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Abstract

State-of-the-art cross-lingual transfer often
relies on massive multilingual models, but
their prohibitive size and computational cost
limit their practicality for low-resource lan-
guages. An alternative is to adapt powerful,
task-specialized monolingual models, but this
presents challenges in bridging the vocabulary
and structural gaps between languages. To
address this, we propose KDA, a Knowledge
Distillation Adapter framework that efficiently
adapts a fine-tuned, high-resource monolingual
model to a low-resource target language. KDA
utilizes knowledge distillation to transfer the
source model’s task-solving capabilities to the
target language in a parameter-efficient man-
ner. In addition, we introduce a novel adapter
architecture that integrates source-language to-
ken embeddings while learning new positional
embeddings, directly mitigating cross-lingual
representational mismatches. Our empirical re-
sults on zero-shot transfer for Vietnamese Sen-
timent Analysis demonstrate that KDA signifi-
cantly outperforms existing methods, offering
a new, effective, and computationally efficient
pathway for cross-lingual transfer. To facilitate
reproducibility and future research, we release
the adapter weights on Hugging Face1.

1 Introduction

Cross-lingual transfer (CLT) is a critical subfield
of Natural Language Processing (NLP) dedicated
to leveraging knowledge from high-resource lan-
guages, typically English, to perform tasks in low-
resource languages. The primary goal is to circum-
vent the expensive data annotation process required
for each new language. The dominant and most suc-
cessful paradigm for CLT has been large-scale mul-
tilingual pre-training. Although these models natu-
rally develop some degree of unified multilingual
representations (Pires et al., 2019; Conneau et al.,

1The adapter weights are publicly available at https://
huggingface.co/haiimphuong/kda-roberta-twitter

2020; Muller et al., 2021), a dedicated line of work
has focused on further adapting them to languages
with different scripts or morphological structures
not well-represented in the shared vocabulary, us-
ing methods like language-specific adapters (Pfeif-
fer et al., 2020; Parović et al., 2022; Zhao et al.,
2025; Borchert et al., 2025). Despite their effec-
tiveness, these approaches are all constrained by a
core limitation of the multilingual backbone: their
massive parameter count leads to prohibitive com-
putational costs, creating a substantial barrier for
many researchers and practitioners.

These challenges motivate the exploration of
more flexible, resource-efficient alternatives, lead-
ing to a compelling research question: Can we
achieve effective CLT without relying on a mas-
sive, pre-trained multilingual model? A promising
avenue is to adapt high-performing, readily avail-
able monolingual models. Prevailing approaches
in this area include Vocabulary Adaptation, which
modifies a model to use a new vocabulary (Liu
et al., 2024; Han et al., 2024; Minixhofer et al.,
2024; Remy et al., 2024), and representation align-
ment methods like Monolingual Embedding Trans-
fer (Artetxe et al., 2020b; Minixhofer et al., 2022;
Zeng et al., 2023; Liu and Niehues, 2025). How-
ever, these methods share a common shortcoming:
they are not directly optimized for the final task in
the target language. Instead, the adaptation phase
optimizes a general objective such as masked lan-
guage modeling, lexicon mapping, or an auxiliary
alignment loss. Even when a downstream task loss
is used (Liu and Niehues, 2025), direct supervision
is only applied on the source language data. Conse-
quently, these methods primarily endow the model
with a general cross-lingual ability, rather than tai-
loring it for optimal performance on a specific end
task.

To address this gap, we propose KDA, a
novel Knowledge Distillation Adapter framework
for direct, task-specific cross-lingual transfer.
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KDA transfers knowledge from a high-performing
source-language teacher model to a student model
that retains the same architecture but incorpo-
rates a new target-language embedding layer and a
lightweight adapter, while reusing all other pre-
trained components. The distillation is further
guided by a small parallel corpus to align cross-
lingual representations effectively. As illustrated in
Figure 1, only the adapter’s parameters are updated
during training. The adapter is optimized to align
the student’s output with the teacher’s. Specifically,
for a given source sentence fed to the teacher, the
adapter learns to make the student produce an iden-
tical task-specific output distribution when given
the corresponding target sentence. This approach
efficiently adapts the model to the new language
and task by updating only a small fraction of its
total parameters.

