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Abstract

We quantify linguistic diversity in image cap-
tioning with surprisal variance — the spread of
token-level negative log-probabilities within a
caption set. On the MSCOCO test set, we com-
pare five state-of-the-art vision-and-language
LLMs, decoded with greedy and nucleus sam-
pling, to human captions. Measured with a
caption-trained n-gram LM, humans display
roughly twice the surprisal variance of models,
but rescoring the same captions with a general-
language model reverses the pattern. Our analy-
sis introduces the surprisal-based diversity met-
ric for image captioning. We show that relying
on a single scorer can completely invert con-
clusions, thus, robust diversity evaluation must
report surprisal under several scorers.

1 Introduction

Every person is unique in their linguistic behaviour:
the same image may evoke many different yet valid
descriptions depending on their different personal
contexts, beliefs, attention, and background knowl-
edge. This “natural variability” has been docu-
mented in linguistic annotation (Plank et al., 2014;
Plank, 2022), inference (Pavlick and Kwiatkowski,
2019), object naming (Silberer et al., 2020), and im-
age captioning (Bernardi et al., 2016). On the other
hand, although vision-and-language models may
capture fragmets of individual styles, they are nor-
mally not trained with capturing diversity in mind.
They are optimised for maximum-likelihood esti-
mation (MLE), a function that rewards word com-
binations already dominant in the training corpus
and penalises rarer phrasing (Devlin et al., 2015;
Dai et al., 2017). Decoding tweaks (e.g. nucleus
sampling (Holtzman et al., 2020)) or alternative
objectives (Welleck et al., 2020; Li et al., 2016a)
may mitigate this effect. Still, transformer-based
models trained with MLE now achieve impressive
accuracy on caption benchmarks (Alayrac et al.,
2022; Li et al., 2023; Bai et al., 2025; Zhu et al.,

2025). However, such benchmarks assume a sin-
gle ground truth and often focus on targeting this
very benchmark, meeting a certain metric score
(Schlangen, 2021). As a result, the diversity of
model language is often sidelined — even though
prior studies argue that missing variability is criti-
cal for evaluating multi-modal models (Castro Fer-
reira et al., 2016; Li et al., 2016b; van Miltenburg
et al., 2018). Existing diversity metrics for tasks
such as image captioning (Shetty et al., 2017; van
Miltenburg et al., 2018), rely on surface counts
(length, type—token ratio, distinct-n) and lack a
principled link to linguistic processing.

In this study we examine diversity of image cap-
tions through the notion of surprisal, a probability-
weighted and context-sensitive probe. The sur-
prisal, a negative log-probability of a word in con-
text, has been widely used in linguistic analysis to
quantify the processing cost of a message (Hale,
2001; Levy, 2008) and has proved to be a robust
metric across languages (Pimentel et al., 2021;
Wilcox et al., 2023). Generic, more commonly
used words and phrases across speakers or models
are easier for either to produce, hence any poten-
tial differences in the measured surprisal between
these two groups naturally reveal any differences in
diversity of their linguistic behaviour (Gehrmann
et al., 2019; Venkatraman et al., 2024; Xu et al.,
2024). We extend this line of work from text-only
settings to image captions.

We estimate the probabilities used to measure
surprisal using two probabilistic scorers (i) an n-
gram model trained on a large corpus consisting
of a balanced collection of human and model gen-
erated image captions (in-domain expert), and (ii)
GPT-2 (Radford et al., 2019), a general-purpose
transformer trained on broad English. As we do
not have access to the true population of all pos-
sible captions for images, we follow earlier work
(Smith and Levy, 2013; Wilcox et al., 2023; Giu-
lianelli et al., 2023) and approximate the underly-
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ing distribution with two different language models.
Inspired by the scorer-sensitivity findings of Arora
et al. (2022), our dual-scorer design tests whether
conclusions about diversity change with the change
of the evaluator of surprisal.

Our research questions are:

1. Are human descriptions of individual images
more diverse than those generated by lan-
guage models in terms of the estimated sur-
prisal of the in-domain unbiased scorer?

