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Abstract

Large Language Models (LLMs) have demon-
strated great potential as evaluators of NLG
systems, allowing for high-quality, reference-
free, and multi-aspect assessments. However,
existing LLM-based metrics suffer from two
major drawbacks: reliance on proprietary mod-
els to generate training data or perform eval-
uations, and a lack of fine-grained, explana-
tory feedback. We introduce OPENLGAUGE,
a fully open-source, reference-free NLG eval-
uation metric that provides accurate explana-
tions based on individual error spans. OPENL-
GAUGE is available as a two-stage ensemble of
larger open-weight LLMs, or as a small fine-
tuned evaluation model, with confirmed gen-
eralizability to unseen tasks, domains and as-
pects. Our extensive meta-evaluation shows
that OPENLGAUGE achieves competitive cor-
relation with human judgments, outperforming
state-of-the-art models on certain tasks while
maintaining full reproducibility and providing
explanations more than twice as accurate.

1 Introduction

Evaluating Natural Language Generation (NLG)
systems remains a challenging research prob-
lem. Traditional overlap-based metrics, such as
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004), are still widely used but exhibit limited cor-
relation with human judgments, particularly when
assessing modern NLG systems (Novikova et al.,
2017a). With the rise of pre-trained language mod-
els, the research community began to shift toward
model-based metrics that better capture semantic
similarity, yet their performance was still unsatis-
factory (Yan et al., 2023; Glushkova et al., 2023).
Recently, Large Language Models (LLMs) have
demonstrated remarkable potential in imitating hu-
man evaluation of generated text (Jiang et al., 2024;
Xu et al., 2023; Hu et al., 2024b). LLM-based met-
rics are often general enough to evaluate diverse
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Figure 1: The ensemble metric OPENLGAUGE,,,s and
its distilled version OPENLGAUGE ;.

NLG tasks and can provide high evaluation perfor-
mance without the need for reference texts (Liu
et al., 2023). They also offer better adaptability to
evaluate specific aspects of generated text and are
able to evaluate beyond semantic correctness, tak-
ing into account aspects such as factual consistency
or relevance (Gu et al., 2024). However, existing
LLM-based NLG metrics lack two important fea-
tures: (1) they are not fully open-source, with most
relying on data generated by proprietary LLMs
such as GPT-4 (OpenAl, 2023), and (2) they do not
provide precise explanations for their evaluations,
with most of them producing only overall scores,
or explanations limited to a single short comment
(see Table 1 for details).

In this paper, we introduce OPENLGAUGE —
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a versatile, reference-free metric for NLG tasks that
provides precise, error-span-based explanations
(Figure 1). Unlike existing LLM-based metrics,
OPENLGAUGE is built entirely on open-weight
models and does not rely on human-annotated
datasets. It supports a wide range of NLG tasks,
including data-to-text, summarization or story gen-
eration. Moreover, it allows for fine-grained evalu-
ation of specific, customizable aspects of the gener-
ated text such as faithfulness, fluency or coherence.
It can also evaluate other user-defined aspects ap-
propriate for a given application.
Our contributions are as follows:

* We introduce an effective prompting strategy and
a two-stage LLM ensemble to obtain high-quality
evaluations of NLG outputs. The proposed
OPENLGAUGE,; demonstrates higher correla-
tions with human judgments on some NLG tasks
than previously proposed metrics based on pro-
prietary LLMs.

* We collect outputs from over 100 NLG systems
on 15 NLG tasks and use OPENLGAUGE,,
to annotate them to construct a comprehensive
dataset for training open NLG metrics.

* The collected dataset is used to construct
OPENLGAUGE;; — a fine-tuned version of
the smallest model from the Llama 3.1 fam-
ily (Grattafiori et al., 2024), which is able to
provide accurate explanations and reliable qual-
ity assessments of NLG outputs in a more cost-
effective way.

* We perform an extensive meta-evaluation of the
proposed metrics on seven datasets covering five
NLG tasks. The experimental analysis includes
human evaluation of explanation quality, com-
parison of different score aggregation methods,
ablation experiments, and evaluation on tasks,
domains, and aspects not seen during training.

Our experiments show that OPENLGAUGE
achieves higher explanation quality than other
metrics trained on data generated by proprietary
LLMs, while also delivering strong evaluation
performance. On tasks such as summarization,
OPENLGAUGE achieves higher correlations with
human judgments than metrics based on the strong
proprietary GPT-4 model. While the state-of-the-
art metric, Themis — which leverages both human-
annotated data and data from proprietary LLMs
— remains superior in terms of correlations with
human judgments, OPENLGAUGE proves highly

Metric No Ref. Aspects Open Err. Span
G-Eval X X
Prometheus X X X
Auto-J X X X
InstructScore X X X
TIGERScore X X

Themis v vV XK
OPENLGAUGE

Table 1: Comparison of properties in different LLM-
based metrics for NLG: reference-free (No Ref.), cus-
tomizable aspects (Aspects), built exclusively using
open-weight LLMs (Open), and producing precise
explanations with error-span annotation (Err. Span).
The metrics compared are: G-Eval (Liu et al., 2023),
Prometheus (Kim et al., 2024b), Auto-J (Li et al.,
2024a), InstructScore (Xu et al.,, 2023), TIGER-
Score (Jiang et al., 2024), Themis (Hu et al., 2024b)
and OPENLGAUGE (this work).

competitive and even outperforms it on certain
tasks, while also providing more detailed error ex-
planations.

All our experiments were conducted using only
quantized open-weight models and two GPUs with
48GB of VRAM each, ensuring that the results can
be reproduced in many Al research labs. Our code
and data are available on Github.'

2 Related Work

Although NLG has traditionally been evaluated
using simple word-overlap-based metrics such as
BLEU, these are known to have low correlations
with human judgments (Novikova et al., 2017a; Re-
iter, 2018). This improved somewhat with the use
of trained models for metrics in the past few years
(Yuan et al., 2021; Zhong et al., 2022; Mehri and
Eskénazi, 2020b), but the correlations remained
moderate. Recently, numerous studies explored
the application of LLMs in NLG evaluation. A
prominent line of research focuses on leveraging
proprietary LLMs such as GPT-4 (OpenAl, 2023),
with direct prompting for an overall score (Fu et al.,
2024; Kocmi and Federmann, 2023b) or even anno-
tating error spans with categories, which has been
explored in machine translation (Kocmi and Fed-
ermann, 2023a; Fernandes et al., 2023; Lu et al.,
2024). However, using proprietary models is costly
and comes with a reproducibility penalty, as some
LLM versions become unavailable or are modified
in a non-transparent way (Chen et al., 2024). An-

1https: //github.com/ivankartac/OpeNLGauge
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Context: [SUMMARY OF THE STORY]

Question: What is Dr. Heywood Floyd’s mission on the Clavius Base?

Answer: According to the summary provided, Dr. Heywood Floyd’s mission on the Clavius Base is to investigate
a recently found artifact buried four million years ago. Specifically, his mission is to ride in a Moonbus to the artifact,

which is a monolith identical to the one encountered by the man-apes in the summary."”!

Evaluation aspect: Conciseness — Extent to which the answer is concise and to the point

[1] Explanation: This introductory phrase is an error
affecting conciseness as it adds unnecessary words to
the answer. The response could directly state Floyd’s
mission without referencing the source (summary),
given the context of the question.

Severity: 2

Overall score: Fair (3/5)

[2] Explanation: This phrase is considered an error
affecting conciseness because it provides additional,
unnecessary details about the mission. The initial sen-
tence already clearly states Floyd’s mission, making the
subsequent elaboration redundant and wordy.

Severity: 3

Explanation of the score: While the generated answer generally addresses the question, its conciseness is com-
promised by the inclusion of redundant information and an unnecessary introductory phrase. Removing these
elements would enhance the answer’s directness and efficiency, potentially elevating the score to ‘Good’.

Figure 2: Example error span annotation provided by OPENLGAUGE for the narrative question answering task.
The answer to the question, grounded in the story summary, is evaluated for conciseness.

other concern is data leakage, which affects results,
but cannot be controlled in the case of proprietary
models (Balloccu et al., 2024).

Many recent LLM-based metrics, such as
Themis (Hu et al., 2024b), TIGERScore (Jiang
et al., 2024), InstructScore (Xu et al., 2023) or
Prometheus (Kim et al., 2024b), are built on open
LLMs, but in fact they all rely on proprietary LLMs
such as GPT-4 (OpenAl, 2023) to generate, filter,
or annotate their training data. Therefore, some
of these metrics can be viewed as sophisticated
knowledge distillation methods from proprietary to
open-weight LLMs. This retains the reproducibil-
ity disadvantage, as reconstructing the metric from
scratch or adapting it to a new task requires access
to closed-source LLMs.

While several metrics based on open-weight
LLMs provide some level of interpretability, this is
often limited to a short, free-text review of the eval-
uated output (Hu et al., 2024b; Kim et al., 2024b).
Fine-grained error-span annotation offers several
advantages over singular scores and comments: (1)
it can be easily processed automatically, allowing
its use in post-processing steps or to provide feed-
back to the model or training algorithms, (2) it
offers greater precision and clarity, as errors are
associated with a particular part of the output, mak-
ing it easier to find and correct issues, (3) it is
more human-like, resembling the output of human
annotation schemes such as MQM (Freitag et al.,
2021) or ESA (Kocmi et al., 2024). The alignment
with human evaluation allows easier comparison to

humans or even use as pre-annotation, helping to
accelerate human annotation process. While some
metrics do provide annotation on the error level,
these tend to use closed LLMs and their scope is
generally limited to single NLG tasks, such as the
machine translation approaches mentioned above
or Kasner and Dusek (2024)’s work on data-to-text
generation.

Scoring outputs with a single LLM may intro-
duce bias (Zheng et al., 2023; Panickssery et al.,
2024), which can be alleviated by combining mul-
tiple LLMs as evaluators. Verga et al. (2024) apply
an ensemble of mostly proprietary LLMs, aggre-
gating their scores either by majority voting over
binary ratings, or by averaging for ordinal scores.
For pairwise evaluation, Li et al. (2024b) propose
two methods which combine preferences of mul-
tiple LLMs, including an iterative multi-agent dis-
cussion.

3 Problem Statement

We formulate the problem of evaluating the output
of an NLG system while providing error-based ex-
planations as follows. Given an input z, an output
1y, and an evaluation aspect a, the task is to re-
turn a tuple (z, {eq, ..., e, }), Where z is a numeric
score assigned to y, and {ey, ..., e, } represents a
set of error annotations. Each error annotation
e; = (si,t;,1;) includes a span of text s; € y cor-
responding to the problematic segment, a textual
explanation ¢;, and a severity level /;. Although the
term error is used throughout this work, it should

294



be understood in a broader sense as any issue in the
text related to the evaluated aspect a. Examples of
outputs provided by OPENLGAUGE are presented
in Figure 2 and in Appendix L.

4 Open LLM Ensemble as Evaluator

To achieve a high-quality evaluation of NLG out-
puts, we propose OPENLGAUGE,,;, a two-stage
ensemble of open-weight LLMs. The ensemble
consists of n annotator models, which perform in-
dependent analyses of the provided NLG output,
and a consolidator model, which is responsible for
merging their results and filtering inaccuracies. A
high-level overview of the approach is presented in
Figure 1.

Although our approach requires multiple LLMs,
using the ensemble with a handful of models
(n = 5 in our experiments) is still less computa-
tionally demanding than sampling multiple outputs
to obtain statistical estimates, as required by some
metrics, e.g. G-Eval (n = 20, Liu et al. (2023)).
Furthermore, we only use quantized LLMs to limit
the computational requirements.

Annotator models The annotator models are
open-weight LLMs prompted to identify error
spans in the text and to provide detailed expla-
nations and severity levels for each error. This
approach facilitates the interpretability of the eval-
uation process, but also acts as a chain-of-thought
mechanism (Wei et al., 2022), helping the model to
ground its decisions in a structured reasoning path.
The full annotator model prompt is provided in
Appendix F. It contains the description of the eval-
uated task (e.g., data-to-text), the definition of the
evaluated aspect, and a template for the model’s re-
sponse. Since LLMs are known to confuse different
evaluation aspects (Hu et al., 2024a), the prompt
also contains several rules that instruct the model
to remain focused on the specific evaluation aspect,
not to make additional assumptions, and to justify
any score lower than the maximum by at least one
identified error. Inspired by Liu et al. (2023), we
also include detailed steps for error identification.
Furthermore, we provide a description of the
overall scoring scale, including an explanation of
the lowest and highest scores. The scale is pre-
sented as categorical (Unacceptable < Poor < Fair
< Good < Excellent), based on the intuition that
adjectival categorical scales may be easier for lan-
guage models to interpret than numerical scales.
We use an integer severity scale (1-5) for scoring

individual errors in order to avoid confusion with
the overall scoring scale.?

Finally, the prompt contains the input that was
originally used to generate the evaluated output
(e.g., the source text for summarization or the in-
put data in data-to-text). Some tasks may involve
multiple inputs; for instance, evaluating knowledge-
grounded question answering requires knowledge
of both the question and the context. In such
cases, the context is also presented to the model un-
der separate headers. Although structured formats
like JSON might make parsing of the output eas-
ier, prompting LLMs to reason within strict struc-
tured outputs has been shown to impair their per-
formance (Tam et al., 2024; Beurer-Kellner et al.,
2024). Therefore, the models are instructed to pro-
duce textual outputs.

