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Abstract

Temporal relation classification (TRC) de-
mands both accuracy and temporal consis-
tency in event timeline extraction. Encoder-
based models achieve high accuracy but in-
troduce inconsistencies because they rely on
pairwise classification, while LLMs leverage
global context to generate temporal graphs,
improving consistency at the cost of accu-
racy. We assess LLM prompting strategies
for TRC and their effectiveness in assisting
encoder models with cycle resolution. Re-
sults show that while LLMs improve consis-
tency, they struggle with accuracy and do not
outperform a simple confidence-based cycle
resolution approach. Our code is publicly
available at: https://github.com/MatufA/
timeline-extraction.

1 Introduction

Extracting event timelines from text is a key natural
language processing (NLP) task, organizing events
chronologically based on their relative occurrence
rather than absolute timestamps. A broader defini-
tion by (Ocal et al., 2024) describes a timeline as a
data structure that arranges events and times in a to-
tal order. Timelines have a wide range of practical
applications, even when considering events alone.
For instance, Bakker et al. (2024) demonstrated
how timelines can be used to process government
decision letters, extracting and organizing events
for improved understanding. Another example is
in the medical domain (Sezgin et al., 2023): given
a patient’s textual medical record—or a collection
of such records—it becomes valuable to extract a
timeline of relevant medical events to summarize
and visualize their journey. Timeline extraction
typically involves five steps: (1) event detection,
identifying relevant events, often treating all verbs
as events; (2) anchoring, selecting events for com-
parison; (3) temporal relation classification (TRC),
assigning relations to pairs; (4) graph construc-

tion, combining pairwise relations into a temporal
graph; and (5) timeline extraction, deriving a time-
line from the graph.

Various methods have been proposed for extract-
ing timelines from temporal graphs (Mani et al.,
2006; Do et al., 2012; Kolomiyets et al., 2012; Xue
and Zhang, 2018). Recently, Ocal et al. (2024)
proposed a method for extracting event timelines
from documents annotated with the full TimeML
scheme (Sauri et al., 2006), which defines 13 tem-
poral relation types. However, modeling all 13
relations is complex and often results in temporal
inconsistencies.

To address the complexity of TimeML’s full re-
lation set, several datasets focus on simplified sub-
sets. A widely used resource for TRC is MATRES
(Ning et al., 2018b), which reduces the relation
types to three deterministic labels—before, after,
and equals—along with a vague category for un-
certain cases. These labels are assigned to a subset
of all possible event pairs, a design choice intended
to improve annotation consistency and reduce am-
biguity.

Despite this simplification, temporal inconsis-
tencies can still arise, particularly with models fol-
lowing a pairwise approach: predicting relations
independently for each event pair without consid-
ering previously predicted labels. For example, a
model might predict: A before B, B before C, and
mistakenly, A after C. The last relation contradicts
the others and creates a temporal cycle, which com-
plicates efforts to derive a consistent, linear event
timeline. A real instance of such a cycle, predicted
on a MATRES document, is illustrated in Figure 1.

Large language models (LLMs) have achieved
state-of-the-art performance across many NLP
tasks. However, previous studies (Roccabruna
et al., 2024) have shown that generative LLMs
underperform compared to encoder-based models
on the TRC task as defined in MATRES. The ad-
vantage of LLMs lies in their ability to encode
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document-wide information flexibly, which enables
them to generate an entire temporal graph in a sin-
gle step. This capability, recently termed global
TRC, offers the potential to reduce temporal in-
consistencies by considering all event pairs jointly.
Building on prior work in TRC, non-fine-tuned gen-
erative LLMs still lag behind smaller supervised
models that follow the pairwise approach. How-
ever, LLMs’ ability to generate the entire temporal
graph in a single inference step offers a key advan-
tage: the potential to reduce temporal inconsisten-
cies, a common issue in pairwise models.

Therefore, in this work we make two main con-
tributions:

* We study the performance of generative LLMs
in extracting temporal graphs. Specifically,
we focus on the trade-off between pairwise
classification accuracy and the rate of tempo-
ral inconsistencies (e.g., cycles) in the result-
ing graph. Using the MATRES dataset, we
explore different approaches to prompt design
under various input and output conditions.

» Additionally, we propose a hybrid approach
that combines a generative LLM with a stan-
dard supervised encoder to improve accuracy
while mitigating cycles in the temporal graph.

2 Related work

Temporal relation classification has primarily
been addressed using fine-tuned, relatively small
encoder-based language models, typically follow-
ing a pairwise approach in which each event pair is
labeled independently.

