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Abstract

Human language production exhibits remark-
able richness and variation, reflecting diverse
communication styles and intents. However,
this variation is often overlooked in summa-
rization evaluation. While having multiple ref-
erence summaries is known to improve cor-
relation with human judgments, the impact
of the reference set on reference-based met-
rics has not been systematically investigated.
This work examines the sensitivity of widely
used reference-based metrics in relation to the
choice of reference sets, analyzing three di-
verse multi-reference summarization datasets:
SummEval, GUMSum, and DUC2004. We
demonstrate that many popular metrics ex-
hibit significant instability. This instability is
particularly concerning for n-gram-based met-
rics like ROUGE, where model rankings vary
depending on the reference sets, undermin-
ing the reliability of model comparisons. We
also collect human judgments on LLM outputs
for genre-diverse data and examine their cor-
relation with metrics to supplement existing
findings beyond newswire summaries, finding
weak-to-no correlation. Taken together, we
recommend incorporating reference set varia-
tion into summarization evaluation to enhance
consistency alongside correlation with human
judgments, especially when evaluating LLMs.

1 Introduction

Human-written texts vary widely in terms of
length, style, communicative intent, lexical/syn-
tactical choices, and numerous other dimensions
(Giulianelli et al., 2023; Liu and Zeldes, 2023;
Rezapour et al., 2022; Baan et al., 2023). Such
variation poses a significant challenge in the eval-
uation of summarization systems (Lloret et al.,
2018; Celikyilmaz et al., 2021). Traditional sum-
marization metrics typically rely on comparing

* Equal contribution.

Figure 1: Human-written summaries are diverse.
Using a human-written reference over another makes
evaluation metrics fluctuate, and affects model ranking.

system outputs to one or more references, treat-
ing these references as a “gold standard”. Al-
though the limitations of reference-based metrics
have long been acknowledged (Rankel et al., 2013;
Louis and Nenkova, 2013; Reiter, 2018; Peyrard,
2019; Fabbri et al., 2021; Goyal et al., 2023), they
remain widely popular due to their simplicity, low
compute requirements, relative ease of adaptation
to different languages, and reproducibility.

The assumption behind the use of reference-
based metrics is that system outputs that are more
similar to the reference(s) are better, due to their
“human-likeness” (Gehrmann et al., 2023). How-
ever, the significant variation in human-written
summaries implies that evaluating system outputs
against a single or limited set of references has
inherent drawbacks. Previous research has exten-
sively looked at correlations between metrics and
human judgments in summarization (Forde et al.,
2024; Mondshine et al., 2025), further exploring
the use of multiple references to improve such cor-
relations (Lin, 2004; Belz and Reiter, 2006; Fab-
bri et al., 2021; Tang et al., 2024) as well as the
interpretability and efficiency aspects of such au-
tomatic metrics (Liu et al., 2023b). However, a
much less studied question is the extent to which
automatic metrics are sensitive to the choice of
human-written reference summaries, as shown
in Figure 1. In other words, are these metrics sta-
ble across different plausible gold-standard refer-
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ences? If metric scores vary significantly with the
selected reference(s), this variation calls into ques-
tion the reliability of many evaluation practices in
the field.

In this work, we quantify the impact of refer-
ence choice on automatic evaluation metrics for
summarization. Our contributions are as follows:

[1] We investigate how different reference sets
affect system rankings. We show that
system rankings based on n-gram-matching
metrics (e.g., ROUGE) strongly depend on
the choice of the reference(s), undermining
the reliability of model comparisons. How-
ever, rankings based on more semantically-
oriented metrics exhibit greater stability.

[2] We examine the robustness of widely-used
reference-based metrics for summariza-
tion at the instance and dataset level. Our
analysis reveals that the variation in scores
introduced by the choice of reference on a
dataset often exceeds the variation observed
in state-of-the-art (SOTA) models.

[3] We collect new human judgment scores on
Large Language Model (LLM) outputs for
the genre-diverse GUMSum (Liu and Zeldes,
2023) dataset. We use these data to reassess
the correlation between automatic met-
rics and human judgments, complementing
earlier SummEval evaluations (Fabbri et al.,
2021), which were limited to pre-LLM mod-
els and newswire data. We find that correla-
tions tend to increase with the number of ref-
erences, and that the metric with the highest
correlation varies depending on the evalua-
tion dimension and the number of references.

Our analysis reveals that few metrics tend to show
both reasonable correlation with human judgments
and robustness to the reference sets, especially
when scoring LLM outputs.

The code is available at https://github.com/
mainlp/references-matter.

2 Related Work

Summarization Evaluation. Recent advances
in Natural Language Generation (NLG) have sig-
nificantly enhanced the development of summa-
rization systems. However, their evaluation re-
mains an open problem (Celikyilmaz et al., 2021;
Goyal et al., 2023). Summarization evaluation

metrics are broadly categorized into reference-
based and reference-free (Lloret et al., 2018).
Reference-based metrics compare system outputs
to human-written reference summaries, relying on
methods such as n-gram overlap (Lin, 2004; Pap-
ineni et al., 2002), embedding similarity (Ng and
Abrecht, 2015; Zhao et al., 2019; Zhang et al.,
2020), or model-based techniques (Peyrard et al.,
2017; Scialom et al., 2019; Yuan et al., 2021). In
contrast, reference-free summarization metrics do
not assume a gold standard (Yuan et al., 2021;
Vasilyev et al., 2020; Gao et al., 2020; Gigant
et al., 2024). More recently, growing research
leverages LLMs as evaluators, with or without ref-
erences (Song et al., 2024; Li et al., 2024). In
the LLM-as-judge paradigm, evaluations are typi-
cally based either on prompting the model to pro-
vide judgments (Liu et al., 2023a; Bavaresco et al.,
2025), or on using its generative probabilities di-
rectly (Fu et al., 2024).