To validate our approach, we demonstrate the
effectiveness of KDA on a cross-lingual sentiment
analysis task. Specifically, we transfer knowledge
from a fine-tuned English sentiment model to per-
form sentiment analysis in Vietnamese without re-
quiring any annotated Vietnamese data. Our exper-
iments show that KDA outperforms both large mul-
tilingual models and recent monolingual adaptation
methods. Notably, KDA achieves this superior per-
formance while using a smaller backbone language
model, highlighting the efficiency and effectiveness
of optimizing directly on the downstream task in
the target language.

2 Related Work

2.1 Monolingual Adaptation Methods

A widely used approach for cross-lingual adap-
tation is Machine Translation (MT), which in-
volves either translating the test inputs into the
source language (translate-test) or translating the
source-language training data into the target lan-
guage (translate-train) (Conneau et al., 2018b; Hu
et al., 2020). While effective in certain settings,
this strategy heavily depends on the quality of the
translation system and often suffers from transla-
tion artifacts and additional computational over-
head (Artetxe et al., 2020a), potentially limiting its
robustness and scalability.

As an alternative, recent research has shifted to-
ward parameter-efficient methods that avoid trans-
lation altogether by adapting model components
directly for the target language. Parameter-efficient
alternatives avoid these issues by modifying only

a small parameter subset, typically the embedding
layer, to incorporate a new language. Methodolo-
gies include retraining the embedding layer with
a Masked Language Modeling (MLM) objective
(Artetxe et al., 2020b), initializing new vocabular-
ies from external resources like static embeddings
or lexicons (Minixhofer et al., 2022; Zeng et al.,
2023), or factorizing the embedding matrix (Liu
et al., 2024). More advanced methods explicitly
align token-level representations across languages
using statistical translation models (Remy et al.,
2024) or hyper-networks (Minixhofer et al., 2024)
to generate new embeddings. Despite differing in
their use of external resources, these parameter-
efficient methods share the same core goal as ours:
extending monolingual models to new languages
with minimal architectural changes. Our approach
builds on this principle while introducing a task-
specific cross-lingual transfer mechanism that re-
mains both efficient and adaptable.

2.2 Knowledge-Distillation Methods

Knowledge distillation has proven effective for
cross-lingual transfer, with prior work extending
it to multilingual sentence embeddings (Reimers
and Gurevych, 2020) and cross-lingual informa-
tion retrieval (Li et al., 2022), often relying on
translated data or large unlabeled corpora. Other
variations include minimal-resource approaches
that use small lexicons to induce weak teachers
for seed supervision (Karamanolakis et al., 2020),
or adopt multi-stage pipelines that distill general
cross-lingual knowledge before task-specific adap-
tation (Ansell et al., 2023). In contrast, our method
introduces a novel, resource-minimal perspective
that eliminates the need for external multilingual
models, lexicons, or pre-aligned embeddings. It
relies solely on the target language’s embeddings
and a lightweight adapter to enable direct, task-
specific knowledge transfer, providing a simple yet
effective solution for low-resource cross-lingual
adaptation.

2.3 Adapter-Based Methods

Adapter-based frameworks enable modular cross-
lingual transfer by inserting specialized modules
into a multilingual model. The MAD-X frame-
work, for example, uses separate language and task
adapters (Pfeiffer et al., 2020), while subsequent
work improved performance by using bilingual
adapters (Parović et al., 2022) or by exposing task
adapters to target-language modules during train-
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Figure 1: The KDA framework. The “teacher” model generates predictions for a source sentence. In parallel, a
“student” model, which shares the teacher’s backbone but has its own target-language embedding and a trainable
adapter, processes the corresponding target sentence. The lightweight adapter is the sole component optimized
during training, tasked with bridging the linguistic gap between target-source language.

ing to boost zero-shot capabilities (Parovic et al.,
2023).

Recent advances focus on adapter composition,
such as fusing language representations within
LoRA bottlenecks (Borchert et al., 2025) or adap-
tively merging task and language adapters based on
structural alignment (Zhao et al., 2025), both sur-
passing standard fusion baselines. Inspired by these
approaches, our work introduces a new adapter ar-
chitecture that bridges both vocabulary and struc-
tural inter-language gaps to create a more efficient
cross-lingual pipeline.

3 Methodology

3.1 Task-Specific Distillation

This section details our framework for adapting a
pre-trained, source-language model to perform a
downstream task in a new target language. The
primary challenge is bridging the representational
gap between the two languages. This requires trans-
forming target-language inputs into a format that
the monolingual model can meaningfully compre-
hend, as even minor representational discrepancies
can lead to a complete misinterpretation and incor-
rect output.