Consolidator model The final score of the NLG
output is computed as a simple average of the
scores provided by the annotator models. How-
ever, to meet the requirement of explainable output,
the error analyses of multiple annotators need to be
unified. This is the task of the consolidator LLM.
This open-weight LLM is instructed to: (1)
merge errors detected by multiple models, (2) unify
their output format, and (3) clean up the anno-
tations. Specifically, the model is instructed to
merge all error annotations that refer to the same
issue at approximately the same location in the
text, while maintaining annotation granularity. It is
also prompted to fix potential deviations from the
expected output format. To simplify the cleaning
process, error analyses produced by outlier anno-
tator models? are filtered out from the input to the
consolidator model. The full prompt for the con-
solidator model is provided in Appendix F.

S Training a Distilled Model
5.1 Synthetic data generation

To distill knowledge from the ensemble, we col-
lected the outputs of over a hundred NLG sys-
tems and applied OPENLGAUGE,,, to produce
synthetic evaluation data. We include NLG outputs
produced on 15 datasets covering five task cate-
gories and almost 40 aspects. Table 2 shows the
basic statistics of the constructed dataset.

%A categorical scale was also initially used for error sever-
ity. However, we found that LLMs sometimes confused the
error severity scale with the overall score scale.

3The annotation is considered to be an outlier if the score

provided by the annotator differs from the mean score by at
least two standard deviations, and this difference is at least 1.
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Task Src. Sys. Asp. Examples
Summarization 5 39 6 12,070
Data-to-text 4 29 7 7,894
Dialogue 3 36 9 10,074
Story Generation 1 9 6 3,200
Question Answering 2 15 11 4,849

Table 2: Training dataset statistics for OPENLGAUGE f;:
number of source datasets (Src.), systems (Sys.), evalua-
tion aspects (Asp.) and training examples for each task.

The NLG outputs included cover the following
tasks: data-to-text, summarization, question an-
swering, dialogue response generation and story
generation. These were chosen to represent a di-
verse range of tasks, each with unique objectives,
input-output relationships and evaluation aspects.
Note that the underlying datasets are used only as
inputs for NLG systems and do not include human
evaluations of any kind.

For each task, we select a set of relevant evalua-
tion aspects with their definitions. We consider two
aspects distinct if they are associated with different
tasks. For instance, coherence in dialogue refers
to coherence of the response with respect to the
dialogue history, while in summarization it refers
to the internal coherence of a summary. We list the
datasets and aspects for each task in Appendix A.

To obtain output texts with varying quality and
diverse types of errors, we sample outputs from
a variety of systems, ranging from rule-based ap-
proaches to state-of-the-art LLMs. For older sys-
tems, we use pre-generated outputs from existing
datasets, while outputs from more recent systems
including LLMs are newly generated. An overview
of the evaluated systems is shown in Appendix B.

To limit computational requirements for dataset
generation, we apply a sampling procedure that en-
sures data diversity and broad coverage of different
NLG systems and aspects while significantly reduc-
ing dataset size. For each input, we randomly sam-
ple the outputs of NV systems, followed by sampling
M aspects for each input-output pair. The sampling
includes all aspects described in Appendix A and
all systems listed in Appendix B. This results in
N x M (input, output, aspect) triples for each in-
put, which are then passed to OPENLGAUGEg,s
to obtain synthetic annotations. For most tasks,
we set N = 4 and M = 3. This sampling strategy
aims for a balanced distribution of inputs, NLG sys-
tem outputs and evaluation aspects. It also ensures
exposure to different outputs for the same input,

i.e., it should not prime models to evaluate based
solely on patterns in the inputs. Finally, by pre-
senting multiple aspects for the same input-output
pair, models are encouraged to learn differences in
output quality between different evaluation aspects.
To keep the merged evaluation outputs internally
consistent, we remove outliers before merging, as
described in Section 4. Table 12 in Appendix D
shows the proportions of outliers detected for all
LLMs and task categories (3.4% on average).

5.2 Fine-tuning Procedure

We use the dataset described in Section 5.1 for
supervised fine-tuning of a specialized LLM eval-
uator, with an instruction-tuned version of Llama
3.1 8B as the backbone. To avoid training the LLM
to predict floating-point scores, we convert them
to integers in the range 0-100 and then bin them to
the nearest multiple of five. This extends the output
space from five to twenty values (instead of 100),
which is a trade-off between greater granularity in
predictions and manageable task complexity.

As the model is expected to learn the task from
training data, we used a simpler prompt template
for fine-tuning, with a brief description of the task,
the definition of the evaluated aspect, and the input
and output to be evaluated (see Appendix F).

6 Experimental Setup
6.1 Ensemble

The ensemble consists of six open-weight LLMs:
five annotators and one consolidator. Each selected
LLM is distributed under a license that permits at
least non-commercial use and allows the model’s
outputs to be used as training data. At the time of
the experiments, these models ranked among the
top-performing open-weight LLMs on the Chatbot
Arena Leaderboard® (Chiang et al., 2024).

The annotator models include the following:
Llama 3.1 Nemotron 70B (Wang et al., 2025),
Qwen 2.5 72B (Yang et al., 2024), Gemma 2 27B
(Team et al., 2024), Command R+ 104B (Cohere
For Al, 2024), and Mistral Large 2 123B°. We
apply Llama 3.3 70B (Dubey et al., 2024) as the
consolidator model. To address computational
constraints, we use quantized versions available
through the Ollama platform.® For synthetic data
generation, we set the temperature to zero to obtain

*https://lmarena.ai/leaderboard
5https: //mistral.ai/news/mistral-large-2407/
6https: //0llama.com/
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Metric QAGS-CNN/DM QAGS-XSUM Average
r P T T P T r P T

ROUGE-1 0.338 0.318 0.248 -0.008 -0.049 -0.040 0.165 0.134 0.104
ROUGE-2 0459 0.418 0333 0.097 0.083 0.068 0.278 0.250 0.200
ROUGE-L 0.357 0324 0254 0.024 -0.011 -0.009 0.190 0.156 0.122
BERTScore 0.576  0.505 0399 0.024 0.008 0.006 0.300 0.256 0.202
MoverScore 0414 0347 0271 0054 0.044 0.036 0.234 0.195 0.153
FactCC 0416 0484 0376 0.297 0.259 0.212 0.356 0.371 0.294
QAGS 0.545 - - 0.175 - - 0.375 - -
BARTScore 0.732  0.680 0.555 0.175 0.171 0.139 0454 0425 0.347
UniEval 0.682 0.662 0.532 0.461 0488 0399 0.572 0.575 0.466
G-Eval (GPT-3.5) 0.477 0.516 0410 0.211 0.406  0.343 0.344 0461 0377
G-Eval (GPT-4) 0.631 0.685 0.591 0558 0.537 0472 0.595 0.611 0.532
LLM Evaluation (GPT-3.5) 0.454 0.514 0.417 0.279 0.348 0295 0366 0431 0.356
LLM Evaluation (GPT-4) 0.735 0.746 0.626 0.541 0.528 0439 0.638 0.637 0.532
Auto-J 0.291 0.238 0.214 0225 0.214 0203 0.258 0.226 0.209
TIGERScore 0.574 0562 0479 0424 0.445 0412 0499 0.504 0.446
InstructScore 0.287 0.278 0.233 -0.096 -0.134 -0.119 0.095 0.072 0.057
Themis 0.747 0.761 0.680 0.599 0.607 0.546 0.673 0.684 0.613
OPENLGAUGEens 0.738 0.753 0.627 0.630 0.624 0.531 0.684 0.689 0.579
e Command R+ 104B 0.676 0.675 0.617 0.540 0.541 0.515 0.608 0.608 0.566
* Gemma 2 27B 0.579 0.646 0579 0592 0.614 0.563 0.585 0.630 0.571
e Llama 3.1 Nemotron 70B  0.705 0.733 0.650  0.587 0.586 0.540 0.646 0.659 0.595
* Mistral Large 2 123B 0.658 0.704 0.635 0577 0.570 0.541 0.617 0.637 0.588
* Qwen 2.5 72B 0.678 0.720 0.635 0.568 0.569 0.526 0.623 0.644 0.581
Llama 3.1 8B 0275 0.242 0219 0218 0.230 0.218 0.247 0.236 0.219
OPENLGAUGE ¢ 0.668 0.695 0584 0.607 0.607 0.524 0.638 0.651 0.554

Table 3: Segment-level Pearson (), Spearman (p) and Kendall (7) correlations of different metrics for factual
consistency on QAGS. The best correlations are highlighted in bold, the second best are underlined.

consistent results. For details on the models, see
Appendix C.

6.2 Distillation

To produce OPENLGAUGE f, we apply LoRA (Hu
et al., 2022) with rank 16 and alpha 32 to fine-tune
the instruction-tuned version of Llama 3.1 8B. The
model is trained for one epoch with a learning rate
of 2e-4, using AdamW optimizer (Loshchilov and
Hutter, 2017) with a weight decay of 0.01. We
apply a linear learning rate schedule with a warm-
up period corresponding to the first 5% of training
steps. The batch size is set to 16. This setup enables
resource-efficient training that requires only around
20GB of VRAM, completing one training epoch in
just six hours on a single A40 GPU.

6.3 Evaluation Datasets

We used seven popular meta-evaluation datasets to
assess how our metric correlates with human judg-
ments (for detailed descriptions of these datasets,
including details on aggregation of human scores,
see Appendix E). The datasets cover the following
tasks: summarization — SummEval (Fabbri et al.,
2021b), QAGS (Wang et al., 2020a); story genera-

Dataset Llama 3.1 OpeNLGauge; A
QAGS 0.236 0.651
SummEval 0.186 0.502
TopicalChat 0.309 0.578
SFRES/SFHOT 0.108 0.315
HANNA 0.150 0.425
Wiki-DA 0.405 0.789

Table 4: Comparison of Spearman (p) correlations of
the backbone model (Llama 3.1 8B) and our metric
OPENLGAUGE;; fine-tuned from the backbone on the
dataset described in Section 5.1. For each dataset, the
correlations are averaged across all evaluated aspects.

tion — HANNA (Chhun et al., 2022); data-to-text —
SFRES and SFHOT (Wen et al., 2015), text simpli-
fication — Wiki-DA (Alva-Manchego et al., 2021)
and dialogue generation — TopicalChat (Gopalakr-
ishnan et al., 2019). For OPENLGAUGE y;, text
simplification is a task unseen during training and
TopicalChat contains an unseen aspect (grounded-
ness). For human evaluation of error spans, we
used the RotoWire dataset (Thomson and Reiter,
2020) with annotations from a data-to-text task in
the basketball domain, a task unseen during train-
ing by the evaluated fine-tuned metrics.
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6.4 Baselines

We compare our methods with a variety of com-
monly used evaluation metrics, including tradi-
tional metrics such as ROUGE (Lin, 2004), BLEU
(Papineni et al., 2002) and METEOR (Agarwal and
Lavie, 2008), distance-based metrics MoverScore
(Zhao et al., 2019) and BERTScore (Zhang et al.,
2020a), and trained metrics BARTScore (Yuan
et al.,, 2021) and UniEval (Zhong et al., 2022).
We also include the following LL.M-based met-
rics: GPTScore (Fu et al., 2024), G-Eval (Liu
et al., 2023), LLM Evaluation (Chiang and Lee,
2023a), Prometheus (Kim et al., 2024b), Auto-
J (Li et al., 2024a), InstructScore (Xu et al., 2023),
TIGERScore (Jiang et al., 2024) and Themis (Hu
et al., 2024b). To measure the improvement of
OPENLGAUGE f; relative to the base model, we
include the instruction-tuned version of Llama 3.1
8B as an additional baseline. The specific metrics
reported differ depending on the dataset and the
evaluated NLG task.

Additionally, our comparisons include some
task-specific and aspect-specific metrics: QAGS
(Wang et al., 2020a) and FactCC (Kryscinski et al.,
2020) for evaluating factual consistency in summa-
rization, SARI (Xu et al., 2016) and LENS (Mad-
dela et al., 2023) for text simplification, and USR
(Mehri and Eskénazi, 2020b) for dialogue response
generation tasks. The latter metric has several vari-
ants; we use the variant with the best Pearson cor-
relation for each aspect in our comparison.

7 Results

7.1 Score Correlation with Humans

The results for factual consistency on QAGS are
presented in Table 3 and the results for other
datasets are available in Tables 14-20 in Ap-
pendix G. On QAGS, OPENLGAUGE,,s achieves
the highest average performance on both Pearson’s
r and Spearman’s p. On Kendall’s 7, our method is
outperformed by Themis, which can be attributed
to different score granularities used by these two
methods (see Section G.1 for a discussion). The
distilled version of our metric was consistently the
third best measure. Notably, it outperformed the
metrics based on the proprietary GPT-4 on this task.