A key limitation of the pairwise approach is its
tendency to produce globally inconsistent outputs.
Since these models make independent predictions
for each pair of events, they do not take previ-
ously predicted labels into account during infer-
ence. This lack of global awareness can result in
contradictions, such as temporal cycles, which un-
dermine the coherence of the predicted temporal
structure and ultimately hinder accurate timeline
construction. Despite this limitation, numerous
well-established encoder-based methods have been
proposed to tackle pairwise TRC. These include
approaches that leverage contextualized representa-
tions and joint inference strategies to improve local
and global consistency (Han et al., 2021; Zhou
et al., 2021; Ning et al., 2019; Mathur et al., 2021;
Wang et al., 2022, 2023; Zhang et al., 2022; Zhou

et al., 2022; Man et al., 2022; Cohen and Bar, 2023;
Niu et al., 2024). While these models have con-
tributed significantly to the field, the challenge of
maintaining globally coherent temporal graphs re-
mains a central concern in temporal relation classi-
fication.

Early efforts such as Ning et al. (2019) intro-
duced a structured framework for TRC by refining
the task with better contextual representations and
curated evaluation protocols. Subsequent work ex-
panded this by incorporating global constraints,
as in Mathur et al. (2021), which applied joint
inference to enforce temporal consistency across
event graphs. Similarly, Han et al. (2021) proposed
EcoNet, which leveraged event graph structures
and global coherence to improve document-level
temporal reasoning.

Domain-specific applications have also driven in-
novation in TRC, particularly in the clinical domain.
Zhou et al. (2021) addressed the challenges of TRC
in clinical texts, which often involve fragmented
or incomplete narratives. Their work demonstrated
that specialized models and annotation schemes are
necessary to adapt general TRC methods to the clin-
ical setting. (Cohen and Bar, 2023), reframed TRC
as a Boolean question answering task. By train-
ing a RoBERTa model on Yes/No questions formu-
lated based on the annotation guidelines, they effec-
tively simulated the human annotation process and
achieved state-of-the-art results on the MATRES
dataset. More recent work by Niu et al. (2024)
introduced ContEMPO, a large-scale benchmark
for document-level temporal reasoning, combining
distant supervision and LLM-based annotation to
enhance the breadth and realism of training data.

Several recent studies have also focused on ex-
tracting temporal structures beyond pairwise rela-
tions. Wang et al. (2022) and Wang et al. (2023)
explored the prediction of document creation times
(DCT) and global temporal graphs, respectively,
highlighting the importance of temporal anchor-
ing in narrative understanding. Zhang et al. (2022)
and Zhou et al. (2022) also tackled full timeline
construction, proposing models that jointly iden-
tify events and infer their temporal relationships,
often integrating external knowledge or reasoning
modules.

With LLMs becoming state-of-the-art in many
tasks and offering more flexible input handling in a
zero-shot setting, recent studies have explored dif-
ferent ways to use them for TRC, both in pairwise
and global settings.
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Barack Obama would make...Traditionally, the (intentionally) funny lines by our presidents have had one
thing in common: They were self-deprecating. Sure, some presidents have [EVENT5]used[/EVENT5]
jokes to take jabs at their opponents, but not to the extent of Obama. During his tenure, he has
increasingly [EVENT8]unleashed[/EVENTS] biting comedic barbs against his critics and political
adversaries. These jokes are [EVENT1000]intended[/EVENT1000] to do more than simply entertain you.
They have an agenda. Obama's humor is often delivered the way a comedian dealing with a heckler would
do it. He tries to undermine his opponents with it and get the crowd -- in this case the public -- on his side.
| can [EVENT20]assure[/EVENT20] you that having a crowd laugh at your critic/heckler is not only

effective in dominating them, it's also very satisfying.
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Figure 1: Example of a cycle in a document from the MATRES dataset, mistakenly generated by one of our pairwise

encoder models.

Jain et al. (2023) evaluated a variety of LLMs
(including standard and code-generation models)
across different temporal tasks and prompting
strategies (zero-shot, few-shot). Their compre-
hensive analysis revealed that while LLMs exhibit
proficiency in certain temporal aspects, they face
significant challenges in areas requiring reasoning
over specific timings and handling complex sce-
narios involving multiple events. Focusing specifi-
cally on the pairwise TRC task, (Roccabruna et al.,
2024) investigated if LLMs could supersede es-
tablished encoder-only models. Evaluating sev-
eral LLMs with in-context learning and fine-tuning,
they found that LLMs generally underperform a
strong RoBERTa baseline for this task. Through
explainability methods and analysis of word em-
beddings, they attributed this gap, in part, to dif-
ferences in pre-training objectives (autoregressive
vs. masked language modeling) and how models
process input sequences. These studies highlight
that while LLMs show promise for broader tem-
poral reasoning, the specific requirements of tasks
like pairwise temporal classification may still favor
specialized encoder-only architectures or necessi-
tate further research into tailoring LL.Ms for such
fine-grained analysis.