While prior work has addressed this challenge
by evaluating intermediate cross-lingual alignment
using metrics such as embedding similarity or rep-
resentation space overlap (Conneau et al., 2018a,b;
Artetxe and Schwenk, 2019; Ham and Kim, 2021),

such metrics are only indirect indicators of transfer
quality. In contrast, our approach sidesteps reliance
on intermediate alignment and instead focuses on
directly optimizing for task-specific performance
in the target language.

Specifically, as illustrated in Figure 1, we pro-
pose a knowledge distillation framework to adapt
a pre-trained monolingual model (referred to as
the teacher) to the target language. This is accom-
plished using a parallel corpus of source-target sen-
tence pairs (si, ti), allowing the model to learn di-
rectly from task-specific outputs while preserving
the architecture of the original model.

For each source sentence si, the teacher model -
a language model with a conventional embedding
layer and backbone - processes the input to gen-
erate a prediction distribution yt

i , which captures
the model’s task-specific knowledge in the source
language. Unlike prior approaches that rely on in-
termediate representation alignment, our method
directly distills this final output distribution. This
enables the student model to learn both linguistic
and task-level behavior, allowing for more precise
and effective cross-lingual transfer.

Concurrently, for each corresponding target sen-
tence ti, the student model utilizes a pre-existing
target-language embedding layer and a lightweight
adapter module, sharing the frozen teacher back-
bone. The target sentence ti is first embedded,
then passed to the adapter. The adapter’s func-
tion is to map the target-language representation
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Figure 2: The KDA adapter architecture. Its function is to bridge the linguistic gap between the source and target
languages via two key components: (b) a cross-attention block that integrates the teacher’s token embeddings to
align the target representation with the source vocabulary space, and (c) a self-attention block that injects relative
positional information using Rotary Position Embeddings (RoPE).

into the latent space of the teacher’s backbone.
This adapted representation is then fed through the
teacher frozen backbone to generate the student’s
prediction ys

i , which is trained to align with the
teacher’s output yt

i .
Training Protocol: The adapter parameters θ are
optimized by minimizing the cross-entropy loss be-
tween the teacher and student output distributions
in Equation 1.

L = −
N∑

i=1

yt
i logy

s
i (1)

While knowledge distillation often employs a
combination of LCE and Kullback-Leibler (KL)
divergence loss (as in (Hinton et al., 2015)), our pre-
liminary experiments indicated that utilizing solely
LCE led to better performance on downstream eval-
uation benchmarks. Therefore, we adopted LCE as
the sole optimization objective. During training, all
components of the teacher model and the student’s
embedding layer are kept frozen. The adapter is the
only trainable module and is implicitly guided to
transform target-language embeddings into a latent
representation compatible with the frozen teacher
backbone, achieving functional alignment through
end-to-end supervision.

3.2 Adapter Architecture

After the target-language token embeddings are
generated, we introduce an adapter to transform
these embeddings into a representation compati-
ble with the teacher model’s backbone input space.
Traditionally, conventional adapter architectures
used in cross-lingual transfer typically consist of
a down-projection, nonlinearity, and up-projection
combined with residual connections (Houlsby et al.,
2019; Pfeiffer et al., 2020; Parović et al., 2022).
These approaches, however, are insufficient for our
specific cross-lingual transfer scenario. Firstly, it
lacks information about the source language, which
is essential for accurately mapping the target rep-
resentation to the source representation. Secondly,
it fails to explicitly model the distinct positional
dependencies inherent to different languages - a
critical aspect for language models.

To address these limitations, our proposed
adapter architecture, illustrated in Figure 2, in-
corporates two key modifications. We introduce
a cross-attention mechanism to dynamically inte-
grate the teacher-model’s token embedding matri-
ces during the alignment process. Furthermore, a
self-attention block, enhanced with Rotational Po-
sitional Embeddings (RoPE) (Su et al., 2024), is
included to effectively encode positional informa-
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tion through rotation matrices.
Specifically, the input is initially processed

through a feed-forward layer and a subsequent
dropout layer. The resulting tensor, denoted
as x0, then passes through a Cross-Attention
block and a LayerNorm layer. A residual
connection is employed around this operation,
yielding an intermediate output x1 = x0 +
LayerNorm(CrossAttentionBlock(x0)). This out-
put x1 is subsequently processed by a Self-
Attention block, where a second residual connec-
tion is applied to produce the adapter’s final output,
calculated as x1 + SelfAttentionBlock(x1).
Cross-Attention Block: This module integrates
token-embedding information from the source
(teacher) model. The query (Q) vector is derived
from the input of the preceding layer, while the
key K and value V are obtained from the teacher
model’s embedding matrix.