On SummEval (Table 14), the best perform-
ing metric was Themis, closely followed by
OPENLGAUGE,s. However, note that training
data for Themis include almost 62,000 human-
annotated examples for the summarization task.

ens

M Span correct
Span incorrect
I Explanation correct
Explanation partial
Explanation incorrect

TigerScore OpeNLGauge OpeNLGauge
ft

0 50 100 150 200 250 300 350 400
# Error spans

Figure 3: Results of human evaluation of error spans
and explanations. Top half of each bar: Error spans
marked as correct or incorrect (hallucinated spans, no
span provided, or spans without errors). Bottom half:
Explanations marked as correct, partial (partially correct
or incomplete) or (not addressing actual errors,
vague or incorrect). The differences between TigerScore
and OPENLGAUGE, are statistically significant (t-
test, p < 0.05). See Table 13 for more details.

Comparing our approach to TigerScore, another
method that provides a similar level of explain-
ability (error span annotations), we observe 15
p.p. improvements on Spearman’s p averaged over
all aspects. The smaller OPENLGAUGEf; outper-
formed all other fine-tuned LL.M-based metrics
except Themis, and also surpassed metrics based
on prompting GPT-3.5 by a large margin.

On TopicalChat (Table 15), the LLM Evaluation
metric based on GPT-4 emerged as the strongest
evaluator, while OPENLGAUGE,,; ranked be-
tween this method and its GPT-3.5-based version.
OPENLGAUGE ; achieved 27 p.p. improvement in
Spearman’s p compared to its Llama 3.1 backbone.

In data-to-text, OPENLGAUGE,,s excelled in
evaluating naturalness, while OPENLGAUGE y;
stands out as the strongest evaluator of informative-
ness on the SFRES dataset (Table 16). Interestingly,
on data-to-text problems, the distilled version of
our metric achieved slightly better results on aver-
age than our ensemble. A similar situation is ob-
served for story generation (Tables 17-19), where
the distilled version obtained better average scores
on Spearman’s p and Kendall’s 7, and closely fol-
lowed OPENLGAUGE,,,s on Pearson’s r.

In text simplification (Table 20), our ensemble
achieved superior performance across the board,
outperforming LENS, a strong baseline metric spe-
cialized for this task.

Additionally, Table 4 presents a comparison of
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QAGS
Ablation1- —-0.019 -0.023 -0.020 0.006
Ablation 2 - 0.001 -0.032 -0.015 0.018
Ablation 3 - 0.007 —-0.031 -0.012 0.001
Ablation 4 - —0.022 -0.091 -0.056 0.001
1 1 1 1
CNN/DM  XSum Avg. Coh.

TopicalChat

Voo

0.022 —-0.089 0.003 -0.015

-0.2
0.015 0.014 0.003 0.012
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0.032 —0.047 0.010 -0.002
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Figure 4: Ablation results on QAGS and TopicalChat for OPENLGAUGE,,, ;. Plotted values represent differences in
Spearman’s p correlations with human scores between the ensemble with the original prompt and the corresponding
ablation. For TopicalChat, Coh. = coherence, Eng. = engagingness, Gro. = groundedness, Nat. = naturalness, Avg.

= average for all aspects.

OPENLGAUGE; with Llama 3.1 8B (instruct),
indicating a considerable improvement over the
prompted model.

Generalization to unseen tasks Although
not originally trained on text simplification,
OPENLGAUGE; outperforms all baseline met-
rics and individual LL.Ms in averaged Pearson cor-
relation on the Wiki-DA dataset (Table 20) and
achieves a particularly high score on meaning
preservation.

Generalization to unseen aspects On Topi-
calChat (Table 15), a large improvement for
OPENLGAUGE ; over Llama 3.1 8B is observed
on groundedness, which is an aspect unseen during
training. OPENLGAUGE; also surpassed most
fine-tuned metrics and most individual LLMs on
this aspect. Moreover, Wiki-DA contains addi-
tional unseen aspects (meaning preservation and
simplicity) on which OPENLGAUGE y; shows con-
siderable improvement over Llama 3.1 8B and out-
performs most of the individual larger LLMs.

7.2 Human Evaluation of Error Spans

We performed a small in-house human evaluation
study to compare the quality of explanations ob-
tained by OPENLGAUGE and TigerScore, another
LLM-based metric that also provides error-span
annotations (see Table 1). For this purpose, we
used a data-to-text task in the basketball domain
(Thomson and Reiter, 2020). Five expert annota-
tors evaluated the output of all three systems on
40 instances (a total of 120 outputs and 950 error
spans). We asked the annotators to: (1) evaluate
provided error spans, marking them as correctly

identified, not containing an error, hallucinated,
and situations where no span was provided; (2)
evaluate generated explanations, marking them as
correct, partially correct, incomplete, vague, incor-
rect, or texts that do not describe an error.

To assess reliability of our human annotation, we
computed Cohen’s « coefficient (Cohen, 1960) of
inter-annotator agreement on 50 error spans with
double annotations. We obtained x = 0.82 for the
evaluation of error spans, and x = 0.46 for error
explanations.

The results are shown in Figure 3, with more
details provided in Table 13 in Appendix G. Both
OPENLGAUGEf; and OPENLGAUGEy,s are over
twice more accurate than TigerScore at annotating
error spans, while finding over ten times more cor-
rect error spans. The task of providing accurate
error explanations was more difficult for all the ap-
proaches evaluated. OPENLGAUGE.,s achieved
the highest performance and was almost twice
as accurate as TigerScore and OPENLGAUGE 4,
which achieved similar accuracies.

7.3 Ablation Experiments

Prompt ablations We explore the effect of us-
ing different scales for the overall score and error
severity: integer scales for both (Ablation 1), inte-
ger scale for overall score and categorical scale for
severity (Ablation 2), and categorical scale for both
(Ablation 3). Recall that OPENLGAUGE uses a
categorical scale for overall score and integer scale
for error severity — see Section 4.

Correlation differences between the full prompt
and the ablations are summarized in Figure 4, for
detailed results see Appendix H.1. Overall, the
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change of scale has little effect on the average corre-
lation of the whole ensemble, but it has a dramatic
effect on some individual LLMs and aspects. This
illustrates the ability of the ensemble to compensate
for weaknesses in individual annotator models.

Finally, we examine the effect of removing the
evaluation rules from the prompt (Ablation 4),
which has an inconsistent effect on different mod-
els/aspects, but on average degrades the ensemble
evaluation quality — up to 5.6 p.p.

Ensemble structure We also analyze the effect
of ensemble size and the influence of its particular
components on the correlations with human scores
by recomputing the results for all ensemble combi-
nations. The results are presented in Appendix H.2.
For Wiki-DA, performance increases with ensem-
ble size, with the full ensemble being the best com-
bination. For other datasets, there are a few smaller
combinations that actually rank higher, but none is
consistently better than the full ensemble.

Inter-annotator agreement between LLMs To
obtain additional insights into how the individual
models of the ensemble diverge in their overall
score predictions, we compute several measures of
inter-annotator agreement. The results presented
in Appendix I indicate only low to moderate agree-
ment for most of the datasets, especially on exact
overall scores, which suggests a sufficient diver-
sity for combining outputs of these models into an
ensemble.

Error analysis aggregation The consolidator
model aggregates error span annotations from mul-
tiple LLMs, which could potentially lead to an over-
all larger number of detected errors. To estimate
the extent of over-annotation by both the ensem-
ble and its components, we analyze the number of
detected errors for output-aspect pairs rated with
maximum score by human annotators. The results
presented in Appendix K indeed show some ten-
dency of the ensemble to over-annotate due to error
accumulation from the individual models. How-
ever, most spans annotated by the ensemble were
marked as correct in the experiment in Section 7.2.
This could indicate that OpeNLGauge.,,s finds sub-
tle errors which human annotators overlook, but
further analysis of this discrepancy is needed.

Score aggregation Additionally, we compare dif-
ferent methods of aggregating overall scores of
individual LLMs to a final score in Appendix J.
These results indicate that despite its simplicity,

simple averaging is the most effective approach,
generally providing the highest correlations with
human scores.

8 Summary

In this work, we present OPENLGAUGE — a versa-
tile method for evaluating NLG that uses only open-
weight models and provides fine-grained explain-
ability. The method provides a much better expla-
nation quality than previous methods and achieves
competitive correlations with human judgments.

Limitations

OPENLGAUGE is a method for evaluating a variety
of NLG tasks. While this paper presents the evalua-
tion on several NLG tasks and the method achieves
good performance on unseen aspects, domains and
tasks, the actual performance on new NLG tasks
is unknown. In particular, the metric has not been
tested in a multilingual setting. Moreover, previous
research has shown that some LLM-based metrics
have a bias towards texts generated by LLMs (Liu
et al., 2023).
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A Aspects and datasets in the training
data

This section provides a detailed overview of all
source datasets and evaluation aspects used to gen-
erate our training data for OPENLGAUGE ;.

A.1 Summarization

As source data for summarization, we utilize five
datasets spanning three distinct tasks: news arti-
cle summarization, forum post summarization and
dialogue summarization. Our evaluation dataset
includes six commonly used aspects: four related
to meaning of the evaluated text, one to its form
and one to both. Some of these aspects overlap
significantly in their definitions. This is intentional,
as our goal is to make the evaluator model robust
to small variations in aspect definitions, and enable
generalization to new aspects. Table 6 provides
an overview of all summarization systems in our
dataset.

A.1.1 Datasets

¢ CNN/DailyMail (Hermann et al., 2015) is a
popular summarization dataset that consists
of news articles from CNN and DailyMail,
paired with corresponding bullet-point sum-
maries. Originally developed for question an-
swering, it was later adapted for summariza-
tion (Nallapati et al., 2016). For this dataset,
we use pre-generated outputs from Stiennon
et al. (2020), which include results from 11
different systems, including human references
and an extractive baseline. Since our meta-
evaluation datasets for summarization contain
inputs from CNN/DailyMail, we ensure there
is no overlap in the source texts between these
datasets when sampling the inputs.

Newsroom (Grusky et al., 2018) is a large-
scale dataset of news articles and their sum-
maries, collected from diverse sources, do-
mains, authors and time range. In addition to
newly generated LLM outputs, we use outputs
of the systems evaluated in the original paper,
which include three summarization systems
and two extractive baselines.

SAMSum dataset (Gliwa et al., 2019) ad-
dresses the dialogue summarization task, con-
taining dialogues with short summaries cre-
ated by linguists. In addition to outputs from
several different LLMs, we use pre-generated
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outputs of six systems from (Gao and Wan,
2022).

* TL;DR (Volske et al., 2017) is a collection
of Reddit posts with user-created summaries.
Unlike many popular datasets that focus on
news articles, TL;DR contains informal and
less structured texts spanning diverse topics.
Similarly to CNN/DailyMail, we use outputs
from Stiennon et al. (2020).

* XSum (Narayan et al., 2018) is a dataset
for the extreme summarization task, designed
for abstractive approaches. Unlike datasets
such as Newsroom or CNN/DailyMail, which
favor extractive summarization, XSum con-
tains BBC articles paired with concise, single-
sentence summaries. We utilize pre-generated
outputs from five systems and baselines eval-
uated in the original paper, along with newly
generated output from LLMs.

A.1.2 Aspects

* Consistency evaluates whether the summary
is factually aligned with the source text. This
involves determining if the facts in the sum-
mary can be entailed by the source. Consis-
tency is closely tied to hallucinations, which
may be categorized as factual or non-factual.
In our approach, all information is required to
be supported by the source text, making both
types of hallucinations inconsistent with the
source. The definition of consistency used in
our prompts is: Extent to which the facts in
the summary are consistent with the source
text. Factually consistent summary should not
contain facts that are not supported by the
source text.

* Accuracy is largely synonymous with consis-
tency. It evaluates whether the factual infor-
mation from the source is accurately repre-
sented in the summary. Following Stiennon
et al. (2020), we define accuracy as: Extent to
which the factual information in the summary
accurately matches the source text. An accu-
rate summary should not contain information
that is not present in the source text, should
not contradict the source text, and generally
should not be misleading.

Relevance of a summary is concerned with
content selection. A relevant summary should



include important points from the source text
while omitting unimportant details. Compared
to consistency, relevance is more subjective,
as determining what information should or
should not be included in a summary can
sometimes be ambiguous. The definition used
in our evaluation is: Extent to which the sum-
mary captures important information of the
source text. A relevant summary should in-
clude all and only important information from
the source text.

Coverage evaluates how much of the impor-
tant information from the source text is cov-
ered by the summary. In this sense, it is
closely related to relevance, however, it does
not include non-redundancy as a criterion. We
use a definition adapted from Stiennon et al.
(2020): Extent to which the summary covers
the important information in the source text. A
summary has good coverage if it mentions the
main information from the source text that is
important to understand the events described
in the text. A summary has poor coverage if
someone reading only the summary would be
missing several important pieces of informa-
tion about the event in the source text.

Coherence refers to the structural quality of
the summary and involves attributes such as
cohesion, consistency and relevance (Rein-
hart, 1980). It is determined by both semantic
and formal structure of the text. We define
coherence as: Extent to which the summary
is well-structured and organized, presenting
information in a logical order that flows natu-
rally from sentence to sentence. Coherent sum-
mary forms a unified body of information and
makes it easy to understand the main ideas.

