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Abstract

This paper proposes a natural language trans-
lation method for machine-verifiable formal
proofs that leverages the informalization (ver-
balization of formal language proof steps) and
summarization capabilities of LLMs. For eval-
uation, it was applied to formal proof data cre-
ated in accordance with natural language proofs
taken from an undergraduate-level textbook,
and the quality of the generated natural lan-
guage proofs was analyzed in comparison with
the original natural language proofs. Further-
more, we will demonstrate that this method can
output highly readable and accurate natural lan-
guage proofs by applying it to existing formal
proof library of the Lean proof assistant.

1 Introduction

Mathematical proofs written in a formal language
that computers can verify are known as formal
proofs. These are primarily written in languages
used by theorem proving assistants such as Isabelle
(Paulson, 1990), Rocq (Bertot and Castéran, 2004),
and Lean (de Moura et al., 2015).

Autoformalization is a technology that automat-
ically converts human-written proofs (natural lan-
guage proofs) into formal proofs. It reduces the
burden of manually formalizing mathematical the-
orems. Moreover, in the domain of natural lan-
guage theorem proving using large language mod-
els (LLMs) (e.g., Jiang et al., 2023, Zhang et al.,
2025a, Xin et al., 2025), autoformalization enables
us to programmatically verify the logical validity
of generated content, thereby contributing to the
improvement of automated theorem provers.

In recent years, with the advancement of LLMs,
research into autformalization as a machine trans-
lation task has become active (e.g., Li et al., 2024;
Tarrach et al., 2024; Zhang et al., 2025b). However,
challenges persist due to the lack of natural lan-
guage proofs paired with formal proofs for model

training. Consequently, its target remains primarily
on high school level mathematics, such as miniF2F
(Zheng et al., 2022), where the emphasis is on arith-
metic operations rather than mathematical reason-
ing.

This paper proposes an auto-informalization
method that translates formal proofs into natural
language proofs, addressing the challenge of lim-
ited training data for autoformalization. To achieve
this, we need to solve the following challenges:
Generation of Natural Reference Expression
Mathematical proofs frequently refer to predefined
concepts, theorems, and assumptions made in the
course of a proof. In formal proofs, these ref-
erences are made using arbitrarily named labels.
However, simply using these labels during transla-
tion cannot produce natural reference expressions
as those written by humans.
Abstraction to Human-Readable Proofs It is pos-
sible to mechanically translate each piece of a for-
mal proof into corresponding natural language ex-
pression, as all operations in formal language have
clear meanings. However, a natural language proof
constructed by mechanically translating and con-
catenating individual pieces often results in an un-
natural and incomprehensible output. To achieve
a natural translation, it is essential to include in-
formation that is both necessary and sufficient for
human readers by an appropriate abstraction.

To tackle the above problems, we combine the
following three components:
Construction of a Premise Library Our method
performs translation using a premise library,
which is created by converting definitions and
propositions within a formal mathematics library
(Mathlib) into natural language descriptions in
advance. These descriptions are included in the
prompt for step-wise informalization to encourage
the generation of natural reference expressions.
Step-wise Informalization Each step of a formal
proof (consisting of commands called tactics) is
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Figure 1: Method Overview

translated into a natural language proof step. It
is generated by a hybrid method that combines a
rule-based approach using templates prepared for
each tactic type, and slot-filling by an LLM that
extracts corresponding information based on slot
types that specify the content to be included.
Summarization of Proof Steps We generate a nat-
ural language proof by progressively summarizing
the description of the proof steps, reflecting the
structure of the formal proof.

The generated natural language proofs must ac-
curately reflect the logical structure expressed in
the formal proofs, and furthermore, must correctly
capture the essential points of the proof to avoid
logical leaps or breakdowns. To evaluate this, we
prepared formal proof data by formalizing uni-
versity undergraduate-level mathematical proofs,
maintaining their proof structure as much as pos-
sible. We then applied the proposed method to
this data and compared the generated output with
the original natural language proofs to conduct a
detailed evaluation. Additionally, we will present
conversion examples for Mathlib proofs, which do
not have corresponding natural language proofs,
to demonstrate that high quality natural language
proofs can be generated.

2 Related Work

This section introduces several recent studies on
autoformalization and informalization that are par-
ticularly relevant to our research.

Jiang et al. (2024) proposed a method to con-
struct a large-scale dataset of pairs of formal propo-
sition and natural language proposition by informal-
izing formal propositions written in Isabelle and
Lean using GPT-4. While our proposed method
also involves prompt-based informalization, it dif-
fers from Jiang et al.’s approach in that their method

targets only formal propositions, whereas our re-
search focuses on formal proofs.

Although prior work such as Chester (1976) and
Holland-Minkley et al. (1999) has addressed the
translation of formal proofs into natural language
proofs, there has been relatively little research on
approaches that utilize LLMs. Gao et al. (2025)
proposed a method for constructing high-quality
paired datasets of formal and natural language
proofs. Their approach uses static analysis tools to
extract information such as code comments, simi-
lar propositions, and dependent propositions from
Lean’s formal proof library, and then provides this
information to the LLM as auxiliary input to facil-
itate the translation of formal proofs. In addition,
they aim for high-quality step-wise informalization
and natural language proof generation by manu-
ally creating explanatory sentences for each tac-
tic’s logical structure and incorporating them into
the prompt, thereby helping the LLM capture the
relationship between proof steps and goals.

While our method is inspired by theirs, it differs
in two ways. First, instead of guiding the LLM with
explanatory text, we directly control the form of
step-wise informalization by applying rule-based
template generation. Second, whereas their method
generates natural language proofs by concatenating
step-wise results, our approach recursively summa-
rizes these results according to the structure of the
formal proof, producing text that is more readable
and closer in style to human-written proofs.

3 Theorem Proving Assistant

A theorem proving assistant refers to software that
provides a formal language for writing mathemati-
cal proofs and an automated verification system for
proofs written using that formal language.