Metrics Meta-Evaluation. Meta-evaluation of
summarization metrics typically focuses on the
extent to which they can be used as a proxy for hu-
man evaluation. Reiter and Belz (2009) examined
the validity of automatic scores for NLG tasks,
while Rankel et al. (2013) focused on ROUGE
and its correlation with humans. Peyrard (2019)
showed that metrics with reasonable correlation
on lower-quality outputs tend to diverge when
output quality increases. Caglayan et al. (2020)
demonstrated the idiosyncrasies of automatic eval-
uation metrics, noting that high correlation with
human judgments is not sufficient to character-
ize their reliability. Fabbri et al. (2021) per-
formed a large-scale meta-evaluation of summa-
rization metrics, and found that most metrics have
low correlation with human judgments on coher-
ence, while relevance is weakly or moderately
correlated. Mondshine et al. (2025) performed a
meta-analysis of reference-based, reference-free,
and LLM-based summarization metrics focusing
on eight languages from four typological families,
showing low correlation. They also observed that
off-the-shelf LLMs as judges still lag behind other
metrics.

While most existing research focused on cor-
relation to human scores, Tang et al. (2024) ad-
dressed the challenge of evaluation when a limited
number of references is available. They proposed
leveraging LLMs to diversify the references, ex-
panding the evaluation coverage and improving
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the correlation with humans. Their results show
that increasing the number of references signifi-
cantly enhances the reliability of existing evalu-
ation metrics in terms of correlation. However,
since LLM outputs tend to show less variability
and follow distinct patterns compared to human-
produced content (Giulianelli et al., 2023; Guo
et al., 2024; Shur-Ofry et al., 2024; Reinhart et al.,
2025), relying on them to replace human refer-
ences might introduce biases. Beyond summariza-
tion, evaluation of reference variability has also
been conducted in tasks such as machine trans-
lation (Castilho, 2020; Popović, 2021; Wu et al.,
2025) and image captioning (Yi et al., 2020).

3 Experimental Setup

To quantify the impact of human-written refer-
ences on the scores of automatic metrics, we
leverage multiple elements. For datasets, we
use SummEval (Fabbri et al., 2021), GUMSum
(Liu and Zeldes, 2023), and DUC2004 (Dang
and Croft, 2004), which contain multiple human-
written summaries (§3.1), to assess how different
reference summaries affect metric performances.
Next, to assess summarization models, we use the
existing outputs provided by Fabbri et al. (2021)
for SummEval. As these outputs predate LLMs,
we additionally collect outputs using LLMs (§3.2)
for all three datasets. Lastly, to compute the cor-
relations with humans, we use the human judg-
ments available in SummEval and gather new hu-
man ratings for GUMSum on both human and
LLM-generated summaries (§3.3). We prioritize
GUMSum over DUC2004, as it includes multi-
ple genres beyond news data. Our metric selection
is outlined in §3.4. Details on data licensing and
codebase are provided in Appendix A.

3.1 Human-written Summaries

SummEval (Fabbri et al., 2021) is built on top
of CNN/DM (Hermann et al., 2015; Nallapati
et al., 2016), containing news articles and human-
written highlights. The original authors selected
100 instances from the test set and supplemented
the existing highlights with ten additional refer-
ence summaries per instance, obtained via crowd-
sourcing (Kryscinski et al., 2019).

GUMSum (Liu and Zeldes, 2023) contains
summaries created following general and genre-
specific guidelines1 to function as a substitute for

1https://wiki.gucorpling.org/gum/summarization

the source (Nenkova and McKeown, 2011). We
focus on the 48 documents in the dev and test
sets, which contain five human-written summaries
each (Lin and Zeldes, 2025) across 12 genres.

DUC2004 Task1 (Dang and Croft, 2004) con-
sists of 489 news documents, most with four ref-
erences. The guidelines allow the summaries to be
in the form of short sentences or lists of keywords.2

DUC2004 references are thus extremely concise
(only up to 75 characters). The dataset has played
a significant role in summarization research, being
part of the annual TREC conference evaluation.

Table 1 provides an overview of the three
datasets. We treat all human references in the three
datasets as “gold” since they were either authored
by experts or validated through review.

3.2 Model Outputs

Fabbri et al. (2021) collected model outputs for
SummEval from 24 extractive and abstractive
summarization systems, which were SOTA be-
tween 2017 and 2019. We focus on the 16 models
for which they provided human judgments.

For all datasets, we also include summaries
generated by contemporary LLMs. This is cru-
cial given that prior studies demonstrated that
evaluation metrics often show lower correlation
with high-quality outputs (Peyrard, 2019; Alva-
Manchego et al., 2021). Below, we report a sim-
ilar pattern for LLMs (§4.4). For consistency
purposes, we follow Lin and Zeldes (2025) and
use Llama3-3B-Instruct (Hermann et al., 2015),
Qwen-2.5-7B-Instruct (Yang et al., 2025), Claude-
3.5 (Anthropic, 2024), and GPT-4o (OpenAI,
2024). For each LLM, we generate a single sum-
mary. We emphasize LLM variety over multiple
generations. Details on the generation parameters
and prompts are reported in Appendix A.

3.3 Human Judgments

SummEval (Fabbri et al., 2021) contains expert
judgments that assess summaries based on four
criteria: coherence, consistency, fluency, and rele-
vance, using a Likert scale of 1-5 (Likert, 1932).

