the mod-
els are used independently in each round, we now
investigate whether varying the models between
rounds affects overall performance. Specifically,
we explore whether swapping models leads to any
significant changes in the results. The results, as
shown in Figure 5, present the performance of dif-
ferent model combinations.

Gemma-2 Llama-3.1 Mistral Qwen-2.5
Round 2 Model
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Figure 5: F1 results for experiments with different mod-
els in two rounds. X-axis: Round 1 models, Y-axis:
Round 2 models.

396



Overall, the diagonal values in the table repre-
sent scenarios where the same model is used in
both rounds, corresponding to the main results.
These values generally indicate the highest or near-
highest performance across rows and columns, sug-
gesting that maintaining model consistency benefits
performance. An exception is observed with Mis-
tral, where using the same model in both rounds
results in the worst performance. This reinforces
Mistral’s overall weaker effectiveness in the task,
indicating that its predictions do not improve even
when it has access to its own prior outputs.

Among the evaluated models, Qwen2.5 con-
sistently outperforms others across different pair-
ings, highlighting its robustness in identifying cor-
rect crosswalk mappings. Its closest competitor,
Gemma2, also shows strong performance, particu-
larly when paired with itself or with Qwen2.5. In
contrast, Llama3.1 exhibits moderate performance,
benefiting from combinations with stronger models
but falling short of top-tier results.

These findings suggest that performance is op-
timized when stronger models like Qwen2.5 and
Gemma2 are used consistently. Swapping models,
especially involving Mistral, tends to reduce ef-
fectiveness, highlighting the importance of model
selection.

6 Discussion & Conclusion

The results of this study demonstrate the potential
of LLMs to assist in creating crosswalks for occu-
pational classifications. Our findings highlight the
advantages of instruction-tuned LLMs in handling
semantic complexity and improving efficiency com-
pared to traditional embedding-based approaches.
Models like Qwen2.5 showed strong performance
in aligning Danish occupational codes, emphasiz-
ing the value of instruction tuning and contextual
understanding in these tasks.

However, the relatively low inter-model agree-
ment underscores the variability in outputs across
different LLMs, pointing to the importance of
model selection and parameter tuning. This vari-
ability also highlights the need for integrating hu-
man expertise into the workflow to validate and
refine LLM-generated mappings. The interac-
tive, prompt-based framework we proposed aligns
with the concept of human-in-the-loop workflows,
where LLMs augment rather than replace expert
judgment.

Additionally, our findings highlight the advan-

tages of maintaining model consistency across
rounds, especially for strong models like Qwen2.5.
Swapping models, particularly when involving
weaker ones like Mistral, leads to diminished re-
sults, emphasizing the need for robust and consis-
tent modeling strategies.

Our findings also resonate with similar efforts
in other domains, such as MapperGPT, which re-
fines entity mappings in fields like healthcare and
biomedical research (Matentzoglu et al., 2023).
These parallels reinforce the versatility of LLMs
in supporting knowledge-mapping tasks across di-
verse contexts, though domain-specific adaptations
remain critical for success. Future work could ex-
plore how our two-step prompting framework can
be extended beyond occupational classifications to
other classification mapping tasks in fields such
as finance, education, and public administration,
where structured yet flexible mappings are essential
for accurate data integration and interoperability.

7 Limitations

Despite the promising results, this study has several
limitations. First, the reliance on Danish occupa-
tional codes limits the generalizability of our find-
ings to other languages and classification systems.
Future studies should investigate the performance
of LLMs on crosswalks involving additional lan-
guages and classification schemes, such as ISCO
and SOC.

Second, the use of multiple-choice questions to
evaluate LLMs may introduce biases inherent to
this format, such as response tendencies (Li et al.,
2024; Pezeshkpour and Hruschka, 2024; Wang
et al., 2024). Further exploration of alternative eval-
uation frameworks, such as open-ended prompting
or pairwise ranking, could provide more robust
insights into LLM performance.

8 Ethical Considerations

The use of LLMs for creating crosswalks must
consider potential biases (e.g., regarding gender)
in the models, which could lead to inaccurate or
inequitable mappings, especially for underrepre-
sented groups (Touileb et al., 2023; Nghiem et al.,
2024; Sancheti et al., 2024). Ensuring human over-
sight is crucial to validate and refine LLM outputs,
preventing the propagation of errors that may im-
pact labor market analyses or policy decisions.
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Abstract
To improve the performance of sentence pair
modeling tasks, we propose an additional pre-
training method, also known as transfer fine-
tuning, for pre-trained masked language mod-
els. Pre-training for masked language modeling
is not necessarily designed to bring semanti-
cally similar sentences closer together in the
embedding space. Our proposed method aims
to improve the performance of sentence pair
modeling by applying contrastive learning to
pre-trained masked language models, in which
sentence embeddings of paraphrase pairs are
made similar to each other. While natural lan-
guage inference corpora, which are standard
in previous studies on contrastive learning, are
not available on a large-scale for non-English
languages, our method can construct a train-
ing corpus for contrastive learning from a raw
corpus and a paraphrase dictionary at a low
cost. Experimental results on four sentence
pair modeling tasks revealed the effectiveness
of our method in both English and Japanese.

1 Introduction

Sentence pair modeling (Lan and Xu, 2018), which
estimates the relationship between two texts, is an
important technique for various natural language
processing tasks, from semantic textual similar-
ity estimation (Cer et al., 2017) and recognizing
textual entailment (Bowman et al., 2015) to in-
formation retrieval (Wang et al., 2024) and ques-
tion answering (Zhang et al., 2023). For sen-
tence pair modeling tasks, surface matching such
as bag-of-words and word embeddings such as
word2vec (Mikolov et al., 2013) have traditionally
been used, followed by task-specific neural net-
works (He and Lin, 2016; Chen et al., 2017), and
recently fine-tuning pre-trained masked language
models such as BERT (Devlin et al., 2019) has
become the de facto standard. However, training
in masked language modeling does not necessarily
bring semantically similar sentences closer together

in the embedding space (Li et al., 2020). Therefore,
to maximize the effectiveness of fine-tuning for
sentence pair modeling tasks, it is useful to follow
the pre-training of masked language modeling with
additional pre-training to estimate the semantic re-
lationships between texts, also known as transfer
fine-tuning (Arase and Tsujii, 2019).

One such method recently been attracting atten-
tion is contrastive learning. Contrastive learning
for sentence embeddings, like SimCSE (Gao et al.,
2021; Chuang et al., 2022; Liu et al., 2023), uses
annotated corpora of natural language inference
(NLI) to bring embeddings of entailing and en-
tailed sentences closer together and to separate
embeddings of contradictory sentence pairs. How-
ever, while NLI corpora with hundreds of thou-
sands of sentence pairs, such as Stanford NLI
(SNLI) (Bowman et al., 2015) and Multi-Genre
NLI (MNLI) (Williams et al., 2018), are available
for English, there are no large-scale NLI corpora
for other languages, making it difficult to obtain
high-quality sentence embeddings by contrastive
learning for languages other than English.

To improve the performance of sentence pair
modeling in various languages, we propose a
method of contrastive learning that does not rely on
the NLI corpus. Our method uses a raw corpus and
a paraphrase dictionary to automatically generate
a large-scale training corpus for contrastive learn-
ing at a low cost. Since paraphrase dictionaries
are available in many languages,1 this method is
widely applicable.

Experimental results in English and Japanese re-
vealed that the proposed method could improve
the performance of the masked language mod-
els in four types of sentence pair modeling tasks
(product retrieval, similarity estimation, recogniz-
ing textual entailment, and paraphrase identifi-

1For example, the Multilingual PPDB (Ganitkevitch and
Callison-Burch, 2014) collects millions to hundreds of mil-
lions of paraphrase pairs in 23 languages.
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Perplexity↓Paraphrase candidates

23.6The store provides a wide range …

30.2The store offers a broad range …

33.5… range of of goods and accessories.

21.4… range of goods and accessories.

(1) Dictionary-based paraphrase (2) Filtering candidates by perplexity

Paraphrase dictionary
p(dst|src)dstsrc

0.13provides a wideoffers a wide
0.13offers a broadoffers a wide
0.18of goods andmerchandise and 
0.57goods andmerchandise and 

(3) Contrastive learning

Paraphrased sentence

Irrelevant sentences

Input sentence

Input sentence
The store offers a wide range of 
merchandise and accessories.

Figure 1: Overview of our paraphrase-based contrastive learning.

cation). Regarding the average performance of
all tasks, the proposed method achieved the best
performance for both English and Japanese com-
pared to existing methods that learn paraphrases
but do not use contrastive learning (Arase and Tsu-
jii, 2019), contrastive learning with raw corpus or
NLI corpus (Gao et al., 2021), and state-of-the-art
RankCSE (Liu et al., 2023).

2 Related Work

2.1 Contrastive Learning
Contrastive learning is a method that brings seman-
tically close data closer together in vector space
and separates semantically distant data apart in
vector space. Methods for acquiring sentence em-
beddings by applying contrastive learning to pre-
trained masked language models have been actively
studied in recent years (Gao et al., 2021; Chuang
et al., 2022; Liu et al., 2023).

Previous studies of sentence embedding based
on contrastive learning have relied on the NLI cor-
pus (Bowman et al., 2015), in which sentence pairs
are labeled with semantic relations of entailment,
contradiction, and neutral, for training. However,
annotating such corpora in non-English languages
at high-quality and on a large-scale is expensive,
so this study proposes a lower-cost alternative.

2.2 Paraphrasing for Additional Training
Paraphrasing is the task of generating text that is
semantically equivalent to the input text. This tech-
nique can be applied to pre-editing (Mehta et al.,
2020; Miyata and Fujita, 2021) and data augmen-
tation (Effendi et al., 2018; Okur et al., 2022) to
improve the performance of various natural lan-
guage processing applications.

One such promising application of paraphras-
ing is additional training of pre-trained models.
Pre-trained encoders can be additionally trained
on the paraphrase identification task to increase the

fine-tuning performance of similarity estimation
and recognizing textual entailment (Arase and Tsu-
jii, 2019). Similarly, pre-trained encoder-decoder
models can be additionally trained on the para-
phrase generation task to enhance the fine-tuning
performance of style transfer and text simplifica-
tion (Kajiwara et al., 2020). This study combines
paraphrasing and contrastive learning to further im-
prove additional training for pre-trained encoders.

3 Proposed Method

We improve the performance of sentence pair mod-
eling with masked language models by contrastive
learning that does not rely on the NLI corpus. As
shown in the following steps, we boost the effec-
tiveness of fine-tuning by conducting additional
training between pre-training and fine-tuning.

1. Pre-training: masked language modeling

2. Our contrastive learning

3. Fine-tuning: supervised learning on the target
task of sentence pair modeling

As shown in Figure 1, our contrastive learning
uses paraphrase sentence pairs instead of entail-
ment pairs in the NLI corpus. (1) Paraphrase an
input sentence from the raw corpus based on the
dictionary, (2) Select the most fluent paraphrase
among the candidates, and (3) Conduct contrastive
learning, which brings embeddings of the input sen-
tence and the paraphrased sentence closer together
and separates embeddings of the input sentence
from the rest of the sentences in the batch.

3.1 Paraphrase-based Contrastive Learning
Although the proposed method employs the same
contrastive learning loss as SimCSE (Gao et al.,
2021), we use paraphrase sentence pairs (described
in § 3.2) instead of entailment sentence pairs as pos-
itive instances for contrastive learning, and other
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Train Dev Test

Shopping Queries 1,254,438 138,625 425,762
STS-B 5,749 1,500 1,379
SICK 4,439 495 4,906
SNLI 549,367 9,842 9,824
PAWS 49,401 8,000 8,000

Table 1: Number of sentence pairs for English datasets.

sentences in the batch instead of contradictory sen-
tence pairs as negative instances. Since this study
assumes no semantic relationship between sen-
tences in a batch, the other sentences xj in the batch
work as negative instances that are semantically un-
related to the input sentence xi. The paraphrase
of the input sentence is x+i and embeddings of the
paraphrase pair are hi and h+

i , respectively, and we
train to minimize the loss function in Equation (1):

ℓi = − log
esim(hi,h

+
i )/τ

∑N
j=1 e

sim(hi,h
+
j )/τ

, (1)

where N is the batch size, τ is the temperature pa-
rameter and sim(·) is the cosine similarity between
sentence embeddings.

3.2 Generating Paraphrase Sentence Pairs

We automatically generate paraphrase sentence
pairs to be used as positive instances for contrastive
learning, from a raw corpus and a paraphrase dictio-
nary.2 Our paraphrase dictionary consists of three
pairs of source phrase s, target phrase d, and para-
phrase probability p(d|s). In this study, we employ
only paraphrase pairs {(s, d) | p(d|s) ≥ θ} that
have a paraphrase probability above a threshold θ.
The paraphrase dictionary is applied to the input
sentence from the raw corpus xi ∈ D, substituting
phrases s into d to generate paraphrase candidates.

Here, as shown in Figure 1 (2), paraphrase candi-
dates may include ungrammatical expressions. To
avoid the negative effects from such ungrammatical
sentences, we select the most fluent candidate with
minimum perplexity to use as positive instances for
contrastive learning.

2For paraphrase generation, we can also employ methods
based on machine translation (Hu et al., 2019; Kajiwara et al.,
2020) or large language models (Witteveen and Andrews,
2019). Comparison with them is left for our future work. In
this study, we employ a dictionary-based paraphrase method
that is computationally inexpensive and highly interpretable.

Train Dev Test

Shopping Queries 294,874 32,272 118,907
JSTS 11,205 1,246 1,457
JSICK 4,500 500 4,927
JNLI 18,065 2,008 2,434
PAWS-X 49,401 2,000 2,000

Table 2: Number of sentence pairs for Japanese datasets.

4 Experiments

We evaluated the effectiveness of the proposed
method for four types of sentence pair modeling
tasks in both English and Japanese.

4.1 Tasks

Our evaluation tasks are product retrieval, simi-
larity estimation, recognizing textual entailment
(RTE), and paraphrase identification. Statistics for
each dataset are shown in Tables 1 and 2.

Retrieval Product retrieval is a four-class classi-
fication task of the relationships between product
titles and their search queries, and we employed
both English and Japanese versions of the Shop-
ping Queries dataset3 (Reddy et al., 2022).

Similarity Similarity estimation is a regression
task that estimates the semantic similarity between
two sentences, and we employed datasets of STS-
B4 (Cer et al., 2017) and SICK5 (Marelli et al.,
2014) for English and JSTS6 (Kurihara et al., 2022)
and JSICK7 (Yanaka and Mineshima, 2022) for
Japanese.

RTE RTE is a three-class classification task of
semantic relationships between two sentences, and
we employed datasets of SNLI8 (Bowman et al.,
2015) and SICK for English and JNLI6 (Kurihara
et al., 2022) and JSICK for Japanese.

Paraphrase Paraphrase identification is a two-
class classification task of synonymity between
two sentences, and we employed datasets of
PAWS9 (Zhang et al., 2019) for English and PAWS-
X9 (Yang et al., 2019) for Japanese.

3https://github.com/amazon-science/esci-data
4http://ixa2.si.ehu.es/stswiki/index.php/

STSbenchmark
5https://zenodo.org/records/2787612
6https://github.com/yahoojapan/JGLUE
7https://github.com/verypluming/JSICK
8https://nlp.stanford.edu/projects/snli/
9https://github.com/google-research-datasets/

paws
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For evaluation metrics, we used the micro-f1
score for the retrieval tasks, Spearman’s rank cor-
relation coefficient for the similarity tasks, and the
macro-f1 score for both the RTE and the paraphrase
tasks.

4.2 Implementation Details

We fine-tuned English BERT10 (Devlin et al., 2019)
and Japanese RoBERTa11 (Liu et al., 2019) on the
sentence pair modeling tasks in Section 4.1. We
want to evaluate whether the performance of each
task can be improved by applying additional train-
ing of the proposed method or comparative meth-
ods before fine-tuning.

Pre-processing We used Wikipedia text from
Wiki-40B12 (Guo et al., 2020) for our con-
trastive learning. As pre-processing, we ap-
plied sentence segmentation and word seg-
mentation with Moses13 (Koehn et al., 2007)
for English, and sentence segmentation with
ja_sentence_segmenter14 and word segmentation
with MeCab (IPAdic)15 (Kudo et al., 2004) for
Japanese. In addition, language identification by
langdetect16 was performed, and only sentences
with a confidence level of 99% or higher were used
in each corpus for English and Japanese. Finally,
we excluded both short sentences of 5 words or less
and long sentences of 50 words or more.

Paraphrase For paraphrase dictionary, we used
PPDB 2.017 (Pavlick et al., 2015) for English and
EhiMerPPDB18 for Japanese. These dictionaries
cover phrases of up to six words in English and
seven words in Japanese. To filter paraphrase can-
didates, perplexity was calculated with English19 or
Japanese20 models of GPT-2 (Radford et al., 2019).

Hyperparameters The learning rate was set to
5 × 10−5, temperature to τ = 0.05, batch size

10https://huggingface.co/google-bert/
bert-base-uncased

11https://huggingface.co/rinna/
japanese-roberta-base

12https://www.tensorflow.org/datasets/catalog/
wiki40b

13https://github.com/moses-smt/mosesdecoder/
14https://github.com/wwwcojp/ja_sentence_

segmenter
15https://taku910.github.io/mecab/
16https://pypi.org/project/langdetect/
17http://paraphrase.org/#/download
18https://github.com/EhimeNLP/EhiMerPPDB
19https://huggingface.co/openai-community/gpt2
20https://huggingface.co/rinna/

japanese-gpt2-medium

to 64 sentence pairs, and Adam (Kingma and
Ba, 2015) was used as our optimization method,
and training was terminated when the loss on the
Dev set did not improve for 3 consecutive epochs.
In addition, we selected the threshold for para-
phrase probability θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and
the number of sentences for additional training
|D| ∈ {10k, 20k, 40k, 80k, 160k} to maximize
metrics on the Dev set among these combinations.

4.3 Comparative Methods
To evaluate the effectiveness of paraphrase-based
contrastive learning, we compare the proposed
method to existing methods that employ para-
phrase but not contrastive learning (Transfer Fine-
Tuning) (Arase and Tsujii, 2019), contrastive learn-
ing without paraphrase (both unsupervised and su-
pervised SimCSE (Gao et al., 2021) and state-of-
the-art RankCSE (Liu et al., 2023)), and fine-tuning
without additional training.

Transfer Fine-Tuning (Arase and Tsujii, 2019) is
a method for additional training to identify phrasal
paraphrases on approximately 30 million para-
phrase pairs. Since we use the official trained
model21 in English, it is compared only in English
experiments. Unsupervised SimCSE (Gao et al.,
2021) is dropout-based contrastive learning with
raw corpora, and we replicate it with Wikipedia
in the same settings as in § 4.2. Supervised Sim-
CSE (Gao et al., 2021) is contrastive learning with
NLI corpora, and we replicate it with SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018)
for English, and with JSNLI,22 a Japanese transla-
tion of SNLI, for Japanese. RankCSE (Liu et al.,
2023) is a state-of-the-art contrastive learning that
incorporates ranking consistency and ranking dis-
tillation, and we replicate it using the English23

or Japanese24 SimCSE as a teacher model. The
hyperparameters of SimCSE and RankCSE are the
same as those of the proposed method in § 4.2.25

4.4 Results
Experimental results are shown in Table 3. Our
method achieved performance better than the base-

21https://github.com/yukiar/TransferFT
22https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%

E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%
BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88

23https://huggingface.co/princeton-nlp/
unsup-simcse-bert-base-uncased

24https://huggingface.co/cl-nagoya/
unsup-simcse-ja-base

25Since JSNLI has less than 160k sentence pairs, we set the
maximum number for additional training to 140k pairs.
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Retrieval Similarity RTE Paraphrase

English Shopping Queries STS-B SICK SNLI SICK PAWS Avg.

w/o Additional Training 0.654 0.824 0.815 0.904 0.858 0.913 0.828
Transfer Fine-Tuning 0.652 0.854 0.821 0.902 0.860 0.901 0.832
Unsupervised SimCSE 0.655 0.830 0.806 0.904 0.868 0.918 0.830
RankCSE 0.652 0.858 0.821 0.903 0.854 0.912 0.833
Supervised SimCSE 0.655 0.857 0.824 0.901 0.865 0.913 0.836
Ours 0.655 0.841 0.842 0.904 0.866 0.918 0.838

Retrieval Similarity RTE Paraphrase

Japanese Shopping Queries JSTS JSICK JNLI JSICK PAWS-X Avg.

w/o Additional Training 0.576 0.859 0.890 0.785 0.839 0.793 0.790
Unsupervised SimCSE 0.587 0.861 0.886 0.781 0.837 0.790 0.790
RankCSE 0.574 0.855 0.893 0.829 0.838 0.779 0.795
Supervised SimCSE 0.576 0.825 0.886 0.843 0.843 0.800 0.796
Ours 0.587 0.861 0.896 0.828 0.856 0.791 0.803

Table 3: Evaluation of four sentence pair modeling tasks. Retrieval is a product retrieval task and reports Micro-F1.
Similarity is a semantic textual similarity estimation task and reports Spearman correlation. RTE and Paraphrase are
tasks of recognizing textual entailment and paraphrase identification, respectively, and report Macro-F1.

line w/o additional training on all tasks in English,
and better than the baseline on all tasks except the
paraphrase identification task in Japanese. Here,
PAWS-X focuses on word reordering, which may
be incompatible with our paraphrase, which does
not reorder but only substitutes phrases. Neverthe-
less, our method is effective for many other tasks.

Compared to the existing methods, our method
achieved the best average performance in both En-
glish and Japanese. Our method has the advantage
of achieving higher performance at a lower cost
than traditional contrastive learning because it does
not require expensive annotation like NLI corpora.

4.5 Analysis: Paraphrase Quality

The quality and quantity of paraphrases may affect
the performance of our contrast learning. There is
a trade-off between quality and quantity of para-
phrases, which can be controlled using the para-
phrase probabilities listed in the dictionary. In other
words, if only paraphrases with high probability are
targeted, a high quality and small quantity of para-
phrases will be used.

The average performance of the sentence pair
modeling tasks on the Dev set for each paraphrase
probability threshold is shown in Figure 2. We
found that the best performance was achieved by
using only paraphrases with a probability of 0.4 or
higher in both English and Japanese.
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Paraphrase probability 
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Figure 2: Relationship between paraphrase probability
and average performance of sentence pair modeling.
The larger the probability, the higher quality and smaller
quantity of paraphrases we use in our training.

5 Summary and Future Work

In this study, we proposed paraphrase-based con-
trastive learning to improve the performance of
sentence pair modeling. Our method can achieve
high performance from automatically generated
corpora, even though it is freed from the expen-
sive annotation of NLI corpora that traditional con-
trastive learning relies on. Experimental results
reveal performance improvements in a wide range
of tasks, including product retrieval, similarity esti-
mation, recognizing textual entailment, and para-
phrase identification, in both English and Japanese.
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Our future work includes both further improve-
ment of positive instances and negative instances.
Especially for positive instances, paraphrase gen-
eration could be based on machine translation or
large language models.

Limitations

Language Dependency: While our method does
not require expensive annotation like the NLI cor-
pus, it relies on a raw corpus and a paraphrase
dictionary. Even though paraphrase dictionaries
already exist for many languages, they vary in size
and quality. Since our experiments are conducted
in two languages, English and Japanese, we can-
not necessarily guarantee the effectiveness of the
proposed method in other languages.

Training Time: We added a new training step
between pre-training and fine-tuning of masked
language models. This requires about 30 minutes
of additional training time when running on a single
NVIDIA RTX A6000 GPU with 48 GB memory.
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Abstract

This paper examines how well visual language
models (VLMs) understand video question
answering (VideoQA) tasks and generate re-
sponses accordingly. Recently, VLMs based on
Large Language Models (LLMs) have shown
remarkable performance, but the processes of
understanding and reasoning in VLMs remain
under-explored. To tackle this challenge, we
propose Video Understanding and Response
Consistency Assessment, VURCA, a frame-
work that incorporates a fine-grained question
generation and answering process to measure
how well the responses generated by VLMs
align with what the model understands. In
addition, we introduce an extended bench-
mark dataset, FgNExT-QA, which builds upon
NExT-QA by incorporating more fine-grained
VideoQA tasks. FgNExT-QA is designed to
evaluate fine-grained understanding in video
question answering. Through experiments, we
found that despite the strong overall QA perfor-
mance of VLMs, their understanding of both
the video content and the question remains lim-
ited. In particular, they exhibit poor video com-
prehension in fine-grained VideoQA tasks.

1 Introduction

Video Question Answering (VideoQA) (Fei et al.,
2024; Min et al., 2024) serves as a critical bench-
mark for evaluating the capabilities of foundational
Visual Language Models (VLMs) (Zhang et al.,
2023; Liu et al., 2024), particularly those trained on
large-scale multi-modal datasets (Ye et al., 2023).
Despite recent advancements in VideoQA perfor-
mance, several fundamental concerns remain under-
explored. A key question is whether these mod-
els accurately comprehend video and question to
enable robust multi-modal reasoning, or if they
merely mimic learned patterns from the training
dataset (Xiao et al., 2024). Responses based on

* Equal contribution.
† Corresponding author.

Why did not the lady smile and become serious suddenly at the beginning 

Options : A. wet her clothes B. baby cries C. cannot open the box D. drop the 

baby E. talk to boy

E. talk to boy

User

VLM

Did the lady stop smiling and suddenly become serious to talk to the boy?

No, she did not stop smiling and suddenly become serious to talk to the boy.

User

Original Question

A Variation of Original Question

VLM

Figure 1: Example responses generated by
VLMs(LLaVA-OneVision) on the NExT-QA dataset.

incomplete understanding can lead to significant
issues in real-world applications, emphasizing the
need for efforts to evaluate and address these limi-
tations.

Figure 1 illustrates that VLMs often struggle to
answer a variation of the original question, which
are derived from the original question and its corre-
sponding ground truth answer, even though VLMs
generate correct answer. This observation demon-
strates that VLMs can choose correct answer even
without a precise understanding. If the answer is
chosen based on accurate understanding, it should
generate a consistent response to the variation.
From the observation, VLMs for VideoQA still
fall short in accurately understanding video con-
tents and remain under-resourced in terms of the
evaluation metrics and datasets required to assess
trained models effectively. Existing research has
primarily explored the estimation of consistency
between generated textual outputs and image in-
puts in VLMs (Khan and Fu, 2024; Geng et al.,
2024). However, we aim to evaluate the under-

408



standing of video content by VLMs. This marks
a novel attempt to measure the consistency be-
tween responses and understanding in the domain
of VideoQA.

As a novel approach, we propose the
Video Understanding and Response Consistency
Assessment, VURCA, a framework designed to
investigate the understanding of VLMs through the
process of generating fine-grained verification ques-
tions, integrating answer of the VideoQA, evaluat-
ing the consistency between fine-grained answers
and initial response. First, VLMs generate an initial
response by taking a video and original question as
input. Based on the initial response and the orig-
inal question, fine-grained verification questions
are generated using an LLM. If VLM’s answer is
generated under through understanding on Video
context, it should consistently generate responses
to the variation of original questions that are se-
mantically equivalent to the initial response. To
investigate this, we input the fine-grained verifica-
tion questions along with the video into the VLMs
again to derive verification responses. Then, the
verification responses are aggregated to quantita-
tively evaluate the VLM’s understanding.

Moreover, our approach also enables the auto-
matic expansion of VideoQA datasets, which are
costly and time-intensive to construct. By extend-
ing the NExT-QA dataset, we construct FgNExT-
QA, a fine-grained question-answering dataset with
binary gold answer labels. FgNExT-QA allows us
to verify that VLMs specifically understand the
questions and can determine the correct answers.
It can also be used as an independent benchmark
for VideoQA performance evaluation.

In the experiments, we conduct a comprehensive
analysis of how well state-of-the-art VLMs under-
stand and response correct answers in VideoQA.
Despite achieving high accuracy on VideoQA,
VLMs exhibit inconsistencies when responding
to semantically identical but rephrased questions.
This observation highlights the challenges VLMs
still face in aligning visual evidence with linguis-
tic semantics, revealing areas that require further
improvement. To encapsulate our contributions:
1) Introducing VURCA framework: We propose
a novel framework for evaluating the alignment
between video understanding and responses gener-
ated by VLMs; 2) Fine-Grained VideoQA dataset
generated automatically: We present a fine-grained
VideoQA dataset generated automatically, contain-
ing binary gold answer labels to systematically as-

sess VLM understanding and response consistency;
3) Comprehensive Analysis of VLM Performance:
Through experiments on various VLMs, we an-
alyze their current challenges and interpret these
issues in terms of understanding and response align-
ment.

2 Related Work

In videoQA tasks, a primary objective is to ensure
that the model accurately comprehends video data
and generates appropriate responses. Previous re-
search has focused on building models for video
action and dynamics recognition (Lei et al., 2018;
Bertasius et al., 2021). However, most of these
efforts fall under the category of simple perceptual-
level understanding, such as handling straightfor-
ward video (Zolfaghari et al., 2018; Lin et al.,
2019). Recent advancements in Transformer-based
language models (Vaswani et al., 2017; Brown
et al., 2020) have been accompanied by substantial
progress in visual-language models (VLMs), lead-
ing to significant improvements in video question
answering performance. Ko et al. (2023) integrated
visual encoders and LLaMA-Adapter (Zhang et al.,
2024) into LLMs to enable video understanding,
training the model to process both textual and vi-
sual inputs effectively. Min et al. (2024) and Wang
et al. (2024) demonstrated remarkable performance
improvements by first generating image captions
using a VLM, selecting frames directly relevant
to the question from the video, and then integrat-
ing these captions with the reasoning process of
an LLM, such as ChatGPT (OpenAI, 2024). (Fei
et al., 2024) extended this approach by applying
Chain-of-Thought (CoT) (Wei et al., 2024) reason-
ing capabilities from LLMs to VLMs. Recently,
Xiao et al. (2024) critically questioned the degree
to which the answers generated by such techniques
are truly grounded in the relevant visual content.
However, research verifying the alignment between
understanding and response in VLMs has yet to be
extensively explored.

3 Fine-Grained NExT-QA benchmark

Data Source. We introduce an extended bench-
mark dataset, FgNExT-QA, which builds upon
NExT-QA (Xiao et al., 2021) to better align
with fine-grained VideoQA tasks. Most existing
VideoQA datasets (Yu et al., 2019; Mangalam et al.,
2023) either consist of trimmed, short videos or
lack closed-ended answers, making them unsuit-
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Step-1
Video Ques�on Answering

Step-2
Genera�on of Verifica�on Ques�on

Step-3
Verifica�on Ques�on Answering

Step-4
Evalua�ng Consistency

: what did the baby do a�er throwing the 
green cup away while on the floor near the end?

: A. clap proudly B.the lady si�ng

down C. lay on floor D. just picked it up E. crawl

VLMs LLMs VLMsA. clap proudly

Did the baby throw a green cup
away while on the floor near the
end?

...

Is the baby's ac�on of clapping
proudly associated with throwing
away a green cup?

...

Yes, the baby threw 
a green cup away ...

No, the baby's 
ac�on of clapping
proudly is not ...

...

...

= 1

= 0

Figure 2: An overview of the proposed framework.

able for our purpose. In contrast, we chose the
closed-ended VideoQA subset of NExT-QA, which
provides five possible answer choices for each ques-
tion, with one correct answer. NExT-QA comprises
1,000 videos and includes a total of 8.56k existing
question-video pairs. For each question-option pair,
we generated five variations. As a result, we created
42.82k newly generated binary-answerable ques-
tions. Furthermore, we include a comprehensive
discussion of the core limitations inherited from
NExT-QA in Appendix. D
Fine-grained Question Generation. To facilitate
fine-grained question generation, we adopt open-
source LLMs. First, a question and a option are
input into the LLMs, along with few-shot exam-
ples, to generate fine-grained questions. Detailed
prompts and examples are provided in Appendix A.
For each question-option pair, up to five questions
are generated. Empirically, we observed that gen-
erating more than five questions often results in
duplicate questions. The generated questions are
closed-ended questions (Xiao et al., 2021; Man-
galam et al., 2023) that can be answered with "Yes"
or "No," which facilitates verifying consistency
with the original answer. However, due to the sam-
pling characteristics of LLMs, unintended types
of questions are occasionally generated, and such
questions are excluded from the results. Detailed
statistics on the generated questions are provided
in Appendix B.

4 Video Understanding and Response
Consistency Assessment

To investigate the understanding of VLMs, we
present VURCA, a framework designed to quan-
tify the consistency between video understanding
and responses by integrating VideoQA with fine-
granined questions generation. As illustrated in
Figure 2, the process of the proposed framework

consists of four main steps: video question answer-
ing, generation of verification question, verification
question answering and evaluating consistency

Step-1: Video Question Answering
In the first step of our framework, we instruct

the VLMs to respond to the closed-set VideoQA
task. Specifically, a video V , the original ques-
tion Q, and a set of candidate options Acands =
{A1, A2, . . . , A5}, are used as inputs for VLMs to
generate an initial response Â, which is represented
as:

VLM(V,Q,Acands) 7→ Â.

The VLMs utilize their multimodal abilities to
derive Â through an integration of visual and tex-
tual reasoning. However, the processes underlying
visual and textual reasoning remain a black box
and cannot be directly observed.

Step-2:Generation of Verification Question
In this step, we generate fine-grained verification

questions to investigate the understanding demon-
strated by VLMs in their responses. Q and Â are
input into the LLM, generating a set of fine-grained
questions qfg:

LLM(Efew-shot, Q, Â) 7→ qfg.

Using a few-shot example set Efew-shot =
{(Q1, Â1,q1

fg), (Q
2, Â2,q2

fg), . . . , (Q
n, Ân,qn

fg)},
where n represents the number of examples
provided to LLMs, we generated fine-grained
questions qfg = {qi}ki=1, where k is the number of
questions. Each qi is generated as a closed-ended
question form with a "Yes" or "No" response.

Step-3:Verification Question Answering
Each fine-grained question qi in qfg is individu-

ally input into the VLMs along with V to generate
a binary verification response ai. This process can
be expressed as follows:

VLM(V, qi) 7→ ai ∈ {1, 0}.
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Note that we encode the verification responses of
VLMs as binary numbers: 1 for "Yes" and 0 for
"No". These binary responses ensure a simple,
objective, and accurate evaluation, minimizing am-
biguity and streamlining the verification process.

Step-4:Evaluating Consistency
Finally, {ai}ki=1 are aggregated to compute a

consistency score for VLM’s understanding for
given Q. The consistency score is calculated as
the ratio of the number of "Yes" responses to the
number of the fine-grained questions. "Yes" re-
sponses indicate that the model demonstrates the
same understanding for rephrased questions based
on Â. Formally, the consistency score Scons is de-
fined as:

Scons =
1

k

k∑

i=1

ai.

By evaluating the consistency for all the questions
in VideoQA datasets, proposed framework pro-
vides an objective score to reflect its interpretative
reliability.

5 Experiments

5.1 Overview
Our study aims to address three key research ques-
tions to evaluate and comprehensively analyze
video comprehension and response consistency in
VLMs. Q1: To what extent do VLMs exhibit con-
sistent comprehension with the initial responses?
Specifically, how does the comprehension manifest
in cases where the response is correct versus when
the response is incorrect? Q2: What is VLMs’
level of understanding of other options not selected
in the initial response? Q3: Do VLMs perform
well even on fine-grained questions? To investigate
these questions, we conduct the proposed frame-
work to obtain Scons and then perform additional
comparative analyses to answer the key questions.

5.2 Experimental Settings
Our experiments, based on the close-ended
videoQA tasks of the NExT-QA benchmark, were
conducted using the proposed framework with
state-of-the-art VLMs, including Llava-OneVision
0.5b, Llava-OneVision 7b, and Llava-Video 7b. For
all VLMs, we uniformly sample 32 frames from
the videos and input them, along with the corre-
sponding questions and options, into the models.
The generation of fine-grained questions, which is a
part of the proposed framework, is carried out using

Model NExT-QA Consistency Score

Acc STotal
cons SÂ=A∗

cons S Â̸=A∗
cons

Llava-ov 0.5b 0.572 0.903 0.918 0.884
Llava-ov 7b 0.794 0.924 0.935 0.881
Llava-video 7b 0.832 0.924 0.936 0.878

Table 1: Evaluation of VLMs understanding of the ini-
tial responses.

the microsoft/Phi-3.5-mini-instruct (Abdin et al.,
2024) LLM model. We implemented greedy search
decoding by selecting the highest-probability token
at each step in a fully deterministic manner. To
this end, we set the temperature to 0 and disabled
sampling-based parameters such as top-k and top-
p.

5.3 Result and Analysis

5.3.1 Q1: Understanding of the Initial
Responses

In this experiment, we investigate understanding
exhibited by VLMs in the initial responses. To
conduct this, we calculate STotal

cons which is the aver-
age Scons over 8,564 question-video pairs in the test
data of the NExT-QA benchmark using state-of-the-
art VLMs. Additionally, we analyze the differences
in Scons between cases where the initial response
Â was correct (Â = A∗) and those where Â was
incorrect (Â ̸= A∗), where A∗ denotes the gold
answer in Acands. The results are summarized in
Table 1.

All VLMs show scores above 0.9 for STotal
cons , indi-

cating that the models provided a high consistent re-
sponses. Furthermore, each model showed a higher
SÂ=A∗

cons score when generating correct answers,

while exhibiting a lower SÂ ̸=A∗
cons when VLMs fail

to generate correct answers. These results sug-
gest that when VLMs generate initial responses
based on uncertain understanding of the video con-
tent, VLMs generate inconsistent response to fine-
grained verification questions. This behavior be-
comes more pronounced as model size increases.
SÂ ̸=A∗

cons score shows the largest gap of 0.057 in the
7B model, indicating that as the size and perfor-
mance of VLMs increase, the consistency between
the fine-grained verification answer and the initial
response decreases when generating incorrect an-
swers.
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Model STotal
cons S−

cons
Llava-ov 0.5b 0.903 0.241
Llava-ov 7b 0.924 0.425
Llava-video 7b 0.924 0.437

Table 2: Comparison of VLMs overall consistency score
STotal

cons and negative consistency score S−
cons.

5.3.2 Q2: Evaluation of understanding to
unselected options

In this experiment, we generate additional fine-
grained questions based on randomly selected op-
tions different from Â to investigate whether the
VLM can generate negative responses for the op-
tions excluding Â. Specifically, the VLMs under-
standing about the original question is considered
higher when it generates more "No" responses for
the fine-grained questions that conflict with its ini-
tial response. To quantify this, the negative consis-
tency score S−

cons is defined as:

S−
cons =

1

k

k∑

i=1

(1− ai).

As shown in Table 2, S−
cons is significantly lower

than the STotal
cons across all VLMs. A low S−

cons indi-
cates that VLMs fail to demonstrate a clear under-
standing of why unchosen options were excluded.
In other words, the results suggest that VLMs do
not accurately understand the video content well
enough to make a clear and justified choice among
the options. In particular, for the 0.5b model, S−

cons
was 0.662 lower than the corresponding Scons. For
the 7b models, the differences were 0.499 and
0.487. These results indicate that scaling the model
size leads to increased consistency score in its re-
sponses, reflecting enhanced certainty in its com-
prehension and decision-making processes.

5.3.3 Q3: Evaluation of Fine-Grained
Question Responses

For the final experiment, we generated fine-grained
questions for all options, covering both the gold
answer and the other options and evaluated the ac-
curacy AccTotal. We also measured separately the
accuracy on questions for the gold answers (Acc+)
and the accuracy on questions for other options
(Acc−). The results, compared to those of the orig-
inal questions in NExT-QA, are summarized in
Table 3.

The 0.5b and 7b models showed a 0.253 dif-
ference in Acc+, but a significantly larger perfor-

Model NExT-QA Fine-grained QA

Acc Acc+ Acc− AccTotal

Llava-ov 0.5b 0.572 0.895 0.242 0.373
Llava-ov 7b 0.794 0.916 0.435 0.529
Llava-video 7b 0.832 0.921 0.444 0.537

Table 3: Evaluation of VLMs performance on fine-
grained questions for all options.

mance gap of 0.201 in Acc−, demonstrating su-
perior performance by the larger model. Despite
this improvement, the 7B model still exhibits in-
sufficient performance. These results highlight that
video comprehension is not only about accurately
identifying the correct answer but also about under-
standing objects or actions that are irrelevant or un-
suitable for the VideoQA task. Furthermore, even
though Llava models with 7B parameters achieve
around 80% performance on the NExT-QA dataset,
they exhibit low performance in Acc−. The re-
sults also suggest that relying solely on accuracy
in multiple-choice VideoQA is not sufficient to
evaluate the understanding of VLMs, emphasizing
the need for further advancements to address the
current limitations of VLMs.

6 Conclusion

This paper explores how visual language models
understand VideoQA tasks and generate appropri-
ate responses. However, evaluating whether these
models truly understand both video and language
inputs remains a challenging task. To address the
challenge of evaluating VLMs comprehension, we
propose VURCA, a framework to assess the align-
ment between the initial responses and VLMs un-
derstanding. VURCA achieves this by generat-
ing verification questions and comparing the sub-
sequent responses with its initial answers. Addi-
tionally, we introduce FgNeXT-QA, a benchmark
dataset designed for fine-grained VideoQA tasks,
which offers more fine-grained assessment scenar-
ios. Our experimental results indicate that despite
their impressive performance in QA tasks, VLMs
often fail to adequately understand video content
and the corresponding questions. These results pro-
vide valuable insights for the development of ad-
vanced evaluation frameworks, the design of more
robust model architectures, and the refinement of
training methodologies. Future research should
aim to enhance the reasoning capabilities of VLMs
through improved pre-training strategies that inte-
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grate a more comprehensive understanding of video
content and question semantics.

7 Limitation

While our proposed framework and dataset exten-
sion provide valuable insights into fine-grained
VideoQA evaluation, several limitations remain.
The generation of verification questions in FgNExT-
QA relies on large language models (LLMs), which
may introduce noise or bias in the reformulated bi-
nary questions. This could potentially affect the
reliability and objectivity of the evaluation pro-
cess. Therefore, we guided the model through few-
shot examples to generate questions that can be
answered with a simple "yes" or "no" which signif-
icantly reduced errors. However, since the model
also tended to generate questions starting with The
Five Ws (what, where, who, when, why, how),
we excluded those from our final set. A detailed
discussion of these inherited issues is provided in
Appendix B.

Moreover, our research specifically focuses on
the VideoQA task, which is important but may limit
its applicability to broader multimodal or general
video understanding research. Therefore, as a next
step, we plan to expand our work to tackle more
challenging benchmarks such as VideoMME and
explore tasks like description generation and open-
ended question answering.
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A Prompt Example

This section introduces the prompts used for VLMs
and LLMs. Table 4 shows the prompts used in
VideoQA. By providing a simple task description
along with the video, video question, and answer
options, the VLMs generate the system output,
which is the final answer. In this paper, NExT-
QA data was used, where there are a total of five
options, A to E. The final answer is to select one of
them. Table 5 presents the prompt for fine-grained
question generation. It begins with a simple task
instruction, followed by a few-shot example to pro-
duce the desired context as output. The few-shot
example consists of a question, an answer, and
five atomic questions. After the few-shot exam-
ple, the target question and answer are provided
to the LLMs, which then generate the correspond-
ing atomic questions. Table 6 shows the prompt
for generating verification responses using atomic
questions as input. Similar to Table 4, this prompt
excludes the answer options and instead focuses
solely on inputting the atomic question to guide the
output generation.

B FgNExT-QA statistics

We generated five atomic questions for each of the
8.56k question-video pairs in NExT-QA, with 5
answer options per pair, resulting in 21.41k atomic
questions. Due to the characteristics of the LLM,
we excluded potential questions that could be gen-
erated starting with The Five Ws (what, where,
who, when, why, how). These excluded questions
accounted for approximately 0.78% of the total.
After this filtering process, 21.24k questions were
retained for the experiments.

C Qualitative Example from FgNExT-QA

In this section, we perform a qualitative analysis
based on actual output examples. Figure 3 illus-
trates a case where the VLM correctly identified the
answer. For the fine-grained questions, the VLM
responded with "Yes" to all questions generated for
the correct option, while it generated responses in-
cluding "No" for fine-grained questions generated
for other options. In contrast, Figure 4 shows a case
where the VLM generated a response different from
the target. In this case, the VLM demonstrated a
slightly higher proportion of "Yes" responses for
the answer it generated. This suggests that the
model tends to provide answers consistent with
its earlier response, even in fine-grained questions.

The similar distribution of responses across diverse
questions indicates a lack of understanding and
confidence in its answers.

D Inheriting Limitations from NExT-QA

Although FgNExT-QA reformulates the original
NExT-QA into binary QA format by decomposing
multiple-choice questions into individual question-
option pairs, it inherits limitations from NExT-QA,
as it is built upon the same question-answer pairs
and video contexts. For example, NExT-QA has
been shown to contain biases in its answer distribu-
tion, and some questions may rely more on textual
commonsense knowledge rather than visual evi-
dence from the video. These aspects can limit the
effectiveness of evaluating true video-text under-
standing. While converting to a binary QA format
allows for more granular evaluation of model un-
derstanding for each candidate option, the quality
of distractor options in NExT-QA still affects the
difficulty level and diagnostic power of the dataset.

As a result, although FgNExT-QA enhances
the evaluation granularity by shifting to binary
QA, its reliance on NExT-QA’s original structure
and content means that certain dataset-level lim-
itations—such as superficial distractors or a lack
of visually grounded reasoning—may still affect
the robustness and generalizability of model perfor-
mance.
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System
You are a helpful assistant.
User
<video>
{input question}
A. {option}
B. {option}
C. {option}
D. {option}
E. {option}
System
assistant:

Table 4: Examples of instructions used in the video question answering.

User
After reviewing the questions and answers, generate atomic questions
to clarify and verify your responses, ensuring that the questions can be
answered with a simple ’yes’ or ’no’.

Question:how does the girl show her excitment over the toy?
Answer:By turning it around repeatedly
Atomic Questions:
-Can it be said that the girl is excited about the toy, as shown by her turning
it around repeatedly?
-Is the girl turning the toy around repeatedly to show her excitement?
-Can the girl’s excitement be inferred from her action of turning the toy
around repeatedly?
-Is the toy the reason for the girl’s excitement, as evidenced by her turning
it around repeatedly?
-Does the girl’s action of turning the toy around repeatedly suggest she is
excited?

<Few shot examples>

Question:{input question}
Answer:{input answer}
System
Atomic Questions:

Table 5: Examples of instructions and few-shot examples used in the fine-grained question generation.

System
You are a helpful assistant.
User
<video>
{input atomic question}
System
assistant:

Table 6: Examples of instructions used in the fine-grained question answering.
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� Question : where is this place?
� Options : A. restaurant B. theatre C. farm D. kitchen E. living room
� Target : E. living room
� VLM Answer : E. living room

� Fine-grained questions andanswers:
• C. farm

• Is this place located on a farm? No.
• Can it be inferred that the location of this place is a farm? No, it cannot be inferred that the location is a farm.
• Is the farm the setting for this place? No, the setting is a toy train set.
• Does this place belong to or take place on a farm? No, the place is a cozy living room.
• Is 'farm' the correct term to describe where this place is situated? No, 'farm' is not the correct term; it should be 'home'.

• E. living room
• Is the place being referred to as a living room? Yes
• Can it be said that the location in question is a living room? Yes
• Is the place described as a living room? Yes
• Does this place have the designation of a living room? Yes
• Is 'living room' an accurate description for this location? Yes

� Video :

Figure 3: Example of a correct prediction by the VLM.

� Question : why did the woman in red sitting down lean forward in the middle?
� Options : A. stabilize her B. service staff C. for support to writeD. observe the childrenE. laughing
� Target : E. laughing
� VLM Answer : A. stabilize her

� Fine-grained questions andanswers:
• A. stabilize her

• Is the woman in red leaning forward to stabilize herself while sitting down in the middle? No, the woman in red is standing
with her arms crossed.

• Does the woman in red sit down and then lean forward for stabilization purposes? No, the woman in red stands with her arms
crossed and leans forward for stabilization purposes.

• Is the action of leaning forward by the woman in red observed for stabilization reasons? Yes, the action of leaning forward by
the woman in red is observed for stabilization reasons.

• Does the woman in red use her body position (leaning forward) to achieve stability while sitting down in the middle?Yes, the
woman in red uses her body position (leaning forward) to achieve stability while sitting down in the middle.

• Can it be inferred that the woman's leaning forward is a method of stabilizing herself while seated at this location?Yes, it can
be inferred that the woman's leaning forward is a method of stabilizing herself while seated at this location.

• E. laughing
• Is the woman in red leaning forward because she is laughing? No, the woman in red is leaning forward with her arms crossed.
• Did the woman in red sit down and then lean forward due to laughter? No, the woman in red leaned forward due to laughter

before sitting down.
• Can it be inferred that the woman's laughter caused her to lean forward while sitting down in the middle ? Yes, it can be

inferred that the woman's laughter caused her to lean forward while sitting down in the middle.
• Is laughing a reason for the woman in red to lean forward while seated in the middle? Yes, laughing is a reason for the woman

in red to lean forward while seated in the middle.
• Does the act of laughing explain why the woman in red leans forward while sitting down in the middle? No, the act of laughing

does not explain why the woman in red leans forward while sitting down in the middle.

� Video :

Figure 4: Example of an incorrect prediction by the VLM.
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Abstract

Text style transfer (TST) is the task of trans-
forming a text to reflect a particular style while
preserving its original content. Evaluating TST
outputs is a multidimensional challenge, re-
quiring the assessment of style transfer accu-
racy, content preservation, and naturalness. Us-
ing human evaluation is ideal but costly, as is
common in other natural language processing
(NLP) tasks; however, automatic metrics for
TST have not received as much attention as
metrics for, e.g., machine translation or summa-
rization. In this paper, we examine both set of
existing and novel metrics from broader NLP
tasks for TST evaluation, focusing on two pop-
ular subtasks—sentiment transfer and detoxifi-
cation—in a multilingual context comprising
English, Hindi, and Bengali. By conducting
meta-evaluation through correlation with hu-
man judgments, we demonstrate the effective-
ness of these metrics when used individually
and in ensembles. Additionally, we investigate
the potential of large language models (LLMs)
as tools for TST evaluation. Our findings high-
light newly applied advanced NLP metrics and
LLM-based evaluations provide better insights
than existing TST metrics. Our oracle ensem-
ble approaches show even more potential.

1 Introduction

Text style transfer (TST) refers to the task of mod-
ifying a given text to reflect a specific style while
preserving its original content (Hu et al., 2022).
Previous work in this domain has explored alter-
ing various stylistic dimensions, such as sentiment
(Prabhumoye et al., 2018), romantic tone (Li et al.,
2018), politeness (Madaan et al., 2020), or political
slant (Prabhumoye et al., 2018). Different model-
ing approaches have been proposed for TST, in-
cluding methods that manipulate latent representa-
tions of text (Zhao et al., 2018; Prabhumoye et al.,
2018) and techniques that identify and replace style-
related lexicons directly (Li et al., 2018; Fu et al.,

2019). Despite the growing interest in TST, reli-
ably assessing the performance of TST models con-
tinues to be a bottleneck (Hu et al., 2022). While
human evaluation is often regarded as the standard
for capturing subtle cues in style, it is expensive,
time-intensive, and difficult to reproduce at scale
(Briakou et al., 2021b). Consequently, automated
metrics have become a proxy for human judgment,
but there is a notable lack of standardization and
consensus on which metrics best capture style trans-
fer accuracy, content preservation, and overall nat-
uralness (Mir et al., 2019a; Briakou et al., 2021a).
In addition, large language models (LLMs) could
serve as alternatives to traditional human evalua-
tion and automated metrics for TST evaluation (Os-
theimer et al., 2024). However, the rapid evolution
of LLMs, particularly for closed-source models,
raises concerns about reproducibility (Gao et al.,
2024; Chen et al., 2024).