Lean (de Moura et al., 2015) is one such proof
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1 theorem EvenAddEvenEqEven (a : N) (b : N):
2 (Even a ∧ Even b) → Even (a + b) := by
3 intro ⟨⟨r1, h1⟩ , ⟨r2, h2⟩⟩
4 have : a + b = (r1 + r2) + (r1 + r2):=by
5 rw [Nat.add_assoc, Nat.add_comm r2,
6 ← Nat.add_assoc, ← Nat.add_assoc]
7 rw [h1, h2]
8 rw [← Nat.add_assoc]
9 exact ⟨(r1 + r2), this⟩

Figure 2: Formal proof of "the sum of two even numbers
is an even number"

assistant, offering a functional programming lan-
guage based on dependent type theory. Similarly to
Rocq and Isabelle, Lean provides interactive proof
assistance through commands called "tactics." Fur-
thermore, formal proofs can be created efficiently
by leveraging Mathlib, a formal proof library built
on Lean by its user community.

We use Lean 4 and Mathlib4, released in 2021
for the implementation of the proposed method and
the creation of few-shot examples.

We explain the gist of Lean’s formal proof using
the proposition "the sum of two even numbers is
an even number" and its proof. A proof of this
proposition is given as follows:� �

If a and b are even numbers, then there exist some
r1, r2 such that

a = r1 + r1, b = r2 + r2.
This means that

a+ b = (r1 + r2) + (r1 + r2).
Therefore, a+ b is also an even number.� �

Figure 2 presents a formalization of this proof. In
a Lean formal proof, we first declare a proposition
to prove using the theorem command. In Figure 2,
it is declared that for any natural numbers a, b, if a
and b are even, then a + b is also even (line 1-2).
Next, we introduce variables and hypotheses using
the intro tactic (line 3). Since even numbers are
defined as Even x ⇔ ∃r. x = r + r, the following
hypotheses are introduced:
r1 r2 : N,
h1 : a = r1 + r1, and
h2 : b = r2 + r2.

The proof goal then becomes to prove Even (a
+ b). We then declare a sub-proposition to be
proven using the have tactic (line 4), namely that
a + b = (r1 + r2) + (r1 + r2). Then, the proof
goal temporarily changes from Even (a + b) to
a + b = (r1 + r2) + (r1 + r2), while the
hypotheses remain the same. The subsequent three
rw tactics (line 5-8) rewrite on the proof goal using

the propositions in the library and hypotheses. The
first tactic rewrites (r1+r2)+(r1+r2) to r1+r1+
r2+r2 using the commutative and associative laws
of addition. The next tactic rewrites a+b on the left-
hand side of the goal using the two hypotheses h1
and h2 introduced by the intro tactic, and finally,
by again using the associative law of addition, the
left and right sides of the goal are made to have
the same form, completing the proof of the sub-
proposition.

Finally, the proof of the initially declared propo-
sition is completed using the exact tactic (line 9).
Here, r = r1 + r2 is provided as evidence that
a+ b is even, thus completing the proof. Note that
this given in the exact tactic refers to the propo-
sition declared with the have command, which in
this case refers to a+ b = (r1 + r2) + (r1 + r2).

In Lean, propositions are thus proven by repeat-
edly applying tactics and changing the state of the
proof, i.e., the goal proposition and the established
hypotheses.

4 Method

Our proposed method translates formal proofs writ-
ten in Lean 4 syntax into natural language proofs
through five stages: off-line generation of premise
library (4.1), information extraction (4.2), step-
wise informalization (4.3), dependency structure
analysis (4.4), and summarization (4.5). Figure 1
provides an overview of the method.

4.1 Construction of Premise Library
The premise library contains explanatory sentences
for all theorems and definitions defined within Lean
and Mathlib. This library is generated using the
following procedure:

1. Information Extraction
All theorems and definitions are extracted
from Lean and Mathlib source codes (mod-
ules).

2. Dependency Analysis
Based on the list of modules imported by each
module, the dependencies between modules
are expressed in terms of levels. The level
value of each module indicates that it may
depend on modules with smaller level values
and does not depend on modules with larger
level values.

3. Explanation Generation
Starting from modules with smallest level val-
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ues, an LLM is prompted to generate explana-
tory sentences for the theorems and defini-
tions defined in that module. If a theorem
or a definition depends on another definition,
and its explanation is already available, the
explanation is provided in the prompt. As
few-shot examples, three other definitions and
theorems belonging to the same module or the
same field (e.g., linear algebra) are randomly
selected and provided.

For example, for the theorem representing the
triangle inequality of absolute values (|a + b| ≤
|a| + |b|), the output would be: “This theorem
states that in a linearly ordered additive group, the
absolute value of the sum of the two elements is less
than or equal to the sum of their absolute values,
embodying the triangle inequality.”

This library is used in the subsequent informal-
ization (4.3) and summarization (4.5) steps.

4.2 Formal Proof Information Extraction

Various pieces of information from the Lean formal
proof data are extracted for use in informalization,
dependency structure analysis, and summarization
steps. We extend LeanDojo (Yang et al., 2023)’s
data extraction tool and use it for this purpose. We
extract three types of data:

• Tactic Information holds the type and the
arguments of each tactic applied in a formal
proof and the changes in the proof state before
and after the tactic’s application.

• Premise Information contains information
such as the names and types of theorems and
definitions referenced in the formal proof.

• Abstract Syntax Tree (AST) represents the
dependencies between tactics, variables, and
other elements contained in a formal proof.
We obtain it from the internal data structure
of the Lean system.

4.3 Informalization of each proof step

Using the tactic information and premise informa-
tion extracted in the previous step, we generate
explanatory sentences for the operations of each
proof step in a formal proof by using an LLM. The
main part of the prompt used is shown in Figure 3
and the full prompt is shown in Appendix B.

We first extract a tactic applied in a proof step
from the tactic information, as well as the proof

Figure 3: Informalize task input example

state before and after its application (all expressed
in the form of hypotheses ⊢ goal).

Next, an appropriate generation template is re-
trieved. One or more template are manually pre-
pared for each tactic; each template corresponds to
different usage of the tactic.