Fluency focuses on the formal quality of the
text, including grammaticality and naturalness.
Unlike coherence, fluency is concerned with
sentence—level quality rather than the overall
structure of the text. We define fluency as:
Formal quality of individual sentences of the
summary. A fluent sentence should be gram-
matical, natural and easy to understand.

table-to-text, RDF-to-text, attribute-value list to
text and logical NLG. Since it is important for an
NLG evaluation method to reliably evaluate outputs
with respect to structured data in different formats,
we include a number of different input formats in
our training data, including JSON, CSV and lin-
earized tables with markup. Table 5 provides an
overview of the input formats. The list of evaluated
systems in our dataset is shown in Table 7.

A.2.1 Datasets

« E2E NLG dataset (Dusek et al., 2020;
Novikova et al., 2017b) was chosen as a rep-
resentative of simple data-to-text tasks. In
this dataset, models are tasked with generat-
ing descriptions of restaurant venues based
on attribute-value-based meaning representa-
tions (MRs). Target descriptions were crowd-
sourced using textual and pictorial represen-
tations of MRs as stimuli. To ensure diver-
sity, we selected pre-generated outputs from
five systems described by (Dusek et al., 2020),
considering their model architectures and eval-
uation results across various metrics and as-
pects. These were extended by new outputs
from several LLMs. The inputs and pre-
generated outputs were sampled from the test
set. Three different input formats are used in
the training data (see Table 5).

* WebNLG 2020 (Ferreira et al., 2020) is
an RDF-to-text dataset designed for generat-
ing natural language text from RDF triples
collected from DBPedia knowledge base
(Mendes et al., 2012). Each input contains be-
tween one and seven triples, where each triple
represents a binary relation in the form (sub-
ject, property, object). Similarly to E2E NLG,
we selected a diverse set of output systems
based on model architectures and evaluation
results from the WebNLG+ 2020 Challenge,
and used additional LLMs to generate new
outputs.

ToTTo (Parikh et al., 2020) is an open-domain
table-to-text generation dataset. It consists of
Wikipedia tables with highlighted cells, and
the task is to generate single-sentence descrip-
tions of the data in these highlighted cells.
Inputs are provided in two formats: full tables,

A2 Data-to-text which include indices to highlighted cells, and

linearized tables, where only the highlighted
data is presented in a linear order, while the

For data-to-text category, we collected inputs from
four datasets that represent four distinct tasks:
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Format Example Datasets
JSON {"name"”: "The Phoenix"”, "eatType”: "pub”, "food"”: "Indian", ...} E2E NLG
attribute-value (1) name: The Phoenix\neatType: restaurant\nfood: Indian\n ... E2E NLG
attribute-value (2) name[The Phoenix], eatTypelrestaurant], food[Indian], ... E2E NLG
RDF (1) "The_Velvet_Underground | genre | Proto-punk” ... WebNLG 2020
RDF (2) (The_Velvet_Underground, genre, Proto-punk) ... ‘WebNLG 2020
CSv united states,32,1,31,12\naustralia,5,0,5,3\n ... LogicNLG
linearized table <page_title> List of Norwegian fjords </page_title> <section_title> ... ToTTo

Table 5: Input data formats used in our dataset for data-to-text tasks.

structure is annotated with markup tags. As
we observed that even medium-sized open-
weight LLMs often struggle with hallucina-
tions when using full tables, we restricted our
evaluation to linearized tables.

* LogicNLG (Chen et al., 2020) introduced the
task of logical NLG, where models generate
statements that can be logically entailed from
the data in a table. This task involves vari-
ous aggregations and comparisons, making it
more difficult than simply transforming struc-
tured data to free-form text. Although the
task explicitly requires generating five logical
statements per input, we sampled between one
to five statements from each generated out-
put to increase the diversity of output lengths.
Inputs were formatted as CSV with “I” as a
separator. In addition to new LLM outputs,
we used existing system outputs from Zhao
et al. (2023b).

A.2.2 Aspects

¢ Faithfulness measures whether all informa-
tion in the generated text is supported by the
data, making it equivalent to precision. Simi-
larly to factual consistency in summarization,
we consider both factual and non-factual hal-
lucinations as errors. For our evaluations, we
define faithfulness as: Extent to which the in-
formation in the text is supported by the data.

Correctness evaluates whether the informa-
tion from the data is accurately presented in
the generated text. The output is maximally
correct if it does not contain any incorrect
statements with respect to the input. Correct-
ness overlaps significantly with faithfulness,
but its definition varies based on the specific
task. For example, we define correctness for
LogicNLG as: Extent to which the statements
are logically and factually correct with respect
to the provided data.
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* Coverage refers to the degree to which the
generated text covers the information in the
data. The output has maximum coverage
when all information from the data is included
in the text, which makes it analogous to re-
call. For example, in WebNLG 2020, it eval-
uates whether all predicates and their argu-
ments are mentioned, while in ToTTo, it de-
termines whether all highlighted table cells
are described. We apply coverage to evalu-
ate all datasets except LogicNLG, where the
task is to infer interesting observations, rather
than fully cover the source data. We define
coverage as follows, with slight variations de-
pending on the task: Extent to which the text
includes description of all information pre-
sented in the data.

Informativeness is closely related to cover-
age, as it evaluates how much of the infor-
mation the generated text provides. However,
it does not require complete coverage of the
data, therefore it is applicable to tasks such as
LogicNLG, where full coverage of a table is
not necessary. The definition used in our eval-
uation depends on the particular dataset. For
example, the definition used for LogicNLG is:
Extent to which the statements provide inter-
esting or useful information about the data.

Fluency refers to the formal quality of the
generated text, and includes grammaticality,
naturalness and readability. Some definitions
also include coherence (Ferreira et al., 2020),
although coherence is usually treated as a sep-
arate aspect. For our evaluation, we define
fluency as: Extent to which the text is gram-
matical, natural and easy to understand.

* Grammaticality focuses on the correctness
of grammar and spelling in the generated text.
A text is fully grammatical if it contains no



grammatical or spelling errors. While gram-
maticality is often included as a sub-aspect
of fluency, both aspects are commonly used
in practice. Therefore, we include it to help
the model learn differences between evalua-
tion aspects on different levels of hierarchy.
In our dataset, grammaticality is defined as:
Extent to which the text is grammatical (free
of grammar and spelling errors).

* Naturalness refers either to the human-
likeness of the text, or the likelihood that it
was produced by a native speaker. Like gram-
maticality, naturalness is often treated as a
component of fluency. Additionally, its evalu-
ation often includes assessment of grammat-
icality, as this can often be an indicator of
whether the text was produced by a native
speaker. This illustrates how evaluation as-
pects often overlap or have hierarchical rela-
tionships. For our purposes, naturalness is
defined as: Extent to which the text is likely to
have been produced by a native speaker.

A.3 Dialogue Response Generation

For dialogue response generation, we source the
inputs from three dialogue datasets, focusing on
open-domain non-task-oriented dialogue response
generation. Table 8 provides an overview of all
evaluated systems in the training dataset.

A.3.1 Datasets

* Wizard of Wikipedia (Dinan et al., 2019)
consists of conversations grounded in one of
1365 topics and corresponding knowledge re-
trieved from Wikipedia. In these conversa-
tions, either participant may select the topic
and initiate the discussion, although they have
asymmetric roles. One participant takes on
the role of the wizard, an expert with access
to a topic-relevant knowledge, on which they
can base their responses. The other partici-
pant acts as an apprentice, a curious learner
that is eager to discuss the chosen topic. To
create inputs of varying length, we randomly
select a dialogue history length between two
turns and the full conversation, and truncate
the dialogue to this length. The last utterance
is replaced by a system output, except when
the reference is used as evaluated output. In
addition to newly generated LLM responses,
we include human responses from the original
dataset in the outputs.

* EmpatheticDialogues (Rashkin et al., 2019)
is a dataset of dialogues grounded in emo-
tional situations, designed to train and evalu-
ate dialogue models on empathetic response
generation. Each conversation is associated
with an emotional label, where one of the par-
ticipants describes a situation in which they
experienced a given emotion. We sample up
to five turns from each dialogue and replace
the last utterance with a generated response.
The emotion label is used as additional context
for annotator LLMs to evaluate the appropri-
ateness and empathy of the responses, but is
excluded from the prompts used for system
output generation.

* DailyDialog (Li et al., 2017) includes conver-
sations on various daily life topics, annotated
with emotion labels and communicative in-
tents. We include data from DailyDialog to
represent diverse topics and scenarios in the
training set. Alongside newly generated re-
sponses, we also collect pre-generated outputs
from three sources (Gupta et al., 2019; Huang
et al., 2020; Zhao et al., 2020) to represent
older dialogue systems.

A.3.2 Aspects
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* Coherence in dialogue is a concept slightly
different from coherence in tasks that involve
generation of standalone texts, such as sum-
marization or story generation. In dialogue, it
measures how meaningful and logically con-
sistent the response is with the preceding con-
versation. This includes not only alignment of
the response with the last utterance, but also
consistency with the dialogue participant’s ear-
lier responses in terms of logic and style. In
our evaluation, coherence is broadly defined
as: Extent to which the response is a meaning-
ful continuation of previous dialogue.

Relevance evaluates how closely a response
aligns with the topic of conversation. In this
sense, this aspect overlaps with coherence to
some degree. We define relevance as: Extent
to which the response is relevant and on-topic
given the dialogue history.

Appropriateness addresses whether the re-
sponse is semantically and pragmatically ap-
propriate in the given context. Depending on
the definitions, appropriateness might overlap



to a large extent with coherence and relevance.
For our evaluation, we define appropriateness
as: Extent to which the response is semanti-
cally and pragmatically appropriate given the
conversation history.

Empathy is evaluated specifically on
responses from the EmpatheticDialogues
dataset, where the goal is to determine
whether the response acknowledges and
reflects the emotions of the other participant.
We define empathy as: Extent to which the
response shows understanding of the feelings
of the person talking about their experience.

Interestingness is concerned with the infor-
mational value of the response, specifically
whether it presents stimulating ideas, facts or
opinions. As it is one of the more subjec-
tive evaluation aspects, we define it vaguely
and let the annotator models determine the
criteria for interestingness: Extent to which
the response is interesting given the dialogue
history.

Engagingness is closely related to interest-
ingness but is sometimes treated as a distinct
aspect (e.g., Mehri and Eskénazi, 2020a; See
et al., 2019). While interestingness focuses on
the context itself, engagingness emphasizes
maintaining the user’s attention and encour-
aging them to continue with the conversation.
For our purposes, engagingness is defined as:
Extent to which the response captures and
maintains the user’s interest, encouraging fur-
ther interaction. Engaging responses contain
opinions, preferences, thoughts or interesting
facts.

Fluency in dialogue response generation has
a similar meaning to its use in other tasks and
refers to the formal quality of the response.
We define fluency as: Extent to which the re-
sponse is grammatically correct, natural and
fluent.

Understandability evaluates both the content
and form of a response, focusing on its clarity
and ease of comprehension. The definition we
use for our evaluation is: Extent to which the
response is easy to understand and compre-
hend given the dialogue history.

A.4 Story Generation

The NLG tasks discussed so far generally contain
inputs that are relatively longer compared to the
outputs. This pattern is especially common in tasks
like summarization and dialogue generation, al-
though certain data-to-text tasks also share this
characteristic. To represent scenarios with short
inputs and long outputs, we include story genera-
tion in the training data. Table 9 lists all evaluated
systems in our dataset.

A.4.1 Datasets

As the source of inputs, we use WritingPrompts
(Fan et al., 2018), a story generation dataset derived
from Reddit’s WritingPrompts subreddit, where
users submit prompts that can inspire other users
to write stories. The dataset consists of a diverse
range of topics, story lengths and writing styles.
We reuse existing outputs from the OpenMEVA
dataset (Guan et al., 2021) and generate additional
outputs by four LLMs. To increase the diversity of
generated stories in terms of their length, we gener-
ate the outputs with two different prompt versions,
each requiring a different length of the story. The
outputs are then randomly sampled from either the
shorter or the longer set. As we observed a ten-
dency of LLMs to generate a long list of errors for
longer inputs, our evaluator models are instructed
to limit the number of identified errors to a max-
imum of eight, and to prioritize the most severe
ones if necessary.

A4.2 Aspects

While relevance and coherence are two commonly
used aspects for story generation, there is no con-
sensus on which other evaluation aspects are the
most relevant. Inspired by social sciences, Chhun
et al. (2022) propose four additional aspects, aimed
at providing a complete and non-redundant set of
criteria. Following their work, we adopt the aspects
defined in the HANNA benchmark, using our own
definitions for most of them:

* Relevance measures the degree to which a
story aligns with the given prompt (Chhun
et al., 2022; Chiang and Lee, 2023b), title
(Jhamtani and Berg-Kirkpatrick, 2020; Yao
et al., 2019; Xie et al., 2023) or story begin-
ning Wang et al. (2020b). In some cases, rel-
evance also evaluates whether the story re-
mains on-topic for its duration (e.g., Goldfarb-
Tarrant et al., 2020). Since our inputs are
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prompts, we define relevance as: Extent fo
which the story is relevant to the writing
prompt.

* Coherence in story generation typically refers
to logical consistency and narrative flow (e.g.,
Yao et al., 2019; Li et al., 2023; Jhamtani and
Berg-Kirkpatrick, 2020). Other works define
coherence more vaguely, such as how much
the story “makes sense” (Chhun et al., 2022)
or how well its sentences “fit together” (Xie
et al., 2023). For our purposes, coherence
is defined as: Extent to which the story is
logically consistent and coherent.