Recent studies have begun exploring the use of
zero-shot LLMs for TRC, though most efforts have
adhered to the traditional pairwise prediction frame-
work (Yuan et al., 2023; Li et al., 2024; Kougia
et al., 2024). A more recent study (Eirew et al.,
2025) proposes enhancing global consistency by
prompting a strong generative LLM to produce the

entire graph of temporal relations in a single step.
To address potential contradictions and instability
of LLMs in generating consistent output, this ap-
proach incorporates a post-processing step based
on the linear programming optimization framework
introduced by Ning et al. (2018a), which enforces
global coherence by resolving inconsistencies in
the predicted temporal graph.

Together, these works form a comprehensive
foundation for understanding the evolution of TRC,
from pairwise classification to global timeline con-
struction, and from specialized supervised models
to LLM-based generalization. Building on these
efforts, we compare zero-shot LLM accuracy and
consistency across prompts and propose a simple,
effective cycle-breaking method for encoders while
maintaining accuracy.

3 Datasets

Our investigation of the trade-off between pairwise
accuracy and global consistency is grounded in
experiments on two datasets that represent distinct
annotation paradigms.

3.1 MATRES (Ning et al., 2018b)

MATRES is a widely-used benchmark for TRC
which simplifies TimeML’s relations into four la-
bels: before, after, equal, and vague. It employs a
sparse annotation strategy, providing gold labels
primarily for event pairs in close proximity (i.e.,
within two-sentence contexts) to enhance inter-
annotation agreement. This sparsity directly im-
pacts our evaluation: accuracy is computed using
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only the gold subset, while temporal consistency is
measured over all generated relations.

3.2 NarrativeTime (NT) (Rogers et al., 2024)

NarrativeTime offers a contrasting, dense annota-
tion approach by labeling all event pairs within
a document. NT expands the label set to seven
types, including those from MATRES plus in-
cludes, is_included, and overlap. We leverage its
comprehensive coverage in Section 5 to evaluate
our cycle-breaking approach.

4 Evaluation of LLMs on TRC

4.1 Extraction Approach

Our timeline extraction approach follows the five-
step process outlined in Section 1. Specifically, we
work with the MATRES dataset,! where all events
are defined as verbs. MATRES employs a novel
strategy for determining which events should be
anchored to a given event. Building on the ap-
proximate complete-graph approach introduced in
(Naik et al., 2019)—where events are anchored
only to those within a predefined surrounding win-
dow of sentences—MATRES further refines this
by incorporating different types of narrative axes
(e.g., opinions, intentions), which impact anchor-
ing decisions. In our work, we build on the MA-
TRES anchoring framework and ask the LLM
to merely classify the anchored event pairs ac-
cording to the MATRES label set: before, after,
equal, and vague. We explore various approaches
to modeling input context length, event marking,
yield type, and prompt techniques. Broadly speak-
ing, for a given full document ¢ with &£ marked
events, we use an LLM as a function to predict
the corresponding temporal graph. The prompt is
structured into three sections: 1) instructions (s;);
2) the input text (t;(e1, e, ..., ex)), including k
marked events to be classified (we mark events as
[EVENT1]eat[/EVENT1], with the event number
taken from the dataset.); and 3) some illustrative
input-output examples (f). The output is composed
of one or more (m) labels I;, with each label corre-
sponding to an event pair introduced in the input.
Formally, we use the generative LLM as follows:

om = LLM [s;, ti(e1,e2,...,¢ex), f]

'Released under the CC-BY 4.0 license (Ning et al.,
2018b), we use the dataset for evaluation as intended by its
authors.

Ih,la, ...

The LLM is expected to return a single label
for each event pair formed from the marked events.
Following the self-consistency approach Wang et al.
(2023), we run each instance five times and use ma-
jority voting across runs. Only event pairs where
a single label receives majority vote are included
as links in the temporal graph. If no clear major-
ity exists, we treat the relation as unknown and
exclude it from the graph. This subset approach
ensures greater reliability in the predicted temporal
structure.

We observe that generative LLMs tend to predict
the vague label more often, likely reflecting their
uncertainty. To address this, since LLMs are not
instructed to label every pair and can choose which
pairs to label, sometimes we remove vague from
the label set given to the models directing them to
predict only before, after, or equals. Furthermore,
the equals label poses an additional challenge for
handling in a timeline and is both infrequently an-
notated and predicted. As a result, we choose to
ignore equals and vague when constructing a tem-
poral graph. Consequently, only the before and
after labels are used as links to form the temporal
graph.

We explore variations in prompt design, particu-
larly focusing on the following aspects:

Output Type. Most prior work predicts temporal
labels for event pairs individually, a straightforward
but inconsistency-prone approach due to its lack
of global context. An alternative is predicting the
entire temporal graph in one step, leveraging global
context for better consistency. We evaluate both
approaches—pairwise and graph. In the graph
approach, the model generates labels for all pairs
in DOT format (Gansner et al., 2006).