Let’s take the rw tactic used in lines 5 and 7
of Figure 2 as an example. In the case of the
rw tactic, templates are differentiated by whether
it rewrites the goal, an existing hypothesis, or
both, and whether the rewriting uses only hy-
potheses, only theorems, or both hypotheses and
theorems. The rw tactic on line 5 rewrites the
proof goal using two theorems, Nat.add_assoc
and Nat.add_comm. The rw tactic on line 7 rewrites
the proof goal using two previously introduced hy-
potheses, h1 and h2. The template retrieval algo-
rithm uses this information to proceed through the
template branches and select the most appropriate
template. In this example, the following templates
are selected respectively for the two rw tactics:� �

By using [theorems], [goalsBefore] becomes [goalsAfter].
By using [assumptions], [goalsBefore] becomes [goalsAfter].� �

The templates include several slots, such as [the-
orems], [assumptions], [goalsBefore], and [goal-
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sAfter]. The LLM is instructed to fill these slots
so that they explain "theorems used during tactic
application," "assumptions used during tactic appli-
cation," "the proof goal before tactic application,"
and "the proof goal after tactic application," respec-
tively. These explanations of the slots are provided
in the informalization prompt along with the tem-
plate itself.

Next, explanatory sentences corresponding to
the theorems and definitions used in the applied
tactic are retrieved from the premise library. For
instance, in line 5 of Figure 2, which uses rw
[Nat.add_assoc, Nat.add_comm r2, ...],
two theorems are used: Nat.add_assoc and
Nat.add_comm. Therefore, the premise library is
searched based on the modules where these theo-
rems are defined, and their respective explanatory
sentences are retrieved.

Next, few-shot examples of the step-wise infor-
malization are obtained from a manually created
list. Few-shot examples are created for each type of
tactic operation defined in Lean and Mathlib. Each
example consists of the applied tactic, the proof
state before and after its application, and the result-
ing operation explanation sentence. The tactic and
proof state of the few-shot examples are extracted
from self-created formal proofs and Mathlib formal
proofs. The corresponding output examples were
all manually created with the intention of being
natural as sentences included in a proof and clearly
indicating to the LLM what operation the given
tactic corresponds to and which part of the proof
state to focus on for output. The formats of the
example sentences adhere to one of the templates.

Finally, the information obtained through the
preceding steps is provided to the LLM along with
a prompt, and natural language explanations corre-
sponding to each proof step are generated.

4.4 Dependency Analysis of Proof Steps
In this step, we analyze the dependencies between
tactics using the abstract syntax tree extracted in 4.2
and associate the operation explanation sentences
corresponding to each proof step to the nodes of
the tree structure that expresses these dependencies.
This tree structure has the proposition being proven
as its root and the explanation sentences of each
proof step as its descendants. Furthermore, when
proving an intermediate goal in a proof (declared
by tactics such as have), the explanation sentences
for the proof steps of that proposition become the
children of the proof step that declares the interme-

Figure 4: Dependencies among proof steps

diate goal.
Figure 4 shows an example of the tree struc-

ture. It represents the structure of the formal proof
shown in Figure 2. Here, four types of tactics are
used: intro, have, rw, and exact. Of these, the
three rw tactics are used to prove the intermediate
goal declared by the have tactic. Therefore, the
dependency structure is represented by a subtree
where the explanation sentence for the have tactic
is the root, and the explanation sentences for the
three rw tactics are the leaves.

4.5 Summarization of Informalized Steps

In this step, we leverage the dependency structure
tree constructed in the previous step to summarize
the operation explanations of all proof steps into a
single proof.

First, we use an LLM to informalize the proposi-
tion to be proven (the proposition declared at the
beginning of the formal proof), which is the root of
a tree structure. For this informalization generation,
we use a different prompt than the one employed
in 4.3, including three manually created few-shot
examples, and explanations of definitions used in
the proposition.

Next, to generate a natural language proof that
aligns with the structure of the formal proof, we
generate a sub-proof for each subtree in the tree
structure. A sub-proof is the natural language proof
of an intermediate goal declared by the tactic at the
root of a subtree, and its content is created from
the operation explanation sentences correspond-
ing to the nodes of the subtree. Furthermore, the
sub-proofs are recursively generated. That is, if a
subtree contains further subtrees, the sub-proofs
of the contained subtrees are generated first, and
they are summarized to the sub-proof of the origi-
nal subtree. This process is repeated until we get a
summary of the whole proof.
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� �
Require: Informalization result of proof step s

if s contains output written in formal language syntax
then

return "Untranslated Expression"
else if s contains logical/content errors then

return "Misinformation"
else if s is unclear/lacks sufficient information then

return "Insufficient Information"
else if s contains redundant/inappropriate expressions

for an explanation then
return "Unnecessary Mention"

else
return "Correct"� �

Figure 5: Evaluation Procedure

5 Experiment

5.1 Experiment Settings

For the step-wise informalization and summariza-
tion, we used OpenAI’s GPT-4.1-mini (gpt-4.1-
mini-2025-04-14). In the informalization task, the
generation temperature was set to 0.4 to obtain
accurate output that adheres to the format of the
template and few-shot examples. For the summa-
rization task, to generate natural proof texts, the
generation temperature was set to 1.0.

For evaluating the proposed method, we used 17
proofs from Sections 1.1 and 1.2 of "Calculus I -
Calculus of one variable -" by Shizuo Miyajima
(2010), which were manually formalized according
to the structure of the original proofs.

5.2 Evaluation of Step-wise Informalization

The evaluation of the informalization output was
conducted on 1,242 informalized proof steps cre-
ated by applying the proposed method to a total
of 38 formal proofs, which include the evaluation
data mentioned in 5.1 plus 21 lemmas used in the
formal proofs. The lemmas include theorems taken
from the same textbook (Miyajima, 2010), as well
as helper lemmas used in the formalization of the
proofs (e.g., commutativity of conjunctions). Ad-
ditionally, to confirm the effects of the templates
and premise library, four types of generation were
prepared by toggling the presence/absence of the
templates and the premise library.

The output was evaluated along the following
four dimensions.

• Accuracy of Included Information
Evaluates whether the mathematical expres-
sions and operations appearing in the text cor-
rectly reflect the content of the proof step.