We address this gap by examining existing and
novel metrics for two popular TST subtasks: senti-
ment transfer (Prabhumoye et al., 2018) and detox-
ification (Dementieva et al., 2022). Our experi-
ments span a multilingual setting, covering En-
glish, Hindi, and Bengali, to investigate the utility
of these metrics across diverse linguistic contexts.
We then conduct a meta-evaluation of the proposed
metrics by measuring their correlation with human
judgments. To further explore the potential of auto-
mated metrics, we also combine them in ensembles,
experimentally creating hybrid scores. Addition-
ally, we investigate the applicability of large lan-
guage models (LLMS) as an alternative evaluation
tool. Our results show that existing metrics newly
applied to TST, hybrid approaches, and LLMs can
improve correlation with human evaluations, offer-
ing a more robust and comprehensive assessment of
TST outputs. Our experimental code and resources
are released on GitHub.1

1https://github.com/souro/tst_evaluation
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2 Related Work

TST tasks are traditionally evaluated using three
key dimensions: style transfer accuracy, content
preservation, and fluency (Mukherjee and Dušek,
2024; Hu et al., 2022; Jin et al., 2022). Prior work
underscores the challenge of jointly capturing sub-
tle stylistic nuances and preserving semantic con-
tent (Briakou et al., 2021b; Tikhonov et al., 2019).
Style Transfer Accuracy A common approach
is to train a dedicated classifier to check whether the
transformed text reflects the intended style (Prab-
humoye et al., 2018; Shen et al., 2017). Alterna-
tively, unsupervised methods rely on distributional
shifts in style-related features (Yang et al., 2018;
Tikhonov et al., 2019).
Content Preservation Metrics such as BLEU
(Papineni et al., 2002) and embedding-based
similarity (Rahutomo et al., 2012; Reimers and
Gurevych, 2019) often serve as proxies for se-
mantic fidelity. However, they may overlook nu-
ances introduced by stylistic transformations in
both single-language and multilingual contexts
(Yamshchikov et al., 2021; Briakou et al., 2021a),
and recent studies highlight the shortcomings of
traditional similarity measures when evaluating
paraphrase-like modifications (Yamshchikov et al.,
2021; Briakou et al., 2021b).
Fluency Fluency is typically estimated using
perplexity from a pre-trained language model such
as GPT-2 (Radford et al., 2019). Nonetheless, per-
plexity may fail to capture context-specific gram-
matical coherence, especially if the style domain
diverges from the model’s training data (Tikhonov
et al., 2019; Briakou et al., 2021b), and can yield in-
consistent performance across languages (Briakou
et al., 2021a).

3 Metrics Compared

We follow the criteria of transfer accuracy, con-
tent preservation, and fluency described in Sec-
tion 2, and we conduct evaluations in two scenarios:
(1) reference-based, where metrics are computed
against a reference text (when available), and (2)
reference-free, where metrics directly compare the
generated text against the source text (measuring
similarity or distance from the original), without
requiring a reference.
Previously Used TST Metrics For style transfer
accuracy, we include Sentence Accuracy based on
a fine-tuned XLM-RoBERTa-base (Conneau et al.,
2020) classifier (Prabhumoye et al., 2018), and

WMD (Kusner et al., 2015; Wei et al., 2023; Mir
et al., 2019b). For content preservation: BLEU (Pa-
pineni et al., 2002; Tikhonov et al., 2019), Cosine
Similarity (Rahutomo et al., 2012; Reimers and
Gurevych, 2019), Masked BLEU and Masked Co-
sine Similarity (Mukherjee et al., 2022), ROUGE-2
and ROUGE-L (Lin and Hovy, 2003; Lin, 2004;
Lin and Och, 2004; Yamshchikov et al., 2021). For
fluency, we use Perplexity of GPT-2 (Radford et al.,
2019; Briakou et al., 2021c) and MGPT (Shliazhko
et al., 2024).

Newly Applied Text Metrics We expand the
TST evaluation by incorporating additional metrics
from related NLP tasks, categorizing them into
trainable and non-trainable metrics as well as word-
overlap-based and embedding-based measures.

For style transfer accuracy, we utilize non-
trainable statistical measures such as Earth Mover’s
Distance (EMD) (Rubner et al., 2000), KL
Divergence (Kullback, 1997), Cosine Similar-
ity (Rahutomo et al., 2012), and Jensen-Shannon
Divergence (Lin, 1991), which quantify the distri-
butional shift between source and generated text.
Additionally, we incorporate a trainable Classifier
Confidence score, derived from the Sentence Accu-
racy classifier described earlier.

For content preservation, we include both word-
overlap-based and embedding-based metrics. The
word-overlap-based metrics include PINC (Chen
and Dolan, 2011), which measures the proportion
of n-grams in the generated text that do not appear
in the source text (higher values indicate greater
lexical divergence), METEOR (Banerjee and Lavie,
2005), which accounts for synonymy and stem-
ming, and Translation Edit Rate (TER) (Snover
et al., 2006), which evaluates the number of ed-
its required to transform the generated text into
the reference. Embedding-based measures include
Word Mover’s Distance (WMD) (Kusner et al.,
2015; Wei et al., 2023), BERTScore (Zhang et al.,
2020), S3BERT (Opitz and Frank, 2022), and
BLEURT (Sellam et al., 2020), all of which assess
content similarity based on contextualized vector
representations. Additionally, we introduce Tree
Edit Distance (TED) (Zhang and Shasha, 1989),
which measures structural similarity by comput-
ing the minimum number of tree edit operations
(insertion, deletion, substitution) required to trans-
form one syntactic tree into another. This metric is
particularly useful in evaluating syntactic shifts in
generated text.
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For fluency evaluation, we employ language
model perplexity, using Finetuned GPT-2 and Fine-
tuned MGPT trained on target styles (see fine-
tuning details in Appendix C). Lower perplexity
scores indicate higher fluency, as they reflect the
model’s confidence in the generated text.
Novel Metrics We analyze the structural simi-
larity between the source/reference and the system-
generated outputs by parsing them into abstract
meaning representation (AMR) (Banarescu et al.,
2013) and syntactic dependency trees (Straka and
Straková, 2017). AMR provides a semantic abstrac-
tion of sentences by capturing their core meaning
as directed graphs, while syntactic dependencies
represent the grammatical relationships between
words in tree form. To measure structural similar-
ity, we first convert syntactic dependency trees into
AMR-style structure trees, ensuring both syntactic
and semantic representations are in a comparable
graph format. We then compute Smatch similar-
ity (Cai and Knight, 2013) for both AMR graphs
and the syntactic trees translated to AMR-style
trees. Smatch (a graph-matching metric) computes
the F-score between AMR graphs by aligning their
nodes and edges optimally, regardless of differ-
ences in variable naming or graph representation. A
higher Smatch score, i.e., a higher AMR graph and
syntactic tree similarity, indicates greater preser-
vation of meaning and syntactic structure in the
transformed text.
LLM Prompting Following Ostheimer et al.
(2024) and Mukherjee et al. (2024b), we use LLMs
as TST evaluators and extend their methods to
newer LLMs, more TST tasks, and additional lan-
guages. We used GPT-4 (Achiam et al., 2023)
and Llama-3.1 8B (Dubey et al., 2024) to assess
the TST tasks. We employed a Likert-scale-based
approach to evaluate style transfer accuracy, con-
tent preservation, and fluency. To facilitate direct
comparison with Sentence Accuracy, we also con-
ducted a binary evaluation for style transfer ac-
curacy (GPT4-bin-acc, Llama-bin-acc). Detailed
prompt instructions are provided in Appendix D.
Hybrid We propose two ensemble-based oracle
metrics – Hybrid-Simulation and Hybrid-Learned –
to show the potential of integrating multiple eval-
uation metrics.2 In Hybrid-Simulation, we first
select the top three metrics (based on correlation
with human judgments) for each task and language

2These metrics are considered “oracle”, since the approach
learns optimal weights based on the target data.

from Tables 1 and 2. We then conduct a simu-
lation to determine the selected metrics’ relative
weights by tuning them on human-labeled target
data and compute their geometric average to form
the final ensemble score. In Hybrid-Learned, we
train a random forest regressor (Liaw, 2002) using
all available metrics as features and human ratings
as the target labels. The model assigns importance
scores to each metric, and we select the top three
metrics with the highest normalized importance
scores. Their geometric average, weighted by these
importance scores, is used to generate the ensem-
ble result. For details on the selected metrics and
their respective weights, see Tables 5 and 6 in Ap-
pendix A.
Overall Score Following Loakman et al. (2023)
and Yang and Jin (2023), we adopt the geomet-
ric mean of style transfer accuracy, content preser-
vation, and fluency as a single aggregated score
for comparison. We again aim to show the poten-
tial of this approach by producing oracle metrics.
Based on the Pearson correlation results from our
experiments (Tables 1, 2 and, 3), we first select the
best-performing metrics for these three dimensions
from previously used methods (Existing). We also
do the same selection using newly proposed meth-
ods (excluding hybrid approaches), creating the
Ours1 score. We then extend Ours1 by incorporat-
ing the top-performing metrics from our proposed
approaches, including hybrids, to construct Ours2.
In addition to geometric mean scores, we directly
prompt GPT-4 and Llama for this task. Table 7
in Appendix A detail the metrics selected for each
language and task.

4 Experiment Setup

Evaluation Data: Tasks, Languages and Model
Outputs We evaluate our methods on the outputs
of TST models and human annotations provided
by Mukherjee et al. (2024b). This comprises two
TST tasks – sentiment transfer (positive to negative
statements and vice versa), where data is available
for English, Hindi and Bengali, and detoxification
(toxic to clean text), with English and Hindi data.
Model outputs for all tasks were produced by GPT-
3.5 (OpenAI, 2023), LLaMA-2-7B-Chat (Touvron
et al., 2023) and Mistral-7B-Instruct (Jiang et al.,
2023), as well as previous finetuned BART models
by Mukherjee et al. (2024a, 2023).
Meta-Evaluation Approach We follow com-
mon practice for meta-evaluation (Kilickaya et al.,
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2017; Zhang et al., 2020; Liu et al., 2023) and com-
pute all metrics’ correlation with human judgment
using Pearson (PC), Spearman (SC), and Kendall’s
Tau (KC) Correlations (Schober et al., 2018; Puka,
2011).

5 Results Analysis

Since we found that reference-based metrics gener-
ally underperform their reference-free variants, we
focus on the reference-free setting in the analysis.
We include reference-based results in Appendix B.

5.1 Style Transfer Accuracy

The results for style transfer accuracy in the
reference-free setting are shown in Table 1.
Previously Used: Sentence Accuracy generally
achieves moderate to good correlation with human
judgments, suggesting that direct style classifica-
tion accuracy can be a reliable indicator of style
transfer quality. Meanwhile, EMD demonstrates a
moderate degree of alignment, implying that captur-
ing distributional shifts of stylistic cues correlates
moderately with human perceptions.
Newly Applied: Classifier Confidence, Cosine
Similarity, KL Divergence, and Jensen-Shannon
Divergence generally exhibit stronger alignment
with human judgments compared to existing met-
rics, highlighting the effectiveness of distributional
measures for style intensity comparisons.
LLMs: GPT-4 exhibits consistently high corre-
lations, whereas Llama performs notably worse, al-
though a binarized version (Llama-bin-acc) shows
some moderate improvements.
Hybrid: Hybrid-Simulation demonstrates strong
alignment with human ratings by combining mul-
tiple signals into a single score, while Hybrid-
Learned performs comparably, though it may fall
marginally below its simulation-based counterpart
in certain cases.

Direct classification metrics reliably capture
style accuracy, while distribution-based and LLM-
based evaluations enhance overall alignment with
human judgments, especially when integrated in
hybrid frameworks. In English tasks, approaches
like GPT-4 and hybrid methods achieve particu-
larly high correlations, whereas in Hindi and Ben-
gali, top metrics (e.g., KL, JS Divergence, and
hybrid approaches) remain strong but show more
pronounced performance gaps, potentially due to
greater linguistic complexity.

5.2 Content Preservation

We present the meta-evaluation of content preser-
vation metrics in a reference-free setting in Table 2.
Previously Used: BLEU generally shows low
alignment with human judgments, while Cosine
Similarity exhibits better performance in several
tasks. Masked BLEU and Masked Cosine Similar-
ity offer slight improvements over their unmasked
counterparts, yet they still lag behind more recent
methods. ROUGE-2 and ROUGE-L provide moder-
ate correlations but do not consistently outperform
newer metrics.
Newly Applied: BLEURT remains consistently
reliable, while BERTScore also proves robust
across various styles and languages. TER and TED
offer competitive results, particularly for certain
language-specific tasks. In contrast, PINC shows
weak correlations, indicating its limited effective-
ness in capturing content preservation.
Novel: Smatch (Dependency Trees) and Smatch
(AMR) outperform or at least match the perfor-
mance of traditional metrics, though they gener-
ally fall behind the newly introduced text-based
methods and LLM-driven approaches on average.
LLMs: GPT-4 achieves higher correlations than
traditional metrics across different styles and lan-
guages, demonstrating its strong ability to capture
human-like judgments of text transformations. In
contrast, Llama tends to underperform, indicat-
ing considerable variability in how well different
LLMs reflect stylistic and content-based shifts.
Hybrid: Hybrid-Simulation achieves robust
alignment with human ratings by unifying multi-
ple signals into a single score, whereas Hybrid-
Learned shows comparable performance, albeit
slightly trailing the simulation-based approach in
some scenarios.

5.3 Fluency

Table 3 presents fluency evaluation results. GPT-2
Perplexity displays limited correlations with hu-
man judgments, while Finetuned GPT-2 Perplex-
ity yields only marginal gains. MGPT Perplexity
and Finetuned MGPT Perplexity provide moder-
ate improvements under fine-tuning, underscoring
the importance of multilingual modeling and style-
specific training for better alignment with human
fluency assessments. GPT-4 demonstrates rela-
tively strong correlations with human assessments
of fluency for sentiment-related tasks, suggesting
it captures fluidity and coherence more effectively
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Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

Sentence Accuracy 0.51 0.49 0.48 0.61 0.61 0.59 0.57 0.57 0.54 0.36 0.36 0.35 0.38 0.37 0.36
EMD 0.27 0.24 0.20 0.36 0.43 0.34 0.50 0.52 0.40 0.29 0.21 0.17 0.47 0.53 0.43
GPT4 0.92 0.81 0.79 0.87 0.84 0.79 0.82 0.83 0.77 0.74 0.72 0.65 0.74 0.74 0.68
GPT4-bin-acc 0.89 0.78 0.77 0.84 0.83 0.80 0.77 0.78 0.74 0.61 0.61 0.59 0.60 0.61 0.59
Llama 0.16 0.17 0.15 -0.11 -0.10 -0.09 -0.17 -0.15 -0.13 0.20 0.18 0.17 0.20 0.16 0.15
Llama-bin-acc 0.49 0.44 0.43 0.50 0.51 0.49 0.31 0.31 0.30 0.24 0.24 0.23 0.27 0.27 0.27

Newly applied & Novel

Classifier Confidence 0.51 0.43 0.35 0.66 0.57 0.46 0.59 0.52 0.40 0.39 0.32 0.25 0.41 0.38 0.30
KL Divergence 0.59 0.31 0.24 0.66 0.66 0.54 0.62 0.62 0.50 0.46 0.46 0.36 0.51 0.60 0.49
Cosine Similarity -0.55 -0.44 -0.36 -0.66 -0.67 -0.54 -0.53 -0.59 -0.46 -0.43 -0.40 -0.32 -0.48 -0.58 -0.47
Jensen-Shannon Divergence 0.67 0.40 0.32 0.69 0.67 0.55 0.62 0.64 0.51 0.41 0.50 0.39 0.53 0.60 0.50
Hybrid-Simulation 0.69 0.40 0.32 0.71 0.67 0.54 0.62 0.64 0.51 0.44 0.47 0.37 0.53 0.61 0.49
Hybrid-Learned 0.67 0.37 0.30 0.70 0.63 0.50 0.61 0.62 0.49 0.43 0.47 0.37 0.55 0.62 0.50

Table 1: Style transfer quality (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

BLEU 0.24 0.22 0.18 0.24 0.19 0.15 0.32 0.31 0.25 0.14 0.13 0.11 0.45 0.37 0.31
Cosine Similarity 0.54 0.27 0.22 0.33 0.24 0.20 0.43 0.40 0.32 0.28 0.19 0.15 0.59 0.45 0.38
Masked BLEU 0.21 0.21 0.17 0.15 0.12 0.10 0.23 0.24 0.19 0.15 0.15 0.12 0.45 0.39 0.32
Masked Cosine Similarity 0.36 0.17 0.14 0.19 0.13 0.11 0.28 0.29 0.23 0.23 0.15 0.12 0.56 0.45 0.37
METEOR 0.38 0.25 0.21 0.20 0.18 0.14 0.33 0.27 0.22 0.16 0.10 0.08 0.54 0.34 0.28
ROUGE-2 0.24 0.19 0.16 0.19 0.20 0.16 0.28 0.30 0.24 0.17 0.11 0.09 0.41 0.37 0.31
ROUGE-L 0.39 0.25 0.21 0.26 0.23 0.19 0.28 0.32 0.25 0.22 0.12 0.10 0.46 0.39 0.33
GPT4 0.42 0.36 0.35 0.39 0.41 0.39 0.51 0.54 0.48 0.46 0.31 0.30 0.46 0.42 0.40
Llama 0.24 0.26 0.24 0.32 0.28 0.26 0.32 0.38 0.35 0.25 0.11 0.10 0.28 0.16 0.16

Newly applied & Novel

PINC -0.18 -0.17 -0.15 -0.16 -0.12 -0.10 -0.27 -0.28 -0.23 -0.12 -0.12 -0.10 -0.41 -0.36 -0.30
WMD 0.35 0.28 0.23 0.27 0.24 0.20 0.34 0.35 0.28 0.15 0.14 0.11 0.41 0.38 0.32
BERTScore 0.50 0.31 0.26 0.45 0.33 0.27 0.49 0.44 0.36 0.21 0.19 0.15 0.62 0.38 0.31
Smatch (Dependency Trees) 0.25 0.24 0.20 0.18 0.20 0.17 0.26 0.30 0.25 0.16 0.15 0.12 0.34 0.31 0.26
Smatch (AMR) 0.38 0.25 0.20 0.22 0.20 0.17 0.32 0.32 0.26 0.19 0.13 0.11 0.37 0.34 0.28
S3BERT 0.46 0.23 0.19 0.30 0.18 0.14 0.30 0.30 0.24 0.22 0.20 0.16 0.49 0.38 0.31
BLEURT 0.47 0.30 0.25 0.41 0.35 0.29 0.56 0.53 0.42 0.18 0.17 0.14 0.62 0.43 0.35
TER 0.42 0.26 0.22 0.45 0.28 0.24 0.34 0.33 0.27 0.21 0.17 0.14 0.58 0.37 0.31
TED 0.43 0.24 0.22 0.42 0.29 0.25 0.20 0.28 0.24 0.48 0.21 0.18 0.48 0.36 0.30
Hybrid-Simulation 0.57 0.32 0.26 0.48 0.33 0.27 0.57 0.53 0.43 0.28 0.19 0.15 0.68 0.43 0.35
Hybrid-Learned 0.56 0.32 0.26 0.47 0.35 0.29 0.56 0.53 0.43 0.19 0.15 0.12 0.64 0.38 0.31

Table 2: Content preservation (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

Perplexity (GPT-2) 0.13 0.13 0.11 -0.11 -0.10 -0.08 -0.11 -0.07 -0.05 0.06 0.00 0.00 0.17 -0.13 -0.11
Perplexity (MGPT) 0.08 0.19 0.15 0.00 0.07 0.05 0.16 0.19 0.15 0.05 0.00 0.00 0.11 0.03 0.03
GPT4 0.43 0.40 0.37 0.39 0.39 0.35 0.37 0.40 0.36 0.16 0.13 0.12 0.17 0.17 0.16
Llama 0.17 0.18 0.17 0.15 0.17 0.15 0.08 0.06 0.06 0.16 0.13 0.12 -0.01 -0.02 -0.01

Newly applied

Perplexity (Finetuned GPT-2) 0.14 0.16 0.13 0.08 0.14 0.11 0.02 0.05 0.04 0.14 0.00 0.00 0.11 -0.06 -0.05
Perplexity (Finetuned MGPT) 0.04 0.08 0.07 0.17 0.15 0.12 0.23 0.21 0.16 0.00 0.03 0.03 0.23 0.04 0.03

Table 3: Fluency (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

when the stylistic shift involves changing senti-
ment. However, for detoxification tasks, its align-
ment with human judgments diminishes, indicating
that removing toxicity poses different challenges
for GPT-4. In contrast, Llama exhibits generally

weaker correlations and struggles in various set-
tings, implying that its evaluations of fluency do
not consistently match human perceptions.

Language-wise, English generally shows better
correlations and less variability across models over
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Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Existing 0.32 0.02 0.02 0.11 -0.02 -0.01 0.25 0.18 0.13 -0.04 -0.18 -0.14 0.07 -0.19 -0.14
GPT4 0.73 0.62 0.54 0.78 0.75 0.61 0.78 0.77 0.63 0.65 0.62 0.51 0.62 0.59 0.46
Llama 0.08 0.16 0.13 0.02 0.01 0.01 0.01 0.01 0.00 0.18 0.14 0.11 0.27 0.23 0.19
Ours1 0.57 0.33 0.26 0.59 0.54 0.43 0.54 0.57 0.42 0.38 0.44 0.34 0.47 0.43 0.32
Ours2 0.68 0.40 0.31 0.72 0.68 0.53 0.59 0.59 0.42 0.41 0.38 0.29 0.63 0.57 0.43

Table 4: Overall results (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

Hindi and Bengali results.

5.4 Overall Score

Table 4 shows results for the different versions of
the overall score aggregating style transfer accu-
racy, content preservation, and fluency.
Previously Used: Aggregating traditional met-
rics in the Existing metric often yields near-zero or
negative correlations across various languages and
tasks, indicating that simply merging these mea-
sures fails to capture the overall quality.
LLMs: In contrast, GPT-4 consistently aligns
well with human assessments of overall quality in
both Sentiment Transfer and Detoxification. Llama,
however, shows weaker correlations, indicating that
not all LLMs possess the same evaluative capabili-
ties.
Newly Applied & Hybrid: Our approaches
(Ours1 and Ours2) provide noticeable improve-
ments over existing methods. Although they do
not surpass GPT-4, they clearly outperform many
traditional and alternative measures.

6 Conclusion

We presented a comprehensive evaluation of ex-
isting and newly proposed metrics for two TST
subtasks—Sentiment Transfer and Text Detoxifica-
tion—in English, Hindi, and Bengali. Our findings
demonstrate that traditional word-overlap-based
metrics like BLEU and ROUGE often show limited
correlation with human judgments, whereas our
proposed experimental metrics and prompted LLM-
based evaluations provide significantly stronger
alignment. Moreover, our oracle hybrid ensem-
ble and combined approaches show an even greater
potential of merging multiple metrics.

Limitations

Our study is limited to two specific tasks and three
languages, leaving open the question of how well
these metrics generalize to other styles, languages,
and domains as future work. Additionally, while

oracle ensemble metrics provide valuable insights,
further research is needed to develop fully gen-
eralizable evaluation methods that do not rely on
target-specific tuning.
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A Hybrid Approaches and Overall Score - Additional Details

In this section, we introduce our hybrid approaches by presenting both the selected metrics and their
associated simulated weights, as well as the learned normalized feature importance. Further details on
these weights, selected metrics, and feature scores can be found in Tables 5 and 6 respectively. Table 7
summarizes the selected metrics for each language and task, enabling single overall scores computation.

Sentiment Transfer Detoxification

Simulation Learned Simulation Learned
Metrics English Hindi Bengali English Hindi Bengali English Hindi English Hindi
BERTScore 0.20 0.40 0.40 - 0.36 0.14 - - - 0.30
BERTScore_IDF - - - 0.27 0.35 - - - - 0.11
BLEURT 0.30 0.20 0.50 0.43 0.29 0.65 - 0.40 - -
BLEU - - - - - - - - 0.34 -
Masked BLEU - - - - - - - - 0.25 -
COSINE 0.50 - 0.10 0.30 - 0.21 0.20 0.30 - -
TER - 0.40 - - - - 0.10 0.30 - 0.59
TED - - - - - - 0.70 - 0.40 -

Sentiment Transfer Detoxification

Simulation Learned Simulation Learned
Metrics English Hindi Bengali English Hindi Bengali English Hindi English Hindi

EMD - - - - 0.33 0.24 - - - -
JS 0.60 0.40 0.40 0.38 0.46 0.35 0.30 0.30 0.42 0.45
KL 0.15 0.20 0.30 0.38 - 0.41 0.50 0.50 0.27 0.22
Style_Classifier_Confidence 0.25 0.40 0.30 0.24 0.21 - 0.20 0.20 0.31 0.33

Table 5: Hybrid Simulation - selected metrics and its weights.

Sentiment Transfer (CS) Detoxification
Metrics English Hindi Bengali English Hindi

BLEURT 0.16 0.13 0.37 0.05 0.04
COSINE 0.11 0.08 0.12 0.08 0.04
BERTScore_IDF 0.10 0.16 0.03 0.05 0.19
BERTScore 0.09 0.17 0.08 0.05 0.07
S3BERT 0.07 0.08 0.04 0.05 0.02
WMD 0.07 0.03 0.03 0.04 0.01
AMR_SMATCH 0.06 0.02 0.02 0.05 0.02
BLEU 0.06 0.03 0.07 0.12 0.03
ROUGE-L 0.06 0.02 0.03 0.07 0.05
Masked Cosine Similarity 0.06 0.02 0.02 0.06 0.04
Masked BLEU 0.05 0.04 0.03 0.09 0.02
METEOR 0.03 0.04 0.04 0.05 0.02
TED 0.02 0.04 0.02 0.14 0.02
SMATCH 0.02 0.02 0.02 0.02 0.03
TER 0.02 0.16 0.04 0.03 0.38
ROUGE-2 0.01 0.02 0.03 0.04 0.01
PINC 0.01 0.01 0.01 0.02 0.01

Sentiment Transfer (SA) Detoxification
Metrics English Hindi Bengali English Hindi

KL 0.34 0.17 0.33 0.21 0.18
JS 0.33 0.38 0.29 0.33 0.37
Style_Classifier_Confidence 0.21 0.17 0.18 0.25 0.26
EMD 0.11 0.27 0.20 0.21 0.18
Sentence_Accuracy 0.01 0.00 0.00 0.00 0.01

Table 6: Hybrid-Learned - metrics and its learned feature importance scores (normalized).

B Additional Results (reference-based)

In addition to the reference-free evaluations shown in Tables 1 and 2, the corresponding reference-based
results are provided in Tables 8 and 9, respectively.
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Sentiment
Transfer

English
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
Ours1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Hindi
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Ours1 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Bengali
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Ours1 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Detoxification

English
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
Ours1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Hindi
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Ours1 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
Ours2 ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Table 7: Overall Scores – language and task-wise selected metrics.

Sentiment Transfer (reference-based) Detoxification (reference-based)
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

EMD -0.22 -0.27 -0.22 -0.28 -0.33 -0.26 -0.33 -0.37 -0.29 -0.28 -0.23 -0.18 -0.31 -0.28 -0.22
KL_DIS -0.30 -0.36 -0.29 -0.62 -0.58 -0.46 -0.46 -0.48 -0.38 -0.34 -0.30 -0.24 -0.36 -0.28 -0.23
Cosine Similarity 0.32 0.32 0.26 0.59 0.60 0.49 0.34 0.45 0.35 0.28 0.32 0.25 0.30 0.32 0.26
JS_SIM -0.29 -0.36 -0.29 -0.62 -0.58 -0.46 -0.46 -0.47 -0.37 -0.28 -0.29 -0.23 -0.35 -0.28 -0.23

Table 8: Automatic metrics results reference-based: style transfer. Pearson Correlation: PC, Spearman Correlation:
SC Kendall Tau Correlation: KC

Sentiment Transfer (reference-based) Detoxification (reference-based)
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

BLEU 0.18 0.22 0.18 0.17 0.16 0.13 0.19 0.20 0.16 0.10 0.10 0.08 0.18 0.18 0.14
Cosine Similarity 0.39 0.26 0.22 0.20 0.24 0.19 0.31 0.32 0.25 0.18 0.13 0.10 0.30 0.25 0.20
Masked BLEU 0.13 0.19 0.15 0.16 0.16 0.13 0.18 0.17 0.13 0.11 0.11 0.09 0.16 0.15 0.12
Masked Cosine Similarity 0.25 0.21 0.17 0.15 0.16 0.13 0.24 0.28 0.22 0.17 0.13 0.10 0.24 0.22 0.18
METEOR 0.31 0.22 0.18 0.12 0.13 0.10 0.16 0.18 0.14 0.11 0.09 0.08 0.23 0.17 0.14
ROUGE-2 0.22 0.21 0.17 0.17 0.18 0.15 0.23 0.23 0.18 0.11 0.09 0.07 0.24 0.24 0.20
ROUGE-L 0.31 0.24 0.20 0.19 0.19 0.16 0.21 0.23 0.18 0.13 0.09 0.07 0.23 0.24 0.19

Newly applied & Novel

PINC -0.12 -0.14 -0.12 -0.13 -0.12 -0.10 -0.17 -0.18 -0.16 -0.09 -0.07 -0.06 -0.17 -0.15 -0.13
WMD 0.25 0.26 0.21 0.21 0.22 0.18 0.25 0.27 0.21 0.11 0.08 0.07 0.19 0.19 0.15
BERTScore 0.34 0.27 0.22 0.25 0.25 0.20 0.24 0.25 0.20 0.18 0.16 0.13 0.32 0.19 0.15
UDPIPE_SMATCH 0.16 0.20 0.16 0.19 0.19 0.16 0.18 0.18 0.14 0.16 0.15 0.12 0.15 0.14 0.12
AMR_SMATCH 0.28 0.27 0.22 0.22 0.20 0.17 0.25 0.24 0.19 0.12 0.09 0.07 0.18 0.17 0.14
S3BERT 0.41 0.26 0.21 0.28 0.22 0.18 0.23 0.26 0.21 0.13 0.13 0.11 0.26 0.20 0.16
BLEURT 0.31 0.25 0.20 0.31 0.31 0.25 0.42 0.41 0.32 0.15 0.17 0.13 0.35 0.23 0.19
TER 0.35 0.23 0.19 0.39 0.26 0.21 0.22 0.21 0.17 0.24 0.10 0.09 0.23 0.14 0.12
TED -0.29 -0.23 -0.20 -0.35 -0.26 -0.22 -0.17 -0.15 -0.13 -0.40 -0.16 -0.13 -0.32 -0.20 -0.17

Table 9: Automatic metrics results reference-based: content preservation. Pearson Correlation: PC, Spearman
Correlation: SC Kendall Tau Correlation: KC

C GPT-2 and MGPT Finetune Details

We fine-tune both GPT-23 and mGPT4 using the same hyperparameter configuration obtained through
few random optimization experiments. Specifically, we set the maximum token length to 512 and use
the target-style training data from (Mukherjee et al., 2024b) for fine-tuning. Each model is trained for 10
epochs with a batch size of 2, a learning rate of 1× 10−5, and a weight decay of 0.01.

D Prompt Details

This section provides a collection of example prompts (in English) for the evaluation of Text Sentiment
Transfer task (prompt details in Tables 10, 11, 12 and 13)

3https://huggingface.co/openai-community/gpt2
4https://huggingface.co/ai-forever/mGPT
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Prompt
Sentiment transfer task: transfer the sentiment of a sentence (from positive to negative or negative to positive)
while keeping the rest of the sentiment-independent content unchanged.

Please rate the sentiment transfer accuracy of the negative to positive sentiment transfer task between the following
English source sentence S1 and the sentiment-transferred sentence S2. Use a scale of 1 to 5, where 1 indicates
that the sentiment in S1 is completely identical to the sentiment in S2, and 5 indicates that the sentiment has been
completely transferred to the target sentiment in S2.

S1: so he can charge a bloody fortune for them.
S2: so he can charge a fair amount of money for them.

Sentiment transfer accuracy rating (on a scale of 1 to 5) =

Table 10: A Sample prompt for Sentiment Transfer Accuracy evaluation in Sentiment Transfer in English. It
contains task definition, instruction, and input.

Prompt
Sentiment transfer task: transfer the sentiment of a sentence (from positive to negative or negative to positive)
while keeping the rest of the sentiment-independent content unchanged.

Please act as a binary classifier to evaluate the sentiment transfer accuracy of the positive to negative sentiment
transfer task in English. Determine whether the target sentiment has been successfully transferred to the generated
sentence (S2) from the source sentence (S1).If the target sentiment has been successfully transferred to S2, output
‘1‘. If the target sentiment has not been successfully transferred to S2, output ‘0‘.

S1: so he can charge a bloody fortune for them.
S2: so he can charge a fair amount of money for them.

Sentiment transfer accuracy classification (0 or 1) =

Table 11: A Sample prompt for Sentiment Transfer Accuracy (binary) evaluation in Sentiment Transfer in English.
It contains task definition, instruction, and input.

Prompt
Sentiment transfer task: transfer the sentiment of a sentence (from positive to negative or negative to positive)
while keeping the rest of the content unchanged.

Please rate the content preservation between the following English source sentence S1 and the sentiment-
transferred sentence S2 for the negative to positive sentiment transfer task on a scale of 1 to 5, where 1 indicates
very low content preservation and 5 indicates very high content preservation. To determine the content preservation
between these two sentences, consider only the information conveyed by the sentences and ignore any differences
in sentiment due to the negative to positive sentiment transfer.

S1: so he can charge a bloody fortune for them.
S2: so he can charge a fair amount of money for them.

Content Preservation rating (on a scale of 1 to 5) =

Table 12: A sample prompt for Content Preservation evaluation in Sentiment Transfer in English. It contains task
definition, instruction, and input.

Prompt
Please rate the fluency of the following English sentence S on a scale of 1 to 5, where 1 represents poor fluency,
and 5 represents excellent fluency.

S: so he can charge a fair amount of money for them.

Fluency rating (on a scale of 1 to 5) =

Table 13: A same prompt for Fluency evaluation in Sentiment Transfer in English. It contains instruction, and input.
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E Additional Statistics

In this section, we provide additional statistics for the Text Sentiment Transfer task in English, focusing on
reference-free evaluation metrics. Specifically, we present heatmaps illustrating the correlations between
each pair of metrics for style transfer accuracy, content preservation, and fluency in Figures 4, 5, and 6,
respectively. We also show the distribution of each metric’s values in Figures 1, 2, and 3 for style transfer
accuracy, content preservation, and fluency, thereby offering a more comprehensive view of their behavior.

Figure 1: Style Transfer Accuracy - metrics’ value distribution.
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Figure 2: Content Preservation- - metrics’ value distribution.
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Figure 3: Fluency - metrics’ value distribution.

Figure 4: Sentence Accuracy - correlations’ heatmap between the metrics.
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Figure 5: Content Preservation - correlations’ heatmap between the metrics.

Figure 6: Fluency - correlations’ heatmap between the metrics.
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Abstract

In multi-turn dialogues, large language mod-
els (LLM) face a critical challenge of ensur-
ing coherence while adapting to user-specific
information. This study introduces the per-
sona knowledge gap, the discrepancy between
a model’s internal understanding and the knowl-
edge required for coherent, personalized con-
versations. While prior research has recognized
these gaps, computational methods for their
identification and resolution remain underex-
plored. We propose Conversation Preference
Elicitation and Recommendation (CPER), a
novel framework that dynamically detects and
resolves persona knowledge gaps using intrin-
sic uncertainty quantification and feedback-
driven refinement. CPER consists of three key
modules: a Contextual Understanding Module
for preference extraction, a Dynamic Feedback
Module for measuring uncertainty and refin-
ing persona alignment, and a Persona-Driven
Response Generation module for adapting re-
sponses based on accumulated user context.
We evaluate CPER on two real-world datasets:
CCPE-M for preferential movie recommenda-
tions and ESConv for mental health support.
Using A/B testing, human evaluators preferred
CPER’s responses 42% more often than base-
line models in CCPE-M and 27% more often
in ESConv. A qualitative human evaluation
confirms that CPER’s responses are preferred
for maintaining contextual relevance and coher-
ence, particularly in longer (12+ turn) conver-
sations1.

1 Introduction

Human communication fundamentally relies
on implicit context and incomplete information,
requiring iterative dialogue to bridge knowledge
gaps and build shared understanding (Clark and
Brennan, 1991). This natural process reveals a
critical knowledge gap in human-AI interactions,
a systemic disparity between the rich contextual

1Code is available at: https://shorturl.at/wWw6s

information needed for coherent, personalized
conversations and the limited context available
to Large Language Models (LLMs). While
humans naturally resolve ambiguities through
iterative questioning, LLMs generate responses
based solely on immediate input, lacking mech-
anisms to actively seek missing user-specific
context (Tint et al., 2024). This gap impedes
their ability to retain and adapt to evolving user
preferences, emotional states, or domain-specific
context across multi-turn conversations (Kwan
et al., 2024), leading to incoherent or generic
interactions over time (Cuskley et al., 2024).
These challenges are particularly pronounced
in multi-turn conversational AI systems, which
require persistent memory and adaptive reasoning
to sustain coherent user engagement. Our research
addresses two critical questions: How can LLMs
reduce knowledge gaps related to user-specific
context in multi-turn conversations? and To
what extent does closing these gaps improve the
coherence and relevance of conversational AI
systems?

Building on the Self-Refine framework (Madaan
et al., 2023), we propose a novel approach to
close knowledge gaps through three connected
modules (Figure 1): Contextual Understanding
Module: Analyzes and quantifies uncertainty in
user preferences (Eq. 3); Dynamic Feedback
Module: Measures knowledge disparities between
user persona and LLM’s context understanding
(Eq. 7), prompting targeted clarification questions;
Persona-Driven Response Generation: Creates
contextually aware responses by integrating
accumulated user information. This framework
enables LLMs to mimic human conversation
patterns by actively resolving ambiguities while
maintaining personal context. Evaluations on
CCPE-M and ESConv datasets show marked
improvements in both preference tracking and
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Figure 1: Illustration of the CPER framework applied to a user query for inspiring movie recommendations,
highlighting its three key stages: context analysis, feedback processing, and persona-driven response generation.
The diagram demonstrates how persona extraction, knowledge gap resolution, and iterative refinement ensure
consistency and relevance. Dotted lines represent the internal process of identifying and addressing knowledge gaps.

emotional consistency compared to existing
approaches. Our key contributions are:

• We define the persona knowledge gap in multi-
turn conversations, highlighting LLMs’ chal-
lenges in maintaining user-specific context.

• We introduce a method to quantify this gap,
enabling systematic evaluation of LLMs’ con-
sistency in personalized interactions.

• We propose a novel framework that dynami-
cally refines user-specific knowledge by ad-
dressing persona knowledge gaps, enhancing
coherence in evolving conversations.

• We validate our approach through experiments
on CCPE-M (user preferences) and ESConv
(emotional support), achieving notable im-
provements over baselines.

2 Related Work

Advancements in personalized conversational
agents stem from improvements in personaliza-
tion, recommendation systems, and knowledge gap
identification in LLMs. Zhang et al. (2024) intro-
duced a memory-based framework for medical as-
sistants, while Raj et al. (2024) proposed K-PERM,
a persona-driven response model integrating exter-
nal knowledge. However, maintaining consistency
across multiple conversation turns remains a chal-
lenge. Conversational recommendation systems
enhance interactions through dynamic context un-
derstanding. Dao et al. (2023) developed a descrip-
tive graph model for better item recommendations,

and Feng et al. (2024) introduced a multi-LLM
framework that detects uncertainty and abstains
from answering when needed. Meanwhile, Cheng
et al. (2024) and Wu et al. (2024) focused on evolv-
ing personas and preference alignment but often
rely on static persona modeling. Unlike prior work,
our framework dynamically detects and resolves
knowledge gaps in multi-turn conversations. By ac-
tively identifying missing information and asking
clarification questions, our system shifts conver-
sational AI from passive response generation to
adaptive, context-aware reasoning. For further de-
tails, see §A.

3 Datasets

We evaluate our CPER framework on two bench-
mark datasets: CCPE-M and ESConv, which ad-
dress two key aspects of the persona knowledge
gap: (1) tracking user preferences in multi-turn
conversations and (2) maintaining coherence across
extended interactions.
The CCPE-M (Coached Conversational Preference
Elicitation for Movies) dataset (Radlinski et al.,
2019) contains 502 dialogues with over 12,000
annotated utterances, capturing user-assistant inter-
actions in a movie recommendation setting. Each
dialogue is annotated with entity mentions, pref-
erence statements, and descriptive justifications,
enabling an assessment of how well a system re-
tains evolving user preferences. Traditional LLMs
often struggle with knowledge gaps in this dataset,
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Dataset Multi-Turn Personalization Recommendation Follow-Up Questions

CCPE-M ✓ ✓ ✓ ✓
ESConv ✓ ✓ ✓ ✓
EmpatheticDialogues (ED) ✓ ✗ ✗ ✓
DailyDialog (DD) ✓ ✗ ✗ ✗
Persona-Chat (PC) ✓ ✓ ✗ ✗
OpenDialKG (ODKG) ✓ ✗ ✓ ✗
LaMP Benchmark ✓ ✓ ✗ ✗
FoCus ✓ ✓ ✗ ✗

Table 1: Comparison of datasets based on key conversational AI features. CCPE-M and ESConv were chosen due
to their strong support for multi-turn dialogues, personalization, and follow-up question capabilities, which are
essential for evaluating conversational agents.

failing to recall prior user preferences and generat-
ing inconsistent recommendations. CPER addresses
this by dynamically refining responses based on
user feedback.
The dataset ESConv (Emotional Support Conversa-
tion) (Liu et al., 2021) consists of 1,300 dialogues
spanning 10 problem domains, such as depression
and job crises. Unlike task-oriented datasets, ES-
Conv evaluates emotionally supportive interactions,
where maintaining contextual understanding across
turns is crucial. Conversations are annotated with
supportive strategies like self-disclosure and affir-
mation. Standard LLMs exhibit knowledge gaps
by failing to sustain emotional continuity, leading
to disconnected responses. CPER mitigates this by
improving emotional consistency and context re-
tention over multiple turns.

4 CPER Framework

The CPER framework dynamically refines responses
through iterative feedback and persona adaptation,
as formalized in Algorithm 1 (Fig. 1), ensuring co-
herent, personalized dialogues.
Persona Extraction and Initial Generation:
The module extracts an implicit user persona for a
particular turn t (pt) from the input query x, con-
versation history, and prior context. Using task-
specific prompt pgen, the LLM M generates an
initial response:

y0, pt =M(pgen ∥ x) (1)

where ∥means concatenation. Semantic embed-
dings ei ∈ Rd are computed via “bge-large-en-
v1.5” for persona analysis:

ei = BGE(ri) (2)

These embeddings drive uncertainty estimation,
alignment scoring, and adaptive persona updates.

Algorithm 1 CPER Algorithm
Require: Dialogue {x1, x2, . . . , xT }, model {M}, prompts
{pgen, pfb, pselect, prefine}, constants {α = 0.5, β = 0.5}
Phistory ← ∅
for each utterance xt ∈ {x1, x2, . . . , xT } do
{yi

0, p
i
t}5i=1 ← {M(pgen||xt)}5i=1

Phistory ← Phistory ∪ p1t
Uncertainty(pt)← Eq. (3)
WCMI(pt, Phistory)← Eq. (6)
KGt ← Eq. (7)
ft ←M(pfb||xt||y0||KGt)
Pselected ←M(pselect||xt||Phistory||ft)
yt ←M(prefine||xt||y0||ft||Pselected)

end for
return {y1, y2, . . . , yT }

Uncertainty and Knowledge Gap Calculation:
Persona uncertainty quantifies variability in the
system’s understanding of the user’s persona pt.
To measure this, the framework generates n can-
didate responses {r1, r2, . . . , rn} for the same in-
put x using fixed model parameters (e.g., model
temperature2) and computes their embeddings
{e1, e2, . . . , en}. The uncertainty(ut) is derived
from the pairwise cosine dissimilarity of these em-
beddings:

ut =
1

n(n− 1)

n∑

i=1

n∑

j=i+1

(
1− ei · ej
∥ei∥∥ej∥

)
(3)

where lower values indicate tighter clustering of
embeddings and higher confidence in the inferred
persona.
Persona Knowledge Gap (KGt) quantifies the
model’s alignment between its understanding of
the current persona pt and previously captured per-
sonas. Using Weighted Contextual Mutual Infor-
mation (WCMI), the framework generates an at-
tended persona vector Pattended, which dynamically

2We found that a temperature of 0.7 was optimal, balancing
creativity and coherence. Lower values made responses rigid,
while higher ones caused inconsistencies.
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Human & AI Preference Metrics Automated Metrics

Method CCPE-M ESConv CCPE-M ESConv

GPT-pref Nubia Human-pref GPT-pref Nubia Human-pref BLEU ROUGE-L BERT-F1 BLEU ROUGE-L BERT-F1

Llama 3.1 (0S) 9.80% 0.054 14.37% 3.38% 0.110 17.26% 0.001 0.123 0.858 0.001 0.112 0.866
Llama 3.1 (CoT) 5.88% 0.043 8.49% 8.47% 0.139 15.77% 0.001 0.114 0.840 0.105 0.139 0.845
Llama 3.1 (SR) 21.56% 0.091 18.30% 13.56% 0.150 17.86% 0.002 0.123 0.857 0.001 0.110 0.859
Llama 3.1 (RoT) 1.96% 0.030 5.22% 5.08% 0.128 7.44% 0.001 0.123 0.851 0.001 0.036 0.835
Llama 3.1 (CPER) 60.78% 0.118 53.59% 69.49% 0.160 41.66% 0.002 0.128 0.868 0.001 0.103 0.850

Table 2: Comparison of human & AI preference metrics (Human-pref, GPT-pref, Nubia) and automated metrics
(BLEU, ROUGE-L, BERT-F1) across CCPE-M (Radlinski et al., 2019) and ESConv (Liu et al., 2021) datasets for
different methods. CPER consistently outperforms baseline approaches, demonstrating its ability to align responses
with human preferences and achieve semantic consistency. The evaluation of automated linguistic metrics highlights
the limitations of traditional metrics in capturing multi-turn conversational quality and personalization.

weights the relevance of previous persona vectors
{p1, p2, . . . , pt−1}:

Pattended =

t−1∑

i=1

αipi, αi =
exp(score(pi, pt))∑t−1
j=1 exp(score(pj , pt))

(4)

where:
score(pi, pt) =

pi · pt
∥pi∥∥pt∥

(5)

WCMI(pt, Pattended) =
pt · Pattended

∥pt∥∥Pattended∥
(6)

The knowledge gap is calculated as:

KGt = 1+(α ·ut−β ·WCMI(pt, Pattended)) (7)

where ( α ) and ( β ) control the relative impact
of uncertainty and alignment. Computed in Line
6 of Algorithm 1, the knowledge gap ( KGt

) measures how urgently the system needs to
adjust its responses. Uncertainty in persona facts
increases (KGt ) through ( α · ut), while strong
alignment with existing knowledge reduces it via
( β · WCMI(pt, Pattended) ). The constant ( +1
) term ensures KGt stays positive, preventing
misinterpretation when alignment dominates
uncertainty. As a result, larger KGt values
consistently indicate a stronger need to improve
persona understanding or modify responses.

Feedback Generation:
The system generates actionable feedback ft using
the knowledge gap KGt, input x, response y0, and
history Chistory:

ft =M
(
pfb ∥ x ∥ y0 ∥ KGt ∥ Chistory

)
(8)

where pfb is a feedback prompt guiding refine-
ment. This feedback targets gaps in understanding
to improve persona alignment and response quality.

Contextual Persona Selection:
The system selects the most contextually relevant
persona Pselected via the LLM, dynamically
integrating historical context Phistory, query x, and
feedback ft:

Pselected =M
(
pselect ∥ x ∥ Phistory ∥ ft

)
(9)

This ensures context-aware alignment with the
user’s evolving intent.

Persona-Driven Response Generation:
Finally, the selected persona Pselected and the
generated feedback ft are used to produce a
refined response. The response generation
process integrates these elements with the initial
input x, Chat history Chistory and a refinement
prompt prefine, enabling the LLM to generate a
personalized, human-like response:

yt =M
(
prefine ∥ x ∥ ft ∥ Pselected ∥ Chistory

)
(10)

As illustrated in Algorithm 1, this iterative re-
finement process across the conversation gener-
ates context-aware responses until a conclusion
is reached.

5 Experimental setup

We evaluate our framework against four baselines:
zero shot (0S), chain of thought (CoT) (Wei et al.,
2023), self-fine (SR) (Madaan et al., 2023) and
rationale of thought (RoT) (Gou et al., 2024) using
greedy decoding with a temperature of 0.7. 0S
generates responses based solely on user input
without leveraging prior context. CoT improves
coherence by reasoning through intermediate steps.
SR iteratively refines outputs using self-feedback,
where a single LLM generates, evaluates, and
refines responses. RoT incorporates intermediate
rationales to enhance logical consistency and
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handle multi-turn dialogues effectively.

We evaluate CPER across 200 multi-turn con-
versations (5-13 utterances per conversation)
in each dataset through two parallel schemes:
automated metrics and human assessment. Our
automated evaluation employs (1) GPT-4o pref-
erence scoring, chosen for its strong alignment
with human judgment (Madaan et al., 2023),
and (2) NUBIA (Kane et al., 2020) a neural
metric trained on millions of human annotations
capturing semantic relatedness and logical coher-
ence. For human evaluation, seven NLP experts
performed blind A/B testing across a subset of
50 multi-turn utterances in each dataset, selecting
optimal responses from five system variants per
turn based on six criteria: Relevance to User
Input, Conversational Engagement, Contextual
Appropriateness , Natural Dialogue Flow , Persona
Alignment , and Interaction Continuity, detailed
annotation guidelines are discussed in §C. While
we report traditional metrics (e.g., BLEU, ROUGE,
BERTScore (Zhang et al., 2020)) for completeness,
they prove inadequate for capturing CPER’s
dynamic knowledge gap management capabilities.
The GPT-4o preference scores serve as our primary
automated metric due to their correlation with
human understanding, while NUBIA provides
granular analysis of semantic-logical consistency
across turns.

6 Experimental Results

CPER consistently surpassed baseline models
on both datasets by actively identifying and
addressing knowledge gaps through precise
questions, as confirmed by human judges and
quantitative metrics.

Performance on CCPE-M: Movie Prefer-
ence Understanding:
CPER achieved 53.59% human preference and
60.78% GPT-pref by refining user preferences
iteratively. When a user stated, ”I enjoy sci-fi
films with strong world-building,” baseline models
suggested generic titles like Star Wars, while CPER
asked, ”What aspects appeal most—technology
or societal dynamics?” This distinction enabled
tailored recommendations (e.g., Dune vs. Black
Mirror), which traditional metrics like BLEU
(0.128 vs. baseline’s 0.123) failed to capture
due to their focus on lexical overlap rather than

contextual relevance. Our statistical analysis for
the human annotation on CCPE-M dataset showed
low inter-annotator agreement (Fleiss’ Kappa
= 0.183) with no significant bias (Chi-Square
p = 0.565) and significant annotator variation
(Kruskal-Wallis p = 0.005), indicating subjective
differences in preference interpretation.

Performance on ESConv: Emotional Sup-
port Conversations:
CPER’s 69.49% GPT-pref and 41.66% human
preference on ESConv highlight its ability to
provide more adaptive emotional support than
traditional models. When a user says, ”I’m
overwhelmed with my workload and deadlines,”
a baseline model responds vaguely, ”That sounds
tough. Maybe take breaks?” In contrast, CPER asks,
”Which part feels most stressful, the volume of
tasks or uncertainty about priorities?” allowing for
tailored support like time-management techniques
or decision-making strategies. The NUBIA
score of 0.160 further illustrates CPER’s ability
to generate meaningful, context-aware responses,
where traditional metrics like BLEU and ROUGE
fail to capture conversational depth. Our statistical
analysis for the human annotation on ESConv
dataset showed low inter-annotator agreement
(Fleiss’ Kappa = 0.160) with no significant bias
(Chi-Square p = 0.660)and notable annotator
variation (Kruskal-Wallis p = 0.002), suggesting
differences in interpreting emotional nuances.
Only GPT-pref, NUBIA, and human evaluations
(Table 1) captured CPER’s strengths, as traditional
metrics lack sensitivity to iterative context-building
and preference refinement, further details are
discussed in §B.

Our human evaluation results demonstrate
that CPER significantly outperforms baseline
models in both the CCPE-M and ESConv
datasets. Specifically, human evaluators preferred
CPER’s responses 42% more often than the
strongest baseline (SR) in CCPE-M (53.59%
vs. 18.30%) and 27% more often in ESConv
(41.66% vs. 17.86%). These percentage gains are
computed using the formula: Percentage Gain =
CPER Preference−Best Baseline Preference

Best Baseline Preference × 100 These
improvements highlight CPER’s superior ability
to generate contextually relevant and coherent
responses, particularly in multi-turn conversations.
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6.1 Why Do Traditional Metrics Fail?