2. Do predictions of this scorer align to those of
a general language model scorer which has
been trained on open text?

As artificial describers (description genera-
tors) we analyse five state-of-the-art vision-and-
language models and compare their descriptions
with human captions. Like Zamaraeva et al. (2025),
who used linguistic theory to identify syntactic
gaps in LLM-generated news compared to human-
authored news, we resort to the linguistic theory of
surprisal to evaluate multi-modal language, show-
ing how scorer choice interacts with caption dis-
tributions. Our study reveals a clear difference in
surprisal and therefore diversity between human
and model captions, and, importantly, that the di-
rection of this diversity flips with the chosen scorer.
These differences between evaluation scorers un-
derscore the need for future benchmarks to include
surprisal-based diversity scores computed under
several, well-motivated scorers.

2 Materials and methods

2.1 Data

We use the Karpathy test-split of MSCOCO (Lin
et al.,, 2014), which consists of 5000 images
each paired with five independent human captions
(25000 descriptions total). MSCOCO is one of
the popular and commonly used image captioning
benchmarks. It provides multiple human references
per image — exactly what we need to quantify how
diversely an image can be described by humans
and models'.

2.2 Models
We use five vision—language models
to generate one description per image:

Qwen2.5-VL-72B-Instruct (Bai et al., 2025),

'We note that MSCOCO is widely incorporated in training
of multi-modal LLM:s.

InternVL3-78B-78B-Instruct (Zhu et al., 2025),
Llama-4-Scout-17B-16E-Instruct?, Claude Sonnet
43, and GPT-40 (OpenAl et al., 2024). These
include both closed-source systems and large
open-source models, all ranking among the top
performers on the MMMU benchmark (Yue et al.,
2024). Our choice of five models is intended to
correspond to five human describers per image
in the MS COCO dataset (Lin et al., 2014). This
way we attempt to mirror a scenario of difference
in experience between between different human
describers, as the models are based on different
architectures and training regimes. More on
technical details can be found in Appendix A.We
produce two different sets of texts by running
models with two decoding algorithms: greedy
search and nucleus sampling (Holtzman et al.,
2020). Different decoding strategies let us assess
model captions in a more nuanced way since
decoding has a strong effect on the output in NLG
(Zarrief3 et al., 2021).

2.3 Scorers of caption probability
distributions

Overview For each image in our dataset, we train
a single Kneser—Ney-smoothed n-gram model (bi-
and tri-) on the union of all human and model cap-
tions except those associated with that target image
which will be our test set. As the probabilities es-
timated by this model are based on both human
and artificially generated captions we use this “bal-
anced” language model to score each of the the
held-out captions (five human, five machine), giv-
ing us one surprisal value per caption. Our zero
hypothesis is that this model by virtue of being bal-
anced) will predict no differences in surprisal value
between human and model generated captions of
individual images.

Training details We train both bigram and tri-
gram models to check that our findings are ro-
bust to context size. All models are implemented
with NLTK’s KneserNeyInterpolated language
model API (Bird et al., 2009; Kneser and Ney,
1995). With 5000 images x 10 captions each, each
leave-one-image-out model is trained on (5000 —
1) x 10 = 49990 captions. The vocabulary of the
model is built from the training pool (excluding
the target image). Pooling human and machine

Zhttps://ai.meta.com/blog/
1lama-4-multimodal-intelligence/
3https: //www.anthropic.com/news/claude-4
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captions ensures both groups contribute the same
n-gram types and counts, so rare-word penalties
are applied equally. Also, since all captions are
scored by the same language model, per-token sur-
prisal is directly comparable between human and
model outputs. Even if models saw MSCOCO dur-
ing pre-training, our leave-one-image-out n-gram
setup excludes each target image’s captions from
training, so repeated references are still treated as
new, ensuring surprisal reflects style rather than
memorisation.

2.4 Surprisal as evaluation metric

In psycholinguistics and computational linguistics,
surprisal (Shannon, 1948) is a well-established
measure of the information conveyed by a word
in context. Formally, the surprisal of a linguistic
unit w; given preceding units w; is defined as the
negative log-likelihood of the word conditioned on
previous context (Hale, 2001; Levy, 2008):

I(wy) = —log Py(wy | wey), (1)

where P is the underlying probability distribution.
Intuitively, treating units as words, predictable
words carry less information (lower surprisal),
while unexpected words convey more (higher sur-
prisal). We use surprisal to quantify linguistic un-
predictability in image captions under a model 6
trained to approximate P. We compute word-level
surprisals and average them across each caption
to estimate how predictable the caption is under a
given evaluator. Captions with higher average sur-
prisal are considered more lexically or structurally
novel, while captions with lower surprisal follow
patterns captured in Fp.