To mitigate the computational cost associated
with the large teacher embedding matrix, dimen-
sionality reduction techniques were employed. An
empirical comparison between Singular Value De-
composition (SVD) and Principal Component Anal-
ysis (PCA) was conducted, and SVD was selected
due to its substantially faster compression time
while maintaining comparable downstream task
performance.

Consequently, the teacher embedding matrix un-
dergoes SVD; the top r singular components are
retained to form a low-rank basis. This compressed
matrix is projected to produce K and V. The re-
sulting K and V, along with Q, are input to a
multi-head attention mechanism, followed by a
feed-forward network.
Self-Attention Block: Positional information is
encoded via a self-attention mechanism augmented
with Rotary Position Embedding (RoPE). The input
is linearly projected into query, key, and value vec-
tors through parallel feed-forward layers. RoPE
is applied to the query and key vectors to cap-
ture positional dependencies, after which atten-
tion weights are computed. The resulting output
is passed through a sequence comprising Layer
Normalization, a feed-forward transformation, and
Dropout to produce the final representation.

4 Experiments

4.1 Datasets

Task and Language Setting: We focus on zero-
shot cross-lingual sentiment analysis, using English

as the source language with labeled training data
and Vietnamese as the target language without sen-
timent annotations. Cross-lingual transfer is per-
formed using a parallel English-Vietnamese corpus,
with no annotation in Vietnamese sentiment.

The parallel training corpus was constructed
from two sources: the PhoMT dataset (Doan et al.,
2021), a large-scale Vietnamese-English parallel
corpus, and the Vietnamese Hate Speech Detection
(VOZ-HSD) dataset. For the VOZ-HSD dataset,
we utilized only the Vietnamese text and gener-
ated corresponding English translations using the
DeepSeek-V3 model (DeepSeek-AI et al., 2024).

To address label imbalance, sentiment predic-
tions were first generated on the parallel corpus
using the teacher model. The data was then sam-
pled to ensure a balanced distribution of positive,
neutral, and negative classes, reducing bias during
student training. Detailed statistics of the resulting
dataset are shown in Table 1.

Dataset Negative Neutral Positive
PhoMT 75,000 75,000 75,000
VOZ-HSD 25,000 25,000 25,000

Table 1: Sentiment label distribution of the training
data. Note: These are pseudo-labels generated by the
teacher model. The dataset was then sampled to mitigate
potential training bias from the teacher’s predictions.

To assess the effectiveness of our approach, we
evaluate it on five Vietnamese sentiment analysis
datasets including UIT-VSFC (Nguyen et al., 2018),
ViOCD (Nguyen et al., 2021), VLSP (Nguyen
et al., 2019), AIVIVN (Cocoz, 2019) and NTC-
SCV (Nghia, 2020). These datasets encompass
a variety of domains, text lengths, and contexts,
allowing for a comprehensive assessment of our
model’s robustness.

Dataset Negative Neutral Positive
UIT-VSFC 1,409 167 1,590
ViOCD 279 – 270
VLSP 350 350 350
AIVIVN 4,796 – 5,298
NTC-SCV 5,000 – 5,000

Table 2: Distribution of sentiment labels in the evalua-
tion dataset.

4.2 Baselines
We compare our proposed method against several
competitive approaches that fall into four main cat-
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egories of cross-lingual transfer.
Machine Translation Strategy: As a compet-
itive baseline, we adopt the translate-test ap-
proach (Ponti et al., 2021; Artetxe et al., 2023),
where Vietnamese test data is translated into En-
glish using the Google Translate API. The trans-
lated inputs are then evaluated using two mod-
els: RoBERTaTweet (Barbieri et al., 2020), denoted
as MTR, and GPT2Twitter (Pandey, 2024), de-
noted as MTG. This setup enables direct com-
parison between our embedding-level adaptation
and sentence-level translation-based methods.
Multilingual Model Fine-tuning: A foundational
approach in cross-lingual transfer involves fine-
tuning a massively multilingual pretrained model
(MMPM) on a downstream task. In this setting, we
evaluate two such baselines as comparative refer-
ences.