Considered Events. MATRES was selectively
annotated, labeling only event pairs within two-
sentence paragraphs, leaving many pairs unanno-
tated. To address this, we evaluate accuracy using
three approaches. The MATRES approach con-
siders only the originally annotated pairs, using
the pairwise output type. The sliding-window ap-
proach expands this by pairing each event with
all others in a two-sentence window, shifting one
sentence at a time. The document approach, ap-
plicable only to graph output, considers all event
pairs but avoids redundancy by marking events and
instructing the model to infer non-redundant rela-
tions, omitting symmetric and transitive ones to pro-
duce a compact graph. In both the sliding-window
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and document approaches, event pairs without gold
labels but assigned a relation by the model are in-
cluded for consistency assessment but excluded
from accuracy calculations.

Context. The context refers to the portion of text
surrounding the events that are provided to the
model for classification. We experiment with two
context sizes. In the first, referred to as document,
we provide the entire document to the model. In the
second, called paragraph, we provide a window of
two sentences surrounding the two events in focus.
This method is compatible only with the pairwise
output type.

Prompt Style. We experiment with both zero-
shot and few-shot in-context learning. For the
pairwise output, few-shot learning includes two
examples—one before and one after—randomly
selected from the training set. For the graph output,
we provide a document with marked events and
the MATRES-annotated relations in DOT format.
Note that this does not fully represent a complete
graph, since MATRES provides gold relations only
for some of the event pairs.

Sample prompts are provided in Appendix A.

4.2 Evaluation Approach

We experiment with all combinations of the
prompt aspects mentioned above, using four LLMs:
GPT40 (OpenAl et al., 2024), GPT40-mini (Ope-
nAl et al., 2024), LLama-3.1-8B (Grattafiori et al.,
2024), and LLama-3.2-3B (Grattafiori et al., 2024).
We choose these specific models to balance be-
tween large and small models, as well as between
open and closed weights. Note that not all aspect
combinations are possible. For instance, in the
graph output type, only four combinations exist
because both the considered events and context as-
pects must be set to document. Additionally, we
evaluate the graph configuration only with OpenAl
GPT models, as the task demands stronger reason-
ing capabilities. Our evaluation balances incon-
sistency and accuracy: inconsistency is measured
by the percentage of test documents with cycles,
which prevent timeline extraction, while accuracy
is reported as the Micro-F1 score. We evaluate on
the MATRES test set (20 documents) and refer to
the percentage of cycle-containing documents as
the cycle rate.

4.3 Results

Figure 2 offers a high-level overview of our results,
highlighting both accuracy and consistency metrics
across the different experimental settings. For a
comprehensive breakdown, Table 1 presents the
full set of results, covering all prompt configura-
tions evaluated with the four large language mod-
els used in this study. This includes performance
across both pairwise and global prediction modes,
as well as the impact of prompt strategies.

While the results are somewhat noisy, we ob-
serve a strong correlation between accuracy and
cycles (p = 0.64, p < .001, n = 36). This indi-
cates that higher accuracy is often accompanied by
reduced temporal consistency: conservative models
tend to lower recall and therefore reduce the num-
ber of cycles, whereas models that output more rela-
tions are more likely to introduce cycles. However,
this correlation does not preclude the existence of
configurations that simultaneously improve both
accuracy and consistency. Indeed, recent work by
Eirew et al. (2025) demonstrated that such improve-
ments are achievable under specific settings. We
discuss this in more detail below.

Predicting vague is particularly challenging, as
human annotators also struggled with it (Ning et al.,
2018b), and often represents disagreement between
annotators. Therefore, for some experiments, we
tested the model with and without the vague label.
When included, the model predicted one of four
labels (before, after, equal, or vague); otherwise, it
was limited to three.

Accuracy calculations were based on the four-
label or three-label setting, respectively, follow-
ing our definition of the F1 score described above.
However, for calculating consistency, defined as
the number of documents that introduce cycles, we
only consider the before and after relations. We ex-
clude equal, given its rare occurrence (less than 5%
of the relations in the MATRES test set), and vague,
since it does not participate in cycles. In Figure 2,
we indicate experiments that include the vague rela-
tion by placing a line under each relevant shape. In
total, there are seven experiments for which results
exist both with and without vague. Averaging the
differences between corresponding experiments,
we observe an 18% drop in accuracy when allow-
ing vague, but also a 37% reduction in cycled doc-
uments. This suggests that when the model can
predict vague, it does so frequently, which lowers
accuracy but also helps break cycles, as only before
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Figure 2: Micro-F1 vs. inconsistency (cycle rate in the test set) across LLM experiments. Underlined markers
denote configurations including the vague relation. Each marker’s shape and color encode model type, prompt style,

and context as explained in the text and Table 1.

and after relations contribute to cycle formation.