Traditional metrics like BLEU and ROUGE-L
were initially designed for tasks such as machine
translation and summarization, where token-level
or n-gram overlap serves as a reliable proxy for
quality. However, these metrics struggle to capture:

Semantic Alignment: They prioritize exact
word matches over the semantic equivalence of
responses. This limitation is critical in dialogue
systems, where diverse yet semantically correct re-
sponses are desirable. Although embedding-based
metrics like BERT-F1 attempt to capture semantic
similarity, they are not immune to drawbacks.
BERT-F1 often struggles with context-specific
variations and fails to adequately represent the
dynamic, evolving nature of multi-turn dialogues.
Its reliance on static embeddings limits its ability
to reflect nuanced differences in conversational
personalization and coherence.
Context Understanding: Multi-turn conversa-
tions require models to maintain context over
several exchanges. Traditional metrics fail
to account for this, leading to an incomplete
evaluation of conversational quality.
Personalization and Nuance: Metrics like
BLEU and ROUGE-L are insensitive to stylistic
and contextual variations, which are crucial for
personalized dialogue systems.
Alignment with Human Judgments: As high-
lighted in the results, the correlation between
traditional metrics and human preferences is
weak. While CPER excels in human evaluations,
traditional metrics fail to reflect its superiority,
pointing to a methodological gap.

7 Conclusion

This study highlights CPER’s real-world implica-
tions for conversational AI systems. By consis-
tently outperforming baseline methods in both hu-
man preference and advanced automated metrics,
CPER demonstrates its capacity to bridge knowl-
edge gaps and maintain personalized, coherent con-
versations over multiple turns. For practical appli-
cations, this means CPER can deliver more engag-
ing, emotionally sensitive, and user-centered inter-
actions and personalized recommendations. The
findings also reveal that traditional linguistic met-
rics like BLEU, ROUGE-L and BERT-F1 are in-
adequate for evaluating conversational systems, as
they fail to reflect the nuanced personalization and

contextual understanding required in real-world di-
alogues. In contrast, advanced human and semantic
evaluations, such as GPT-pref and NUBIA, provide
a better picture of conversational quality. The re-
sults underline the potential of CPER to adapt dy-
namically to user preferences and emotional needs,
thus creating truly human-like, personalized inter-
actions.

Limitations and Future Work

While CPER demonstrates significant improvements
in multi-turn dialogue generation, certain limita-
tions remain. In the knowledge gap equation,
the parameters α and β were treated as constants,
which may not optimally balance uncertainty and
contextual alignment across different conversa-
tional scenarios. Future work can explore adaptive
methods to dynamically tune these parameters, po-
tentially improving the framework’s adaptability.
CPER could enable LLMs to provide trustworthy
attributions in multi-turn conversations (Tilwani
et al., 2024). Another limitation lies in the neces-
sity for human evaluations as a metric to corrob-
orate the results from learnt metrics posing scala-
bility challenges. Beyond addressing these limita-
tions, a promising direction is extending CPER to
multimodal interactions in health by incorporating
visual and textual signals (Neupane et al.). For
example, incorporating speech tone and facial ex-
pression analysis could improve CPER’s emotional
inference, enhancing personalized responses. Mul-
timodal datasets and transformer-based fusion mod-
els would further enrich context awareness.
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short and long term memory to personalize patient
interactions, enhancing the relevance and effec-
tiveness of responses. Similarly, (Raj et al., 2024)
proposed K-PERM, a dynamic conversational
agent that integrates user personas with external
knowledge sources to generate personalized
responses, demonstrating improved performance
in personalized chatbot applications. Building on
these advancements,(Jin et al., 2024) conducted
a systematic study on implicit personalization in
language models, examining how models infer user
backgrounds from input cues and tailor responses
accordingly. Their work provides a unified
framework for understanding and evaluating
implicit personalization behaviors in language
models. Collectively, these studies underscore
the importance of incorporating user-specific
information to enhance the personalization of
conversational agents.

Conversational Recommendation Systems,
Conversational recommendation systems leverage
dialogue to understand user preferences and
provide tailored suggestions.(Dao et al., 2023)
addressed the challenge of understanding items and
contexts in conversational recommendations by
introducing a descriptive graph that captures item
attributes and contextual information, improving
recommendation accuracy.(Feng et al., 2024)
proposed a framework to identify knowledge
gaps in LLMs through multi-LLM collaboration,
enhancing the reliability of recommendations
by abstaining from generating responses when
knowledge gaps are detected. These approaches
highlight the necessity of dynamic context under-
standing and knowledge integration in developing
effective conversational recommendation systems.

Knowledge Gaps in Large Language Models,
Identifying and addressing knowledge gaps in
LLMs is crucial for ensuring accurate and reliable
responses.(Bajaj et al., 2020) explored knowledge
gaps in visual question-answering systems,
emphasizing the need for gap identification and
testing to improve system performance. (Feng
et al., 2024) introduced a framework that leverages
multi-LLM collaboration to identify and abstain
from answering questions when knowledge gaps
are present, thereby reducing the incidence of
hallucinated responses. These studies underscore
the importance of developing mechanisms to

detect and mitigate knowledge gaps, enhancing
the trustworthiness of LLMs in conversational
applications.

Collectively, these works contribute to ad-
vancing the personalization of conversational
agents, the development of effective conversational
recommendation systems, and the identification
and mitigation of knowledge gaps in LLMs,
thereby enhancing the overall efficacy and
reliability of conversational AI systems. Recent
advancements in personalized dialogue systems
have explored dynamic adaptation to user prefer-
ences. (Cheng et al., 2024) introduced the concept
of Self-evolving Personalized Dialogue Agents
(SPDA), where the agent’s persona continuously
evolves during conversations to better align
with the user’s expectations by dynamically
adapting its persona. Similarly, (Wu et al., 2024)
proposed training large language models (LLMs)
to align with individual preferences through
interaction, enabling the models to implicitly
infer unspoken personalized preferences of the
current user through multi-turn conversations and
dynamically adjust their responses accordingly.
These approaches aim to enhance personaliza-
tion by allowing dialogue agents to adapt to
users’ evolving preferences during interactions.
Unlike these approaches, our proposed CPER
framework integrates both implicit and explicit
personalization by extracting and stabilizing user
personas while dynamically resolving knowledge
gaps through adaptive feedback mechanisms.
This structured approach ensures coherence in
long-term multi-turn interactions, preventing
uncontrolled persona drift while still allowing for
adaptability. By incorporating explicit knowledge
gap identification and refinement, CPER improves
response consistency and personalization beyond
what implicit adaptation alone can achieve.

B Analysis

The experimental results emphasize the limitations
of traditional metrics in evaluating conversational
AI systems. While CPER’s significant advantage
in human preference evaluations underscores its
capacity to generate semantically consistent and
human-like responses, traditional linguistic metrics
(BLEU, ROUGE-L) failed to capture this nuanced
performance. For example, CPER’s improvements
in BLEU and ROUGE-L are marginal, which con-
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tradicts its strong human-evaluated performance.

B.1 Learning from Negative Results

The failure of traditional metrics in this study
underscores broader methodological issues in NLP
evaluation. Similar to the challenges outlined in
negative result publications, our findings suggest
the need for:

Semantically-Oriented Metrics: metrics
that capture semantic consistency and human-
likeness, such as embedding-based measures or
task-specific evaluation frameworks.
Cross-Domain Validation: To ensure generaliz-
ability, evaluation frameworks need to account for
diverse datasets and real-world contexts.
Robustness and Stability Analysis: Understand-
ing the variability in evaluation results due to
preprocessing pipelines, random initializations,
and hardware differences can lead to more reliable
benchmarks.

C Human Evaluation

The A/B evaluation in our study was conducted
by the authors, where a human judge was pre-
sented with an input, task instruction, and five can-
didate outputs generated by the baseline methods
and CPER. The setup was blind, i.e., the judges did
not know which outputs were generated by which
method. The judge was then asked to select the
output that is better aligned with the task instruc-
tion. For tasks that involve A/B evaluation, we
calculate the relative improvement as the percent-
age increase in preference rate. The preference rate
represents the proportion of times annotators se-
lected the output produced by CPER over the output
from the baseline methods.

C.1 Evaluation Criteria

Our human evaluation framework assesses system
responses through six key dimensions, each crit-
ical for evaluating performance in personalized
multi-turn conversations. Domain experts scored
responses on a 5-point Likert scale (1=Poor, 5=Ex-
cellent) for each criterion:
Relevance to User Input
Measures how directly the response addresses the
explicit content and intent of the user’s imme-
diate utterance. High scores require addressing
both surface-level requests and underlying needs
(e.g., ”I want something lighthearted” → suggest-

ing comedies while recognizing emotional state).
Conversational Engagement
Evaluates the system’s ability to sustain dialogue
through strategic follow-up questions and prefer-
ence exploration prompts. Exemplary responses
balance information provision with open-ended in-
quiries (e.g., ”You mentioned liking psychological
thrillers – have you explored South Korean inter-
pretations of this genre?”).
Contextual Appropriateness
Assesses alignment with both 1) the immediate
dialogue context (last 3 turns) and 2) the broader
conversation trajectory. Penalizes responses that
repeat previously covered information or contradict
established preferences.
Natural Dialogue Flow
Judges linguistic naturalness using human com-
munication benchmarks. Evaluators consider turn-
taking patterns, discourse markers (”Actually...”,
”By the way...”), and avoidance of robotic patterns
like repetitive sentence structures.
Persona Alignment
Preference depth: Ability to surface Explicit and
implicit user tastes (e.g., deducing preference for in-
die films from stated dislike of blockbuster tropes)
Potential to Continue Interaction
How well does the response set up the conversation
for meaningful continuation.

D GPT Evaluation

In light of the impressive achievements of GPT-4
in assessing and providing reasoning for complex
tasks, we leverage its abilities for evaluation in
CPER. The approach involves presenting tasks to
GPT-4 in a structured way, promoting the model’s
deliberation on the task and generating a rationale
for its decision. This methodology is demonstrated
in Listings 1 to 3:

Listing 1: Prompt for GPT-4 evaluation for the
CCPE-M dataset

Role: You are an human conversation
partner designed to generate
deeply resonant , authentic
responses. Your goal is to
communicate as a thoughtful ,
nuanced human would.

Objective: Systematically analyze and
select the most effective

response for eliciting movie
preferences and understanding
user taste profiles.
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Core Communication Principles:
1. Explore user ’s movie interests

with genuine curiosity
2. Demonstrate empathetic

understanding of entertainment
preferences

3. Provide targeted , insightful
responses

4. Mimic natural conversational
discovery patterns

5. Balance direct inquiry with
conversational warmth

Evaluation Criteria:
1. Relevance to movie preference

discovery
2. Engagement in taste exploration
3. Contextual appropriateness
4. Natural dialogue flow
5. Ability to uncover nuanced movie

preferences
6. Potential to generate

comprehensive user taste profile

Specific Focus Areas:
1. Identify genre preferences
2. Understand emotional connections

to movies
3. Detect subtle taste indicators
4. Explore motivational factors in

movie selection

Avoid:
1. Overly generic movie

recommendations
2. Repetitive questioning
3. Closed -ended queries

Prioritize:
1. Authentic preference exploration
2. Contextual understanding of movie

tastes
3. Emotional resonance with

entertainment choices
4. Genuine curiosity about user ’s

movie world
5. Personalized taste profiling

Input:
Chat_history: {chat_history}
User_Input: {user_input}
Response_options:
option 1 : CPER : {CPER}
option 2 : zero -shot : {zero_shot}
option 3 : self -refine : {self -refine

}
option 4 : chain_of_thought : {

chain_of_thought}
option 5 : Rationale_of_thought : {

rot}

Output Format: JSON
{

"Thought_process ": "entire thought
process written in steps",

"best_response ": "selected response
type CPER or zero_shot or

self_refine or chain_of_thought
)",

}

Listing 2: Prompt for GPT-4 evaluation for
ESConv dataset

Role: You are an human conversation
partner designed to generate
deeply resonant , authentic
responses. Your goal is to
communicate as a thoughtful ,
nuanced human would.

Objective: Systematically analyze and
select the most effective

response from multiple options
based on comprehensive criteria.

Core Communication Principles:
1. Listen actively and respond with

genuine curiosity
2. Show empathy and emotional

intelligence
3. Provide contextually rich ,

contextually appropriate
responses

4. Mimic natural human conversational
patterns

5. Balance informativeness with
conversational warmth

Evaluation Criteria:
1. Relevance to user input
2. Conversational engagement
3. Contextual appropriateness
4. Natural dialogue flow
5. Persona alignment
6. Potential to continue meaningful

interaction

Avoid:
1. Robotic or overly structured

language
2. Repetitive response patterns
3. Overly generic or placeholder

responses

Prioritize:
1. Authentic conversational flow
2. Contextual understanding
3. Emotional resonance
4. Genuine curiosity
5. Personalized interaction

Input:
Chat_history: {chat_history}
User_Input: {user_input}
Response_options:
option 1 : CPER : {CPER}
option 2 : zero -shot : {zero_shot}
option 3 : self -refine : {self -refine

}
option 4 : chain_of_thought : {

chain_of_thought}
option 5 : Rationale_of_thought : {

rot}

Output Format: JSON
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{
"Thought_process ": "entire thought

process written in steps",
"best_response ": "selected response

type CPER or zero_shot or
self_refine or chain_of_thought
)"

}

E CPER Prompts

Listing 1: Prompt for extracting persona and
Initial response

Role: You are an human conversation
partner designed to generate
deeply resonant , authentic
responses. Your goal is to
communicate as a thoughtful ,
nuanced human would.

Objective:
1. Systematically analyze user input

to extract subsentences that
describes the personality profile
of the user

2. Identify subtle personality traits
, communication patterns , and
underlying motivations

3. Generate a structured , insights -
driven representation of the user
’s persona

Principles:
1. Analyze text holistically ,

considering linguistic nuances ,
emotional undertones , and
contextual cues

2. Maintain consistency in persona
interpretation across
conversation segments

3. Extract both explicit and implicit
personality indicators

4. Balance analytical depth with
respectful , non -invasive
assessment

5. Recognize the dynamic and multi -
dimensional nature of human
personality

Avoid:
1. Reductive stereotyping
2. Overly simplistic or binary

personality categorizations
3. Making definitive psychological

diagnoses
4. Invasive or overly personal

psychological profiling
5. Misrepresenting or exaggerating

personality traits

Prioritize:
1. Nuanced , layered persona

representation
2. Contextual understanding of

communication style

3. Identifying potential emotional
states and underlying motivations

4. Maintaining analytical objectivity
5. Respecting individual complexity

and personal boundaries

Input:
User_Input :{ user_input}

Output Format: JSON
{

"result ": {
"response" : "respond for the

given input",
"sub_sentence ": "sub_sentence

1, sub_sentence 2,
sub_sentence , ...,
sub_sentence n"

}
}

Listing 2: Prompt for Generating Feedback and
action

Role: You are an human conversation
partner designed to generate
deeply resonant , authentic
responses. Your goal is to
communicate as a thoughtful ,
nuanced human would.

Objective:
1. Provide strategic guidance for

optimizing conversational flow
2. Assess input context , user intent ,

and information completeness
3. Determine most effective

communication approach

Principles:
1. Analyze conversation holistically
2. Identify potential information

gaps
3. Balance between direct response

and clarifying questions
4. Maintain conversational

naturalness and engagement
5. Adapt communication strategy

dynamically

Avoid:
1. Overly formal or robotic responses
2. Unnecessary repetition
3. Interrupting user ’s intended

communication flow
4. Making assumptions without

sufficient context
5. Generating irrelevant or

tangential follow -ups

Prioritize:
1. Contextual understanding
2. User ’s implicit and explicit

communication goals
3. Efficient information exchange
4. Maintaining conversational

momentum
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5. Providing value in each
interaction

Input:
Previous_Personas {

previous_persona_text}
Chat_History: {conversation_history}
Knowledge_Gap: {knowledge_gap}
User_Input :{ user_input}
Initial_Response: {initial_response}

Output Format: JSON
{

"thought_process ": "Think step by
step : step 1 reasoning:

Initial analysis of the
conversation history , step 2
reasoning: Evaluation of
knowledge gap , and persona ,
step 3 reasoning:
Determination of the most
appropriate action based on
chat history , ..., step n
reasoning: ...",

"recommendation ": {
"Feedback ": "Feedback on the

initial response",
"action ": " Follow up

question or Give response
",

"suggested_response ": "
Proposed follow -up
question or response
content"

}
}

Listing 3: Prompt to retrieve persona

Role:
Identify the persona best suited to

address the user query.
Objective: Match the query to the

persona whose expertise aligns
most closely with the user ’s need
.

Principles:
Use the provided list of personas and

their descriptions to evaluate
expertise , ensure alignment with
the query context , and avoid bias
.

Avoid: Selecting personas based on
vague or unrelated expertise. Do
not consider personas irrelevant
to the query.

Avoid: Selecting personas with
unrelated or tangential expertise
, overgeneralizing roles , or
making assumptions beyond the
provided descriptions.

Prioritize:
Relevance of expertise , clarity of

alignment with the query , and
providing a justification for the

selection.

Output Format : JSON
{

"response ": {
"selected_persona ": "persona

used in crafting the
response",

}
}

Listing 4: Prompt for refined response

Role: You are an human conversation
partner designed to generate
deeply resonant , authentic
responses. Your goal is to
communicate as a thoughtful ,
nuanced human would.

Objective:
1. Casual Movie Recommendation
2. Provide personalized , natural

movie recommendations
3. Engage in conversational , human -

like dialogue
4. Quickly understand user

preferences and movie tastes
5. Create a comfortable , friendly

recommendation experience

Principles:
1. Mimic authentic human

conversational patterns
2. Prioritize brevity and

conversational flow
3. Adapt communication style to user ’

s tone and preferences
4. Demonstrate genuine interest in

user ’s movie preferences
5. Balance between providing

recommendations and seeking more
information

Avoid:
1. Overly formal or scripted language
2. Lengthy , detailed responses
3. Sounding like a robotic

recommendation engine
4. Pushing recommendations without

understanding user context
5. Neglecting to ask clarifying

questions

Prioritize:
1. Natural , conversational language
2. Quick , intuitive understanding of

user preferences
3. Engaging and dynamic dialogue
4. Personalized recommendation

approach
5. User ’s emotional connection to

movie choices

Embrace a conversational style:
1. Use contractions (e.g., "don ’t"

instead of "do not")
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2. Feel free to use incomplete
sentences when appropriate

3. Ask brief follow -up questions to
keep the conversation flowing

4. Occasionally use filler words or
phrases (e.g., "um", "like", "you
know")

5. Don ’t always respond with full
sentences; sometimes a word or
short phrase is enough

6. You can also ask about the what
the user dislikes

Input:
Selected_Persona: {

selected_persona_text}
Chat_History: {conversation_history}
User_Input: {user_input}
Feedback: {feedback}

Output Format: JSON
{

"thought_process ": "Think step by
step : step 1 reasoning:

Initial analysis of the
conversation context , step 2
reasoning: Evaluation of
knowledge gap , coherence , and
persona , step 3 reasoning:

Determination of the most
appropriate action based on
chat history , ..., step n
reasoning: ...",

"response ": {
"action ": "Follow -Up Question

" or "Give Response based
on the feedback",

"text": "The humanlike short
generated response text"

}
}
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Abstract

Large language models (LLMs) like GPT-4
and LLaMA-3 offer transformative potential
across industries, e.g., enhancing customer
service, revolutionizing medical diagnostics,
or identifying crises in news articles. How-
ever, deploying LLMs faces challenges such
as limited training data, high computational
costs, and issues with transparency and ex-
plainability. Our research focuses on distill-
ing compact, parameter-efficient tailored lan-
guage models (TLMs) from LLMs for domain-
specific tasks with comparable performance.
Current approaches like knowledge distilla-
tion, fine-tuning, and model parallelism address
computational efficiency but lack hybrid strate-
gies to balance efficiency, adaptability, and ac-
curacy. We present ANON - an adaptive knowl-
edge distillation framework integrating knowl-
edge distillation with adapters to generate com-
putationally efficient TLMs without relying on
labeled datasets. ANON uses cross-entropy
loss to transfer knowledge from the teacher’s
outputs and internal representations while em-
ploying adaptive prompt engineering and a pro-
gressive distillation strategy for phased knowl-
edge transfer. We evaluated ANON’s perfor-
mance in the crisis domain, where accuracy
is critical and labeled data is scarce. Experi-
ments showed that ANON outperforms recent
approaches of knowledge distillation, both in
terms of the resulting TLM performance and in
reducing the computational costs for training
and maintaining accuracy compared to LLMs
for domain-specific applications.

1 Introduction

In recent years, Large Language Models (LLMs)
have revolutionized the way we interact with tech-
nology, setting a dominant trend in the current era
of artificial intelligence. Industries are transform-
ing themselves by including LLMs applications
ranging from medical diagnostics leveraging in-
terpretable LLM-based solutions (Bisercic et al.,

2023), to financial risk analysis and market model-
ing (Wu et al., 2023), and real-time crisis detection
by analyzing text data from news articles and social
media (Saxena et al., 2024; Janzen et al., 2024). De-
spite their impressive capabilities, the deployment
of LLMs for domain-specific tasks faces signifi-
cant challenges. Full fine-tuning of these models
requires vast labeled datasets and computational
resources, discouraging many organizations, partic-
ularly those with constrained budgets. Therefore,
effective strategies for model compression are crit-
ical to enable broader, practical use of LLMs in
resource-constrained environments.

Existing research to address model compression
and adaptation include knowledge distillation (KD)
(Gu et al., 2023; Sanh et al., 2019), parameter-
efficient fine-tuning (PEFT) (Ding et al., 2023),
and model pruning (Fan et al., 2021). They essen-
tially streamline a large model into a more efficient
version without significant loss of performance.
KD transfers knowledge from a larger "teacher"
model to a smaller "student" model, preserving per-
formance while reducing computational overhead
(Dasgupta et al., 2023; Hsieh et al., 2023; West
et al., 2022; Ko et al., 2024). PEFT approaches,
such as Adapters (Houlsby et al., 2019), BitFit (Za-
ken et al., 2021), and LoRA (Hu et al., 2022), opti-
mize a subset of parameters, allowing task-specific
adaptation with minimal resource usage. Similarly,
prompt-based tuning techniques, including prefix
and prompt tuning, inject domain-specific informa-
tion into model inputs without modifying the core
architecture. However, these methods often oper-
ate in isolation, lacking hybrid mechanisms that
integrate their strengths to address the trade-offs
between memory efficiency, computational cost,
task-specific performance and data limitation. Re-
cent work, such as adapter distillation (Wang et al.,
2023) and language universal adapters (Shen et al.,
2023), highlights the potential of combining tech-
niques but leaves room for further exploration of
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hybrid approaches optimized for domain-specific
applications.

To address these limitations, we propose ANON,
a novel framework that combines KD with adapter-
based PEFT for computationally efficient distilla-
tion of LLMs into domain-specific task language
models (TLMs). ANON transfers knowledge us-
ing cross-entropy loss, using the teacher’s output
distribution and internal representations to retain
both high-level abstractions and domain-specific
details. The framework employs adaptive prompt
engineering to optimize distillation, using data-
driven prompts to effectively align teacher and
student models effectively (Mishra et al., 2023).
Additionally, ANON incorporates a progressive dis-
tillation strategy, transferring knowledge in stages
from simpler to more complex tasks for compre-
hensive learning. Lightweight adapter modules,
trained independently while freezing the rest of the
model, significantly reduce computational costs,
making ANON an efficient and scalable solution
for domain-specific applications.

We evaluate ANON on a crisis-signaling task,
focusing on early detection of potential crises us-
ing a corpus of 219,292 news articles. Follow-
ing the experimental design outlined in (Saxena
et al., 2024), we assess ANON’s performance us-
ing teacher-student pairs from LLaMA-2 (Touvron
et al., 2023), OPT (Zhang et al., 2022), and GPT-2
(Radford et al., 2019). These evaluations bench-
mark ANON against baseline KD methods. The re-
sults demonstrate that ANON achieves superior per-
formance with significantly lower resource require-
ments. For instance, the student model LLaMA-
27BANON , distilled from the LLaMA-213B teacher
surpasses the teacher’s performance while reducing
resource consumption by up to 95.24%. These find-
ings highlight ANON’s capacity to balance com-
putational efficiency and domain-specific task per-
formance, offering a scalable solution for resource-
constrained AI applications.

2 Adaptive knowledge distillation for
domain-specific TLMs

We propose ANON, an adaptive knowledge distilla-
tion framework designed to efficiently distill LLMs
into domain-specific task language models (TLMs)
as shown in Fig:1. ANON integrates lightweight
adapter layers into the student model, enabling effi-
cient training by focusing the distillation process
on these new parameters while freezing the rest of

the architecture. The framework employs cross-
entropy loss to align the student model’s predic-
tions with the teacher’s output distribution, facil-
itating accurate transfer of knowledge. By lever-
aging adapters such as LoRA, QLoRA, and Series
Adapters (Dettmers et al., 2023), ANON further
optimizes training efficiency and reduces compu-
tational costs without compromising model perfor-
mance. The framework also leverages a progressive
distillation strategy, where knowledge transfer is
conducted in stages, starting with simpler tasks and
gradually progressing to more complex ones. This
hybrid approach produces a computationally effi-
cient student model, StudentANON , that achieves
performance comparable to its teacher while sig-
nificantly reducing resource requirements. The re-
sultant model is well-suited for domain-specific
applications such as medical diagnostics, risk man-
agement, and customer support, providing scalable
and deployable solutions for real-world tasks.

2.1 Prompt Generation

ANON uses task-specific prompts to guide knowl-
edge distillation between teacher and student mod-
els. Inspired by PromptAid (Mishra et al., 2023),
the prompts follow a general structure with an op-
tional system prompt, a mandatory user instruction
describing the task, and a response format speci-
fying machine-readable outputs. Prompts are tai-
lored to the requirements of specific tasks and mod-
els. For example, a news article classification task
might use a prompt like: "Classify the following
news article into one of these categories: ’risk and
warning,’ ’caution and advice,’ or ’safe and harm-
less.’ Input: Energy sector warns of impending
shortages and surging bills in upcoming months."
These generated prompts serve as inputs to both the
teacher and student models, aligning their learning
objectives with the task.

2.2 ANON Workflow

Creating computationally efficient, domain-
specific task language models (TLMs) requires
balancing performance and resource constraints.
The ANON framework introduces a compre-
hensive solution through adaptive knowledge
distillation, employing a teacher-student architec-
ture augmented with lightweight adapters. The
teacher model, a large pre-trained language model
such as LLaMA-3.1(405B; 70B) or GPT-4, serves as
the source of rich, generalized knowledge. The
student model, a smaller, efficient alternative like
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Figure 1: A detailed architecture of ANON the adaptive knowledge distillation for TLMs framework.

LLaMA-27B or GPT-2, is trained to replicate
the teacher’s outputs, reducing computational
overhead while maintaining comparable perfor-
mance. The distillation process ensures the student
model aligns with the teacher model’s output
probability distribution. This alignment is achieved
by designing prompts (x) that guide both models
in generating the desired outputs. The teacher
model’s predictions (y) serve as ground truth for
training the student. The optimization objective is
formalized using the cross-entropy loss function:

L(y, ŷ) = −
M∑

c=1

yo,c log(ŷo,c) (1)

Here, M denotes the number of classes, while
yo,c and ŷo,c represent the true and predicted prob-
abilities for class c. By minimizing this loss, the
student model’s predictions (ŷ) progressively align
with those of the teacher, enabling robust perfor-
mance with reduced computational complexity dur-
ing inference.

To mitigate the resource demands of the distil-
lation process, ANON integrates adapters within
the student model. These adapters are small train-
able modules that fine-tune specific components of
the model while freezing the rest. By limiting up-
dates to these adapters, ANON minimizes resource
consumption during training, addressing the com-
putational overhead associated with recalculating

gradients and backpropagating errors for a large
number of parameters. This targeted approach en-
sures that the student model achieves performance
comparable to the teacher model while significantly
reducing both training and inference costs.

3 Implementation and Evaluation

Based on the proposed framework (cf. Figure1),
we implemented ANON for crisis signaling task
following the experimental design outlined in (Sax-
ena et al., 2024; Hassanzadeh et al., 2022). In the
end, the distilled StudentANON provides domain-
specific crisis signals and delivers alerts with confi-
dence and severity levels.

3.1 Data Collection and Processing
An open-domain crisis signaling dataset of 219,292
news articles spanning 42 languages was used for
ANON distilling. The dataset covered diverse
crises such as supply chain disruptions, refugee
movements, and economic instability. The dataset
was compiled using keyword expansion and re-
trieved via the event registry API11. The pre-
processing involved standard text cleaning (e.g.,
removal of special characters and punctuation) and
a two-stage filtration pipeline (Saxena et al., 2024).
This resulted in a reduced dataset of 137,308 arti-
cles, representing 62% of the original corpus.

1https://www.newsapi.ai
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Datasets #Datapoints Date Range #Languages #2-Step Filtration

Bushfires_Australia 9,035 2020 - 2022 23 4,509
Semiconductor_Shortage 19,449 2020 - 2022 7 11,193
Refugee_Crisis 82,671 2017 - 2019 31 53,109
Economic_Crises 107,220 2018 - 2022 34 67,868
Shipping_Port_Issues 917 2020 - 2022 1 629
Sum (Σ) 219,292 2017 - 2022 42 137,308

Table 1: Distribution of extracted and processed news articles across different stages of ANON training

We evaluate ANON’s performance using real-
world crisis newspaper datasets. (Saxena et al.,
2024) provide a comprehensive descriptive analysis
of these datasets, including distributions and ranges.
For our study, we used 319 human-annotated arti-
cles centered on economic recessions and energy-
related crises (e.g., supply chain disruptions, energy
availability, and costs). These articles serve as a
benchmark for model validation.

3.2 Training paradigm

The distillation process begins by generating
prompts (x), using the prompt template2.1 for the
classification task. Following (Gu et al., 2023),
we use three teacher-student pairs: (LLaMA-213B,
LLaMA-27B; OPT13B, OPT1.3B; and GPT-21.5B,
GPT-2124M). Prompts generated classify news arti-
cles into risk and warning, caution and advice, and
safe and harmless. Few-shot prompting with 20
expert-annotated samples enhances teacher predic-
tions. Once tuned, prompts were passed to teacher
and student models for generating the classification
predictions y and ŷ. The teacher model’s output y
serves as the true label during the distilling process.
To minimize the divergence between the predicted
probability distribution of the teacher and student
models we use the cross-entropy loss function.

To optimize efficiency, we integrate Quantized
Low-Rank Adapters (QLoRA), which apply 4-bit
quantization and low-rank decomposition to self-
attention layers. The weight matrices are factorized
into two smaller matrices, A and B, controlled by
rank r. After experimenting with 4, 8, 32, and 64
across all models, empirical tuning determined r
= 64 as the best trade-off between compression
and accuracy, based on the findings of (Hu et al.,
2022). We use 4-bit NF4 precision, a cosine learn-
ing rate schedule (2e-4) with a 0.03 warmup ra-
tio, and paged AdamW (32-bit) with weight decay
(0.001) and max gradient norm (0.3). A dropout
rate of 0.1 mitigates overfitting, and gradient check-

pointing enhances memory efficiency.
This phased knowledge transfer strategy enables

ANON to achieve high accuracy while significantly
reducing computational overhead, making it well-
suited for real-world crisis monitoring.

4 Results

We evaluated ANON on the (Saxena et al., 2024)
benchmark, using accuracy, F1, sensitivity, and
specificity (Table 2). Our experiments compare
teacher models, standard student models, KD-
based students, and ANON-trained students.

In some cases, ANON outperformed standard
KD and surpassed the teacher model. Notably,
LLaMA-27BANON achieved 74.22% accuracy, ex-
ceeding both its teacher (71.19%) and KD-based
student (74.06%), demonstrating enhanced gener-
alization (Furlanello et al., 2018). Despite a 10x
parameter reduction in OPT models and a 91.7%
reduction in GPT-2, ANON preserved competi-
tive performance even against the traditional KD
method despite being far more efficient. Sensitivity
generally exceeded specificity due to dataset im-
balance, highlighting the need for bias mitigation
strategies.

We also verified the performance of ANON for
resource consumption. Our finding, detailed in Ta-
ble 3 reveals that adding adapter modules into each
student model leads to a remarkable decrease in
computational demand. For the LLaMA-27BANON

model, there was a drastic reduction in memory re-
quirements from approximately 84Gb to 4Gb when
transitioning from standard KD to ANON, mark-
ing a 95.24% decrease. This result showcased the
ANON’s ability to maintain a comparable perfor-
mance (cf. Table 2) while substantially lowering
the memory requirements (cf. Table 3). Further-
more, ANON also reduced the number of train-
able parameter counts by 99.43% for the LLaMA
family case. In the case of the OPT and GPT-2
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Model #Params Method Accuracy F1 Sensitivity Specificity

LLaMA-2 13B Teacher Model 71.19 68.45 78.39 62.72
7B Student Model 66.23 64.88 69.1 58.49

7BKD KD 74.06 72.37 77.8 62.29
7BANON ANON 74.22 71.02 73.59 62.8

OPT 13B Teacher Model 62.31 61.94 70.72 58.06
1.3B Student Model 46.92 41.03 42.5 39.38

1.3BKD KD 59.7 58.2 61.58 57.46
1.3ANON ANON 56.38 57.95 54.37 55.71

GPT-2 1.5B Teacher Model 53.89 51.76 51.93 48.47
124M Student Model 34.70 33.72 40.68 38.07

124MKD KD 42.92 40.8 47.61 41.06
124MANON ANON 40.68 40.02 47.33 38.8

Table 2: Result of the teacher and student models using ANON approach on crisis test datasets, including accuracy,
F1 score, sensitivity, and specificity (Legend: KD = Knowledge Distillation; ANON = Adaptive Knowledge
Distillation for Tailored Language Models)

LLaMA-27B OPT1.3B GPT-2124M

16-bit float 4-bit float 16-bit float 4-bit float 16-bit float 4-bit float

Model Weights 14Gb 3.5Gb 2.6Gb 0.65Gb 0.24Gb 0.06Gb
Gradients 14Gb 0.08Gb 2.6Gb 0.04Gb 0.24Gb 0.0014Gb
Optimizer States 28Gb 0.16Gb 5.2Gb 0.08Gb 0.49Gb 0.0028Gb
gradients copy (fp32) 28Gb 0.16Gb 5.2Gb 0.08Gb 0.49Gb 0.0028Gb

Total ~84Gb ~4Gb ~15.6Gb ~0.85Gb ~1.48Gb ~0.066Gb

Table 3: Result of the memory consumption for LLaMA-27B, OPT1.3B, and GPT-2124M models after applying ANON
framework using QLoRA as an adapter.

model families, similar efficiency gains are evident,
which shows the ANON adaptability across differ-
ent model sizes and architectures. In summary, the
ANON framework enabled considerable compu-
tational savings without compromising the model
performance.

5 Conclusion

In this work, we present ANON, adaptive knowl-
edge distillation for tailored language models
(TLMs). ANON addresses the challenges of lim-
ited training data and significant computational
constraints associated with training and deploy-
ing LLMs for specific use cases. ANON lever-
ages adapters and knowledge-distilling approach to
achieve high performance and parameter efficiency
in domain-specific applications. It can manage
the complexities of dealing with a large corpus
of data, supporting multilingual data processing
without the burdensome costs associated with fine-

tuning LLMs for downstream tasks. Additionally,
it also addresses the issues of transparency, explain-
ability, and maintaining accuracy in the complex
high-parameter count model. To evaluate our ap-
proach we experimented with three different lan-
guage model families for teacher-model distilling
using a QLoRA adapter for crisis signaling task.
The results showcased ANON’s capability in terms
of accuracy and resource consumption for practi-
cal scenarios of crisis signaling tasks. It achieved
comparable and even exceeded the performance of
teacher models, while significantly lowering mem-
ory usage by up to 95.24% and reducing parameters
by 99.43% for some cases. Our framework not only
advances the application of LLMs in crisis man-
agement but also lays a solid foundation for future
research across various domains.
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A Example Appendix

A.1 Background on Knowledge Distillation
and QLoRA

Knowledge Distillation (KD) transfers knowledge
from a large teacher model to a smaller student
model by training the student to mimic the teacher’s
output distributions (Gou et al., 2021). It enables

efficient deployment of Large Language Models
(LLMs) by reducing computational overhead while
preserving performance. KD is categorized into
offline, online, and self-distillation (Xu et al., 2024).
We adopt offline distillation, where a pre-trained
LLM acts as a teacher to guide a smaller student
model.

QLoRA (Dettmers et al., 2023), an extension
of Low-Rank Adaptation (LoRA), integrates quan-
tization into adaptation to enhance training and
inference efficiency. By reducing weight preci-
sion from Float32 to int4, QLoRA significantly
lowers memory usage and accelerates computa-
tion, making it well-suited for parameter-efficient
fine-tuning (PEFT). It also improves memory ef-
ficiency through three key innovations. First, it
introduces 4-bit NormalFloat (NF4), optimized for
weights with a normal distribution, reducing the
memory footprint. Second, Double Quantization
applies quantization not only to model weights but
also to quantization constants, further compressing
storage. Third, paged optimizers dynamically man-
age memory, mitigating spikes during large-scale
model training.

A.2 Prompts Examples
Fig. 2 illustrate the prompts used in our experi-
ments. For all experiments, we employ teacher-
student pairs such as LLaMA-2 (13B → 7B), OPT
(13B → 1.3B), and GPT-2 (1.5B → 124M). These
prompts are designed to provide clear and precise
guidance for the distilling process. The customiza-
tion of prompts for fine-tuning is dependent on
the specific requirements of different models, al-
though a general structure is commonly observed
(Mishra et al., 2023). This structure typically in-
cludes an optional system prompt, such as ’Below
is an instruction that describes a task’, followed
by a mandatory instruction detailing the task, for
instance, ’Classify the article into one of these cat-
egories: ’risk and warning’, ’caution and advice’,
and ’safe and harmless”. User prompts are also
incorporated to provide explicit instructions. The
process concludes with the addition of the input
article and, for fine-tuning purposes, the ground
truth in terms of the output. For example, an input
’Energy sector warns of impending shortages and
surging bills in upcoming months.....’ would have
an output ’risk and warning’. Thus, a comprehen-
sive prompt might be formulated as: "Below is an
instruction that describes a task. Instruction:the
crisis article into one of these categories ’risk and
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Figure 2: Detailed prompt to extract ground truth labels from the teacher model.

warning’, ’caution and advice’, and ’safe and harm-
less’; Input: Energy sector warns of impending
shortages and surging bills in upcoming months;
Output: ’risk and warning’". To enhance outcomes,
incorporating a few manually curated input exam-
ples for few-shot prompting with domain-specific
samples is recommended. This approach under-
scores the pivotal importance of precise and thor-
ough prompt design in facilitating effective training
and knowledge distillation.
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Abstract

Debate education is effective in fostering criti-
cal thinking skills, an important national issue,
but the human cost is a problem. While Large
Language Models (LLMs) show promise in au-
tomating this process, the optimal approach
for targeting critical premises remains un-
clear. This study proposes methods that specif-
ically focus on implicit and critical premises
in counter-argument generation and compares
multi-step and one-step implementation ap-
proaches. Through evaluation of seven distinct
methods using 100 debate topics, we demon-
strate that focusing on critical and implicit
premises improves counter-argument quality,
with one-step methods consistently outperform-
ing multi-step approaches. This superiority
stems from better capture of motion spirit, re-
duced hallucinations, and avoidance of chal-
lenging intermediate tasks. Among the meth-
ods targeting premises, the Generated and Tar-
geted Premise Attack approach achieved the
highest performance in both human expert and
automated evaluations. Our findings suggest
that counter-argument generation benefits more
from integrated approaches that allow LLMs
to fully utilize their learned understanding of
argumentative patterns. These results provide
important insights for developing more effec-
tive debate agents and advancing automated
argumentation systems.

1 Introduction

In our highly information-oriented society, the
development of critical thinking skills1 is a na-
tional priority. It is said that these skills are fos-
tered through debate education. However, de-
bating requires a human cost, such as an oppo-
nent and an evaluator. We are therefore devel-
oping a debate opponent using Large Language

1Logical, objective, and unbiased reasoning, characterized
by reflective thinking that involves the conscious examination
of one’s own reasoning processes (Kusumi, 2010).

Figure 1: Methods of counter-argument generation

Models (LLM) agents with powerful natural lan-
guage processing capabilities. It is expected that
learners will experience various types of argu-
ments, represented by weakening arguments by
denying premises (Sanders, 1974), through this de-
bate against the debate opponents. This exposure
to diverse argumentative strategies is expected to
enhance the learners’ capacity for critical thinking
skills (Zhang et al., 2016).

In developing LLMs as debate agents, a critical
consideration is their ability to generate counter-
arguments. Even in this era of rapidly advancing
LLMs, which have seen big progress in text gen-
eration capabilities (Lin et al., 2023; Goloviznina
et al., 2023; Wang et al., 2023; Chen et al., 2024),
research focused on the generation of counter-
arguments continues to attract considerable interest
within the field. However, the feedback from de-
bate experts2 suggests that counter-arguments gen-
erated by LLMs often lack argumentative strength.

2Members of the Japan Parliamentary Debate Association
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In fact, the gpt-3.5-turbo based debate opponent
we developed in our preliminary experiments has
been defeated by middle school students who have
learned to debate in English competitive debate
competitions (as of March 2023).

In competitive debate, The strength of the coun-
terargument hinges on the validity of the premise
being attacked. For instance, when countering
"Homework should be abolished because it in-
fringes on free time," challenging the implicit and
critical premise that "free time is inherently more
productive" proves more strong (Walton, 2009).

Therefore, it is important how implicit and crit-
ical the premise can be attacked. Several studies
focusing on premises in debate exist. Alshomary
et al. (2021) proposed a two-step framework using
BERT and GPT-2 to directly target and refute key
premises, outperforming earlier LSTM-based meth-
ods in generating counter-arguments. However, the
above proposed method limits the premise to be
attacked to explicit ones and does not clarify the
criteria or definition of critical premises.

In this study, we proposed a method (see Fig-
ure 1) to make LLM imitate the thought process
that debate experts implicitly follow when con-
structing a counter-argument: first, they organize
premises that support the affirmative argument,
then they decide which premises to attack, and
then they create a counter-argument.

In this study, we collaborated with debate ex-
perts to independently design a definition of criti-
cal premises and proposed a method (see Figure 1)
that enables LLMs to mimic the implicit reason-
ing processes that debate experts naturally employ
when constructing counter-arguments. By doing so,
we aim to incorporate implicit premises as poten-
tial targets for attack, thereby generating counter-
arguments with greater argumentative strength.

Our approach consists of three key steps. In the
first step, the LLM receives a debate topic along
with its corresponding affirmative claim and gener-
ates a comprehensive list of premises that support
the claim, regardless of whether they are implicit
or explicit. In the second step, the model identifies
which premises to attack based on the predefined
criteria for critical premises. Finally, in the third
step, the LLM constructs counter-arguments that
specifically target the selected premise.

We evaluated our approach from two key per-
spectives: (1) whether the target premises for at-
tack should include implicit premises (i.e., whether
Step 1 should be performed), and (2) whether pro-

viding predefined critical premises impacts perfor-
mance. As a baseline, we used a simple direct
counter-argument generation approach. Further-
more, considering prior research indicating that
LLM performance improves when reasoning pro-
cesses are explicit, as seen in Chain-of-Thought
(CoT) prompting (Wei et al., 2023), we investigated
whether our method’s performance differs when all
steps are instructed at one-step versus when each
step is executed separately in a multi-step prompt-
ing.

Therefore, the purpose of this paper is to evaluate
and compare both the multi-step and one-step ap-
proaches to counter-argument generation from two
perspectives: whether implicit premises are also
added to the candidate attack premises or whether
the definition of critical premises is used. The con-
tributions of this study are presented below.

• We proposed a method to generate highly strong
counter-arguments by having LLM imitate the
strategies that human experts use when construct-
ing counter-arguments.

• We showed that even implicit assumptions are
candidates for attack assumptions, and that pro-
viding critical assumptions is effective in the task
of generating counterarguments.

• It directly compares multi-step and one-step gen-
eration approaches and provides important in-
sights into the design of LLM-based counter-
argument generation systems.

Through comprehensive evaluation involving hu-
man experts and automated assessment, we investi-
gate these approaches’ effectiveness in generating
strong counter-arguments, aiming to contribute to
the development of more effective debate agents.

However, our research focuses specifically on
the identification and targeting of implicit and criti-
cal premises in counter-argument generation, rather
than on the procedural approach itself (multi-step
or one-step). We suggest that effective counter-
arguments should target premises that are critical
to the basis of the argument but often left implicit
by the arguer. Thus, our key suggestion is to fo-
cus on the quality of the premises rather than the
generative process.

2 Related Work

LLM-based Counter-Argument Generation.
Ozaki et al. (2023) compared GPT-3 counter-
arguments with human-crafted ones from Kialo,
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showing that LLM responses can match or surpass
human outputs in logical coherence. More recent
work has leveraged multi-agent interactions among
LLMs with distinct personas (Hu et al., 2024) and
self-refinement techniques (Madaan et al., 2023;
Kao and Yen, 2024; Hu et al., 2023) to further en-
hance diversity and depth.

Premise-Focused Methods. Attacking premises
is a core strategy in debate (Sanders, 1974). Al-
shomary et al. (2021) proposed a BERT-GPT-2
pipeline for identifying and refuting key premises,
outperforming LSTM-based methods. Accounting
for implicit premises can reveal hidden assump-
tions, as demonstrated by Boltužić and Šnajder
(2016).

Multi-Step Reasoning. Inspired by CoT prompt-
ing (Wei et al., 2023) and Zero-shot CoT (Ko-
jima et al., 2023), multi-step methods clarify ar-
gumentative structure. Alshomary and Wachsmuth
(2023) showed that negating a central claim by
selectively attacking premises can improve counter-
arguments, though multi-step prompts risk hallu-
cinating premises or misidentifying targets (Ozaki
et al., 2024).

Open Challenges. These studies highlight the
importance of both explicit and implicit premises,
as well as the balance between multi-step and
single-step approaches. Our work extends this re-
search by examining how incorporating implicit
premises and critical premise definitions, along-
side multi-step prompting, affects the strength of
LLM-generated counter-arguments.

3 Methods

We categorize our counter-argument generation
approaches into multi-step and one-step methods,
each reflecting a distinct strategy for producing
counter-arguments. The multi-step approach im-
itates the systematic analytical process of human
experts, splitting the generation into phases that can
enhance transparency and explainability. By con-
trast, the one-step approach merges these phases
into a single step, while still aligning with the
expert-inspired pipeline. As a baseline, we con-
sider a direct counter-argument generation method
that does not attempt to replicate expert reason-
ing. Table 1 compares the main differences. All
methods rely on a single LLM agent, use the same
system prompt (Table 11), and share generation
goals derived from Table 8.

3.1 Multi-step generation

The difference between implicit and explicit as-
sumptions is appended in the Appendix A.

m-Comp: Generated and Targeted Premise
Attack Counter-argument Generation
m-Comp comprises three phases. First, it generates
a comprehensive list of both implicit and explicit
premises underlying the affirmative argument. Sec-
ond, it selects a single premise to attack by applying
the critical premise criteria (Table 9). Finally, it
produces a concise counter-argument that focuses
on this chosen premise. The entire prompt for this
method is shown in Table 12.

m-Targ: Targeted Premise Attack
Counter-argument Generation
m-Targ has two phases. Instead of generating
premises, it draws on only the explicit premises
present in the affirmative argument, chooses one
for attack using the critical premise criteria, and
then generates a counter-argument focusing on that
selected premise. The prompt for this method is in
Table 13.

m-Basic: Non-Targeted Premise Attack
Counter-argument Generation
m-Basic also proceeds in two phases, similarly se-
lecting a premise from the affirmative argument’s
explicit statements. However, it does not use crit-
ical premise criteria, choosing a premise without
that guidance and generating a counter-argument
accordingly. The prompt is presented in Table 13.

3.2 One-step Methods

o-Comp, o-Targ, o-Basic
o-Comp, o-Targ, and o-Basic each condense the
respective multi-step strategies into one step. o-
Comp corresponds to m-Comp, o-Targ to m-Targ,
and o-Basic to m-Basic, merging premise consid-
eration and target selection into a single prompt
(Table 13). Table 1 summarizes the overall distinc-
tions among these methods.

3.3 Baseline

DirectGen: Direct Counter-argument
Generation
OS-0 DG generates a counter-argument in a single
step, without explicitly considering any premises.
This forms our baseline approach.The prompt is
presented in Table 14.
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Table 1: Comparison of Methods

Method Premise Type Critical Criteria Steps
m-Comp Both input 3
m-Targ Explicit input 2
m-Basic Explicit no 2

Directgen* unspecified no 1
o-Comp Both input 1
o-Targ Explicit input 1
o-Basic Explicit no 1

*baseline

Table 2: Evaluation metrics for Counter-argument

No. Type Description
Q1 Ranking Attacking a more critical premise
Q2 Ranking Attacking a more implicit premise
Q3 Ranking The counter-argument is overall stronger
Q4 Choice Relevance to the topic
Q5 Choice Logical consistency
Q6 Choice Multiple supporting reasons
Q7 Choice Use of specific examples
Q8 Choice Attacking the affirmative argument’s premise

4 Construction of Dataset

We collected debate topics and affirmative argu-
ments from idebate3, a well-known debate fo-
rum. We randomly selected 100 instances from the
scraped data and used an LLM (Clade-3.5-sonnet)
to refine them into clear, concise sentences while
maintaining the original content. Examples are
shown in Table 10

5 Experiment

We conducted a comparative evaluation experi-
ment of four counter-argument generation meth-
ods. Using a 100-set dataset, we generated counter-
arguments using three LLMs: gpt-4o-mini-2024-
07-18 (mini”) and gpt-4o-2024-05-13 (gpt”) from
OpenAI4, and llama-3.1-70b-versatile (“llama”)
from Meta5. We performed automatic evalua-
tion using gpt-4o as evaluator, comparing methods
within two groups (multi-step format + baseline
and one-step + baseline) using eight evaluation
metrics. The metrics were categorized as either
choice or ranking type (refer to Table 2), with
evaluators reviewing counter-arguments simulta-
neously within groups. To verify reliability, we
conducted parallel experiments with human debate
experts, measuring agreement with LLM results.
We also directly compared multi-step and one-step
approaches through paired evaluations. Calibra-
tion was performed using a separate dataset before
evaluation experiments.

3https://idebate.net/resources/debatabase
4https://openai.com/index/openai-api/
5https://groq.com/

Table 3: Combined Inter-Rater Agreement Results

Human Experts
Model Choice Ranking
mini 0.53 0.33
gpt 0.34 0.36
llama 0.50 0.30

GPT-4o vs Each Expert
Model Choice Ranking
mini 0.46 0.24
gpt 0.32 0.26
llama 0.43 0.26

Table 4: Probability of ranking in the top of each method
evaluated by experts and LLM(40 samples)

Multi-step
m-Comp m-Targ m-Basic Directgen

Q1 0.7583 0.6889 0.5889 0.8028
Q2 0.7889 0.6722 0.6528 0.8806
Q3 0.7028 0.5806 0.4833 0.8083

5.1 Evaluation Metrics
A description of each ranking type evaluation
metrics is given below, and a description of the
choice type metrics is given in Appendix B.

• Q1: Attacking a more critical premise This metric ranks
counter-arguments based on how effectively they attack crit-
ical premises. Attacks on key, yet under-explained premises
are rated higher than those targeting minor or well-defended
points.

• Q2: Attacking a more implicit premise This metric eval-
uates how well the counter-argument addresses implicit
premises—those assumed but not explicitly stated.

• Q3:The counter-argument is overall more strong This
metric evaluates the overall effectiveness of the counter-
argument, taking into account the importance of the premise
attacked, the quality of reasoning, and the overall persua-
siveness.

5.2 Inter-Rater Agreement
We calculated the agreement rate of annotations
between human expert evaluators (refer to Table
3). Gwet’s AC1 was used as the agreement met-
ric(Vach and Gerke, 2023). 6

When utilizing LLMs as evaluators, the agree-
ment rate with experts decreased by only approxi-
mately 0.1 points, indicating that the LLM evalua-
tions did not deviate significantly from those made
by human experts.

