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Abstract

Despite their strong performance, large lan-
guage models (LLMs) face challenges in real-
world application of lexical simplification (LS),
particularly in privacy-sensitive and resource-
constrained environments. Moreover, since vul-
nerable user groups (e.g., people with disabil-
ities) are one of the key target groups of this
technology, it is crucial to ensure the safety
and correctness of the output of LS systems.
To address these issues, we propose an effi-
cient framework for LS systems that utilizes
small LLMs deployable in local environments.
Within this framework, we explore knowledge
distillation with synthesized data and in-context
learning as baselines. Our experiments in five
languages evaluate model outputs both auto-
matically and manually. Our manual analysis
reveals that while knowledge distillation boosts
automatic metric scores, it also introduces a
safety trade-off by increasing harmful simplifi-
cations. Importantly, we find that the model’s
output probability is a useful signal for detect-
ing harmful simplifications. Leveraging this,
we propose a filtering strategy that suppresses
harmful simplifications while largely preserv-
ing beneficial ones. This work establishes a
benchmark for efficient and safe LS with small
LLMs. It highlights the key trade-offs between
performance, efficiency, and safety, and demon-
strates a promising approach for safe real-world
deployment.

1 Introduction

Text Simplification (TS) aims to make texts more
accessible by rewriting them in simpler language.
TS holds the potential to alleviate reading and un-
derstanding difficulties, particularly for individu-
als with dyslexia (Rello et al., 2013), intellectual
disabilities (Säuberli et al., 2024), and Deaf and
hard-of-hearing adults (Alonzo et al., 2021). TS
is a task strongly oriented towards real-world sce-
narios, aiming to promote social participation and

inclusion among people who face challenges in text
comprehension.

Recent advancements in large language models
(LLMs) have revolutionized natural language pro-
cessing and achieved state-of-the-art performance
across various tasks (OpenAI, 2024). TS is no ex-
ception, as LLMs have outperformed existing TS
systems (Feng et al., 2023; Wu and Arase, 2024;
Qiang et al., 2025).

However, applying LLMs to TS in real-world
scenarios, particularly for vulnerable user groups,
faces critical challenges. First, prompts provided to
LLMs and texts requiring simplification may con-
tain sensitive personal information, such as data
related to cognitive impairments. The use of API-
based LLMs involves transmitting that sensitive
data over the internet, raising significant privacy
concerns. For instance, given that individuals with
dyslexia often hesitate to disclose their condition
due to concerns about stigma and negative percep-
tions (Hamilton Clark, 2024), it can be problematic
to design prompts for TS such as "I have dyslexia;
Can you simplify this diagnosis result for me?".
Thus, TS systems capable of running locally are
highly desirable.

Open-access LLMs address this privacy concern.
However, high-performing open-access LLMs typ-
ically require substantial computational resources
for inference. Deploying such large models directly
on resource-constrained devices, such as smart-
phones and tablets that are commonly used by the
target users (Söderström et al., 2021), is currently
impractical. This highlights the need for devel-
oping smaller models that can perform effectively
within these limited hardware environments.

Building on these challenges, we investigate how
to develop efficient TS systems that can operate
under constrained computational resources. This
approach is essential for supporting information
access for all while respecting user privacy.

Utilizing small LLMs is a promising approach,
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as ~3B models are often explicitly engineered for
on-device deployment (MetaAI, 2024), thereby ad-
dressing privacy and efficiency issues. However,
particular attention must be paid to safety when
employing small LLMs, as their limited capacity
compared to larger counterparts introduces critical
considerations regarding the reliability and harm-
fulness of the generated simplifications. Poor or
inaccurate simplifications can be detrimental, as
they may actively provide misinformation or cause
confusion, which are more serious issues than leav-
ing the text unchanged (Rello et al., 2013; Säuberli
et al., 2024). Therefore, in practice, it is crucial
not only to simplify texts effectively, but also to
minimize harmful outputs and ensure safety.

As a first step towards addressing these chal-
lenges, this paper focuses specifically on lexical
simplification (LS), a subtask of TS that replaces
complex words in a context sentence with simpler
alternatives. LS can be considered a relatively con-
servative and safe subtask compared to sentence-
or document-level simplification, which often in-
volves operations such as information deletion (Al-
Thanyyan and Azmi, 2021).

We adopted small LLMs and explored two ap-
proaches: in-context learning, which requires no
training, and knowledge distillation, which trans-
fers knowledge from a larger teacher model to a
smaller student model. Our approach also consid-
ers extensibility to diverse languages, as supporting
a broad user group requires simplification across
multiple languages.

To evaluate the safety of simplification outputs,
particularly in suppressing harmful content, we
conducted manual evaluations alongside automatic
metrics. Manual analysis revealed that, while
knowledge distillation generally boosted automatic
metric scores, it did not reduce harmful outputs
and sometimes even increased them. Furthermore,
we observed that, especially in models trained via
knowledge distillation, the output probability pro-
vided by LLMs may serve as a useful signal for
identifying harmful simplifications.1

Our contributions are summarized as follows:

• We investigated the potential and challenges
of using small LLMs for lexical simplifica-
tion with respect to safety and efficiency, and
we establish a benchmark in this important
research area.

1Our codes will be available at https://github.com/
ahaya3776/safe-efficient-ls.

• We demonstrated that small LLMs offer sig-
nificant inference speedups, which highlights
their efficiency.

• We found that standard approaches such as
in-context learning and knowledge distilla-
tion can produce beneficial simplifications,
but they inherently risk generating harmful
outputs.