* Engagement is a subjective and often vaguely
defined aspect that evaluates how engaging the
story is to the reader (e.g., Chhun et al., 2022;
Li et al., 2023). Due to its inherent subjectiv-
ity, we apply a simple definition and leave its
interpretation to the evaluator models: Extent
to which the story is engaging and interesting.

* Empathy is related to emotional commentary
and empathy, and refers to how well the story
conveys character’s emotions. We define em-
pathy as: The clarity and depth with which
the character’s emotions are conveyed in the
story.

Surprise is concerned with the story’s ending,
and evaluates its unexpectedness and original-
ity. We define surprise as: How surprising the
end of the story was.

Complexity measures how intricate and elab-
orate the story is. Complexity is not necessar-
ily an aspect of quality, but rather a feature
of the text. Whether greater complexity is
desired or not depends on the audience. Our
definition of complexity is: How elaborate
the story is.

The stories include books and movie scripts
and are provided either as full texts or as
human-written summaries. Since full stories
do not fit into the context window of many
LLMs, we use only summaries to generate the
outputs. Along with newly generated answers,
we include human reference answers from the
original datasets in the evaluated outputs.

* FeTaQA (Nan et al., 2022b) is a question
answering dataset based on Wikipedia tables
that requires models to aggregate and reason
about the entities in the table and their rela-
tions. This places the task at the intersection
of data-to-text and question answering task
categories. In addition to new LLM outputs,
we use pre-generated outputs from Zhao et al.
(2023b).

A.5.2 Aspects

* Correctness evaluates if the answer to a ques-
tion is correct with respect to the input. Since
our models are instructed to assess the quality
on an ordinal scale, we evaluate a degree of
correctness — the answer should receive the
maximum score if it is fully correct, while
lower scores should reflect the number and
severity of correctness issues. We define cor-
rectness as: Extent to which the answer to the
question is correct with respect to the input.

* Informativeness addresses whether all infor-
mation required by the question is provided
in the answer. We define informativeness as:
Extent to which the answer provides all infor-
mation that the question asked for.

* Completeness evaluates comprehensiveness
of the answer and the degree to which all as-
pects of the question are covered. The mean-
ing is slightly different from informativeness,

A.5 Question Answering which is concerned with the information that

the question explicitly asks for. In our dataset,
completeness is defined as: Extent to which
the answer is comprehensive and ensures all
question aspects are addressed.

The question answering subset of our dataset con-
sists of two distinct tasks: narrative question an-
swering and table question answering. The inputs
consist of a question and structured data in which
the answer should be grounded. The evaluated
systems in our training data are listed in Table 10.

A.5.1 Datasets

* NarrativeQA (Kocisky et al., 2018) consists
of human-written questions and free-form an-
swers based on stories or their summaries.

* Conciseness measures the degree to which
an answer is focused and directly answers the
question without unnecessary details and elab-
oration. Although the goal might often be to
generate both complete and concise answers,
these two aspects might correlate negatively.
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Conciseness is defined as: Extent to which the
answer is concise and to the point.

Relevance is concerned with the specificity of
an answer and measures the degree to which
the answer addresses the particular question
asked. Although it is related to conciseness,
relevance is not that much concerned with the
amount of detail in the answer. We define
relevance as: Extent to which the answer is
specific and meaningful with respect to the
question.

Factuality evaluates factual consistency of
the answer with the provided context. In our
dataset, this aspect is used in the narrative
question answering task, and we use a simi-
lar definition as in summarization: Extent to
which the answer is supported by the sum-
mary.

Faithfulness is used for the table question
answering task and is synonymous with fac-
tuality. We define faithfulness as: Extent to
which the information presented in the answer
is supported by the input.

Fluency in question answering refers to the
formal quality of the answer and is defined
similarly as in the other tasks presented so far:
Extent to which the response is grammatical,
natural and easy to understand.

* Naturalness is interpreted in the same way
as in data-to-text and dialogue response gen-
eration tasks, and the definition we apply is:
Extent to which the answer is likely to have
been produced by a native speaker.

* Grammaticality measures the grammatical
quality of the answer and is defined as: Extent
to which the answer is grammatical (free of
grammar and spelling errors).

B Collected system outputs

Tables 6-10 list the evaluated systems for each task
category in our dataset.

C LLMs used in the experiments

The specific versions of LLMs used in the experi-
ments are presented in Table 11.

D Outliers

Table 12 shows the percentages of outliers detected
for each annotator model in the ensemble and task
category during synthetic data generation. To keep
the merged evaluation outputs internally consistent,
these outliers were removed before merging the
outputs of the individual LLMs.

The proportions in the table indicate that the final
annotation utilized most of the generated evalua-
tions from the individual LLMs. The exceptions
include Command R+ 104B and Gemma 2 27B
on data-to-text tasks, with 29% and 10% outliers,
respectively. Additionally, 10% evaluation outputs
of Command R+ 104B were removed for question
answering tasks. However, on average only 3.4%
of evaluation outputs are detected as outliers across
all model-task pairs.

E Meta-evaluation datasets

We used the following datasets for meta-evaluation.
In the datasets where human scores are not already
aggregated, we averaged the scores of all annota-
tors.

e SummEval (Fabbri et al., 2021b) is a standard
meta-evaluation dataset for summarization. It
consists of summaries generated from CNN/-
DailyMail articles, with 100 input articles and
16 different system outputs for each article.
Human evaluations address four aspects: (fac-
tual) consistency, relevance, coherence, and
fluency. Each output is scored by three expert
annotators and five crowdworkers. We use
only expert scores to measure correlations.

QAGS (Wang et al., 2020a) contains anno-
tations of consistency for summaries from
CNN/DailyMail and XSum datasets. It in-
cludes 235 CNN/DailyMail summaries and
239 XSum summaries, each annotated by
three evaluators. Annotators assign a binary
factual consistency score (yes/no) for each
sentence of the summary. We follow (Wang
et al., 2020a) and apply majority voting for
each sentence annotation, followed by averag-
ing sentence-level scores to obtain the overall
score for the summary.

HANNA (Chhun et al., 2022) is a bench-
mark for story generation based on the Writ-
ingPrompts dataset. It contains three human
scores for each of the 1056 stories across six
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Table 6: Overview of the evaluated systems in the dataset for the summarization task. Sources: GW = Gao and Wan
(2022), GR = Grusky et al. (2018), NA = Narayan et al. (2018), ST = Stiennon et al. (2020), new = newly generated.

System Type Sources
Qwen 2.5 0.5B (Yang et al., 2024) Instruction-tuned LLM new
Llama 2 7B Chat (Touvron et al., 2023) Instruction-tuned LLM new
Gemma 2 2B (Team et al., 2024) Instruction-tuned LLM new
Nous Hermes 2 Mixtral 8x7B DPO’ Instruction-tuned LLM new
GPT-40® Instruction-tuned LLM new
OpenAl summarization (pre-trained) pre-trained LMs ST
OpenAl summarization (supervised) LMs trained with SFT ST
OpenAl summarization (RLHF) LMs trained with SFT+PPO ST

TS5 (Raffel et al., 2020) pre-trained LM ST
UniLM (Dong et al., 2019) pre-trained LM ST
CODS (Wu et al., 2021) BART-based hybrid model GW
ConvoSumm (Fabbri et al., 2021a) BART-based model GW
Ctrl-DiaSumm (Liu and Chen, 2021) BART-based model GW
ConvS2S (Gehring et al., 2017) Convolutional seq-to-seq NA
Topic-ConvS2S (Narayan et al., 2018) Topic-conditioned ConvS2S NA

S2S (Cho et al., 2014; Sutskever et al., 2014) RNN-based seq-to-seq with attention GR
PNG (Vinyals et al., 2015; Giilgehre et al., 2016)  Pointer-generator network GR, GW, NA
TextRank (Barrios et al., 2016) Ranking-based extractive summarization ~GR
Reference Human-written reference ST

Title Extractive baseline ST
LEAD Extractive baseline NA
LEAD-2 Extractive baseline ST
LEAD-3 (See et al., 2017) Extractive baseline GR, GW, ST
Ext-Oracle Extractive oracle NA
Fragments Extractive oracle NA

Table 7: Overview of the evaluated systems in the dataset for the data-to-text task. Sources: DU = Dusek et al.
(2020), FE = Ferreira et al. (2020), ZH = Zhao et al. (2023b), new = newly generated.

System Type Sources
Qwen 2.5 Coder 1.5B (Yang et al., 2024) Instruction-tuned LLM new
Gemma 2 2B (Team et al., 2024) Instruction-tuned LLM new
Llama 2 7B Chat (Touvron et al., 2023) Instruction-tuned LLM new
Solar 10.7B (Kim et al., 2024a) Instruction-tuned LLM new
DeepSeek Coder v2 16B (DeepSeek-Al et al., 2024)  Instruction-tuned LLM new
Nous Hermes 2 Mixtral 8x7B DPO’ Instruction-tuned LLM new
Claude 3.5 Sonnet'® Instruction-tuned LLM new
GPT-40"! Instruction-tuned LLM new
NILC (Sobrevilla Cabezudo and Pardo, 2020) Fine-tuned BART FE
Orange-NLG (Montella et al., 2020) Fine-tuned BART FE
Amazaon Al (Shanghai) (Guo et al., 2020) Graph CNN + T5 FE
GPT2-C2F (Chen et al., 2020) Fine-tuned GPT-2 ZH
LoFT (Zhao et al., 2023a) Fine-tuned BART ZH
PLOG (Liu et al., 2022a) Fine-tuned T5 ZH
R2D2 (Nan et al., 2022a) Fine-tuned T5 ZH
Flan-T5 (Chung et al., 2024) Instruction-tuned LM ZH
Adapt (Elder et al., 2018) RNN seq-to-seq DU
Sheft2 (Chen et al., 2018) RNN seq-to-seq DU
Slug (Juraska et al., 2018) RNN + convolutional seq-to-seq DU
Forgel (Mille and Dasiopoulou, 2018) Rule-based DU
TR2 (Smiley et al., 2018) Template-based DU
DANGNT-SGU (Tran and Nguyen, 2020) Template-based FE
RALI-Université de Montréal (Lapalme, 2020) Template-based FE
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Table 8: Overview of the evaluated systems in the dataset for the dialogue response generation task. Sources: GU =
Gupta et al. (2019), HU = Huang et al. (2020), ZH = Zhao et al. (2020), new = newly generated.

System Type Sources
Claude 3.5 Sonnet'? Instruction-tuned LLM new
GPT-40" Instruction-tuned LLM new
Tiilu 3 (Lambert et al., 2025) Instruction-tuned LLM new
Dolphin 2.9 Llama 3 8B'* Instruction-tuned LLM new
Vicuna 7B (Zheng et al., 2023) Instruction-tuned LLM new
BlenderBot-small (Roller et al., 2021) Dialogue LM new
DialoGPT-small (Zhang et al., 2020b) Dialogue LM new
GPT-Neo 125M (Gao et al., 2021) Pre-trained LM new
GPT-2 (Wolf et al., 2019) Pre-trained LM ZH
CVAE (Zhao et al., 2017) Conditional variational autoencoder GU
HRED (Serban et al., 2016) Hierarchical recurrent encoder-decoder GU, ZH
Transformer-generator (Dinan et al., 2019) Transformer-based generative model HU
Transformer-ranker (Urbanek et al., 2019) Transformer-based ranking model HU
DualEncoder (Lowe et al., 2015) LSTM dual encoder GU
VHRED (Serban et al., 2017) Latent variable HRED ZH

S2S (Cho et al., 2014; Sutskever et al., 2014)  RNN-based seq-to-seq with attention GU, ZH

Table 9: Overview of the evaluated systems in the dataset for the story generation task. Sources: GU = Guan et al.
(2021), new = newly generated.

System Type Sources
Gemma 2 2B (Team et al., 2024) Instruction-tuned LLM new
Dolphin 2.9 Llama 3 8B' Instruction-tuned LLM new
Nous Hermes 2 Mixtral 8x7B DPO'® Instruction-tuned LLM new
GPT-40" Instruction-tuned LLM new
GPT-2 (Radford et al., 2019) Pre-trained LM GU
GPT-KG (Guan et al., 2020) Knowledge-enhanced GPT-2 GU

Fusion (Fan et al., 2018)
Plan&Write (Yao et al., 2019)
S2S (Cho et al., 2014; Sutskever et al., 2014)

Convolutional seq-to-seq with attention ~GU
Hierarchical RNN-based model GU
RNN-based seq-to-seq GU

Table 10: Overview of the evaluated systems in the dataset for the question answering task. Sources: KO = Kocisky
et al. (2018), ZH = Zhao et al. (2023b), new = newly generated.