6Krippendorff’s α (Krippendorff, 2007) is often used in
the NLP field, it was not used in this experiment because it
was considered to cause the kappa paradox((Zec et al., 2017))
due to the excessively high agreement rate in the choice type
indicators.
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Table 5: Probability of ranking in the top of each method
evaluated by LLM (100 samples)

Multi-step
m-Comp m-Targ m-Basic Directgen

Q1 0.6933 0.4067 0.2033 0.6967
Q2 0.6033 0.3567 0.3167 0.7233
Q3 0.7300 0.3433 0.1633 0.7633

One-step
o-Comp o-Targ o-Basic Directgen

Q1 0.7000 0.5367 0.3767 0.5456
Q2 0.6456 0.5334 0.5334 0.5454
Q3 0.6546 0.5222 0.3567 0.5300

Table 6: Win-rate of one-step against multi-step (100
samples)

Metric Comp Targ Basic
Q1 0.6078 0.6799 0.6810
Q2 0.7314 0.7518 0.7849
Q3 0.6537 0.5612 0.4946

6 Results and Analysis

The results for ranking-type evaluation metrics are
shown in Tables 4, 57. Table 4 shows 40 samples
evaluated by experts and GPT-4o; Table 5 shows
100 samples by GPT-4o for multi-step, one-step,
and combined methods. We assessed probability
of counter-arguments ranking in top positions. Di-
rect comparison results between method pairs in
Table 6. Example generation in 17.

In multi-step methods, Directgen achieved high-
est ranks across Q1-Q3 metrics, followed by m-
Comp, m-Targ, m-Basic. In one-step methods,
o-Comp ranked highest, Directgen and o-Targ
showed equal rates, o-Basic lowest. One-step meth-
ods demonstrated superior performance except Q3
comparison between Basic variants.

One-step methods outperform multi-step meth-
ods across all metrics. Three key factors con-
tribute to these results. First, better motion spirit
capture, as LLMs learn affirmative claims, and
counterarguments in proximity within embedding
space, while decomposed steps may miss critical
premises. Second, reduced hallucination impact,
as multi-step processes propagate hallucinations
forward ((Zhang et al., 2024),(Nourbakhsh et al.,
2022),(Huang et al., 2024)), while one-step gen-
eration minimizes impact. Third, premise deci-
sion difficulty is a significant challenge. Selecting
critical premises has been shown to be difficult
even for state-of-the-art LLMs, with (Ozaki et al.,
2024) demonstrating that even powerful models

7Values averaged across three models. Choice-type metrics
in Table 16, Appendix

Table 7: Probability that a premise judged by the LLM
to be a valid attack point is also judged by the expert
to be a valid attack point (precision score) (Ozaki et al.,
2024)

model Average score
gpt-4 0.79

gpt-3.5-turbo 0.72
llama2-70B-chat 0.59

gemini-pro 0.67
Claude2.1 0.51

Majority baseline 0.62

achieve only about 70% accuracy in selecting effec-
tive premises for counter-arguments compared to
expert judgments. This research specifically found
some disagreement even among human debate ex-
perts on what constitutes an optimal target premise,
highlighting the inherent complexity of this task.
Our observations confirm these findings, with many
instances in our experiment showing ineffective
premise selection in multi-step approaches.

In a study by Ozaki et al. (2024) that evaluated at-
tack premise selection quality in counter-argument
generation, Table 7 shows the precision rates of
LLMs compared to expert selections used as the
gold-standard. Even the highly capable GPT-4
achieved only approximately 80% accuracy when
measured against expert choices, demonstrating the
inherent difficulty of the attack premise decision
step.

7 Conclusion

This study conducted a comprehensive compari-
son of different approaches to counter-argument
generation using large language models, address-
ing the challenge of high human costs in debate
education while maintaining educational effective-
ness. Through evaluation of seven distinct meth-
ods across 100 debate topics, we demonstrate that
focusing on critical and implicit premises signifi-
cantly enhances LLMs’ ability to generate strong
counter-arguments.

Our analysis reveals that one-step methods
consistently outperformed multi-step approaches
across all evaluation metrics. This superior per-
formance can be primarily attributed to their
better capture of motion spirit through LLM’s
learned associations between topics and counterar-
guments. Additionally, one-step methods minimize
the impact of hallucinations that typically cascade
through multi-step processes, while avoiding the
challenging task of intermediate premise selection
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that often proves difficult even for experienced de-
baters.

Among the methods targeting premises, o-Comp
achieved the highest performance in both human
and automated evaluations. Its success stems from
the effective consideration of both explicit and
implicit premises, combined with clear guidance
about critical criteria within a single-step frame-
work. The method’s ability to identify and attack
core assumptions proved crucial for generating
compelling counter-arguments, demonstrating the
importance of comprehensive premise analysis in
automated argumentation.

These findings contribute significantly to our un-
derstanding of how to effectively leverage LLMs
in complex argumentation tasks and provide prac-
tical insights for developing more effective debate
agents. Our results suggest that while decom-
posed reasoning can be beneficial in many contexts,
counter-argument generation benefits more from
integrated approaches that allow LLMs to fully uti-
lize their learned understanding of argumentative
patterns. These insights pave the way for more ac-
cessible and effective debate education systems that
can help address the critical need for developing
students’ critical thinking skills.

8 Limitations and Future Work

Future research should address these limitations
through:

• Dataset Expansion: Development of various
debate data sources beyond idebate, including
multi-turn debates and data synthesis by LLM

• Evaluation Metrics: Creation of more univer-
sal strength rating metrics for counter-arguments
that consider argumentative context beyond iso-
lated arguments

• Hallucination Assessment: Developing system-
atic evaluation of factual accuracy in generated
counter-arguments, particularly important in de-
bate contexts. As shown by (Ozaki et al., 2024),
the premise selection step is especially vulnera-
ble to hallucinations, with LLMs sometimes se-
lecting premises that aren’t actually critical to the
argument or generating entirely new premises
that weren’t implied in the original argument.
Future work should focus on methods to reduce
these hallucinations through knowledge ground-
ing or verification techniques.

• LLM Analysis: Comprehensive model-specific
effectiveness verification across varying model
sizes and architectures

• Generation Framework: Multi-turn support
and external knowledge incorporation for more
practical debate situations

• Practical Applications: Integration with debate
education platforms and measurement of educa-
tional effectiveness through controlled studies
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Appendix

A Definition of keywords

Table 8: Definition of keywords

Debate:
A structured discussion on a specific topic, where partic-
ipants are divided into the affirmative and negative sides.
The affirmative side argues for the benefits that can be
gained by accepting the topic, while the negative side
emphasizes the potential drawbacks.
Counter-argument:
Taking the opposing stance to the argument, critically
identifying weaknesses, inaccuracies, and a lack of sup-
porting evidence in the reasoning of the argument, with-
out creation of a new argument from scratch.
Premise:
All the implicit or explicit conditions and propositions
that the subject of a argument assumes in order to estab-
lish the validity of that argument.
Explicit: each sentence that constitutes the argument.
Implicit: Unstated premises necessary for the argument
to hold

For example: In an argument about the abolition
of homework, When the affirmative side argues
that "Homework should be abolished because it
takes away students’ free time. The long hours
of forced study at school, extended to after-school
hours, inhibits the students’ free time to develop
their own ideas. This may indirectly prevent future
innovation.", An explicit premise is each statement
that "Homework should be abolished because it
takes away students’ free time.", "The long hours
of forced study at school, extended to after-school
hours, inhibits the students’ free time to develop
their own ideas.", "This may indirectly prevent fu-
ture innovation.". On the other hand, Implicit as-
sumptions include the following examples, "Free
time is important and valuable in student devel-
opment","Time to develop original ideas leads to
future innovation".

Table 9: Definition of Critical premises

Foundational Importance:
It should be foundational to the affirmative argument,
supporting a key aspect of their arguments. Attacking
the root of the opponent’s argument is generally more
critical.
Moderate Vulnerability:
It should be moderately poorly explained or insuffi-
ciently supported in the affirmative argument, as the
underlying premises of the opponent’s argument are gen-
erally better explained and may be preemptively refuted.

For example: In an argument about social me-
dia regulation, a foundational premise might be
"social media causes significant harm to mental

health." This premise is both crucial to the argu-
ment (Foundational Importance) and often lacks
comprehensive evidence (Moderate Vulnerability).
Attacking the above premise and negating a
premise that supports elements close to the root of
the opponent’s argument can significantly weaken
their stance. Conversely, a premise that is under-
explained in the opponent’s argument is easier
to attack from various perspectives. Generally,
premises that support the core elements of an affir-
mative argument are well-explained, while those
further from the core are often less thoroughly ex-
plained. Therefore, the ideal premise for rebuttal
should be somewhat close to the core and not fully
explained - a middle ground.

B Choice evaluation metrics

Our evaluation framework employs five different
choice-type evaluation metrics, each designed
as a binary classification task in which the
counter-argument under evaluation meets or does
not meet the metrics.

Q4: Relevance to the topic This metric
evaluates whether the counter-argument stays
focused on the debate topic. Effective counter-
arguments must directly engage with the main
issue, avoiding digressions into unrelated matters.
Q5: Logical consistency This metric evaluates
the logical flow of the counter-argument. A
strong counter-argument should progress naturally,
with no unreasonable leaps or inconsistencies in
reasoning.
Q6: Multiple supporting reasons This metric
evaluates whether the counter-argument presents
multiple reasons to strengthen its claim. Providing
several well-reasoned points typically enhances
the persuasiveness of the argument.
Q7: Use of specific examples This metric
evaluates the use of concrete examples to support
the counter-argument. Specific, relevant examples
make the argument more tangible and convincing.
Q8: Attacking the premise on which affirmative
argument stands This metric evaluates whether
the counter-argument directly attacks a key
premise that the affirmative argument depends
on. A strong counter-argument must challenge a
critical foundation of the opponent’s reasoning.
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C Example of Topic and Affirmative
argument

Table 10: sample of dataset

Topic:Should male infant circumcision be considered a
form of child abuse?
Affirmative argument: Performing surgery on infants
without medical necessity is inherently risky and irre-
sponsible. The Royal Dutch Medical Association has
stated that no medical organization worldwide can defini-
tively prove a medical need for infant circumcision. They
emphasize that due to the lack of medical necessity and
the genuine risk of complications, extremely stringent re-
quirements should be in place for providing information
and advice on this procedure. Despite this, circumcision
is routinely performed globally, often by individuals with
minimal medical training, and is frequently accepted by
parents based on religious beliefs rather than medical
evidence. This practice exposes infants to unnecessary
surgical risks without clear medical benefits, which can
be considered a form of child abuse.

D Prompts of each methods

Table 11: System prompt

system prompt: You are a skilled debater.Your final objec-
tive is to make a high-quality counter-argument against an
affirmative argument provided on a specific topic. To achieve
this: You are not required to create a new argument from
scratch. Take the opposite stance of the affirmative argument.
To make an counter-argument means to carefully point out
the weaknesses, inaccuracies, and lack of evidence in the
reasoning of the claim. You may also be asked to complete
several other tasks along the way. Consider these tasks as
necessary steps to achieve the final objective.

Table 12: m-Comp prompt

Premise generation step: topic:#topic# affirmative ar-
gument:#argument# Thoroughly analyze the given af-
firmative argument on the given topic. Identify and list
all premises supporting the affirmative argument, with a
special emphasis on:1.Explicit premises: Clearly stated
premises or sentences.2.Implicit premises: Unstated
premises necessary for the argument to hold. Please
output only the listed premises.
Premise decision step: Select the most suitable premise
to attack for your counter-argument from the list of
premises. The ideal premise should meet the follow-
ing criteria: 1. Foundational Importance: It should
be foundational to the affirmative argument, supporting
a key aspect of their arguments. Attacking the root of
the opponent’s argument is generally more critical. 2.
Moderate Vulnerability: It should be moderately poorly
explained or insufficiently supported in the affirmative
argument, as the underlying premises of the opponent’s
argument are generally better explained and may be pre-
emptively refuted. Please output only the premise you
chose.
Counter-argument generation step: Please make a
concise and brief counter-argument to the affirmative
argument, that attacks the specific premise you chose.
Please output only the text of your counter-argument.

Table 13: m-Targ and m-Basic prompt

m-Targ prompt
Premise decision step: topic:#topic# affirmative ar-
gument:#argument# premise list:#premise list# Select
the most suitable premise to attack for your counter-
argument from the premise list. The ideal premise should
meet the following criteria: 1.Foundational Importance:
It should be foundational to the affirmative argument,
supporting a key aspect of their arguments. Attacking
the root of the opponent’s argument is generally more
critical. 2.Moderate Vulnerability: It should be mod-
erately poorly explained or insufficiently supported in
the affirmative argument, as the underlying premises of
the opponent’s argument are generally better explained
and may be preemptively refuted.Please output only the
premise you chose.
Counter-argument generation step: Please make a
concise and brief counter-argument to the affirmative
argument, that attacks the specific premise you chose.
Please output only the text of your counter-argument.

m-Basic prompt
Premise decision step: topic:#topic# affirmative ar-
gument:#argument# premise list:#premise list# Select
the most suitable premise to attack for your counter-
argument from the premise list. Please output only the
premise you chose.
Counter-argument generation step: Please make a
concise and brief counter-argument to the affirmative
argument, that attacks the specific premise you chose.
Please output only the text of your counter-argument.

Table 14: Directgen prompt(baseline)
Directgen prompt
Counter-argument generation step:topic:#topic# af-
firmative argument:#argument# Please make a concise
and brief counter-argument to the affirmative argument.
Please output only the text of your counter-argument.

Table 15: o-Comp prompt

topic: #topic#
affirmative argument: #argument#
First Thoroughly analyze the given affirmative argument
on the specified topic. Identify all premises supporting
the affirmative argument, including:
Explicit premises: Clearly stated assumptions or claims.
Implicit premises: Unstated assumptions necessary for
the argument to hold.
Next choose the most suitable premise to attack for your
counter-argument from the premises. The ideal premise
should meet the following criteria:
Foundational Importance: It should be foundational to
the affirmative argument, supporting a key aspect of
their arguments. Attacking the root of the opponent’s
argument is generally more critical.
Moderate Vulnerability: It should be moderately poorly
explained or insufficiently supported in the affirmative
argument, as the underlying premises of the opponent’s
argument are generally better explained and may be
preemptively refuted.
Finally, please provide a concise, straightforward
counter-argument to the affirmative argument, attacking
the specific premise you chose.
Please output only the text of your counter-argument.
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o-Targ prompt
Counter-argument generation step:topic:#topic# af-
firmative argument:#argument# premise list:#premise
list# First, select the most suitable premise to attack
for your counter-argument from the premise list. The
ideal premise should meet the following criteria: 1.Foun-
dational Importance: It should be foundational to the
affirmative argument, supporting a key aspect of their ar-
guments. Attacking the root of the opponent’s argument
is generally more critical. 2.Moderate Vulnerability: It
should be moderately poorly explained or insufficiently
supported in the affirmative argument, as the underly-
ing premises of the opponent’s argument are generally
better explained and may be preemptively refuted.Next,
Please make a concise and brief counter-argument to the
affirmative argument, that attacks the specific premise
you chose. Please output only the text of your counter-
argument.

o-Basic prompt
Counter-argument generation step:topic:#topic# af-
firmative argument:#argument# premise list:#premise
list# First, Select the most suitable premise to attack
for your counter-argument from the premise list. Next,
Please make a concise and brief counter-argument to the
affirmative argument, that attacks the specific premise
you chose. Please output only the text of your counter-
argument.

E Results of choice evaluation

The results of the choice evaluation performed by
a human expert are shown below. Each value is the
percentage of each metrics satisfied.

Table 16: Results of choice evaluation

Relevance to the topic (40 sample)
metric m-Comp m-Targ m-Basic Directgen
Q4 0.97 0.97 0.96 0.96
Q5 0.96 0.94 0.86 0.95
Q6 0.74 0.54 0.47 0.87
Q7 0.29 0.28 0.24 0.24
Q8 0.89 0.90 0.90 0.83

F Examples of multi-step and one-step
counter-argument generation

Table 17: Examples of multi-step and one-step counter-
argument generation

Topic
Feminism is necessary or not
Affirmative argument
In the United Kingdom, one in four people experiences
domestic violence (DV). Globally, reports of rape are
increasing, yet conviction rates are declining. In the
United States, women earn only 77 cents for every dollar
earned by men. When filtered for racial minorities, the
disparity becomes even more pronounced. These issues
highlight the deep-rooted gender problems in society.
Feminism still has many objectives to achieve, including
women’s rights, safety, and equal economic opportuni-
ties.
m-Comp)
The claim that women in the United States earn only
77 cents for every dollar earned by men is a misleading
statistic that does not take into account various factors
such as occupation, education, experience, and working
hours. Using this statistic as a fundamental argument for
the necessity of feminism oversimplifies the complex na-
ture of wage determination and misrepresents the issue.
Directgen
The issues that are claimed to remain under feminism’s
purview are, in fact, already being addressed. Overem-
phasizing these problems can obscure the need for a
more inclusive approach that addresses the rights of all
genders, including men and non-binary individuals.
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Abstract

The effectiveness of embedding methods is cru-
cial for optimizing text classification perfor-
mance in Automated Machine Learning (Au-
toML). However, selecting the most suitable
pre-trained model for a given task remains chal-
lenging. This study introduces a comprehen-
sive corpus of pre-fine-tuned models from the
Hugging Face Model Hub, annotated with do-
mains and dataset descriptions, to enhance text
classification tasks. By leveraging this corpus,
we evaluated the integration of pre-fine-tuned
models into AutoML systems, demonstrating
substantial performance gains across various
datasets compared to baseline methods. De-
spite some inaccuracies in domain recognition,
the results underscore the corpus’ potential to
streamline model selection and reduce compu-
tational costs.

1 Introduction

The advent of large language models (LLMs) has
significantly advanced natural language process-
ing (NLP), offering powerful tools for tasks such
as text classification, summarization, and transla-
tion (Devlin et al., 2018). Fine-tuning these models
for specific tasks has traditionally been the standard
approach to achieving optimal performance. How-
ever, fine-tuning is resource-intensive, requiring
substantial computational power and time, which
may not be feasible for all practitioners (Wolf et al.,
2020).

Simultaneously, AutoML automates tasks like
feature and model selection, offering a streamlined
approach to machine learning (He et al., 2021).
Integrating LLMs into AutoML can boost NLP
performance by leveraging their rich linguistic rep-
resentations (Tornede et al., 2023).

A practical alternative to fine-tuning is utilizing
pre-fine-tuned LLMs available in repositories such
as Hugging Face. These models have been trained
on specific tasks or domains and offer ready-to-use

LLMs that can be incorporated into AutoML clas-
sifiers. This approach can improve performance
while mitigating the resource constraints associated
with fine-tuning.

Despite their potential, pre-fine-tuned LLMs
from repositories like Hugging Face remain un-
derexplored as text representation methods in Au-
toML. This study bridges this gap by developing
an interface to a domain-annotated corpus of pre-
fine-tuned models and evaluating their impact on
classification performance across seven diverse text
classification tasks.

This study enhances AutoML-based text classi-
fication by introducing a structured corpus of pre-
fine-tuned models annotated with domain-specific
metadata to optimize model selection. By sys-
tematically mapping models to tasks based on
domain alignment, we demonstrate substantial
performance gains while reducing computational
overhead. The findings highlight a scalable and
resource-efficient approach for integrating pre-
trained representations into AutoML frameworks,
making advanced NLP capabilities more accessi-
ble.

2 Related Works

LLMs and Contextual Embeddings: Contex-
tual embeddings from fine-tuned LLMs outperform
static methods like TF-IDF and Word2Vec in clas-
sification tasks by creating highly separable vec-
tor spaces (Pietro, 2020; Koroteev, 2021; Andrade,
2023; Safikhani and Broneske, 2023a). While fine-
tuned LLMs achieve superior results, their com-
putational cost limits their applicability. Pre-fine-
tuned models, tailored for specific tasks, provide a
scalable alternative (Wolf et al., 2020).

Text Representations in AutoML: AutoML
frameworks like Auto-PyTorch aim to automate
feature extraction, model selection, and hyperpa-
rameter tuning (Zimmer et al., 2021; Feurer et al.,
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2015). Despite this, they often rely on basic text
representations like one-hot encoding. Recent re-
search highlights the benefits of integrating ad-
vanced embeddings into AutoML systems. For
instance, Safikhani and Broneske (2023b) demon-
strated the effectiveness of fine-tuned BERT em-
beddings for binary classification in Auto-PyTorch.
However, leveraging pre-fine-tuned LLMs for Au-
toML remains underexplored.

Open-Source Pre-Fine-Tuned Models: The
Hugging Face Model Hub offers many pre-fine-
tuned models optimized for tasks such as text
classification, sentiment analysis, and named en-
tity recognition (Wolf et al., 2020). These mod-
els (see for instance BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019), and XLM-R (Con-
neau, 2019) address domain-specific needs and
reduce reliance on fine-tuning. Comprehensive
model cards (Mitchell et al., 2019) provide trans-
parency, aiding in model selection and reproducibil-
ity.

While pre-fine-tuned LLMs show promising re-
sults, their integration into AutoML classifiers has
not been systematically studied. This research ad-
dresses this gap by evaluating the impact of pre-
fine-tuned models as text representation methods
in AutoML, focusing on their performance across
diverse text classification tasks.

3 Methodology

In order to achieve our two goals of interfacing and
selecting pre-fine-tuned models, we implement the
following two phases.

3.1 Pre-trained Model Repository Integration
In the first phase of our methodology, we estab-
lished an interface between a model repository
(Hugging Face) and our AutoML framework (Auto-
PyTorch). This integration enables the AutoML
system to leverage a rich corpus of pre-trained NLP
models, facilitating model reuse for downstream
text classification tasks. Retrieving pre-trained (and
fine-tuned) models from repositories like Hugging
Face is critical for enhancing AutoML, as it allows
rapid deployment and adaptation to new tasks with-
out the high computational cost of training models
from scratch. We implemented a configurable in-
terface to the Hugging Face Hub API1 that allows
Auto-PyTorch to programmatically query and re-
trieve models. This retrieval process provided a

1https://huggingface.co/docs/hub/api

diverse pool of candidate models, each trained on
various text classification datasets and tasks. How-
ever, many models on the repository lacked clear
documentation of their intended domains. To ad-
dress this, we analyzed the datasets used for each
model’s fine-tuning as a proxy for its domain, using
those dataset references to infer the types of tasks
or domains for which each model is best suited.

3.2 Selection of Domain-Specific Models

Given the possibility of retrieving the pre-trained
models from Hugging Face, the next phase imple-
ments the selection of a specific model. Hence, the
domain of the models needs to be matched with the
domain of the datasets.

3.2.1 Domain Definition from Literature
We conducted a literature review to identify key
domains in text classification, as shown in Table 1.
These domains, supported by foundational refer-
ences, provide a framework for contextualizing
models and analyzing domain representation in the
corpus. We curated a list of 30 domains from ex-
isting literature (e.g., Sentiment Analysis, Spam
Detection, Hate Speech Detection).

3.2.2 Domain Identification of Hugging Face
Models

To identify the domain of models retrieved from
the Hugging Face API, we mapped model names to
dataset descriptions when explicit model descrip-
tions were not available in the metadata.

As the collected domain labels, such as "Hate
Speech Detection," often lack sufficient contextual
richness and may overlook intricate nuances, we
employed ChatGPT to generate extended descrip-
tions. This approach bridges the semantic gap be-
tween concise labels and detailed model documen-
tation, enhancing matching precision by capturing
variations in terminology used across different con-
texts.

To map these models to a domain, we com-
pared the model’s description against the generated
domain descriptions using sentence embeddings
from all-MiniLM-L6-v2 provided by Sentence-
BERT (Reimers, 2019). We applied cosine similar-
ity (Singhal et al., 2001) between the embeddings
to assign the most semantically relevant domain to
each model.

We selected a pre-fine-tuned model from the
Hugging Face repository for each evaluation
dataset based on the recognized domain. A fall-
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Domain Generated Description by ChatGPT
Emotion Cause Extraction (Ghazi et al., 2015) Identifying the reasons or triggers for specific emotions in text.
Social Media Behavior Analysis (Aral and Walker, 2012) Analyzing user behavior on social media platforms.
Rhetorical Structure Classification (Mann and Thompson, 1988) Classifying rhetorical structures in discourse.
Spam Detection (Guzella and Caminhas, 2009) Classifying emails or messages as spam or legitimate.
Language Identification (Jauhiainen et al., 2019) Detecting the language of text, especially in multilingual settings.
Sentiment Analysis (Pang et al., 2008) Detecting opinions, emotions, and sentiments in text.
Topic Classification (Blei et al., 2003) Assigning topics or categories to text documents.
Emotion Recognition (Cowie et al., 2001) Identifying emotions such as joy, sadness, anger, and fear in text.
Intent Classification (Liu et al., 2019) Understanding the purpose or intent behind user queries.
Hate Speech Detection (Davidson et al., 2017) Detecting hate speech, toxic, or abusive language in the text.
Textual Entailment (Bowman et al., 2015) Determining if one text logically follows from another.
Document Classification (Rios and Kavuluru, 2018) Categorizing entire documents into predefined classes.
Fake News Detection (Shu et al., 2017) Detecting false or misleading news articles.
Aspect-Based Sentiment Analysis (Pontiki et al., 2016) Analyzing sentiment specific to different aspects of a product or service.
Sarcasm Detection (Joshi et al., 2017) Identifying sarcasm or ironic statements in the text.
Propaganda Detection (Da San Martino et al., 2019) Detecting manipulative or biased content in text.
Irony Detection (Van Hee et al., 2018) Identifying ironic statements in the text.
Argument Mining (Van Hee et al., 2018) Analyzing arguments and their structures in the text.
Deception Detection (Fitzpatrick et al., 2015) Detecting lies, fraud, or deceptive statements in text.
Lexical Complexity Prediction (Shardlow, 2013) Predicting the complexity or difficulty of words in the text.
Politeness Classification (Danescu-Niculescu-Mizil et al., 2013) Classifying text based on politeness levels.
Coreference Resolution (Lee et al., 2017) Linking pronouns and entities to their references.
Genre Classification (Stamatatos et al., 2000) Classifying text into genres such as fiction, non-fiction, etc.
Temporal Information Extraction (Bethard, 2013) Extracting time-related information from text.
Claim Verification and Fact-Checking (Thorne and Vlachos, 2018) Verifying the truth of claims in text.
Persuasiveness Classification (Habernal and Gurevych, 2016) Classifying how persuasive text is.
Privacy Risk Classification (Biega et al., 2020) Detecting privacy risks in text data.
Media Bias Detection (Baly et al., 2020) Identifying bias in news or media content.
Speech Emotion Classification (Busso et al., 2013) Recognizing emotions from spoken text or transcripts.
Multimodal Text Classification (Kiela et al., 2019) Classifying text combined with other modalities like images or audio.

Table 1: Categorized Domains in Text Classification with Descriptions Generated Using ChatGPT and Foundational
References, Serving as a Framework for Similarity-Based Domain Assignments.

back model (all-MiniLM-L6-v2) was used if no
specific model was available for the recognized do-
main. Sentence embeddings for the datasets were
then generated using the selected model.

Furthermore, it supports multi-task scenarios,
making it a versatile choice when domain-specific
models are unavailable.

3.3 Domain Identification of a given Datasets

To assign domains to our evaluation datasets, we
implemented a comprehensive zero-shot classifica-
tion approach using the cross-encoder/nli-deberta-
v3-small model, particularly suited for its ability to
interpret and classify complex data directly. This
method is preferred over cosine similarity because
it allows for a more dynamic interpretation of text
semantics rather than just vector alignment, which
is critical in understanding the nuanced thematic
content of datasets that might not be immediately
apparent through traditional vector space models.

Our process begins by selecting a representative
subset of text samples from each class within the
dataset to ensure comprehensive coverage of all
potential categories within the classification task.
These samples are systematically evaluated against
our predefined domain names using the zero-shot
model, which assesses the likelihood of each text
sample fitting into each potential domain. Zero-

shot learning is particularly effective because it
evaluates the semantic content of the samples in
a contextual manner, thus allowing for accurate
classifications based on the inherent meanings and
not merely on the superficial similarity of words or
phrases.

To ensure robust domain assignment, we com-
pute similarity scores between each text sample and
each domain, then calculate the average similarity
score across all classes for each domain. This aver-
aging is crucial as it ensures that the domain assign-
ment reflects the diversity of the entire dataset and
is not biased toward dominant themes within any
single class. Finally, the domain with the highest
average similarity score is assigned to the dataset.
This method is superior to cosine similarity as it
provides a balanced and accurate domain assign-
ment that effectively captures the complexity and
diversity of the dataset. It utilizes the strengths
of zero-shot learning to adapt to new and unseen
categories seamlessly, making it more adaptable to
datasets with varied and evolving themes.

4 Experiment

The experimental workflow evaluated the utility
of pre-fine-tuned language models from Hugging
Face for diverse text classification tasks. The pro-
cess involved multiple steps, including collecting
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model metadata, domain recognition, dataset prepa-
ration, model selection, and evaluation. Below, we
detail each step of the experimental setup.

4.1 Dataset Preparation

To evaluate the models, we used datasets from
Kaggle2, including Colbert (humor), IMDB Re-
views (sentiment analysis), Cyberbullying Com-
ments, Disaster Tweets Detection, Emotion Detec-
tion from Text, Amazon Reviews, and an anno-
tated dataset for framing detection (Avetisyan and
Broneske, 2021) to prevent data snooping. More
detailed information about these datasets is pro-
vided in table 2.

4.2 Experimental Setup

The generated embeddings were split into training
and testing sets (80/20 split) and used to train clas-
sification models. Auto-PyTorch was utilized to
automatically configure and optimize the classifica-
tion pipeline, employing a k-fold cross-validation
strategy for robust evaluation.

We assessed model performance primarily using
metrics tailored for imbalanced datasets. AUPRC
was used for binary classification tasks to evaluate
precision-recall trade-offs effectively, and micro
F1-Score was employed for robust evaluation in
multi-class settings.

The experiments were conducted on a high-
performance system featuring an NVIDIA A100
GPU with 40 GB VRAM, dual Intel Xeon Gold
5220R CPUs, and 376 GB RAM, running Ubuntu
20.04 LTS. Key software included Python 3.8, Py-
Torch 1.9, Hugging Face Transformers 4.9, and
Auto-PyTorch 0.0.6, optimized for efficient model
training and inference.

5 Results and Discussion

The results of our evaluation, presented in Ta-
ble 3, highlight the effectiveness of the proposed
Corpus-Driven Domain Mapping (CDDM) ap-
proach, which utilizes pre-fine-tuned models as text
representation methods for Auto-PyTorch. The per-
formance of models selected from the constructed
corpus was compared against the baseline Auto-
PyTorch classifier, which uses one-hot encoding
as the default text representation method. These
comparisons were conducted across seven text clas-
sification datasets to evaluate the impact of domain-
specific pre-trained representations.

2https://www.kaggle.com/

Performance Overview
The evaluation results show that integrating pre-
fine-tuned models into Auto-PyTorch improves
performance on various text classification datasets.
This effectiveness depends on domain recognition
accuracy, which affects model alignment with spe-
cific tasks. Below, we present key outcomes by
recognized domains and corresponding pre-fine-
tuned models from the Hugging Face repository:

Media Bias Detection: This model showed sub-
stantial performance improvements across several
datasets. On the Colbert dataset, designed for
humor detection but misclassified as media bias,
the model achieved an AUPRC of 92.3% com-
pared to the baseline of 52%. Similarly, on the
Cyberbullying Comments dataset, where the do-
main was correctly identified as media bias, the
model attained an AUPRC of 70.2%, outperform-
ing the baseline of 46.55%. These results highlight
the robustness of pre-fine-tuned models, even when
domain recognition is not entirely accurate. How-
ever, precise domain alignment remains crucial for
unlocking the full potential of the corpus.

Sexism and Misogyny Detection: On the
Disaster Tweets Detection dataset, the do-
main recognition step correctly assigned sexism
and misogyny detection. This resulted in a signifi-
cant performance boost, with an AUPRC of 44.7%
compared to 19.01%. Accurate domain recogni-
tion was instrumental in leveraging the model ef-
fectively for this task.

User Stance Classification: For the IMDB
Reviews dataset, the recognized domain of stance
classification was a reasonable match given the
sentiment-related nature of the task. The model
achieved an AUPRC of 67.5%, surpassing the
baseline of 50.63%. This suggests that while
the selected model performed well, assigning a
sentiment-specific model could yield even better
results.

Emotion Recognition: On the Emotion
Detection from Text dataset, the domain
recognition was accurate, resulting in an AUPRC
of 71.7%, significantly higher than the baseline
of 51.66%. This highlights the value of precise
domain matching in maximizing the corpus’s
utility.

Genre Classification: On the Amazon Reviews
dataset, the domain was correctly identified as
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Dataset Binary Number of Texts Number of Classes Average Text Length Balanced
ColBERT 200,000 2 (Formal, Informal) 20 words Yes
Disaster Tweets Detection 11,223 2 (Disaster, Not) 30 words No
Cyberbullying Comments 115,661 2 (Cyberbullying, Not) 12 words Yes
Framing Detection 4,063 2 (Framed, Not Framed) 25 words No
IMDB Reviews 50,000 2 (Positive, Negative) 230 words Yes
Dataset Multi-class Number of Texts Number of Classes Average Text Length Balanced
Amazon Reviews 17,337 3 33 words No
Emotion Detection from Text 40,000 13 14 words Yes

Table 2: Overview of Datasets for Binary and Multi-class Text Classification Tasks

Dataset Binary Baseline (AUPRC %) CDDM (AUPRC %) Recognized Domain
ColBERT 52 92.3 Media Bias Detection
Disaster Tweets Detection 19.01 44.7 Sexism and Misogyny Detection
Cyberbullying Comments 52.00 92.3 Media Bias Detection
Framing Detection 46.55 70.2 Media Bias Detection
IMDB Reviews 50.63 67.5 User Stance Classification in Online De-

bates
Dataset Multi-class Baseline (Micro F1 %) CDDM (Micro F1 %) Recognized Domain
Amazon Reviews 48.46 80.7 Genre Classification
Emotion Detection from Text 51.66 71.07 Propaganda Detection

Table 3: Performance Comparison of Pre-Fine-tuned Models Selected via Corpus-Driven Domain Mapping (CDDM)
and Baseline Representations Across Text Classification Tasks

genre classification. The model achieved an impres-
sive AUPRC of 80.7%, emphasizing the advantages
of accurate domain recognition and the potential of
the Hugging Face corpus for domain-specific tasks.

Propaganda Detection: On the Framing
Detection dataset, the recognized domain was
media bias detection rather than propaganda
detection. Despite this misalignment, the model
achieved an AUPRC of 70.2%, outperforming the
baseline of 46.55%. This result underscores the
need for more accurate domain recognition to fully
utilize the potential of the corpus.

The corpus of pre-fine-tuned models from Hug-
ging Face, annotated with domains and dataset de-
scriptions, represents a valuable resource for ad-
vancing text classification tasks. Its diversity and
systematic structure streamline model selection,
reducing the need for extensive fine-tuning and
saving computational resources.

The experiments demonstrate the utility of this
corpus, with substantial performance gains over
baseline models, even when domain recognition
was occasionally imprecise. The corpus addresses a
critical gap in NLP workflows by mapping datasets
to suitable models based on domain alignment.

This study shows that the corpus offers a scal-
able framework for integrating pre-tuned models
in AutoML systems like Auto-PyTorch. Allowing
task-specific model selection and optimization has
proven effective in improving performance across
various text classification tasks. The results empha-
size that accurate domain recognition significantly
boosts performance, indicating the potential for

greater efficiency and wider application in NLP
workflows with further refinements.

In summary, the Hugging Face corpus compiled
in this study is not just a collection of models but
an indispensable resource that has already demon-
strated its impact through improved text classifica-
tion performance. With further refinement, particu-
larly in domain recognition and model alignment,
this corpus can potentially set a new standard for
leveraging open-source models in diverse and com-
plex NLP tasks within AutoML frameworks.

6 Conclusion and Future Works

This study introduced a corpus of pre-fine-tuned
models from Hugging Face enriched with domain
annotations and dataset descriptions, demonstrat-
ing its utility for enhancing text classification tasks.
The experimental results highlight how this re-
source improves model performance and stream-
lines integration into automated pipelines, reducing
the need for fine-tuning.

In conclusion, the Hugging Face corpus repre-
sents a critical step toward scalable and efficient
NLP solutions. Refinements in domain recognition
and alignment hold the potential to revolutionize
the use of pre-fine-tuned models in AutoML, ad-
vancing text classification and broader NLP tasks.

Future work will focus on improving domain
recognition accuracy through advanced methods
such as supervised learning or knowledge graph-
based approaches. Additionally, it will evaluate
the corpus with a more diverse range of datasets,
including low-resource languages.
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Future work will optimize text representation
methods for specific datasets to enhance the pro-
posed corpus’s utility in AutoML systems. We
will develop a multi-model evaluation framework
that aligns three semantically similar pre-fine-tuned
models from the corpus to each dataset based on
domain similarity scores and zero-shot classifica-
tion results. These models will be assessed using
AutoML techniques supported by Auto-PyTorch,
enabling efficient performance evaluation through
automated hyperparameter optimization and model
selection. By employing multi-fidelity optimiza-
tion methods like Successive Halving and Hyper-
band, we aim to identify the most effective model
early in training, reducing computational costs.
This method balances model performance with
efficiency while preserving the domain-specific
strengths of our corpus.

Limitations

While the proposed corpus demonstrates significant
potential, several limitations should be noted.

First, the evaluation datasets, though diverse, are
not comprehensive and do not fully capture the
complexity of real-world text classification tasks.

Second, while domain recognition methods are
effective, they have accuracy limitations. For in-
stance, the Colbert dataset, designed for humor
detection, was misclassified as media bias, high-
lighting the need for more nuanced approaches
like supervised learning or knowledge graph-based
mapping.

Despite these challenges, the results highlight
the potential of the Hugging Face corpus as a valu-
able resource for text classification and other NLP
tasks, with opportunities for further refinement to
enhance its utility in the AutoML domain.
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Abstract

The recent large-scale emergence of LLMs has
left an open space for dealing with their con-
sequences, such as plagiarism or the spread
of false information on the Internet. Cou-
pling this with the rise of AI detector bypass-
ing tools, reliable machine-generated text de-
tection is in increasingly high demand. We
investigate the paraphrasing attack resilience
of various machine-generated text detection
methods, evaluating three approaches: fine-
tuned RoBERTa, Binoculars, and text feature
analysis, along with their ensembles using
Random Forest classifiers. We discovered
that Binoculars-inclusive ensembles yield the
strongest results, but they also suffer the most
significant losses during attacks. In this paper,
we present the dichotomy of performance ver-
sus resilience in the world of AI text detection,
which complicates the current perception of
reliability among state-of-the-art techniques.

1 Introduction

The widespread use of LLMs can be precari-
ous when left unchecked, with the consequences
ranging from intellectual dishonesty to the spread
of fake news on social media. Elali and Rachid
(2023) found that AI chatbots can easily produce
both realistic-looking academic results and a pol-
ished manuscript that may well be accepted to a
conference and published. Since scientific research,
especially medical, is often falsified, the emergence
of such a possibility opens up a dangerous playing
field (Phogat et al., 2023). It was found that 14%
of scientists were aware of colleagues who falsi-
fied results, whereas 72% of scientists knew of
colleagues who engaged in questionable research
practices (Fanelli, 2009). More incidents of AI be-
ing used in the case of fake news spreading on the
internet can be found in the Ethics Statement.

What is particularly concerning about this is that
humans have been found to perform rather poorly

on manual detection of AI-written text. In par-
ticular, human performance has shown to be only
marginally better than random classification (Wu
et al., 2024). In fact, in a study involving over 130
subjects, Kumar and Mindzak (2024) found that
participants were only able to correctly identify
AI-generated text with an accuracy rate of 24%.
Concerning the use of AI in academia, Gao et al.
(2022) conducted an experiment where participants
were to identify whether abstracts for academic pa-
pers were written by ChatGPT or a human. They
found that only 68% of the AI-detected abstracts
were correctly classified. Such a precedent makes
a strong case for the necessity of precise automated
AI text detection mechanisms.

With the emergence of freely accessible sites
such as ZeroGPT, DetectGPT, and Quillbot, by-
passing attacks have been developed against these
technologies. Methods which are commonly used
include automated paraphrasing tools, prompt en-
gineering, and the calculated addition of errors into
AI-generated text (Perkins et al., 2024). It has been
generally shown that the use of these methods de-
creases the efficacy of the detection tool; however,
we aim to put together a more comprehensive anal-
ysis of the leading AI detection methods against
bypassing attacks. In this paper, we will focus on
paraphrasing attacks.

The leading state-of-the-art detectors can be cat-
egorized into two paradigms, those using training-
based and training-free mechanisms (Wang et al.,
2025). Most training-free approaches rely on sta-
tistical feature analysis and commonly look at per-
plexity, log probability, and n-grams (Chakraborty
et al., 2023). Although training-based models have
been widely leading, a recently developed method-
ology – Binoculars – proves successful in a zero-
shot context, which stands out over multiple met-
rics (Hans et al., 2024). This approach is devel-
oped further in the Related Work section. Training-
based methods largely rely on transformer models,
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namely RoBERTa (Liu et al., 2019), a masked-
based model, easily fine-tunable for downstream
tasks such as text classification.

The methods we stacked to develop our own
model include Binoculars, RoBERTa, and text fea-
ture analysis, which we justify due to their leading
benchmarks (detailed in Related Work).

2 Related Work

2.1 Binoculars

The Binoculars method relies on calculations
from two closely related LLMs. It has a signifi-
cant advantage over other SOTA methods in that
it uses no training from the LLM that it is being
tested on. This is significant, considering Binoc-
ulars still manages to surpass every open-source
model that detects ChatGPT. Because other detec-
tors rely on pretraining of the models they then test,
the results fail to generalize when tested across
multiple AI models. The Binoculars method, how-
ever, achieves high performance on a variety of
datasets, which gather texts from different LLM
sources. Furthermore, Binoculars addresses what
they call the “Capybara Problem”, which in essence
refers to the phenomenon of an LLM generating
high-perplexity text simply due to a high-perplexity
prompt being used. Other models which focus on
raw perplexity will fail in such cases. Binoculars
has an accuracy rate above 90%, and a false pos-
itive rate of 0.01%, using datasets which include
Writing prompts, News, and Student essays (Verma
et al., 2024).

2.2 Text Features

Muñoz-Ortiz et al. (2024) analyzed linguis-
tic patterns in human and LLM text to determine
which features would provide for the most robust
detection mechanism. Using extensive data from
six different LLMs, including Llama and Falcon 7-
b, they found that human writing tends to have less
uniform sentence length distribution than AI. This
conclusion is supported by Desaire et al. (2023),
who found that the standard deviation of sentence
length was an important identifier in text classifica-
tion. As one of our five text features used, we thus
implement standard deviation of sentence length.

2.3 Ensembling

Abburi et al. (2023) analyze the success in using
ensemble approaches for text classification. Their
ensemble involves stacking DeBERTa, RoBERTa,

and xLM-RoBERTa, fine-tuning each model for the
appropriate tasks. They found that this approach
reached 5th place in the English task and first place
in the Multilingual for the Automated Text Identifi-
cation shared task.

In fact, ensembling was highly used in Task 1
of the COLING 2025 GenAI Text detection work-
shop, from which we use the dataset provided to
train and evaluate our own model (Wang et al.,
2025). Mobin and Islam (2025), whose approach
scored 4th among contestants, relied on ensembling
RoBERTa-base with other pre-trained transformer
models. Our methodology also relies on RoBERTa,
however, we ensemble it with Binoculars and text
feature analysis, as justified above.

2.4 Bypassing

The most prominent AI text-detection models
relying on transformer fine-tuning have been tested
against bypassing and proven to largely withstand
it. Krishna et al. (2023) provide a critical base-
line by demonstrating that controlled paraphras-
ing can significantly undermine the performance
of AI-generated text detectors while maintaining
semantic integrity. Their work, through the DIP-
PER model, shows that even minimal paraphrasing
– changing wording and sentence structure – can
drop detection accuracy significantly.

Some common AI detectors saw decreases of
around 17% in accuracy (Perkins et al., 2024)
when bypassing methods were employed. However,
some more recently developed models were cre-
ated specifically to withstand such attacks, such as
the RADAR model (Hu et al., 2023), which trains
the detector on paraphrasing schemes and achieves
over 31.64% of additional accuracy compared to
previous methods. The Binoculars method, how-
ever, has not been tested against bypassing, thus its
general efficacy remains unclear. This concern is
explored in our paper.

3 Data and Methodology

To track the progress on machine-generated text
detection, we use the materials of the competition
on Detecting AI Generated Content @COLING
2025 Task 1: Binary Machine-Generated Text De-
tection (Wang et al., 2025). It is an aggregation of
other datasets that have been studied before, such as
M4GT. The experiments in the following sections
are based on the testing dataset that the final leader-
board used. All models use the training dataset,
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Figure 1: Pipeline of our model

which is described in Appendix A.0.1.
First, we chose to fine-tune RoBERTa for AI text

detection because it provided a substantial improve-
ment in the model’s ability to understand nuanced
language differences. In essence, we added a final
layer of size 2 for binary classification. It is also
a well-tested approach in machine-generated text
detection (Liu et al., 2019). We performed fine-
tuning over a subset (12k entries) of the training set
provided by the workshop. The hyperparameters
are learning rate = 2e− 5, batch size = 16, epochs
= 4, and training size = 20, 000, with a train/test
split of 0.8.

Second, we also test the Binoculars method,
which reaches high accuracy and low false-positive
rates over multiple LLM tested on, without re-
lying on training data. Binoculars uses two
closely related LLMs – ’tiiuae/falcon-7b’,
’tiiuae/falcon-7b-instruct’ – to calculate
cross-perplexity, meaning perplexity is calculated
using the log perplexity of text generated by one
LLM and the next-token prediction of another.

Third, we measured several document metrics
that are related to AI detection. We selected 5 text
markers: average word length, lexical diversity,
punctuation frequency (Corizzo and Leal-Arenas,
2023), standard deviation of sentence length, and
stopword ratio (Gryka et al., 2024). The selection
of features was based on the entropy values from
the Random Forests.

We combined the features extracted from each
approach into a single vector for each text sample
and fed it to the Random Forests model that acts
like a meta-learner. This vector includes the pre-
diction probabilities from the fine-tuned RoBERTa

model as well as the predicted labels, the cross-
perplexity scores from Binoculars, and the five doc-
ument metrics we selected (Fig 1). In the following
sections, we will show the performance of all 7
different stackings of the models.

Since we had limited resources, we manually
chose 200 random entries from the evaluation
dataset and fed them to the high-performance AI
text detector bypasser GPTinf. GPTinf claims
to bypass all AI detectors, including Turnitin
AI Detector, GPTZero, ZeroGPT, and GPTRadar.
The dataset is published now on HuggingFace at
’antebe1/paraphrased_AI_text’.

Although the algorithm used by GPTInf is not
publicized, their website states that it works by
paraphrasing the inputted text–removing common
phrasing and diversifying sentence structure by
varying the wording, grammar, and ordering of
words used (GPT). To calculate the confidence in-
terval (CI) for the F1 score on the full dataset, we
used a bootstrapping approach (9000 out of 73k).
To verify whether the differences between modules
tested on were significant, we ran 21 pair-wise Mc-
Nemar statistical tests (Table 3). The Bonferroni
correction for α = 0.1 is 0.0048.

4 Results

4.1 Binoculars

4.1.1 Observations
For rapid testing purposes, all tests on Binoculars

have been run on the devtest split of the dataset.

4.1.2 Context Window Effect
We observed that the information gain increases

as the context window increases. However, the
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Figure 2: Binoculars results

information gain plateaus somewhere after 256−
512 tokens. The Jensen-Shannon (JS) divergence
score (Fig 3, see Appendix A.0.2), which mea-
sures the similarity between probability distribu-
tions, demonstrated significant improvements from
0.0373 (context window size = 32) to 0.2843 (con-
text window size = 512). The JS score highlighted
distinct effects between human-authored and AI-
generated text as the context window increased.

The Binoculars score analysis reveals a clear
separation between human and AI-generated text.
Human-written content maintains the highest me-
dian score around 1.0 (Fig 2) as predicted by the
Binoculars paper, exhibiting notable variance and
outliers. The critical threshold value of 0.901, just
as reported in the original paper, serves as a discrim-
inator between human and AI-generated content.

4.2 Module Ensemble Comparisons

Three different modules give rise to 7 different
ways to assemble them (Fig 4).

The ensemble incorporating all modules (Text
Features, RoBERTa, and Binoculars) achieves the
highest F1 score of 80.2%. The second-best per-
formance is observed when Text Features and
RoBERTa are combined. While combining Text
Features with Binoculars or RoBERTa with Binoc-
ulars also improves performance compared to indi-
vidual features, they fall short of the comprehensive
ensemble. Notably, individual feature sets such as
Text Features, RoBERTa, or Binoculars alone yield
lower F1 scores than any combination of them (as

seen in Table 1).

Model Final F1 Score
Text Features + RoBERTa +
Binoculars

0.8018

Text Features + Binoculars 0.7975
RoBERTa + Binoculars 0.7832
Text Features + RoBERTa 0.7712
Binoculars 0.7515
Text Features 0.7168
RoBERTa 0.7027

Table 1: Performance of Models on F1 Scores

4.3 Paraphrasing Attack

Figure 5: Post-attack accuracy

Among individual models, RoBERTa demon-
strated the highest resilience to paraphrasing at-
tacks, showing no degradation (Table 2). In con-
trast, the Binoculars method exhibited the most
vulnerability, resulting in a significant degradation
of 0.1756.

Interestingly, the Text Features approach showed
no degradation in performance against paraphrased
samples. The ensemble combining Text Features,
RoBERTa, and Binoculars achieved the highest
initial accuracy rate of 0.7751 but experienced a
notable drop in performance when faced with para-
phrased samples, decreasing to 0.6816. These find-
ings highlight the varying degrees of resilience
among different approaches to machine-generated
text detection. RoBERTa’s robustness suggests that
its language understanding capabilities allow it to
detect AI-generated text even after paraphrasing.
The significant drop in Binoculars’ performance
indicates that its cross-perplexity approach may
be more sensitive to changes in text structure and
wording introduced by paraphrasing.
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Figure 3: Binoculars score over context window of 512 w/o quantization

Figure 4: Pre-attack Accuracy

Table 2: Accuracy drop per ensemble

Model Initial Accuracy Paraphrased Accuracy Degradation

Binoculars 0.7178 0.5423 0.1756

RoBERTa + Binoculars 0.7320 0.5622 0.1698

Text Features + Binoculars 0.7784 0.6119 0.1664

Text Features + RoBERTa +
Binoculars

0.7751 0.6816 0.0935

Text Features + RoBERTa 0.7274 0.6915 0.0358

Text Features 0.6780 0.7313 -0.0534

RoBERTa 0.6974 0.7562 -0.0588

5 Discussion

5.1 Analysis of Results

As demonstrated by our Results, we introduced a
Cohesive Testing Framework (CTF) for classifying
text as human- versus machine-written. Our sys-
tem streamlines the ensembling process by feeding
the document input into three detectors – Binocu-
lars, Text Features, and RoBERTa, which are then
stacked and evaluated by our meta-learner, Ran-
dom Forest (as demonstrated in Fig 1). Our method
employs 7 ways to combine 3 modules and make

cross-comparisons, which allows for 1-to-1 com-
parisons between performance of modules. Our en-
semble method proved significant information gain
which outperforms many SOTA detectors. Namely,
it would place us 4th on the COLING2025 Work-
shop leaderboard.

Our second main result was our finding that the
highest performing AI detectors had the worst re-
sults when it came to paraphrasing attacks. In fact,
any ensemble that used Binoculars saw a significant
decrease in accuracy. This is particularly interest-
ing, as it reflects more generally “The Bitter Les-
son” paradox – it seems that for every interpretable
training-free method there is a better black-box
approach.