• Sufficiency of Included Information
Evaluates whether the generated explanation
sufficiently contains the necessary informa-
tion to describe the proof step.

• Necessity of Included Information
Evaluates whether the explanation contains
only necessary information.

• Appropriateness of Translation
Evaluates whether the output is an appropri-
ate natural language explanation that does not
include expressions in formal proof syntax.

The evaluation was performed manually by the first
authors, who holds a degree in applied mathemat-
ics, following the procedure shown in Figure 5. The
evaluation order in the procedure was set based on
the degree of the negative impact of the defects on
the summarization result.

The experimental results are shown in Ta-
ble 1. The results show that the proposed method
achieves the most accurate informalization when
both the templates and the premise library are used.
When templates are present, the proposed method
achieves an accuracy over 80%, but without tem-
plates, the accuracy drops to approximately 50%.
Counterintuitively, Misinformation increases when
the templates are used; this is because necessary
content such as references to specific variables and
hypotheses, and reference to an already-proven the-
orem is significantly shorter when the templates are
not used, consequently decreasing incorrect infor-
mation. We further validated these findings using
McNemar’s test (α = 0.05). The results show that
all pairwise comparisons yielded significant dif-
ferences except for the comparison between w/o
template + w/o premise library and w/o template +
w/ premise library, where no significant improve-
ment was observed. Detailed results are provided
in Appendix C.

In the following, we scrutinize the effect of
premise library and templates.

Effects of premise library
Using the premise library in conjunction with the
templates improves accuracy by approximately 6%.
This is primarily due to the supression of Misin-
formation and Insufficient Information, suggesting
that providing premises, i.e., natural language ex-
planation of definitions and theorems mentioned in
a proof, makes it easier to properly refer to them.
On the other hand, when templates are absent,
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w/ template w/ premise
library

Correct Misinformation Insufficient
Information

Unnecessary
Mention

Untranslated
Expression

✓ ✓ 89.05 5.15 1.50 3.87 0.40
✓ 83.09 8.05 4.51 3.46 0.89

✓ 53.95 2.50 18.80 24.40 0.40
53.22 3.54 18.44 24.48 0.32

Table 1: Informalization Evaluation Results. The numbers in the table represent percentages relative to the total
number of evaluated proof steps.

adding the premise library shows little change in
accuracy. This is presumably because the premise
library synergistically improves performance in tan-
dem with template-based generation by allwing the
LLM to fill the slots simply by directly quoting the
natural language description of the premises.

Effects of templates
Comparing the results with and without templates
reveals a significant increase in insufficient infor-
mation and unnecessary mentions when templates
are absent. This indicates that while the templates
function effectively as constraints on the output,
few-shot examples alone are insufficient to con-
trol the output. Templates determine the format
of the output, making it less likely for superfluous
information to be generated while ensuring that
necessary information is included.

Untranslated formal expressions
Formal language expressions are occasionally out-
putted directly in the translation and its frequency
does not change significantly with or without tem-
plates or the premise library. This is caused by
formal language definitions (e.g., expressing the
infimum of a set as sInf) and notation specific to
formal languages (e.g., expressing the n-th element
of a sequence x as x n) appearing directly in the
output. While the former problem is somewhat
ameliorated by the premise library, the latter prob-
lem is due to the shortage of the LLM’s internal
knowledge of mathematical notation and formal
language notation. Thus, no significant improve-
ment was observed.

5.3 Evaluation of Summarization

The evaluation of summarization result was con-
ducted using the 17 paired data of formal and nat-
ural language proofs mentioned in 5.1. First, for
each of the 17 natural language proofs, an average
of 6.4 evaluation criteria were set. Each evaluation
criterion included key points that should be men-

Human Evaluation Score
w/ recursive 87 11 10 0.857
w/o recursive 85 10 13 0.833

Table 2: Summarization Evaluation Results.

tioned in the proof, such as the proposition to be
proven, theorems used, and newly introduced vari-
ables. These evaluation criteria were all manually
set based on the original natural language proofs.

We applied the proposed method to the formal
proof to generate a natural language proof, and eval-
uated whether the result correctly mentioned each
evaluation criterion on a three-point scale. The
evaluation criteria were: "key points correctly cap-
tured ( )", "key points partially captured ( )",
and "key points not captured ( )" (detailed eval-
uation criteria are provided in Appendix D). The
score for the generated result was then calculated
as follows:

score =
count( ) + 0.5× count( )

count( ) + count( ) + count( )
.

To verify the effectiveness of recursive summariza-
tion, we generated two sets of summaries, with
and without the dependency structure analysis and
recursive summarization.

The evaluation results are shown in Table 2. The
numbers in the table represent the total evaluation
counts for the 17 proofs. The score in the table is
calculated using the previously mentioned formula,
with the denominator being the total number of
evaluation criteria across all the 17 proofs.

The results show that recursive summarization
captures slightly more key points than the non-
recursive approach. Close inspection revealed that
the proofs generated using recursive summarization
did not exhibit any significant deviations from the
original formal proofs or logical breakdowns. In
contrast, among the 17 outputs generated without
recursive summarization, four included reasoning
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� �
We will show that the greatest lower bound (infi-
mum) of the set P of all positive real numbers is
zero. First, note that P is nonempty since it con-
tains the number 1, which clearly satisfies 1 > 0.
Next, we observe that 0 is a lower bound for P
because every element a ∈ P satisfies a > 0,
and thus a ≥ 0. Therefore, P is bounded be-
low by 0. Since the infimum is the greatest of all
lower bounds, it follows that the infimum of P is at
least zero. To show that the infimum is not greater
than zero, suppose by contradiction that inf P > 0.
Then the number inf P

2 is positive and thus belongs
to P , but since inf P is a lower bound, it must
satisfy inf P

2 ≥ inf P , implying inf P ≤ 0, a con-
tradiction. Hence, inf P ≤ 0. Combining these
inequalities, we have inf P ≥ 0 and inf P ≤ 0,
which together imply inf P = 0. This completes
the proof that zero is the greatest lower bound of
the set of all positive real numbers.� �

Figure 6: The proof of “inf{x ∈ R|x > 0} = 0“ gener-
ated with using recursive summarization.

not in the original proof and/or contained substan-
tial logical inconsistencies. These issues stem from
the LLM’s inability to fully capture the structure
of the original formal proof.

