Human ratings of LLM response generation in pair-programming dialogue

Cecilia Domingo, Paul Piwek,

Michel Wermelinger and Kaustubh Adhikari

The Open University
Milton Keynes, England

cecilia.domingo-merino, paul.piwek,
michel.wermelinger, kaustubh.adhikari rama.doddipatla(@toshiba.eu)

(@open.ac.uk)

Abstract

We take first steps in exploring whether Large
Language Models (LLMs) can be adapted to di-
alogic learning practices, specifically pair pro-
gramming — LLMs have primarily been im-
plemented as programming assistants, not fully
exploiting their dialogic potential. We used
new dialogue data from real pair-programming
interactions between students, prompting state-
of-the-art LLMs to assume the role of a stu-
dent, when generating a response that contin-
ues the real dialogue. We asked human anno-
tators to rate human and Al responses on the
criteria through which we operationalise the
LLMSs’ suitability for educational dialogue: Co-
herence, Collaborativeness, and whether they
appeared human. Results show model differ-
ences, with Llama-generated responses being
rated similarly to human answers on all three
criteria. Thus, for at least one of the models
we investigated, the LLM utterance-level re-
sponse generation appears to be suitable for
pair-programming dialogue.

1 Introduction

Pair programming is a technique where two pro-
grammers work together, simultaneously, on the
same piece of code. Numerous studies have re-
ported on its benefits for students, for example
improving the quality of the code they produce
or increasing their confidence (Hawlitschek et al.,
2023). However, the literature also highlights the
challenges that hinder the wider implementation of
this technique, such as scheduling issues or lack of
suitable partners (ibid.). A solution that has been
proposed is using a dialogue agent as a partner
when a human partner is not available. Wizard-of-
Oz studies suggest the viability of this option, as
students welcomed having an Al partner (even be-
fore LLM-based dialogue systems became widely
available), and they produced code of the same
quality (or higher) as when pairing with a human
(Kuttal et al., 2021; Robe and Kuttal, 2022). Those

41

Svetlana Stoyanchev
and Rama Doddipatla
Toshiba Europe
Cambridge, England
svetlana.stoyanchev,

studies discussed the technology available at the
time that could be harnessed to develop the system
that they simulated, with some limitations.

In this context, the use of LLMs for response gen-
eration is promising. Firstly, they can be adapted
to new domains to produce reasonable natural lan-
guage responses even with little domain adaptation
(Reiter, 2025, p. 11). With regards to output qual-
ity, evaluation studies suggest, for example, that
LLMs can generate coherent as well as engaging
stories (Seredina, 2024), whereas results are more
mixed (depending partly on how well-resourced a
language is) for data-to-text generation (Allen et al.,
2024). Bozorgtabar et al. (2023) considered the
task of feedback comment generation for writing
learning (Nagata, 2019) - a specifically educational
settings. Secondly, great advancements have been
made recently in the automatic generation of code
(Jiang et al., 2024). Nonetheless, code generation
models have primarily been used as coding assis-
tants rather than pair programmers (ibid.)

Some claims have been made about the use of
LLMs for pair programming, but closer examina-
tion reveals that the collaborator role of a pair-
programming partner is conflated with LLMs’ de-
fault assistant role'. An exception can be found
more recently in a study (Lyu et al., 2025) where
different educational pair-programming settings are
explored; two of those settings (a human pair with
an LLM, and a solo human with an LLM) encour-
age the use of LLMs as collaborators. Still, the
researchers found that the “LLM-based tools were
primarily perceived as technical assistants” (ibid, p.
8), used for debugging and syntax queries. In an
educational setting, these tools need to simulate a
different type of role: as collaborators that engage

'An excellent example is a MOOC offered by Google.
The title of the course suggests that LLMs may be used as
pair-programming partners, but the course contents merely
teach how to make API calls for code generation or code

transformation, and the instructor explicitly refers to the LLMs
as assistants.

Proceedings of the 18th International Natural Language Generation Conference, pages 41-59
October 29-November 2, 2025. ©2025 Association for Computational Linguistics

cecilia.domingo-merino
paul.piwek
michel.wermelinger
kaustubh.adhikari
(@open.ac.uk)
svetlana.stoyanchev
rama.doddipatla
(@toshiba.eu)
https://www.deeplearning.ai/short-courses/pair-programming-llm/

the learners (Grassucci et al., 2025). Thus, here we
take the first steps in exploring whether LLMs are
suited to step out of the code assistant role and into
a programming peer role.

As a beginning step, we analyse whether they can
generate single responses that are contextually ap-
propriate in relation to the dialogue history so
far, before the approach can be carried further to
study whether the models’ performance is consis-
tent across a whole dialogue.

Guided by Gricean maxims of conversation
(Grice, 1991) and the principles of dialogic teach-
ing (Wegerif and Mercer, 1996), we operationalise
the idea of suitability as the responses being coher-
ent (do the responses make sense in the current con-
text?) and collaborative (do the responses make a
helpful contribution without taking over the whole
task?). In line with traditions in researching dia-
logue systems, we also evaluate whether answers
seem human to users, to assess their naturalness.
These gives rise to our three research questions:

* RQ1 Do Al responses appear human?

* RQ2 Are Al responses as coherent as human
responses?

* RQ3 Are Al responses as collaborative as hu-
man responses?

We carry out our evaluation by asking human anno-
tators to rate a set of responses obtained by prompt-
ing two LLMs to provide a continuation to a given
dialogue context. The dialogue contexts were ob-
tained from real pair-programming dialogues be-
tween students (Domingo et al., 2024). The raters
who judged a portion of our large corpus were
shown responses from our three sources (human
ground truth, GPT, and Llama), without knowing
the source of any of them, nor how many might be
Al-generated.

Our pair-programming dialogue corpus is, as of
yet, not accessible while we finalise the evaluation
studies that we collected it for, to avoid data con-
tamination (Balloccu et al., 2024). The corpus will
be available to the research community for future
evaluation studies, but under rigorous conditions
to prevent its use as potential training material for
LLMs. Nevertheless, we appreciate that over time
the corpus might anyway be leaked into training
data for future LLMs.

The following section summarises the main stud-
ies that have informed our work. In our method-
ology section, we first provide a brief description

42

of the dataset we used. Then, we discuss how we
arrived at our final prompts and model choices.
Thirdly, we describe how the evaluation of the re-
sponses was carried out. Afterwards, we present
and discuss our quantitative and qualitative analysis
results.

2 Related work

As defined above, pair programming is a collab-
oration technique used in programming whereby
two individuals (a pair) work on the same code
simultaneously (Hanks et al., 2011). The pair can
collaborate using the same computer if they are
co-located, or they can collaborate remotely using
the wide range of tools available for remote shared
access to a programming interface (Adeliyi et al.,
2021). With two people programming simultane-
ously, roles need to be negotiated to ensure suc-
cessful collaboration; this normally results in pro-
grammers adopting the role of navigator or driver,
though researchers have sometimes described pair-
programming interactions through different roles
(Hanks et al., 2011). The navigator contributes ver-
bally by suggesting where the code can go, while
the driver types in the code that goes in the direc-
tion agreed with the navigator. These roles may be
fixed or switch through the interaction; switching
may even be encouraged in educational settings for
students to benefit from both roles, as in (Bigman
et al., 2021)).