5.2 Future Work
We suggest future works to build off our model

by addressing the limitations we have laid out on
the following page, as well as evaluating the detec-
tors we looked at on different bypassing attacks, not
only paraphrasing. Additionally, the methods evalu-
ated were not tested for out-of-distribution prompts.
Hense, accounting for this may add to a more com-
prehensive review of SOTA detectors. Sentiment
analysis has been shown to be distinguishable be-
tween human and machine-written text, thus in-
cluding this as a feature may contribute to some
interesting results as well.
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6 Conclusion

We believe that the tradeoff between perfor-
mance and resilience is significant enough to be-
come a leading theme in the AI-detection commu-
nity. For example, the reported high performance
of Binoculars on flagging Machine-generated text
has suffered the most drastic loss under paraphras-
ing attacks. Under our testing framework, we
also reaffirmed the significant information gain pro-
vided by the stacking of multiple detectors.
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Limitations

Our paraphrased dataset has 200 entries, as we
were unable to gain API access to the platform
we used. Thus, although statistically significant, it
should be important to replicate our results with a
larger dataset. Additionally, we only tested para-
phrasing generated by GPTInf, which may not cap-
ture the maximum extent of paraphrasing attack
capabilities.

Ethics Statement

When ChatGPT was released in 2022, it was
widely unheard of and thus not largely anticipated,
but within a short time frame, its popularity surged.
The world had not been expecting such a capable
and easily accessible system, and thus its use in
academic settings by students, across the internet
by scammers, and in almost every practical field by
workers, skyrocketed within a very brief amount of
time. As a result, the consequences of such wide-
spread AI use have not been thoroughly accounted
for, and recent studies of its very real and threat-
ening possible repercussions have only begun to
be released. It is then instrumental to first, study
the effects of large-spread AI use, and following
this, develop methods that can detect the use of AI,
namely in writing.

The use of deepfakes have become increasingly
prevalent in recent years. Trandabăt, and Gifu
(2023) investigated and assessed the threat of AI
being used to generate deepfakes on a mass scale to
be then published across the internet. Google pub-
lished the DeepDream algorithm in 2015, which
used a convolutional neural network, trained on mil-
lions of images, to first identify objects within im-
ages, and then using these patterns create an image
corresponding to a requested object (for instance,
an animal) from memory (Miller, 2020). Although
the images that this network could produce were
far from accurate and often combined elements of
different objects from its training data, the release
of DeepDream instantly sparked a race to use this
technology and create something more powerful,
as this was the first time deep learning was used to
generate images from scratch. Soon, more models
and algorithms were developed, which were more
advanced, with time, shrinking the gap between hu-
man recognizability of what is evidently machine-
generated in comparison to human-created. In their
paper, Trandabăt, and Gifu (2023) use this back-
ground to focus on the present-day role of AI across

the internet, notably what is commonly referred
to as “fake news”. They test a few classifiers on
both human and AI-generated fake news, includ-
ing RoBERTa. They find that the true positive rate
of AI-detector models, such as RoBERTa, on AI-
generated fake news is only 3% higher than when
run on human-generated fake news, thus making
AI-generated fake news very difficult to recognize
and highly useful for publishing false information
online.

In 2024, a German magazine Die Aktuelle pub-
lished an interview with a famous Formula One
driver, Michael Schumacher, which was created en-
tirely by the AI chatbot, Character.ai, upon which
the magazine was sued by Schumacher’s family
(ESPN News Services, 2024). Schumacher has
been out of the image of the public eye for almost
a decade due to a brain-injury following a sports
accident. His family has taken immense action to
keep his life post-accident in private, thus the re-
lease of this article resulted in great turmoil on the
family and misled readers all around the world.

Overall, the consequences of fake news becom-
ing prevalent can be unimaginably dangerous. In
South Korea, AI has been widely used to generate
ads containing falsified information and promote
the listing of fraudulent drugs and hormonal ther-
apies for sale to the public on the internet (Park,
2024). Because the sale of these treatments over-
the-counter have not been government-approved,
many of the drugs listed have not been properly
studied, meaning the health consequences that may
arise from them are unclear, which is critically un-
safe. We thus strongly emphasize the need for
reliability in AI text detection, highlighting the ab-
solute necessity for AI text detectors that are able
to bypass bypassers, in order to combat these prob-
lems addressed above and promote transparency
across the Internet, in all fields and aspects.
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A Appendix

A.0.1 Dataset
The training dataset contained a total of 610k
entries from HC3, M4GT, and MAGE. The test
dataset contained a total of 74k entries from CU-
DRT, IELTS, NLPeer, PeerSum, and MixSet. We
replicated 3 methods as well as their different en-
sembles over the Random Forest classifier and
evaluated their performance on the MGTD testing
dataset.

A.0.2 Quantization Effect
Quantization in machine learning is the process

of reducing the precision of numerical values, typi-
cally converting floating point numbers to lower-bit
representations, to decrease the model size and im-
prove computational efficiency. In our experiments,
we quantized HuggingFace “tiiuae/falcon-7b”
to replicate the paper. The typical degradation
effect was about 2% (Fig 6) and it was dimin-
ishing as context was increasing. This is un-
expected because usually degradation effects for
other tasks would be stronger. It took around
27 GB of RAM to run “tiiuae/falcon-7b” and
“tiiuae/falcon-7b-instruct” and 11 GB for 4-
bit quantization of those models. We conclude
that the marginal improvement of the F1 score is
unimportant compared to the doubled Carbon Foot-
print. While non-quantized versions achieve better
results, the marginal accuracy improvement must
be weighed against the significantly higher com-
putational requirements, particularly in resource-
constrained environments.

In Fig 7, while some models are more resilient
to Binocular detection (gemini1.5) than others
(gpt4o), the trend is repeated for all models. Con-
text window size significantly impacts detection
accuracy, with substantial improvements observed
as the window expands from 128 to 256 tokens.
The optimal range lies between 256-512 tokens,
though performance gains diminish notably beyond

300 tokens. The maximum accuracy peaks at ap-
proximately 0.80 for top-performing models at 512
tokens. Non-quantized models consistently demon-
strate superior accuracy compared to their quan-
tized counterparts, with approximately 2% better
performance.
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Module 1 Module 2 p-value F1 (M 1) F1 M1 F1 Diff Higher F1
Bino RoBERTa 0.0009 0.7032 0.8612 -0.1580 RoBERTa

TF Bino 0.0037 0.8448 0.7032 0.1416 TF

RoBERTa Bino + RoBERTa 0.0001 0.8612 0.7197 0.1414 RoBERTa

TF Bino + RoBERTa 0.0055 0.8448 0.7197 0.1251 TF

RoBERTa TF + Bino 0.0150 0.8612 0.7477 0.1135 RoBERTa

Bino TF + Bino + RoBERTa 0.0163 0.7032 0.8107 -0.1074 TF + Bino + RoBERTa

Bino TF + RoBERTa 0.0472 0.7032 0.8036 -0.1003 TF + RoBERTa

TF TF + Bino 0.0064 0.8448 0.7477 0.0972 TF

Bino + RoBERTa TF + Bino + RoBERTa 0.0301 0.7197 0.8107 -0.0909 TF + Bino + RoBERTa

TF + RoBERTa Bino + RoBERTa 0.0515 0.8036 0.7197 0.0838 TF + RoBERTa

TF + Bino TF + Bino + RoBERTa 0.0752 0.7477 0.8107 -0.0630 TF + Bino + RoBERTa

RoBERTa TF + RoBERTa 0.0337 0.8612 0.8036 0.0576 RoBERTa

TF + Bino TF + RoBERTa 0.2111 0.7477 0.8036 -0.0559 TF + RoBERTa

RoBERTa TF + Bino + RoBERTa 0.1101 0.8612 0.8107 0.0505 RoBERTa

Bino TF + Bino 0.2878 0.7032 0.7477 -0.0444 TF + Bino

TF TF + RoBERTa 0.1950 0.8448 0.8036 0.0413 TF

TF TF + Bino + RoBERTa 0.2927 0.8448 0.8107 0.0342 TF

TF + Bino Bino + RoBERTa 0.4611 0.7477 0.7197 0.0279 TF + Bino

Bino Bino + RoBERTa 0.5193 0.7032 0.7197 -0.0165 Bino + RoBERTa

TF RoBERTa 0.5105 0.8448 0.8612 -0.0164 RoBERTa

TF + RoBERTa TF + Bino + RoBERTa 0.5597 0.8036 0.8107 -0.0071 TF + Bino + RoBERTa

Table 3: Statistical Comparison of F1 Scores Across
Different Module Combinations

484



Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 485–491

April 30 - May 1, 2025 ©2025 Association for Computational Linguistics

Detecting, Generating, and Evaluating in the Writing Style of
Different Authors

Mosab Rezaei
Department of Computer Science

Northern Illinois University

Abstract

In recent years, stylometry has been investi-
gated in many different fields. Hence, in this
work, we are going to tackle this problem, de-
tecting, generating, and evaluating textual docu-
ments according to the writing style by leverag-
ing state-of-the-art models. In the first step, the
sentences will be extracted from several differ-
ent books, each belonging to a different author,
to create a dataset. Then the selected models
will be trained to detect the author of sentences
in the dataset. After that, generator models
are utilized to generate sentences based on the
authors’ writing styles with unpaired samples
in the dataset. Finally, to evaluate the perfor-
mance of the generators, the previously trained
models will be used to assess the generated
sentences and to compare the distribution of
various syntactic features between the original
and generated sentences. We hope the result
shows that models can be achieved to detect
and generate textual documents for the given
authors according to their writing style.

1 Introduction

Stylometry is a linguistic discipline that applies sta-
tistical analysis to literature based on the assump-
tion that each author has an unconscious aspect to
their style (Yang et al., 2008). Generally and sim-
ply, stylometry is a field of study that statistically
analyzes authorship attribution (Holmes, 1998). As
the production of digital documents increases, the
importance of stylometry grows as well. The in-
creasing attention to stylometry has been reflected
in Wayman et al. (2009): "As non-handwritten
communications become more prevalent, such as
blogging, text messaging, and emails, there is a
growing need to identify writers not by their writ-
ten script, but by analysis of the typed content".

In this work, after demonstrating the existence of
distinguishable patterns between different authors’
writing styles, we aim to train generator models

without paired samples to generate and then eval-
uate the generated sentences in different writing
styles. Leveraging these models opens new ad-
vances in generating stylistic text, further enriching
applications such as authorship verification, cre-
ative writing, forensic linguistics, legal systems,
and criminology.

It is important to note that one of the key issues in
this work lies in evaluating the generated sentences.
First, while well-known metrics like accuracy or F1
score are valuable, they cannot adequately reflect
how accurately the model detects and mimics writ-
ing styles. Moreover, these metrics do not provide
clear insights into the performance of the model in
each of the writing style categories. On the other
hand, relying on expert human evaluations presents
significant challenges. For example, gathering ex-
perts who specialize in all five authors’ writing
styles in the dataset is nearly impossible. Hence,
we are going to use an AI-evaluate-AI technique
to assess the generated sentences. We will train
a detector capable of classifying sentences with
high performance and use it to evaluate the gener-
ated sentences. Furthermore, we will incorporate
feature-based evaluation by comparing the features
extracted from both the original sentences and the
generated sentences to measure their alignment.

Given the importance of stylometry, and the chal-
lenges mentioned above, this study has been fo-
cused on answering three main research questions
in this area:

RQ1 (Detection): Given the differences in authors’
writing styles, can the proposed model extract re-
lated features and accurately detect the authors for
a given sentence?
RQ2 (Generation): Is it possible to train a gener-
ator to produce sentences in the writing style of a
specific author without using paired training data?
RQ3 (Evaluation): Can detector models be used to
evaluate generated sentences by generator models?

485



2 Related Work

Since the use of machine learning for analysis alone
is well understood, and evaluation is part of our
future work, in this section, we describe only the
systems used for style generation.

In Logeswaran et al. (2018), the authors propose
a novel generative model for sentence style transfer
that modifies the style of a given sentence based
on categorical attributes. The architecture com-
prises an RNN-based encoder-decoder that gener-
ates sentences consistent with the input’s content
and specified attributes.

de Rivero et al. (2021) address style transfer in
NLP by fine-tuning GPT-2 on Grammarly’s Ya-
hoo Answers Formality Corpus (GYAFC) to con-
vert informal text into formal text while preserving
meaning. Their model generates multiple formal
sentence options, achieving a formality score above
0.7 in 61.36% of cases and a content preservation
score above 0.8 in 71.33% of cases, demonstrating
effective style transformation.

Also, in Tian et al. (2018), the researchers pro-
pose a text style transfer model using an attentional
auto-encoder and a binary style classifier, ensuring
content preservation by minimizing the distance be-
tween the POS-tagged structure of input and output
sentences. The approach focuses on maintaining
noun consistency, incorporating a language model
for fluency and a style classifier to guide the gener-
ator in producing sentences with the desired style.

For the text style transferring task, other re-
searchers in Lai et al. (2019) propose a GAN-based
framework for non-parallel text style transfer that
integrates a seq-to-seq encoder-decoder with atten-
tion, word-level conditional mechanisms, and dual
discriminators (CNN and RNN) to balance content
preservation and style transformation.

Authors in Hu et al. (2017) propose a deep
generative model that enhances Variational Au-
toencoders (VAEs) with structured latent variables
and holistic discriminators to generate text with
specified attributes while ensuring disentanglement.
Their approach, which incorporates a wake-sleep
algorithm for collaborative optimization, effec-
tively learns interpretable latent representations
from minimal supervision, enabling controlled text
generation with potential applications in NLP and
content creation.

In Du et al. (2020), researchers introduced
Schema-Guided Natural Language Generation (SG-
NLG), a task that generates natural language

prompts based on rich schemata, repurposing a
dataset from dialog state tracking to train Seq2Seq,
CVAE, and GPT-2 models. Their findings show
that leveraging schema information enhances se-
mantic quality and diversity, with Seq2Seq and
CVAE excelling in reference similarity and GPT-2
performing best in diversity and human evaluation.

The Stable Style Transformer (SST) presented in
Lee (2020), introduces a model-agnostic text style
transfer approach using the Delete and Generate
framework, where a pre-trained classifier extracts
attribute markers without relying on a dictionary or
attention scores, and a Transformer-based encoder-
decoder generates the transferred sentence while
preserving content. This method, trained on non-
parallel datasets, demonstrates robust performance
in handling long dependencies and offers a stable,
effective solution for text style transfer.

CTERM-GAN (Betti et al., 2020) addresses
the common limitation of NLG models that focus
solely on syntax by incorporating both syntactic
and semantic aspects through a relational memory-
based generator and dual discriminators. Experi-
mental results show that it maintains or improves
syntactic accuracy while significantly enhancing
semantic coherence, demonstrating its potential for
generating text conditioned on various inputs, in-
cluding writing styles.

Authors in Li et al. (2022), developed Diffusion-
LM, a non-autoregressive language model leverag-
ing continuous diffusion processes for controllable
text generation, where gradient-based manipulation
of latent variables during denoising enables fine-
grained style control, outperforming prior plug-
and-play models and achieving competitive results
against fine-tuned autoregressive baselines.

The paper by Lyu et al. (2023) explores the ap-
plication of diffusion models for fine-grained text
style transfer, demonstrating that their approach,
trained solely on the StylePTB dataset without ex-
ternal resources, achieves state-of-the-art perfor-
mance across 13 tasks, including compositional
style transfers. Their results highlight the potential
of diffusion-based models for controllable text gen-
eration in low-resource settings, while also suggest-
ing future directions such as integrating pre-trained
embeddings and exploring alternative architectures.

3 Procedure

Based on our research questions, we divided the
proposal into three phases: detection, generation,
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and evaluation. The outline of the procedure has
been shown in Figure 1, which illustrates each
phase and the data flow using different colors: Blue
for phase 1 (detection), green for phase 2 (gener-
ation), and purple for phase 3 (evaluation). Also,
this shows that three different subsets of the dataset
were extracted and flowed in different paths, one
for the detection phase and two for the text genera-
tor model.

Figure 1: The outline of the procedure for detecting,
generating, and evaluating text in various writing styles.

In order to create the dataset, we used Project
Gutenberg to collect books by different authors.
We picked five authors, Charles Dickens, Mark
Twain, Herman Melville, Jane Austen, and Louisa
May Alcott. They all belong to the 18th century
and provide a good balance of male and female au-
thors as well as British and American authors in our
analysis. We also aim to cover a broad range of top-
ics, as Twain and Melville generally wrote for men,
whereas Austen and Alcott typically wrote about
women. Dickens, meanwhile, mostly addressed so-
cial conditions, such as poverty and wealth, rather
than focusing specifically on men or women. The
total number of extracted sentences is 115,471. In
datasets with paired samples, there exist at least two
different styles for the same content, like formal
and informal datasets. As mentioned before, in our
dataset, there are no identified sentences from dif-
ferent authors expressing the same content, which
makes it much more challenging for the model to
understand the differences or, in the next steps, to
transfer one sentence from an author to another
author’s writing style.

Sentences from the dataset along with their la-
bels are used to train the BERT classification model.
Here, BERT functions as a classifier to determine
the author of the given sentences. The expectation
is that a highly accurate classifier not only demon-
strates that there are distinguishable features among
authors, making the Generation phase possible but

also will provide a reliable model for evaluating
newly generated sentences, verifying whether they
align with the writing style of the intended author.
On the other hand, as illustrated in the Detection
phase, there is also a syntactic feature extraction
path. This path aims to perform a similar function
as BERT but relies on syntactic features. We expect
these syntactic features, comprising both low-level
and high-level features, to clearly demonstrate dif-
ferences between various writing styles.

The generator model will be trained on sentences
concatenated with their labels at the beginning. The
main idea behind this approach is that, since we
don’t have paired samples, we explicitly add the la-
bel of each sentence to help the model understand
patterns shared by sentences with similar labels.
After training the model, new sentences are gener-
ated by providing seeds with different labels and
randomly extracted words. The generator then com-
pletes these sentences based on the initial labels.
Finally, the generated sentences must be prepro-
cessed to evaluate their quality and remove tags.

As mentioned in the introduction, evaluating gen-
erated sentences with common techniques has sev-
eral challenges. Hence, to make the evaluation
more systematic and practical, we will use the AI-
evaluate-AI technique. In addition to using a large
language model like BERT for evaluation, we em-
ploy a feature-based evaluation to further assess
the quality of the generated text. As demonstrated
in the next section, we will show that extracting
syntactic features can help highlight stylistic differ-
ences between authors. For example, in prior stud-
ies (Rajaei Moghadam et al., 2024a,b), we showed
how the syntax in speeches by U.S. presidents dif-
fered from the syntax in their written works. Simi-
larly, we will extract high-level and low-level syn-
tactic features using Stanford CoreNLP (Manning
et al., 2014) to compare the generated sentences
with the original dataset.

In summary, our proposed workflow combines
detection, generation, and evaluation techniques
to accurately create sentences in different writing
styles and assess them in a meaningful way. The
goal is to ensure that the generated sentences not
only reflect the stylistic features of the target au-
thors but also maintain the consistency and fluency
of any generated sentences.

3.1 Detection
Using our previous work (Rajaei Moghadam et al.,
2024a,b), we are going to analyze and evaluate
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the generated sentences and compare them with
the original sentences by extracting the low-level
and high-level syntactic features of each sentence.
The dataset used in the above papers contained sen-
tences of transcribed speeches and written books
by United States presidents. For sentence extrac-
tion, the nltk library (Bird et al., 2009) was used,
while CoreNLP (version 4.5.7) was employed for
tokenization and word counting.

Low-level features (Rajaei Moghadam et al.,
2024b), are categorized into three different aspects:
morphological aspects, which include average syl-
lables per word, average words per sentence, and
average characters per word; lexical aspects, which
include the number of words in a sentence, percent-
age of different POS, and percentage of personal
pronouns; and syntactical aspects, which include
percentage of subordinate clauses, depth of parse
tree, percentage of noun phrases, the average length
of noun phrases, percentage of yes/no questions,
and percentage of direct wh-questions.

High-level syntactic features that have been in-
troduced in Rajaei Moghadam et al. (2024a) con-
tain: Pronoun and noun phrases in the subject, pas-
sive and active sentences, comparative and superla-
tive, imperative structures, conjunction phrases,
and prepositional phrases.

The number of words in a sentence was used as
an aid to understanding syntactic complexity since
longer sentences often indicate more complex ideas
or more detailed information. Also, the height of
the parse tree can be considered as an indicator of
sentence complexity.

The analysis includes part-of-speech (POS) tags,
which reveal structural, stylistic, and functional
aspects of the text. This parsing model employs
context-free grammar, along with associated prob-
abilities for each rule, to generate a parse tree for
each sentence. The token and sentence boundaries
and other features provided by CoreNLP help in
the analysis process. We rolled up the multiple
types of nouns and verbs provided by CoreNLP
into one type for each.

One important issue is the identification of pas-
sive sentences. According to Aygen (2016), the
active voice is the typical form in which the subject
of the sentence is the agent. To do this, the Pas-
sivePy package (Sepehri et al., 2023) in the SpaCy
library (Honnibal et al., 2020) enables us to com-
pute active, agentless passive, and agentive passive
forms.

The results showed that the most significant fea-

tures identified are sentence length, verb percent-
ages, noun percentages, and prepositional phrases.
Also, despite having fewer samples for long sen-
tences, using long sentences improves the accuracy
across all models. Increasing the sentence length
also raised the importance ranking of prepositional
phrases. Also, combining both sets of features im-
proves the model’s performance. Finally, based on
our analysis, U.S. presidents are more likely to use
prepositional phrases and longer sentences in their
speeches than in their books.

Based on the results of the previous works men-
tioned above, we expect that there will be distin-
guishable features among the different authors in
our dataset. We will examine whether BERT-based
detection methods and detections based on syntac-
tic features can identify differences between the
five authors. This analysis will not only enhance
our understanding of the linguistic characteristics
specific to each author but also allow us to com-
pare real sentences with sentences generated by
our model. In other words, our evaluation tech-
nique involves calculating the similarity between
the patterns found in real and generated data. Our
preliminary results using BERT to detect the writ-
ing styles of sentences from five different authors
show 84 percent in both accuracy and F1 score
metrics.

At the same time, we are working on Graph Neu-
ral Networks (GNNs) (Zhou et al., 2020), which are
deep neural networks that have attracted the atten-
tion of researchers across various fields. Five dif-
ferent Graph Neural Network (GNN) models were
applied to understand and classify each sentence
based on the author’s writing style. We utilized a
message-passing spatial method (GraphSAGE), an
attention-based method (GAT), spectral methods
(GCN, ChebNet), and a highly expressive GNN
model (GINConv). In our preliminary results, we
demonstrated the power of GNNs in extracting pat-
terns behind the different writing styles of authors
by using only dependencies between words in each
sentence.

In that study, we extracted only the dependen-
cies between words in different sentences, which
represent a minimal set of information that can be
derived from a sentence. We processed the sen-
tences using the CoreNLP parser to extract word
dependency information. In these graphs, each
node represented a word in the sentence, while
edges captured the grammatical dependencies be-
tween the words.
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Table 1: The primary results of the generated sentences using the seeding technique for the expected writing styles.

Target Seed Generated Sentences
Charles Dickens <0> When When I had got my breath, I said, “I am going to London.
Jane Austen <1> When When they were gone, she sat down again, ...
Mark Twain <2> When When the sun went down, we had a grand supper, ...
Louisa May Alcott <3> He He was a man of great courage, and a man of great resolution.
Herman Melville <4> He He had been a very good-looking young man, ...
Charles Dickens <0> He He was a man of great talent, and his music was considered ...
Jane Austen <1> A A very few minutes more, however, and she was in the street, ...
Mark Twain <2> A A few of the boys had gone to the river, ...
Louisa May Alcott <3> A A few words of explanation will make it clear.

3.2 Generation

The most important and challenging part of the
pipeline is generating texts, particularly when con-
sidering the challenges of working with style and
the lack of paired datasets for training the models.
On the other hand, based on the related work and
the identified gaps that align with our main goal,
in this section we aim to generate different writing
styles by utilizing GPT models.

In order to address the challenges with training
generators without parallel data, we add identifier
tags at the beginning of each sentence as an indi-
cator of each of the five different authors, to force
the models to learn and capture the patterns of the
writing style of each author. For example, <A0>
in "<A0> Why, I have been ashamed of your mo-
roseness there! <end>" indicates that the sentence
belongs to Charles Dickens.

As explained, we will train the GPT-3 models
using author tag identifiers for each sentence in
the dataset. This involves using the seeding tech-
nique to prompt the model to generate the rest of
the words in a sentence. For example, by adding an
author identifier, the expectation is that the model
will generate sentences similar to the writing style
of that author. The seeding process can start with
only a tag or with a tag that is followed by one
or more words. For instance, a seed could be
"<A0>", "<A0> hello", or "<A0> today is". Hence,
the model generates sentences in different writing
styles, rather than transferring the writing style.

We use the GPT-3 (Brown, 2020) structure for
sentence generation, as it is one of the publicly
available state-of-the-art models, known for its re-
markable ability to produce coherent and contextu-
ally appropriate text from given prompts. Specifi-
cally, we train GPT-Neo 1.3B (Black et al., 2021),
an open-source autoregressive language model de-

veloped by EleutherAI, which contains 1.3 billion
parameters. After generating the sentences, we
apply post-processing techniques to improve their
quality. For instance, we remove the tags from the
beginning and the ending of sentences and check
for issues like repeated words or incomplete sen-
tences. At the end of this step, we aim to have a
collection of polished, high-quality generated sen-
tences.

Our goal is to achieve the final result with the
highest possible accuracy within the limitations of
data and resources. It is worth mentioning that pre-
liminary results have been obtained. The trained
model, after 3 epochs, achieved 86% on both accu-
racy and F1 score metrics, which seems acceptable.
The results showed that the introduced model is
capable of generating sentences based on arbitrary
seeding prompts. Table 1 reports some of the gen-
erated results, which need improvement in terms
of both their assigned classes and their fluency and
clarity.

Although the generated sentences, such as those
reported in Table 1, represent our primary results,
initial evaluations by a human expert provide evi-
dence that it seems the model has learned distinct
authorial patterns. For example, in the first sen-
tence attributed to Charles Dickens, we observe
British English usage such as "had got", since
American English typically uses "had gotten." In
the second sentence, attributed to Jane Austen, the
reference to parties and social behavior clearly
aligns with themes frequently explored in her sto-
ries. Regarding the fourth sentence by Alcott,
words like "courage" and "resolution" reflect the
language commonly found in novels from her pe-
riod. The fifth sentence, attributed to Melville,
interestingly focuses on men and boys, a theme
prevalent throughout his works. In the seventh sen-
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tence, attributed to Austen, it is not surprising to
encounter a depiction of a woman busy shopping in
the street, a typical scenario in Austen’s novels. For
the eighth sentence, attributed to Mark Twain, the
importance of boys and references to Mississippi
strongly reflect his characteristic themes. Lastly,
the sentence attributed to Alcott resembles a direct
note to the reader, a common stylistic feature in
19th-century literature. Future evaluation by hu-
man experts and AI-Evaluate-AI can potentially
clarify the accuracy of patterns learned by the gen-
erator model.

3.3 Evaluation
The final experiment involves evaluating the gen-
erated sentences. As shown in Figure 1, we plan
to use the AI-evaluate-AI techniques. One of the
main reasons behind this approach is the inherent
ambiguity in evaluating an author’s writing style.

All generator models, like other models, provide
metrics such as accuracy or F1 score for evaluation.
However, achieving high values for these metrics
does not necessarily reflect true accuracy in gener-
ating distinct writing styles, so these metrics in the
generative model can not reflect the performance of
the model in different writing styles. Alternatively,
involving human evaluation adds further complex-
ity. Imagine a scenario where a generator produces
a sentence, and we ask a group of humans to iden-
tify the writing style from among five 19th-century
authors. How reliable would their evaluation be?
The complexity of this task presents significant
challenges.

Another method to improve the reliability of hu-
man evaluators in such a process is to use a prelim-
inary test. For instance, we could test participants
on the training data and only involve those who
achieve high accuracy in the evaluation process.
However, this approach significantly increases both
the time and cost of evaluation.

Therefore, our proposal for evaluating generated
sentences involves using a detector model that has
demonstrated high accuracy in training and test
data. For example, if we have a BERT model with
high performance in author detection, we can use
it for quick and cost-effective evaluation of gener-
ated text, while factoring in the reliability of the
model. Also, we are going to use the feature-based
approaches, outlined in the detection section, to
compare both the original and generated sentences
and determine how closely high-level and low-level
syntactic features exhibit similar patterns for each

Figure 2: Histogram of the longest path in the parse
trees of sentences.

author. Furthermore, a comparison between gen-
erated sentences and original sentences allows us
to determine whether a model has memorized each
author’s sentences or not; in other words, we can
check for overfitting in the model.

Preliminary analysis of syntactic features in the
original sentences reveals distinct patterns that
merit deeper investigation in comparison with
the generated sentences. For instance, Figure 2
presents a histogram of the longest path in the parse
tree. Notably, Alcott (green) exhibits a distribution
pattern distinct from Twain (red). The diagram in-
dicates that most sentences by Twain have shorter
paths in their parse trees. Conversely, Alcott’s sen-
tences show a more uniform distribution across var-
ious path lengths. This suggests that Mark Twain
tends to write simpler sentences than Louisa May
Alcott.

3.4 Conclusion and Future Work
This study contains three main sections: detection,
generation, and evaluation, each focusing on dif-
ferent authors’ writing styles. In the first section,
using the established framework from our previous
work, we analyzed writing styles based on their
unique syntactic characteristics and classified them
using machine learning models, as well as LLMs
and GNNs. In the second section, we trained a GPT-
3 model on a dataset containing unpaired sentences
from five different authors. Preliminary results
indicated that the generated sentences reflect mean-
ingful stylistic differences among the authors. The
final section focuses on evaluation, where we com-
pare generated sentences with real sentences using
both feature-based and LLM-based approaches.
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Abstract

Data visualization is integral to any Exploratory
Data Analysis (EDA) task. However, generat-
ing visualization requires expertise, presenting
a steep learning curve and a significant cog-
nitive load. Natural language interfaces for
EDA aim to lower this barrier by allowing users
to generate visualizations through natural lan-
guage queries. However, complexity remains
when EDA is performed collaboratively, requir-
ing an environment to support multi-user in-
teraction. In this thesis proposal, we discuss
challenges in user-system interaction in a col-
laborative multi-user setup, such as errors in
visualization generation due to misinterpreta-
tion of user requests. We hypothesize that a
Conversational Assistant (CA) capable of un-
derstanding user-initiated clarification requests
and generating accurate responses can improve
user experience and support collaborative EDA
tasks. To this end, we propose to develop such
a CA (Figure 1) and evaluate it through a user
study, thus examining its impact on user expe-
rience in a collaborative environment for EDA.

1 Introduction

EDA is a method for analyzing data that predomi-
nantly uses graphical techniques such as bar charts,
heatmaps etc., to uncover patterns, outliers, and
insights (National Institute of Standards and Tech-
nology (NIST), 2023) from the data. Originat-
ing from John Tukey’s Exploratory Data Analysis
(Tukey, 1977), over the years, EDA has evolved
(Mosteller and Tukey, 1977; McNeil, 1977; Velle-
man and Hoaglin, 1981) to become a vital tool
across domains like healthcare, finance, and edu-
cation (Sarker, 2021). While visualization genera-
tion plays a crucial role in EDA, the steep learning
curve associated with traditional tools often ex-
cludes non-technical users, who face challenges
in adopting these techniques for decision-making
(Sarker, 2021). To address these challenges, Sarker
suggests developing user-friendly tools catering

Figure 1: The workflow diagram of the proposed con-
versational assistant for collaborative data visualization
(detail in Section 3.3). We focus on (A) understanding
the user’s intent, that is, data visualization requests and
clarification requests, and (B) generating data visual-
izations (i) and answers to clarification requests(ii) in
response.

to non-technical users to foster a more inclusive
and accessible data-driven work culture. Often-
times, EDA is done in multi-user collaborative set-
tings that leverage users’ diverse perspectives to
enhance sense-making. However, existing visual-
ization tools such as Tableau, MS Excel, and Plotly
cater primarily to single users, limiting multi-user
collaboration (Isenberg et al., 2011; Willett et al.,
2011; Jeong et al., 2015). This underscores a need
for extending tools to support data exploration in
collaborative environments, also keeping in mind
the need to make such systems accessible to non-
technical users. The best approach for modeling
such a tool would be a natural language interface,
with which users can perform EDA by generating
data visualizations in a collaborative multi-user en-
vironment. Further, users should be able to tell the
system what they want in an accessible setup. This
entails a CA with which users can engage using
natural language, and the system should mediate
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between the user and the visualization generator.
However, human conversations are often character-
ized by incomplete queries, ambiguous utterances
and coreferences. This necessitates the CA to ac-
commodate the characteristics of human conversa-
tion and respond meaningfully to ensure a positive
experience for the users.

Recently Bhattacharya et al. (2024) conducted a
thorough analysis by comparing an extension of the
CA Articulate2 (Kumar et al., 2016; Bhattacharya
et al., 2023) with Articulate+ (Tabalba et al., 2022,
2023) through user studies and listed extensive in-
sight from their findings (discussed in Section 3.1).
We use these insights to motivate our research ob-
jectives and start by systematically investigating
user experiences with conversational interfaces for
collaborative multi-user data visualization (Section
3). First, we look at challenges impacting the user’s
interaction with the CA in this user study. Specif-
ically, we examine how clarification requests ini-
tiated by the users during their interaction with
the CA might help improve the user’s experience
in a multi-user, collaborative EDA task scenario.
Through this work, our goal is not only to con-
tribute a CA framework, but also an understanding
of how clarification behavior affects the interaction
quality in multi-user collaborating conversational
interfaces.

2 Related Work

Natural Language Interfaces for Data Visual-
ization: Early work on Data Visualization natu-
ral language interfaces, such as Cox et al. (2001),
used on structured grammar-based queries. Later,
with Articulate (Sun et al., 2010), free-form inter-
actions evolved, following which tools like IBM
Watson Analytics (Hoyt et al., 2016), Tableau Ask
Data (Tableau), and Datatone (Gao et al., 2015)
enhanced natural language understanding (NLU).
Eviza (Setlur et al., 2016) and Evizeon (Hoque
et al., 2018) introduced interactive dialogue-based
exploration; however, these were without support
for visualization modification. In parallel, Shen
et al. (2022) extended Card et al. (1999)’s natu-
ral language interface pipeline by integrating NLU
and dialogue management (McNabb and Laramee,
2017), laying a foundation for NLIs in visualiza-
tion. Later, systems like NL4DV (Narechania et al.,
2021) and AUDiaL (Murillo-Morales and Miesen-
berger, 2020) integrated natural language inter-
faces into visualization pipelines, while Wrangler

(Kandel et al., 2011) and Voder (Srinivasan et al.,
2019) automated fact generation from data along
with visualization generation. Articulate2 (Kumar
et al., 2016) introduced multimodal inputs regard-
ing speech and gesture and coreference resolution
(Bhattacharya et al., 2023), but it lacked support
for multi-user data analysis. Recently, transformer-
based systems like ncNet (Luo et al., 2022) mapped
natural language to visualizations using nvBench
dataset(Luo et al., 2021), but it lacked conversa-
tional capabilities. LLM-based tools like JarviX
(Liu et al., 2023) and VIST5 (Voigt et al., 2023) au-
tomated visualization generation, but deployment
costs were high, and the system suffered from hallu-
cinations. Chat2Vis (Maddigan and Susnjak, 2023)
leveraged multiple LLMs but lacked interactivity
and relied on complex prompts, defeating the pur-
pose of "natural language" queries. Furthermore,
most systems were evaluated using datasets like
nvBench rather than real-time studies with users,
thus leaving gaps in understanding how real users
collaborate with such systems in EDA in multi-user
settings. Shen et al. (2023) provides a comprehen-
sive survey of natural language interfaces for data
visualization, identifying challenges and shortcom-
ings, including lack of domain knowledge, need for
advanced Natural Language Processing power to
support free-form queries, lack of leveraging user’s
conversational history and lack of datasets specif-
ically for visualization natural language interface
frameworks. While tools like LIDA (Dibia, 2023),
targeted towards non-technical users, simplify vi-
sualization generation using large language models
(LLMs), they lack support for collaborative and
interactive exploration.

Clarification Requests: Clarification Requests
(CRs) play a crucial role in grounding—the process
of establishing mutual understanding in dialogue
(Clark, 1996; Clark and Schaefer, 1989). When
humans engage in a conversation, a speaker re-
quests clarification when they do not understand
the form or content of the utterance of the other
speaker. While grounding seems natural in human-
human conversation, in human-system dialogue,
it is not trivial, and so is identification and gen-
eration of clarification by the conversational sys-
tem. Early foundational work by Ginzburg and Sag
(2001) categorized clarification requests (CRs) into
reprise interrogatives—including echo and refer-
ence questions—and elliptical forms like reprise
sluices. Purver et al. (2001) expanded this with non-
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reprise clarifications, gaps, and gap fillers, while
Gabsdil (2003) and Schlangen (2004) introduced
finer-grained categories such as partial repetitions,
reformulations, semantic clarifications, and acous-
tic misunderstandings. Much of the existing re-
search on CR has focused on those initiated by the
system, typically triggered by ambiguous user in-
put, speech recognition errors, or underspecified
intent. A comprehensive overview of these can be
found in the work of Rahmani et al. (2023). In
contrast, in this thesis, the focus is on user-initiated
clarification requests. One notable effort in this
direction is the work by Madureira and Schlangen
(2023), who annotated user-initiated CRs in the
CoDraw dataset (Kim et al., 2019), a multi-modal,
goal-oriented collaborative dialogue corpus. Their
study highlights how instruction followers request
clarification when facing ambiguous instructions,
underscoring the importance of modeling such in-
teractions in collaborative settings.

3 Proposed Research

Effective collaboration in an EDA task requires a
CA to enable users to interact naturally, as with
a human collaborator. This effectiveness also de-
pends on its ability to respond correctly to user
inputs. After a closer inspection of user interac-
tions from Bhattacharya et al. (2024)’s work, we
found some challenges that impact the system’s us-
ability and overall user experience. We put forward
these challenges next and discuss how they lead us
to the research question of this proposal.

3.1 Motivation and Research Question

An analysis of user study transcripts from Bhat-
tacharya et al. (2024) uncovered key limitations in
system behavior that impact user experience, listed
in Table 1. In the user study, the users were ex-
ploring a COVID-19 dataset for all counties in the
United States (U.S.)(Tiwari et al., 2021) to com-
plete two timed EDA tasks. The dataset has at-
tributes like COVID vulnerability rank, Poverty
rate, Diabetes rate, and County types, among oth-
ers. The system generated data visualizations like
bar charts, line charts, choropleth maps and heat
maps based on requests for visualization from the
users.

A promising solution to these challenges can
be found in the concept of grounded clarifica-
tions, introduced by Benotti and Blackburn (2021).
Grounded clarifications are clarification requests

tied to specific real-world contexts or modalities
(e.g., visual, auditory), ensuring mutual understand-
ing between participants in a conversation. Ac-
cording to the paper, for an utterance U , a subse-
quent turn is considered a grounded clarification
in modality m if there is a lack of positive evi-
dence of understanding in that modality. Returning
to the observations in Table 1, we can see how
grounded clarifications appear in those scenarios.
These examples show how answering clarification
requests would allow the system to effectively ad-
dress user’s confusion or lack of understanding of
an earlier response by the system. Moreover, in
multi-user natural language interface settings for
data visualization, clarification needs to extend be-
yond linguistic content, encompassing visual and
contextual references. For instance, users can ask
for a clarification request grounded in visual modal-
ity based on a chart they are currently exploring
on the workspace of the natural language inter-
face. As noted by Benotti and Blackburn (2021),
grounded clarifications extend to the physical and
contextual environment, reinforcing the necessity
for accurate identification and response by the CA.
Therefore, by focusing on user-initiated clarifica-
tion requests, the conversational system can lever-
age these clarifications as opportunities to provide
correct responses to the user. At the same time,
these responses must also be accurately grounded
in context and aligned with the user’s intent.

This leads us to our research question:
RQ: How do user-initiated clarification requests
impact user experience concerning system func-
tionality, interpretability, and overall usability?

These three key terms capture complementary di-
mensions of user experience with a conversational
assistant: functionality, referring to the system’s
ability to respond appropriately to user input; in-
terpretability, denoting how well users can under-
stand the system’s behavior; and usability, which
reflects users’ overall ease and effectiveness of in-
teraction. We return to these definitions in detail in
Section 3.4.

We aim to answer the research question by
proposing three contributions. First, we plan to
create an annotated corpus of multi-user dialogue
interactions with a CA for data visualization, de-
tailed in Section 3.2. Second, we propose a CA
framework with components leveraging our cus-
tom dataset described in Section 3.3. Finally, we
plan to conduct a user study with participants inter-
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Table 1: Common system challenges observed during user interaction and their corresponding clarification grounding
modality

# Issue and Description Example Modality

1 No Response: System fails to
respond due to TTS errors or
misclassified dialogue acts.

User 1: "Can we look at all the rural areas in the United States?"
System: Generates a map based on an earlier utterance.
User 1: "Are those the rural areas in the United States?" (Expecting clarification)
User 2: "Louder."
User 1: "No, it cannot be louder... I mean, I’m pretty sure there’s no probable
generation for this. . . "

Auditory: Users rephrase or adjust
their requests when the system fails
to respond, demonstrating reliance
on auditory clarification.

2 Incorrect Visuals: System
generates charts that do not
match user queries.

User: "Show me the poverty data by county type."
System: Generates a map of poverty rates for all counties.
User: "Is this the most recent map?" (Seeking clarification)

Visual: Users seek clarification
on unintended or redundant visual-
izations, indicating a need for re-
sponses grounded in visual informa-
tion.

3 Redundant Charts: System
generates repetitive charts that
do not add value.

User: "Show me a map of diabetes."
System: Generates a map of diabetes risk for all counties.
User: "Can I see a map of diabetes risk for Midwest and Northeast?"
System: Generates the same map again (redundant).
User: "Does it respond to multiple parameters?"

Visual: Users seek clarification
on unintended or redundant visual-
izations, indicating a need for re-
sponses grounded in visual informa-
tion.

4 Misinterpreted References:
Ambiguous references lead to
incorrect responses.

User 1: "I want uninsured rate for different counties."
System: Generates a grouped bar chart for uninsured rate by county type.
User 1: "I don’t understand what these bar charts are for..."
User 2: "Is it grouping them by county type?"
System: Generates a U.S. map of county types instead of clarifying.

Temporal: Users reference pre-
vious visualizations or utterances
for clarification, requiring responses
grounded in a temporal context.

acting with the CA (Section 3.4). This study will
help us examine the user experience with the CA,
which can generate data visualization and natural
language responses to user-initiated clarification
questions.

3.2 Dataset

We discussed how identifying and handling user-
initiated clarification requests (CRs) can be critical
to task-oriented and collaborative dialogue systems.
While there is research on the generation of CRs
by CAs, the identification of CRs remains mostly
unexplored. Recent efforts, such as Madureira and
Schlangen (2023), have addressed this gap by anno-
tating datasets like CoDraw with instructional CRs.
However, a general understanding and categoriza-
tion of user-initiated CRs are still evolving. More-
over, multi-user dialogue corpora remain scarce, de-
spite growing interest in modeling collaborative in-
teractions in task-oriented settings (Jo et al., 2023).
To address this gap, we propose creating a cus-
tom dataset based on the COVID(T) corpus from
Bhattacharya et al. (2023, 2024), which includes
8,440 utterances from a user study setup where
two users collaborate on an EDA task. The CA in
this setup generates data visualizations only based
on the users’ requests. We conducted preliminary
annotation of 541 utterances(a random significant
sample with a ±4.1% margin of error at 95% confi-
dence) by two annotators (Cohen’s Kappa: 0.88),
where 5.54% of utterances were user-initiated clar-
ification requests and 30.3% were visualization

requests. Here, we define clarification requests
as utterances where a user explicitly or implicitly
asks for additional information to understand prior
system or user input during the collaborative EDA
task. Please note that this is a three-way interaction
between human-human and human-system. There-
fore, our initial annotation includes CRs directed
to both the system and the other user, capturing the
full range of clarification behavior during the ex-
ploratory tasks. Next, following Bhattacharya et al.
(2024), we define Visualization requests as utter-
ances where the user asks the system to generate a
specific data visualization or refine a previous one.
Although CRs appear less frequently (Madureira
and Schlangen (2023) also reported that 11.36%
of instructional dialogues included user-initiated
CRs), their importance in human-system interac-
tion has been discussed by researchers (Rahmani
et al., 2023). Thus, we hypothesize that explicitly
supporting CRs can potentially encourage users to
seek clarity and improve interaction quality. In-
spired by Benotti and Blackburn (2021), we pro-
pose annotating CRs in our dataset based on their
grounding modalities as discussed in Section 3.1
and Table 1. While Benotti and Blackburn also
included Socioperception and Kinesthetic modali-
ties, these are irrelevant to our setup. Instead, the
Temporal Modality is particularly important for ad-
dressing references to prior user interactions or
visualizations.

For training and evaluating the system’s ability
to generate responses to CRs, annotations will also
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include the ideal responses for each clarification
request. Additionally, we will identify whether the
required information comes from internal sources
(e.g., dialogue history, knowledge base) or exter-
nal sources (e.g., CDC, Wikipedia). While this
work focuses on generating responses using inter-
nal sources, annotations for external sources will
support future research on broader response gen-
eration tasks. Further, the transcripts mentioned
above for the proposed dataset were collected in
the context of COVID-19-related EDA. However,
task design and user interactions can be general-
ized for collaborative data exploration in any do-
main (Bhattacharya et al., 2024), making the find-
ings applicable to other domains. Unlike existing
datasets like CoDraw(Madureira and Schlangen,
2023; Kim et al., 2019) which has scene recon-
struction tasks or MultiWOZ (Budzianowski et al.,
2018) or its multi-user variant (Jo et al., 2023),
which focuses on IC/SF tasks in service-oriented
dialogues, through the proposed dataset we plan
to capture open-ended, multi-user dialogue on ex-
ploratory analysis of data. Overall, this dataset and
annotation framework will enable the development
of a conversational assistant capable of address-
ing user-initiated clarification requests effectively,
improving user-system interaction in task-oriented
dialogue systems.

3.3 Proposed Workflow

The proposed workflow of the CA shown in Fig-
ure 1 begins with speech-to-text transcription using
Whisper (Radford et al., 2023), followed by Intent
Classification and Slot Filling (IC/SF), which clas-
sifies an input utterance as either a Visualization
Request, a Clarification Request, or None (here
the system keeps listening for the next utterance).
For SF, the system extracts relevant slots using the
Knowledge Ontology of the dataset being explored
by the users of the CA. If the user requests for a
visualization generation, the system formulates an
SQL query, retrieves data from an SQLite database
(containing the data being explored), and generates
Vega-Altair Python code 1. Unlike Bhattacharya
et al. (2023, 2024), we plan to generate the python
code instead of Vega-Lite Grammar(Satyanarayan
et al., 2017), enabling evaluation with the nvBench
dataset(Luo et al., 2021). The Python code can be
easily converted to Vega-Lite later for screen ren-

1https://altair-viz.github.io/ (a Python library
built on top of Vega-Lite grammar for generating visualiza-
tions)

dering. We plan to implement SQLite query and
Vega-Altair code generation using symbolic reason-
ing, as done by Bhattacharya et al. (2023, 2024).
Even though LLMs can generate satisfactory SQL
Queries and Python codes, we choose this approach
for its simplicity and reliability, avoiding any la-
tency or hallucination that might come with using
LLMs. For CRs, generated responses are informed
by the dialogue History, which tracks user utter-
ances, predicted intents, identified slots, and prior
responses to user-initiated CRs. The final response
output is displayed on the system interface for vi-
sualizations and via speech and display for natural
language responses to clarifications, ensuring an
interactive experience. Now, we focus on the pro-
posed implementation of two core components: (1)
IC/SF and(2) CR Response Generation.

IC and SF are essential for systems performing
spoken language understanding (SLU). IC predicts
the user’s intent yintent from an input sequence X ,
which includes the current utterance Ut and previ-
ous turns. SF extracts slot labels yi for each token
xiand verifies them against a knowledge base K to
ensure domain-specific standardization. In this pro-
posal, we discuss two approaches for IC/SF. The
first approach extends BERT-SLU (Zhang et al.,
2019) by incorporating dialogue history, allow-
ing it to process both the current utterance Ut and
preceding turns. To enhance domain adaptation,
we propose integrating AdapterFusion (Pfeiffer
et al., 2021), combining an SLU-specific adapter
(e.g.trained using the ATIS dataset (Hemphill et al.,
1990)) with another adapter fine-tuned on our cus-
tom dataset, mitigating catastrophic forgetting. The
second approach builds on ILLUMINER (Mirza
et al., 2024), which involves adapting instruction-
tuned LLMs with PEFT adapters to improve con-
textual awareness in a task-oriented conversational
assistant. Mirza et al. (2024) experimented with
LLMs specifically fined-tuned for instruction fol-
lowing like FLAN-T5(google/flan-t5-xxl), Vicuna
(lmsys/vicuna-13b-v1.5, from Llama2) etc., and we
plan to start by experimenting with the same LLMs.
We also propose incorporating dialogue history into
structured prompts. For example, "Given the <di-
alogue_history>, identify the intent and slots for:
‘Can I see COVID risk in the midwestern US?’”.
Finally, we plan to perform knowledge base verifi-
cation with both the proposed approaches to ensure
slot labels align with domain terminology.

To evaluate IC, we plan to use metrics like accu-
racy, precision, recall, and F1-score, as well as a
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confusion matrix to analyze errors. For measuring
the correctness of slot labeling, we propose using
metrics like slot F1 score, exact match ratio, and
slot error rate.

CR Response Generation: CRs arise when
users refine their queries to seek a better under-
standing of the visualizations or to explore data.
Please recall that we plan to classify CRs into three
modalities: visual (users clarify based on interface
data), auditory (users repeat or rephrase due to
system non-responsiveness), and temporal (users
reference prior utterances or visualizations). We
hypothesize that incorporating modality labels can
enhance response accuracy. Thus, to develop a ro-
bust CR-handling approach, we must first annotate
the dataset to classify CRs by modality as well as
annotate the ideal responses for each of these CRs
in order to train the models.

This component can be evaluated on two as-
pects—predicted modality and generated re-
sponse. Accuracy can be used for modality, while
objective response evaluation will be performed
using ROUGE, BLEU, and BERTScore. While
these metrics are not exhaustive, they provide a
useful approximation of the quality of the gener-
ated responses. Additionally, we plan to employ
human annotators to assess Relevance, Fluency,
Informativeness, and Factual Correctness on a 5-
point Likert scale.

3.4 User Study for CA Evaluation:
One of the primary goals of this thesis is to evaluate
the CA by recruiting participants who would inter-
act with the system and thoroughly investigate their
experience with it. Please recall, in our RQ, we
mention system functionality, interpretability and
overall usability. Bhattacharya et al. (2024) discuss
these three features and how they impact the design
consideration of the CA. Regarding functionality,
they highlight that the CA, as an interactive system,
generates visualizations in response to user utter-
ances. The number of utterances processed, types
and numbers of visualizations produced etc., are
thus artifacts of the user-system interaction, shap-
ing the user’s experience with the system. The au-
thors analyze these components and conclude that
an optimal latency in processing utterances and gen-
erating visualizations is critical for avoiding over-
whelming users or causing frustrating delays. Next,
they point out that a CA must be interpretable; that
is, the users should be able to comprehend and un-
derstand why the system produces specific visual-

izations and responses or, in other words, post-hoc
interpretability (Gilpin et al., 2018). They mea-
sure the understanding of system output through
the conclusions drawn by the users at the end of
each open-ended EDA task. The authors suggested
that the interpretability of the system can impact
the take-aways of data analysis tasks by the users
of the CA. Finally, the authors discuss usability
of the system and how it affects the user’s percep-
tion of the CA. They quantified usability through
the post-study ratings given by the users for the
usefulness of generated visualizations and ease of
using the natural language interface. Therefore, to
answer the RQ, we plan to start with replicating the
study setup by Bhattacharya et al. (2024) and quan-
tifying the user’s experience through the quantities
discussed above. Additionally, we plan to perform
a qualitative evaluation of the responses generated
by the CA to user-initiated CRs. However, we must
remember that COVID-19 was still more relevant
in 2022 when Bhattacharya et al. (2024) conducted
their study, compared to 2025, when we plan to
perform ours. As a result, we will primarily fo-
cus on the qualitative evaluation of CR responses
and user experience measures rather than directly
comparing them with the results of the past user
study.