3 Experiments and results

Before moving to our surprisal-based experiments,
we first ask if model captions even look like hu-
man captions on lexical level. We compute several
metrics described in van Miltenburg et al. (2018);
the results are shown in Table 1. A table with per
model lexical diversity metrics is available in Ap-
pendix C. The results show that human and model
captions look different. Humans produce concise,
about 10 words long captions with little variation,
whereas models spin out strings three to four times
longer and far less consistent in length. Despite
this gap, models list far more unique words than
humans, possibly because their captions are several

Source  ASL + SDSL #Types  TTRI TTR2
Human  10.44 + 2.36 7,252 0.28 0.66
greedy 39.19£53.35 10,783 0.29 0.66

nucleus 40.00 +27.94 13,082 0.33 0.73

Table 1: Overall lexical statistics for human captions
and all model captions combined under greedy and
nucleus decoding. ASL = Average Sentence Length
(tokens per caption), SDSL = Standard Deviation of
Sentence Length, #Types = number of unique word
types, TTR1 = type-token ratio (per 1000 tokens), TTR2
= bigram type—token ratio (per 1000 bigrams).

times longer. However, once normalised by output
length (TTR metrics), the groups converge. This
interesting result suggests that the apparent rich-
ness of model vocabulary is largely an artifact of
their verbosity. When captions are several times
longer, the chance of introducing new word types
naturally increases, even if much of the added mate-
rial is repetitive. Once we control for output length,
however, the underlying lexical behaviour looks
remarkably similar. This convergence implies that
models, like humans, operate within a comparable
core vocabulary for the task, but their training en-
courages them to elaborate rather than compress.
In other words, verbosity does not necessarily trans-
late to greater genuine lexical creativity — instead,
it may reflect a tendency to “pad” responses with
familiar constructions, a behaviour aligned with
next-word prediction training objectives rather than
pragmatic efficiency in describing images.

Overall, the results in Table 2 demonstrate that
models lengthen their captions mostly by repeating
words known to them, so the proportion of gen-
uinely new vocabulary remains virtually the same
as in the brief human captions. Such extensive text
generation is not pragmatically required as demon-
strated by the much shorter human-generated texts
for the captioning task. These findings can also
be linked to differences in captioning guidelines:
those presented to humans for MSCOCO data col-
lection (i.e., “focus on visual content”) versus those
followed by instruction-tuned models, which were
trained to pursue a different goal from that of hu-
mans. The reason for the models’ verbosity could
thus be their tendency to generate texts features dif-
ferent from those found in human-generated texts,
including syntactic structures and vocabulary di-
versity (Mufioz-Ortiz et al., 2024) as well as gram-
matical differences (Zamaraeva et al., 2025). The
effect of the task provided to the image describers
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By Data Human Model t-value d,
Mean & SD Mean & SD

Bi-gram LM  H U Mgreeay 520 £ 504  2.17 £+ 200 40.88""  0.58
Tri-gram LM~ H U Mgreeay 7.39 £ 6.04 371 + 3.04 39457  0.56
Bi-gram LM HUMpuelens 5.03 + 495 408 £ 330 11.50"" 0.16
Tri-gram LM~ HUMpyeens 734 £ 6.09 674 + 449 570"  0.08
GPT-2 (small)  H U Mgreeay 1.565+ 1.521 2.015+ 1323 -16.37""  0.23
GPT-2 (medium) H U Mgreeay 1485+ 1420 2016+ 1.316 -2031""  0.29
GPT-2(XL)  HUMgeeay 1438+ 1.344 1954+ 1.243 -20.85"" 0.29
GPT-2 (small)  HUMpuelens 1.565+ 1.521  2.906+24.788 -3.82"""  0.05
GPT-2 (medium) HUMopuctens 1485+ 1.420 2903 +24.824 -4.03""  0.06
GPT-2(XL)  HUMpueews 14384+ 1.344 2911423710 -4.39""  0.06

Table 2: Variance in surprisal for human and model image descriptions (n = 5,000 images; paired ¢-test, df = 4 999).
“** indicates p < .001. d, > 0.50 indicates moderate effect size, d, < 0.20 indicates small effect size. For n-gram
models, training data for each language-model order n (under “Data” column) is the union of the human corpus H
and machine-generated texts M produced with the indicated decoding strategy (greedy or nucleus sampling). The

same data was used to test pre-trained GPT-2.