• XLM-Rtwitter: To establish a zero-shot base-
line, we use the XLM-R model (Conneau
et al., 2020), pre-trained on a 100-language
CommonCrawl dataset (Wenzek et al., 2020).
The model is then fine-tuned on an English-
only Twitter sentiment dataset (Barbieri et al.,
2022) and evaluated on the Vietnamese test set.
This final step is performed in a zero-shot man-
ner to assess its baseline cross-lingual transfer
capabilities.

• mDeBERTaNLI: We utilize mDeBERTa (He
et al., 2020), a powerful multilingual model
fine-tuned on large-scale Natural Language
Inference (NLI) datasets (Laurer et al., 2024).
Following a zero-shot classification setup, the
model is adapted for sentiment analysis with-
out further training. For each input Viet-
namese sentence (the premise), we frame the
sentiment labels (Positive, Negative, Neutral)
as hypotheses and use the model to predict
which hypothesis is entailed by the premise.

Adapter-based Multilingual Transfer: This cat-
egory includes methods that employ adapters for
cross-lingual transfer, similar in structure to our ap-
proach. The key difference is that these baselines
utilize a multilingual pretrained model (MMPM)
already exposed to the target language, whereas
our method adapts a monolingual model. We use
XLM-R (Conneau et al., 2020) as the multilingual
backbone for the following approaches:

• MAD-XXLM-R: Following the framework
proposed by (Pfeiffer et al., 2020), we utilize

a pretrained Vietnamese Language Adapter
from AdapterHub. Since a suitable task
adapter for 3-label sentiment analysis was un-
available, we reproduced a new one on the
English Dynasent dataset (Potts et al., 2021).
Zero-shot transfer is then performed by com-
bining the Vietnamese language adapter with
the English sentiment task adapter.

• AdaMergeXXLM-R: As proposed by (Zhao
et al., 2025), this method requires three
adapters for its merging strategy. We config-
ure its setup with: 1) an English language
adapter trained on 200,000 samples from
the cc-news dataset (Hamborg et al., 2017),
2) a Vietnamese language adapter trained
on 200,000 samples from the cc-100 corpus
(Wenzek et al., 2020), and 3) a task adapter
trained on 40,000 English sentiment sam-
ples from the TweetEval benchmark (Barbieri
et al., 2020).

• FLAREXLM-R: We implement the FLARE
framework (Borchert et al., 2025), which in-
tegrates translation components. The English
sentiment fine-tuning is performed on the Dy-
nasent (Potts et al., 2021) dataset, and the
NLLB model (Team et al., 2022) is used for
all translation operations.

Tokenizer Replacement: Finally, we evaluate
against ZeTT (Minixhofer et al., 2024), a method
that adapts a pretrained language model to a new
language by replacing its tokenizer. To create a
strong baseline for our Vietnamese experiments,
we apply this methodology to XLM-Rtwitter (Bar-
bieri et al., 2022), a multilingual model that has
been trained on approximately 198M tweets and
fine-tuned for sentiment analysis. Specifically,
we replace the original tokenizer of XLM-Rtwitter

with one derived from PhoBERT (Nguyen and
Tuan Nguyen, 2020), a powerful monolingual
BERT model for Vietnamese. We refer to this base-
line as ZeTTXLM-Rtwitter

.

4.3 KDA: Experimental Setup
Model and Components Unless otherwise spec-
ified, our KDA leverages a RoBERTaTweet model
as the English-language backbone (Barbieri et al.,
2020). The Vietnamese embedding layer is initial-
ized from the token embedding layer of PhoBERT,
a robust monolingual model for Vietnamese. This
configuration is referred to as KDAR. The central
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Parameter Value
Architecture

Input Embedding Dimension 768
Output Embedding Dimension 768
Intermediate FFN Dimension 768
Attention Heads (Cross and Self Attention) 8
Positional Encoding (Self-Attn) RoPE
PFFN Activation Function ReLU
Linear Layer Initialization Xavier Uniform
Bias Initialization 0.0
Mapper Dropout Rate 0.1

Training
Optimizer Adam
Learning Rate 1× 10−4

Batch Size 128
Max Sequence Length 100
Max Epochs 20
Early Stopping Patience 3 (epochs)
Gradient Clipping Norm 1.0
Loss Function Cross Entropy

Table 3: Hyperparameter configuration for the KDA
architecture and training process.