System Type Sources
Claude 3.5 Sonnet'® Instruction-tuned LLM new
GPT-40" Instruction-tuned LLM new
Nous Hermes 2 Mixtral 8x7B DPO?* Instruction-tuned LLM new
DeepSeek Coder v2 16B (DeepSeek-Al et al., 2024)  Instruction-tuned LLM new
Llama 2 7B Chat (Touvron et al., 2023) Instruction-tuned LLM new
Qwen 2.5 Coder 1.5B (Yang et al., 2024) Instruction-tuned LLM new
Qwen 2.5 0.5B (Yang et al., 2024) Instruction-tuned LLM new
GPT-Neo 125M (Gao et al., 2021) Pre-trained LM new
BART (Lewis et al., 2020) Pre-trained LM ZH
Flan-T5 (Chung et al., 2024) Instruction-tuned LM ZH
OmniTab (Jiang et al., 2022) Table pre-trained LM ZH
ReasTAP (Zhao et al., 2022) Table pre-trained LM ZH
TAPEX (Liu et al., 2022b) Table pre-trained LM ZH

Reference Human-written reference KO
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Model Quantization Tag

Command R+ 104B 5-bit command-r-plus:104b-08-2024-95_K_M
Gemma 2 27B 8-bit gemma2:27b-instruct-q8_0

Llama 3.1 Nemotron 70B 8-bit nemotron:70b-instruct-q8_0

Llama 3.3 70B 8-bit 1lama3.3:70b-instruct-q8_0

Mistral Large 2 123B 4-bit mistral-large:123b-instruct-2407-q4_K_M
Qwen 2.5 72B 8-bit gwen2.5:72b-instruct-q8_0

Table 11: Quantization levels and Ollama tags used for the models.

Model Data-to-text Summarization Dialogue Story Generation Question Answering
Command R+ 104B 28.88 0.13 0.73 0.94 9.61
Gemma 2 27B 10.32 1.96 1.52 1.03 5.07
Llama 3.1 Nemotron 70B 4.27 1.48 4.02 1.03 0.85
Mistral Large 2 123B 4.89 0.93 0.63 0.25 1.22
Qwen 2.5 72B 1.39 1.36 1.43 1.12 0.47

Table 12: Proportions (%) of evaluation outputs detected as outliers for each model and task category. Across all
model-task pairs, 3.4% of evaluation outputs are detected as outliers on average (median = 1.36%).

aspects: relevance, coherence, engagement,
empathy, surprise and complexity (see Ap-
pendix A.4 for details on these aspects).

SFRES and SFHOT (Wen et al., 2015) are
used to perform a meta-evaluation for data-to-
text. These datasets consist of dialogue acts
(DAs) in structured format with generated re-
sponses providing information about restau-
rants and hotels in San Francisco. Human
judgments are provided for informativeness
and naturalness.

TopicalChat (Gopalakrishnan et al., 2019)
annotations from the USR dataset (Mehri
and Eskénazi, 2020b) are used for meta-
evaluation of dialogue response generation.
The dataset includes human evaluations for
five aspects: groundedness, coherence, inter-
estingness, naturalness and understandability.
As the source data differ from our training
data, TopicalChat serves as an out-of-domain
evaluation dataset. Additionally, since ground-
edness is not present in our training data, we
evaluate it as an unseen aspect.

Wiki-DA (Alva-Manchego et al., 2021) is a
dataset of DA human ratings for text simpli-
fication, a task unseen by OPENLGAUGE;
during training. Along with scores for fluency,
this dataset also includes two unseen aspects:
meaning preservation and simplicity.

F Prompt templates

Prompt templates for annotator and consolidator
LLMs are presented in Listings 1-2. Prompt tem-
plate used for fine-tuning and inference of the dis-
tilled model is shown in Listing 3.

G Full results

Tables 14-20 contain the meta-evaluation results
for additional datasets described in Appendix E.
Detailed results of human evaluation of error span
quality are presented in Table 13.

G.1 Kendall’s T correlations

On QAGS, our method achieves lower Kendall’s
7 than Themis, although it surpasses the metric
on Spearman’s p. This discrepancy can be at-
tributed to a difference in score precisions be-
tween these two methods. As a result of averaging,
OPENLGAUGE,,s provides more granular floating
point scores, while Themis predicts integer scores
on a Likert scale. Generally, we can expect more
tied pairs (i.e. pairs that are neither concordant nor
discordant) in the calculation of Kendall’s 7 with in-
teger scores, which can have a substantial effect on
the correlations. In QAGS, 78% of human scores
map to integer scores after normalization. There-
fore, we consider Spearman’s p more appropriate
for comparing evaluation capabilities of different
metrics.

Similarly, specific individual LLMs score higher
on Kendall’s 7 than the ensemble on some datasets
(see Tables 3, 14, 18 and 19). This is due to the
same reason outlined above. Specifically, there are

320
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4 E 0% 2 F
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= & o =
= 2z =
Explanation Z. =
Correct 218 9 3 0 230
»  Partially correct 41 0 o0 1 42
g Incomplete 20 0 1 0 21
2 Vague 4 2 1 0 7
(3 Incorrect 20 3 32 1 56
% Not an error 0 0 10 0 10
8 Total 303 14 47 2 366
Span OK (%) 83
Exp. correct (%) 63
Correct 108 3 4 4 119
.  Partially correct 60 1 2 0 63
&  Incomplete 9 0O 0 0 9
g Vague 39 0 0 12
S Incorrect 41 7 42 6 9
Z  Not an error 0o 1 8 0 9
‘5‘* Total 221 21 56 10 308
Span OK (%) 72
Exp. correct (%) 39
Correct 8 17 0 0 25
Partially correct 5 2 0 0 7
o  Incomplete 2 2 0 0 4
8  Vague 0 3 0 0 3
% Incorrect 5 16 2 0 23
.20 Not an error 1 2 0 0 3
= Total 210 42 2 0 65
Span OK (%) 32
Exp. correct (%) 38

Table 13: Detailed results of human evaluation of error-
spans and their explanations. Each table shows absolute
occurrence counts of different error span and explana-
tion validity (see Section 7.2), with overall proportions
of correct annotation given below. The reported differ-
ences between TigerScore and OPENLGAUGE,,,; are
statistically significant (t-test, p < 0.05).

37% tied pairs for OPENLGAUGE,s and human
scores, while the individual LLMs, which provide
integer scores, show substantially larger propor-
tions of tied pairs: between 46% and 54%.

H Ablation experiments

H.1 Prompt ablations

The detailed results of prompt ablation experiments
are presented in Figure 11-14.

H.2 Ensemble size ablations

The effect of the ensemble size on Spearman corre-
lations are presented in Figures 5-10.

I Inter-annotator agreement between
ensemble models

To obtain additional insights into the variance
between individual ensemble LLMs in their pre-
dicted overall scores, we compute pairwise inter-
annotator agreements between the models on all
meta-evaluation datasets.

Figure 16 shows the Spearman correlations for
each LLM pair and dataset used in our meta-
evaluation, where the correlations are calculated
over all evaluation aspects in a given dataset. The
agreement is generally high on the QAGS and Wiki-
DA datasets, although substantially lower on other
datasets. Note that individual models also achieved
relatively high correlations with humans on these
two datasets, which indicates that they might gen-
erally consist of examples (and possibly evaluation
aspects) for which it is easier for LLMs to make
decisions on their quality. In contrast, the models
show relatively low agreement on HANNA, which
could be explained by the more subjective nature
of the story generation task and the corresponding
evaluation aspects.21 Across all tasks, Command
R+ 104B tends to disagree more with other LLMs
when compared to other pairwise agreements.

To assess the agreement of the models on exact
overall score predictions, we also measure pair-
wise Cohen’s x (Figure 17), which treats the over-
all scores as categorical and therefore serves as a
stricter measure. As expected, the agreements are
lower compared to those measured by Spearman
correlations, while the general trend is the same:
the agreement on exact scores is higher on QAGS
and Wiki-DA than on other datasets, while Com-
mand R+ 104B generally disagrees more with other
LLMs across tasks.

Finally, we compute Krippendorff’s av (Krip-
pendorff, 2011), which allows us to measure the
agreement between all ensemble models, while
also being applicable to ordinal data. In general,
the agreements are low to moderate. Similarly to
the pairwise agreements, we observe substantially

2'While such hypotheses could in principle be tested by
comparing our results with the agreement between human
annotators on a particular task, there are several issues that
limit the reliability of such comparisons — for each meta-
evaluation dataset we use, at least two of the following hold:
(1) the number of human annotators is different from the
number of LLMs in our ensemble, (2) either the sets of human
annotators differ between evaluated outputs, or it is not made
explicit in the dataset (or the corresponding paper) whether
this is the case, (3) rating scales are different from ours (often
three levels, or even binary).
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higher agreements on QAGS and Wiki-DA, while
the models agree the least on scoring generated
stories in the HANNA dataset.

Overall, our analysis indicates that the predic-
tions of individual models are sufficiently diverse
to benefit from the combination in an ensemble
without much redundancy.

J Score aggregation methods

Table 21 compares results of different approaches
to aggregation of ensemble scores:

* Average computes the final score for the eval-
uated output as a simple average of scores
from all individual LLMs.

* Average w/o outliers first removes the out-
liers before computing the average. The score
is considered an outlier if it differs from the
average of other scores for the same example
by at least two standard deviations and this
difference is at least 1.

* Median computes the final score as a median
of the scores from individual LL.Ms to disre-
gard the effect of extreme scores.

* Majority voting selects the most frequent
score from the individual LLMs for the given
output.

* Min selects the minimum of individual scores
as the final score. This corresponds to the
most strict evaluation, i.e. typically the evalu-
ation that detected the most errors or assigned
highest severity levels to the identified errors.

K False positives analysis

To estimate the extent of potential over-annotation
by OPENLGAUGE,, and its components, we an-
alyze overall score predictions for output-aspect
pairs (y,a) which obtained maximum scores by
all human annotators in a given dataset. We
denote these examples Y4, and assume that if
(y,a) € Yiaz, then y does not contain any errors
with respect to aspect a.

Our analysis includes only those datasets and
aspects that contain sufficiently fine-grained anno-
tation scales (at least three levels), as it is unclear
whether maximum scores on a binary rating scale
reliably indicate a perceived lack of errors by hu-
man annotators. Additionally, we exclude datasets

where the size of Y4 is too small or even zero®2.

Given an output-aspect pair (y, a)€ Yinq., We con-
sider an LLLM evaluation of y with respect to a an
over-annotation if it contains one or more detected
erTors.

Figure 18 shows the distribution of error counts
(top), mean severity levels (middle) and maximum
severity levels (bottom) per output, as predicted
by OPENLGAUGE,,s and its components for the
Y.z subset of SummEval. Most individual LLMs
assess the outputs in Y4, as error-free, particu-
larly Command R+ 104B, which agrees almost per-
fectly with human annotators in this subset. Note
that in general, Command R+ 104B tends to dis-
agree the most with other LLMs, as discussed in
Appendix I, while also achieving the highest cor-
relations with humans in evaluating factual consis-
tency (Table 14), which represents approximately
half of the examples in Y;,,4,. In contrast, the en-
semble shows a tendency to include at least one
error in most of its annotations for Y,,... This
could be attributed to the merging procedure by the
consolidator model, which aggregates errors from
five different models and could lead to accumula-
tion of errors. As expected, an increasing number
of errors detected by a model is also reflected in
the mean and maximum severity levels.

The error annotations for TopicalChat (Figure
19) show a similar pattern, although a larger pro-
portion of individual models have a tendency to
detect one or more errors in this case.

L Output examples

Figures 20-22 show additional output examples
for RDF-to-text, dialogue response generation, and
summarization tasks.

2For example, Wiki-DA contains only already aggregated
scores on a scale between 0 and 100, with none of them equal
to the maximum possible score. Although we could allow
some deviation from the maximum score (e.g., maximum 5
points) to select Y42, any such threshold would be arbitrary.
Therefore, we exclude this dataset from the analysis.
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### Instructions

Your task is to evaluate an output of data-to-text task, where the model was
instructed to write a single-paragraph description of a venue based on the given
data. The data consist of a set of attribute-value pairs in the form 'attribute:
value'.

Based on the given data and the generated text, identify errors in the text with
respect to {{ aspect_name }} (described below).

For each error, determine its severity on a scale from 1 to 5, where 1 is the
least severe and 5 is the most severe.

Definition of {{ aspect_name }}:
{{ aspect_definition }}

Rules:

Do not make assumptions and do not bring in external knowledge not present in the
provided context.

Identify only the errors related to the {{ aspect_name }} of the text. Do not
consider other aspects like {{ negative_aspects }}!

If there are no errors related to {{ aspect_name }} in the text, you should output
'No Error' and provide 'Excellent' score.

Steps:

1. Carefully read the data and identify the main attributes and their values.

2. Read the generated text and compare it with the source data with respect to {{
aspect_name }3}.

3. If the text contains any error that negatively affects its {{ aspect_name }},
identify its exact location (specific word or phrase), explain why it is
considered an error, and determine the severity of the error.

4. Finally, provide an overall score for the {{ aspect_name }} of the text. The
score should be a label on the following scale (lowest to highest):
"Unacceptable', 'Poor', 'Fair', 'Good', 'Excellent'. The score 'Unacceptable'
indicates that the text is {{ min_score_desc }}, while 'Excellent' indicates that
the text is {{ max_score_desc }}.