Pair programming has attracted much scholarly
interest and its benefits and implementation have
been studied in both educational and professional
settings (Hawlitschek et al., 2023; Hanks et al.,
2011). Among the most widely reported benefits
are increased code quality and programmer con-
fidence (Hawlitschek et al., 2023; Hanks et al.,
2011; Werner et al., 2004). Despite its benefits,
pair programming faces significant hurdles for its
implementation in educational settings specially.
Infrastructural issues can be remedied through the
use of platforms and other tools for remote pair
programming (Adeliyi et al., 2021; Bigman et al.,
2021). However, other issues remain largely un-
solved: scheduling problems and lack of suitable
partners (Hanks et al., 2011; Hughes et al., 2021).
One solution that has been proposed is replacing
the human partner with an Al agent when no (suit-
able) human partner can be found. As we men-
tioned, this idea has been tested through Wizard-
of-Oz studies (Kuttal et al., 2021; Robe and Kut-

tal, 2022). These studies showed that, even before
LLM-chatbots entered everyday life, students could
welcome an Al partner, and that the quality of the
code produced with an Al partner could be simi-
lar or sometimes higher than when collaborating
with a human partner. The authors of these stud-
ies designed the interactions based on the state of
the art at the time, but since then great advances
have been made in Natural Language Processing
and Programming Language Processing, both sepa-
rately and in conjunction (Jiang et al., 2024).
Since the release of OpenAl’s ChatGPT, a large
body of research has been released using this tool
and other large language models — see (Liu et al.,
2023) for a review focused on ChatGPT; while it
seems to be the most widely used model, there are
numerous open-source and open-weights alterna-
tives (Kukreja et al., 2024). These models have
surpassed previous techniques in all kinds of NLP
tasks. While testing on previous NLP benchmarks
can be uninformative due to possible data contam-
ination, evidence of excellent LLM performance
in many language-related tasks is abundant; see
(Huzaifah et al., 2024) or (Ostyakova et al., 2023)
for some interesting examples among the many
available. Moreover, they are making advanced
NLP tools increasingly accessible, as often good re-
sults can be obtained without even the need to fine-
tune (Liu et al., 2024), and even zero-shot use can
be sufficient in some scenarios through effective
prompting (White et al., 2023). Additionally, newer
large language models are being released with an
emphasis on efficiency, making their use feasible
even without GPUs (e.g., high-performing small
variants of the Llama family can be run on simple
CPUs?). This growing smorgasbord of LLMs also
features different types of models with regard to
their openness (ranging from commercial models to
fully open models), further increasing their accessi-
bility (Jiang et al., 2024). LLMs are not only state-
of-the-art models of popular natural languages —
their training data also includes code. While perfor-
mance is not always up to par (Wermelinger, 2023),
LLMs have generally demonstrated good perfor-
mance at tasks involving code (Austin et al., 2021;
Coignion et al., 2024). Thus, in the current land-
scape, it appears that LLMs could be ideally suited
to fulfill the role envisioned in the cited Wizard-of-
Oz studies (Kuttal et al., 2021; Robe and Kuttal,
2022): having Al as a pair-programming partner

Zhttps://llamaimodel.com/requirements-3-2/

43

when no suitable human partner is available. In
addition to large size, one important ingredient for
LLMs’ success is instruction tuning (Jiang et al.,
2024). This optimises the models for dialogue use
and task completion via prompting, beyond the
simple objective of text completion.

LLMs are already revolutionising the education
sector, for better or worse. They have been used in
many instances for Computing Education, primar-
ily for question-answering and debugging (Ferino
et al., 2025). However, to harness the educational
potential of these tools, students need to be en-
gaged as active agents in their learning, rather than
passive recipients of information (Grassucci et al.,
2025). For that to happen, models need to be
guided away from a helpful assistant role into an
engaging collaborator role, be it through few-shot
learning or finetuning (Yuan et al., 2025). That
switch in roles could allow LLMs to be used in
dialogic teaching practices, which require collab-
oration (Wegerif and Mercer, 1996). LLMs have
already shown their ability to imitate students in
some contexts (Ma et al., 2024) — can they also
act as pair-programming partners?

3 Methodology
3.1 Our dataset

Even though pair programming is a widely stud-
ied topic, research data is not so widely available:
studies often focus on the product of the interaction
(e.g., the code produced, and course assessments
and retention rates in educational settings), or on
settings where it might be challenging to release
data — e.g., private companies (Plonka et al., 2015)
— or are only able to release limited text data (Robe
et al., 2020). However, pair-programming dialogue
is inherently multimodal: if we adopt Clark’s con-
ceptualisation of dialogues as highly linguistic ac-
tivities in the broader spectrum of joint activities
(Clark, 2005), contributions to the code are a key
non-verbal element of the joint activity.

We collected a multimodal pair-programming
dataset® of 25 dialogues between students from
our institution, thus focusing on an educational
setting. For practical purposes, we opted for remote
sessions. For this study, the data types that we used
from our dataset were the session transcripts*, and

3Due to ongoing anonymisation efforts and concerns about
data contamination, at the time of writing we are only able to
release one json file. The complete dataset, including video
and audio recordings, will be released in January 2026.

*Recordings were pre-transcribed using Whisper (Radford

https://llamaimodel.com/requirements-3-2/

Python code files.

3.2 Prompt engineering and model selection

We worked with the GPT and Llama LLM fami-
lies, as two representative model families of closed
and open-weights models, respectively (Jiang et al.,
2024). We select two models in our final evalua-
tion to observe possible model differences, as well
as to provide insights on both commercial mod-
els widely used in research and a more accessible
open-weights alternative. We use one of the dia-
logues as our development set to test our prompts
and make the final model selection. Since our data
includes code, we started our tests with the Codel-
lama series of models (based on Llama 2), mov-
ing on to newer models. As can be seen in our
Supplementary Materials (Part C), our prompts in-
cluded instructions to the model, some dialogue
history, and, in later tests, a few-shot example. In
our instructions, we transitioned from a focus on
the characteristics of the expected response to a
focus on the persona to be adopted by the model;
that proved more effective at achieving the desired
characteristics. With regard to formatting, we for-
matted the dialogue history as json for improved
input processing, even when we did not request
json output.® We tested different context-window
lengths, from 4 to 50 turns. We also tested different
types and lengths of few-shot examples: from 27
to 50 turns, from both a real and a fabricated dia-
logue sample. With the real sample, we also tested
extracting the sample from different points of the
dialogue.

For our preliminary evaluation, we obtained over
100 samples per model and prompt combination
tested (the number varied due to varying context-
window sizes). We then carried out a simple quali-
tative analysis of (~10%) randomly chosen outputs,
looking at whether the model followed instructions.
This allowed us to refine our prompt and decide on
the optimal context. The final prompt is shown in
Table 1. We also performed a quantitative analysis
looking at word count, presence of formatting la-
bels, code length, and relevant expression types (ex-
pressing thoughts or uncertainty, and expressions
characteristic of an overly helpful assistant, such as

et al., 2022) and revised manually. Diarisation was carried out
using the pyannote library and revised manually

5Code was recorded every time a change was made.

8For our application, json provided the most convenient
format - regardless, it seems that the specific choice of data
representation may not have a large impact on neural genera-
tion results (e.g., Howcroft et al., 2024).

44

“Here’s the code”). We also performed this analysis
on a set of 5 human dialogues to have a baseline.
Our analysis showed that human responses are less
verbose than model responses; using a persona-
focused prompt was the most important factor for
reducing the model’s verbosity closer to a human
level. We also observed that the “eager-assistant”
style of expressions was more common in CodeL-
lama models, which motivated us to disregard these
models. Lastly, we saw that all Llama models read-
ily imitated the style of the dialogue context with
expressions typical of human speech (e.g., hesita-
tions like “uh”). However, these were produced in
excess until the prompt was refined.

Further details from the preliminary quantitative
analysis can be found in the Supplementary materi-
als (Part A). Based on our preliminary analyses, for
our final analysis we opted for a persona-focused
prompt with json format and a 50-turn dialogue
context and a real 50-turn few-shot example. From
the Llama family, we selected Llama 3.2 1B, as it
coupled efficiency and good performance. Going
from the small CodeLlama 7B to the 13B version
roughly doubled inference time; meanwhile, in-
ference times with the more recent and smaller
Llama 3.2 were about half those of CodeLLlama 7B,
with better responses as well. From the GPT fam-
ily, especially as they are commercial models, we
also opted for an efficient, and thus cost-effective,
model; we chose GPT40-mini, whose performance
is not far from the full model in several bench-
marks’.

3.3 Human evaluation

Seeing that longer contexts yielded better results,
we set the context length to 50 turns and we ex-
tracted query points for all our remaining dialogues.
The query points were to be used as input for the
model, containing the system prompt with instruc-
tions, dialogue history (50 turns), and few-shot
example (50 turns), and the user prompt as the last
utterance after the dialogue history, the utterance
that the model had to respond to. We then extracted
a random evaluation split consisting of 10% of
query points. The splitting was done balancing the
following features: length of the ground-truth re-
sponse, whether the ground-truth response changed
the code, and the position in the dialogue (begin-
ning, middle, or end — as our dialogue history
length was set to 50, no query point could come

https://openai.com/index/gpt-4o-mini-advancing-cost-
efficient-intelligence/

https://pypi.org/project/pyannote.audio/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

PROMPT CHARACTERISTICS:

Focus on agent persona. Contextualisation of
context. Description of CODE STATE label.
Task instructions separated from dialogue con-
text. Few-shot example included in json format.

PROMPT:

You are a university student pair programming
with another university student.

You are studying some computing modules at
a distance university and have been paired with
another student who is studying the same or sim-
ilar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, but you’re still
learning, and you may have used it for different
things in class if you’re studying different mod-
ules.