component of our method is a lightweight adapter
module trained on a parallel corpus (Table 1). Cru-
cially, the proposed KDA framework is model-
agnostic, allowing for its application to various pre-
trained architectures. We demonstrate this versatil-
ity by integrating it with GPT2Twitter to create the
KDAG variant, with empirical results presented
in Section 5. In the KDAR configuration, the orig-
inal RoBERTa embedding matrix (50257×768) is
compressed to a fixed-size 768×768 representation.
Both the English and Vietnamese embedding lay-
ers share a hidden size of 768, ensuring consistent
dimensionality at the adapter’s input and output.
The adapter incorporates both self-attention and
cross-attention mechanisms, each with 8 attention
heads. Overall, the adapter contains approximately
6.4 million trainable parameters. A complete sum-
mary of architectural and training hyperparameters
is provided in Table 3.
Training Procedure The adapter module was
trained for 15 epochs with a batch size of 128. We
used the AdamW optimizer with a learning rate of
1× 10−4.
Evaluation Strategy Accuracy and F1-score are
reported across all five evaluation datasets. A key
challenge lies in label set mismatch, as the back-
bone model produces three-way predictions (pos-
itive, negative, neutral), while some evaluation
datasets are binary (positive and negative only), as
shown in Table 2. To ensure consistency, the logit
corresponding to the neutral class is removed dur-
ing inference, and the final prediction is assigned
based on the higher logit between the positive and

negative classes.

5 Results and Discussion

The comprehensive performance of our KDA
method in comparison to all baselines is summa-
rized in Table 4. We discuss these findings below.

5.1 Performance of KDA in Cross-lingual
Transfer

For clarity, all subsequent results for KDA are
based on the RoBERTaTweet backbone, unless
stated otherwise. This primary configuration is
labeled as KDAR in Table 4.
KDA outperforms translation methods When
compared to approaches that rely on machine trans-
lation, KDAR demonstrates a substantial average
improvement of 8% in accuracy and 7% in F1-
score across the five Vietnamese sentiment analysis
benchmarks. This result strongly suggests that per-
forming adaptation directly at the embedding level
is a more robust strategy than sentence-level trans-
lation. By bypassing an intermediate translation
step, our method avoids the risk of propagating
translation errors and better preserves the semantic
nuances critical for sentiment analysis.
KDA outperforms multilingual-based methods
KDAR also establishes a new level of performance
over conventional multilingual models. It achieves
an average improvement of 4% in accuracy and
2% in F1-score over XLM-Rtwitter and a more sig-
nificant 6% accuracy and 5% F1-score gain over
mDeBERTaNLI . This outcome supports the hy-
pothesis that large multilingual models, despite
their broad language coverage, may suffer from
the ‘curse of multilinguality’ (Wu and Dredze,
2020), where model capacity is diluted across many
languages. In contrast, our approach, which spe-
cializes a strong monolingual backbone for a spe-
cific language pair, yields a more potent and task-
focused representation.
KDA outperforms adapter-based methods
Within the family of adapter-based methods, KDA
demonstrates clear advantages. It surpasses strong
baselines including MAD-XXLM−R (by 8% ac-
curacy and 7% F1), AdaMergeXXLM−R (2% ac-
curacy and 2% F1), and FLAREXLM−R (2% ac-
curacy and 4% F1). We attribute this superior
performance to our adapter’s architecture, which
incorporates more sophisticated mechanisms for
knowledge transfer. Specifically, the use of cross-
attention allows for a richer integration of syntactic
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Method Accuracy F1