Human caption:
“The two monitors are sitting among the laptops.”

GPT4o:

“The workspace setup includes two laptops, two external monitors,
two full-size keyboards, and various accessories. One laptop on the
left is open and displaying a green-themed image, while another
on the right sits elevated on a stand showing a white car. The
two central monitors display websites and applications, likely
for multitasking. The desk also holds a pair of headphones, a
computer mouse for each setup, a smartphone, and other small
electronics, indicating a high-performance workstation for media,
development, or design tasks.”

Figure 1: An example image from MSCOCO test set
with one human reference and one model caption.

on the properties and features of the produced cap-
tions is also important (Ilinykh et al., 2018). Two
captions can be similar or different in terms of
length and number of types, yet be radically dif-
ferent in how predictable or information-rich they
are. Look at the example in Figure 1. Both cap-
tions mention the same objects (monitors, laptops)
and share word types, but the model’s version ex-
plores far less frequent phrases (“workspace setup”.
“green-themed image”) and long chains of modi-
fiers that could carry a different amount of informa-
tion content. Surprisal under scorers can capture
these probability-weighted differences that surface
counts alone cannot. In other words, surprisal lets
us measure not just how many different words ap-

pear, but how unexpectedly they are combined.

One striking difference is that models tend
to overdescribe visual information exhaustively,
while humans focus on particular elements. This se-
lectivity may also allow for greater diversity since
different humans can choose to highlight different
aspects of an image. If humans are behaving prag-
matically, they generate optimal (concise) captions,
and anything longer would be pragmatically inap-
propriate. Multi-modal LLMs, by contrast, struggle
to capture captioning intent because they produce
much longer texts. This is an interesting finding
as it raises the question of what constitutes a good
model-generated description. We leave this discus-
sion for future work. Next, we move to our main
experiments.

3.1 Surprisal within groups: in-domain

We compute surprisal variance across five cap-
tions per group for each image and use a paired
t-test (Gosset, 1908) to check if human and model
variances differ. As shown in Table 2, for both
n-gram orders under both decoding methods, hu-
man descriptions have shown roughly two times
higher variance in surprisal than model descrip-
tions. Switching to nucleus narrows the gap, but
only slightly as humans still remain the more vari-
able group. This result suggests that different mod-
els (although the differ in size, training data and
performance on benchmarks) tend to generate im-
age descriptions with similar information content,
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whereas humans offer more variance in the informa-
tion they express. Per model descriptive analysis is
available in Appendix B.

3.2 Surprisal within groups: general-domain

The analysis in Section 3.1 characterises surprisal
variance under the probability distribution Py that
is estimated by a simple n-gram language model
trained in-domain. While these models provide in-
terpretable baselines, their probability estimates are
limited by local context and the sparsity of the cap-
tion corpus. To test whether our findings generalise
under a richer representation of linguistic struc-
ture, we replace the caption-trained n-gram models
with a large pre-trained language model (GPT-2
(Radford et al., 2019)). This substitution changes
the underlying probability distribution to the one
trained on a much broader and more expressive
corpus, that is more of a general English corpus
rather than caption-related one. By doing so, we
can examine whether the observed human—model
differences in surprisal variance persist when sur-
prisal is computed under a generally more power-
ful, but different model of language. To compute
surprisal with GPT-2, we use codebase provided
by Oh et al. (2024)*. Recently, previous research
has used LLMs as surprisal scorers in the context
of second-language writing development (Hu and
Cong, 2025). According to Table 2, when sur-
prisal is estimated with the general English lan-
guage scorer, the trends reverse. Across all GPT-2
configurations, human surprisal variance was lower
than model variance, with significant paired differ-
ences. One possible explanation for this reversal
lies in the training objectives and data distributions
of the respective models. The in-domain n-gram
model trained only on captions is highly sensitive
to local lexical patterns and reflects the narrow
regularities of the captioning domain. In contrast,
GPT-2 is trained on broad and heterogeneous cor-
pora with the objective of next-word prediction.
Under this objective, model-generated captions
may appear more variable because they deviate
from the stylistic and structural norms GPT-2 has
internalised from general English texts, whereas
human captions — short, formulaic, and pragmat-
ically efficient — are closer to those norms and
thus exhibit lower surprisal variance. In this sense,
the two scorers are complementary rather than di-
rectly comparable: the n-gram model emphasises