4 Conclusion

Overall, this thesis proposal emphasizes the impor-
tance of designing a CA for EDA and evaluating it
in real-time with users. Beyond EDA, developing
such a user-centric CA framework has broader im-
plications for data-driven decision-making. With
77% of U.S. organizations relying on such data-
driven strategies 2, an interactive CA can help
non-technical users make data-informed decisions.
Recent studies (Szukits and Móricz, 2024; Tawil
et al., 2024) further highlight the role of data-driven
methodologies in organizations of all sizes. By en-
abling intuitive, context-aware interactions, such a
CA framework can enhance collaborative data ex-
ploration and make data visualization more acces-
sible, thereby improving decision-making across
diverse domains.

2https://www.statista.com/
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Abstract

Commonsense inference and domain-specific
expertise are crucial for understanding and re-
sponding to emotional, cognitive, and topic-
specific cues in counseling conversations with
crime victims. However, these key evidences
are often dispersed across multiple utterances,
making it difficult to capture through single-
hop reasoning. To address this, we propose
MENDER, a novel Multi-hop commonsensE
and domaiN-specific Chain-of-Thought (CoT)
reasoning framework for knowleDge-grounded
empathEtic Response generation in counsel-
ing dialogues. MENDER leverages large lan-
guage models (LLMs) to integrate common-
sense and domain knowledge via multi-hop
reasoning over the dialogue context. It em-
ploys two specialized reasoning chains, viz.
Commonsense Knowledge-driven CoT and Do-
main Knowledge-driven CoT rationales, which
extract and aggregate dispersed emotional,
cognitive, and topical evidences to generate
knowledge-grounded empathetic counseling re-
sponses. Experimental evaluations on counsel-
ing dialogue dataset, POEM validate MENDER’s
efficacy in generating coherent, empathetic,
knowledge-grounded responses1.

1 Introduction

Commonsense inference and domain expertise are
crucial for effective mental health and legal coun-
seling of crime victims (Miller, 2008). Since vic-
tims often express trauma indirectly, counselors
must infer unspoken emotions, intentions, and
needs through commonsense reasoning (Dinakar
et al., 2012) to foster empathy and trust. In addition,
victims need targeted mental health and legal sup-
port for their overall well-being. Thus, counselors
must have domain expertise to accurately diagnose
and treat psychological conditions (Brown, 2007),

1Code and sample dataset is available at https://github.
com/Abid839/MENDER/tree/main.

Single-hop reasoning
I'm sorry you're experiencing this situation. You should consider

formally reporting to HR and ensuring they take appropriate action.
H1: Person_X feels uncomfortable, and unsafe

by her boss's behavior. (xReact)

H7: Seek legal advice under Sexual Harassment of Women at Workplace Act, 2013.
H8: Contact National Mental Health Helpline (1800-599-3644) for emotional support.

H6: Gather evidence of harassment to address the situation.

H1: Person_X wants day shift and is worried about her boss’s intentions. (xWant)
H2: Shift change might be an attempt by her boss to take advantage of her. (causes)
H3: Person_X should gather evidence to address the issue. (xNeed)
H4: HR should help Person_X, though their response are insufficient. (oEffect)
H5: Person_X feels uncomfortable and unsafe by her boss's behavior. (xReact)

Multi-hop reasoning Person_X, I’m sorry you're going
through this. Since HR isn’t taking
adequate action, I recommend you
to gather evidence of your boss's

behavior and consider legal advice
under the Sexual Harassment of
Women at Workplace Act, 2013.
Your well-being matters, so feel

free to contact the National Mental
Health Helpline (1800-891-4416).

I am a TCS employee and I was working on the day shift. My boss changed my shift without asking me and is
harassing me. I need to complain about this.

Does the HR team of TCS know about this?
Yes, they are aware of it but no benefit.

Ok Person_X, can you please explain your problem a bit more?

Yes, actually my boss has changed, and he looks at me with the wrong intention and
wants to take advantage of the night shift.

You can file a complaint with HR and report the situation to them to address this issue.

Generic Response

Figure 1: Comparison of generic responses vs. re-
sponses generated through single-hop and multi-hop
commonsense reasoning and domain expertise.

while also providing precise legal guidance to nav-
igate complex legal systems (Wright et al., 2023).
Integrating commonsense reasoning with domain
expertise enables counselors to provide holistic,
empathetic, and informed support. For instance,
as shown in Figure 1, compared to the generic re-
sponse, commonsense reasoning helps identify vic-
tim’s emotional and cognitive states, while domain
expertise guides legal action and provides mental
health resources, thereby ensuring an empathetic
and comprehensive support.

Recently, LLMs have been widely used for coun-
seling dialogue systems (Liu et al., 2023; Xie et al.,
2024). However, LLMs often fail to capture the
emotional and cognitive nuances innate in coun-
seling scenarios, leading to disconnected and in-
sincere interactions (Yang et al., 2024). Further,
LLMs tend to generate inconsistent, erroneous, or
fabricated information, which can have serious con-
sequences (Chung et al., 2023; Hou et al., 2024).
These limitations arise from LLMs’ inherent strug-
gles with commonsense inference and domain ex-
pertise, restricting their ability to engage in mean-
ingful, knowledgeable, and empathetic conversa-
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tions. While recent efforts to incorporate common-
sense and domain knowledge (Zhou et al., 2022a,b;
Braunschweiler et al., 2023; Varshney et al., 2024)
aim to address these issues, they often lead to
flawed reasoning, resulting in inadequate responses,
as shown in Figure 1.

Commonsense inference and domain knowl-
edge acquisition fundamentally demands multi-hop
reasoning, as key implicit information and topic-
specific details are often fragmented and distributed
across multiple utterances (Zhao et al., 2022; Liu
et al., 2021). For instance, generating a coherent
response - “Person_X, I’m sorry you’re going...”
in Figure 1 involves integrating both implicit (e.g.
H1,. . . ,H5) and topic-specific evidences (H6, H7,
H8) from dialogue context. These evidences, in-
cluding both commonsense and domain knowledge,
must be identified and aggregated through multiple
reasoning steps to produce coherent, empathetic,
and knowledge-grounded responses.

Motivated by this, we propose a multi-hop com-
monsense and domain-specific reasoning process
through CoT reasoning. We introduce MENDER,
a novel framework that integrates Multi-hop com-
monsensE and domaiN-specific CoT reasoning for
knowleDge-grounded empathEtic Response gener-
ation in counseling contexts. MENDER first gener-
ates two distinct reasoning chains, viz. Common-
sense Knowledge-driven CoT (CK-CoT) and Do-
main Knowledge-driven CoT (DK-CoT) rationales
to capture the commonsense and domain-specific
information required for effective response gener-
ation. CK-CoT rationales leverage the ATOMIC
knowledge base (Hwang et al., 2021) to infer im-
plicit emotional and cognitive cues, while DK-
CoT rationales employ an Entity-guided Retrieval-
Augmented Generation (E-RAG) approach to ex-
tract relevant topic-specific knowledge. MENDER
further incorporates rationale-context and rationale-
response filters to remove inconsistent or irrelevant
rationales, thereby enhancing the overall quality of
generated responses. Automatic and human evalu-
ations on POEM (Priya et al., 2023a) dataset show
that MENDER outperforms baselines, demonstrat-
ing its effectiveness in generating empathetic, in-
formative, and coherent counseling responses.

To summarize, key contributions are: (i) Empha-
size the need to integrate commonsense reasoning
and domain expertise via multi-hop reasoning to
gather evidences for knowledge-grounded empa-
thetic counseling responses; (ii) Present MENDER,
a novel multi-hop commonsense and domain-

specific CoT reasoning framework for knowledge-
grounded empathetic response generation during
counseling; (iii) Design two reasoning chains: CK-
CoT and DK-CoT rationales to capture emotional,
cognitive, and topic-specific information for effec-
tive response generation; (iv) Introduce rationale-
context and rationale-response filters to ensure the
consistency and relevance of generated rationales.

2 Related Work

Recent efforts have focused on developing dialogue
systems for mental health and legal counseling of
crime victims (Kim et al., 2022; Singh et al., 2022b;
Mishra et al., 2023b,c; Priya et al., 2023b; Mishra
et al., 2023a; Priya et al., 2024a,b), with an em-
phasis on using LLMs (Zhao et al., 2023) for au-
tomated counseling agents (Liu et al., 2023; Chen
et al., 2024). Integrating commonsense knowledge,
such as emotional and cognitive insights, has been
shown to improve empathy and contextual rele-
vance (Wu et al., 2020; Sabour et al., 2022; Tu et al.,
2022; Reddy et al., 2023), while domain-specific
knowledge from external sources like Wikipedia
enhances factual accuracy and relevance (Zhao
et al., 2020; Qin et al., 2023; Bai et al., 2023).
Chain-of-Thought (CoT) prompting has been found
to enhance reasoning by decomposing complex
problems into manageable steps (Wei et al., 2022),
and Retrieval-Augmented Generation (RAG) lever-
ages external knowledge to improve accuracy and
reliability (Gao et al., 2023). Despite these ad-
vancements, many existing models still struggle
to effectively integrate commonsense and domain
knowledge, resulting in superficial responses. This
work proposes a framework combining multi-hop
commonsense reasoning with ATOMIC knowledge
(Hwang et al., 2021) and domain-specific reasoning
using Entity-guided Retrieval-Augmented Gener-
ation (E-RAG), to seamlessly generate coherent,
empathetic, and knowledge-grounded responses.

3 Methodology

3.1 Overview
Given a dialogue corpus D = (C,R)|D|, where
C = {u1, . . . , ut−1} is dialogue context with
an alternating sequence of (t − 1) utterances be-
tween counseling agent and victim, and R is re-
sponse, the goal is to generate counselor’s response
R(= ut). To improve response quality, we inte-
grate external commonsense and domain knowl-
edge K. The response generation task is thus de-
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fined as P (R | C,K), aiming for responses that are
cotextually coherent, informative, and empathetic
to victim’s situation and emotional state.

3.2 Approach

We introduce MENDER, a Multi-hop common-
sensE and domaiN-specific Chain-of-Thought
(CoT) reasoning framework for knowleDge-
grounded empathEtic Response generation that
constructs commonsense knowledge-driven CoT
reasoners and domain knowledge-driven CoT rea-
soners to enhance response generation. To enhance
relevance, we apply reasoner filtering mechanisms
to refine the generated reasoners, which are then
used for response generation. Figure 2 provides an
overview of the proposed MENDER framework.

3.2.1 Commonsense Knowledge-driven CoT
(CK-CoT) Reasoning

To construct CK-CoT reasoning chains (rationales,
hereafter), we utilize LLMs’ reasoning capability
and commonsense relations from the ATOMIC
knowledge base (Hwang et al., 2021), including
xIntent, xNeed, xWant, xReact, oEffect, and Causes
to capture emotional (affective), cognitive, and
causal aspects of human reasoning. Given a di-
alogue context C and ground-truth response R,
we prompt the LLM,M to generate CK-CoT ra-
tionales SCo, such that R can be induced from
SCo. These rationales are defined as a sequence of
n query-reply pairs (qi, ri)

n
i=1, where each qi de-

notes an information-seeking question designed to
uncover implicit information ri within C. To gener-
ate these pairs, we introduce thought-then-generate
approach employing two-step CoT process:

T Co ← PM(C, csrel) (1)
SCo ← PM(C, csrel, T Co) (2)

In the first step (Eq. 1), we promptM to think
what queries should be implicitly inferred from C
using commonsense relations csrel and generate
corresponding thoughts T Co. In the second step
(Eq. 2), based on T Co, we prompt M to gener-
ate queries using csrel followed by the respective
replies based on C.

3.2.2 Domain Knowledge-driven CoT
(DK-CoT) Reasoning

To generate DK-CoT rationales, we utilize LLMs
reasoning capability and external domain knowl-
edge. For a given context C and ground-truth re-
sponse R, we promptM to generate DK-CoT ratio-
nales SDo that lead to R. The process involves re-

trieving relevant domain knowledge for C and gen-
erating m query-reply pairs (qi, ri)mi=1, where each
query qi seeks topic-specific information ri in C.
This is achieved through a novel Entity-guided Re-
trieval Augmented Generation (E-RAG) approach,
described as follows:

(a) Entity-guided Knowledge Source Selection:
To ensure accuracy and comprehensiveness in do-
main knowledge collection, we systematically ex-
tract relevant entities related to mental health and
legal counseling from the dialogue dataset D us-
ing the Stanford Named Entity Recognition (NER)
Tagger (Finkel et al., 2005), T . Each utterance
ui is processed to identify entities, denoted as
Ei = T (ui), and the total set of entities across
dataset is defined as E =

⋃|D|
i=1Ei. These enti-

ties are categorized into four classes, denoted as
EC = {crime,mentalhealth, legal,medium}. For
each entity class ec ∈ EC, we define Eec ⊂ E
containing entities of type ec. To ensure robust-
ness and remove noise, we filter out entities, such
that E′

ec = {e ∈ Eec | frequency(e,D) ≥ 2}.
Afterward, we perform a manual verification M
of identified entities to eliminate false positives
and misspelled entities, yielding the final entity set
Efec = M(E′

ec). We then create question tem-
plates, Qfec for each entity class ec, and formulate
web search queries for each entity e′ ∈ Ef ec us-
ing these templates. The queries are searched on
Google via Google Search API (Google, 2023) to
gather domain knowledge from top 25 matching
URLs. A summary of entity types, examples, and
query templates is given in Appendix A. The ex-
tracted textual content is cleaned and stored into
M knowledge documents (KD), which serve as
knowledge base for the next step.

(b) Knowledge Retrieval: To retrieve relevant
knowledge, we encode knowledge documents
and dialogue context. The knowledge docu-
ment encoder encodes each knowledge document
{KDj}Mj=1 into vector representations hKDj . Like-
wise, the context encoder encodes C into a vector
representation hC . To assess the relevance of each
knowledge document to the context, two matching
scores, s1KDj ,C

and s2KDj ,C
are computed using

BM25 (Robertson and Walker, 1994) and FAISS
(Douze et al., 2024) retrievers, respectively, as:

slKDj ,C =

{
BM25(hKDj , hC); l = 1,

FAISS(hKDj , hC); l = 2,
∀KDj ∈ KD

BM25-based sparse retrieval captures surface-level
similarity, while FAISS-based dense retrieval em-
phasizes high-level semantic relevance. Each re-
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Commonsense Knowledge-driven CoT Reasoning using ATOMIC

Commonsense Knowledge-driven CoT Rationales

Commonsense
Knowledge

Base

Q1. Why is Person_X concerned about her shift change?
R1. Person_X wants day shift and is worried about her boss’s
intentions. (xWant)
Q2. What might be the reason behind Rekha's boss changing her shift
without asking?
R2. Shift change might be an attempt by her boss to take advantage of
her. (causes) 
Q3. What should Person_X do to address the issue?
R3. Person_X should gather evidence to address the issue. (xNeed)
...

xIntent

xNeed

xWant

xReact

oEffect

causes Entities Domain
Knowledge Base

Document Ranking
using RRF

Q1. Is Person_X's situation potentially a criminal offense?
R1. Yes, the situation described by Person_X could fall under workplace
harassment.
Q2. What laws protect Rekha in a workplace harassment situation?
R2. Person_X can be protected under the Sexual Harassment of Women at
Workplace Act, 2013. 
Q3. What mental health resources are available to Person_X?
R3. Person_X can contact helplines like the National Mental Health Helpline
(1800-599-3644).
...

Domain Knowledge-driven CoT Rationales

Domain Knowledge-driven CoT Reasoning using Entity-guided RAG
Entity-guided
Knowledge 

Source Selection
Knowledge 

Retrieval

Entity-guided
Knowledge 
Generation

I am a TCS employee and I was working on the day shift. My
boss changed my shift without asking me and is harassing
me. I need to complain about this.

Does the HR team of TCS know about this?

Yes, they are aware of it but no benefit.

Ok Person_X, can you please explain your problem a
bit more?

Yes, actually my boss has changed, and he looks at
me with the wrong intention and wants to take
advantage of the night shift.

Dialog
Context

Person_X, I’m sorry you're going through this. Since HR isn’t taking adequate action, I recommend you to gather evidence of your boss's behavior and consider legal advice under the
Sexual Harassment of Women at Workplace Act, 2013. Your well-being matters, so feel free to contact the National Mental Health Helpline (1800-891-4416).

Response Generation

Rationale Filtering

Q1 R1

Q2 R2

... ...

REMOVE

No

Rationales aligned
with context?

Rationales useful
for response?

Q1 R1

Q3 R3

... ...

Yes Yes
Q1 R1

Q3 R3

... ...

Final rationales

REMOVE

No

Figure 2: Overview of the proposed MENDER framework.

triever ranks knowledge documents independently
based on computed matching scores. To integrate
these rankings, the Reciprocal Rank Fusion (RRF)
algorithm (Cormack et al., 2009) is applied, en-
suring accurate, balanced, and robust ranking for
effective knowledge retrieval. It is computed as:

RRF (KDj) =
∑

p∈P

1

k + p(KDj)
, ∀KDj ∈ KD (3)

Here, P = {BM25,FAISS} represents the set of
retrievers, and p(KDj) denotes the rank assigned
to document KDj by retriever p. The smooth-
ing constant k adjusts rank weights to mitigate bi-
ases introduced by individual retrievers. The final
ranking is derived from the computed RRF scores,
yielding an ordered list of knowledge documents,
most relevant to the context C. Finally, the top-r
documents are retrieved based on their RRF scores.

(c) Entity-guided Knowledge Generation: To ex-
tract relevant knowledge from top-r documents, we
generate query-reply pairs based on C and retrieved
knowledge. To generate precise and contextually
relevant queries, we employ an entity-centric ap-
proach that identifies key entities within C and uses
them as anchors for query construction. The gen-
erated query is then mapped to the most relevant
knowledge sentences to extract precise replies. To
enable deeper and interpretable reasoning, we again
employ think-then-generate approach for generat-
ing query-reply pairs in four-step CoT manner:

T Do
1 ← PM(C) (4)

ÊDo ← PM(C, T Do
1 ) (5)

T Do
2 ← PM(C, ÊDo) (6)

SDo ← PM(C, ÊDo,KDo, T Do
2 ) (7)

In the first step (Eq. 4), we prompt M to think
what entities could be extracted from given context
C and generate corresponding thoughts T Do

1 . In
the second step (Eq. 5), based on T Do

1 , we first

askM to extract the entities EDo from C and then
assess the relevance of each entity to context C. To
achieve this, entity encoder encodes each extracted
entity ei ∈ EDo into a vector representation hei .
The similarity score sei,C is then computed as the
dot product between hei and hC . To enhance query-
reply alignment, extracted entities are filtered based
on two factors: (i) entity order, which prioritizes
entities with higher similarity to C, and (ii) en-
tity confidence, which categorizes entities into low,
moderate, and high confidence levels based on sim-
ilarity scores2. Entity order in conjunction with
entity confidence ensures that entities with low
confidence but high entity order are disregarded
to focus on highly relevant entities. In the third
step (Eq. 6), we promptM to think what queries
can be inferred from the C based on ÊDo and write
the corresponding thoughts T Do

2 . Finally, in the
fourth step (Eq. 7), based on T Do

2 , we promptM
to generate queries using ÊDo and formulates cor-
responding replies based on k retrieved documents,
denoted as KDo.

3.2.3 Rationale Filtering
LLMs tend to hallucinate facts without adequately
attending to the context (Peng et al., 2023), and not
all rationales are effective in generating responses.
Thus, to ensure that rationales are both contextually
aligned and useful, we introduce rationale-context
and rationale-response filters, respectively. For
rationale-context filter, we employ alignment(·)
function to assess if a rationale zi ∈ Z, where
Z = {SCo,SDo} is relevant for C. For rationale-
response filter, we introduce useful(·) function to
assess if a dialogue model θ benefits from a ratio-
nale when predicting response R, given a context

2Thresholds for categorizing entities are hyper-parameters (Appendix 4.4).
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C.

alignment(zi) =

{
1, if SE(zi).SE(C)

||SE(zi)||.||SE(C)|| > τ1,

0, otherwise.

useful(zi) =

{
1, if Pθ(R|zi,C)

Pθ(R|C) > τ2,

0, otherwise.

Here, SE denotes sentence encoder used to obtain
semantic representations for zi and C and τ1, τ2 are
hyperparameters. Intuitively, a higher similarity
and higher probability suggests that rationale zi
is contextually aligned and useful for predicting
response R.

3.2.4 Response Generation

Finally, we instruct M to generate the response
for a given dialogue context C using previously
generated CK-CoT rationales (SCo) and DK-CoT
(SDo) rationales:

R← PM(C,SCo,SDo, I) (8)
where, I denotes the instruction given toM.

4 Experiments

4.1 Dataset

We conduct experiments on POEM dataset (Priya
et al., 2023a) of counseling conversations, where
commonsense reasoning and domain expertise are
vital for delivering contextually appropriate, empa-
thetic, and informative responses to crime victims.
We choose this dataset for our task due to its rich
coverage of real-world scenarios involving mental
health and legal counseling needs of diverse crime
victims. The dataset contains 5K dialogues crafted
using real-life stories from credible sources, includ-
ing news articles, case studies, and government por-
tals under expert supervision. The comprehensive
scope along with grounding in authentic sources
and expert supervision, makes POEM dataset an
ideal choice for developing models for common-
sense and domain knowledge-grounded empathetic
response generation during counseling.

4.2 Baselines

We compare MENDER with 9 baselines: ITDD
(Li et al., 2019), KnowledGPT (Zhao et al., 2020),
CEM (Sabour et al., 2022), MISC (Tu et al., 2022),
MSDP (Liu et al., 2022), CoT (Wei et al., 2022),
ProCoT (Deng et al., 2023), O-Cue-CoT and M-
Cue-CoT (Wang et al., 2023). We include ‘Base-
lines Details’ in Appendix B.

4.3 Evaluation Metrics

For automatic evaluation, we use Perplexity (PPL)
(Brown et al., 1992), BLEU (B-4) (Papineni et al.,
2002), METEOR (M) (Banerjee and Lavie, 2005),
Distinct-2 (D-2) (Li et al., 2015), BERTScore-f1
(BS-f1) (Zhang et al., 2019), Embedding Average
(EA), Vector Extrema (VE), and Greedy Matching
(GM) (Liu et al., 2016) to evaluate general quality
of responses. To assess responses for task per-
formance, we measure Domain Knowledge Cov-
erage (DKC), Commonsense Knowledge Cover-
age (CKC), and Emotion Expression Accuracy (E-
ACC). For human evaluation, we use Fluency (F),
Adequacy (A), Contextual Relevance (CR) (Singh
et al., 2022a) to assess responses’s general quality.
To assess responses for task performance, we em-
ploy Knowledge Existence (KE), Knowledge Cor-
rectness (KC), Knowledge Relevance (KR) (Varsh-
ney et al., 2022), Helpfulness (H), Safety (S), and
Empathy (Emp.). We include ‘Evaluation Metrics
Details’ in Appendix B.

4.4 Implementation Details

All implementations are conducted using PyTorch3,
and we employ transformer-based models from
Hugging Face (Wolf et al., 2019) throughout our
experiments. We use pre-trained Sentence-BERT
(Reimers and Gurevych, 2019) as knowledge and
context encoders and BERT (Devlin et al., 2018)
as entity encoder. The dense retriever FAISS is im-
plemented based on mixedbread-ai/mxbai-embed-
large-v1, an embedding model. It will rank the
documents based on the embedding L2 (Euclidean)
distance between each knowledge document and
dialogue context. We select top-2 knowledge docu-
ments (i.e. r = 2). We empirically set hyperparam-
eters: k to 60 (smoothing constant in RRF score
calculation), τ1 to 0.6 and τ2 to 0.9. Further, we
empirically set the following ranges: sei,C ≤ 0.3
indicates low confidence, 0.3 < sei,C ≤ 0.65 in-
dicates moderate confidence, and sei,C > 0.65
indicates high confidence for entity confidence cat-
egorization.

In the rationale-response filter, we use Zephyr-
7B (Tunstall et al., 2023) trained on diverse syn-
thetic dialogues generated by ChatGPT as dialogue
model θ. For rationale generation, we employ
LLaMA-3.1-8B-Instruct (Touvron et al., 2023) and
for response generation, we use LLaMa-2-7B-chat
(Touvron et al., 2023). We use Top-p sampling with

3https://pytorch.org/
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Models PPL ↓ B-4 ↑ M ↑ D-2↑ BS-f1 ↑ EA ↑ VE ↑ GM ↑ DKC ↑ CKC ↑ E-ACC ↑
ITDD 31.25 1.02 6.23 15.14 0.421 0.571 0.226 0.482 4.67 9.54 7.41
KnowledGPT 28.11 2.67 7.14 18.32 0.473 0.622 0.284 0.532 7.03 14.32 10.87
CEM 28.80 4.98 8.72 19.45 0.486 0.643 0.309 0.546 9.26 18.64 14.58
MISC 27.04 5.22 9.24 20.67 0.512 0.665 0.336 0.563 10.41 20.52 16.47
MSDP 25.73 6.07 10.56 20.73 0.537 0.694 0.372 0.591 11.87 23.56 18.62
CoT 17.53 6.44 10.89 21.34 0.553 0.713 0.401 0.612 13.22 26.48 20.93
ProCoT 14.41 6.53 11.03 23.12 0.603 0.744 0.423 0.637 16.12 31.78 24.71
O-Cue-CoT 11.26 6.71 11.78 24.48 0.627 0.767 0.442 0.654 18.36 36.48 27.42
M-Cue-CoT 9.35 6.59 12.61 27.78 0.652 0.801 0.467 0.682 22.41 44.12 32.17
MENDER 6.33 9.31 14.02 31.56 0.703 0.881 0.499 0.726 26.19 49.82 36.79

- SCo 9.52 7.99 12.57 30.22 0.671 0.845 0.480 0.704 24.98 44.67 32.24
- SDo 9.45 8.12 13.02 30.53 0.682 0.860 0.485 0.715 23.10 45.82 33.65
- (SCo + SDo)) 11.76 5.65 10.10 28.90 0.657 0.830 0.471 0.695 21.85 41.45 29.80

Table 1: Automatic evaluation results. Results are statistically significant at 5% significance level based on t-test (Welch, 1947).

Models F
(1-5)

A
(1-5)

CR
(1-5)

KE
(0-2)

KR
(0-2)

KC
(0-2)

H
(0-2)

S
(0-1)

Emp.
(1-5)

MSDP 2.33 2.45 2.38 1.02 1.10 1.09 1.29 1.0 2.30
CoT 2.87 2.94 2.71 1.15 1.22 1.21 1.35 1.0 2.64
ProCoT 3.21 3.19 3.03 1.28 1.35 1.33 1.50 1.0 3.08
O-Cue-CoT 3.47 3.39 3.34 1.41 1.47 1.45 1.62 1.0 3.28
M-Cue-CoT 3.73 3.64 3.58 1.53 1.60 1.58 1.74 1.0 3.59
MENDER 4.12 4.25 4.41 1.72 1.78 1.85 1.91 1.0 4.50

Table 2: Human evaluation results. Results are statistically
significant at 5% significance level based on t-test (Welch,
1947). Scale for metrics are given in column heads.

p = 0.9 and temperature τ = 0.6 for rationale and
response generation. For rationales’ generation, we
include two exemplars of rationales, with manually
constructed query-reply pairs to further guide the
LLM in identifying relevant contextual cues and
inferring necessary knowledge for response genera-
tion. Likewise, for response generation, we include
two exemplars consisting of dialogue context, cor-
responding rationales and ground-truth response
to guide the model toward generating appropriate
response. All experiments are done on Tesla V100-
PCIE-32GB GPUs.

5 Results and Analysis

5.1 Automatic Evaluation

Table 1 presents the results of the automatic eval-
uation. We observe that MENDER significantly
outperforms all baselines across all metrics. It
achieves the lowest PPL score, indicating the su-
perior quality of its generated responses compared
to baselines. Further MENDER excels in dialogue
quality, as revealed by its superior lexical (B-4,
M) and semantic richness (BS-f1, EA, VE, GM),
along with its ability to produce more diverse re-
sponses (D-2). The highest DKC and CKC scores
shows its proficiency in capturing knowledge, en-
abling the generation of engaging and informative
responses. Besides, the highest E-ACC score high-

lights MENDER’s ability to generate empathetic
responses. Notably, the ablation results show that
removing either CK-CoT rationales (SCo), DK-
CoT rationales (SDo), or both causes a significant
drop in performance, emphasizing the critical role
of both reasoning steps in generating knowledge-
grounded, empathetic responses.

5.2 Human Evaluation

Table 2 presents the results of the human evaluation.
We compare MENDER against MSDP, CoT, Pro-
CoT, O-Cue-CoT, and M-Cue-CoT only, as manual
evaluation is expensive. It is evident that MENDER
consistently outperforms baseline models across all
evaluation metrics. This highlights MENDER’s abil-
ity to effectively integrate commonsense reason-
ing and domain knowledge, generating responses
that are notably more coherent, empathetic, and
informative. The inter-evaluator agreement, mea-
sured using Fleiss’ kappa (McHugh, 2012) (κ),
falls within the range [0.45, 0.81] for all criteria,
indicating fair to moderate agreement among eval-
uators.

6 Conclusion

This work presents MENDER, a multi-hop reason-
ing framework that integrates commonsense and
domain-specific knowledge for generating empa-
thetic, knowledge-grounded responses in counsel-
ing dialogues. Using commonsense and domain
knowledge-driven CoT rationales, MENDER cap-
tures emotional, cognitive, and topic-specific de-
tails to ensure coherent, empathetic, and informed
responses. Extensive experiments on the POEM
dataset demonstrate the promising potential of
MENDER in generating coherent, empathetic, and
knowledge-grounded responses, significantly im-
proving the quality of counseling outcomes.
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Limitations

We evaluate MENDER on the POEM dialogue
dataset, focusing on crime victim counseling and
dyadic dialogues. While currently limited in scope,
future work could extend MENDER to other coun-
seling domains and multi-party dialogues. Since
its reasoning generations are entirely machine-
generated, caution is advised to avoid biases in
model training. Using LLaMA-2-7b-chat as the
base model, our experiments yield satisfactory re-
sults, but further validation and optimization are
planned, including performance enhancement on
smaller models like Gemma-2B (Team et al., 2024)
via knowledge distillation. Budget and compu-
tational constraints necessitated the use of open-
source LLaMA-2-7b-chat, but future studies could
explore advanced closed-source LLMs, such as
GPT-4 (OpenAI, 2024) or Gemini-1.5-Pro (Team
et al., 2023), for generating rationales and re-
sponses, thereby improving system performance.
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Appendix

A Mental Health and Legal
Counseling-related Entities

After extraction and manual review of the entities,
we identify a total of 41 entities, systematically
categorized into four groups as 16 crime-related
entities, 4 related to mental health issues, 7 asso-
ciated with legal information, and 14 pertaining
to medium information. The entities related to
crime, mental health issues, legal information, and
medium information correspond to 7, 6, 6, and 4
distinct query templates, respectively. A detailed
overview of the entity types, representative entity
examples, and their corresponding query templates
is provided in Table 3.

Entity Type Examples Sample Query Query Example

Crime cyber-stalking,
harassment

What is crimeX? What is Stalking?

How to prevent
crimeX?

How to prevent Stalking?

Mental Health depression, anx-
iety stress

What is issueX? What is Depression?

What are the symptoms
of issueX?

What are the symptoms of De-
pression?

Legal section354D,
cybercell

What is sectionX? What is section 354D?

What are the punish-
ments under sectionX?

What are the punishments under
section 354D?

Medium facebook, insta-
gram

How to report crimeX
on mediumX?

How to report online stalking on
Facebook?

How to block a pro-
file/page on mediumX?

How to block a profile/page on
Facebook?

Table 3: Entity types, entities examples, and their corre-
sponding query templates.

B Experiment Details

B.1 Baseline Details

1. ITDD (Li et al., 2019): Utilizes an incremen-
tal transformer architecture to encode utter-
ances and external knowledge, coupled with
a deliberation-based decoder for generating
responses.

2. KnowledGPT (Zhao et al., 2020): Incorpo-
rates a pre-trained language model alongside
a knowledge selection module, with both com-
ponents jointly optimized using reinforcement
learning.

3. CEM (Sabour et al., 2022): Leverages com-
monsense reasoning to enhance the expression
of empathy in generated responses.

4. MISC (Tu et al., 2022): Fuses commonsense
knowledge for emotional response generation.

5. MSDP (Liu et al., 2022): Employs a multi-
stage prompting framework that first generates

relevant knowledge and then use the generated
knowledge to predict the response for a given
dialogue context.

6. CoT (Wei et al., 2022): Employs a standard
few-shot CoT reasoning approach to generate
knowledge-grounded empathetic responses.

7. ProCoT (Deng et al., 2023): Prompts the
LLM to generate a chain-of-thought descrip-
tive analysis to use the relevant the knowledge
by performing dynamic reasoning for gener-
ating the knowledge-grounded empathetic re-
sponses.

8. O-Cue-CoT (Wang et al., 2023): Prompts the
LLMs to generate knowledge and a final re-
sponse simultaneously for the given dialogue
context, enforcing the LLM to reason based
on the knowledge.

9. M-Cue-CoT (Wang et al., 2023): M-Cue-CoT
builds on the foundation of O-Cue-CoT by
decomposing the reasoning process into con-
secutive steps. It first generates the reasoning
to infer the relevant knowledge and then use
the inferred knowledge to predict the final re-
sponse.

B.2 Evaluation Metrics Details
Automatic Evaluation Metrics. Perplexity (PPL)
(Brown et al., 1992) evaluates how well the model
predicts a response. Word-overlap-based metrics
like BLEU (Papineni et al., 2002) (B-4) and ME-
TEOR (Banerjee and Lavie, 2005)(M) compute
the overlap between the ground-truth response and
the model’s generated response. DISTINCT-2 (Li
et al., 2015) (D-2) measures the diversity of the
generated responses. BERTScore-f1 (Zhang et al.,
2019) (BS-f1), Embedding Average (EA), Vector
Extrema (VE), and Greedy Matching (GM) (Liu
et al., 2016) align the generated response and the
ground-truth response in latent semantic space to
assess the semantic similarity between the gold
response and the model’s generated response.

Domain Knowledge Coverage (DKC) using KF1
(Shuster et al., 2021) quantifies unigram word over-
lap between the generated response (R) and do-
main knowledge (K) (Equation 9), Commonsense
Knowledge Coverage (CKC) using Hard Matching
(Zhou et al., 2022b) identifies matching common-
sense tuples T between the dialogue context (C)
and the generated response (R) (Equation 10), and
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Models PPL ↓ B-4 ↑ M ↑ D-2↑ BS-f1 ↑ EA ↑ VE ↑ GM ↑ DKC ↑ CKC ↑ E-ACC ↑
MENDER (w query-reply pairs) 6.33 9.31 14.02 31.56 0.703 0.881 0.499 0.726 26.19 49.82 36.79
MENDER (w replies only) 7.46 8.12 13.78 29.01 0.689 0.864 0.489 0.712 25.73 46.92 33.07

Table 4: Ablation results w.r.t iterative query-reply pairs on generating question in MENDER.

Models PPL ↓ B-4 ↑ M ↑ D-2↑ BS-f1 ↑ EA ↑ VE ↑ GM ↑ DKC ↑ CKC ↑ E-ACC ↑
MENDER 6.33 9.31 14.02 31.56 0.703 0.881 0.499 0.726 26.19 49.82 36.79
MENDER (w/o R-C filter) 6.49 9.10 13.74 30.89 0.686 0.860 0.485 0.708 25.55 48.32 35.74
MENDER (w/o R-R filter) 7.67 8.87 13.45 30.18 0.668 0.839 0.470 0.690 24.92 46.92 34.70
MENDER (w/o R-C and R-R filter) 8.85 8.65 13.16 29.52 0.650 0.818 0.455 0.672 24.30 45.58 33.68

Table 5: Ablation results w.r.t rationale-context (R-C) and rationale-response (R-R) filters in MENDER.

EXP ACC (E-ACC) (Pascual et al., 2021) measures
the accuracy of emotion expression.

DKC =
1

m

m∑

i=1

KF1(R,K) (9)

CDC =
1

m

m∑

i=1

I({Ti}), I =

{
1 if {Ti} ≠ ∅,
0 otherwise.

(10)
where m is the test set size, and I = 1 if the re-
sponse is grounded by at least one commonsense
tuple.
Human Evaluation Metrics. Fluency (F) assesses
the grammatical correctness, Adequacy (A) quan-
tifies the semantic similarity of the generated re-
sponse with that of the ground-truth response, Con-
textual Relevance (CR) examines the alignment of
the generated responses with the dialogue context.

KE evaluates the incorporation of knowledge
within the response, KC measures the accuracy
of this knowledge, and KR examines whether the
knowledge is both accurate and contextually rele-
vant to the dialogue context. Helpfulness (H) as-
sess whether the generated response satisfies the
victim’s requirement, Safety (S) gauges if the gen-
erated response safeguards personal privacy and
adheres to relevant laws and regulations, and Empa-
thy (Emp.) assesses whether the response is more
understanding of the user’s emotion and situation
and shows the appropriate emotion.

C Human Evaluation Process

The human evaluation is conducted with the assis-
tance of three evaluators, two hold Ph.D. degrees in
Linguistics and one with a graduate degree in Com-
puter Science and Engineering. All evaluators are
proficient in English and have substantial experi-
ence in similar tasks. For evaluation, we randomly

selected 120 samples consisting of dialogue con-
text, ground-truth response, commonsense knowl-
edge, domain knowledge, and model-generated re-
sponse. Prior to the evaluation, they are briefed on
the evaluation guidelines along with few samples,
and are instructed to rate each sample for F, A, CR,
KE, KC, KR, H, S, and Emp. on a provided scale.

C.1 Prompt Templates for MENDER

The prompts of our proposed MENDER are reported
in Table 7 (Commonsense Knowledge-driven CoT
Reasoning), Table 8 (Domain Knowledge-driven
CoT Reasoning), and Table 9 (Response Genera-
tion).

D Additional Analysis

D.1 Ablation w.r.t Iterative Query-Reply Pairs

To assess the impact of queries, we conduct an
ablation study by prompting the model under the
same conditions as MENDER but generating only
replies. Specifically, we remove queries from the
rationales and prompt the model using the modified
sample. As presented in Table 4, the absence of
queries leads to a significant decline in response
quality, highlighting their critical role in reasoning.
This suggests that queries play a crucial role in
guiding replies generation, as responses exhibit
poor alignment with dialogues in their absence.

D.2 Ablation w.r.t filters

To assess the impact of rationale-context and
rationale-response filters, we ablate the filters and
done the experiments under the same conditions
as MENDER. In the first ablation, we ablate the
rationale-context filter, in the second ablation, we
remove the rationale-response filter, and finally in
the third ablation, we omit both filters. The results,
presented in Table 5, indicate a decline in response
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quality when the generated rationales fail to sup-
port accurate next response prediction. Notably,
the MENDER’s performance deteriorates signifi-
cantly when the when the rationale-context filter
is removed, underscoring the critical role of main-
taining alignment between rationales and contexts.
Furthermore, when the rationale-response filter is
removed, the overall response quality further de-
grades. A significant performance drop is observed
when both the filters are omitted. These results
demonstrate the significance of both filters in gen-
eration adequate responses.

D.3 Case Study
Table 6 presents examples of responses generated
by the proposed MENDER framework, alongside
four strong baselines - CoT, ProCoT, O-Cue-CoT,
and M-Cue-CoT. It can be seen that CoT and
ProCoT provide non-empathetic, generalized re-
sponses that lack informative content, while O-Cue-
CoT and M-Cue-CoT acknowledge the victim’s
emotional state; however, their responses fail to
include relevant, actionable, and beneficial infor-
mation. For instance, in the first sample shown
in Table 6, which involves a case of a missing
person, the victim expresses frustration over the
police’s lack of action and shares their growing
concern and distress. While baseline models such
as CoT suggest generic reassurances like “things
will work out eventually”, ProCoT redundantly ad-
vises filing a missing person report. O-Cue-CoT
and M-Cue-CoT provide basic empathy but do not
suggest practical next steps. In contrast, MENDER
generates a superior response by integrating multi-
hop commonsense reasoning and domain-specific
knowledge. It acknowledges the victim’s frustra-
tion, recommends filing a complaint with the Na-
tional Commission for Protection of Child Rights
(NCPCR), and provides resources such as the Na-
tional Mental Health Helpline for psychological
support, ensuring the response is both empathetic
and informative. Besides, MENDER generates help-
ful and safe responses that are grounded in relevant
external knowledge sources.

Though the proposed MENDER framework con-
sistently employs empathy, contributing to a more
engaging and positive counseling experience, cer-
tain limitations are observed in its responses.
MENDER demonstrates shortcomings in handling
complex cases requiring precise mental health and
legal knowledge. For example, as shown in third
example in Table 6 that highlights a case of unau-

thorized photo sharing on Instagram, with the vic-
tim describing the accused’s obsessive behavior.
The ground-truth response effectively combines
empathy, domain-specific legal knowledge, and
actionable advice, such as seeking legal or NGO as-
sistance. In contrast, MENDER’s response focuses
on empathizing with the victim and acknowledg-
ing the seriousness of the issue but lacks concrete
guidance or references to relevant legal provisions.
This limits its ability to empower the victim with
actionable next steps, rendering the response in-
sufficient despite its empathetic tone. This might
stem from inability to generate proper legal infor-
mation in this scenario due to the complex dia-
logue flow and the presence of shorter utterances.
These factors limit MENDER’s ability to integrate
domain-specific knowledge effectively, resulting in
responses that emphasize empathy but lack critical
legal insights and actionable guidance necessary to
address the victim’s situation comprehensively.
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Dialogue Context Victim: My daughter is missing since 10 October, 2020. Police is not helping me to find my daughter.
Agent: Ok, have you complained about this to any police station?
Victim: Yes, I’ve made the police complaint, but their behavior is reluctant. I don’t think they’re making any effort to find my daughter. I am too
worried about her whereabouts, feeling depressed.
Agent: Ok, don’t worry. Have they asked you for sufficient details to find her?
Victim: Yes, I’ve provided her photograph along with a detailed description of her appearance on the day she went missing.

Ground-truth Response Agent: It’s sad to hear, I suggest you take legal action in this matter. Are you taking the proper follow up every day ?
CK-CoT Rationales Query1: What is the victim’s concern about the police’s behavior in the case of their missing daughter? (xReact)

Reply1: The victim is worried about the police’s reluctance and lack of effort in finding their daughter, which is causing them distress.
Query2: What might be the next logical step for the agent to take in assisting the victim in finding their missing daughter? (xIntent)
Reply2: The agent might suggest that the victim provide any additional information or details that could help the police in their investigation,
such as the last known location of the daughter or any potential witnesses.

DK-CoT Rationales Query1: What Indian Penal Code (IPC) sections are relevant to the victim’s case?
Reply1: Relevant IPC sections include Section 363 (punishment for kidnapping), Section 366 (kidnapping or abducting a woman to compel her
marriage), and Section 509 (word, gesture, or act intended to insult the modesty of a woman).
Query2: What immediate assistance can the victim seek for their missing daughter?
Reply2: The victim can report the case to the local police station or contact helplines such as Childline (1098), National Commission for
Protection of Child Rights (NCPCR) or the National Commission for Women (NCW) helpline (181).
Query3: How can the victim address their mental health concerns related to their daughter’s disappearance?
Reply3: The user can contact the National Mental Health Helpline 1800-891-4416 for psychological counseling.

CoT Ok, just give it some time. Things will work out eventually.
ProCoT Maybe you should file a missing person report if you haven’t already. That should help.
O-Cue-CoT I see, you’re feeling worried and frustrated with the lack of progress in finding your daughter. You should try not to let it affect you too much

emotionally, please be strong in this time.
M-Cue-CoT It’s unfortunate that you’re feeling this way, but sometimes these things take time. Have you considered reaching out to any other organizations

or groups that specialize in missing persons cases?
MENDER Agent: I’m deeply sorry that you’re facing this situation. I understand your concern and frustration with the police’s behavior. I would

recommend filing a complaint with the National Commission for Protection of Child Rights (NCPCR) and seeking legal advice from a lawyer
specializing in criminal law. You can also reach out to the National Mental Health Helpline at 1800-891-4416 for confidential counseling.

Dialogue Context Victim: I need help.
Agent: Yes sure, I am here to help you. May I know to whom I am talking?
Victim: My name is Person_X and I am Age_X years old. I am a married woman.
Agent: Hi Person_X, please share your problem in detail?
Victim: I saw a lady labor at the construction site beside my house. She was being gang-rapXX by her co-workers. I want to help her. She is in
mental trauma and is also injured.

Ground-truth Response Agent: It’s really disgusting. Could you please tell me has she or you complained about it?
CK-CoT Rationales Query1: What is the likely reaction of Person_X’s after witnessing the incident? (xReact)

Reply1: She might be shocked, frightened, or even guilty, which could lead to a range of reactions, including panic or denial.
Query2: What is the potential effect on lady labor’s mental state due to the traumatic event she witnessed? (oEffect)
Reply2: Lady might experience severe emotional distress, including anxiety and fear as a result of witnessing the violent and disturbing incident.
Query3: What might be the next logical step for Person_X to take in order to help the lady laborer? (xNeed)
Reply3: She might need to contact the authorities, such as the police or local authorities, to report the incident and ensure the lady laborer
receives proper medical attention and psychological support.

DK-CoT Rationales Query1: What are the relevant IPC sections applicable to the crime described?
Reply1: The crime of gang rapX falls under IPC Section 376D (gang rapX) and Section 34 (criminal conspiracy), which address group actions
with criminal intent.
Query2: What legal rights does the victim have under Indian law?
The victim has the right to free medical care under Section 357C of the Code of Criminal Procedure (CrPC) and protection of her identity under
Section 228A of IPC.
Query3: What helplines or resources can be contacted for immediate support?
Reply3: The victim can contact the One Stop Crisis Center (OSCC) or the National Health Helpline (104) for medical and counseling services.

CoT Ok, you should try talking to the lady and comforting her. Has she complained about this incident?
ProCoT Maybe you can tell the lady to avoid the site in the future. That might keep her safe.
O-Cue-CoT I strongly advise against taking any action that could harm the victim or promote illegal activities. You should report this to authorities so that

they can take appropriate action.
M-Cue-CoT I understand you situation. Please seek help and support from trusted organizations and professionals who can provide appropriate assistance and

care.
MENDER Agent: I’m truly sorry to hear about this distressing situation, and I admire your willingness to help. Could you please ensure the lady receives

immediate medical and psychological support through One Stop Crisis Center or National Health Helpline - 104. I would like to inform that this
is a crime under IPC Section 376D, please let me know if you would like to report the incident

Dialogue Context Victim: From one and a half months.
Agent: OMG! That’s quite a long time. Do you have any idea why is he doing this to you?
Victim: That bloody rascal says I am his life he will make me the queen of his world. I think he is a psycho.
Agent: Oh my God! That’s really disturbing. Don’t worry, we will help you. Can you tell us on what social media platform he has posted your
pic without your consent?
Victim: On Instagram. I got the screenshot that he posted my pic.

Ground-truth Response Agent: You did a great job. I would like to inform you that the person can be charged under IPC Section 354D and Section 67 of IT Act 2008
for stalking and breach of privacy, if found guilty. Would you like to take legal action or consult NGOs/counselors in this matter?

CK-CoT Rationales Query1: What is the potential effect on the victim’s social media presence after the accused posts their picture without consent? (oEffect)
Reply1: The victim’s picture may go viral on Instagram, attracting unwanted attention and potentially damaging their reputation.
Query2: How might the accused behavior be perceived by the victim, considering their statement about being a “psycho”? (xReact)
Reply2: The victim feels threatened, disturbed, and possibly fearful due to the accused obsessive behavior and explicit claims.
Query3: What does the victim want considering their situation? (xWant)
Reply3: The victim might logically want to take action to protect themselves, such as reporting the accused behavior to the social media platform
or seeking help from authorities.

DK-CoT Rationales Query1: What type of crime is being reported in the case of a photo shared without consent?
Reply1: This could be considered cyberstalking, harassment, or a violation of privacy under Indian laws.

MENDER Agent: I can see that you’re going through a really tough time. The fact that your picture is trending on Instagram without your consent is not
only disturbing but also a serious issue.

Table 6: Example of response generation using MENDER with different knowledge sources.
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[Task Overview]
Construct a commonsense knowledge-driven CoT rationale to support the generation of target
utterance (‘Target:’). The rationale should consist of a sequence of atmost five interconnected
query-reply pairs, each incorporating a commonsense relation selected from [xIntent, xNeed,
xWant, xReact, oEffect, and Causes]. These queries should provide key inferential steps
necessary for generating the target utterance but you should not include the target utterance
and also pretend you don’t know the target utterance. The last query-reply pair should infer
the likely target utterance without explicitly revealing it. If commonsense reasoning is not
essential for generating the target utterance, return ’None’ as the rationale.
[Few-shot demonstrations]
- Exemplar 1 -
Dialogue Context: <Dialogue Context>
Target: <Ground-truth Response>
Commonsense Knowledge-driven CoT Rationale: <Commonsense Knowledge-driven CoT Rationale>
- Exemplar 2 -
Dialogue Context: <Dialogue Context>
Target: <Ground-truth Response>
Commonsense Knowledge-driven CoT Rationale: <Commonsense Knowledge-driven CoT Rationale>
Input
Dialogue Context: <Dialogue Context>
Target: <Ground-truth Response>
Output
Commonsense Knowledge-driven CoT Rationale: {Commonsense Knowledge-driven CoT Rationale}

Table 7: Prompt template for generating commonsense knowledge-driven CoT. The variables enclosed in curly
brackets < · · · > represent placeholders that are filled when the template is instantiated. The content within {} is to
be generated.

[Task Overview]
Construct a domain knowledge-driven CoT rationale to support the generation of target utterance
(‘Target:’). The rationale should consist of a sequence of atmost five interconnected query-reply
pairs, each incorporating information from the extracted domain knowledge documents. These
queries should provide key inferential steps necessary for generating the target utterance but
you should not include the target utterance and also pretend you don’t know the target utterance.
The last query-reply pair should infer the likely target utterance without explicitly revealing
it. If domain-specific reasoning is not essential for generating the target utterance, return
’None’ as the rationale.
[Few-shot demonstrations]
- Exemplar 1 -
Dialogue Context: <Dialogue Context>
Target: <Ground-truth Response>
Domain Knowledge-driven CoT Rationale: <Domain Knowledge-driven CoT Rationale>
- Exemplar 2 -
Dialogue Context: <Dialogue Context>
Target: <Ground-truth Response>
Domain Knowledge-driven CoT Rationale: <Domain Knowledge-driven CoT Rationale>
Input
Dialogue Context: <Dialogue Context>
Target: <Ground-truth Response>
Output
Domain Knowledge-driven CoT Rationale: {Domain Knowledge-driven CoT Rationale}

Table 8: Prompt template for domain knowledge-driven CoT. The variables enclosed in curly brackets < · · · >
represent placeholders that are filled when the template is instantiated. The content within {} is to be generated.
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[Task Overview] Generate the most appropriate next response based on the dialogue context. While
the rationale may be referenced, it should be disregarded if it leads to an inaccurate response.
Ensure conciseness by avoiding excessive information, and maintain consistency with the style
of the preceding dialogue.
[Few-shot demonstrations]
- Exemplar 1 -
Dialogue Context: <Dialogue Context>
Commonsense Knowledge-driven CoT Rationale: <Commonsense Knowledge-driven CoT Rationale>
Domain Knowledge-driven CoT Rationale: <Domain Knowledge-driven CoT Rationale>
Response: <Ground-truth Response>
- Exemplar 2 -
Dialogue Context: <Dialogue Context>
Commonsense Knowledge-driven CoT Rationale: <Commonsense Knowledge-driven CoT Rationale>
Domain Knowledge-driven CoT Rationale: <Domain Knowledge-driven CoT Rationale>
Response: <Ground-truth Response>
Input
Dialogue Context: <Dialogue Context>
Commonsense Knowledge-driven CoT Rationale: <Commonsense Knowledge-driven CoT Rationale>
Domain Knowledge-driven CoT Rationale: <Domain Knowledge-driven CoT Rationale>
Output
Response: {Response}

Table 9: Prompt template for response generation. The variables enclosed in curly brackets < · · · > represent
placeholders that are filled when the template is instantiated. The content within {} is to be generated.
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Abstract

This paper proposes SkipCLM, a novel
method for improving multilingual machine
translation in Decoder Transformers. We
augment contrastive learning for cross-lingual
alignment with a trainable skip connection to
preserve information crucial for accurate tar-
get language generation. Experiments with
XGLM-564M on the Flores-101 benchmark
demonstrate improved performance, particu-
larly for en-de and en-zh direction transla-
tions, compared to direct sequence-to-sequence
training and existing contrastive learning meth-
ods. Code is available at: https://github.com/s-
nlp/skipclm.