VSFC ViOCD VLSP AIVIVN NTC-SCV Avg VSFC ViOCD VLSP AIVIVN NTC-SCV Avg

Translation Methods

MTG 0.51 0.73 0.59 0.86 0.72 0.68 0.61 0.73 0.59 0.86 0.70 0.70

MTR 0.61 0.77 0.60 0.87 0.75 0.72 0.69 0.77 0.60 0.87 0.74 0.73

Multilingual-based methods

XLM-Rtwitter 0.62 0.84 0.62 0.90 0.80 0.76 0.70 0.84 0.62 0.90 0.80 0.78

mDeBERTaNLI 0.57 0.79 0.57 0.89 0.86 0.74 0.63 0.79 0.57 0.89 0.86 0.75

Adapter-based methods

MAD-XXLM−R 0.54 0.82 0.57 0.87 0.80 0.72 0.62 0.82 0.56 0.87 0.79 0.73

AdaMergeXXLM−R 0.71 0.84 0.61 0.91 0.83 0.78 0.76 0.84 0.58 0.91 0.83 0.78

FLAREXLM−R 0.67 0.85 0.66 0.89 0.83 0.78 0.57 0.85 0.66 0.89 0.83 0.76

Tokenizer Transfer

ZeTTXLM-Rtwitter
0.63 0.84 0.60 0.91 0.81 0.76 0.70 0.84 0.60 0.91 0.81 0.77

Proposed KDA methods

KDAG 0.59 0.80 0.63 0.93 0.83 0.76 0.64 0.80 0.63 0.93 0.83 0.78

KDAR 0.72 0.85 0.62 0.93 0.84 0.80 0.76 0.85 0.60 0.93 0.84 0.80

Table 4: Performance comparison of KDA against baseline models on the cross-lingual transfer task, with results
reported in F1 and Accuracy. The best score is in bold while the second-best is underlined. Note that our KDA
framework utilizes a monolingual model, whereas all baselines (except for the translation method) are built upon
larger, multilingual models. The Avg column shows the average performance across all 5 datasets.

Accuracy F1
VSFC ViOCD VLSP AIVIVN NTC-SCV Avg VSFC ViOCD VLSP AIVIVN NTC-SCV Avg

Linear 0.66 0.79 0.59 0.87 0.75 0.73 0.65 0.78 0.58 0.87 0.76 0.73
Linear + Self-Attention Block 0.70 0.81 0.60 0.88 0.77 0.75 0.70 0.79 0.59 0.87 0.77 0.74
Linear + Cross-Attention Block 0.70 0.82 0.60 0.91 0.80 0.77 0.72 0.81 0.59 0.91 0.80 0.77
KDAR 0.72 0.85 0.62 0.93 0.84 0.80 0.76 0.85 0.60 0.93 0.84 0.80

Table 5: Ablation study for KDAR adapter. “Linear” indicates a single linear layer used for projection; self-attention
and cross-attention blocks follow Section 3.2.

information from the English teacher model, while
RoPE provides a more effective way to encode
positional information.

KDA outperforms Tokenizer Transfer methods
On average, across five datasets, KDAR achieves
4% accuracy and 3% F1 improvement compared
with ZeTTXLM-Rtwitter

. This proves that our pro-
posed method can leverage the capabilities of pre-
trained language models, which have been trained
on the target task, much more efficiently than meth-
ods that apply tokenizer transfer techniques.

Parameter Efficiency A significant practical ad-
vantage of KDA is its parameter efficiency. Our
complete model consists of approximately 130 mil-
lion parameters. In contrast, the multilingual back-
bones used by many competing methods, such as
XLM-R and mDeBERTa are substantially larger
at 279 million parameters. KDAR achieves supe-
rior performance while utilizing less than half the
parameters of these large models. This computa-
tional efficiency is a crucial benefit, particularly for

deployment in low-resource environments.

5.2 Robustness of KDA Across Backbone
Variants

To demonstrate that the KDA framework is model-
agnostic, we employed another strong pre-trained
sentiment model, GPT2Twitter as the foundation
for our method. We denote this variant as KDAG,
In this new setup, KDAG continues to perform
exceptionally well, particularly when compared
against a translation baseline that also leverages
the GPT2Twitter (MTG). Our method, KDAG,
achieved a significant improvement of 8% in both
accuracy and F1-score over the translation-based
approach. This consistent outperformance with a
different underlying architecture suggests that the
benefits of the KDA framework are not tied to a
specific pre-trained model.

5.3 Ablation Study
We ablate the adapter design in KDAR by progres-
sively adding a self-attention block and a cross-
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Figure 3: Effect of training-set size on KDAR performance across five evaluation datasets. Models are trained on
subsets of PhoMT (Doan et al., 2021); at each size, label balance is preserved as in Section 4.1. The Avg line shows
the average performance across all 5 datasets.

attention block on top of a single linear layer (re-
sults are illustrated in Table 5). Across datasets, ev-
ery component contributes. A linear-only adapter is
already competitive (averaging 0.73 accuracy and
0.73 F1), making it attractive when latency or cost
is the primary constraint. Adding a self-attention
block yields a modest but consistent gain (+2% ac-
curacy and +1% F1 on average vs. linear), indicat-
ing that modeling positional interactions within the
adapter helps. Replacing that with a cross-attention
block provides a larger boost (+4% accuracy and
+4% F1 on average), highlighting the value of con-
ditioning on the teacher model’s embedding matrix.
The full adapter (linear + self + cross) achieves
the best results overall (+7% accuracy and +7% F1
on average vs. linear), with particularly notable
improvements on AIVIVN and NTC-SCV.