The effect of recursive summarization can be
explained as follows. First, the limited input win-
dow of the LLM likely contributes to hallucina-
tions. In the recursive summarization approach,
summaries are generated for semantically coherent
units, keeping input size small and thereby reduc-
ing the likelihood of hallucinations. In contrast,
without recursive summarization, all proof steps
are fed into the model at once, resulting in much
larger inputs and increased the risk of information
loss and hallucination. These observations suggest
that recursive summarization is effective for gen-
erating accurate summaries. As an example, we
present a generated proof for the proposition “the
infimum of the set of positive real numbers is 0”.
The original proof is as follows:� �

In this proof, let P := {x ∈ R|x > 0}. By defi-
nition, 0 is a lower bound of P , so inf P ≥ 0. If
inf P > 0, then 1/2 inf P ∈ P , so 1/2 inf P ≥
inf P must hold. This implies inf P ≤ 0, which
contradicts our assumption that inf P > 0.� �
Figure 6 and 7 present the proofs generated with

and without using the formal proof structure, re-
spectively.

Comparing these examples, the proof in Figure

� �
We will show that the set P of all positive real
numbers is nonempty, bounded below by zero, and
that its greatest lower bound (infimum) is exactly
zero. First, we observe that P is nonempty since
the number 1 belongs to P by virtue of satisfying
the defining property 1 > 0. Next, we demonstrate
that zero is a lower bound of P by noting that
for any element a ∈ P , we have a > 0 and thus
a ≥ 0. Since P is nonempty and bounded below,
the greatest lower bound inf P exists. We then
argue by contradiction to show that inf P ≤ 0:
assuming inf P > 0, it follows that half of this
infimum, inf P

2 , is an element of P because it is
strictly greater than zero. However, this contra-
dicts the property of the infimum being a greatest
lower bound since inf P

2 < inf P . Therefore, the
assumption inf P > 0 fails, and we conclude that
inf P ≤ 0. Coupled with the prior conclusion that
inf P ≥ 0, it follows that inf P = 0, completing
the proof.� �

Figure 7: The proof of “inf{x ∈ R|x > 0} = 0” gener-
ated without using recursive summarization.

theorem exists_infinite_primes (n : N) :
∃ p, n ≤ p ∧ Nat.Prime p := by
let p := minFac (n ! + 1)
have f1 : n ! + 1 ̸= 1 :=

Nat.ne_of_gt <| succ_lt_succ
<| factorial_pos _

have pp : Nat.Prime p :=
minFac_prime f1

have np : n ≤ p :=
le_of_not_ge fun h =>

have h1 : p | n ! :=
dvd_factorial (minFac_pos _) h

have h2 : p | 1 :=
(Nat.dvd_add_iff_right h1).2

(minFac_dvd _)
pp.not_dvd_one h2

exact ⟨p, np, pp⟩

Figure 8: The formal proof of “there are infinitely many
prime numbers.” in Mathlib.

6 captures the flow of the original proof, though
it includes some redundant content. On the other
hand, the proof in Figure 7 fails to mention that
inf P ≥ 0, and furthermore, deviates from the
logical flow of the original proof in the reasoning
expressed in the highlighted sentence.

5.4 Translation of Mathlib Formal Proofs

The data evaluated so far consisted of existing
natural language proofs, for which formal proofs
were then developed. In contrast, this section
presents examples of natural language proofs gen-
erated from Mathlib’s formal proofs using our pro-
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We will show that for any natural number n, there
exists a prime number p such that p ≥ n. Consider
the number n! + 1. Since the factorial n! is always
positive for natural n, it follows that n! + 1 > 1,
so n! + 1 ̸= 1. Let p be the smallest prime factor
of n! + 1. By definition, p is prime, as the small-
est prime factor of any integer greater than 1 must
itself be prime. Next, suppose for the sake of con-
tradiction that p < n. Since p ≤ n, p divides n! by
the definition of factorial. Furthermore, p divides
n! + 1 by choice. Therefore, p divides the differ-
ence (n! + 1)− n! = 1, which is impossible since
no prime number divides 1. This contradiction im-
plies that p ≥ n. Hence, for any natural number n,
there exists a prime p with p ≥ n, completing the
proof.� �

Figure 9: The generated proof of “there are infinitely
many prime numbers.”

posed method.
As an example, we will use the proposition

“there are infinitely many primes”. The original
formal proof of the theorem is presented in Figure
8. This proceeds as follows:

• Let p be the smallest prime factor of (n! + 1).

• That n! + 1 | 1 since factorial is always posi-
tive.

• If n > p, then from the property of factorials,
p | n! and p | n! + 1 holds, then it also holds
that p | 1. However, since prime numbers do
not divide 1, this is a contradiction. Therefore,
n ≤ p holds.

The informalize result is shown in Figure 9. This
demonstrates that even when formal proofs are not
created to directly follow human-written proofs, it
is possible to generate proofs that are still quite
readable as human-written ones. Several other ex-
amples are given in Appendix E.

6 Conclusion

We proposed a natural language translation method
for formal proofs by informalizing each proof step
with template and premise library, and summa-
rizing the result recursively, thereby generating
human-readable natural language proofs. We ap-
plied the proposed method to formal proofs for-
malized according to university-level mathematical
proofs and demonstrated that it can generate read-
able proofs that capture 86% of the key points. We

also showed that the proposed method can generate
high-quality natural language proofs from Math-
lib’s formal proofs, i.e., even from those without
corresponding natural language proofs.

Supplementary Materials Availability State-
ment: The appendix will be submitted as a
PDF file via the submission form. The source
code and output examples is publicly available at
https://github.com/hattori-matsuzakilab/
AutoInformalizationWithTemplate.
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A Limitation

A.1 Construction of Templates and Few-shot
Examples

The step-by-step informalization of formal proofs
proposed in this research only becomes effective
when a unique template is prepared for every pos-
sible operation executable by a tactic, along with
multiple few-shot examples for each tactic. How-
ever, identifying all possible operations a tactic can
perform and creating appropriate few-shot exam-
ples for them is extremely time-consuming.