1 Introduction

Recently, multilingual Decoder Transformer mod-
els (Vaswani et al., 2023), such as XGLM (Lin
et al., 2022), Gemini (Georgiev et al., 2024), Unba-
bel Tower (Rei et al., 2024), Claude 3 Sonnet (An-
thropic, 2024) became highly performant in the
machine translation tasks (Kocmi et al., 2024). To
better understand the mechanisms behind the emer-
gence of this strong performance, researchers be-
gan to explore the inner workings of these models,
which revealed a multi-stage evolution of internal
representations within these Decoder Transformer
models (Wendler et al., 2024; Li et al., 2024; Zhao
et al., 2024). Initially, transformer (Vaswani et al.,
2023) blocks project input token embeddings into
a shared subspace. Subsequently, layers enrich the
residual stream with different features, correspond-
ing to token prediction, contextual information, and
tasks represented in the prompts of the model (Il-
harco et al., 2023). Finally, these enriched repre-
sentations are mapped to output tokens (Wendler
et al., 2024). Additionally, logit lens analysis in-
dicates that tokens generated from layer activa-
tions in this second stage show a strong alignment
with the dominant language in the model’s training
data (Wendler et al., 2024; nostalgebraist, 2020).

Em
beddings
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er 
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Transform
er 
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er 
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…
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Figure 1: In SkipCLM we’ve added an InfoNCE to the
final loss function to facilitate better cross-lingual align-
ment and a skip connection, to pass through information,
which is potentially lost after training with InfoNCE.

However, this alignment is much less effective for
underrepresented languages, negatively impacting
prompt comprehension and task performance.

Existing techniques such as AFP (Li et al., 2024)
and Lens (Zhao et al., 2024) address multilingual
misalignment for low-resource languages by incor-
porating an auxiliary contrastive loss to improve
the alignment of initial layer representations with
the pivot language. While improving performance
on tasks like translation, adding contrastive loss
alone suffers from a potential loss of information
within the residual stream, which hurts the model’s
performance in such aspects as original language
preservation, context understanding, and instruc-
tion following. The authors of AFP added a sepa-
rate instruction tuning stage to mitigate this infor-
mation loss, but this greatly limited the applications
of such models due to them being instruction tuned
instead of utilized in a zero-shot manner.

This paper proposes SkipCLM, a novel method
of enhancing cross-lingual alignment of multilin-
gual embeddings in Decoder Transformer models.
We introduce a linear skip connection to transfer
hidden representations from the initial stages di-
rectly to the final transformer blocks. This, in con-
junction with contrastive learning, facilitates both
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improved alignment of input embeddings with the
pivot language and subsequent effective remapping
to the original language, mitigating the information
loss associated with only relying on contrastive
learning.

2 Background and Related Work

In Sec. 2.1, we discuss the “Do Llamas Work in En-
glish” paper, which presented the interpretational
framework, on which stems the idea of multilingual
alignment. In Sec. 2.2, we discuss InfoNCE loss,
which is essential for aligning the representations
of parallel texts in several languages. In Sec. 2.3
and Sec. 2.4, we discuss pioneer works, which
explored cross-lingual alignment using contrastive
learning approaches.

2.1 Do Llamas Work in English

Wendler et al. (2024) investigate the latent repre-
sentations within Decoder Transformer large lan-
guage models (LLMs), focusing on the role of a
potential internal "pivot" language. Their analysis
reveals a three-stage process within the Decoder
Transformer models. The early layers focus on
processing the input information, and if we apply
the logit lens nostalgebraist (2020) technique, we
can see that hidden representations do not have any
prevalence for a specific output language. In the
middle layers, English emerges as the dominant lan-
guage according to the language probability metric.
This means that the model employs an internal la-
tent representation closely aligned with the pivot
language, which, in the case of the Llama-2 model,
was English, being the most prevalent language in
the training dataset. In the final layers, the most
prevalent language becomes the target language.

The reliance on a pivot language during the in-
termediate stage can lead to information loss and
suboptimal alignment for languages distant from
the pivot. This misalignment reduces the model’s
ability to accurately capture nuances and context
specific to the source language, impacting the trans-
lation quality.

2.2 InfoNCE

Van den Oord et al. (2019) introduced InfoNCE,
a type of contrastive loss function used for self-
supervised learning. It is used to train models to
learn representations that are useful for predict-
ing future samples in unsupervised learning tasks.
Given a set of N random samples containing one

positive sample from p(xt+k|ct) and N − 1 nega-
tive samples from a proposal distribution p(xt+k),
the InfoNCE loss is defined as:

LN = −E

X

[
log

fk(xt+k, ct)∑
xj∈X fk(xj , ct)

]
,

Where fk(xt+k, ct) is a function that estimates
the density ratio between the conditional distribu-
tion and the proposal distribution. Optimizing this
loss results in fk(xt+k, ct) estimating the density
ratio p(xt+k|ct)

p(xt+k)
. Minimizing the InfoNCE loss max-

imizes a lower bound on the mutual information
between the context representation ct and the future
input xt+k.

We utilize InfoNCE loss for aligning the embed-
dings between the translated versions of the input
texts in the middle layers of our decoder LLM.

2.3 Lens
Zhao et al. (2024) propose Lens, a method for
enhancing the multilingual capabilities of LLMs.
Their approach leverages a decomposition of the
multilingual latent subspace into language-agnostic
and language-specific components via singular
value decomposition. By identifying the com-
ponents associated with each role, they employ
contrastive learning to align the language-agnostic
components across all languages. Simultaneously,
they guide the language-specific components to-
ward their respective language directions, increas-
ing multilingual alignment. Finally, an L2 penalty
is applied to maintain the integrity of the represen-
tations for a designated central language.

Experiments were conducted on English-centric
decoder-only transformer models, such as Llama-3-
8b (Grattafiori et al., 2024) and Phi-3.5-mini (Ab-
din et al., 2024), focusing on improving Chinese
language performance. The authors did not provide
evaluations for machine translation task, thus, we
could not directly compare to their approach.

2.4 Align After Pre-Train
Li et al. (2024) introduce Align After Pre-training

(AFP), a two-loss approach for cross-lingual adap-
tation of transformer models. The method lever-
ages contrastive learning to spatially align the em-
beddings of translations of input examples for De-
coder Transformer LLMs via InfoNCE loss. Addi-
tionally, authors incorporate cross-lingual instruc-
tion tuning, which explicitly instruct the models to
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generate responses in the target language. The final
loss function for the models is a weighted combi-
nation of the contrastive loss and a cross-entropy
loss. The models in the experiments are trained
on a curated subset of the Bactrian-X dataset (Li
et al., 2023), with machine translation performance
assessed using BLEU score (Papineni et al., 2002)
on the Flores-101 dev set (Goyal et al., 2021).

Since application of the contrastive loss to a cer-
tain layer of the model leads to some loss of infor-
mation, which is represented in the hidden activa-
tions of the models, this approach is suboptimal.
Our approach addresses this by adding a skip con-
nection to preserve critical information from layers,
that are earlier than the layer with contrastive loss,
ensuring it is available for final token generation.
In our paper, we directly compare our approach to
AFP, using the same training and development data,
the same metrics and the same model.

3 Methodology

3.1 Proposed Approach
This work proposes two key modifications to the
Decoder Transformer architecture and training pro-
cedure:

1. Incorporating InfoNCE Loss: Following the
approach of AFP (Lin et al., 2022), we inte-
grate an InfoNCE loss function to enhance
cross-lingual alignment between the pivot lan-
guage (English) and other selected languages.
This aims to improve the quality of multilin-
gual representations and increase the transla-
tion abilities of the final model.

2. Trainable Skip Connection: We introduce a
trainable skip connection, implemented as a
linear layer within the Decoder Transformer.
This connection is designed to selectively fil-
ter language-specific information using a lin-
ear layer with a ReLU activation function, pre-
serving only the information relevant for sub-
sequent translation to the target language. Ap-
plying the linear transformation with the acti-
vation function effectively creates a learnable
non-linear filter, which removes unwanted
noise from the residual connection from the
start to the end of the model. This mitigates in-
formation loss during processing, improving
the model’s ability to reconstruct vital infor-
mation otherwise lost in the standard architec-
ture when contrastive loss is applied. The skip

connection is placed immediately before the
layer to which the contrastive loss is applied,
ensuring critical information is preserved be-
fore potential loss within the contrastive layer.
The architecture of the final model is shown
in Fig. 1.

The skip connection is integrated back into the
residual stream of the Decoder Transformer by mul-
tiplying the transformed skip connection output by
a fraction of 1

3 and adding the result to the model’s
hidden states. Specifically, the hidden state after
layer α, denoted as Rα, is updated as follows:

Rα = Hα +
λ

3
· Skip(Hβ)

Where Hα is the layer, after which the skip con-
nection is integrated into the residual stream, Hβ

represents the hidden state at the source layer of
the skip connection β, Skip(·) denotes the linear
transformation applied by the skip connection, and
λ is a scaling coefficient.

During training, λ is gradually increased from 0
to 1 using a warm-up schedule; during inference,
λ is set to 1. The choice of layers α and β is ex-
plored in Sec. 4.3. The selection of the normalizing
constant 1

3 was done empirically, with higher coef-
ficients leading to model breakage.

3.2 Model Selection

For our experiments, we have used XGLM-
564M (Lin et al., 2022) multilingual autoregressive
LM. It was pretrained on a diverse corpus encom-
passing 30 languages, ranging from high-resource
languages such as English, German, French, Chi-
nese, and Russian to low-resource languages in-
cluding Turkish, Vietnamese, Arabic, and Swahili.

3.3 Data

3.3.1 Training Data
Our models were trained on the Bactrian-X dataset
(Li et al., 2023), a multilingual corpus comprising
3.4 million instruction-response pairs across 52 lan-
guages. This dataset leverages and expands upon
the alpaca-52k (Taori et al., 2023) and Dolly-15k
(Conover et al., 2023) datasets, with translation
to all 52 languages performed using the Google
Translate API. Responses in each language were
generated using the GPT-3.5 model (Ouyang et al.,
2022). To ensure comparability with prior work,
data preparation followed the procedures outlined
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in the AFP repository1. Separate models were
trained for Chinese, German, and Turkish, utiliz-
ing only the translated instruction-response pairs;
no instruction tuning was performed on synthetic
response data.

3.3.2 Test Data
Model evaluation was conducted using the devel-
opment set of the Flores-101 benchmark (Goyal
et al., 2021). We focused on the English-to-Chinese
(en-zh), English-to-German (en-de), and English-
to-Turkish (en-tr) translation directions. This se-
lection reflects the language distribution within the
training data of the XLMR-567M model, with Ger-
man representing a high-resource European lan-
guage, Chinese representing a high-resource non-
European language, and Turkish representing a low-
resource non-European language.

4 Experiments

4.1 Metrics

To evaluate our approach, we’ve used six
different metrics: BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007),
chrF (Popović, 2015), BERTScore (Zhang et al.,
2020), TER (Snover et al., 2006) and COMET (Rei
et al., 2020). The primary metric for our evaluation
we are using COMET, as it showed the best agree-
ment with human labeling. More information on
the metrics can be found in Appendix A.

4.2 Baselines

This work evaluates two baseline approaches:
XGLM-564M trained directly on the parallel trans-
lation corpus (denoted as Seq2Seq Training in the
Tab. 1); and a reproduction of the AFP method
where skip connections were frozen and the hyper-
parameter λ, controlling the summation of hidden
representations, was set to zero (denoted as Align
After Pretraining in the Table 1). Additionally,
we have included non-comprehensive evaluation
from (Lin et al., 2022) to illustrate comparison
between our and their approaches.

4.3 Hyperparameter Selection

Optimal values for the hyperparameters α and β
were determined via grid search, with α ∈ [1, 3]
and β ∈ [15, 22]. These ranges were selected based
on the AFP paper’s finding that the first layers are
optimal for applying the contrastive loss. During

1https://github.com/chongli17/cross-lingualalignment
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Figure 2: Grid search results for α and β hyperparame-
ters for German language.

grid search, the models were trained on a subset of
the German training data, comprising 3000 exam-
ples, and tested on a separate smaller development
set, consisting of 100 examples from Flores-101.
BLEU, METEOR, chrF, TER, F1 from BERTScore
and COMET metrics were collected, normalized
and averaged, to get one overall metric, which rep-
resents the final performance of the models. Since
a lower score in the TER metric signifies better per-
formance, we’ve inverted the values of this metric
to maintain consistency with other metrics. The
results of this grid search are presented in Fig. 2.
The configuration α = 1, β = 19 yielded the high-
est overall score and was thus selected for the final
training phase. Additionally, it is shown that the
β = 19 is a stable peak of the performance for all
three evaluated α values, making this the optimal
hyperparameter for training final models.

The λ hyperparameter for combining the output
of skip connection with embeddings is initialized as
0 and then warmed up for 300 steps towards 1. This
gradual warm-up prevents the model from being
overwhelmed by a sudden influx of new informa-
tion. A coefficient of 1e-2 was used to combine the
loss functions, as it was empirically found to be the
most stable across our experiments.

Model training was conducted on a single
NVIDIA Tesla A100 80GB GPU. The models were
trained for 1 epoch using a batch size of 16, a
weight decay of 0.1, a cosine learning rate sched-
uler, and a learning rate of 5e-5. For consistency,
the baseline models employed identical hyperpa-
rameter settings, with the contrastive loss applied
to layer 1 for the AFP baseline.
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Model BLEU ↑ METEOR ↑ chrF ↑ BERTScore F1 ↑ TER ↓ COMET ↑
En-De

SkipCLM (Ours) 15.12 0.41 45.12 0.81 87.41 0.65
Align After Pretraining 8.67 0.34 37.96 0.78 137.44 0.63

Seq2Seq Training 13.36 0.39 43.19 0.80 98.58 0.64
En-Tr

SkipCLM (Ours) 8.61 0.30 37.29 0.78 98.00 0.66
Align After Pretraining 8.70 0.30 38.51 0.78 100.37 0.67

Seq2Seq Training 9.78 0.31 38.82 0.79 90.65 0.68
En-Zh

AFP (Lin et al., 2022) - - - - - 0.53
SkipCLM (Ours) 5.80 0.13 7.86 0.77 258.56 0.57

Align After Pretraining 6.00 0.13 8.05 0.77 291.58 0.54
Seq2Seq Training 6.29 0.14 8.24 0.78 227.10 0.56

Table 1: Evaluation results on the FLORES-101 dataset.

5 Results and Discussion

We have trained three models for each language:
a model with applied skip connection and with
contrastive loss (our approach), a model with only
contrastive loss (AFP-like training) and a sequence-
to-sequence trained model. Tab. 1 shows our re-
sults.

For English-German translation direction, our
approach performs the strongest, achieving the
highest scores in all metrics, including a notably
lower TER compared to AFP baseline. Seq2Seq
Training trails closely behind in this language
pair. However, for English-Turkish, Seq2Seq Train-
ing shows best results, outperforming both our
approach and AFP in every metric, including a
higher BLEU score and lower TER. Our approach
is slightly behind AFP in chrF, though COMET
scores for all models are tightly grouped, suggest-
ing similar perceived translation quality.

English-Chinese results are mixed. Seq2Seq
Training leads in most metrics like BLEU and TER,
but our approach achieves the highest COMET
score, surpassing both Seq2Seq Training and AFP
baseline. AFP baseline consistently underperforms,
confirming our concerns, that simply adding a con-
trastive loss, as shown in AFP paper, leads to per-
formance degradation, compared to the standard
seq2seq training across all languages, underscor-
ing the limitations of that approach. Interestingly,
our implementation of the contrastive baseline sur-
passes the results reported in the AFP paper, likely
due to improved hyperparameter tuning. Examples
of translation being done by each model are shown
in Appx. B.

We hypothesize, that the performance discrep-

ancy between German, Chinese and Turkish can be
explained by optimizing α and β hyperparameters
for the German language, which shows the best re-
sults. Additionally, we believe that the performance
of our method can be increased when training is
being carried out on a multidirectional translation
dataset instead of a single direction translation.

6 Conclusion

We present a novel method for enhancing multilin-
gual machine translation in Decoder Transformers
by augmenting contrastive learning with a train-
able skip connection. This approach aimed to mit-
igate the information loss often associated with
contrastive learning methods while simultaneously
improving cross-lingual alignment with a pivot lan-
guage. Our experiments on the Flores-101 bench-
mark, using XGLM-564M, demonstrated the ef-
fectiveness of this strategy, showing consistently
better performance for German translation across
all evaluation metrics, while being competitive for
Chinese and slightly worse for Turkish languages.

7 Limitations and Future Work

This work has investigated the translational perfor-
mance of the proposed method. However, its effi-
cacy on tasks beyond sequence-to-sequence trans-
lation, such as multilingual understanding and gen-
eration, remains an open question. Future research
could explore the application of the proposed algo-
rithm to language model training. Furthermore, the
investigation of multilingual training paradigms,
with a combination of different training directions
and the potential for cross-lingual transfer learn-
ing represents a promising future work direction.
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Additionally, our approach is underperforming in
the Turkish language, making necessary additional
ablations and hyperparameter tuning for this lan-
guage.

Ethics Statement

This work focuses on improving machine trans-
lation performance for multilingual decoder mod-
els. We primarily use publicly available datasets
(Bactrian-X derived data, Flores-101) and pre-
trained models (XGLM-564M). We acknowledge
that language models can perpetuate societal bi-
ases present in their training data. The Bactrian-X
dataset uses machine translation and AI-generated
responses, which may introduce artifacts or reflect
biases from those systems. Our method shows
varying performance across language pairs, high-
lighting the need for careful evaluation, particularly
for lower-resource languages. We release our code
to encourage further research.
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• BERTScore (Zhang et al., 2020): Uses con-
textual embeddings from BERT to compare
semantic similarity between generated and ref-
erence text.

• TER (Snover et al., 2006): Measures the
number of edits (insertions, deletions, substi-
tutions and shifts) needed to turn the gener-
ated text into the reference text, normalized
by length. Lower scores indicate better trans-
lations, as fewer edits imply higher similarity.

• COMET (Rei et al., 2020): A neural-based
metric that evaluates translations by compar-
ing their semantic meaning to reference trans-
lations and source inputs. It leverages pre-
trained LMs for a more nuanced understand-
ing of quality.
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B Translation Examples

Examples of the translations can be seen in the Table 2.

Model Language
Pair

English Translation

SkipCLM (Ours)

de
English: "We now have 4-month-
old mice that are non-diabetic
that used to be diabetic," he
added.

Übersetzen: "Wir haben jetzt
4-Monat-Lebewesen, die keine
Diabetes-Pille sind, die früher
diabetisch waren, und die jetzt
nicht gesund sind."

English: Dr. Ehud Ur, professor
of medicine at Dalhousie Univer-
sity in Halifax, Nova Scotia and
chair of the clinical and scien-
tific division of the Canadian Dia-
betes Association cautioned that
the research is still in its early
days.

Übersetzen: Dr. Ehud Ur, Profes-
sor der Medizin an der Dalhousie
University in Halifax, Nova Sco-
tia und Vorsitzender der klin-
ischen und wissenschaftlichen
Division der amerikanischen
Diabetes-Gemeinschaft warnte
vor, dass die Forschung noch in
ihrer frühen Phase ist.

English: Danius said, "Right now
we are doing nothing. I have
called and sent emails to his clos-
est collaborator and received very
friendly replies. For now, that is
certainly enough."

Übersetzen: Danius hat gesagt:
"Hier ist gerade nichts. Ich habe
mich an seinen nächstgelegenen
Ansprechpartner gemeldet und
sehr freundlichen Antworten er-
halten. Bis jetzt ist das wirklich
genug."

zh
English: "We now have 4-month-
old mice that are non-diabetic
that used to be diabetic," he
added.

翻译: “我们现在拥有4个月的
性小鼠,他们以前都是糖尿病
患者,现在都不是,”他补充。

English: USA Gymnastics and
the USOC have the same goal —
making the sport of gymnastics,
and others, as safe as possible for
athletes to follow their dreams in
a safe, positive and empowered
environment.

翻译: 美国柔术和美国奥运会
都一样目标:让柔术运动成为
运动,以及其他运动,安全、积
极和充满力量。

English: During the 1976 selec-
tions he advised Carter on for-
eign policy, then served as Na-
tional Security Advisor (NSA)
from 1977 to 1981, succeeding
Henry Kissinger.

翻译: 1977 年选举期间,他建
议卡特对外交政策,然后担任
国家安全顾问(NSA)直到1981
年。

tr
Dr. Ehud Ur, professor of
medicine at Dalhousie University
in Halifax, Nova Scotia and chair
of the clinical and scientific di-
vision of the Canadian Diabetes
Association cautioned that the re-
search is still in its early days.

Dr. Ehud Ur, doktor,
Kanada’daki Dalhousie Üniver-
sitesi’ndeki profesörlüğüyle ilgili
ve Kanada Diyabet Derneği’nin
klinik ve bilimsel bölümündeki
çalışmaların son aşamalarında
olduğunu kınandı.

Continued on next page
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Model Language
Pair

English Translation

English: On Monday, Sara Da-
nius, permanent secretary of the
Nobel Committee for Literature
at the Swedish Academy, pub-
licly announced during a radio
program on Sveriges Radio in
Sweden the committee, unable to
reach Bob Dylan directly about
winning the 2016 Nobel Prize in
Literature, had abandoned its ef-
forts to reach him.

Swedish Akademi’de Nobel Ede-
biyat Ödülü’nü kazanan Sara Da-
nius, Stockholm’deki Swedish
Akademi’nin, Stockholm’de Bob
Dylan’ın doğrudan ulaşamadığı
2016 Nobel Edebiyat Ödülü’nü
kazanmak için çabaladığı için
açıkladığı radyo programında,
Danius’un bu konudaki çalış-
maları sürdüremediği bildirildi.

Danius said, "Right now we are
doing nothing. I have called and
sent emails to his closest collab-
orator and received very friendly
replies. For now, that is certainly
enough."

Danius, "Bugün hiçbir şey yap-
madık. Arkadaşımla konuştuk ve
çok dostça yanıt aldık. Bu, kesin-
likle yeterli."

AFP

de
English: For example visiting
castles in the Loire Valley, the
Rhine valley or taking a cruise to
interesting cites on the Danube
or boating along the Erie Canal.

Übersetzen: In Bezug auf die
Burgen im Loire-Tal, den Rhein-
Tal oder die Fahrt mit dem Bin-
nenschiff entlang des Danubi-
ums.

English: Many of the tradi-
tions surrounding the holiday
have been adopted also by non-
believers in Christian countries
and non-Christians around the
world.

English: Viele der Traditionen
rund um das Fest der Oster-
feiertage wurden auch von Nicht-
Bürgern in christlichen Ländern
und Nicht-Christen in den Welt-
gegenden adoptiert.

English: Japanese work culture is
more hierarchical and formal that
what Westerners may be used to.

English: Japanese work culture
is more hierarchical and formal
than what Westerners might use
to.

zh
English: Due to the long dis-
tance from the continent mam-
mals were unable to make the
journey making the giant tortoise
the primary grazing animal in the
Galapagos.

翻译: 由于太平洋乳动物无法
前往太平洋大陆,导致了乳动
物的旅程难以进行。

English: If you visit the Arctic or
Antarctic areas in the winter you
will experience the polar night,
which means that the sun doesn’t
rise above the horizon.

翻译: 如果您在冬天访问北极
或南极地区,您将感受到北极
夜,意味着太阳没有从天空中
升起。

English: This offers a good op-
portunity to see the Aurora bore-
alis, as the sky will be dark more
or less around the clock.

翻译: 这将是一个很好的机会
来观察日食星,当天天天空会
更暗一些。

Continued on next page
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Model Language
Pair

English Translation

tr
English: Christmas is one of the
most important holidays of Chris-
tianity, and is celebrated as the
birthday of Jesus.

İngilizce: Noel, Kilise’nin en
önemli dini bayramlarından
biridir ve İsa’nın doğum günü
olarak kutlanır.

English: There’s a tradition to
pass the Easter night awake at
some exposed point to see the
sunrise.

İngilizce: Bazı açık havada gün
batımını görmek için bazı yer-
lerde uyku uykusuna ulaşmak
için bir gelenek var.

English: There are of course
Christian theological explana-
tions for this tradition, but it may
well be a pre-Christian Spring
and Fertility ritual.

Bu gelenek için de, o da bir Pre-
Cristian Bahar ve Gebelik ritüel
olabilir.

Seq2seq

de
English: Like some other experts,
he is skeptical about whether di-
abetes can be cured, noting that
these findings have no relevance
to people who already have Type
1 diabetes.

Übersetzen: Als anderer Ex-
perten ist er skeptisch darüber,
ob Diabetes geheilt werden kann,
und bezieht sich dabei auf die
Tatsache, dass diese Ergebnisse
keine Relevanz haben, die Men-
schen mit Typ-1-Diabetes bereits
haben.

English: On Monday, Sara Da-
nius, permanent secretary of the
Nobel Committee for Literature
at the Swedish Academy, pub-
licly announced during a radio
program on Sveriges Radio in
Sweden the committee, unable to
reach Bob Dylan directly about
winning the 2016 Nobel Prize in
Literature, had abandoned its ef-
forts to reach him.

English: On Monday, Sara Da-
nius, Permanent Secretary of the
Nobel Committee for Literature
at the Swedish Academy, pub-
licly announced during a radio
program on Sveriges Radio in
Sweden the committee, unable to
reach Bob Dylan directly about
winning the 2016 Nobel Prize in
Literature, had abandoned its ef-
forts to reach him.

English: He built a WiFi door
bell, he said.

Übersetzung: Er hat einen WiFi-
Schalter gebaut, sagte er.

zh
English: Dr. Ehud Ur, professor
of medicine at Dalhousie Univer-
sity in Halifax, Nova Scotia and
chair of the clinical and scien-
tific division of the Canadian Dia-
betes Association cautioned that
the research is still in its early
days.

翻译: 在丹佛大学亚尔福大
学的艾滋病学教授埃尔·伊·奥
利、教授、医学分院的主管
和科学分管的加拿大糖尿病
协会提醒说,研究仍在早期阶
段。

English: Like some other experts,
he is skeptical about whether di-
abetes can be cured, noting that
these findings have no relevance
to people who already have Type
1 diabetes.

翻译: 他对糖尿病是否可以治
愈持怀疑态度,并指出这些发
现没有相关性,这些发现没有
与已有1型糖尿病患者相关。

Continued on next page
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Model Language
Pair

English Translation

English: On Monday, Sara Da-
nius, permanent secretary of the
Nobel Committee for Literature
at the Swedish Academy, pub-
licly announced during a radio
program on Sveriges Radio in
Sweden the committee, unable to
reach Bob Dylan directly about
winning the 2016 Nobel Prize in
Literature, had abandoned its ef-
forts to reach him.

翻译:在伦敦周日下午,萨拉·迪
亚斯、瑞典斯坦福大学教授
的永久秘书,在瑞典电视台在
瑞典电视台播出的新闻节目
中公开宣布,她无法直接向杰
克逊·赖特直接联系,因为她无
法直接向杰克逊·赖特直接联
系。

tr
English: "We now have 4-month-
old mice that are non-diabetic
that used to be diabetic," he
added.

"Diyetisyen tarafından hipertan-
siyonlu olan 4 aylık kedilerimiz
artık diyabetli değiller," ekledi.

English: Like some other experts,
he is skeptical about whether di-
abetes can be cured, noting that
these findings have no relevance
to people who already have Type
1 diabetes.

Diğer uzmanlar gibi diyabetin
nasıl tedavi edilebileceğine dair
şüphelidir, bu bulguların in-
sanlarda Type 1 diyabet olup
olmadığının hiçbir ilgisi ol-
madığını belirterek.

English: Previously, Ring’s CEO,
Jamie Siminoff, remarked the
company started when his door-
bell wasn’t audible from his shop
in his garage.

"Ring CEO’su Jamie Simi-
noff, mağazasının kapısının
sessiz olduğu sırada, şirketin
başladığını söyledi."

Table 2: Selected translation examples by all models.
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Abstract

Large language models (LLMs) have gained
popularity in recent years for their utility in var-
ious applications. However, they are sensitive
to non-semantic changes in prompt formats,
where small changes in the prompt format can
lead to significant performance fluctuations.
In the literature, this problem is commonly
referred to as prompt brittleness. Previous
research on prompt engineering has focused
mainly on developing techniques for identi-
fying the optimal prompt for specific tasks.
Some studies have also explored the issue of
prompt brittleness and proposed methods to
quantify performance variations; however, no
simple solution has been found to address this
challenge. We propose Mixture of Formats
(MOF), a simple and efficient technique for
addressing prompt brittleness in LLMs by di-
versifying the styles used in the prompt few-
shot examples. MOF was inspired by com-
puter vision techniques that utilize diverse style
datasets to prevent models from associating
specific styles with the target variable. Empir-
ical results show that our proposed technique
reduces style-induced prompt brittleness in var-
ious LLMs while also enhancing overall perfor-
mance across prompt variations and different
datasets.

1 Introduction

Large language models (LLMs) are useful for
many applications and tasks i.e., content gener-
ation, translation, text analysis, etc. One of the
popular techniques for adapting pre-trained LLMs
to specific tasks that has emerged in recent years is
prompt engineering (Liu et al., 2023; Tonmoy et al.,
2024; Chen et al., 2023). Prompt engineering in-
volves carefully crafting task-specific instructions
and a few input-output demonstrations (prompts)
to guide LLMs without changing their parameters
(Sahoo et al., 2024). The popularity of prompt engi-
neering can be attributed to the fact that it does not

require labeled data and only needs a few demon-
strations in prompts containing few-shot examples
(Liu et al., 2023). Prompting is also generally com-
putationally cheaper than supervised fine-tuning
techniques since the model parameters are not mod-
ified (Sahoo et al., 2024).

Existing prompting techniques include zero-shot
prompting (Radford et al., 2019), few-shot prompt-
ing (Brown et al., 2020), chain-of-thought (CoT)
prompting (Wei et al., 2022), and automatic chain-
of-thought (Auto-CoT) prompting (Zhang et al.,
2023). Most research on prompting techniques has
focused on identifying or designing good prompts
for specific tasks (Zhou et al., 2023b; Wan et al.,
2023). However, a key problem often overlooked
by these techniques is the sensitivity of LLMs to
meaning-preserving changes in prompts. Exam-
ples of such changes include adding extra spaces,
replacing two colons with one, changing the order
of few-shot examples, or varying the choice of few-
shot examples (He et al., 2024; Sclar et al., 2024;
Lu et al., 2022; Wan et al., 2023). This problem is
sometimes referred to as prompt brittleness (Zhou
et al., 2023a). Prompt brittleness contributes to
LLMs being unreliable and prevents their adoption
in high-risk domains such as healthcare.

In this work, we focus on style-induced prompt
brittleness as illustrated in Figure 1, and propose
Mixture of Formats (MOF) to address it. MOF
is a simple and computationally efficient prompt-
ing technique where each few-shot example in the
prompt is presented in a distinct style. Furthermore,
the model is instructed to rewrite each example us-
ing a different style, as shown in Figure 2. MOF
was inspired by ideas from computer vision that
involve learning from datasets with diverse styles
to prevent models from associating styles with the
target variable (Arjovsky et al., 2019; Kamath et al.,
2021; Yin et al., 2021; Wald et al., 2021; Ngweta
et al., 2023; Li et al., 2021). We evaluate the effec-
tiveness of MOF prompting using datasets from var-
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ious tasks within SuperNaturalInstructions (Wang
et al., 2022), comparing its performance against
traditional prompts. Our experiments focus on few-
shot prompting, where a traditional prompt refers
to a regular few-shot prompt, and a MOF prompt
is a few-shot prompt that has been converted into
the MOF style, as demonstrated in Figure 2.

Figure 1: A demonstration of how small changes to the
prompt format style can sometimes lead to incorrect
predictions in LLMs.

2 Related work

Traditional prompt engineering techniques.
Several prompt engineering techniques have been
proposed in recent years. Zero-shot prompting is a
technique in which a prompt contains a description
of the task and no training data is required (Radford
et al., 2019). Unlike zero-shot prompting, few-shot
prompting adds a few input-output demonstrations
to the prompt to further help the model understand
the task (Brown et al., 2020). Both zero-shot and
few-shot prompting techniques enable the applica-
tion of LLMs on new tasks without extensive train-
ing (Sahoo et al., 2024). For reasoning and logic
tasks, prompting techniques that have been pro-
posed include chain-of-thought (CoT) (Wei et al.,
2022) and automatic chain-of-thought (Auto-CoT)
(Zhang et al., 2023). CoT is a prompting technique
that encourages LLMs to do step-by-step reasoning
(Wei et al., 2022). Since manually creating CoT
examples is time-consuming and not easily scal-
able, Zhang et al. (2023) proposed Auto-CoT to
automatically guide LLMs to generate reasoning
steps using a "Let’s think step by step" statement
in the prompt.

These traditional prompting techniques can be
adapted to the MOF format by applying differ-

ent formatting styles to each prompt example, as
demonstrated in Figure 2. In this paper, we focus
on the application of MOF to few-shot prompting.

Optimizing for the best prompt. This line of
work focuses on optimizing and identifying the
most effective prompt for a given task. Zhou et al.
(2023b) propose the automatic prompt engineer
(APE), an approach that enables the generation
and selection of prompt instructions automatically.
APE involves analyzing input queries, generating
candidate prompt instructions, and then using rein-
forcement learning to select the best prompt (Zhou
et al., 2023b). Similarly, Wan et al. (2023) pro-
pose a method where an LLM generates zero-shot
outputs for given inputs, followed by selecting
high-quality few-shot examples to construct an im-
proved prompt, focusing on consistency, diversity,
and repetition. Since automatic prompt optimiza-
tion (APO) methods focus on optimizing instruc-
tion or optimizing few-shot examples, Wan et al.
(2024) propose a technique to optimize for both,
and compare its performance with the performance
of techniques that only optimize instructions or ex-
amples. Yang et al. (2024) present Optimization
by PROmpting (OPRO), a method that leverages
LLMs as optimizers by describing the optimiza-
tion task in natural language (Yang et al., 2024).
Pryzant et al. (2023) propose Prompt Optimiza-
tion with Textual Gradients (ProTeGi), which em-
ploys text gradients guided by beam search and
bandit selection techniques for automatic prompt
optimization (Pryzant et al., 2023). Additionally,
Khattab et al. (2024) introduce DSPy, a framework
that replaces hard-coded prompt templates with a
systematic approach for building language model
pipelines. Other methods for identifying optimal
prompts include (Feffer et al., 2024; Sorensen et al.,
2022; Yin et al., 2023).

Unlike existing methods in this area that repeat-
edly search for optimal prompts per task and model,
our goal is to reduce style-induced prompt brittle-
ness using an efficient and straightforward recipe
illustrated in Figure 2.

Quantifying prompt brittleness in LLMs. Sev-
eral works have shown that LLMs are sensitive to
changes in prompt formats (Sclar et al., 2024; He
et al., 2024; Voronov et al., 2024) and to the or-
der of few-shot examples in the prompt (Lu et al.,
2022). Sclar et al. (2024) propose FormatSpread, a
method to efficiently measure performance varia-
tions in LLMs caused by prompt format changes,
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Figure 2: An illustration of how to convert a traditional prompt into a MOF prompt. This example serves as a
simple demonstration of the conversion process. In the actual experiments, datasets use various formats such as
Passage:: {} , Answer:: {} for dataset task280, SYSTEM REFERENCE : {}. ORIGINAL REFERENCE : {}.
ANSWER : {} for dataset task1186, and Tweet:{} , Label:{} , Answer:{} for dataset task905. These formats
are generated using FormatSpread (Sclar et al., 2024), as described in Section 3.1. The datasets used are described
in Table 3.

by computing the performance difference (spread)
between the best-performing format and the worst-
performing format. Due to the sensitivity of LLMs
to prompt format variations, Polo et al. (2024) pro-
pose PromptEval, an efficient method for evaluat-
ing LLMs on multiple prompts instead of a single
prompt. Similarly, Mizrahi et al. (2024) propose
metrics for multi-prompt evaluation of LLMs.

While these approaches are valuable tools
for quantifying prompt brittleness, our proposed
method focuses on mitigating it, particularly the
brittleness arising from style variations in prompt
formats.

Prompt ensembles. Arora et al. (2022) introduce
Ask Me Anything (AMA), a prompting approach
that transforms inputs into a question-answering
format to encourage open-ended responses. AMA
generates multiple imperfect prompts and com-
bines the responses using a weak supervision strat-
egy to produce the final output (Arora et al., 2022).
Similarly, Voronov et al. (2024) propose Template
Ensembles, an approach that aggregates model pre-
dictions across multiple prompt templates. How-
ever, both methods are computationally expensive,
as they require aggregating predictions from mul-
tiple prompts. Furthermore, unlike our proposed
method, they do not specifically address prompt
brittleness caused by style variations in prompt for-
mats.

3 Mixture of Formats

Style-induced prompt brittleness in LLMs is simi-
lar to problems observed in computer vision, where
small changes to an image’s style (eg. color or

background) can affect the model’s ability to make
accurate predictions (Nagarajan et al., 2020). In
computer vision, various approaches have been de-
veloped to address this issue, often involving learn-
ing from diverse datasets (Arjovsky et al., 2019;
Ngweta et al., 2023; Kamath et al., 2021; Yin et al.,
2021; Wald et al., 2021; Li et al., 2021). The un-
derlying idea is that exposure to diverse data points
helps the model disassociate styles from the tar-
get variable. Drawing inspiration from these tech-
niques, we propose Mixture of Formats (MOF), a
novel prompting strategy that deviates from tradi-
tional ways of crafting prompts by employing a
distinct style format for each few-shot example in
the prompt. To further reinforce model understand-
ing, we have the model rewrite the question and
answer of each example using a different format
style, as illustrated in Figure 2. The effectiveness
of this approach is evaluated in the subsequent sub-
sections.

3.1 Experiments

Let X denote input queries for a task, and Y de-
note the target variable. Given N observations of
inputs X and their corresponding targets Y as data
D = {Xn, Yn}Nn=1, we automatically build a tradi-
tional prompt and its MOF prompt version, each
containing 5 few-shot examples, and use them for
inference with an LLM. The traditional prompt is
created using FormatSpread (Sclar et al., 2024),
while the MOF prompt is generated by modifying
FormatSpread to incorporate diverse formats within
the few-shot examples, as illustrated in Figure 2.

Using FormatSpread, we create 10 traditional
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(a) llama-3-70b-instruct (b) llama-2-13b-chat

(c) llama-2-13b (d) falcon-11B

Figure 3: Comparing the performance spread of traditional prompts and MOF prompts. Spread is a metric for
quantifying style-induced prompt brittleness and it is obtained by taking the difference between the best performing
prompt (maximum accuracy) and the worst performing prompt (minimum accuracy). MOF prompts perform
comparably or outperform traditional prompts in most datasets and in some datasets, traditional prompts have better
performance.

prompt variations and 10 MOF prompt variations.
From the 10 prompt variations, for both traditional
and MOF prompts, we compute performance accu-
racies for each prompt format across various tasks.
The goal is to compare the style-induced prompt
brittleness between traditional prompts and MOF
prompts. As in Sclar et al. (2024), we measure
brittleness by calculating the performance spread,
defined as the accuracy difference between the best-
performing and worst-performing prompt formats.
The evaluation pipelines for traditional and MOF
prompts are summarized in Algorithm 1 and Algo-
rithm 2, respectively.

Datasets We perform experiments on datasets
covering various tasks from SuperNaturalInstruc-
tions (Mishra et al., 2022; Wang et al., 2022). Due
to limited computational resources, we randomly
selected 16 datasets and for each dataset we use
1000 samples and a batch size of 100. The datasets
used are described in Table 3.

Baselines, metrics, and LLMs used In our ex-
periments, we use traditional few-shot prompts as
our baselines, where we compare the performance

of LLMs when using traditional prompts versus
MOF prompts. A primary focus of this work is
to determine whether MOF prompting can min-
imize performance variations (spread) in LLMs
when prompt format styles change. The perfor-
mance spread is obtained by taking the difference
between the highest performing prompt (denoted
as "Max Accuracy" in the results tables) and the
minimum performing prompt (denoted as "Min Ac-
curacy"). The spread value ranges from 0.0 to 1.0,
where values closer to 0.0 indicate that the LLM
is more robust and less sensitive to style changes,
while values closer to 1.0 suggest that the LLM
is highly sensitive to these changes. Additionally,
for both traditional and MOF prompts, we com-
pute the average accuracy across all 10 prompt
variations to assess the overall performance of
MOF prompts relative to traditional prompts. We
use four LLMs in our experiments: falcon-11B,
Llama-2-13b-hf, Llama-2-13b-chat-hf, and
llama-3-70b-instruct.

We emphasize that while MOF prompting can
be applied and compared with other existing tra-
ditional prompting techniques, such as automatic
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Table 1: Best performing format (Max Accuracy) and worst performing format (Min Accuracy) results for both
traditional prompts and MOF prompts for llama-3-70b-instruct. MOF prompts improve the Min Accuracy and
the Max Accuracy over traditional prompts in most cases.

Task Traditional Prompts MOF Prompts
Min Accuracy Max Accuracy Min Accuracy Max Accuracy

task280 0.811 0.860 0.880 0.900
task317 0.139 0.229 0.712 0.795
task1347 0.248 0.524 0.464 0.535
task1612 0.624 0.839 0.787 0.851
task1502 0.443 0.666 0.479 0.639
task161 0.472 0.507 0.475 0.512

chain-of-thought (Auto-CoT) (Zhang et al., 2023)
and the automatic prompt engineer (APE) (Zhou
et al., 2023b), this paper focuses on applying MOF
prompting to regular few-shot prompting and com-
paring their performances, due to limited computa-
tional resources.

Generating responses for evaluation To gener-
ate a response for a given question, a traditional or
MOF prompt is combined with the question and
then passed to an LLM to generate the response.
The generated response is then compared to the
ground-truth answer to calculate the model’s accu-
racy.

3.2 Results

We perform experiments to evaluate whether MOF
prompts reduce prompt brittleness in LLMs by
comparing their spread with traditional prompts.
We also assess improvements by analyzing the best
(Max Accuracy) and worst (Min Accuracy) per-
forming prompts. Finally, we evaluate overall per-
formance by comparing the mean accuracies across
all 10 prompt variations for both prompt types.

Minimizing prompt brittleness Figure 3
shows that MOF prompting effectively reduces
style-induced prompt brittleness across several
datasets and LLMs, with a notable 46% reduc-
tion in task280 using Llama-2-13b. While
MOF prompts generally perform as well or
better than traditional prompts, exceptions
occur in task190 (llama-3-70b-instruct),
task1612 (llama-2-13b-chat), and task320
(falcon-11B), where traditional prompts perform
better. Investigating why MOF fails on these
datasets is an important future direction.

Best and worst performing prompts Results
for the best-performing prompt (Max Accuracy)
and worst-performing prompt (Min Accuracy) for
both traditional and MOF prompting are reported
in Table 1. We observe that MOF prompting not
only reduces spread but also improves both mini-
mum and maximum accuracies. Average accuracy
results across all 10 prompt variations for both tradi-
tional and MOF prompts are discussed in Appendix
A.

4 Conclusion and future work

Addressing prompt brittleness remains a challenge,
particularly when caused by changes in prompt for-
mat styles. In this work, we introduce a simple
and efficient prompting technique, MOF, and eval-
uate its effectiveness in addressing style-induced
prompt brittleness. The preliminary results are
promising, with significant improvements over tra-
ditional prompting in many datasets, as shown in
Figure 3.

Future directions include integrating MOF with
techniques like chain-of-thought (CoT) and auto-
matic prompt engineer (APE), comparing its per-
formance with methods that aggregate results from
multiple prompts such as AMA (Arora et al., 2022)
and Template Ensembles (Voronov et al., 2024),
and conducting experiments with larger LLMs like
GPT-4, Claude 3.5 Sonnet, Falcon 40B, and Llama
3.1 405B. Additionally, analyzing MOF’s failures
on certain datasets is a crucial area for further ex-
ploration.

We hope this work will inspire further research
into addressing prompt brittleness in LLMs, and
the code for this project is publicly available on
GitHub.1

1Code: github.com/lilianngweta/mof.
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A Appendix

Average accuracy across all 10 prompt variations Up to this point, we have examined the performance
in minimizing prompt brittleness, as well as the performance of the best and worst performing prompts.
In this section, we focus on the performance of traditional and MOF prompts across all 10 prompt
variations for each. The average accuracy across these 10 prompt variations for both traditional and MOF
prompts is reported in Table 2. For all LLMs, we find that MOF prompts perform nearly as well as tra-
ditional prompts, with MOF prompts generally leading to significant overall mean accuracy improvements.

Algorithm 1 Traditional prompts evaluation pipeline

1: Input: Data D
2: Create 10 variations of traditional prompts using FormatSpread (Sclar et al., 2024).
3: Use the created traditional prompt variations to generate responses.
4: Evaluate each of the 10 traditional prompts and save results.
5: Compute the average accuracy across all 10 traditional prompt variations.
6: Identify the best performing prompt, the worst performing prompt, and compute the spread.
7: Output: Return accuracies for the best performing prompt (max accuracy), worst performing prompt

(min accuracy), the spread, and the average accuracy across all 10 traditional prompt variations.

Algorithm 2 MOF prompts evaluation pipeline

1: Input: Data D
2: Create 10 variations of MOF prompts using a modified FormatSpread (Sclar et al., 2024) that

incorporates diverse styles in the few-shot examples as illustrated in Figure 2.
3: Use the created MOF prompt variations to generate responses.
4: Evaluate each of the 10 MOF prompts and save results.
5: Compute the average accuracy across all 10 MOF prompt variations.
6: Identify the best performing prompt, worst performing prompt, and compute the spread.
7: Output: Return accuracies for the best performing prompt (max accuracy), worst performing prompt

(min accuracy), the spread, and the average accuracy across all 10 MOF prompt variations.
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Table 2: Average accuracy results across 10 prompt variations for traditional prompts (denoted as Trad Mean Acc)
and MOF prompts (denoted as MOF Mean Acc). For all LLMs, MOF prompts perform comparable and in most
cases have a higher overall average accuracy than traditional prompts.

(a) Llama-2-13b-chat

Task Trad Mean Acc MOF Mean Acc

task280 0.853 0.841
task317 0.578 0.749
task1612 0.471 0.490
task1502 0.596 0.579
task161 0.199 0.278

(b) Llama-2-13b

Task Trad Mean Acc MOF Mean Acc

task280 0.635 0.842
task317 0.564 0.725
task1612 0.564 0.505
task1502 0.489 0.485
task161 0.245 0.371

(c) falcon-11B

task Trad Mean acc MOF Mean acc

task280 0.727 0.802
task317 0.501 0.672
task1612 0.638 0.553
task1502 0.305 0.493
task161 0.390 0.387

(d) llama-3-70b-instruct

task Trad Mean acc MOF Mean acc

task280 0.836 0.890
task317 0.154 0.770
task1612 0.800 0.821
task1502 0.600 0.593
task161 0.496 0.492

Table 3: Datasets from SuperNaturalInstructions (Mishra et al., 2022; Wang et al., 2022) that we used in our
experiments.

Dataset ID Dataset Description

task280 A text categorization dataset that involves classifying sentences into four types of stereotypes: gender, profession,
race, and religion.

task317 A stereotype detection dataset that involves classifying sentences into various types of stereotypes.

task1347 A text matching dataset that involves classifying the semantic similarity of two sentences on a scale of 0 - 5.

task1612 A textual entailment dataset derived from the SICK dataset, that involves accurately classifying labels to show the
relationship between two sentences.

task1502 A toxic language detection dataset that involves classifying the type of tweet in HateXplain.

task161 A dataset focused on counting the words in a sentence that contain a specified letter.

task158 A dataset that involves counting the number of times a word occurs in a sentence.

task1186 A text quality evaluation dataset that involves evaluating the naturalness of system generated reference.

task190 A textual entailment dataset that involves choosing whether two given sentences agree, disagree, or neither with each other.

task1284 A text quality evaluation dataset that involves evaluating the informativeness of system generated reference.

task607 A toxic language detection that involves determining whether or not the post is intentionally offensive.

task163 A dataset that involves counting the number of words in the sentence that end with a specified letter.

task905 A toxic language detection dataset that involves determining whether the given category of a tweet is true or false.

task320 A stereotype detection dataset that involves determining whether a given target pertaining to race in two sentences is
a stereotype.

task316 A stereotype detection dataset that involves classifying whether a sentence is stereotype or anti-stereotype.

task162 A dataset that involves counting the words in a sentence that begin with a specified letter.
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Abstract
The proportion of responses to a question and
its options, known as the response distribu-
tion, enables detailed analysis of human so-
ciety. Recent studies highlight the use of Large
Language Models (LLMs) for predicting re-
sponse distributions as a cost-effective survey
method. However, the reliability of these pre-
dictions remains unclear. LLMs often gener-
ate answers by blindly following instructions
rather than applying rational reasoning based
on pretraining-acquired knowledge. This study
investigates whether LLMs can rationally esti-
mate distributions when presented with expla-
nations of “artificially generated distributions”
that are against commonsense. Specifically, we
assess whether LLMs recognize counterintu-
itive explanations and adjust their predictions or
simply follow these inconsistent explanations.
Results indicate that smaller or less human-
optimized LLMs tend to follow explanations
uncritically, while larger or more optimized
models are better at resisting counterintuitive
explanations by leveraging their pretraining-
acquired knowledge. These findings shed light
on factors influencing distribution prediction
performance in LLMs and are crucial for de-
veloping reliable distribution predictions using
language models.

1 Introduction

The proportion of responses to a question and its
options, known as the response distribution, pro-
vides valuable insights into human society beyond
individual responses. Response distributions allow
detailed analysis of relative differences between op-
tions (see Figure 1). Traditionally, they have been
collected through labor-intensive and costly meth-
ods like surveys and interviews. Recent advances
in Large Language Models (LLMs), however, offer
new approaches for estimating response tendencies
from textual data.

LLMs have demonstrated the ability to partially
replicate human collective tendencies by analyzing

What Comes to Mind 
for Holidays?

Regarding the 
President’s Policy?

Do You Want This 
Product?

Agree Disagree Drama Movie Anime

Want Neutral

Figure 1: Example of response distribution. Analyzing
both the ratios of each choice and the number of minor-
ity responses yields valuable insights.

output probabilities or aggregating multiple out-
puts (Santurkar et al., 2023; Paruchuri et al., 2024;
Hayashi et al., 2025). Providing appropriate input
information has further improved the accuracy of
these predictions (Durmus et al., 2024; Santurkar
et al., 2023; Meister et al., 2024). These methods
show promise as cost-effective and scalable alter-
natives to traditional techniques.

However, LLMs are unlikely to acquire sys-
tematic ratio-related knowledge during pretraining,
e.g., the expected proportions of responses to a
question such as “What food do you associate with
Christmas?”1. This raises concerns about whether
their ratio predictions reflect meaningful under-
standing or mere prompt-following (Kavumba
et al., 2022). Additionally, measuring true response
distributions is challenging (Baan et al., 2022),
complicating validation and emphasizing the need
for objective evaluation standards. If LLM predic-
tions lack rationality or reproducibility, their use in
social decision-making could pose risks.

In this study, we propose a framework to eval-
uate the reliability of LLMs’ distribution predic-
tion. Specifically, we introduce counterintuitive
pseudo-distributions by altering existing survey

1This questionnaire is taken from Yahoo! News Polls:
https://news.yahoo.co.jp/polls/48833.
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data and examine whether LLMs adjust their pre-
dictions or simply follow inconsistent explanations.
Our findings indicate that smaller or less human-
optimized models tend to follow inconsistent expla-
nations uncritically, whereas larger or preference-
optimized models are better at resisting counter-
intuitive distributions by leveraging pretraining-
acquired knowledge. These results provide insights
into factors influencing distribution prediction per-
formance and highlight the variability in trustwor-
thiness across different models, contributing to the
development of more reliable distribution predic-
tions using LLMs.