To measure how well automatic metrics align
with human judgments beyond the news domain,
and to study whether findings on pre-LLM mod-
els align with those on LLM outputs, we collect a
new set of human judgments using the same cri-
teria on the 48 GUMSum documents. We hired

2https://duc.nist.gov/duc2004/tasks.html
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dataset #doc genre
references outputs

#sums #chars #toks model outputs human judgments

SummEval 100 news 1+10 226.3 43.1 Fabbri et al. (2021) + 4 LLMs Fabbri et al. (2021)
GUMSum 48 12 genres 5 291.3 52.1 4 LLMs collected in this work
DUC2004 489 news 4 70.0 11.9 4 LLMs n/a

Table 1: Multi-reference summarization datasets. #sums indicates the number of human-written references per
instance. We generate outputs using four LLMs and collect a new set of human judgments for GUMSum.

Summarizer Coh.↑ Con.↑ Flu.↑ Rel.↑ best↑ worst↓
claude 4.750.45 4.480.65 4.820.42 4.260.71 0.170.38 0.030.18
gpt4o 4.420.61 4.610.63 4.740.45 4.070.65 0.110.32 0.120.32
Qwen 4.660.56 4.330.84 4.680.52 4.230.75 0.160.37 0.120.33
Llama3 4.710.51 4.140.97 4.780.42 4.090.86 0.120.32 0.200.40

humans 4.540.57 4.480.71 4.700.51 4.220.69 0.090.28 0.100.31

Table 2: Human judgments on GUMSum: LLM
vs. human-written summaries. Above-human per-
formances are highlighted in blue.

three Master’s students in Computational Linguis-
tics and tasked them to evaluate four LLM outputs
(§3.2) and five human references (§3.1), following
Fabbri et al. (2021)’s criteria. LLM-generated and
human-written summaries were anonymized and
shuffled. We also asked the evaluators to pick one
best and one worst summary for each document.

Table 2 reports the results. Claude scored the
best overall. GPT-4o gets the highest consistency
but the lowest coherence and relevance, and is thus
the least picked LLM. Interestingly, LLM outputs
typically receive higher scores than human-written
references. In line with previous work, e.g., Zhang
et al. (2024), this finding has significant implica-
tions for reference-based evaluation and calls into
question the use of potentially lower-quality ref-
erences for assessing high-quality outputs (Noh
et al., 2024).

3.4 Evaluation Metrics

We consider several reference-based metrics, cho-
sen to balance popularity and diversity. All met-
rics range in 0–100. Appendix B provides details.

ROUGE (Lin, 2004) is the most popular sum-
marization metric. ROUGE-N computes n-gram
overlap between a hypothesis and the references.
ROUGE-L leverages the longest common subse-
quence, accounting for the word order. With mul-
tiple references, ROUGE considers the maximum
or the mean of the n-gram overlap (ROUGEmax
and ROUGEavg). We report the F1-score.

BLEU (Papineni et al., 2002) is an n-gram met-
ric primarily used for translation. It is precision-

Figure 2: Percentage of papers about summarization
that use common reference-based metrics.

based and incorporates a brevity penalty. With
multiple references, the n-gram count is clipped
at the maximum count of n-grams in a single ref-
erence, and the length of the reference closest in
size to the hypothesis is considered.

METEOR (Banerjee and Lavie, 2005) incor-
porates multiple linguistic aspects, including syn-
onym matching, stemming, and word order, mak-
ing it more robust in capturing semantic equiva-
lence. While primarily designed for translation, it
has also been used to assess summaries. With mul-
tiple references, the maximum score is considered.

BERTScore (Zhang et al., 2020) leverages con-
textual embeddings and considers the cosine sim-
ilarity between the embeddings of the hypothe-
sis and the reference tokens. With multiple refer-
ences, the final score is the maximum among the
individual scores. We report the F1 score.

BLEURT (Sellam et al., 2020) is a model-
based metric that leverages BERT fine-tuned on
human judgments. The metric is not designed to
handle multiple references; we compute scores for
each reference and consider the maximum.

To gain insights into recent metric usage, Fig-
ure 2 summarizes the percentage of summariza-
tion papers from recent ACL, EMNLP, and INLG
proceedings (detailed in Appendix C). We found
that reference-based metrics are still the most pop-
ular, with ROUGE in 79% of papers, followed by
BERTScore (44%). Our preliminary search also
shows that LLM-as-a-judge evaluators are mainly
(i.e., in 66% of the cases) used without references,
placing them outside the scope of this paper.
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Figure 3: Variation in human-written summaries across datasets, measures inspired by Giulianelli et al. (2023).

4 Reference Variability and Metric
Robustness

Reference-based metrics assume that more
human-like outputs deserve higher scores. How-
ever, human summaries are very diverse. This
section examines how metrics fluctuate with
different human references. By analyzing metric
robustness, we aim to understand how conclu-
sions about models, drawn from reference-based
metrics, might change when different sets of
human-written references are used, thereby
undermining evaluation reliability.

4.1 Human-written Summaries are Diverse

Human-written summaries show substantial di-
versity. We assess the variability in the multi-
reference datasets following Giulianelli et al.
(2023). For each pair of human-written summaries
for the same instance, we report the lexical sim-
ilarity (the overlapping distinct n-grams between
two strings), the syntactic similarity (the overlap
of part-of-speech tag n-grams), and the semantic
similarity (the cosine and euclidean similarity be-
tween the embeddings of the two strings).