To make the method proposed in this research
applicable to a wider range of formal proofs, it
is desirable to implement tools that assist in the
creation of templates and few-shot examples, or an
automatic generation tool utilizing LLMs.

A.2 Regarding the Summarization
Generation Method

The summarization method proposed in this re-
search aims to generate natural text by recursively
summarizing based on dependency structures. This
is intended to act like a "sieve," repeatedly select-
ing information necessary for the LLM to construct
natural proof texts, thereby filtering out trivial in-
formation. Therefore, the more complex the proof
structure is, the more redundant explanations are
removed, bringing the generated proof closer to a
human-written proof. However, a challenge arises
when dealing with simple proofs that contain trivial
operations not explicitly stated in human-written
proofs: the number of times the text is sieved de-
creases, making it more likely for details that are
trivial for human to be outputted.

To solve this problem, we believe it is necessary
to construct a method that explicitly marks impor-
tant information and reference expressions to be
retained during summarization, rather than relying
on a simple recursive algorithm.

B Informalization Prompt

You are an expert in Lean4 and formal mathematics.
Transform the given Lean4 tactic into a clear and concise
natural language explanation, accurately conveying the op-
eration performed as a step in a mathematical proof without
using the format of the formal language.
Ensure that any predicates from the formal language are not
included in the explanation.
# Steps
1. **Understand the Applied Tactic**:
- Analyze the ‘Applied Tactic‘ to comprehend its function
within the proof.

- If a tactic involves using one or more theorems or def-
initions, read the theorems listed under ‘Using Definitions

and Theorems‘ and ensure you understand their content.
2. **Examine Hypotheses and Goals**:
- Compare ‘Hypotheses And Goals Before Tactic Applica-
tion‘ with ‘Hypotheses And Goals After Tactic Application‘
to understand what changes in objectives occurred.

- Hypotheses and goals are separated with the symbol ’⊢’.
3. **Formulate the Explanation**:
- Describe what action the tactic took, referring only to what
was altered based on the changes observed in the hypotheses
and goals.
- Avoid directly referencing predicates from the formal lan-
guage.

- When referring to variables, be sure to explicitly use
these variable names in the output.

- (ex) Set A is Empty.
- **Do not** include the names of theorems or definitions

in formal languages, or variables used as aliases to specific
expressions (like h : x = 2 * y) in the output. Instead, explain
the content in natural language.
# Output Format
- Provide a natural language explanation summarizing the
operation of the tactic and the immediate effects on the hy-
potheses and goals.

- Provide all necessary information for the explanation in
precise and detailed terms.
# Examples
### Example X
**Input Information**:
- Applied Tactic: [example.appliedTactic]
- Hypotheses And Goals Before Tactic Application: [exam-
ple.goalsBefore]
- Hypotheses And Goals After Tactic Application: [exam-
ple.goalsAfter]
**Using Definitions and Theorems**:
- [example.premises] **Output**:
- [example.output]
# Notes
- Always determine what assumptions or definitions are
brought into effect or altered.
- Make sure explanations are precise to maintain clarity and
avoid unnecessary details.
- Do not include expressions written in Lean’s formal lan-
guage in the output.

- In formal proofs, casts such as from natural numbers
to integers are represented by ↑. Therefore, ensure that the
output does not contain ↑ representing a cast.
- If you use explanations or citations to output formulas,
please use TeX formatting for citations if the formulas are
not complex, or use explanations written in natural language
if the formulas are complex.
Using the example above as a reference, please explain the
following input in natural language as one operation in a
mathematical proof.
**Input Information**:
- Applied Tactic: [input.appliedTactic]
- Hypotheses And Goals Before Tactic Application: [in-
put.goalsBefore]
- Hypotheses And Goals After Tactic Application: [in-
put.goalsAfter]
**Using Definitions and Theorems**:
- [input.premises] **Output**:

C Results of McNemar’s test for the
tabulated results of the inverse
formalization

Table 1 shows the results of McNemar’s test on the
informalization results, conducted at α = 0.05.
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method A method B A only count B only count χ2 p-value
w/ template
w/o library

w/ template
w/ library

51 123 28.9713 7.3460e-08

w/o template
w library

w/ template
w/ library

40 475 365.7398 1.5841e-81

w/o template
w library

w/ template
w/o library

56 418 274.9388 9.5181e-62

w/o template
w/o library

w/ template
w/ library

42 477 362.9210 6.5096e-81

w/o template
w/o library

w/ template
w/o library

62 423 267.2165 4.5875e-60

w/o template
w/o library

w/o template
w/ library

115 118 0.0172 8.9576e-01

Table 1: Results of McNemar’s test for the tabulated results of the informalization. In the table, "library" refers to
the Premise Library. "A only count" and "B only count" indicate the number of cases where the result was correct
by method A but incorrect by method B, and incorrect by method A but correct by method B, respectively. χ2

denotes the test statistic.

First, when comparing methods without / with
templates, the number of correct results is clearly
higher when templates are applied, and the cor-
responding p-value is small, indicating a statisti-
cally significant difference. Regarding the Premise
Library, a significant difference is observed only
when templates are applied, while no significant
difference is found when templates are not used.
This indicates that the Premise Library is effective
only in combination with templates.

D Criteria for summarization evaluation

For the proof summarization evaluation, "key
points" were identified by exhaustively extracting
items from the original natural language proof that
fall into the following categories:

1. Definitions of variables and constants used in
the proof.

2. Statements of propositions corresponding to
sub-lemmas.

3. Proofs of the sub-lemmas.

4. Mentions of proof methods (e.g., proof by
contradiction).

5. References to theorems or lemmas used.

Categories 2 and 3 may be combined with 4 and 5,
for instance in cases such as “mentioning the use
of proof by contradiction to prove A.”

Each item was then evaluated according to the
following criteria:

• Correctly captured: The item was mentioned
correctly.