The experiments using the graph output type are
represented by the bubble labeled graph. Their
accuracy is notably low, suggesting that LLMs
struggle to generate the full temporal graph in a
single pass using this relatively simple approach
supported by previous work (Eirew et al., 2025).

In the pairwise (non-graph) experiments, accu-
racy improves but introduces more cycles. Another
insight is that larger contexts limit accuracy, while
smaller ones increase it but add cycles. Since our
goal is timeline generation, we prioritize fewer cy-
cles with reasonable accuracy. The best experiment
according to this criterion is produced by GPT-4o-
mini in a few-shot configuration combined with the
paragraph context.

4.4 Accuracy vs. Consistency

As reported above, we observe a statistically signifi-
cant correlation between inconsistency—measured
as the number of documents predicted with tempo-
ral cycles—and accuracy. In general, our experi-
ments suggest that for non-fine-tuned LLMs, such
as those evaluated in this study, higher accuracy
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often comes at the cost of lower consistency. That
is, as the model generates more accurate temporal
labels, it also tends to introduce a greater number
of contradictory relations. This trade-off appears
especially when prompting the model to be more
successful (e.g., by providing a more relevant con-
text, or by providing examples) in its predictions,
which intuitively aligns with the classic tension
between specificity and sensitivity observed in tra-
ditional machine learning tasks.

However, it is important to note a fact in our eval-
uation strategy: consistency is measured over all
predicted event-event relations, whereas accuracy
is computed with respect to the subset of annotated
pairs in the MATRES dataset. Since MATRES
does not provide gold labels for event pairs that are
more than one sentence apart, but the LLMs output
relations for all event pairs, our consistency metric
is based on a broader set of predictions than the
accuracy metric. This introduces a slight misalign-
ment between the two evaluation dimensions, but
we choose to retain this approach to more compre-
hensively capture the model’s global behavior.

While our overall results support the observed



Model Output Type Prompt Style Considered Event Context Vague Micro-F1 Cycles
MATRES Paragraph no 50.55 0.10
zero-shot Paragraph no 50.69 0.35
Sliding-window  Paragraph yes 13.86 0.00
Llama-3.1-8B  Pairwise Document no 25.97 0.10
MATRES Paragraph no 3591 0.45
few-shot Paragraph no 34.39 0.40
Sliding-window  Paragraph yes 18.28 0.00
Document no 21.27 0.45
MATRES Paragraph no 42.13 0.25
zero-shot Paragraph no 43.23 0.85
Sliding-window  Paragraph yes 37.75 0.15
Llama-3.2-3B  Pairwise Document no 20.72 0.10
MATRES Paragraph no 23.62 0.35
few-shot Paragraph no 27.35 0.40
Sliding-window Paragraph yes 20.79 0.20
Document no 22.1 0.50
MATRES Paragraph no 58.43 0.30
zero-shot Paragraph no 58.43 0.90
Pairwise Sliding-window Paragraph no 48.51 0.15
Document yes 44.09 0.00
GPT-40-mini MATRES Paragraph  yes 52.33 0.70
few-shot Paragraph no 49.22 0.70
Sliding-window Paragraph yes 46.36 0.60
Document yes 38.71 0.25
Graph zero-shot Document Document yes 16.25 0.00
P few-shot Document Document yes 15.17 0.00
MATRES Paragraph yes 16.25 0.10
zero-shot Paragraph  yes 2652 030
Pairwise Sliding-window Paragraph no 55.94 0.85
Document yes 28.08 0.20
GPT-40 MATRES Paragraph  yes 18.04 0.50
few-shot Paragraph yes 26.88 0.15
Sliding-window  Paragraph no 58.01 0.50
Document yes 33.21 0.30
Graph zero-shot Document Document yes 9.80 0.00
P few-shot Document Document yes 3.30 0.00

Table 1: Full results of the evaluation of LLMs under different prompting conditions.

trend—that increasing accuracy tends to introduce
more inconsistencies—we also find notable ex-
ceptions. Certain model-prompt configurations,
specifically GPT-40, GPT-40-mini, and LLaMA-
3-8B with the Paragraph-context prompting style,
show improvements in both accuracy and consis-
tency. These cases suggest that, although the trade-
off is common, it is not inevitable. Prior work
has shown that with careful modeling, such as the

use of structured inference or post-hoc consistency
enforcement, systems (Eirew et al., 2025) can im-
prove both dimensions simultaneously. Nonethe-
less, our findings are specific to zero- and few-
shot prompting approaches using non-fine-tuned
LLMs, and future work may further explore how
fine-tuning or additional consistency-aware meth-
ods can shift or mitigate this trade-off.
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Document

Number of Cycles

CNN_20130321_821
CNN_20130322_1003
WSJ_20130321_1145
WSJ_20130322_159
WSJ_20130322_804

nyt_20130321_china_pollution

nyt_20130321_cyprus
nyt_20130321_sarcozy

nyt_20130321_women_senate

4
135
36
72
59
202
87
20
74

Table 2: Number of simple cycles per each document of th
set.

e 9 documents that have cycles from the MATRES test

Model MATRES F1 | NT F1
Confidence-Based 74.67 | 52.28
LLM-Assisted (GPT-40) 67.03 | 51.90
LLM-Assisted (GPT-40-mini) 70.49 | 51.65

Table 3: Performance of cycle-breaking approaches. Since

MATRES is only sparsely annotated, it is hard to know

the upper bound for the performance gain only by removing relations to break cycles. For NT, the best reported

SOTA performance is 52.57.