### Data
{{ input }}

### Generated Text
{{ output 3}}

### Output format:

Generate your output exactly in this format:

Error 1:

Location: <location of the error - the exact word or phrase in the response>
Explanation: <explanation for the error, including the reason why it is considered
{{ aspect_name }} issue>

Severity: <integer from 1 to 5>

Error 2:

Overall score: <one of: Unacceptable, Poor, Fair, Good, Excellent>
Explanation of the score: <explanation of the score>

Listing 1: Annotator prompt template for the data-to-text task.
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### Instructions

You are given multiple error annotation sets for an AI model output. Your task is
to merge the annotation sets to a single final annotation set.

The result shouldn't contain any duplicates. If there are multiple error
annotations for approximately the same location that describe the same issue, you
should merge them into single location. Otherwise, the error annotations should be
as granular as possible. If there are multiple different locations with the same
issue, each should have its own error annotation. Likewise, if there are multiple
issues with respect to the same location, each should have its own error
annotation. Use the following guidelines:

* Each error annotation should describe a single issue.

* Merge only annotations where the locations have significant overlap.

* When merging multiple locations, choose a single span from the output text that
covers the locations from merged annotations.

* Never include multiple spans from the annotations under the same "Location” line.
* Do not include any other text in "Location” line than the text that is actually
in the output, except for annotations that mention omissions or similar issues.

* When merging explanations, combine the most relevant information from the merged
annotations.

* Severity levels range from 1 to 5 from least severe to most severe. Use the most
severe level from the merged annotations.

* Final annotation set should not include more than 8 error annotations. If there
are more than that, use only the most severe ones.

* Make the final annotation set as concise as possible in terms of number of error
annotations.

Don't use any markdown formatting. Generate merged error annotations in this
format, without any additional text:

Error 1:

Location: <span of text from the output, or None if not applicable>
Explanation: <explanation>

Severity: <severity level>

### Model output
{{ output }}

### Error annotations
{{ annotations }}

Listing 2: Consolidator prompt template for merging of individual annotations.

### Task
Your task is to evaluate a model output for {{ task_name }} task with respect to
{{ aspect_name }}. {{ extra_task_info }}

### Aspect Definition
{{ aspect_name }} - {{ aspect_definition }}

### Dialogue history
{{ input }}

{% if context %3}

### Knowledge

{{ context }}

{% endif %}

### Response

{{ output }}

### Instructions

For any error in the output, identify its location, assign a severity level and
provide an explanation. Report at most 8 errors. If there are more errors, report
only the most severe ones. Finally, provide an overall score between @ and 100 for
{{ aspect_name }} of the output.

Listing 3: Prompt template for the fine-tuned OPENLGAUGE ; metric.
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Metric Consistency Coherence Relevance Fluency Average
P T p T p T P T P T

ROUGE-1 0.167 0.126 0.160 0.130 0.115 0.094 0.326 0.252 0.192 0.150
ROUGE-2 0.184 0.139 0.187 0.155 0.159 0.128 0290 0.219 0205 0.161
ROUGE-L 0.128 0.099 0.115 0.092 0.105 0.084 0311 0.237 0.165 0.128
BERTScore 0.151 0.122 0285 0.220 0.302 0.232 0.186 0.154 0.231 0.182
MOVERSscore 0.159 0.118 0.157 0.127 0.129 0.105 0318 0.244 0.191 0.148
BARTScore 0266 0.220 0474 0367 0318 0.243 0258 0.214 0329 0.261
UniEval 0446 0371 0575 0442 0426 0325 0449 0371 0474 0.377
G-Eval (GPT-3.5) 0.386 0318 0440 0335 0.385 0.293 0424 0347 0409 0.323
G-Eval (GPT-4) 0.507 0425 0.582 0457 0.548 0.433 0455 0378 0.523 0423
LLM Evaluation (GPT-3.5) 0.393 0.331 0459 0371 0455 0363 0355 029 0415 0.340
LLM Evaluation (GPT-4) 0.531 0464 0540 0434 0491 0395 0480 0409 0511 0426
X-Eval 0428 0340 0530 0382 0500 0361 0461 0365 0480 0.362
Prometheus 0.150 0.137 0.150 0.126 0.164 0.138 0.189 0.168 0.163 0.142
AUTO-J 0.131 0.121 0.245 0.203 0.262 0.222 0.154 0.141 0.198 0.172
TIGERScore 0427 0387 0381 0318 0366 0304 0363 0327 0384 0.334
InstructScore 0.232  0.213 0328 0.276 0211 0.179 0.260 0.237 0.258 0.226
Themis 0.600 0.566 0.566 0.485 0474 0412 0.571 0533 0.553 0.499
OPENLGAUGEens 0.548 0470 0.604 0462 0513 0389 0470 0389 0.534 0427
* Command R+ 104B 0.633 0.603 0239 0.203 0360 0302 0347 0320 0395 0.357
* Gemma 2 27B 0459 0421 0455 0386 0428 0358 0427 0386 0442 0.388
e Llama 3.1 Nemotron 70B  0.559 0.517 0469 0391 0419 0356 0358 0325 0451 0.397
* Mistral Large 2 123B 0.627 0.590 0.528 0.434 0456 0375 0.398 0359 0502 0.439
*Qwen 2.5 72B 0.567 0.521 0525 0433 0388 0317 0433 0389 0478 0415
Llama 3.1 8B 0.181 0.165 0.176 0.150 0.156 0.127 0232 0.218 0.186 0.165
OPENLGAUGE 0.527 0453 0561 0441 0514 0408 0407 0349 0502 0413

Table 14: Segment-level Spearman (p) and Kendall () correlations of different metrics on SummEval.

Metric Groundedness Coherence Engagingness  Naturalness Average
r P T P T p r P T P

ROUGE-L 0.193 0203 0.176 0.146 0.295 0300 0310 0.327 0.243 0.244
BLEU-4 0.131 0235 0.180 0.175 0.232 0316 0213 0310 0.189 0.259
METEOR 0.250 0302 0.212 0.191 0.367 0439 0.333 0391 0290 0.331
BERTScore 0.214 0.233 0.226 0.209 0.317 0.335 0.291 0317 0.262 0.273
USR 0416 0377 0337 0325 0456 0465 0222 0447 0358 0.403
x UniEval 0.602 0.455 0455 0330 0573 0430 0577 0453 0.552 0417
G-Eval (GPT-3.5) 0.586 0.567 0519 0.544 0.660 0.691 0532 0.539 0.574 0.585
G-Eval (GPT-4) 0.531 0551 0.594 0.605 0.627 0.631 0.549 0.565 0.575 0.588
LLM Evaluation (GPT-3.5) 0.653 0.581 0.550 0.531 0.651 0.648 0.515 0.550 0.592 0.578
LLM Evaluation (GPT-4) 0.810 0.786 0.680 0.680 0.822 0.779 0.769 0.739 0.770 0.746
X-Eval 0.734  0.728 0.558 0.622 0.449 0.593 0417 0478 0.539 0.605
Prometheus 0.437 0412 0451 0465 0495 0473 0355 0384 0435 0434
AUTO-J 0.339 0357 0452 0449 0490 0459 0425 0437 0427 0425
TIGERScore 0.137 0.138 0417 0438 0328 0333 0455 0477 0334 0.346
InstructScore 0.140 0.102 0.299 0.297 0.264 0.233 0374 0332 0269 0.241
Themis 0.778 0.761 0.639 0.644 0.790 0.766 0.727 0.729 0.733  0.725
OPENLGAUGEens 0.704 0.697 0.622 0.621 0.675 0.692 0.599 0.604 0.649 0.653
* Command R+ 104B 0.383 0368 0463 0453 0262 0259 0421 0398 0386 0.374
* Gemma 2 27B 0332 0366 0465 0481 0549 0562 0489 0515 0459 0484
e Llama 3.1 Nemotron 70B  0.781 0.791 0.600 0.630 0.655 0.686 0.506 0.532 0.621 0.645
* Mistral Large 2 123B 0.658 0.648 0.541 0.554 0.645 0.659 0509 0.529 0.586 0.596
* Qwen 2.5 72B 0.467 0.460 0480 0.521 0.500 0.516 0468 0488 0496 0.514
Llama 3.1 8B 0374 0362 0.225 0.228 0415 0408 0222 0238 0.309 0.309
OPENLGAUGE 0485 0538 0531 0575 0622 0.650 0522 0.547 0.540 0.578

Table 15: Segment-level Pearson () and Spearman (p) correlations of different metrics on TopicalChat.
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SFRES SFHOT

Metric Inf. Nat. Inf. Nat. Average
ROUGE-1 0.115 0170 0118 0196  0.150
ROUGE-L 0103 0169 0110 0186  0.142
BERTScore 0.156 0219 0135 0178 0172
MOVERScore 0153 0190 0172 0242  0.189
BARTScore 0238 0289 0235 0288 0263
UniEval 0225 0333 0249 0320 0282
GPTScore 0232 0190 0184 0036 0161
G-Eval (GPT-4) 0189 0351 0198 0338 0269

LLM Evaluation (GPT-3.5) 0.304 0.385 0242 0.294 0.306
LLM Evaluation (GPT-4) 0.213 0405 0.302 0.359 0.320

Prometheus 0.161 0.150 0.211 0.169  0.173
Auto-J 0.179 0.084 0.176 0.127  0.141
TIGERScore 0.160 0.221 0.215 0.204  0.200
InstructScore 0.194 0300 0222 0273  0.247
Themis 0.298 0.395 0.259 0.380  0.333
OPENLGAUGEcns 0.234 0415 0.205 0.341 0.299
* Command R+ 104B 0.239 0.298 0.215 0311 0.266
* Gemma 2 27B 0.254 0334 0275 0317  0.295
e Llama 3.1 Nemotron 70B  0.178  0.284 0.047 0.209  0.179
* Mistral Large 2 123B 0.129 0359 0.226 0.281 0.249
* Qwen 2.5 72B 0.226 0.347 0.245 0315  0.283
Llama 3.1 8B 0.003 0.081 0.071 0.094  0.108
OPENLGAUGE s¢ 0354 0354 0238 0.315 0.315

Table 16: Segment-level Spearman (p) correlations of different metrics on SFRES and SFHOT. Inf. = informative-
ness, Nat. = naturalness.

Metric Coh. Rel. Eng. Emp. Sur. Com. Avg.
BLEU 0.539 0.514 0483 0410 0471 0516 0.489
ROUGE-1 0.567 0.518 0.529 0450 0490 0.591 0.524
METEOR 0.560 0.522 0510 0435 0488 0.555 0512
MoverScore 0.551 0.523 0495 0418 0478 0.530 0.499
BERTScore 0.566 0.531 0.520 0441 0488 0.563 0.518
BARTScore 0.501 0.467 0465 0416 0436 0488 0.462
OPENLGAUGE s 0.528 0.559 0.538 0434 0343 0.591 0.499
* Command R+ 104B 0412 0383 0420 0.330 0.227 0344 0.353
* Gemma 2 27B 0453 0445 0461 0356 0323 0.521 0427
e Llama 3.1 Nemotron 70B  0.500  0.508 0.497 0.380 0.332 0.565 0.464
* Mistral Large 2 123B 0.372 0490 0425 0373 0334 0507 0417
* Qwen 2.5 72B 0407 0484 0427 0277 -0.012 0.507 0.348
Llama 3.1 8B 0.119 0.344 0.154 0.094 0.080 0.212 0.167
OPENLGAUGE 0448 0.523 0517 0444 0404 0.555 0482

Table 17: Segment-level Pearson (r) correlations of different metrics on HANNA. Coh. = coherence, Rel. =
relevance, Eng. = engagement, Emp. = empathy, Sur. = surprise, Com. = complexity, Avg. = average.
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Metric Coh. Rel. Eng. Emp. Sur. Com. Avg.

BLEU 0.339 0.292 0356 0315 0299 0414 0.336
ROUGE-1 0.389 0330 0416 0354 0355 0.503 0.391
METEOR 0.378 0310 0412 0366 0354 0.505 0.387
MoverScore 0.392 0385 0420 0331 0321 0473 0.387
BERTScore 0.372  0.355 0415 0356 0320 0469 0.381
BARTScore 0259 0.249 0291 0.287 0227 0.294 0.268
OPENLGAUGEn s 0.393 0474 0452 0.367 0276 0489 0.409
* Command R+ 104B 0325 0362 0372 0320 0215 0348 0.324
* Gemma 2 27B 0.381 0.383 0.400 0310 0278 0445 0.366
* Llama 3.1 Nemotron 70B  0.429 0.445 0427 0328 0.263 0.464 0.393
* Mistral Large 2 123B 0294 0415 0389 0349 0337 0474 0376
* Qwen 2.5 72B 0.344 0423 0364 0262 -0.006 0416 0.301
Llama 3.1 8B 0.093 0334 0.140 0.086 0.064 0.184 0.150
OPENLGAUGE ¢¢ 0416 0.498 0464 0391 0319 0460 0.425

Table 18: Segment-level Spearman (p) correlations of different metrics on HANNA. Coh. = coherence, Rel. =
relevance, Eng. = engagement, Emp. = empathy, Sur. = surprise, Com. = complexity, Avg. = average.