As a distance-learning student, you may not fit
the usual demographics for undergraduate stu-
dents, and having agreed to participate in this
session shows that you’re eager to practice some
Python and interact with a peer.

Below is an example excerpt from conversation
between two students in the same setting, solving
a different task:

EXAMPLE TASK: <FEW-SHOT EXAM-
PLE>

As in the example, respond following the context
below. You see that the code appears after the
CODE STATE tag; you can see that there’s no
need to preamble it, you and your partner are
both aware of that tag.

You can also see that, if there are no changes in
the code, it is the same as in the previous turn.
Before seeing the dialogue context, here is the
task instructions, formatted as comments:
<TASK INSTRUCTIONS>

<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO>

Table 1: Prompt description and example structure for
pair programming scenario.

45

from the absolute beginning, but rather 50 turns
from the start, which is equivalent to a duration of
~3 minutes). This resulted in 294 samples, from
which a random selection of 62 was used for our
current study. The average utterance length in the
set was 41 characters (SD = 53), compared to the
overall average of 43 characters (SD = 59). The
code was changed 16.3% of the time in the set, and
17.5% in the overall dataset.

The selected models (GPT40-mini and Llama
3.2 1B) were prompted on the evaluation query
points. The model responses and human ground
truth (see Supplementary Materials, Part D for ex-
amples) were then integrated into Excel files to be
evaluated by human raters. For each query point,
a file was generated containing: the instructions
for the programming task, a summary of the dia-
logue context (generated by GPT40-mini after we
tested it returned accurate summaries), a reduced
dialogue history of 10 turns with the code shown
as images for easier visualisation, and a sheet with
the three responses (human ground truth, Llama,
GPT) in random order, alongside the rating menu.
The raters did not know how many answers might
be Al-generated. The context summary was in-
cluded because we could not expect human raters
to read as many turns of dialogue history as the
model. The rating criteria were selected as an op-
erationalisation of the Gricean maxims of conver-
sation (Grice, 1991) and the principles of dialogic
teaching (Wegerif and Mercer, 1996) in a way that
could be accessible to raters and balance provid-
ing us with enough information and overwhelming
raters. Our main rating criteria thus were:

e Coherence: Does the answer make sense in
the context?

e Collaborativeness: Does the answer con-
tribute to the task while not taking over it?

Following research traditions in dialogue systems,
we complemented our task-oriented metrics by ask-
ing raters to assess whether the responses seemed
human or Al-generated. While, as demonstrated by
the cited Wizard-of-Oz studies (Kuttal et al., 2021;
Robe and Kuttal, 2022), students would welcome
an Al partner, it is still relevant to see whether mod-
els respond in a human-like manner, if we take
human-style communication to be the ideal stan-
dard for communication with human users. This
rating category was given binary labels (human,
AlI), as was the Coherence label (coherent, not co-

Criterion Values
- Coherent

Coherence - NOT coherent
- Collaborative

Collaborativeness - Neutral

- NOT collaborative
Humanness - Human
- Al

Table 2: Rating criteria

herent); we strove to make the rating as straightfor-
ward as possible for the annotators in this manner.
The Collaborativeness category, however, required
three levels (collaborative, neutral, not collabora-
tive), as there were many contributions where the
speaker simply showed agreement, making a neu-
tral contribution to the task. This division into three
categories instead of three was also motivated by
the distinction of more than one way to collabo-
rate in the educational dialogue literature (Wegerif
and Mercer, 1996), where cumulative talk is recog-
nised as valuable, instead of only the more task-
advancing exploratory talk.

The evaluation was carried out with 16 raters; 11
were computing PhD students, while the other 5
were staff and PhD students from other departments
who had demonstrated a knowledge of Python
through earlier collaboration. Of the raters, 4
had previously participated in the data collection;
even though the dialogue data was anonymised, we
checked the anonymisation records to ensure that
raters did not see any dialogue they had participated
in. Given the complexity of the task, we could only
use raters whom we knew had some basic program-
ming knowledge and could be expected to show
good work ethics — these criteria overlap with
those for participation in the initial data collection,
which is why there was some overlap in partici-
pants at both stages. The rating criteria and pro-
cedure were explained in writing and live; where
raters did not attend the live session, feedback from
the live session was used to improve instructions
for the asynchronous raters. The raters, as were
the dialogue participants, were 25% female (not
self-reported, based on personal knowledge). All
participants received compensation. Raters worked
at varying paces; we observed some needing 5 min-
utes per file, while others needed 15. As the task
thus demanded a lot of time from raters, and we
needed samples to be rated by more than one per-

46

son due to the potential subjectivity, we only had
186 query points evaluated (each containing three
responses, as mentioned early). This resulted in a
total of 585 ratings (each rating consisting of three
sub-ratings, one for each of our criteria: Coherence,
Collaborativeness, Humanness).

3.4 Analysis

We first performed a descriptive quantitative anal-
ysis to observe which features seem to play an
important role in our data; we then used those in-
sights to carry out our inferential analysis. Both
types of analysis expanded upon the features that
we considered in our preliminary analysis (features
1-4):

1. Presence of LLM-style phrases (in our case,

variations of “Here’s the code/solution”).

. Presence of markers of spoken language (filler
sounds like “uh”, etc., or sentences starting
with “So,”.

. Response length, measured in characters.

. Presence of CODE STATE label. This label
was used to format the code in the responses
and the dialogue history. We introduced this
label in all human responses and instructed the
LLMs to use it, but the LLMs did not always
do that.

. Response similarity with last turn. We mea-
sured sentence similarity using Google’s Uni-
versal Sentence Encoder via Martino Mensio’s
wrapper.

. Response similarity with the human ground
truth. Naturally, the value was 1 (maximum
similarity) for human responses, so these were
excluded from the model that tested this fea-
ture.

. Similarity of the response code with the code
in the last turn. We measured similarity with
the difflib Python library.

. Whether the rater judged correctly the source
of the response (human or Al).

The inferential analysis, following our research
questions, relied on separate regression models for
each of our response variables: coherence, col-
laborativeness, and humanness. While the human

https://github.com/MartinoMensio/spacy-universal-sentence-encoder
https://github.com/MartinoMensio/spacy-universal-sentence-encoder

annotators rated each variable separately, their judg-
ments might be related, so we included the re-
sponse variables as predictors as well, together
with the relevant features from our list above. The
feature selection was informed by the descriptive
statistics: we limited the models to the predictor
variables for which a possible effect was noticeable,
to avoid convergence issues. As we performed mul-
tiple tests, we adjusted our alpha to p < 1.8¢2
using Bonferroni correction. We included the an-
notator and the sample ID as random effects due
to their high variability. All responses were rated
by at least two people, but some were rated by as
many as eleven to be able to calculate inter-rater
agreement. Cohen’s kappa is 0.04 for coherence,
0.19 for collaborativeness, and 0.52 for humanness,
indicating high subjectivity in the ratings. More
details on the inferential analysis can be found in
the Supplementary Materials (Part B).

The quantitative analyses were complemented by
two qualitative analyses: an analysis of the human-
ground-truth responses that were rated as seeming
Al-generated, and an analysis of raters’ comments
on what made them label responses as human or
Al

4 Results and Discussion

Table 3 shows the relative frequency of each rating
for each of the response sources (human, Llama, or
GPT). Results marked with an asterisk (*) are sup-
ported as statistically significant in our inferential
analyses (p < 1.8e73).

Human | Llama | GPT

Human-like 84.6%* 74.4% | 20.1*
Coherent 65.6 73.8 70.8
Collaborative 35.1 43.1 52.1
Neutral 50.0 41.5 10.8
NOT collaborative 14.9 154 37.1

Table 3: Response ratings by source, as percentage.
The figures are relative frequencies: (number of ratings
for this category value/total ratings in this category) X
100. Coherence and humanness are binary criteria, so
only the positive category is shown. Asterisk * denotes
statistical significance.

4.1 RQ1: Do Al responses appear human?
4.1.1 Results

To answer whether LLMs can return human-like
responses in pair-programming dialogue, we must
make a distinction between models, as the source of

47

the response (human ground truth, Llama, or GPT)
had a significant impact on humanness ratings. We
see that human responses were rarely not rated as
human-like, though some Al responses were rated
as human-like, especially those from Llama. Ta-
ble 4 shows the accuracy of annotators’ judgments,
with an average of 64.73%, maximum of 74.07%,
and minimum of 45.24%. There were 30 instances
(15.38% of human responses) where a human re-
sponse was rated as seeming Al-generated. We
analysed what might have caused this, and saw that
half those instances were due to a single annotator
being misled by the formatting of the responses
(the CODE STATE label shown in all human re-
sponses, 95.38% of Llama responses, and 37.95%
of GPT responses); this annotator judged all their
human samples as Al, but still got 60% accuracy
by applying this same judgment to Al responses
containing the label. Of the remaining instances,
half were instances of the same response mislead-
ing several raters: “So user’®. Four other instances
come from the same two annotators, raters 116 and
109.