“The codebase is available here: https://github.com/
byungdoh/11lm_surprisal

within-domain variation, while GPT-2 highlights
divergence from general-purpose English usage.
The methodological implication is that conclusions
about human—model variability depend strongly on
the choice of reference probability distribution.

4 Conclusion

Our study provides three main messages. First, us-
ing surprisal as a measure of diversity gap in image
captioning requires reporting under multiple scor-
ers. Doing so will (i) prevent over-interpretation
of scores tied to one distribution, and (ii) encour-
age future models to match human-level variability
inside the caption genre rather than describing im-
ages in general language. The apparent reversal in
variance of surprisal within describer groups is a
diagnostic of whose expectations one chooses as
their scorer. The two different scorers we employ
in this short study should be seen as two comple-
mentary metrics. Our work is thus helpful when
deciding which scorer to choose given a particular
task.

Limitations

Our analysis centers around two probability models
to compute surprisal: the caption-domain n-gram
language model and GPT-2. Using additional scor-
ers, including larger or instruction-tuned LLMs will
test whether the observed patterns generalise un-
der different scorers. We use MSCOCO Karpathy
test split because it offers five independent human
references per image. Running our experiments
on other datasets with different stylistic conven-
tions and multiple references such as Flickr 30k
(Plummer et al., 2016) would test robustness of
our method. Linking variance in surprisal to ac-
curacy metrics such as BERTScore (Zhang et al.,
2020) or MoverScore (Zhao et al., 2019) will show
whether diversity gains align with or trade off
against semantic quality. Finally, both captions and
scorers are English-based; the interaction between
genre-specific and general-language scorers may
differ in morphologically richer or typologically
distant languages.
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A Technical details

Each model was prompted with the following in-
structions:

Prompt Setup

System prompt:

You are a helpful annotator tasked with de-
scribing images. You will see one image
and you will be asked to describe it.

User prompt:

Describe all the important parts of the scene.
Do not start the sentence with “There is”.
Do not describe unimportant details. Do not
describe things that might have happened in
the future or past. Do not describe what a
person might say. Do not give people proper
names. The sentence should contain at least
8 words.

These instructions replicate those given to hu-
man annotators in the MS COCO captioning
dataset (Chen et al., 2015). Each model received
both the prompt and the image as input.

The open-source models were loaded
from HuggingFace repositories. We used
OpenGVLab/InternVL3-78B-78B-Instruct and
meta-llama/Llama-4-Scout-17B-16E-Instruct
and served them locally using vLLM (Kwon et al.,
2023) for efficient inference. We used the
official repository of Qwen2.5-VL> to run
Qwen/Qwen2.5-VL-72B-Instruct. We used
claude-sonnet-4-20250514 accessed through
the Anthropic API®. GPT-40 was accessed
through the OpenAl API’, using version
gpt-40-2024-08-06.

5https://gi‘chub.com/QwenLM/QwenZ.5—VL.git

f’https://docs.anthropic.com/en/api/messages

"https://platform.openai.com/docs/
api-reference/
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All open-source models were run offline on
four NVIDIA A100 GPUs (80 GB each, except
Qwen2.5-VL which used 4 x 40 GB). InternVL3-
78B and Llama-4-Scout were run with a maximum
context length of 8192 tokens. Qwen2.5-VL was
run with a maximum output length of 300 tokens
and a minimum of 50 new tokens. A full pass over
5000 images took approximately 12 — 14 hours per
model. To ensure comparability across models (in-
cluding those without beam search support), we
used two decoding modes for all models:

e greedy search:
temperature 0.0, top_p 0.0

* nucleus sampling:
temperature 1.0, top_p 0.92

Each generation was capped at 300 tokens. All
runs used a fixed random seed (42) to ensure repro-
ducibility.