5 Combining LLMs with a Small Encoder

It has already been shown (Roccabruna et al., 2024)
that encoder models achieve higher accuracy than
generative LLMs on TRC. However, as demon-
strated in the previous section, LLMs maintain
greater consistency than simple encoders when
leveraging global information. Building on this
insight, we adopt a hybrid approach, in which a
baseline encoder model first predicts temporal re-
lations for all event pairs in a document using the
pairwise approach. We then detect simple cycles
in the predictions using the NetworkX package
(https://networkx.org/). A simple cycle is a
cycle in a graph with no repeated nodes. As men-
tioned before, only before and after relations are
considered for cycle detection. Once a cycle is
found, we iteratively break it using one of two meth-
ods, and the process repeats until no cycles remain
in the document. Generally speaking, breaking a
simple cycle involves removing a single link from
it, aiming to minimize accuracy loss while restoring
consistency. We explore two different approaches:
Confidence-Based. This method removes the cy-
cle link with the lowest confidence, determined by
the encoder’s probability for the predicted label.
LLM-Assisted. This approach prompts a genera-
tive LLM to identify the most likely erroneous link
in a cycle, leveraging its ability to process detailed

input and enhance global consistency. The prompt
(Appendix A) provides TRC instructions, requiring
the model to identify the most likely error in a doc-
ument with a cycle of before and after links. It then
presents the full document with marked events and
cycle links in DOT format (Gansner et al., 2006).

5.1 Experimental Settings and Results

In addition to MATRES, we use the NarrativeTime
(NT) dataset (Rogers et al., 2024) (MIT license),
which labels all event pairs in a document rather
than just within two-sentence segments. NT also
uses seven relations, which are the four of MA-
TRES plus three more includes, is_included, and
overlap. The NT test set contains 9 documents
(overall, 7,582 relations), 27 training documents
(overall, 67,860 relations). We evaluate the two
cycle-breaking approaches using an encoder model
trained from scratch once on the MATRES training
set and once on the NT training set. The model fol-
lows the BERT-based (Devlin et al., 2019) (License:
Apache 2.0) Entity Marker Entity Start architecture
(Baldini Soares et al., 2019), where event mentions
are marked with special tokens [E1] and [/E1] for
the first event and [E2] and [/E2] for the second
event. This architecture operates pairwise, indepen-
dently classifying each event pair without consider-
ing previously predicted labels. On the MATRES
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test set, our encoder achieves a micro-F1 score of
80.29%, and on the NT test set, 52.57%. Addi-
tionally, 9 of 20 MATRES test documents contain
cycles, averaging 76.5 simple cycles per document,
while all 9 NT test sets include cycles. Table 2
breaks down the number of simple cycles detected
in each document from the MATRES test set. The
cycles were detected over the full temporal graph
extracted by the base supervised BERT model.
For the LL.M-assisted cycle-breaking approach,
we experiment with GPT-40 and GPT-40-mini. All
three cycle-breaking approaches successfully re-
solved all cycles, but accuracy dropped from the
original 80.29% (MATRES) and 52.57% (NT). Ta-
ble 3 summarizes the results. The confidence-based
approach significantly outperformed LLM-assisted
methods on MATRES and showed less conclusive
results on NT, suggesting it was more effective at
identifying the correct links to remove.

6 Conclusions

Our study highlights both the promise and the cur-
rent limitations of using LL.Ms for timeline extrac-
tion through TRC. Across extensive experiments,
we observe a recurring inverse relationship between
accuracy and consistency: as LLMs are pushed to-
ward higher accuracy through prompt design and
reasoning strategies, they tend to generate more
globally inconsistent temporal graphs—often re-
sulting in cycles. This trade-off mirrors classic
precision—recall tensions in traditional machine
learning and highlights the challenge of achieving
both local accuracy and global coherence in zero-
or few-shot generative settings. We also find that
current LL.Ms struggle to generate complete and
accurate temporal graphs in a single pass, even
when using compact representations and chain-
of-thought reasoning. While supervised encoder-
based models remain more accurate on annotated
pairs, their pairwise prediction structure inherently
introduces global inconsistencies unless followed
by post-hoc constraints. Interestingly, when eval-
uating LLM-generated graphs with existing cycle
resolution strategies, a simple confidence-based en-
coder model remained among the most effective
for enforcing consistency—highlighting the value
of integrating structured reasoning modules into
otherwise generative workflows. Our results moti-
vate future research directions focused on hybrid
approaches that combine the strengths of encoder-
based models—particularly their structured rea-

soning and consistency enforcement—with the
generalization and contextual understanding of
LLMs. We believe that with targeted improvements
in prompt engineering, structural guidance, and
consistency-aware inference, LLMs can play a cen-
tral role in advancing temporal relation extraction
beyond current limitations.