Correct | Raters
judgments | (ID numbers)
70-75% | 101, 106, 110
65-70% | 104, 105,108, 111, 112, 113, 115
60-65% | 102,103,109, 114
55-60% | NA
50-55% | 107
45-50% | 116

Table 4: Annotators’ percentage of correct judgments
about whether the answers were human or Al

Humanness ratings were also correlated with
the similarity of the Al response with the human
ground truth (p= 5.26e~?). °. When an Al answer
is totally different from the GT (0), its probability
of being rated as human is 0.92% (i.e., almost 0).
When it has a similarity of 1 (it is the same as
the ground truth), its probability of being rated as
human is 87.26%. The mean similarity is 0.638109,
for which the probability of being rated as human
is 38.60%!'°.

8Here the speaker referred back to the “user” variable that
they were defining to implement a game script, though their
partner had moved one to a different part of the code.

°See Supplementary Materials (Part B) for more details
about the similarity measures.

Inferential probabilities extracted from our regression
models.

4.1.2 Discussion

Even though both LLMs received the same input,
Llama responses were judged as human-like much
more often than GPT responses. Raters accurately
judged human answers as human and often be-
lieved (less accurately) that Llama answers were
human; this highlights the model’s ability to im-
itate the style of the speakers from the dialogue
context. Imitating the style of the input also moves
the responses away from the default style associ-
ated with LLMs. This LLM style seems to be very
present in users’ minds: when we asked raters to
comment on what led them to think a response was
human or Al-generated, most comments tended to
focus on clues pointing to Al text. When raters
did comment on features that made a response ap-
pear human, they mentioned markers of spoken
language (primarily “uh” and “um”). This is one
way in which responses showed what raters iden-
tified as clear signs of human speech: signs of
hesitation in speaking, signalling a train of thought.
One annotator, however, showed awareness of how
LLMs can mimic those imperfections of human
speech: “when Al was not [sic] being collabora-
tive it would be harder to notice, as humans may
also respond things like ‘Ah’ (as it seems from the
recordings). This part seemed to me harder to tell
if it was human/Al generated”.

Four annotators mentioned that long responses
seemed Al-generated, though response length was
not a significant variable. Answers rated as Al have
an average of 75.48 characters, whereas answers
rated as human have an average of 75.13 charac-
ters. The difference was thus minimal, and the
range of response lengths was the same for both
ratings. The difference is similar when we look at
the actual source of the answers: 75.14 characters
for human answers, the same for Llama answers,
and GPT 75.48 for GPT answers. Related to this,
another factor mentioned by four annotators that
made them think an answer was Al-generated was
an abundance of details and explanations. As there
was no noticeable length difference, perhaps this
has more to do with information density and per-
ceived length, rather than objective length.

The influence of the similarity with the human
ground truth was a surprising finding. While
similarity-based metrics can be useful in domains
like machine translation, their use in dialogue re-
sponse evaluation is criticised, as valid outputs in
dialogue may be more diverse (Liu et al., 2017).

48

Nonetheless, these options may be constricted in
task-oriented dialogues, as our results suggest — it
is for instance quite remarkable that the average
similarity is as high as 0.6 (when considering only
responses whose length is similar to the ground
truth, this average goes up to 0.85 for Llama re-
sponses, but stays at 0.6 for GPT responses). That
being said, we must note that seeming human-like
is only one aspect of the responses, and similarity
with the ground truth is not related to the other
suitability criteria.

4.2 RQ2: Are Al responses as coherent as
human responses?

4.2.1 Results

Results concerning Coherence ratings showed
fewer features having a significant effect under the
Bonferroni-adjusted alpha, probably due to high
variability in annotators’ ratings (accounted for in
our regression models). However, we did observe
a significant effect of Collaborativeness ratings on
Coherence ratings (p = 7.36e°): when utterances
were rated collaborative, they were more likely to
be rated coherent.

4.2.2 Discussion

Even though no other features besides collabora-
tiveness ratings were statistically significant in rela-
tion to coherence, as we see on Table 3, our descrip-
tive statistics show, overall, that responses were
deemed coherent most of the time. The responses’
internal Coherence is no surprise given how LLMs
are trained on vast amounts of language data; Co-
herence with the broader dialogue context shows
that the models are able to utilise the dialogue con-
text effectively.

4.3 RQ3: Are Al responses as collaborative as
human responses

4.3.1 Results

As with RQ2, we did not observe many significant
features. The only significant result was the effect
of Coherence on Collaborativeness (p = 6.28¢4).

4.3.2 Discussion

As results regarding this criterion were mostly not
significant, we cannot draw any clear conclusions.
Nonetheless, if we look at Table 3, we can see a
clear difference between the LLM responses and
the human responses. Responses from GPT are
the ones most often rated as collaborative, but also
the ones most often rated as NOT collaborative;

they’re rarely rated as neutral. The responses of
Llama, on the other hand, are distributed across the
Collaborativeness values in a way more similar to
the human responses. In fact, we see that Llama
responses are rated as collaborative slightly more
often than human responses, while being rated as
NOT collaborative at an almost equal rate to the hu-
man answers. The difference between the models
with regard to Collaborativeness can be attributed
primarily to Llama’s ability to replicate the style of
the dialogue context, where many responses were

simple signs of agreement in the form of “Yeah” —

shows of (dis)agreement were considered neutral
in terms of Collaborativeness, signifying a mini-
mal advancement in the task; following Wegerif
and Mercer’s (1996) taxonomy of classroom col-
laborative talk, this cumulative talk — which adds
uncritically to what has gone before, occasionally
with superficial amendments — is also valuable for
collaboration.

When asked about what made them think an an-
swer was human or Al, one third of raters identified
some specific phrases characteristic of LLMs. One
annotator actually pointed out the same phrases
that we detected in one of our features (see Supple-
mentary Materials (Part B): “In my experience, Al
typically says ‘Here’s the corrected code:’/ ‘here’s
how we can. . .’ so when I see that I would think
it’s Al-generated”. Such “LLM-style” expressions
could have an effect on Collaborativeness, as they
introduce a solution and reflect instruction-tuned
models’ solution-oriented design. Raters also com-
mented on this: “I remember that the most Al gen-
erated looking answers were the least collaborative
as it would go and solve the problem itself”’. How-
ever, our limited, highly variable data, as well as
our conservative detection of LLM-style phrases,
prevented us from confirming the observations of
our qualitative analysis quantiatively.

5 Conclusions

We set out to explore whether recent LLMs have
brought the state of the art to a stage where an Al
pair-programming partner could be easily devel-
oped. We tested Llama 3.2 1B and GPT 40 mini
on Humanness, Coherence, and Collaborativeness.
Both models returned good responses in terms of
Coherence, though for our other suitability mea-
sures Llama showed much better performance than
GPT. Its ability to imitate the style of the input di-
alogue made its answers seem more human-like.

49

As a side effect, Llama responses were also rated
as more collaborative overall, since they included
some instances of cumulative talk and were rarely
rated as not collaborative. Responses from GPT
often showed a style easily recognised as charac-
teristic of LLMs; this style also led GPT responses
to often be rated as not collaborative, as the pro-
totypical LLM-style response features a complete
solution, instead of making the user a participant
in the development of the solution.

Llama’s already promising performance was
obtained through few-shot learning, showing a
promising path where large datasets might not be
needed to adapt a general-knowledge model to our
task. Nonetheless, we will release a modest dia-
logue dataset which could be utilised to explore
more data-intensive approaches (e.g., fine-tuning
pre-trained models). Future work also needs to
confirm whether performance remains consistent
through a whole dialogue. Llama showed good per-
formance at the utterance level through different
stages of the evaluation dialogues; however, per-
formance consistency has not yet been tested in a
more realistic scenario of live interaction.

What seems clear is that, although models have
been trained to be helpful, this does not always
translate into them being collaborative. In settings
where what is helpful differs from obsequious sub-
servience, it is thus necessary to teach the models
a different attitude. Fortunately, as we have shown,
with certain models, a few-shot approach may be
sufficient.