5.4 Corpus Size Experiment

We examine how training corpus size affects
KDAR. Figure 3 plots performance versus the num-
ber of training examples. KDAR learns quickly
and plateaus by ∼300k samples; beyond this point,
additional data yields only marginal gains. This
indicates strong sample efficiency but an early sat-
uration.

We posit three likely causes: (i) domain
homogeneity-PhoMT is dominated by formal
sources (Wikipedia, TED talks, news) and under-
represents informal, everyday language (e.g., slang,
social media); (ii) a teacher ceiling-KDAR may
already distill most of the useful signal available
from the teacher at this scale; and (iii) limitations of
the current training recipe may blunt returns from
larger datasets. A systematic follow-up: broaden-
ing domain coverage, evaluating stronger teachers,

and revisiting scaling is left to future work.

6 Conclusion

In this work, we propose KDA, a novel and
parameter-efficient framework for cross-lingual
transfer that enables the use of monolingual pre-
trained models in new target languages with-
out requiring large multilingual backbones or ex-
tensive cross-lingual resources. By combining
a knowledge distillation process with a novel,
embedding-aware adapter architecture, KDA of-
fers a parameter-efficient pathway for adapting
high-resource models to low-resource languages.
Through comprehensive experiments on Viet-
namese sentiment analysis, KDA demonstrates sub-
stantial improvements over multilingual fine-tuning
and translation-based baselines, achieving compet-
itive performance with a fraction of the trainable
parameters. These results underscore the novelty
and practicality of KDA as a scalable solution for
low-resource language adaptation.
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Limitations

Our experiments are conducted primarily on mod-
els with approximately 150 million parameters, re-
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flecting practical computational constraints. While
this setup demonstrates the efficiency and effec-
tiveness of KDA in resource-constrained environ-
ments, further evaluation on larger-scale models
remains an important avenue for future research.
Such experiments may provide deeper insights into
the scalability and upper-bound performance of the
framework.

Additionally, KDA is currently designed to op-
erate in a per-language-pair setting, requiring a
dedicated adapter for each source-target pair. This
design introduces a trade-off between scalability
and task specialization. Although less scalable
than approaches that fine-tune a single multilingual
model across multiple languages, KDA offers a
more focused and optimized solution for specific
transfer directions. This aligns with real-world
scenarios where maximizing performance for a par-
ticular low-resource language is the primary goal.
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Vulić. 2024. Zero-shot tokenizer transfer. arXiv
preprint arXiv:2405.07883.

Benjamin Muller, Yanai Elazar, Benoît Sagot, and
Djamé Seddah. 2021. First align, then predict: Un-
derstanding the cross-lingual ability of multilingual
BERT. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 2214–2231,
Online. Association for Computational Linguistics.

Nghia. 2020. Ntc-scv: Vietnamese sentiment classifica-
tion dataset. GitHub.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
PhoBERT: Pre-trained language models for Viet-
namese. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1037–1042,
Online. Association for Computational Linguistics.

Huyen T M Nguyen, Hung V Nguyen, Quyen T Ngo,
Luong X Vu, Vu Mai Tran, Bach X Ngo, and
Cuong A Le. 2019. Vlsp shared task: Sentiment
analysis. Journal of Computer Science and Cyber-
netics, 34(4):295–310.

Kiet Van Nguyen, Vu Duc Nguyen, Phu X. V. Nguyen,
Tham T. H. Truong, and Ngan Luu-Thuy Nguyen.
2018. Uit-vsfc: Vietnamese students’ feedback cor-
pus for sentiment analysis. In 2018 10th Interna-
tional Conference on Knowledge and Systems Engi-
neering (KSE), pages 19–24. IEEE.

Nhung Thi-Hong Nguyen, Phuong Phan-Dieu Ha,
Luan Thanh Nguyen, Kiet Van Nguyen, and Ngan
Luu-Thuy Nguyen. 2021. Vietnamese complaint
detection on e-commerce websites. Preprint,
arXiv:2104.11969.

Rituraj Pandey. 2024. gpt2-sentiment-analysis-tweets.
https://huggingface.co/riturajpandey739/
gpt2-sentiment-analysis-tweets.

Marinela Parovic, Alan Ansell, Ivan Vulić, and Anna
Korhonen. 2023. Cross-lingual transfer with target
language-ready task adapters. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 176–193, Toronto, Canada. Association for
Computational Linguistics.
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