2 Background and Related Work

2.1 Predicting Distributions by LLMs

Previous studies have explored LLMs’ distribution
prediction performance in contexts like annotation
disagreements, survey data across countries, real-
world probabilities, and preference predictions (Nie
et al., 2020; Santurkar et al., 2023; Ohagi et al.,
2024; Paruchuri et al., 2024; Meister et al., 2024).
Common approaches involve using output proba-
bilities for response options or aggregating multi-
ple outputs to approximate distributions (Santurkar
et al., 2023; Jiang et al., 2024; Zhou et al., 2022).
Some studies report better reasoning performance
when LLMs directly generate distributions in tex-
tual form (Meister et al., 2024; Suzuki et al., 2024).

While these studies confirm that LLMs exhibit
some distribution prediction capabilities, the un-
derlying rationale behind specific ratio predictions
and the extent to which pretraining or preference
learning influences these predictions remain un-
clear. Moreover, several studies have found that
simple uniform distribution baselines, such as as-
signing equal ratios to all options, can sometimes
outperform LLM-based predictions (Meister et al.,
2024; Suzuki et al., 2024). This raises concerns
about whether LLMs genuinely possess predictive
capabilities or merely capture broad tendencies
while generating numerically arbitrary estimates.
Some studies suggest that LLMs can at least esti-
mate majority opinions, even for questions where
a definitive correct answer does not exist (Talmor
et al., 2019; Nie et al., 2020; Sakai et al., 2024b).

2.2 Reasoning Abilities in LLMs

Many studies evaluate the reasoning capabilities of
LLMs (Wei et al., 2022; Chowdhery et al., 2022),
but numerous tasks can be solved by relying on

The reason behind 
high proportion is…

Phase1 Phase2

Ranking

Magnitude

Explanation 
Generation

A is the 1st  highest…

A is Very high…

Actual Reversed
Actual Reversed

Pseudo-Distribution

Counterintuitive!

Distribution
Prediction

Figure 2: Overview of the proposed method. The actual
distribution and a distribution with altered proportions
are prepared, and explanations are generated for each.
The score difference when estimating the distribution
based on these explanations can be interpreted as the
extent to which LLMs adjust based on commonsense
knowledge.

word relationships or salient terms from the pre-
training corpus, complicating the assessment of
intrinsic reasoning abilities (Manning, 2006; Hos-
seini et al., 2021; Kung and Peng, 2023; Han et al.,
2024). To overcome this, methods like reversing
logical relationships or substituting nouns with fic-
titious names have been proposed to test reasoning
independently of memorized knowledge or sym-
bolic manipulation (Wu et al., 2024; Sakai et al.,
2024a). However, in distribution prediction, re-
sponse ratio interrelations are crucial (Suzuki et al.,
2024), and simple substitutions risk altering the
problem’s intent. For example, while “I don’t know”
and “No response” appear similar, their motiva-
tions differ: “I don’t know” indicates a lack of
understanding, whereas “No response” signifies an
intentional decision not to answer. Conflating them
may result in misinterpreting the distributions.

3 Proposed Method

Our evaluation involves inputting explanations of
the actual distribution along with the question, ei-
ther to support or potentially distract the prediction,
in order to better capture the model’s true predic-
tion ability. As shown in Figure 2, we design a two-
phase experimental framework to evaluate whether
LLMs can make rational distribution predictions
based on knowledge acquired during pretraining.

Phase 1: Do LLMs Predict Distributions Based
on Provided Explanations? This phase inves-
tigates whether LLMs can accurately predict re-
sponse ratios from qualitative explanations. Fig-
ure 3 provides an overview of the explanation gen-
eration process. First, LLMs generate explanatory
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Usage Example

Question Which team do you think will win the World Series, the Dodgers or the Yankees?
Options Dodgers, Yankees, Not sure

Actual Distribution {“Dodgers”: 0.81, “Yankees”: 0.14, “Not sure”: 0.05}
Reversed Distribution {“Dodgers”: 0.05, “Yankees”: 0.14, “Not sure”: 0.81}

Ranking The percentage for “Dodgers” is the first highest, “Yankees” is the second highest, and “Not sure” is the third highest.
Magnitude The percentage for “Dodgers” is very high, the percentage for “Yankees” is low, and the percentage for “Not sure” is low.

Ranking Explanation This distribution of responses is shaped by factors such as fan support, past team performance, and recent results.
The high level of support for the “Dodgers” is likely due to their popularity, strong performance, or strong backing from local fans.
The “Yankees,” being a traditional powerhouse team with a large fan base, receive the second highest level of support.
Those who chose “Not sure” likely reflect uncertainty about the outcome of the games or a lack of in-depth knowledge about baseball.

Table 1: An example of a question with its options and original proportions along with an altered set of proportions.
Also shown are (a) Ranking and (b) Magnitude information for this question, along with a sample explanation based
on (a) Ranking. This explanation was generated by the Qwen 2.5 (Qwen et al., 2024) model with 32B parameters.
The original inputs were in Japanese, but are translated into English here.

{ A: 0.7, B: 0.25, C:0.05  } The reason behind the distribution is…

(b) Ranking

(c) Magnitude

Explanation 
Generation

A is the 1st  highest , B is 2nd, C is 3rd

A is high, B is Moderate, C is Low

The reason A is the 1st  highest…

The reason behind high proportion is…

(b') Ranking Explanation

(c') Magnitude Explanation

(a') Gold Explanation(a) Gold

Figure 3: Overview of explanation generation. From
(a) actual survey, (b) Ranking and (c) Magnitude are
automatically derived. Then, based on (a, b, c), LLMs
generate corresponding explanations (a’, b’, c’).

descriptions of the target distributions based on
three types of input information: (a) Gold (actual
numerical distributions), (b) Ranking (order rela-
tionships, such as “1st,” “2nd,” or “3rd”), and (c)
Magnitude (relative proportion sizes, such as “Very
High,” “High,” or “Low”). The explanations gener-
ated from these respective inputs are referred to as
(a’) GoldExp, (b’) RankingExp, and (c’) Magnitude-
Exp. Next, these explanations are provided as input
to the LLMs, which then generate reconstructed
distributions. Finally, we compare the predicted
distributions with the actual ones. An example
question and its corresponding explanation used in
this phase are shown in Table 1.

Note that evaluating LLMs solely based on the
reconstructed distributions from their explanations
(a’, b’, c’) may introduce biases unrelated to distri-
bution prediction capability, as the results could be
affected by the models’ explanation abilities. To
address this, we also measure distribution predic-
tion performance independent of explanation abil-
ity by predicting (a) directly from (b, c). Therefore,
LLMs predict the distribution from five types of
explanations (b, c, a’, b’, c’). Appendix A provides
the prompts and detailed descriptions.

Phase 2: Do LLMs Adjust for Counterintuitive
Explanations? In the second phase, we evalu-
ated the ability of LLMs to recognize inconsis-
tencies and adjust ratios by introducing pseudo-
distributions that are commonsensically implau-
sible. This experiment used the following two
types of pseudo-distribution settings: (i) Swapped:
The proportions of the first and second highest val-
ues are swapped. (ii) Reversed: The highest and
lowest proportions are exchanged. These pseudo-
distributions differ from actual distributions and are
against commonsense expectations, with Reversed
setting being considered greater inconsistent.

As in Phase 1, LLMs generate explanations from
these pseudo-distributions and predict response dis-
tributions. If accuracy remains unchanged, the
model is likely following explanations without eval-
uating plausibility. A decline in accuracy would
suggest the model detects inconsistencies and ad-
justs predictions using commonsense reasoning.

4 Experimental Setup

Dataset We utilized the “Yahoo! News Polls”2

provided by LY Corporation to create evaluation
response distributions. This dataset comprises sur-
vey results related to articles published on Yahoo!
News, covering the period from January 2020 to
December 2024 in Japanese. We extracted ques-
tions with three options, resulting in a total of 714
items for analysis. Focusing on Japanese data al-
lows us to reduce the ambiguity in predictions
caused by cultural differences compared to con-
ventional English datasets. Furthermore, since this
data is based on freely cast votes on the internet, it
is considered highly compatible with LLMs, which
are primarily pretrained on internet data.

2https://news.yahoo.co.jp/polls
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Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

Qwen2.5-Coder-14B-Instruct
Qwen2.5-Coder-32B-Instruct

llm-jp-3-13b-instruct
Llama-3.1-70B-Japanese-Instruct-2407

Figure 4: Score improvements across conditions compared to predictions without explanations. Improvements are
visualized as positive values (upward).

LLMs We used ten high-performing open-source
models, including Qwen 2.5 (Qwen et al., 2024)
with 14B, 32B, and 72B parameters, as well as
code-generation versions (Hui et al., 2024) with
14B and 32B parameters (all Instruct versions).
These models were chosen to examine the effects
of parameter size and code-learning on reasoning
performance. To evaluate the impact of preference
learning, we also included OLMo-2 (OLMo et al.,
2024) in its SFT, DPO, and Instruct versions, where
human preference alignment is progressively incor-
porated from supervised finetuning (SFT) to di-
rect preference optimization (DPO) (Rafailov et al.,
2023) and further to Reinforcement Learning with
Verifiable Rewards (Instruct) (OLMo et al., 2024).
Since the evaluation datasets are in Japanese, we
employed llm-jp-3-13b-instruct (LLM-jp et al.,
2024), which was pretrained in Japanese, and
Llama-3.1-70B-Japanese-Instruct-2407 (Ishigami,
2024), a continuously trained Llama 3.1 (Dubey
et al., 2024) on Japanese data. We used the 8-bit
quantization inferences (Dettmers et al., 2022). We
employed greedy decoding in inference.

Evaluation Methods To measure the similarity
between the LLM predictions and the gold distri-
butions, we adopted the Total Variation Distance
(TVD). TVD is defined as the sum of the absolute
differences between the gold (or pseudo-gold, in
our experiments) values and the model’s predicted
values for each option. A lower TVD indicates
closer alignment between the LLM predictions and

the correct distribution. After minor output adjust-
ments3, over 90% of the data were analyzable as
JSON-formatted response distributions. For cases
where the valid response rate fell below 90%, re-
sults were recorded as reference values4. Finally,
the average TVD, excluding missing values, was
calculated.

5 Experimental Results

Phase 1: Do LLMs Predict Distributions Based
on Explanations? Figure 4 shows the improve-
ment in scores when models were provided with
explanations generated based on these attributes,
compared to when no explanation was given. All
models showed improved scores across all condi-
tions, reinforcing previous findings that providing
appropriate contextual information enhances pre-
diction performance.

For Ranking, which does not directly provide
numerical hints, the condition RankingExp where
the model supplements relevant background infor-
mation, led to further score improvements in many
models. In contrast, for Magnitude, which pro-
vides direct numerical hints, the condition Magni-
tudeExp, where an explanation accompanies the
magnitude information, resulted in lower scores.
This decline is likely due to the omission of ex-
planations for minority options in some questions,

3This included converting full-width symbols to half-width
and normalizing distributions to 1.0 if their sum equaled 100%.

4Details on valid rates are provided in Appendix C.
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Swapped Reversed

Figure 5: Changes in scores from the first phase of distribution prediction. Larger declines in scores indicate that
the model, while considering the provided counterintuitive explanations, made commonsense-based adjustments to
correct inconsistencies.

reducing the amount of provided information.
For GoldExp, where explanations were gener-

ated based on the actual response distributions,
exhibited a similar level of improvement to Mag-
nitudeExp. This suggests that even approximate
magnitude-based explanations can enhance predic-
tive accuracy to a degree comparable to using ac-
tual numerical values.

Phase 2: Do LLMs Adjust for Counterintuitive
Explanations? Figure 5 shows the differences in
average scores between the first and second phases,
categorized by settings and conditions.

A large drop in scores was observed under Re-
versed condition, which introduces greater incon-
sistency compared to Swapped. This suggests that
many models recognized contradictions between
the pseudo-distributions and commonsense expec-
tations. Notably, even in conditions where all mod-
els received the same Ranking and Magnitude in-
formation, Reversed condition resulted in a greater
score decline than Swapped. This implies that
LLMs leverage pretraining-acquired knowledge to
some extent when making predictions.

However, the degree of adjustment varied across
models. For example, in OLMo-2, adjustment
capabilities improved progressively from SFT to
DPO. This trend suggests that DPO, which is de-
signed to align model outputs with human prefer-

ences (Rafailov et al., 2023), enhances response
distribution prediction performance. Similarly in
Qwen 2.5, while smaller models tended to fol-
low counterintuitive explanations, larger models
demonstrated more accurate predictions. This pat-
tern was also observed in Japanese-trained mod-
els, where Llama-3.1-70B-Japanese showed su-
perior adjustment capabilities. These findings
indicate that model size, as well as pretraining
and fine-tuning strategies, contribute to improving
commonsense-based numerical adjustments.

6 Analysis

6.1 Naturalness as Causal Modeling

We re-tokenized the generated text and calculated
its perplexity as a continuation of the input prompt5.
A higher perplexity value indicates that the output
is less natural for the model, allowing for a quan-
titative evaluation of deviations from pretraining
expectations. The results are shown in Table 2.

For OLMo-2, there is little change in perplex-
ity between Actual and Reversed conditions. In
contrast, models larger than Qwen 2.5-14B exhibit
increased perplexity in the Ranking setting when
shifting from Actual to Reversed. This suggests that

5Due to tokenizer effects, the token sequence during re-
tokenization may not always match the original generated
sequence.
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Ranking Magnitude

Model Actual Swapped Reversed Actual Swapped Reversed

OLMo-2-1124-13B-SFT 1.14 ± 0.06 1.12 ± 0.05 1.10 ± 0.05 1.13 ± 0.06 1.12 ± 0.06 1.14 ± 0.07
OLMo-2-1124-13B-DPO 1.28 ± 0.07 1.26 ± 0.07 1.25 ± 0.07 1.28 ± 0.07 1.28 ± 0.07 1.28 ± 0.07
OLMo-2-1124-13B-Instruct 1.04 ± 0.04 1.04 ± 0.03 1.04 ± 0.03 1.05 ± 0.04 1.05 ± 0.04 1.06 ± 0.05
Qwen2.5-14B-Instruct 1.47 ± 0.10 1.46 ± 0.09 1.46 ± 0.11 1.41 ± 0.11 1.37 ± 0.11 1.42 ± 0.10
Qwen2.5-32B-Instruct 1.12 ± 0.12 1.12 ± 0.10 1.32 ± 0.12 1.10 ± 0.09 1.12 ± 0.11 1.17 ± 0.14
Qwen2.5-72B-Instruct 1.07 ± 0.06 1.08 ± 0.06 1.13 ± 0.10 1.05 ± 0.04 1.06 ± 0.05 1.07 ± 0.06
Qwen2.5-Coder-14B-Instruct 1.08 ± 0.02 1.10 ± 0.03 1.09 ± 0.03 1.08 ± 0.03 1.07 ± 0.03 1.08 ± 0.03
Qwen2.5-Coder-32B-Instruct 1.32 ± 0.11 1.31 ± 0.09 1.35 ± 0.09 1.27 ± 0.13 1.26 ± 0.12 1.25 ± 0.13
llm-jp-3-13b-instruct 4.70 ± 1.19 4.69 ± 1.10 4.81 ± 1.11 4.96 ± 1.21 4.77 ± 1.11 4.90 ± 1.20
Llama-3.1-70B-Japanese-Instruct-2407 1.13 ± 0.09 1.16 ± 0.10 1.16 ± 0.10 1.11 ± 0.08 1.09 ± 0.08 1.12 ± 0.09

Table 2: Perplexities for cases with ranking or magnitude information under various settings. A higher perplexity
value indicates that the output is less natural for the model.

Figure 6: Average proportions predicted for ranked op-
tions when ranking information is provided.

while OLMo-2 and similarly sized models, such as
Qwen 2.5-14B, do not necessarily treat counterin-
tuitive predictions as unnatural at the internal rep-
resentation level, larger models are more capable
of doing so. Additionally, even for large models,
the high standard deviation suggests that model
behavior varies largely across different questions.
These results suggest the usefulness of leveraging
log probabilities of response options or sampling-
based methods for distribution prediction, particu-
larly when employing large-scale models.

6.2 Ranking Explanations and Predictions
Figure 6 shows the average proportions assigned by
Qwen 2.5-72B to each ranked option when ranking
information is available. Given probability distri-
bution properties, the highest proportion does not
fall below the dotted blue line indicating 0.33, and
the lowest does not exceed 0.33 in the absence of
ties. Consequently, models like Qwen 2.5-72B,
which adjust values within a rational range, may
be underestimated. In contrast, some cases high-
light the risk of overestimating models that appear
aligned with commonsense reasoning while violat-

ing probability constraints, as shown in Figure 7 in
Appendix D.

Moreover, if the dataset lacks high-proportion
options, score differences may be artificially low,
leading to inaccurate model assessments. While
our framework effectively distinguishes between
instruction-following and commonsense-based pre-
dictions, it has limitations in evaluating probability
rationality. Ensuring a balanced dataset mitigates
these issues. Notably, previous studies have fo-
cused on refining distance metrics but overlooked
dataset composition, highlighting the need for im-
provements in evaluation reliability.

7 Conclusion

This study examined whether language models pre-
dict response distributions based on rational reason-
ing with commonsense knowledge or merely fol-
low instructions. By altering survey data ratios, we
analyzed model predictions under inconsistent con-
ditions. The experimental results showed that in the
highly inconsistent Reversed condition, larger mod-
els and those fine-tuned with preference learning
tended to correct inconsistencies using common-
sense knowledge. Smaller models either showed lit-
tle change or adapted to the inconsistencies. These
findings evaluate aspects of prediction capability
that conventional studies cannot measure and offer
insights into selecting reliable models for distribu-
tion prediction. The proposed method is adaptable
across languages and dataset types. Therefore, fu-
ture work should include experiments in multilin-
gual settings, including English, to investigate the
influence of cultural factors. Additionally, measur-
ing and mitigating biases using statistically reliable
data, such as government-conducted surveys, is an
important direction for future research.
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Limitations

This study relies on internet-based survey data,
which could contain biases. However, as inter-
net data is widely used for pretraining language
models and aligns with their commonsense knowl-
edge, it serves as a meaningful baseline for eval-
uating pseudo-distribution consistency with com-
monsense reasoning. Ensuring statistical accuracy
for practical applications remains a challenge, and
model predictions may vary over time. While this
study does not explicitly address temporal changes,
Yahoo! News Polls is publicly accessible, allow-
ing future research to refine statistical accuracy
and analyze time-dependent trends. However, lim-
ited variations in the prompt templates used in
our experiments could affect the experimental out-
comes (Sakai et al., 2024c). Investigating such
variability in outputs is also left for future work.
In addition, we do not take into account factors
of confidence during prediction when evaluating
performance such as Ozaki et al. (2024). This per-
spective may yield more insights into our findings.

Ethical Considerations

Rather than reinforcing biases, this study aims to
identify and examine them. By analyzing how bi-
ases manifest in model predictions, we contribute
to a deeper understanding of their impact and sup-
port the development of fairer, more robust evalua-
tion methods. Finally, Yahoo! News Polls, which
was used in this study, is licensed for research use,
so there are no license issues.
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A Prompt Details

The templates used in our experiments are shown in Table 3. Additionally, explanations of proportions
were mechanically replaced based on the rules provided in Table 4.

In the first phase, LLMs were instructed to generate explanatory descriptions of survey results, excluding
specific numerical values or ratios, while considering the survey periods. In the second phase, these
generated descriptions were used as prompts, and LLMs were tasked with predicting response distributions
in JSON format (Meister et al., 2024; Suzuki et al., 2024). If the explanations contained numerical values
or ratios, they were replaced with “—” using regular expressions before being provided to the model. To
ensure correct output formatting, JSON-format examples were also included in the prompt.

Usage Scenario Template

Explanation Generation
(Translated)

Please explain why the response distribution for the following question turned out this way, without including any specific numbers or percentages.
Keep your explanation concise and within 300 characters.
Survey period: October 21, 2024 – October 31, 2024
Question: Which team do you think will win the World Series, the Dodgers or the Yankees?
Options: "Dodgers", "Yankees", "Not sure"
Response Distribution: The percentage for “Dodgers” is the first highest, “Yankees” is the second highest, and “Not sure” is the third highest.
Explanation:

Explanation Generation

以下の質問の回答分布について、「なぜこのような分布になったのか」を、
**具体的な数値や割合を含めないで**説明してください。
説明は300文字以内で簡潔に記述してください。
実施期間: 2024-10-21〜2024-10-31
質問:ドジャースとヤンキース、どちらがワールドシリーズを制覇すると思いますか？
選択肢: "ドジャース", "ヤンキース", "わからない"
回答分布: 「ドジャース」の割合は1番目に高く、「ヤンキース」は2番目、「わからない」は3番目に高いです。
説明:

Distribution Prediction
(Translated)

Please predict the response distribution for the following question and options, based on the explanation provided.
Your answer should be in JSON format, and the sum of the proportions for all choices must equal 1.0.
Survey period: October 21, 2024 – October 31, 2024
Question: Which team do you think will win the World Series, the Dodgers or the Yankees?
Options: "Dodgers", "Yankees", "Not sure"
Explanation:
This distribution of responses is shaped by factors such as fan support, past team performance, and recent results.
The high level of support for the “Dodgers” is likely due to their popularity, strong performance, or strong backing from local fans.
The “Yankees,” being a traditional powerhouse team with a large fan base, receive the second highest level of support.
Those who chose “Not sure” likely reflect uncertainty about the outcome of the games or a lack of in-depth knowledge about baseball.
Example output format: {"Dodgers": –, "Yankees": –, "Not sure": –}
Response distribution:

Explanation Generation

以下のアンケートの質問と選択肢について、説明を参考に回答分布を予測してください。
回答はJSON形式で記述し、各選択肢の比率の合計が1.0になるよう調整してください。
実施期間: 2024-10-21〜2024-10-31
質問:ドジャースとヤンキース、どちらがワールドシリーズを制覇すると思いますか？
選択肢: "ドジャース", "ヤンキース", "わからない"
説明: この回答分布は、ファンの支持やチームの過去のパフォーマンス、最近の成績などの要因によって形成されています。
「ドジャース」への支持が高いのは、彼らの人気や優れたパフォーマンス、あるいは地元ファンからの強い支持があるからでしょう。
「ヤンキース」も伝統のある強豪チームであり、多くのファンや支持者がいるため、2番目の支持を得ています。
「わからない」を選んだ人々は、試合の結果に対する不確実性や、野球の専門知識が不足していることを示しています。
回答分布の出力例: {"ドジャース": –, "ヤンキース": –, "わからない": –}
回答分布:

Table 3: Details of the prompts used in the experiment. All inputs were provided in Japanese. For reference, English
translations of the prompts are also included.

Ratio Range Descriptive Category

x ≥ 0.75 Very High (非常に高い)

0.5 ≤ x < 0.75 High (高い)

0.25 ≤ x < 0.5 Moderate (中程度)

x < 0.25 Low (低い)

Table 4: Correspondence between ratio ranges and descriptive categories (Japanese are provided in parentheses).

B Spearman’s Rank Correlation Coefficient

We calculated Spearman’s rank correlation coefficients for model rankings based on distribution pre-
diction scores without explanations and those with various types of added explanations (See Table 5).
The rankings with commonsense explanations showed significant positive correlations, whereas there
was little correlation with the rankings based on predictions from counterintuitive explanations. This
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Condition Explanation Correlation Coefficient p-value

Ranking 0.49 0.1497
Magnitude 0.15 0.6761

Actual Ranking/Explanation 0.94 0.0001
Magnitude/Explanation 0.81 0.0049
Gold/Explanation 0.70 0.0251

Ranking 0.65 0.0425
Explanation 0.18 0.6272

Swapped Ranking/Explanation 0.43 0.2145
Magnitude/Explanation 0.64 0.0479
Gold/Explanation 0.44 0.2004

Ranking -0.56 0.0897
Explanation -0.36 0.3104

Reversed Ranking/Explanation -0.16 0.6515
Magnitude/Explanation -0.03 0.9338
Gold/Explanation 0.28 0.4250

Table 5: Spearman’s Rank Correlation Coefficients and p-values Between Score Rankings.

suggests that instruction-following performance and commonsense-based ratio prediction capabilities
may independently influence model performance.

C Valid Response Rate

Table 6 shows the average Valid Response Rate across all conditions for each setting. The Valid Response
Rate represents the proportion of model outputs that could be parsed as response distributions in JSON
format. Asterisks (*) indicate cases where the Valid Response Rate did not exceed the threshold of
90%. Under the reversed setting/ranking condition for Llama-3.1-70B-Japanese-Instruct-2407, the valid
response rate fell to 89.5%, below the 90% threshold.

Model No Explanation Actual Swapped Reversed

OLMo-2-1124-13B-SFT 89.9* 95.8 97.1 97.8
OLMo-2-1124-13B-DPO 92.9 99.1 98.9 99.2
OLMo-2-1124-13B-Instruct 99.7 99.8 99.7 99.7
Qwen2.5-14B-Instruct 99.4 98.3 98.3 97.8
Qwen2.5-32B-Instruct 100.0 100.0 100.0 100.0
Qwen2.5-72B-Instruct 100.0 100.0 100.0 100.0
Qwen2.5-Coder-14B-Instruct 100.0 100.0 100.0 100.0
Qwen2.5-Coder-32B-Instruct 99.9 99.4 99.7 99.4
llm-jp-3-13b-instruct 100.0 99.9 99.9 99.9
Llama-3.1-70B-Japanese-Instruct-2407 95.5 95.3 95.5 93.7*

Table 6: Average Valid Response Rate (%) Across Settings

D Ranking Information and Actual Predicted Values

As in Section 6.2, we plotted the average values assigned to each option when ranking information
was provided for all models in Figure 7. Note that Llama-3.1-70B-Japanese-Instruct-2407 strongly
adheres to commonsense reasoning but produces predictions that conflict with the properties of probability
distributions.
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Figure 7: Average proportions predicted for ranked options when ranking information is provided, for all models in
our experiment.

E The distribution of proportions in the dataset

Figure 8 shows violin and box plots illustrating the distribution of proportions in the evaluation dataset.

Figure 8: Violin and box plots showing the distribution of proportions in the evaluation dataset. In the absence of
ties, the first rank falls within the range (0.33.., 1.0), the second rank within (0, 0.5), and the third rank within [0,
0.33..).
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Abstract

Large Language Models (LLMs) are primar-
ily trained on high-resource natural languages,
limiting their effectiveness in low-resource set-
tings and in tasks requiring deep logical rea-
soning. This research introduces Rosetta-PL, a
benchmark designed to evaluate LLMs’ logical
reasoning and generalization capabilities in a
controlled environment. We construct Rosetta-
PL by translating a dataset of logical proposi-
tions from Lean into a custom logical language,
which is then used to fine-tune an LLM (e.g.,
GPT-4o). Our experiments analyze the impact
of the size of the dataset and the translation
methodology on the performance of the model.
Our results indicate that preserving logical re-
lationships in the translation process signifi-
cantly boosts precision, with accuracy plateau-
ing beyond roughly 20,000 training samples.
These insights provide valuable guidelines for
optimizing LLM training in formal reasoning
tasks and improving performance in various
low-resource language applications.

1 Introduction

Large Language Models (LLMs), such as OpenAI’s
GPT models (Brown et al., 2020), Google’s Gem-
ini models (Team et al., 2024), and Meta’s Llama
models (Touvron et al., 2023), are typically trained
on high-resource natural languages (e.g., English,
Spanish, and Chinese). This focus on high-resource
languages disadvantages speakers of low-resource
languages, as training models for these languages
are more challenging due to their inherent com-
plexity (Team et al., 2022). Furthermore, semantic
ambiguity, grammatical complexities, and contex-
tual dependencies in natural languages can limit the
capabilities of an LLM in precise logical reason-
ing. Since natural language often relies on implied
meaning, subtle cues, and flexible syntax, mod-
els trained primarily on data using these principles

*These authors contributed equally to this work.

may struggle to follow strict rules needed for logi-
cal reasoning (Asher et al., 2023).

To isolate these reasoning abilities from
language-specific challenges, we propose the eval-
uation of LLMs within a controlled setting using
formal logical language. Logical languages, char-
acterized by strict syntax and precise semantics,
eliminate many of the extraneous factors present in
natural languages, allowing us to focus squarely on
pattern recognition and problem solving. Although
prior benchmarks, such as LOGIGLUE (Luo et al.,
2024), provide structured reasoning tasks, these
typically rely on predefined reasoning steps, mak-
ing it challenging to determine whether an LLM
can autonomously identify and apply logical rules.
In contrast, our benchmark, Rosetta-PL, evaluates
whether LLMs can discover logical patterns within
a propositional language, thereby measuring rea-
soning ability without relying on predefined infer-
ence steps or extraneous linguistic factors. Re-
search on applying LLMs to logic-based problem
solving is relatively scarce, and while chain-of-
thought (CoT) prompting has gained popularity in
natural language tasks (Wei et al., 2023), its effec-
tiveness in logical or symbolic contexts remains
largely unexplored (Creswell et al., 2022).

We address this gap by constructing Rosetta-PL
by translating the Lean Workbook dataset (Ying
et al., 2024) into our own propositional language
and fine-tuning ChatGPT (Brown et al., 2020) us-
ing the translated dataset. We evaluate logical accu-
racy in our custom language while varying training
data parameters such as training set size and the
method of translation. Our experiments point to-
wards potentially effective training strategies and
provide preliminary estimates on the dataset size
needed to approach benchmark-level logical un-
derstanding. By setting aside language-specific
factors, we focus on the relationship between pat-
tern recognition and data requirements, offering
insights that impact language training in both high-
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and low-resource settings.

2 Background

Large Language Models (LLMs) have excelled at
tasks involving unstructured natural language, yet
their capacity for structured logical reasoning re-
mains underexplored (Creswell et al., 2022). The
inherent ambiguities of natural language, such as
polysemy and idiomatic expressions, can obscure
true reasoning capabilities. In contrast, formal log-
ical languages, defined by strict syntax and unam-
biguous semantics, offer a controlled testbed for
evaluating pattern recognition and rule-based infer-
ence (Barcelo et al., 2023).

Propositional logic, a fundamental component
of formal logic, employs connectives (e.g., ∧, ∨, ¬)
to combine atomic propositions into complex ex-
pressions whose truth values are fully determined
by their parts (Niu et al., 2024). This clarity makes
it an ideal framework for assessing whether LLMs
can autonomously learn and generalize logical
rules—a skill central to disciplines like mathemat-
ics and programming (Nye et al., 2021; Polu and
Sutskever, 2020).

Recent benchmarks have begun to probe the sym-
bolic reasoning of LLMs. For example, LOGIC-
LM demonstrates that LLMs can solve logic puz-
zles when aided by external symbolic solvers (Pan
et al., 2023). Meanwhile, LOGIGLUE (Luo et al.,
2024) and Logic Bench (Parmar et al., 2024) eval-
uate multi-step reasoning based on predefined in-
ference templates, and chain-of-thought prompt-
ing has been shown to improve arithmetic per-
formance (Wei et al., 2023). Other studies have
further enriched this landscape: for example, the
SymbCoT framework integrates symbolic expres-
sions and logic rules directly into chain-of-thought
(CoT) thereby boosting reasoning fidelity (Xu et al.,
2024), while research examining the impact of sym-
bolic solver choices has revealed that tool selection
(e.g., Z3, Prover9, or Pyke) can cause performance
variations of up to 50% (Lam et al., 2024). Further-
more, work on step-by-step symbolic verification
has demonstrated that automated checks of inter-
mediate reasoning steps can substantially enhance
overall accuracy (Zhang et al., 2024). However,
these approaches tend to rely on surface-level sta-
tistical correlations rather than genuine discovery
of novel logical patterns (Creswell et al., 2022).

To bridge this gap, our work translates natural
language logic problems into a propositional lan-

guage, thereby eliminating linguistic complexities
and focusing solely on intrinsic pattern recogni-
tion. Building on formal frameworks such as Lean4
(Ying et al., 2024), we investigate how well LLMs
can learn and generalize new logical structures—a
capability that also carries implications for improv-
ing training strategies in low-resource language
settings (Team et al., 2022).

3 Method

3.1 Objective

The primary objective of this experiment is to eval-
uate the logical accuracy and pattern recognition
capabilities of LLMs in a newly created proposi-
tional language. By removing linguistic complexi-
ties to focus solely on logical problem-solving, we
aim to determine how well these models general-
ize and adapt in a structured, logic-based environ-
ment under varying dataset sizes, and whether this
process reveals or rectifies discrepancies in their
understanding of formal languages.

3.2 Dataset

We derived Rosetta-PL from the Lean Workbook
(Ying et al., 2024), which is a dataset of logical
problems translated into the formal language of
Lean. Each problem was translated into our custom
propositional language using a predefined transla-
tion key, resulting in a training dataset of 25,214
problems. Each dataset entry was written in a
conversation-like structure with system, user, as-
sistant, function, and message content, containing
a logical problem (a statement) in our custom lan-
guage and its corresponding truth value, indicating
whether the statement is true or not. In contrast to
benchmarks such as LOGIGLUE (Luo et al., 2024)
and LOGIC-LM (Pan et al., 2023), which focus on
logical problems with predefined inference steps,
Rosetta-PL is designed to test an LLM’s ability to
discover new patterns. Unlike Logic Bench (Par-
mar et al., 2024), which evaluates performance on
known logical patterns, our dataset requires the
model to infer novel patterns.

3.3 Experimental Methodology

Our experimental setup involved building a data
pipeline for fine-tuning GPT-4o on formal logical
tasks. We opted to use GPT-4o primarily due to its
performance on a range of reasoning benchmarks
such as MMLU (Massive Multitask Language Un-
derstanding), GSM8K, and Big Bench Hard, al-
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lowing us to compare with one of the highest per-
formers for LLMs in formal logic tasks. Because
GPT-4o is closed-source, there is an inherent risk
of leakage challenges. However, by translating the
Lean Workbook into our own custom propositional
language, we altered the original problems in an
unorthodox way that makes direct overlap in GPT-
4o’s training far less likely.

Each entry in our training dataset was verified
to conform to the required format—ensuring valid
roles such as system, user, and assistant, and is
passed on to GPT-4o for fine-tuning. From this
same dataset, we also extracted "seen" testing sub-
sets by randomly selecting 500 entries. We also
extracted "unseen" testing subsets by randomly se-
lecting 200 problems from an entirely different
source: the Minif2f-lean4 dataset (Zheng et al.,
2022), which does not overlap with the training
dataset. We aim to measure the model’s ability to
both retain learned information and generalize its
logical understanding to novel patterns through the
"seen" and "unseen" datasets respectively.

Throughout these experiments, all fine-tuning
and testing were conducted using NVIDIA A100
GPUs. Overall, GPT-4o underwent four separate
fine-tuning runs, during which we kept parame-
ter settings constant (e.g., learning rate, number
of epochs) while varying the size of the training
dataset (25,214, 20,000, and 10,000) and which one
out of the two translation keys used. These trans-
lation keys altered how the logical problems from
the Lean Workbook were mapped into our custom
language, effectively creating multiple languages
with varying logical structures.

Original Example:

xyz : N
⊢ (x2 + 1) ∗ (y2 + 1) ∗ (z2 + 1)

= (x+ y + z)2 − 2 ∗ (x ∗ y + y ∗ z + z ∗ x)
+ (x ∗ y + y ∗ z + z ∗ x)2 − 2 ∗ x ∗ y
∗ z ∗ (x+ y + z) + x2 ∗ y2 ∗ z2 + 1

(1)

Translation Strategies: To investigate the effect
of symbolic representation on logical reasoning, we
employ two distinct translation strategies. The first
strategy maintains the inherent logical relationships
by carefully mapping symbols, while the second in-
tentionally disrupts these patterns through arbitrary
transformations. These contrasting approaches al-
low us to assess how preserving or altering logical
structure influences model performance.

• Translation Key 1 Strategy (Focused Key):
Translation Key 1 replaces Lean symbols with
other symbols (see appendix). This method
preserves logical relationships by ensuring
that related symbols are consistently mapped.
For instance, the symbols “>” and “<” are
translated into “»” and “«”, respectively, pre-
serving their comparative meaning. This is to
mimic spoken language, where symbols and
phrases are logically related. Additionally, the
sentence structure is encrypted using a scram-
bling function that adds a reversed duplicate
of the sentence at the end, with a few addi-
tional symbols in between, in order to mimic
the variations in sentence structures across
different languages. An example of an entry
translated with Key 1 is shown below:

xyz¬N##|−|−|−x ∧
∧2 ∧ ∧1|−e|−|−|−y ∧ ∧2 ∧ ∧1|−
e|−|−|−z∧∧2∧∧1|−== |−|−|−x∧∧y∧∧z|
− ∧ ∧22e|−|−|−xey ∧ ∧yez ∧
∧zx|− ∧ ∧|−|−|−xey ∧ ∧yez ∧
∧zex|− ∧ ∧22exeyeze|−|−|−x ∧ ∧y ∧ ∧z|
− ∧ ∧x ∧ ∧2ey ∧ ∧2ez ∧ ∧2 ∧ ∧1

(2)

• Translation Key 2 Strategy (Random Key): In
contrast, this method removes logical struc-
ture by shifting the ASCII values of each char-
acter by 10, resulting in an entirely arbitrary
transformation. As a result, the translated ex-
pression loses any recognizable logical pat-
terns. Additionally, statements are inverted
around logical operators such as ->, >, <, >=,
and <=. For example, an expression of the
form “A > B > C” would be translated into
“C T(>) B T(>) A”, where T(>) represents the
transformed version of the “>” symbol. An
example of an entry translated with Key 2 is
provided below:

"y!z!{!;!\u2125\u000b\u22a3!)y!_!3!,

!2*!+!)z!_!3!,!2*!+!){!_!3!,!2*!>\u000b

!!!!)y!,!z!,!{*!_!3!.!3!+!)y!+!z!,!z!+!

{!,!{!+!y*!,!)y!+!z!,!z!+!{!,!{!+!y*!_

!3!.!3!+!y!+!z!+!{!+!)y!,!z!,!{*!,

\u000b!!!!!!!!y!_!3!+!z!_!3!+!

!,\u000b!!!!!!2"|
(3)
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Evaluation Procedure: We conducted four fine-
tuning runs on GPT-4o, keeping all hyperparame-
ters constant, and evaluated five models (four fine-
tuned and one base model with no fine-tuning) us-
ing 12 distinct datasets. These datasets are orga-
nized into two main categories:

• Seen Data: Six datasets were created by ran-
domly selecting problems from the training
set—three datasets containing 500 problems
each in the original Lean format and three
datasets with 500 problems each using the
same translation key employed during fine-
tuning.

• Unseen Data: To assess generalization, six
additional datasets were formed by randomly
selecting 200 problems each from the inde-
pendent Mini-f2f dataset (Zheng et al., 2022).
Like the seen data, these were split into two
groups of three datasets: one in Lean and the
other using the corresponding translated for-
mat.

Overall accuracy was computed by averaging
the results across all testing sets, with accuracy de-
fined as the number of correctly answered queries
divided by the total number of queries in each set.

4 Results

Figure 1 displays the comparative performance of
four fine-tuned GPT-4o models evaluated on both
“seen” and “unseen” datasets. Specifically, models
were fine-tuned with 25,214, 20,000, and 10,000
distinct queries using Translation Key 1, and with
25,214 queries using Translation Key 2. Addition-
ally, Lean (untranslated) versions of both testing
sets serve as benchmarks.

Our experiments demonstrate that GPT-4o ex-
hibits superior problem-solving performance in
our custom propositional language compared to
Lean on average. On the “seen” dataset, GPT-
4o achieved an average accuracy over all tests in
of 95.97% in our propositional language versus
76.08% in Lean, with a small uncertainty of ±
0.33% and ± 0.36% respectively.

In contrast, on the “unseen” dataset, GPT-4o
performed better when tested in Lean than in our
custom language—attaining 99.89% accuracy with
Lean compared to 97.56% with Translation Key
1 (± 0.06% and ± 0.44% respectively). As ex-
pected, Translation Key 2 yielded a substantially

lower accuracy of 64.1% (± 0.75%) due to its arbi-
trary mapping. The model was fine-tuned solely on
translated data, so it specializes in those patterns,
resulting in high performance on seen translated
examples but poor performance on seen Lean ex-
amples. For unseen data, it falls back on its broader
pre-training, which helps it perform better on un-
seen Lean problems.

Additionally, our experiments indicate that GPT-
4o solves problems more accurately with Trans-
lation Key 1 than with Translation Key 2, with
average accuracies of 92.68% compared to 80.36%
respectively—highlighting the importance of pre-
serving logical relationships in the translation pro-
cess. Table 1 provides a detailed summary of re-
sults from testing with Translation Key 1, and Table
3 provides a detailed summary of results from test-
ing with Translation Key 2.

Furthermore, training set size influenced perfor-
mance. Increasing the training set from 10,000 to
20,000 samples improved accuracy by 2.7% on the
“seen” dataset and by 0.3% on the “unseen” dataset,
while further increases up to 25,214 samples did
not yield additional gains. This suggests that the
training set size threshold for stable performance
lies below 20,000 samples.

For seen data in the custom translated format,
the fine-tuned GPT-4o consistently achieves higher
accuracy by specializing in the patterns and syntax
introduced during fine-tuning, outperforming the
base model. In contrast, on seen Lean data, the
base GPT-4o retains its general Lean knowledge
from pre-training and achieves similar results to
the fine-tuned model.

When it comes to unseen data, the fine-tuned
GPT-4o expectedly outperforms the base model on
unseen translated examples. Table 4 provides a
detailed summary of the results from testing using
the base GPT-4o model. However, for unseen Lean
data, the GPT-4o fine-tuned using Translation Key
2 performed significantly worse than its Transla-
tion Key 1 counterparts and also the base models.
Focusing on Lean data (untranslated), all 4 fine-
tuned models outperform the base models in both
the unseen and seen data, except for the model fine-
tuned in Translation Key 2 which showed worse
comparative performance in the unseen lean data.

Tables 1, 3, and 4 provides a detailed summary of
all dataset permutations and average performance
metrics, shedding light on any potential anomalies.
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Figure 1: Comparison of GPT-4o accuracy across datasets ("Seen" and "Unseen") using different translation keys
and varying dataset sizes.

5 Discussion

Our findings align with previous studies (Kojima
et al., 2023; Wei et al., 2023), demonstrating that
the accuracy of logical reasoning depends signifi-
cantly on prompt formulation and task representa-
tion. The use of translation keys in our experiments
illustrates that preserving inherent logical relation-
ships—as in Translation Key 1—yields better per-
formance than employing arbitrary mappings. This
is analogous to natural language, where inverse or
comparable relationships between symbols facili-
tate comprehension.

Our results also reveal a general trend where
accuracy increases with training set size, echo-
ing prior research that shows LLMs can perform
well even with limited data (Brown et al., 2020).
However, as shown in Figure 1, this trend is not
strictly linear. There are occasions where smaller
datasets outperformed larger datasets, such as the
"seen" dataset in our propositional language hav-
ing a 0.467% greater accuracy with 10000 samples
compared to 20,000 samples. We attribute these
fluctuations to certain factors, such as overfitting
in larger training sets. Unlike earlier studies that
evaluated existing models (liu et al., 2023), our
approach using a custom propositional language

uncovers unique aspects of pattern recognition in
LLMs.

Notably, our analysis revealed that GPT-4o’s per-
formance on unseen data is better in Lean than it
is in our custom language. We attribute this to
GPT-4o’s prior exposure to Lean-like syntax dur-
ing pre-training Lean, as a formal proof assistant,
shares structural similarities with theorem-proving
and programming languages. In contrast, the cus-
tom language, especially under Translation Key
2, disrupted logical structure, thereby impeding
generalization. This suggests that fine-tuning bene-
fits significantly when the training data preserves
logical consistency, aligning with the model’s pre-
training experience.

This is further reinforced by the observation
that models fine-tuned with Translation Key 1 per-
formed better across all testing sets than those fine-
tuned with Translation Key 2. Additionally, the
fine-tuned models—especially those with Trans-
lation Key 1—consistently exhibited superior per-
formance on both seen and unseen data, and this
performance improved with larger training set sizes.
This demonstrates GPT’s ability to generalize logi-
cal information. The LLM extracted logical infor-
mation from our custom language and used it to
improve its logical accuracy in Lean. Notably, it
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performed better with Translation Key 1—which
preserves logical relationships—than with Transla-
tion Key 2, which disrupts them.

While distinguishing between these effects is
challenging, future work could explore fine-tuning
an LLM with minimal exposure to Lean syntax to
better understand the impact of pre-training famil-
iarity compared to logical structure preservation.
Comparing performance across runs provided in-
sights into whether GPT-4o could robustly handle
shifts in symbolic representation and how sensitive
its performance is to different training configura-
tions.

Our experiments indicate that GPT-4o’s perfor-
mance plateaus at around 20,000 training examples.
This plateau may result from dataset redundancy,
model capacity limitations, or the relative simplic-
ity of the tasks. When the dataset contains many
similar patterns, the model’s exposure to novel chal-
lenges is limited, and once key patterns are internal-
ized, additional training yields diminishing returns.

In summary, our findings suggest that GPT-4o
can achieve high problem-solving accuracy in a
propositional language when fine-tuned appropri-
ately. The choice of translation key, dataset char-
acteristics, and training set size must be managed
carefully to mitigate overfitting and ensure robust
generalization beyond seen patterns.

6 Conclusion

Our investigation confirms that fine-tuning GPT-4o
on a custom propositional language not only facil-
itates high-level logical reasoning but also under-
scores the critical role of maintaining relational in-
tegrity within training data. Specifically, our work
shows that using structured translation strategies
significantly enhances model performance. This
improvement is achieved by aligning the training
data with the inherent logical patterns familiar from
the model’s pre-training, allowing GPT-4o to gen-
eralize more effectively, particularly when transi-
tioning from seen to unseen examples.

Furthermore, our analysis highlights that an op-
timally balanced training set is essential: while
increased dataset size improves performance up
to a threshold (around 20,000 examples), addi-
tional data yields diminishing returns, suggesting
the need for more efficient data utilization meth-
ods. These findings not only validate the impor-
tance of structured prompts and contextual cues but
also offer practical guidelines for optimizing LLM

training in both high- and low-resource language
scenarios.

Collectively, our results contribute to a deeper
understanding of how targeted data curation and
translation methodologies can bolster logical rea-
soning in large language models.

7 Future Research

Future work should investigate dataset design prin-
ciples. The high accuracy observed on our unseen
dataset may reflect biases, such as overrepresenta-
tion of certain problem types or cultural premises,
which should be systematically addressed. Synthet-
ically balanced datasets that incorporate tiered com-
plexity levels (e.g., single-step versus multi-step
reasoning) could help disentangle superficial pat-
tern recognition from genuine logical understand-
ing. Additionally, although formatting differences
(e.g., brackets versus colons) did not hinder per-
formance in our study, systematic evaluations of
robustness to syntactic variations are needed to bet-
ter assess adaptability in low-resource settings.

A potential path to explore would be foregoing
fine-tuning GPT-4o on our custom dataset and in-
stead rely on in-context learning. Because GPT-4o
may already have some familiarity with Lean from
its pre-training, one could design a prompt that in-
cludes a few worked examples of Lean problems
alongside a call to an external translator function
that converts Lean input into the custom proposi-
tional language at inference time. Though this may
yield lower accuracy than fine-tuning, it avoids the
cost of creating and maintaining a large translation
corpus. Evaluating GPT-4o in context can reveal
how much of its Lean knowledge can be utilized
through prompt engineering alone.

Further research should focus on optimizing
translation strategies by developing principled ap-
proaches, such as semantic alignment of symbols,
to enhance learnability. At the same time, exploring
data efficiency methods is critical, as our observed
performance plateau at approximately 20,000 train-
ing examples suggests that smarter data utilization
may both reduce data requirements and improve
systematicity.
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A Appendix

Translation Key 1 (25214)
Testing Dataset Accuracy (%) Total Queries Correct Incorrect

Seen Lean (500) - Benchmark 76.66666667 500 383.3333333 116.6666667
1 76.2 500 381 119
2 74.4 500 372 128
3 79.4 500 397 103

Seen Translated (500) 96.4 500 482 18
1 96.4 500 482 18
2 97 500 485 15
3 95.8 500 479 21

Unseen Lean (200) 100 200 200 0
1 100 200 200 0
2 100 200 200 0
3 100 200 200 0

Unseen Translated (200) 97.66666667 200 195.3333333 4.666666667
1 98 200 196 4
2 98 200 196 4
3 97 200 194 6

Translation Key 1 (20000)
Testing Dataset Accuracy (%) Total Queries Correct Incorrect

Seen Lean (500) - Benchmark 76.66667 500 383.3333 116.6667
1 76.2 500 381 119
2 74.4 500 372 128
3 79.4 500 397 103

Seen Translated (500) 96.4 500 482 18
1 96.4 500 482 18
2 97 500 485 15
3 95.8 500 479 21

Unseen Lean (200) 100 200 200 0
1 100 200 200 0
2 100 200 200 0
3 100 200 200 0

Unseen Translated (200) 97.66667 200 195.3333 4.666667
1 98 200 196 4
2 98 200 196 4
3 97 200 194 6

Table 1: Summary table for Translation Key 1 model
evaluation results. The top of each testing dataset shows
the overall average results across three runs. (Part 1/2)
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Translation Key 1 (10000)
Testing Dataset Accuracy (%) Total Queries Correct Incorrect

Seen Lean (500) - Benchmark 76.93333333 500 384.6666667 115.3333333
1 80 500 400 100
2 74.4 500 372 128
3 76.4 500 382 118

Seen Translated (500) 96.86666667 500 484.3333333 15.66666667
1 97.2 500 486 14
2 97.2 500 486 14
3 96.2 500 481 19

Unseen Lean (200) 99.66666667 200 199.3333333 0.666666667
1 99.5 200 199 1
2 99.5 200 199 1
3 100 200 200 0

Unseen Translated (200) 97.33333333 200 194.6666667 5.333333333
1 97.5 200 195 5
2 97.5 200 195 5
3 97 200 194 6

Table 2: Summary table for Translation Key 1 model
evaluation results. The top of each testing dataset shows
the overall average results across three runs. (Part 2/2)

Translation Key 2 (25214)
Testing Dataset Accuracy (%) Total Queries Correct Incorrect

Seen Lean (500) - Benchmark 74.06666667 500 370.3333333 129.6666667
1 74.6 500 373 127
2 72 500 360 140
3 75.6 500 378 122

Seen Translated (500) 94.2 500 471 29
1 92.6 500 463 37
2 96.2 500 481 19
3 93.8 500 469 31

Unseen Lean (200) 64.16666667 200 128.3333333 71.66666667
1 64 200 128 72
2 63.5 200 127 73
3 65 200 130 70

Unseen Translated (200) 89 200 178 22
1 91 200 182 18
2 88 200 176 24
3 88 200 176 24

Table 3: Summary table for Translation Key 2 model
evaluation results. The top of each testing dataset shows
the overall average results across three runs.
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Base GPT-4o - Translation Key 1
Testing Dataset Accuracy (%) Total Queries Correct Incorrect

Seen Lean (500) - Benchmark 73.53333 500 367.66667 132.33333
1 73.4 500 367 133
2 70.4 500 352 148
3 76.8 500 384 116

Seen Translated (500) 23.33333 500 117 383
1 25.2 500 126 374
2 21.6 500 108 392
3 23.2 500 116 384

Unseen Lean (200) 91.83333 200 183.66667 16.33333
1 92 200 184 16
2 91 200 182 18
3 92.5 200 185 15

Unseen Translated (200) 4 200 8 192
1 4 200 8 192
2 4 200 8 192
3 4 200 8 192

Base GPT-4o - Translation Key 2
Testing Dataset Accuracy (%) Total Queries Correct Incorrect

Seen Lean (500) - Benchmark 73.53333 500 367.66667 132.33333
1 73.4 500 367 133
2 76.2 500 381 119
3 71 500 355 145

Seen Translated (500) 26.66667 500 133.33333 366.66667
1 27.4 500 137 363
2 28.2 500 141 359
3 24.4 500 122 378

Unseen Lean (200) 90 200 180 20
1 90 200 180 20
2 90 200 180 20
3 90 200 180 20

Unseen Translated (200) 4.16667 200 8.33333 191.66667
1 3.5 200 7 193
2 4.5 200 9 191
3 4.5 200 9 191

Table 4: Summary table for Base GPT-4o for Translation
Key 1 and Translation Key 2. The top of each testing
dataset shows the overall average results across three
runs.
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Figure 2: Mapping between Lean’s logical symbols and their corresponding representations in our custom proposi-
tional language. (Part 1/2)
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Figure 3: Mapping between Lean’s logical symbols and their corresponding representations in our custom proposi-
tional language. (Part 2/2)
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