• Partially captured: The mention was correct
but incomplete.

• Not captured: The item was omitted or the
reasoning was incorrect.

For composite categories, an item was rated as
correctly captured only if all component criteria
were satisfied.

E Generation Example

E.1 Example 1
Theorem : The interior of a closed ball centered at
a point x with radius r in a metric space is precisely
the open ball centered at x with the same radius r.

theorem interior_closedBall (x : E) {r : R} (hr : r ̸= 0) :
interior (closedBall x r) = ball x r := by
cases’ hr.lt_or_lt with hr hr
. rw [closedBall_eq_empty.2 hr, ball_eq_empty.2 hr.le, interior_empty]
refine Subset.antisymm ?_ ball_subset_interior_closedBall
intro y hy
rcases (mem_closedBall.1 <| interior_subset hy).lt_or_eq with (hr|rfl)
. exact hr
set f : R → E := fun c : R => c · (y - x) + x

suffices f −1′ closedBall x (dist y x) ⊆ Icc (-1) 1 by
have hfc : Continuous f :=
(continuous_id.smul continuous_const).add continuous_const

have hf1 : (1 : R) ∈ f −1′ interior (closedBall x <| dist y x) :=
by simpa [f]

have h1 : (1 : R) ∈ interior (Icc (-1 : R) 1) := interior_mono
this (preimage_interior_subset_interior_preimage hfc hf1)

simp at h1
intro c hc
rw [mem_Icc, ← abs_le, ← Real.norm_eq_abs, ← mul_le_mul_right hr]
simpa [f, dist_eq_norm, norm_smul] using hc

We will show that the interior of a closed ball centered
at a point x with radius r in a metric space is precisely the
open ball centered at x with the same radius r.
First, consider the case when r < 0. By the definition of
a closed ball, no points satisfy the distance condition for a
negative radius, so both the closed ball and the open ball are
empty sets. Since the interior of the empty set is empty, the
proposition holds trivially in this case.
Next, for r ≥ 0, we prove the equality by showing mutual
inclusion. Specifically, it suffices to prove that the interior
of the closed ball is contained within the open ball. Assume
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y is an element of the interior of the closed ball centered
at x with radius r. To establish that y lies in the open
ball, we conduct a case analysis on the distance d(y, x). If
d(y, x) < r, then y is clearly in the open ball by definition,
so the claim holds.
To treat the remaining case, we define a function f : R→ E
by f(c) = c·(y−x)+x. This function is continuous, as it is
composed of scalar multiplication and vector addition, both
of which preserve continuity. Since y lies in the interior of
the closed ball with radius d(y, x), it follows that the scalar
1 (corresponding to y = f(1)) is an interior point of the
preimage under f of this interior. Given that the preimage of
the closed ball under f is contained in the interval [−1, 1],
this implies that 1 is an interior point in [−1, 1]. Using the
continuity of f and properties of norms and distances, we
show that any c such that f(c) lies in the closed ball must
satisfy c ∈ [−1, 1]. By exploiting the positivity of d(y, x)
and the equivalence of norms and absolute values, we verify
the inequalities establishing this containment. Together,
these arguments imply that y must lie within the open ball
centered at x with radius r, completing the proof that the
interior of the closed ball equals the open ball with the same
parameters.

E.2 Example 2

Theorem : Heron’s formula

theorem heron {p1 p2 p3 : P} (h1 : p1 ̸= p2) (h2 : p3 ̸= p2) :
let a := dist p1 p2
let b := dist p3 p2
let c := dist p1 p3
let s := (a + b + c) / 2
1 / 2 * a * b * sin (∠ p1 p2 p3) =

√
(s * (s - a) * (s - b) * (s -

c)) := by
intro a b c s
let γ := ∠ p1 p2 p3
obtain := (dist_pos.mpr h1).ne’, (dist_pos.mpr h2).ne’
have cos_rule : cos γ = (a * a + b * b - c * c) / (2 * a * b) := by
field_simp [mul_comm,
dist_sq_eq_dist_sq_add_dist_sq_sub_two_mul_dist_mul_dist_mul_cos_angle

p1 p2 p3]
let numerator := (2 * a * b) ^ 2 - (a * a + b * b - c * c) ^ 2
let denominator := (2 * a * b) ^ 2
have split_to_frac : ↑1 - cos γ ^ 2 = numerator / denominator := by

field_simp [cos_rule]
have numerator_nonneg : 0 ≤ numerator := by
have frac_nonneg : 0 ≤ numerator / denominator :=
(sub_nonneg.mpr (cos_sq_le_one γ)).trans_eq split_to_frac

cases’ div_nonneg_iff.mp frac_nonneg with h h
. exact h.left
. simpa [numerator, denominator, a, b, c, h1, h2] using le_antisymm h

.right (sq_nonneg _)
have ab2_nonneg : 0 ≤ 2 * a * b := by positivity
calc
1 / 2 * a * b * sin γ = 1 / 2 * a * b * (

√
numerator /

√
denominator) := by

rw [sin_eq_sqrt_one_sub_cos_sq, split_to_frac, sqrt_div
numerator_nonneg] <;>

simp [γ, angle_nonneg, angle_le_pi]
_ = 1 / 4 *

√
((2 * a * b) ^ 2 - (a * a + b * b - c * c) ^ 2) := by

field_simp [numerator, denominator, ab2_nonneg]; ring
_ = ↑1 / ↑4 *

√
(s * (s - a) * (s - b) * (s - c) * ↑4 ^ 2) := by

simp only [s]; ring_nf
_ =
√

(s * (s - a) * (s - b) * (s - c)) := by
rw [sqrt_mul’, sqrt_sq, div_mul_eq_mul_div, one_mul,

mul_div_cancel_right_0] <;> norm_num

We will prove Heron’s formula by showing that half
the product of two sides of a triangle and the sine of their
included angle equals the square root of the semiperimeter
times its differences with each side. Let a, b, and c be the
lengths of the sides opposite points p1, p3, and p2, respec-
tively, and let s = a+b+c