Limitations

While we managed to obtain 585 rating samples,
the high subjectivity of the task prevented us from
obtaining many statistically significant results. An
even larger sample size might have allowed us to
confirm the results that appeared relevant (notice-
able differences in descriptive statistics, moderate
effect sizes, and raters’ comments) but were not
statistically significant under a Bonferroni-adjusted
alpha. The subjectivity of the task also limited the
number of unique query points that could be anno-
tated (186), as we needed each point to be rated by
more than one annotator. The complexity of the
task meant that annotators were not easily recruited:
the task was time consuming and required some
knowledge of programming and analytical skills.
Another limitation of our study is the fact that
we only compared two models. Naturally, it would

not be feasible to test the large number of LLMs
that exist nowadays, so we selected two recent mod-
els from two representative families of closed and
open-weights models (Jiang et al., 2024). Their
widespread use makes it easier to compare insights
from other studies. Moreover, we used small, acces-
sible models, which would enable other researchers
to replicate and expand our methodology.

We worked with a fixed context window for bet-
ter comparability between responses. One draw-
back of this approach is that we could not query
the models on utterances before turn 50, where our
minimal context window would end. Based on our
results, we could expect the GPT model’s responses
to be unaffected. The Llama model proved more
sensitive to the dialogue history; however, our rela-
tively lengthy few-shot example of 50 turns might
provide sufficient context for the Llama model to
maintain the style that we have observed in later
turns.

While we wanted to explore how LLMs could
perform as pair-programming partners, time con-
straints allowed us to only take an initial step. Re-
sults at the utterance level are promising, but more
work is needed to confirm whether performance is
consistent through whole dialogues before further
steps can be taken towards the development of a
full system. A dialogue-level evaluation would also
require the evaluation of further variables beyond
the discourse, looking also at code problem-solving
skills and the learning gains from interacting with
the system.

Ethical considerations

By having human annotators rate our evaluation
data, we have also been able to make some ob-
servations about how users perceive Al. With the
current omnipresence of LLMs, users, at least those
in academic settings, have developed good aware-
ness of the characteristics of LLM-generated out-
put. Still, even knowledgeable users can be misled
when models mimic the characteristics of natural
speech. This makes it increasingly important for
Al research to always bear in mind ethical consider-
ations and disclose Al use. We hope to see students
benefiting from an Al pair-programming partner
in the near future, one that is as good as a human
partner, but students and instructors should always
be aware that they are using Al. Moreover, while an
Al partner would make pair programming more ac-
cessible, efforts should still be made through other

50

means to bring about the social benefits that Al
could never fully bring.

This research project has been reviewed by, and
received a favourable opinion from, The Open Uni-
versity’s Human Research Ethics Committee. Par-
ticipants gave informed consent for the use of their
data, which has been anonymised. They were in-
formed of their right to withdraw from the study,
which nobody exercised after participation. While
participation was voluntary, participants received a
voucher as a token of gratitude.

Acknowledgments

This work has financial support from EPSRC Train-
ing Grant DTP 2020-2021 Open University and
Toshiba Europe Limited. We thank our annotators
for their valuable contribution.

References

Adeola Adeliyi, Michel Wermelinger, Karen Kear, and
Jon Rosewell. 2021. Investigating Remote Pair Pro-
gramming In Part-Time Distance Education. In
United Kingdom and Ireland Computing Education
Research conference., pages 1-7, Glasgow United
Kingdom. ACM.

Alyssa Allen, Ashley Lewis, Yi-Chien Lin, Tomiris Kau-
menova, and Michael White. 2024. OSU CompLing
at the GEM’24 data-to-text task. In Proceedings of
the 17th International Natural Language Generation
Conference: Generation Challenges, pages 100-111,
Tokyo, Japan. Association for Computational Lin-
guistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program Synthesis with Large
Language Models. arXiv:2108.07732 [cs]. ArXiv:
2108.07732.

Simone Balloccu, Patricia Schmidtové, Mateusz Lango,
and Ondrej Dusek. 2024. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-
source LLMs. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 67-93, St. Julian’s, Malta. Association
for Computational Linguistics.

Maxwell Bigman, Ethan Roy, Jorge Garcia, Miroslav
Suzara, Kaili Wang, and Chris Piech. 2021. PearPro-
gram: A More Fruitful Approach to Pair Program-
ming. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, pages

900-906, Virtual Event USA. ACM.

Behzad Bozorgtabar, Dwarikanath Mahapatra, and Jean-
Philippe Thiran. 2023. Amae: Adaptation of pre-
trained masked autoencoder for dual-distribution
anomaly detection in chest x-rays. Preprint,
arXiv:2307.12721.

Herbert H. Clark. 2005. Using language, 6. print edition.
Cambridge University Press, Cambridge.

Tristan Coignion, Clément Quinton, and Romain Rou-
voy. 2024. A Performance Study of LLM-Generated
Code on Leetcode. In Proceedings of the 28th Inter-
national Conference on Evaluation and Assessment
in Software Engineering, pages 79—89, Salerno Italy.
ACM.

Cecilia Domingo, Paul Piwek, Michel Wermelinger,
and Svetlana Stoyanchev. 2024. Annotation Needs
for Referring Expressions in Pair-Programming Di-
alogue. In Proceedings of the 28th Workshop on
the Semantics and Pragmatics of Dialogue - Poster
Abstracts, Trento, Italy. SEMDIAL.

Samuel Ferino, Rashina Hoda, John Grundy, and
Christoph Treude. 2025. Junior Software Develop-
ers’ Perspectives on Adopting LLMs for Software

51

Engineering: a Systematic Literature Review. arXiv
preprint. ArXiv:2503.07556 [cs].

Eleonora Grassucci, Gualtiero Grassucci, Aurelio
Uncini, and Danilo Comminiello. 2025. Beyond
Answers: How LLMs Can Pursue Strategic Thinking
in Education. arXiv preprint. ArXiv:2504.04815
[cs].

Paul Grice. 1991. Studies in the Way of Words. Harvard
University Press.

Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie
Murphy, and Carol Zander. 2011. Pair programming
in education: a literature review. Computer Science
Education, 21(2):135-173.

Anja Hawlitschek, Sarah Berndt, and Sandra Schulz.
2023. Empirical research on pair programming in
higher education: a literature review. Computer Sci-
ence Education, 33(3):400-428.

David M. Howcroft, Lewis N. Watson, Olesia Nedopas,
and Dimitra Gkatzia. 2024. Exploring the impact
of data representation on neural data-to-text genera-
tion. In Proceedings of the 17th International Nat-
ural Language Generation Conference, pages 243—
253, Tokyo, Japan. Association for Computational
Linguistics.

Janet Hughes, Karen Kear, Bobby Law, Brendan Mur-
phy, Jon Rosewell, Ann Walshe, Michel Wermelinger,
and Adeola Adeliyi. 2021. Remote Pair Program-
ming. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, pages

1289-1289, Virtual Event USA. ACM.

Muhammad Huzaifah, Weihua Zheng, Nattapol Chan-
paisit, and Kui Wu. 2024. Evaluating Code-
Switching Translation with Large Language Mod-
els. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 6381-6394, Torino, Italia. ELRA and ICCL.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A Survey on Large Lan-
guage Models for Code Generation. arXiv preprint.
ArXiv:2406.00515 [cs].

Sanjay Kukreja, Tarun Kumar, Amit Purohit, Abhijit
Dasgupta, and Debashis Guha. 2024. A Literature
Survey on Open Source Large Language Models. In
Proceedings of the 2024 7th International Conference
on Computers in Management and Business, pages
133-143, Singapore Singapore. ACM.