Figure 3 shows these variations. At the dataset
level, DUC and SummEval show the lowest simi-
larity among human-written summaries across all
dimensions. For GUMSum, summaries are more
similar to each other. We hypothesize that this
is likely due to the constrained annotation guide-
lines. It is also worth noting that the similarities
revealed here are between different human-written
summaries for a given instance as opposed to sum-
maries across genres, for which we still expect
significant variations, as demonstrated by Liu and
Zeldes (2023). Overall, summaries tend to be sim-
ilar at the syntactic level, less so at the semantic
and lexical level. We also observe that LLM out-
puts show lower diversity (Appendix D), consis-
tently with previous work (Giulianelli et al., 2023).

4.2 Automatic Metrics Fluctuate
Substantially at the Instance Level

Given the diversity in human-written summaries,
we quantify metric fluctuation at the instance level
when using a different set of human-written ref-
erences. For a metric M and a set of human-
written references R = {r1, r2, . . . , rN}, we com-
pute M(ri, R − {ri}). Thus, for each document,
we score each human-written summary using all
the others as the reference set. Figure 5 exem-
plifies the observed instance-level variability mea-
sured by ROUGE-Lavg on the three datasets. For
SummEval, we also mark the original reference
(scraped highlights, §3.1) in the CNN/DM dataset
with a cross. The quality of these scraped refer-
ences versus the ten later crowd-sourced ones is
discussed further in Appendix E.

Scores assigned to human-written summaries
are often low. For example, the averaged
ROUGE-Lavg scores are 28.52±5, 27.46±3,
24.88±5.3 for SummEval, GUMSum, and
DUC2004. Given the assumption that human
reference summaries are of high quality, metrics
should produce high scores. Instead, they do not
typically reflect this property.

Human-written reference scores vary widely.
Figure 4 summarizes the instance-level variability
of the individual scores (in Figure 5) for all eval-
uation metrics on SummEval (corresponding fig-
ures for GUMSum and DUC are in Appendix F).
For each metric, we compute the min-max range
when scoring human-written references against all
the others (M(ri, R − {ri})). Figure 4 shows the
histogram of such ranges. The ranges of varia-
tion observed within human-written references
are, on average, very high.

Understanding the magnitude of such a range
might not be obvious. For instance, an increase
of 10 points of BERTScore (typically scoring in
the high range of the scale) might indicate a much
larger improvement in performance than an in-
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Figure 4: Ranges of variability at the instance level on SummEval. For each instance, we compute the range of
the scores of the references against the remaining ones. The trends for ROUGEmax and ROUGEavg are similar.

Figure 5: Instance-level variation for ROUGE-Lavg.
For every document (shown first 30, one per line),
we plot the score for every human-written reference
against all other references (using the same color per
source to aid interpretation). The original CNN/DM
reference in SummEval is marked by a cross.

crease of 10 points of ROUGE-1.3 To contextual-
ize the magnitude of variation for each metric, we
also report the performance range of summariza-
tion systems. Thus, for a model S, given its output
oi for instance i, we score it through M(oi, R).
Although these values are not directly comparable
and should be interpreted with caution due to the
use of different reference sets, they help contex-
tualize the magnitude of the results and its poten-
tial impact on evaluation. For example, ROUGE-
1max assigned to human-written references varies
by about 35 points on average (the green dashed
line in Figure 4), while the mean range is less than
20 points across all model outputs (orange line),
and much lower for LLM outputs (blue line). Sim-
ilarly, LLM summaries exhibit much less vari-
ability than human references on all metrics.
These findings highlight the significance of vari-
ability and suggest that the ranking of summariza-
tion models is highly sensitive to the reference set.

4.3 System Ranking Depends on the
Reference(s) for N-Gram-Based Metrics

While we observed variability at the instance level,
summarization metrics are typically designed to
evaluate models across datasets, rather than indi-
vidual instances. In this section, we investigate to
what degree standard summarization metrics can
handle the variability observed in human-written
references when ranking summarization systems.

Procedure. We sample k human-written refer-
ences (k ∈ [1, N ], where N is the number of refer-
ences for each document) from all available refer-
ences for each instance. We then score the outputs
of each summarization system using the same set
of references. Given M systems Sa, Sb, . . . , SM ,
the metric induces a ranking Sa ≻ Sb ≻ · · · ≻

3The relative dynamics between metrics have been stud-
ied by Kocmi et al. (2024) in machine translation.
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Figure 6: Rank stability when increasing the number of references. ROUGEmax is presented. Note that we use
different ranges for the y axis for each dataset to improve readability.

SM . This process is repeated 100 times, yielding
100 rankings. We compute the pairwise Kendall
rank correlation coefficient (Kendall, 1938) be-
tween such ranks. High correlation indicates that
models are similarly ordered, even when differ-
ent sets of references are used.4 Figure 6 reports
the average correlation for pairs of ranks for each
dataset and metric, from using k human-written
summaries as references. ROUGEmax is shown in
Figure 6, and ROUGEavg is reported in Figure 12
in Appendix G.

Single Reference. Evaluating with a single ref-
erence is common in summarization, as most
datasets provide only one human-written sum-
mary. Figure 6 (looking at k = 1) shows the
stability of different metrics with a single refer-
ence across the three datasets. We find that BLEU
and ROUGE have very weak to moderate cor-
relation between ranks across different refer-
ences. In other words, using two different sets of
plausible references would likely lead to different
conclusions on relative model performance. We
also notice a large variability among the individ-
ual pairs of rankings, with some showing negative
correlation (refer to Table 4 in Appendix G for re-
sults on individual metrics and datasets).