Limitations

Our study has several limitations. First, our ap-
proach Confidence-Based Cycle Breaking relies
on confidence scores derived from BERT-based
architecture, which may limit the generalization
of our conclusions to other architectures or classi-
fication strategies. MATRES and NarrativeTime
both annotate news articles, so our conclusions may
not generalize to other domains. Finally, our ex-
perimental evaluation was performed on only four
models (two open source and two closed), despite
the existence of a broader array of models in the
literature.

We see no risks in our work, as we use publicly
available datasets as intended and employ LLMs
like GPT-40 solely for evaluation. We did not re-
view or filter the datasets for personal information,
as both datasets consist solely of publicly available
news documents sourced from media outlets.
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A Prompts

Figures 3-7 provide full examples of the prompts
used to evaluate the LLMs. In all prompt examples,
we use MATRES’s four relations, while Narrative-
Time prompts follow the same format but include
seven relations. Figure 3 presents the prompt for
the zero-shot pairwise approach, followed by its
few-shot extension in Figure 4. Similarly, Figures 5
and 6 illustrate the prompts for the graph genera-
tion approach. Finally, Figure 7 shows the prompt
used for breaking cycles with the LLM.

In all examples, we include the vague relation,
though we also conduct experiments without it.

B Experimental Settings

Both datasets we used in this study, MATRES
and NarrativeTime contain documents written in
English, and cover news articles. For pairwise
model experiments, we evaluate the MATRES ap-
proach and sliding-window using Llama-3.1-8B-
Instruct-Turbo and Llama-3.2-3B-Instruct-Turbo
with Float16 quantization on an NVIDIA GeForce
RTX 3090, alongside GPT-40-mini-2024-07-18
and GPT-40-2024-08-06, incurring a total cost of
approximately $20.

For graph-based model experiments, the same
models are used, with OpenAl models costing
around $15.

For cycle-breaking models, we train an encoder-
based model using the BERT architecture on an
NVIDIA GeForce RTX 3090 for five epochs. Train-
ing takes approximately 1 hour for MATRES and
7 hours for NarrativeTime. Subsequently, GPT-40-
mini-2024-07-18 and GPT-40-2024-08-06 are used,
with a combined cost of approximately $35.
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{
"role": "system”,
"content": "
Task Overview:
You are given a text, in which some verbs are uniquely marked by [EVENT#ID]event
[/EVENT#ID] (e.g., [EVENT1]event1[/EVENT1], [EVENT2]event2[/EVENT2]).
Your task is to say which of the verbs happened first in a chronological order.
More specifically, you need to return for each pair of verbs, which is two
sentence apart,
a single label out of the listed potential labels:
before - the first verb happened before the second.
after - the first verb happened after the second.
equal - both verbs happened together.
vague - It is impossible to know based on the context provided

you should only provide one classification.”

P

{
"role": "user",
"content": "

Text for Analysis:

Former President Nicolas Sarkozy was [EVENT1J]informed[/EVENT1] Thursday that he
would face a formal investigation into whether he [EVENT3]abused[/EVENT3]
the frailty of Liliane Bettencourt, 90, the heiress to the L'Oreal fortune
and France's richest woman, to get funds for his 2007 presidential campaign.

Mr. Sarkozy has denied accepting illegal campaign funds from Ms.
Bettencourt, either personally or through his party treasurer at the time,
Eric Woerth, as alleged by her former butler.
in one word --> "
3
Figure 3: Zero-shot prompt for pairwise classification.
{
"role": "system”,
"content": "

<INSTRUCTIONS>

Examples:

HuHHHHHEH

Text for Analysis:

NAIROBI, Kenya (AP) _

Suspected bombs [EVENT1J]exploded[/EVENT1] outside the U.S. embassies in the
Kenyan and Tanzanian capitals Friday, [EVENT21killing[/EVENT2] dozens of
people, witnesses said.

--> before

Text for Analysis:

Suspected bombs exploded outside the U.S. embassies in the Kenyan and Tanzanian
capitals Friday, killing dozens of people, witnesses [EVENT3]said[/EVENT31].

The American ambassador to Kenya was among hundreds [EVENT12]injured[/EVENT12],
a local TV said.