Sandeep Kaur Kuttal, Bali Ong, Kate Kwasny, and Pe-
ter Robe. 2021. Trade-offs for Substituting a Human
with an Agent in a Pair Programming Context: The
Good, the Bad, and the Ugly. In Proceedings of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1-20, Yokohama Japan. ACM.

https://doi.org/10.1145/3481282.3481290
https://doi.org/10.1145/3481282.3481290
https://doi.org/10.18653/v1/2024.inlg-genchal.11
https://doi.org/10.18653/v1/2024.inlg-genchal.11
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://aclanthology.org/2024.eacl-long.5/
https://aclanthology.org/2024.eacl-long.5/
https://aclanthology.org/2024.eacl-long.5/
https://doi.org/10.1145/3408877.3432517
https://doi.org/10.1145/3408877.3432517
https://doi.org/10.1145/3408877.3432517
https://arxiv.org/abs/2307.12721
https://arxiv.org/abs/2307.12721
https://arxiv.org/abs/2307.12721
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
http://semdial.org/anthology/Z24-Domingo_semdial_0033.pdf
http://semdial.org/anthology/Z24-Domingo_semdial_0033.pdf
http://semdial.org/anthology/Z24-Domingo_semdial_0033.pdf
https://doi.org/10.48550/arXiv.2503.07556
https://doi.org/10.48550/arXiv.2503.07556
https://doi.org/10.48550/arXiv.2503.07556
https://doi.org/10.48550/arXiv.2504.04815
https://doi.org/10.48550/arXiv.2504.04815
https://doi.org/10.48550/arXiv.2504.04815
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1080/08993408.2022.2039504
https://doi.org/10.1080/08993408.2022.2039504
https://doi.org/10.18653/v1/2024.inlg-main.20
https://doi.org/10.18653/v1/2024.inlg-main.20
https://doi.org/10.18653/v1/2024.inlg-main.20
https://doi.org/10.1145/3408877.3439681
https://doi.org/10.1145/3408877.3439681
https://aclanthology.org/2024.lrec-main.565
https://aclanthology.org/2024.lrec-main.565
https://aclanthology.org/2024.lrec-main.565
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.1145/3647782.3647803
https://doi.org/10.1145/3647782.3647803
https://doi.org/10.1145/3411764.3445659
https://doi.org/10.1145/3411764.3445659
https://doi.org/10.1145/3411764.3445659

Chia-Wei Liu, Ryan Lowe, Iulian V. Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2017. How NOT To Evaluate Your Dialogue Sys-
tem: An Empirical Study of Unsupervised Evaluation
Metrics for Dialogue Response Generation. arXiv
preprint. ArXiv:1603.08023 [cs].

Xukai Liu, Ye Liu, Kai Zhang, Kehang Wang, Qi Liu,
and Enhong Chen. 2024. OneNet: A Fine-Tuning
Free Framework for Few-Shot Entity Linking via
Large Language Model Prompting. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 13634—13651,
Miami, Florida, USA. Association for Computational
Linguistics.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang,
Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li,
Mengshen He, Zhengliang Liu, Zihao Wu, Dajiang
Zhu, Xiang Li, Ning Qiang, Dingang Shen, Tianming
Liu, and Bao Ge. 2023. Summary of ChatGPT/GPT-
4 Research and Perspective Towards the Future of
Large Language Models. Meta-Radiology, 1(2).

Wenhan Lyu, Yimeng Wang, Yifan Sun, and Yixuan
Zhang. 2025. Will Your Next Pair Programming
Partner Be Human? An Empirical Evaluation of Gen-
erative Al as a Collaborative Teammate in a Semester-
Long Classroom Setting. ArXiv:2505.08119 [cs].

Yiping Ma, Shiyu Hu, Xuchen Li, Yipei Wang, Shiqing
Liu, and Kang Hao Cheong. 2024. Students Rather
Than Experts: A New Al For Education Pipeline To
Model More Human-Like And Personalised Early
Adolescences. arXiv preprint. ArXiv:2410.15701
[cs].

Ryo Nagata. 2019. Toward a task of feedback comment
generation for writing learning. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3206-3215, Hong Kong,
China. Association for Computational Linguistics.

Lidiia Ostyakova, Veronika Smilga, Kseniia Petukhova,
Maria Molchanova, and Daniel Kornev. 2023. Chat-
GPT vs. Crowdsourcing vs. Experts: Annotating
Open-Domain Conversations with Speech Functions.
In Proceedings of the 24th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
Prague, Czech Republic.

Laura Plonka, Helen Sharp, Janet van der Linden, and
Yvonne Dittrich. 2015. Knowledge transfer in pair
programming: An in-depth analysis. International
Journal of Human-Computer Studies, 73:66-78.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust Speech Recognition via Large-Scale Weak
Supervision. arXiv preprint. ArXiv:2212.04356 [cs,
eess].

Ehud Reiter. 2025. Natural Language Generation.
Springer Nature Switzerland.

52

Peter Robe, Sandeep Kaur Kuttal, Yunfeng Zhang, and
Rachel Bellamy. 2020. Can Machine Learning Fa-
cilitate Remote Pair Programming? Challenges, In-
sights & Implications. In 2020 IEEE Symposium
on Visual Languages and Human-Centric Comput-
ing (VL/HCC), pages 1-11, Dunedin, New Zealand.
IEEE.

Peter Robe and Sandeep Kaur Kuttal. 2022. Designing
PairBuddy—A Conversational Agent for Pair Pro-
gramming. ACM Transactions on Computer-Human

Interaction, 29(4):1-44.

Daria Seredina. 2024. A report on LSG 2024: LLM fine-
tuning for fictional stories generation. In Proceedings
of the 17th International Natural Language Genera-
tion Conference: Generation Challenges, pages 123—
127, Tokyo, Japan. Association for Computational
Linguistics.

Rupert Wegerif and Neil Mercer. 1996. Computers
and Reasoning Through Talk in the Classroom. Lan-
guage and Education, 10(1):47-64.

Michel Wermelinger. 2023. Using GitHub Copilot
to Solve Simple Programming Problems. In Pro-
ceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, pages 172-178,
Toronto ON Canada. ACM.

Linda Werner, Brian Hanks, and Charlie McDowell.
2004. Pair-Programming Helps Female Computer
Science Students. ACM Journal of Educational Re-
sources in ComputingACM Journal of Educational
Resources in Computing, 4(1):1-8.

Jules White, Quchen Fu, Sam Hays, Michael Sand-
born, Carlos Olea, Henry Gilbert, Ashraf Elnashar,
Jesse Spencer-Smith, and Douglas C. Schmidt.
2023. A Prompt Pattern Catalog to Enhance
Prompt Engineering with ChatGPT. arXiv preprint.
ArXiv:2302.11382 [cs].

Shuzhou Yuan, William LaCroix, Hardik Ghoshal, Er-
cong Nie, and Michael Firber. 2025. CoDAE:
Adapting Large Language Models for Education
via Chain-of-Thought Data Augmentation. _eprint:
2508.08386.

A Supplementary material: Preliminary
quantitative analysis for model
selection and context engineering

Table 5 the results from our preliminary quantita-
tive analysis, which allowed us to select our prompt-
ing approach. The figures for each approach are
the average for all responses to the query points
obtained from our development set containing one
dialogue (the number of query points varied de-
pending on the dialogue history length selected;
the dialogue contained 403 turns). The figures for
the human data correspond to the average for the
five dialogues constituting the pilot portion of our

https://doi.org/10.48550/arXiv.1603.08023
https://doi.org/10.48550/arXiv.1603.08023
https://doi.org/10.48550/arXiv.1603.08023
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://doi.org/10.18653/v1/2024.emnlp-main.756
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1145/3698205.3729544
https://doi.org/10.1145/3698205.3729544
https://doi.org/10.1145/3698205.3729544
https://doi.org/10.1145/3698205.3729544
http://arxiv.org/abs/2410.15701
http://arxiv.org/abs/2410.15701
http://arxiv.org/abs/2410.15701
http://arxiv.org/abs/2410.15701
https://doi.org/10.18653/v1/D19-1316
https://doi.org/10.18653/v1/D19-1316
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://doi.org/10.1016/j.ijhcs.2014.09.001
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
https://doi.org/10.1007/978-3-031-68582-8
https://doi.org/10.1109/VL/HCC50065.2020.9127250
https://doi.org/10.1109/VL/HCC50065.2020.9127250
https://doi.org/10.1109/VL/HCC50065.2020.9127250
https://doi.org/10.1145/3498326
https://doi.org/10.1145/3498326
https://doi.org/10.1145/3498326
https://doi.org/10.18653/v1/2024.inlg-genchal.14
https://doi.org/10.18653/v1/2024.inlg-genchal.14
https://doi.org/10.1080/09500789608666700
https://doi.org/10.1080/09500789608666700
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2508.08386
https://arxiv.org/abs/2508.08386
https://arxiv.org/abs/2508.08386

dataset. Averages are followed by the standard de-
viation in parentheses. The code CL means CodeL-
lama; L32 means Llama 3.2. The model names are
followed by their size (1B, 7B, 13B). The number
after P indicates the prompt number; PO indicates
that there was no prompt, the model was only given
the dialogue history. The number after C indicates
the length, in turns, of the dialogue history. The
number after FS indicates the length, in turns, of
the few-shot example. This is followed by a code
indicating the particular example used (“synth” for
the example created by the researchers; “real” for a
real example from the dataset, followed by “b” or
“e” to indicate whether the example was from the
initial or a later part of the dialogue, respectively.
Note that not all the prompts listed in Appendix
C were analysed in this way, as the brief qualita-
tive analysis sufficed to extract conclusions about
them. For brevity, as well, not all features analysed
are included here, only those relevant to the topics
discussed in this paper.