2
denote the semiperimeter. Define

γ as the angle formed at vertex p2 between sides a and b.
Noting that a and b are positive since the points are dis-
tinct, we proceed to express cos γ via the Law of Cosines

as cos γ = a2+b2−c2

2ab
. Squaring this expression and sub-

tracting from 1, we write 1 − cos2 γ as a ratio of polyno-
mial expressions in a, b, c, specifically numerator

denominator , where the
numerator is defined as the difference between (2ab)2 and
(a2+b2−c2)2, and the denominator is (2ab)2. We establish
that this numerator is nonnegative by analyzing the quotient
and considering the range of cos2 γ, then employing a case
analysis of the signs of numerator and denominator along
with the nonnegativity of squares and inequalities among the
side lengths. Furthermore, we show that 2ab is nonnegative
since it appears multiplied by sin γ, which corresponds to
geometric quantities bounded between zero and π. Confirm-
ing that the angle γ satisfies 0 ≤ γ ≤ π, we express sin γ
as

√
1− cos2 γ and simplify the corresponding expressions

by substituting the polynomial ratios and simplifying via
algebraic equivalences. Through these steps, we verify the
key equality 1

2
ab sin γ =

√
s(s− a)(s− b)(s− c), com-

pleting the proof of Heron’s formula as desired.

E.3 Example 3
Theorem: f and g are real-valued functions defined
on the real line. For all x and y, f(x+ y) + f(x−
y) = 2f(x)g(y). f is not identically zero and
|f(x)| ≤ 1 for all x. Prove that |g(x)| ≤ 1 for all
x. (IMO 1972 Q5)

theorem imo1972_q5 (f g : R→ R) (hf1 : ∀ x, ∀ y, f (x + y) + f (x -
y) = 2 * f x * g y)

(hf2 : ∀ y, ∥f y∥ ≤ 1) (hf3 : ∃ x, f x ̸= 0) (y : R) : ∥g y∥ ≤ 1
:= by

-- Suppose the conclusion does not hold.
by_contra! hneg
set S := Set.range fun x => ∥f x∥
-- Introduce ‘k‘, the supremum of ‘f‘.
let k : R := sSup S
-- Show that ‘∥f x∥ ≤ k‘.
have hk1 : ∀ x, ∥f x∥ ≤ k := by
have h : BddAbove S := ⟨1, Set.forall_mem_range.mpr hf2⟩
intro x
exact le_csSup h (Set.mem_range_self x)

-- Show that ‘2 * (∥f x∥ * ∥g y∥) ≤ 2 * k‘.
have hk2 : ∀ x, 2 * (∥f x∥ * ∥g y∥) ≤ 2 * k := fun x 7→
calc
2 * (∥f x∥ * ∥g y∥) = ∥2 * f x * g y∥ := by simp [abs_mul,

mul_assoc]
_ = ∥f (x + y) + f (x - y)∥ := by rw [hf1]
_ ≤ ∥f (x + y)∥ + ∥f (x - y)∥ := norm_add_le _ _
_ ≤ k + k := add_le_add (hk1 _) (hk1 _)
_ = 2 * k := (two_mul _).symm

set k’ := k / ∥g y∥
-- Demonstrate that ‘k’ < k‘ using ‘hneg‘.
have H1 : k’ < k := by
have h1 : 0 < k := by
obtain ⟨x, hx⟩ := hf3
calc
0 < ∥f x∥ := norm_pos_iff.mpr hx
_ ≤ k := hk1 x

rw [div_lt_iff]
. apply lt_mul_of_one_lt_right h1 hneg
. exact zero_lt_one.trans hneg

-- Demonstrate that ‘k ≤ k’‘ using ‘hk2‘.
have H2 : k ≤ k’ := by
have h1 : ∃ x : R, x ∈ S := by use ∥f 0∥; exact Set.mem_range_self 0
have h2 : ∀ x, ∥f x∥ ≤ k’ := by
intro x
rw [le_div_iff]
. apply (mul_le_mul_left zero_lt_two).mp (hk2 x)
. exact zero_lt_one.trans hneg

apply csSup_le h1
rintro y’ ⟨yy, rfl⟩
exact h2 yy

-- Conclude by obtaining a contradiction, ‘k’ < k’‘.
apply lt_irrefl k’
calc
k’ < k := H1
_ ≤ k’ := H2

388



We will show that if a function f satisfies the func-
tional equation f(x+ y) + f(x− y) = 2f(x)g(y) for all
real numbers x, y, and if |f(x)| ≤ 1 for all x with some
|g(y)| > 1, then this leads to a contradiction, thereby imply-
ing that |g(y)| ≤ 1.

To proceed, let S = {|f(x)| : x ∈ R} denote the set
of norms of values of f , and let k = supS be its supremum.
Since |f(x)| ≤ 1 for all x, the set S is bounded above by 1,
ensuring k ≤ 1. For any real number x, we have |f(x)| ≤ k
by definition of the supremum.

Next, we observe that for all x, y ∈ R, the functional
equation implies

2|f(x)||g(y)| = |2f(x)g(y)| = |f(x+ y) + f(x− y)|
≤ |f(x+ y)|+ |f(x− y)| ≤ 2k.

Dividing both sides by 2|g(y)|, we define

k′ :=
k

|g(y)| .

Now, since k ≥ |f(x)| > 0 for some x where f(x) ̸= 0,
we have k > 0. Because we assumed |g(y)| > 1, it follows
that

k′ =
k

|g(y)| < k,

as dividing by a number greater than one reduces the value.
On the other hand, considering the inequality for arbi-

trary x,
|f(x)| ≤ k,

and from the previous inequality,

2|f(x)||g(y)| ≤ 2k,

which implies

|f(x)| ≤ k

|g(y)| = k′.

Since this is true for all x, it follows that every element of
S is bounded above by k′; hence k ≤ k′ by definition of
supremum.

Combining these two inequalities yields the contradic-
tion

k′ < k ≤ k′,

which cannot hold. This contradiction arises from the as-
sumption that |g(y)| > 1.

Therefore, we conclude that |g(y)| ≤ 1 for all y, com-
pleting the proof.
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