In contrast, more semantically-oriented met-
rics show greater stability. For SummEval,
BLEURT shows the highest correlation between
ranks, followed by METEOR and BERTScore.
BLEURT and METEOR confirm their stability on
GUMSum when ranking the LLM outputs. Other
metrics (including BERTScore) show low or no
correlation on GUMSum, with the exception of

4Note that, for k > 1, references in different reference
sets might overlap, artificially increasing the observed corre-
lation between rankings.

ROUGE-1. In all cases, metrics show much higher
stability on DUC, for which all average correla-
tions are above 0.7. We speculate that high stabil-
ity might stem from an artifact introduced by the
short summary length required by the guidelines.

In summary, n-gram-matching metrics, though
simple, are highly reference-dependent, un-
dermining consistent model evaluation, while
semantically-oriented ones show greater stability.
Therefore, we recommend always using model-
based metrics in benchmarks with a single ref-
erence. When cost is a factor, METEOR might
offer a good balance of stability and affordability.

Multiple References. When scoring model out-
puts against a set of k > 1 randomly sampled
references, we observe that the correlation be-
tween rankings obtained with different human-
written references generally improves with an
increased number of references. This increased
stability is expected and in line with similar find-
ings that associate a larger number of references
with a higher correlation with humans (Lin, 2004).

However, the stability varies by metric.
ROUGE (especially ROUGEmax) and BLEU tend
to have low correlation between ranks. As an ex-
ample, the ROUGEmax scores require 5-10 refer-
ences to reach a level of stability that is compa-
rable to that of BERTScore on SummEval with
a single reference. ROUGEavg has a better sta-
bility than ROUGEmax, especially with a larger
set of references. For example, on SummEval,
ROUGE-Lavg has higher stability than BERTScore
for k > 3, while on GUMSum, ROUGE-2avg is
the second most stable metric for k > 3. On
all datasets, BLEURT and METEOR remain sta-
ble even with a single reference, with METEOR
showing stability despite its simplicity.
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In general, trends on SummEval are clearer and
simpler to interpret than the other two datasets.
We speculate that this is due to the larger num-
ber of models used (16 pre-LLM models+4
LLMs on SummEval vs 4 LLMs on GUMSum
and DUC). BLEURT, METEOR, and BERTScore
show the highest stability, while n-gram-based
metrics show low to average correlation between
ranks even when multiple references are used. The
cases of GUMSum and DUC2004 are more com-
plex to interpret and might be less meaningful
given fewer model outputs (i.e., only four LLM
outputs, which might increase the observed noise).
For GUMSum, BLEURT continues to show high
inter-rank correlation, with METEOR being the
second most stable. BERTScore, on the other
hand, shows poor stability. Similar to the case with
k = 1, on DUC2004, all metrics show high stabil-
ity, likely due to summaries being very short, as
dictated by the guidelines.

4.4 Correlation with Human Judgments

In addition to stability, automatic metrics should
correlate with humans. We compute correlations
for SummEval and GUMSum, for which we have
human judgments,5 at the instance and system
level as the number of references k increases.6

Instance-level Correlation. Figure 7 reports the
instance-level correlation for SummEval (top) and
GUMSum (bottom), respectively, versus the num-
ber of references. We show ROUGEmax; cor-
responding figures using ROUGEavg are in Ap-
pendix H.

We notice weak-to-no correlation on both
datasets. All correlations are generally higher
on SummEval (where we consider outputs from
the pre-LLM era) than on GUMSum (where we
consider LLMs), in accordance to previous work
showing that correlation with human judgments
decreases as the quality of the outputs improves
(Peyrard, 2019). Additionally, reference-based
evaluation itself could be problematic for very
high-quality outputs when references are of worse
quality than outputs (see Table 2, where model
outputs are often scored on par with, or higher
than, references) as also argued by Goyal et al.

5For SummEval, we use the 16 models studied by Fabbri
et al. (2021); for GUMSum, the four LLMs.

6For example, when considering two references, we con-
sider the sets (

(
N
2

)
) of human-written references, where N is

the total number of references. We compute the scores using
such references as gold standard, and report the mean.

(2023); metrics might also not be sensitive enough
for outputs with more similar quality. The ob-
served low correlation could be motivated by the
low IAA in the GUMSum human judgments.

For SummEval, increasing the number of refer-
ences consistently leads to better correlation. This
effect vanishes on GUMSum, where a larger ref-
erence set leads to no effect or slightly lower cor-
relation. For SummEval, BERTScore shows the
highest correlation on all dimensions but consis-
tency, for which METEOR and ROUGEavg are
better proxies. Notice how the best metric in terms
of correlation with human judgment depends on
the considered criterion and the available number
of references: BLEURT, for example, typically
has low correlation when considering one refer-
ence only, performing worse than ROUGE. How-
ever, its performance improves when more refer-
ences are considered, surpassing the scores of n-
gram-based metrics.

System-level Correlation. System-level corre-
lation is generally higher than instance-level corre-
lation on SummEval; however, many criteria still
show weak to moderate correlation when one or
very few references are included. In most cases,
such correlation tends to improve with the number
of references. This is not the case for ROUGEmax,
especially when considering consistency. The
full results are provided in Figure 14 in the Ap-
pendix H. GUMSum is excluded from this analy-
sis due to the small number of systems available.

5 Conclusions

In this work, we have investigated how ref-
erence sets impact the reliability of reference-
based summarization metrics. Our analysis across
three multi-reference datasets reveals that, despite
their popularity, token-matching metrics such as
ROUGE are highly sensitive to the reference(s).
This sensitivity leads to instability in system rank-
ings, particularly when only a small number of
references are available, which is typical in sum-
marization datasets. In these situations, we thus
recommend avoiding such metrics, echoing earlier
calls for caution (Schmidtova et al., 2024), in favor
of model-based or reference-free alternatives.