B Supplementary material: Features for
inferential analysis

All our inferential tests were done using logistic
regression models. Thus our null hypothesis is “the
predictor variable has no effect on the response
variable”. As per our research questions, our re-
sponse variables are Coherence, Collaborativenes,
and Humanness. Our main predictor variable was
the source of the dialogue response: human, GPT,
or Llama - for Coherence, this predictor was sim-
plified as human vs. Al since both models behaved
similarly in terms of Coherence. We also added the
response variables are predictors to see how they
related to each other (we however removed Coher-
ence as a predictor for Humanness to simplify our
model when it did not converge). We extracted
additional features from the responses to use as pre-
dictors, in order to better understand which factors
play a role in raters’ judgements. These features
later also helped us understand raters’ comments
about their judgements on Humanness, as some
of the aspects they commented on matched our
features. We extracted confusion matrices linking
our features to the response variables, and com-
pared means and ranges for continuous variables.
With that information, we decided which features
to include in the inferential models, based on how
strongly related to the predictors they seemed. The
features are as follows:

53

Presence of LLM-style phrases (in our case,
variations of “Here’s the code/solution”).

Presence of markers of spoken language (filler
sounds like “uh”, etc., or sentences starting
with “So,”

Response similarity with last turn. We mea-
sured sentence similarity using Google’s Uni-
versal Sentence Encoder via Martino Mensio’s
wrapper.

Response similarity with the human ground
truth. Naturally, the value was 1 (maximum
similarity) for human responses, so these were
excluded from the model that tested this fea-
ture.

Similarity of the response code with the code
in the last turn. We measured similarity with
the difflib Python library.

Response length, measured in characters.

Presence of CODE STATE label. This label
was used to format the code in the responses
and the dialogue history. We introduced this
label in all human responses and instructed
the LL.Ms to use it, but they did not always do
that.

Whether the rater judged correctly the source
of the response (human or Al).

We also analysed where in the dialogue the re-
sponse came from (e.g., middle, very end, etc.),
though this did not seem to play a role. Addition-
ally, the models included as random effects the
rater and the sample ID: we included the former
because of the variability observed among raters.
Raw agreement percentages were 82.48% for Co-
herence ratings, 76.32% for Collaborativeness, and
84.00% for Humanness, but the classes are imbal-
anced [70% of answers were rated coherent, 43%
as collaborative and 22% as NOT collaborative, and
60% as human], resulting in low agreement mea-
sures if the class distribution is taken into account.
Our decision to include raters as random effects
was further justified when we observed that half
the times that a human response was misjudged as
coming from an Al, this was due to a specific anno-
tator being misled by the formatting of the answers.
We included the latter random effect, sample ID,
because we also had an imbalanced distribution:
all samples, consisting of the set of three responses

https://github.com/MartinoMensio/spacy-universal-sentence-encoder
https://github.com/MartinoMensio/spacy-universal-sentence-encoder

Approach Word count LLM phrases Human interjections
Human 26.88 (33.41) 0.0054 (33.41) 1.35(1.78)
CL 7B PO C4 308.08 (63.42) 3.06 (1.63) 4.27 (3.62)
CL 7B P1 C4 324.31 (54.39) 2.81(1.53) 4.53 (3.27)
CL 13BP0OC4 312.02 (62.14) 2.51(1.49) 5.11 (3.95)
L32 1B P1 C4 380.73 (51.24) 0.07 (0.25) 8.98 (5.74)
L32 1B P7C4 337.77 (121.12) 0.35 (0.76) 8.71 (5.47)
L32 1B P8 C4 140.8 (95.61) 0.31 (0.68) 2.77 (3.19)
L32 1B P9 C8 114.13 (56.56) 0.16 (0.46) 2.72 (2.66)
L32 1B P9 C50 104.68 (37.1) 0.03 (0.17) 2.70 (2.48)
L32 1B P11 C4 FS27-synth | 136.88 (97.64) 0.3 (0.67) 2.46 (2.56)
L32 1B P11 C4 FS50-synth | 141.31 (90.87) 0.28 (0.67) 3.55(12.7)
L32 1B P12 C4 FS50-synth | 152.29 (101.23) 0.39 (0.79) 2.60 (2.49)
L32 1B P12 C50 FS27-synth | 107.82 (63.29) 0.04 (0.26) 2.70 (2.50)
L32 1B P12 C50 FS27-real-b | 108.86 (66.19) 0.02 (0.16) 2.87(2.44)
L32 1B P12 C4 FS50-real-b | 155.98 (109.56) 0.47 (0.77) 3.62 (4.29)
L32 1B P12 C50 FS50-real-e | 143.41 (92.45) 0.43 (0.76) 2.90 (2.87)

Table 5: Average results (and standard deviation) per response for each approach (model + prompting strategy) of

the preliminary analysis.

(human, GPT, Llama) for a particular query point,
were rated by at least two raters, but the number of
ratings ranged up to eleven. Below are the models
on which we base our Results section; as readers
can see, we implemented them using the glmer and
clmm libraries in R, depending on the type of re-
sponse variable; those libraries use Wald tests to
obtain the p values:

¢ Coherence:

glmer (Coherence_B ~ realHumanness

+ Collaborativeness_0 + Human_or_AI_B
+ Markers_LLM

+ Similarity_with_last_turn

+ Code_similarity_with_last_turn

+ (1|Annotator) + (1|Sample_ID),
data = human_clean, family = binomial)

¢ Collaborativeness:

clmm(Collaborativeness_0

~ Source_F + Coherence_B

+ Human_or_AI_B + Markers_LLM
Markers_spoken_language
Response_length_S
Code_similarity_with_last_turn
(1]Annotator) + (1|Sample_ID),
data = human_clean)

+ + o+ 4+

¢ Humanness:

54

glmer (Human_or_AI_B ~ Source_F
Collaborativeness_0

Markers_LLM
Markers_spoken_language
Has_CODE_STATE

did_annotator_guess
Code_similarity_with_last_turn
(1|Annotator),

data = human_clean, family = binomial)

+ 4+ + + + 4+ o+

* Effect of Al answers’ similarity with ground
truth on Humanness:

glmer (Human_or_AI_B

~ Similarity_with_GT

+ (1|Annotator) + (1|Sample_ID),
data = human_clean_onlyAI_n2,
family = binomial)

As we performed multiple tests, we adjusted our
alpha using Bonferroni correction. The adjusted
significance threshold is p < 1.8¢73.

The main result with statistical significance is
the effect of the response source (human, Llama,
GPT) on Humanness ratings. If we convert log
odds to probabilities for easier interpretation, while
human answers have a 97.82% probability of being
rated as human, for Llama answers this is 72.88%,
and 40% for GPT answers (p = 1.51e~* for human
ground truth, p = 5.9¢~'3 for GPT, p = 5.84¢ 10
for Llama).

C Supplementary material: Prompts

Below are the prompts that we used. The one high-
lighted in yellow is the one that was used for eval-
uation. As discussed in Section 3.2, we tested the
prompts with varying context-window lengths (4,
8, 50). The initial prompts included the program-
ming task description inside the dialogue history,
as it was included in the students’ code as com-
ments. Later prompts removed this from the code
and presented it only once in the prompt.

PROMPT CHARACTERISTICS:

Focus on the tone of the response and it being
only one turn. Includes description of CODE
STATE label.

PROMPT:

You are a pair programming partner.

Continue the dialogue with ONE utterance in a
tone suitable to the dialogue history.

You are the user's peer, so you know Python, but
you're not the user's teacher, you're learning
together; you're equal partners, so don't be too
much of a people pleaser. You want the user to be
able to think and contribute equally; admit when
you're not sure how to continue, instead of
misleading. Finish your tum including the CODE
STATE; if you want to make changes in the code,
update the CODE STATE.

The content of CODE STATE should be the last part
of your turn, as you can see in the dialogue history
turns.

<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO>

Figure 1: Prompt 01

55

PROMPT CHARACTERISTICS:

Focus on the tone of the response and it being
only one turn. Emphasis on the response having to
be to the dialogue history. Includes description of
CODE STATE label.

PROMPT:

You are a pair programming partner.

Continue the dialogue from the history with ONE
utterance in a tone suitable to the dialogue
history.