Pre-processing We observed that Qwen2.5-VL
occasionally hallucinates, producing emoji uni-
codes, Chinese characters, extra spaces, and line
breaks. To clean these artifacts, we process all mod-
els’ outputs so that they contain only ASCII letters,
digits, standard punctuation, and spaces. We to-
kenise all model-generated captions with PTBTo-
kenizer (using the original MS COCO evaluation
code®) so that they share exactly the same tokeni-
sation as the human references.

B Variance in surprisal per model

Descriptively, the models show clear differences
in how predictable or variable their outputs are.
Across all decoding configurations, Llama 4 Scout-
17B-16E shows the lowest variance in surprisal sug-
gesting more uniform descriptions across images.
In contrast, Qwen2.5-VL-72B shows the highest
mean surprisal and higher variance values. Claude
Sonnet 4 and GPT4o fall in between but show an
increase in variance from bigram to trigram con-
texts.

C Lexical-based diversity metrics per
model

8[https ://github.com/tylin/coco-caption
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Configuration Model Mean surprisal Variance &= SD
Bi-gram LM, greedy Claude Sonnet 4 8.864 3.575+ 1.891
Bi-gram LM, greedy GPT4o 8.732 2.551+ 1.597
Bi-gram LM, greedy InternVL3-78B 7.995 3.130+ 1.769
Bi-gram LM, greedy  Llama 4 Scout-17B-16E 8.175 1.442 + 1.201
Bi-gram LM, greedy Qwen2.5-VL-72B 10.159 3.124 + 1.767
Tri-gram LM, greedy Claude Sonnet 4 8.385 6.106 + 2.471
Tri-gram LM, greedy GPT4o 8.179 4460+ 2.112
Tri-gram LM, greedy InternVL3-78B 7.042 5.444 + 2.333
Tri-gram LM, greedy  Llama 4 Scout-17B-16E 7.316 2.876 £ 1.696
Tri-gram LM, greedy Qwen2.5-VL-72B 9.964 5.047 4+ 2.246
Bi-gram LM, nucleus Claude Sonnet 4 8.742 3311+ 1.820
Bi-gram LM, nucleus GPT4o 9.146 2.742 + 1.656
Bi-gram LM, nucleus InternVL3-78B 8.837 3.866 + 1.966
Bi-gram LM, nucleus Llama 4 Scout-17B-16E 8.458 1.310+ 1.145
Bi-gram LM, nucleus Qwen2.5-VL-72B 12.086 4.219 £ 2.054

Tri-gram LM, nucleus Claude Sonnet 4 8.269 5.763 £ 2.401
Tri-gram LM, nucleus GPT4o 8.817 4.695 £ 2.167
Tri-gram LM, nucleus InternVL3-78B 8.329 6.253 £ 2.501
Tri-gram LM, nucleus Llama 4 Scout-17B-16E 7.840 2.609 4+ 1.615
Tri-gram LM, nucleus Qwen2.5-VL-72B 12.667 5.197 £ 2.280

Table 3: Per-model surprisal statistics across images. For each configuration and model, the table reports the mean
surprisal and the variance in surprisal across images with its standard deviation (shown as variance + SD), computed
over 5,000 images.

Model ASL SDSL #Types TTRI1 TTR2
greedy
Claude Sonnet 4 24.41 7.09 5,431 0.40 0.79
GPT40 35.59 15.63 6,507 0.38 0.79
InternVL3-78B 15.64 7.48 3,960 0.38 0.74
Llama 4 Scout-17B-16E 77.08 107.82 6,702 0.27 0.64
Qwen2.5-VL-72B 43.23 3.99 7,021 0.46 0.86
nucleus
Claude Sonnet 4 24.64 7.30 5,460 0.40 0.78
GPT4o0 35.39 15.70 7,031 0.40 0.81
InternVL3-78B 17.77 10.36 4,991 0.41 0.80
Llama 4 Scout-17B-16E 79.04 33.79 7,570 0.32 0.73
Qwen2.5-VL-72B 43.15 8.32 8,910 0.51 0.92

Table 4: Per-model lexical statistics under greedy and nucleus decoding. ASL = Average Sentence Length (tokens
per caption), SDSL = Standard Deviation of Sentence Length, #Types = number of unique word types, TTR1 =
type—token ratio (per 1000 tokens), TTR2 = bigram type—token ratio (per 1000 bigrams).
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