--> after

HHHHHHHHH"

} ’

{
"role": "user",
"content": "

Text for Analysis:

<TEXT>
in one word -->"
3

Figure 4: Few-shot prompt for pairwise classification. <INSTRUCTIONS> is a placeholder for the instructions
provided in Figure 3.
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{
"role": "system”,
"content": "
Task Overview:
You are given a text, in which some verbs are uniquely marked by [EVENT#IDJ]event
[/EVENT#ID] (e.g., [EVENT1]event1[/EVENT1], [EVENT2]event2[/EVENT21]).
Your task is to say which of the verbs happened first in a chronological order.
More specifically, you need to return for each pair of verbs, which is two
sentence apart,
a single label out of the listed potential labels:

before - the first verb happened before the second.

after - the first verb happened after the second.

equal - both verbs happened together.

vague - It is impossible to know based on the context provided

All responses should be valid and compact dot graph format.

compact meaning:

- do not mention transitive dependencies - if eil BEFORE ei2 and ei2 BEFORE ei3
don't write eil BEFORE ei3
- do not mention symmetric relation - if eil BEFORE ei2 don't write ei2 AFTER
eil”
b
{
"role": "user",
"content": "---

Text for Analysis:
The flu season is winding down, and it has [EVENT2]lkilled[/EVENT2] 105 children
so far - about the average toll.
The season [EVENT3]started[/EVENT3] about a month earlier than usual, [
EVENT4]sparking[/EVENT4] concerns it might turn into the worst in a
decade.

Respond only with valid dot graph format with the approprite markers and attributes
(like label). Do not write an introduction or summary.

the graph:”

}

Figure 5: Zero-shot prompt for generating the entire temporal graph.

731




{
"role": "system”,
"content"”: "
<INSTRUCTIONS>

Example:

HHHHHHHSH

Text for Analysis:

NAIROBI, Kenya (AP) _

Suspected bombs [EVENT1J]exploded[/EVENT1] outside the U.S. embassies in the
Kenyan and Tanzanian capitals Friday, [EVENT2]killing[/EVENT2] dozens of
people, witnesses [EVENT3]said[/EVENT3].

the sample of correct labels are:

digraph {
"EVENT1" -> "EVENT2" [label="before"];
"EVENT3" -> "EVENT12" [label="after"];
"EVENT4" -> "EVENT5” [label="vague”];

3
S SS"
}Y
{
"role": "user"”,
"content”: "

Text for Analysis:
<TEXT>

Respond only with valid dot graph format with the approprite markers and attributes

(like label). Do not write an introduction or summary.
the graph:”
}

Figure 6: Few-shot prompt for generating the entire temporal graph.
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{
"role": "system”,
"content": "
Task Overview:
You are given a text, in which some events are uniquely marked by [EVENT#ID]
event[/EVENT#ID] (e.g., [EVENT1Jeventl1[/EVENT1], [EVENT2J]event2[/EVENT21]),
and a dot graph which represent chronological order with error, where some edges
form cycles.
Your task is to decide which pair to drop (by his unique_id), being concise and
removing the minimum number of edges.
Pay attention, I used classifier to choose the most fitted relation (label
attribute in dot graph)
and score which represent the confidence of the classifier.

relation meaning:

before - the first verb happened before the second.
after - the first verb happened after the second.
equal - both events happen simultaneously
vague - temporal order cannot be determined from the context”
}7
{
"role": "user"”,
"content": "

Text for Analysis:

Barack Obama would make a great stand-up comic, not because he's the funniest
president ever but because he uses jokes the same way many of us comedians
do: as a weapon.

Traditionally, the (intentionally) funny lines by our presidents have had
one thing in common: They were self-deprecating. Sure, some presidents
have [EVENT5]Jused[/EVENT5] jokes to take jabs at their opponents, but
not to the extent of Obama.

During his tenure, he has increasingly [EVENT8Junleashed[/EVENT8] biting
comedic barbs against his critics and political adversaries. These jokes
are [EVENT1000]intended[/EVENT1000] to do more than simply entertain
you. They have an agenda.

Obama's humor is often delivered the way a comedian dealing with a heckler
would do it. He tries to undermine his opponents with it and get the
crowd -- in this case the public -- on his side. I can [EVENT2@0]assurel[/
EVENT20] you that having a crowd laugh at your critic/heckler is not
only effective in dominating them, it's also very satisfying.

digraph Chronology {
"EVENT5" -> "EVENT8" [label="BEFORE", score=0.71996284, unique_id=0];
"EVENT8" -> "EVENT1000" [label="BEFORE"”, score=0.8759634, unique_id=1];
"EVENT5" =-> "EVENT20" [label="AFTER", score=0.9743732, unique_id=2];
"EVENT1000" -> "EVENT20" [label="BEFORE", score=0.75076234, unique_id=37;
3
Respond only with the unique_id list to drop (wrong label)”
}

Figure 7: Zero-shot prompt for cycle breaking.
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