You are the user's peer, so you know Python, but
you're not the user's teacher, you're learning
together; you're equal partners, so don't be too
much of a people pleaser.

You wantthe user to be able to think and
contribute equally; admit when you'renotsure
how to continue, instead of misleading.

Finish your turn including the CODE STATE; if you
wantto make changes in the code, update the
CODE STATE.

The content of CODE STATE should be the last part
of your turn, as you can see in the dialogue history
turns.

<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO>

Figure 2: Prompt 02

PROMPT CHARACTERISTICS:

Focus on agent persona.

PROMPT:

You are a university student pair programming
with another university student.

You are studying some computing modules ata
distance university and have been paired with
another studentwho is studying the same or
similar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, but you're still
learning, and you may have used it for different
things in class if you're studying different
modules.

As a distance-learning student, you may not fit the
usual demographics for undergraduate students,
and having agreed to participatein this session
shows that you're eagerto practice some Python
and interactwith a peer.

<DIALOGUE HISTORY=>

<DIALOGUE TURN TO RESPOND TO>

Figure 3: Prompt 03

PROMPT CHARACTERISTICS:

Focus on agent persona. Brief.

PROMPT:

You are a university student learning Python by

pair programming with a peer.
<DIALOGUE HISTORY>
<DIALOGUETURN TO RESPOND TO>

Figure 4: Prompt 04

PROMPT CHARACTERISTICS:

Combination of focus on response characteristics
and agent persona. Brief.

PROMPT:

You are a university student learning Python by
pair programming with a peer.

You respond to your fellow student with one turn,
which may contain an utterance and maybe a
change to the code, or not.

<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO>

Figure 5: Prompt 05

PROMPT CHARACTERISTICS:

Focus on agent persona. Brief. Contextualisation
of context.

PROMPT:

You are a university student learning Python by

pair programming with a peer.

The following is some context from your
conversation, including code, which may or may
not change between turns.

<DIALOGUE HISTORY=>

<DIALOGUE TURN TO RESPOND TO=>

Figure 6: Prompt 06

56

PROMPT CHARACTERISTICS:

Focus on agent persona. Contextualisation of
context.

PROMPT:

You are a university student pair programming
with another university student.

You are studying some computing modules at a
distance university and have been paired with
another studentwho is studying the same or
similar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, but you're still
learning, and you may have used it for different
things in class if you're studying different
modules.

As a distance-learning student, you may not fit the
usual demographics for undergraduate students,
and having agreed to participate in this session
shows that you're eagerto practice some Python
and interactwith a peer.

The following is some context from your
conversation, including code, which may or may
not change between turns.

<DIALOGUE HISTORY=>

<DIALOGUE TURN TO RESPOND TO>

Figure 7: Prompt 07

PROMPT CHARACTERISTICS:

Focus on agent persona. Contextualisation of
context. Description of CODE STATE label.
PROMPT:

You are a university student pair programming
with another university student.

You are studying some computing modules at a
distance university and have been paired with
another studentwho is studying the same or
similar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, but you're still
learning, and you may have used itfor different
things in class if you're studying different
modules.

As a distance-learning student, you may not fit the
usual demographics for undergraduate students,
and having agreed to participate in this session
shows that you're eagerto practice some Python
and interactwith a peer.

The following is some context from your
conversation, including code, which may or may
not change between turns.

The code appears after the CODE STATE tag; you
can see that there's no need to preambleit, you
and your partner are both aware of that tag.
<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO>

Figure 8: Prompt 08

57

PROMPT CHARACTERISTICS:

Focus on agent persona. Contextualisation of
context, Description of CODE STATE label. Task
instructions separated from dialogue context.
Request json output.

PROMPT:

You are auniversity student pair programming
with another university student.

You are studying some computing modules at a
distance university and have been paired with
another studentwho is studying the same or
similar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, butyou're still
learning, and you may have used itfor different
things in class if you're studying different
modules.

As a distance-learning student, you may not fit the
usual demographics for undergraduate students,
and having agreed to participate in this session
shows that you're eager to practice some Python
and interactwith a peer.

The following tums are some context from your
conversation, including code, which may or may
not change between turns.

The code appears after the CODE STATE tag; you
can seethat there's no need to preamble it, you
and your partner are both aware of that tag.

If there are no changes in the code, itis the same
asinthe previous turn.

OQutput yourresponse in json format with a
'response’ key and a 'code’ key (which can be
empty if there's no code to return).

Before seeing the dialogue context, here is the
task instructions, formatted as comments:
<TASK INSTRUCTIONS>

<DIALOGUE HISTORY=>

<DIALOGUE TURN TO RESPOND TO=>

Figure 9: Prompt 09

PROMPT CHARACTERISTICS:

Focus on agent persona. Contextualisation of
context. Description of CODE STATE label. Task
instructions separated from dialogue context.
Request json output; example included.
PROMPT:

You are a university student pair programming
with another university student.

You are studying some computing modules at a
distance university and have been paired with
another studentwho is studying the same or
similar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, but you're still
learning, and you may have used itfor different
things in class if you're studying different
modules.

As a distance-learning student, you may not fit the
usual demographics for undergraduate students,
and having agreed to participate in this session
shows that you're eagerto practice some Python
and interactwith a peer.

The following tums are some context fromyour
conversation, including code, which may or may
not change between turns.

The code appears after the CODE STATE tag; you
can see that there's no need to preamble it, you
and your partner are both aware of thattag.

If there are no changes in the code, it is the same
asin the previous turn.

Output yourresponsein json format with a
'response’ key and a 'code’ key (which can be
empty if there's no code to return).

For example, you can return { response’:"What
about using a for loop?','code":'for i in our_list:"}.
Before seeing the dialogue context, here is the
task instructions, formatted as comments:
<TASK INSTRUCTIONS>

<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO=>

Figure 10: Prompt 10

58

PROMPT CHARACTERISTICS:

Focus on agent persona. Contextualisation of
context. Description of CODE STATE label. Task
instructions separated from dialogue context.
Request json output; example included. Few-shot
example included.

PROMPT:

You are a university student pair programming
with another university student.

You are studying some computing modules ata
distance university and have been paired with
another studentwho is studying the same or
similar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, butyou're still
learning, and you may have used it for different
things in class if you're studying different
modules.

As a distance-learning student, you may not fit the
usual demographics for undergraduate students,
and having agreed to participate in this session
shows that you're eager to practice some Python

and interactwith a peer.

Belowis an example excerpt from conversation
between two students in the same setting, solving
a different task:

EXAMPLE TASK: <FEW-SHOT EXAMPLE=>

Asin the example, respond following the context
below. You see that the code appears after the
CODE STATE tag;

you can see that there's no need to preambleiit,
you and your partner are both aware of that tag.
You can also seethat, if there are no changesin
the code, itis the same as in the previous turn.
Asin the example response, output your response
in json format with a 'response’ key and a 'code’
key (which can be empty ifthere's no code to
return).

For example, you can return {' response':'What
about using a for loop?','code":'for i in our_list:'}.
Before seeing the dialogue context, here is the
task instructions, formatted as comments:
<TASK INSTRUCTIONS>

<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO>

Figure 11: Prompt 11

PROMPT CHARACTERISTICS:

Focus on agent persona. Contextualisation of
context. Description of CODE STATE label. Task
instructions separated from dialogue context.
Few-shotexample included in json format.
PROMPT:

You are a university student pair programming
with ancther university student.

You are studying some computing modules at a
distance university and have been paired with
another studentwho is studying the same or
similar modules.

You and your partner, as students, want to use
this pair-programming session as an opportunity
to learn and collaborate with a peer.

You both know some Python, but you're still
learning, and you may have used itfor different
things in class if you're studying different
modules.

As a distance-learning student, you may not fit the
usual demographics for undergraduate students,
and having agreed to participate in this session
shows that you're eager to practice some Python
and interactwith a peer.

Belowis an example excerpt from conversation
between two students in the same setting, solving
a different task:

EXAMPLE TASK: <FEW-SHOT EXAMPLE>

As in the example, respond following the context
below. You see that the code appears after the
CODE STATE tag;

you can seethat there's no need to preambleit,
you and your partner are both aware of thattag.
You can also see that, if there are no changes in
the code, it is the same as in the previaus turn.
Before seeing the dialogue context, hereis the
task instructions, formatted as comments:
<TASK INSTRUCTIONS>

<DIALOGUE HISTORY>

<DIALOGUE TURN TO RESPOND TO>

Figure 12: Final prompt

59