We find that increasing the number of reference
summaries consistently improves both the stabil-
ity of metric scores and their alignment with hu-
man judgments. This might be explained by the
possibility of representing a larger human diver-
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Figure 7: Pearson correlation at the instance level on SummEval (top) and GUMSum (bottom).

sity from the one hand, and from that of limiting
annotator bias on the other. In these conditions,
n-gram-based metrics such as ROUGE-N become
more reliable.

Our findings highlight the need to incorporate
reference set variation into evaluation frameworks.
Future metric development should explicitly ac-
count for this variation. While we have not specifi-
cally studied the dimensions of diversity in human
references besides their lexical, syntactical, and
semantic variation from Giulianelli et al. (2023),
we believe this is an important area of investi-
gation. We speculate that the main challenge
would be to collect a reference set that is “diverse
enough” to represent human production for a fixed
number of references. Future work in this direc-
tion needs to identify and characterize the relevant
dimensions of diversity. These dimensions might
be lexical, stylistic, intentional, or even sociolin-
guistic (cutting across the previously mentioned
dimensions, Grieve et al. 2025). How to collect
such references and whether specific guidelines
should be adopted is also an open problem. Fu-
ture work should also explore the role of genre.

We thus advocate for the creation of larger,
more diverse multi-reference datasets, as well as
for metric designs that are inherently robust to ref-
erence variability. Such efforts will be key to en-
suring fairer and more reliable and human-aligned
evaluation practices in summarization in the LLM
era and beyond.

Limitations

While our study highlights challenges posed by
reference set variation in summarization evalua-
tion, it also comes with several limitations.

Although we focus on multi-reference
datasets—SummEval, DUC2004, and GUM-
Sum—such datasets remain relatively small.
This reflects a broader limitation in current
meta-evaluation practices, where multi-reference
resources are the norm despite their limited scale.

Our analysis primarily targets standard evalua-
tion criteria such as coherence, consistency, flu-
ency, and relevance. While these are widely
adopted and established, they do not capture all
the nuances of summary quality, especially when
the source texts are genre-diverse. More fine-
grained human annotations and task-specific di-
mensions (e.g., factuality for news, stance for
opinion pieces) would allow a deeper understand-
ing of metric behavior under reference variation.

While we assess metric robustness using four
systems (all of which are LLMs as opposed to
the case for SummEval, where 16 pre-LLM super-
vised systems are available) on the GUMSum and
DUC2004 datasets, the relatively small number of
models limits the generalization of the conclusions
we can draw about system-level stability. Future
work should include a larger and more diverse set
of systems to better assess generalizability.

Moreover, using reference-based metrics for
LLMs outputs (and generally, very high-quality
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outputs) has been questioned, especially when
considering low-quality (e.g., scraped) references.
While we focus on high-quality human-written
references especially collected and checked for
quality, we find that LLM-outputs are scored
higher than references in our human evaluation
campaign. We want to point out that the paper
does not advocate to use reference-based metrics
in such context; rather, it aims at shading lights
on the limitation of the current evaluation prac-
tices, including the use of references in the cases
in which the outputs might have higher quality,
and its impact on stability and correlation. We
also advocate for more research on the similarities
and differences between LLM- and human-written
summaries, to understand to which extent the use
of LLM output as references could improve evalu-
ation or rather introduce unwanted and largely un-
known biases.

Lastly, given our efforts to use contemporary
LLMs, there remains a potential risk of data con-
tamination. Since some of these datasets may have
been seen during pretraining, this could affect both
the outputs generated by LLMs and their evalu-
ation scores. While we do not observe signs of
memorization, we acknowledge that further con-
trolled experiments are necessary to rigorously as-
sess this risk.
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A LLM-generated Summaries

For each source, we generate a single summary
using each of the four LLMs. For SummEval, the
sources corresponding to the 100 multi-reference
summaries are taken into account. For DUC2004
Task 1, we generate summaries for the whole
dataset (489 instances). For GUMSum, we focus
on the dev and test set (in total 48 instances). Thus,
we generate a total of 2548 summaries. We com-
ply with the license of the existing datasets. For
newly collected model outputs and human judg-
ments, we follow the license of the corresponding
underlying datasets. The codebase will be made
publicly available upon publication.

A.1 Prompts

A.1.1 SummEval

Article: {full_text}. Summarize the
article in three sentences. Summary:

A.1.2 DUC2004 Task 1

The task is to create a very short
single-document summary for the article
below.

A very short summary should not be
longer than 75 characters - this includes
spaces and punctuation.

We will chop off characters beyond the
75th, so please do not include more than
75.

A very short summary could look like
a newspaper headline, be a list of
important terms or phrases separated by
commas, a sentence, etc.

It should not contain any formatting,
i.e., no indented lists, etc. Feel free
to use your own words.

Article: {full_text} Summary:

A.1.3 GUMSum

Following Liu and Zeldes (2023), a general
prompt was used to instruct LLMs to generate
summaries, as shown below. Summarize the
following article in 1 sentence. Make
sure your summary is one sentence long and
does not exceed 380 characters. Example
of summary style: example

{doc_text}

Summary:

A.2 LLM Output Evaluation

Table 3 reports the scores obtained by the four
LLMs when using all available references for scor-
ing.

B Reference-based Metrics

ROUGE. We use the sacrerouge8 python im-
plementation of ROUGE (Deutsch and Roth,
2020), with default parameters.

rouge = Rouge(
max_ngram = 4,
use_porter_stemmer = True,
remove_stopwords = False,
max_bytes = None,
max_words = None,
compute_rouge_l = True,
skip_bigram_gap_length = None,
scoring_function = "max", # or "average"

)

Notice that the implementation of ROUGE uses
the Jackknife method when multiple references
are provided.