Metric Coh. Rel. Eng. Emp. Sur. Com. Avg.
BLEU 0248 0.209 0260 0230 0.220 0305 0.245
ROUGE-1 0287 0.237 0306 0260 0.262 0376 0.288
METEOR 0278 0.224 0303 0269 0.261 0377 0.285
MoverScore 0289 0.280 0308 0.242 0.236 0353 0.285
BERT Score 0273 0.257 0304 0260 0.234 0348 0.279
BARTScore 0.185 0.177 0209 0.206 0.164 0.212 0.192
OPENLGAUGEn s 0.307 0.367 0350 0280 0.208 0378 0.315
* Command R+ 104B 0270 0.297 0300 0.253 0.171 0.277 0.261
* Gemma 2 27B 0.329 0.328 0343 0.267 0241 0.384 0.315
* Llama 3.1 Nemotron 70B  0.369 0.377 0.364 0272 0.221 0.388 0.332
* Mistral Large 2 123B 0253 0354 0334 0301 0.284 0405 0.322
* Qwen 2.5 72B 0294 0360 0307 0.222 -0.003 0.353 0.255
Llama 3.1 8B 0.079 0.285 0.116 0.073 0.055 0.152 0.127
OPENLGAUGE ¢ 0.341 0.400 0377 0323 0.257 0377 0.346

Table 19: Segment-level Kendall (7) correlations of different metrics on HANNA. Coh. = coherence, Rel. =
relevance, Eng. = engagement, Emp. = empathy, Sur. = surprise, Com. = complexity, Avg. = average.

Metric Fluency Meaning Simplicity Average
BLEU 0.460 0.622 0.438 0.507
SARI 0.335 0.534 0.366 0412
BERTScore 0.636 0.682 0.614 0.644
LENS 0.816 0.662 0.733 0.737
OPENLGAUGEeps 0.840 0.864 0.770 0.825
* Command R+ 104B 0.704 0.787 0.601 0.697
* Gemma 2 27B 0.755 0.769 0.688 0.737
* Llama 3.1 Nemotron 70B 0.778 0.822 0.660 0.753
* Mistral Large 2 123B 0.705 0.744 0.735 0.728
* Qwen 2.5 72B 0.771 0.829 0.730 0.776
Llama 3.1 8B 0.373 0.528 0.313 0.405
OPENLGAUGE ¢ 0.801 0.851 0.716 0.789

Table 20: Segment-level Pearson () correlations of different metrics on Wiki-DA. Meaning = Meaning preservation.
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Figure 5: Effect of ensemble size on Spearman’s p correlations with human scores for the Wiki-DA dataset. Specific
model combinations are represented by the colored patches.
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Figure 6: Effect of ensemble size on Spearman’s p correlations with human scores for the QAGS dataset.
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Figure 7: Effect of ensemble size on Spearman’s p correlations with human scores for the SummEval dataset.
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Figure 8: Effect of ensemble size on Spearman’s p correlations with human scores for the HANNA dataset.
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Figure 9: Effect of ensemble size on Spearman’s p correlations with human scores for the TopicalChat dataset.

== Mistral Large 2 123B 2 r5
0.341 mm Command R+ 104B
N Gemma 2 27B
m Qwen 2.572B
0.32 1 Llama 3.1 Nemotron 70B L4
a 8
»0.30 n
c Q
E 38
s 0.28 ]
() n
o c
7] 50}
0.26- 2
0.24-
- E = @ 1

Model Combination

Figure 10: Effect of ensemble size on Spearman’s p correlations with human scores for the SFRES/SFHOT dataset.
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QAGS TopicalChat
Command R+ 104B - —0.022 —0.027 -0.025 0.005 0.007 [SOFELN 0.014 -0.114 I0_4

Gemma 2 27B - —0.024 -0.080 -0.052 0.010 -0.055 0.080 -0.027 0.002

-0.2

Mistral Large 2 123B - —0.017 0.029 0.006 0.029 0.040 -0.212 0.001 -0.036
-0.0

Llama 3.1 Nemotron 70B - —0.053 -0.039 -0.045 -0.030 -0.004 -0.025 -0.017 -0.019
--0.2

Qwen 2.5 72B- —0.018 -0.029 -0.023 —0.048 0.004 —0.008 —0.080
Ensemble - —0.019 -0.023 -0.020 0.006 0.022 -0.089 0.003 -0.015 I -0.4
I 1 1 1 1 1 1 1
CNN/DM  XSum Avg. Coh. Eng. Gro. Nat. Avg.
Figure 11: Results for Ablation 1 on QAGS and TopicalChat. The LLMs are instructed to provide both integer
overall scores (1-5) and integer severity levels (1-5). The plotted values represent differences in Spearman’s p

correlations with human scores between the original prompt and the ablation. For TopicalChat, Coh. = coherence,
Eng. = engagingness, Gro. = groundedness, Nat. = naturalness, Avg. = average of all aspects.
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-0.2
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-0.0
Llama 3.1 Nemotron 70B - —0.022 -0.089 -0.055 —0.025 0.002 -0.011 0.007 -0.007
--0.2

Qwen 2.5 72B - —0.029 -0.057 -0.043 -0.067 0.021 -0.250 -0.012 -0.077
Ensemble - 0.007 -0.031 -0.012 0.001 0.032 -0.047 0.010 -0.002 I—0-4
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CNN/DM  XSum Avg. Coh. Eng. Gro. Nat. Avg.

Figure 12: Results for Ablation 2 on QAGS and TopicalChat. The LLMs are instructed to provide integer overall
scores (1-5), and categorical severity levels on the following scale: Neutral, Minor, Moderate, Major, Critical.
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Gemma 2 27B - 0.004 -0.025 -0.010 0.062 0.014 -0.027 -0.006 0.011

-0.2
Mistral Large 2 123B- 0.016 0.032 0.024 0.007 0.020 0.032 0.019 0.019
-0.0
Llama 3.1 Nemotron 70B - —0.056 —0.093 -0.074 0.005 -0.056 —-0.007 —-0.008 -0.017
-0.2

Qwen 2.5 72B - —0.020 -0.044 -0.032 —-0.029 0.016 -0.030 0.004 -0.009

Ensemble - 0.001 -0.032 -0.015 0.018 0.015 0.014 0.003 0.012 I—0-4

1 I 1 I 1 1 1 1
CNN/DM  XSum Avg. Coh. Eng. Gro. Nat. Avg.

Figure 13: Results for Ablation 3 on QAGS and TopicalChat. The LLMs are instructed to provide categorical
overall scores on the scale described in Section 4, and categorical severity levels on the following scale: Neutral,
Minor, Moderate, Major, Critical.
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QAGS TopicalChat

Command R+ 104B - —0.021 -0.077 -0.049 0.008 0.157 0.103 0.137 |0'4
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--0.2
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Figure 14: Results for Ablation 4 on QAGS and TopicalChat, where the rules section is removed from the prompt.
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Figure 15: Inter-annotator agreement (Krippendorft’s ) between all LLMs in the ensemble for all meta-evaluation
datasets. For each dataset, the coefficient is computed over all evaluation aspects.

Model/Method QAGS SummEval TopicalChat SFRES/SFHOT HANNA Wiki-DA
Command R+ 104B 0.681 0.394 0.332 0.266 0.323 0.681
Gemma 2 27B 0.643 0.442 0.481 0.295 0.366 0.767
Llama 3.1 Nemotron 70B  0.669 0.451 0.660 0.179 0.393 0.752
Mistral Large 2 123B 0.645 0.502 0.598 0.249 0.376 0.769
Qwen 2.5 72B 0.651 0.478 0.496 0.283 0.301 0.783
Average 0.688 0.533 0.652 0.299 0.409 0.837
Average w/o outliers 0.677 0.538 0.623 0.289 0.411 0.825
Majority vote 0.654 0.504 0.556 0.290 0.381 0.785
Median 0.668 0.509 0.594 0.296 0.401 0.803
Min 0.641 0.467 0.622 0.265 0.389 0.776

Table 21: Segment-level Spearman (p) correlations of different score aggregation methods. For each dataset,
correlations are averaged across aspects. Individual LLMs are included for comparison. Best ensemble results for
each dataset are highlighted in bold.
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Figure 16: Pairwise Spearman (p) correlations of individual LLM scores for all meta-evaluation datasets. For each

dataset, the correlations are computed over all evaluation aspects.
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Figure 17: Pairwise inter-annotator agreements (Cohen’s «) of individual LLM scores for all meta-evaluation
datasets. For each dataset, the coefficients are computed over all evaluation aspects.
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Figure 18: Distribution errors detected by the ensemble LLMs in outputs rated with maximum score by human
annotators in SummEval. Top: Frequencies of numbers of detected errors per evaluated output. Middle: Frequencies
of mean severity levels assigned to detected error per output. Values larger than 0 are binned to ranges [a, b), where
0 < a <=5and b = a+ 1. Bottom: Frequencies of maximum severity levels assigned to detected errors per
output.
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Figure 19: Distribution errors detected by the ensemble LLMs in outputs rated with maximum score by human
annotators in TopicalChat. Note that groundedness evaluations are excluded from the analysis, as the dataset
contains only binary ratings for this aspect. Top: Frequencies of numbers of detected errors per evaluated output.
Middle: Frequencies of mean severity levels assigned to detected error per output. Values larger than 0 are binned
to ranges [a, b), where 0 < a <= 5 and b = a + 1. Bottom: Frequencies of maximum severity levels assigned to
detected errors per output.
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Data:
Adolfo_Suarez_Madrid-Barajas_Airport | operatingOrganisation | ENAIRE
Adolfo_Suarez_Madrid-Barajas_Airport | runwaylLength | 3500.0
Adolfo_Sudrez_Madrid-Barajas_Airport | elevationAboveTheSealevel | 610.0
Adolfo_Suarez_Madrid-Barajas_Airport | runwayName | "14L/32R"

[1]

Text: Adolfo Sudrez Madrid—Barajas Airport is a major international airport located near the heart of the city -,

offering a wide range of air services'.

Evaluation aspect: Faithfulness — Extent to which the information in the text is supported by the data

[1] Explanation: This phrase is considered an error be-| [2] Explanation: Similar to Error 1, this phrase in-
cause the provided data does not mention the airport’s troduces information not present in the provided data.

size (major/international), location relative to the city There is no mention of the types or variety of air ser-
(near the heart), or any information that could imply vices offered by the airport, making this an unsupported
these details. The text introduces unsupported informa-  claim that affects faithfulness.

tion, negatively affecting faithfulness. Severity: 3

Severity: 4

Overall score: Poor (2/5)

Explanation of the score: The generated text contains significant errors related to faithfulness, as it introduces
substantial information not supported by the provided data. While the text does not contradict any data points
(since it doesn’t directly address them), its lack of adherence to the given facts and introduction of unsubstantiated
claims warrant a ‘Poor’ rating. For an ‘Excellent’ score, the text should have strictly adhered to the provided data,
which includes specific details about the airport’s operating organisation, runway length, elevation, and runway
name, none of which were accurately represented or utilized in the generated text.

Figure 20: Example error span annotation provided by OPENLGAUGE for the RDF-to-text task. The generated text
is evaluated for faithfulness with respect to the input data.

Emotional Context: A is guilty

Dialogue History:

A: One time I skipped my friend’s birthday party to watch TV

B: I hope something good was on

A: There was! But I felt so bad afterwards. I’'m a monster

Response: It’s okay!'!, everyone makes mistakes sometimes. Next time, try to find a balance between social commitments

and personal enjoyment'?. !

Evaluation aspect: Empathy — Extent to which the response shows understanding of the feelings of the person talking
about their experience

[1] Explanation: While the intention is to comfort, [2] Explanation: This part of the response shifts focus
the phrase "It’s okay" might come across as dismissive | from acknowledging and validating A’s current emo-
of A’s expressed guilt and remorse, potentially under- tional state (guilt) to providing advice for future actions.
mining their emotional experience. A more empathetic = While helpful, it doesn’t directly address or show under-
approach could acknowledge the negative feelings be- standing of A’s feelings about their past action, slightly
fore offering reassurance. lacking in empathy.

Severity: 2 Severity: 3

Overall score: Fair (3/5)

Explanation of the score: The response demonstrates some level of empathy by attempting to reassure and offer
a solution, indicating an understanding that mistakes happen. However, it falls short in fully acknowledging and

validating the speaker’s emotional experience (guilt), hence not scoring higher than 'Fair’. To achieve a *Good’ or
’Excellent’ score, the response would need to more directly address and empathize with A’s feelings of guilt and

self-perceived monstrosity.

Figure 21: Example error span annotation provided by OPENLGAUGE for the dialogue response generation task.
The response is evaluated for empathy. In addition to dialogue history, the input also includes the emotional context
of the person talking about their experience.
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Source: /[NOT PROVIDED]

Summary: By A new study that college are more likely to engage in energy - binge drinking when alcohol than non - .

Evaluation aspect: Fluency — Formal quality of individual sentences of the summary. A fluent sentence should be
grammatical, natural and easy to understand.

[1] Explanation: The sentence is fragmented and lacks proper structure. It starts with an unnecessary preposition
("By") and contains several grammatical errors, such as missing words and incorrect phrasing. This makes the
sentence difficult to understand and unnatural.

Severity: 5

Overall score: Unacceptable (1/5)

Explanation of the score: The summary is very disfluent due to significant grammatical errors and lack of coher-
ence, making it extremely difficult to comprehend.

Figure 22: Example error span annotation provided by OPENLGAUGE for the summarization task. The summary is
evaluated for fluency. Note that source text is not included, as it is not relevant for evaluation of fluency.
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