BLEU. We use the sacrebleu9 python imple-
mentation of BLEU (Post, 2018), with default pa-
rameters.

bleu = BLEU(
lowercase=False,
force=False,
tokenize=tokenize,
smooth_method='exp',
smooth_value=None,
effective_order=False) # True when used at

the sentence level
)

METEOR. We use the Hugging Face version of
Meteor, implemented through the evaluate10 li-
brary, with default parameters, which wraps the
NLTK implementation of the metric.11

nltk.translate.meteor_score.meteor_score(
references: ~typing.Iterable[~typing.
Iterable[str]], hypothesis: ~typing.Iterable
[str], preprocess: ~typing.Callable[[str],
str] = <method 'lower' of 'str' objects>,
stemmer: ~nltk.stem.api.StemmerI = <
PorterStemmer>, wordnet: ~nltk.corpus.reader
.wordnet.WordNetCorpusReader = <
WordNetCorpusReader in '/Users/stevenbird/
nltk_data/corpora/wordnet'>, alpha: float =
0.9, beta: float = 3.0, gamma: float = 0.5)
-> float[source]

8https://github.com/danieldeutsch/sacrerouge
9https://github.com/mjpost/sacrebleu

10https://github.com/huggingface/evaluate
11https://www.nltk.org/api/nltk.translate.

meteor_score.html
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SummEval DUC GUMSum
R-1 R-2 R-L BLEU MTR BS BLRT R-1 R-2 R-L BLEU MTR BS BLRT R-1 R-2 R-L BLEU MTR BS BLRT

Qwen 36.43 15.71 31.56 17.41 42.07 89.67 55.15 42.06 17.13 36.67 10.03 31.98 89.96 49.28 44.01 19.23 34.20 22.90 35.25 90.23 47.87
Llama3 37.50 18.09 32.79 22.07 46.09 90.04 56.61 37.44 12.74 32.79 6.45 24.97 89.87 46.01 43.51 19.96 35.34 24.65 36.70 90.33 48.50
Claude 36.03 17.80 31.89 20.84 46.75 89.83 56.07 47.69 20.92 41.73 12.86 39.48 91.27 56.94 44.99 18.65 34.51 20.85 37.62 90.40 50.13
GPT4 35.86 17.90 31.80 21.84 46.36 90.10 57.22 45.73 19.22 39.27 12.07 38.12 91.15 56.01 47.02 19.12 34.23 21.33 43.46 90.17 51.61

Table 3: LLM scores on the multi-reference datasets. R, MTR, BS, and BLRT are short for ROUGE, METEOR,
BERTScore, and BLEURT respectively. All available references are used in the evaluation. For ROUGE and
BLEURT, we consider the max-variation of the score.

BERTScore. We use the Hugging Face ver-
sion of BERTScore, implemented through
the evaluate12 library, with default pa-
rameters, which wraps the bert_score im-
plementation.13 No TF-IDF weighting is
used. Embeddings are obtained by using
FacebookAI/roberta-large. We did not
fine-tune the model. The corresponding hash is
roberta-large_L17_no-idf_version=0.3.12
(hug_trans=4.48.3).

BLEURT. We use the original Google version
of BLEURT.14 We used the recommended check-
point,15 which we did not fine-tune.

C Use of Reference-based Metrics

We survey papers published at ACL, EMNLP, and
INLG from 2023 and 2024. Given the list of long
and short accepted papers, we collected papers
matching the keyword summar* in their title. After
filtering out papers that are not about summariza-
tion research (e.g., summarizing the state of the art
for a different topic), for each paper we checked
whether one of our chosen metrics had been used
for evaluation. Finally, we point out that some of
the surveyed papers do not perform experimental
work and thus do not evaluate model outputs (e.g.,
paper studying human evaluation); the reported
percentages are thus slightly underestimated.

D Variability in Humans and LLMs

Figure 8 compares the variability observed in
human-written summaries and in LLM-generated
ones. To characterize LLM-generated summaries,
given and instance i and a pair of human-written
summaries for instance i Rji and Rzi, we plot
P (oi, oj) where P is the lexical, syntactic, or se-
mantic similarity. To characterize LLM-generated

12https://github.com/huggingface/evaluate
13https://github.com/Tiiiger/bert_score
14https://github.com/google-research/bleurt
15available at https://storage.googleapis.com/

bleurt-oss-21/BLEURT-20.zip

summaries, given and instance i system Sj and Sz ,
producing outputs oj and oz , we plot P (oji, ozi).

When compared to summaries generated by dif-
ferent humans, those produced by various LLMs
exhibit far less variation, particularly at the se-
mantic and syntactic levels. Quantifying and mit-
igating the reduced richness and variability of
LLM-generated content is an area of ongoing re-
search (Guo et al., 2024; Shur-Ofry et al., 2024;
Giulianelli et al., 2023) and, while not reflect-
ing poor output quality, raises an open question
about whether LLMs can fully replace human ref-
erences.

E Quality of Scraped References

One peculiarity of summarization datasets is that
they are typically gathered from existing sources
(Dahan and Stanovsky, 2025). This is the case
of the CNN/DM dataset (Hermann et al., 2015;
Nallapati et al., 2016), where articles are scraped
from news websites, with the concatenated high-
lights acting as the target summary. The quality of
such targets has been criticized in previous studies
(Kryscinski et al., 2019; Srivastava et al., 2023), as
they contain extraneous facts, references to other
articles, and other issues.

To better investigate the impact of these
issues—and thus, quantify the gap between
scraped summaries and crowd sourced ones—
we leverage the additional references in Sum-
mEval. To this end, we treat the scraped CN-
N/DM references as hypotheses, and we score
them against the 10 crowd-sourced ones in the
SummEval dataset. We assume the latter pro-
vide a superior reference set for two main reasons:
a) crowd-sourced references are specifically col-
lected to act as summaries, with clear guidelines
and an emphasis on quality; b) the larger cardi-
nality of the crowd sourced human references (cf.
Table 1) allows for a more comprehensive view of
human-produced summaries. We compare these
score to those of system outputs.

Figure 9 reports the scores of the original CN-
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(a) human-written summaries

(b) LLM-generated summaries

Figure 8: Variation in human-produced summaries (top) and LLM-generated summaries (bottom).

Figure 9: Models and CNN/DM reference compared to 10 crowd-sourced references in SummEval. Sum-
mEval models are in lighter blue, LLMs in darker blue. The red line indicates the CNN/DM reference score, and
the black dotted line represents a random baseline using a different news article as the hypothesis.

N/DM references (red line) and those of the out-
puts of the systems (blue bars). We also report a
random baseline (dotted line) in which a summary
of a different document randomly sampled from
the collection is used as hypothesis.

Notably, the original CNN/DM references per-
form worse than all model outputs in all cases but
one when evaluated using n-gram-matching met-
rics. When using BERTScore, CNN/DM receives
a score close to that of the outputs from LLMs.
BLEURT rates the original reference higher than
SummEval system outputs (except for GPT-2), but
still lower than all LLM-generated outputs. These
observations corroborate previous concerns on ref-
erence summary quality, especially when used to
score high-quality outputs (Goyal et al., 2023).

F Instance-level variation

Figure 10 and Figure 11 contain the histogram
of the instance-level variability for GUMSum and
DUC respectively.

G Model Ranking

Table 4 contains the analysis of the rank stability
when using one single reference (k = 1). For
SummEval, we considering the cases of ranking
the models studied by Fabbri et al. (2021), the
LLMs and the combination of the two separately.

Figure 12 shows the Kendall tau correlation be-
tween ranks as the number k of references in-
creases. We use the mean version of ROUGE.

H System-level Correlation

Figure 13 shows the instance-level correlation for
SummEval (top) and GUMSum (bottom) using
ROUGEavg. Figure 14 show the system-level cor-
relation on SummEval with ROUGEmax (top) and
ROUGEavg (bottom).
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Figure 10: Ranges of variability at the instance level on GUMSum. For each instance, we compute the range of
the scores of the references scored against the remaining ones.

Figure 11: Ranges of variability at the instance level on DUC. For each instance, we compute the range of the
scores of the references scored against the remaining ones.

R1mean R2mean R3mean R4mean RLmean R1max R2max R3max R4max RLmax BLEU MTR BS BLRT

SummEvalall models

min -.04 -.07 .05 -.09 .12 -.06 -.09 -.04 -.06 .04 -.27 .41 .54 .67
avg .51 .56 .57 .51 .63 .51 .56 .56 .52 .62 .38 .76 .79 .86
std .16 .14 .12 .14 .12 .18 .15 .13 .13 .14 .16 .07 .06 .04

max .91 .87 .91 .82 .92 .87 .86 .88 .85 .92 .82 .94 .95 .98

SummEvalpre-LLMs

min -.05 -.03 -.05 -.15 0 -.05 -.03 -.12 -.28 .-07 -.30 .57 .28 .50
avg .48 .49 .48 .39 .55 .49 .50 .57 .39 .55 .39 .78 .68 .79
std .14 .13 .13 .15 .13 .13 .13 .15 .16 .12 .17 .06 .09 .07

max .87 .88 .90 .83 .90 .88 .85 .87 .88 .90 .85 .97 .93 .97

SummEvalLLMs

min -.33 0 -.33 -1 0 -.33 -.33 .67 -1 0 -.67 0 -67 0
avg .59 .54 .49 .48 .59 .58 .52 .48 .49 .57 .59 .60 .62 .80
std .31 .32 .33 .35 .31 .32 .32 .34 .36 .31 .32 .31 .28 .21

max 1 1 1 1 1 1 1 1 1 1 1 1 1 1

GUMSum

min 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 .33
avg .53 .42 .22 .15 .33 .51 .35 .14 .16 .35 .28 .56 .17 .86
std .32 .40 .44 .47 .41 .32 .43 .47 .47 .43 .45 .31 .48 .19

max 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DUC

min .67 .67 .33 -.33 .67 .67 .67 .33 -.33 .67 .33 .67 .33 .67
avg .99 .99 .94 .82 .98 .99 .97 .91 .78 .99 .88 .89 .71 .88
std .05 .05 .12 .22 .08 .05 0.9 .15 .25 .05 .17 .16 .24 .16

max 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: Rank stability with a single reference. We ranked systems 100 times and compute the Kendall tau
correlation among such rankings. R, MTR, BS, and BLRT are short for ROUGE, METEOR, BERTScore, and
BLEURT respectively.
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Figure 12: Rank stability when increasing the number of references over all three datasets. For ROUGE, we
show the mean variant. Notice we use different ranges for the y axes for each dataset to improve readability.

Figure 13: Pearson correlation at the instance level on SummEval (top) and GUMSum (bottom) using ROUGEmean.

Figure 14: Kendall tau at the system level on SummEval using ROUGEmax (top) and ROUGEmean (bottom).
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