• We identified that model’s log-probability
serves as a useful signal for detecting harm-
ful simplifications, suggesting a promising fil-
tering strategy to ensure safety towards real-
world applications.

2 Related Work

Lexical Simplification LSBert (Qiang et al.,
2021) established itself as a strong baseline for
LS by leveraging BERT’s unmasking capabilities
and contextual understanding, outperforming ear-
lier systems based on paraphrase databases and
word embeddings (Biran et al., 2011; Glavaš and
Štajner, 2015). However, such systems based on
masked language models (MLMs) were limited in
generating multi-token words (Przybyła and Shard-
low, 2020) and its effectiveness outside English
has been questioned (Stajner et al., 2023). Fur-
thermore, MLM-based systems often require multi-
stage pipelines involving candidate ranking, which
introduces significant latency that conflicts our goal
of on-device efficiency. Their multilingual applica-
bility is also hindered by the inconsistent availabil-
ity of monolingual models across languages.

More recent auto-regressive approaches, using
T5 (Sheang and Saggion, 2021) and GPT-3 (Au-
miller and Gertz, 2022), have outperformed MLM-
based methods, leading to the widespread adop-
tion of LLMs as the predominant solution for LS
(Shardlow et al., 2024b). Notably, a GPT-4-based
LS system (Enomoto et al., 2024) achieved remark-
able performance across multiple languages.

Smaller LLMs and Efficiency The use of high-
performing versatile LLMs poses several chal-
lenges in real-world scenarios, including resource
limitations, privacy concerns, and high operational
costs. To address these issues, various efforts have
been made to develop LLMs capable of running
on local devices. These include techniques such
as quantization (Zhou et al., 2024) and the GPT-
Generated Unified Format (GGUF),2 both of which

2https://github.com/ggml-org/ggml/blob/master/
docs/gguf.md
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aim to enable efficient inference without high-end
hardware, as well as the development of small
LLMs (Qwen Team, 2024; Gemma Team, 2024;
Meta AI, 2024).

Small LLMs can be further trained to improve
performance on specific tasks (Xu et al., 2024),
including LS (Baez and Saggion, 2023; Xiao
et al., 2024). Baez and Saggion (2023) proposed
LSLlama, a LLAMA-7B model fine-tuned on an
existing LS dataset, which achieved performance
comparable to a GPT-3-based approach. Xiao et al.
(2024) introduced the PivotKD framework, which
trained Chinese-centric small LLMs using pseudo-
instances generated by GPT-4, and built a cost-
effective Chinese LS system by incorporating web-
based synonym and word sense retrieval during
inference. These studies demonstrated the poten-
tial of task-specific training of small LLMs for LS.
However, their applicability to languages beyond
English and Chinese remains uncertain, especially
given morphological complexity and disparities in
pre-training resources.

Safety and Reliability of Text Simplification
While TS supports reading and understanding, it
also carries the risk of causing confusion or mis-
interpretation. In practice, outputs from automatic
TS systems often suffer from low factuality (De-
varaj et al., 2022) and information loss (Agrawal
and Carpuat, 2024), which can negatively affect
readers’ reading time and accuracy on comprehen-
sion questions (Rello et al., 2013; Säuberli et al.,
2024). In such cases, leaving the original text un-
changed may be preferable to applying a harmful
simplification. Therefore, adopting a strategy that
accepts simplification only when certain criteria
are met offers a practical approach in real-world
scenarios. In this regard, Trienes et al. (2024) pre-
sented one of the few efforts to assess the potential
harm of TS by detecting information loss. How-
ever, its reliance on LLMs makes it unsuitable for
use in constrained environments.

3 Experimental Setup

Figure 1 illustrates the overall flow of our system
development and evaluation. We used the Hugging-
Face Transformers library3 for the development of
our LS models. A single Tesla T4 GPU with 16
GB of memory was used for the development. To
enable high-speed inference on CPUs, the mod-

3https://huggingface.co/docs/transformers/
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Wikipedia

Picking up sentences 10-100 words long

The women and children make Guernica the image
of innocent, defenseless humanity victimized.

Randomly selecting a Target word from top-5
infrequent words (except Proper Nouns/OOVs)

The women and children make Guernica the image
of innocent, defenseless humanity victimized.

Getting an alternative word for the target
from the teacher model

The women and children make Guernica the image
of innocent, defenseless humanitypeople victimized.
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Figure 1: Overall flow of our experiments. We devel-
oped and evaluated systems for each language sepa-
rately.

els were converted into the GGUF format using
llama.cpp.4

3.1 Task Formulation

The term Lexical Simplification (LS) has been used
with varying scopes. In some cases, it refers to
a sentence-level simplification pipeline consisting
of complex word identification, substitution gen-
eration, and ranking (Paetzold and Specia, 2017).
However, in this paper, we adopt a narrower def-
inition of LS, focusing solely on the substitution
generation. Specifically, we define LS as generat-
ing a simpler alternative to a single target word that
appears in a given context sentence. An alternative
should make the context easier to understand than
the original while preserving its meaning. There-
fore, an LS system takes a context and target word
as input and outputs a single alternative word.

3.2 Dataset

We used MultiLS (Shardlow et al., 2024c), a LS
dataset covering 10 languages, to evaluate system
performance. We selected five languages, English,
Spanish, Catalan, German, and Japanese, to ac-

4https://github.com/ggml-org/llama.cpp
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count for differences in language family, morpho-
logical structure, and resource availability.

Table 1 shows an example LS instance, consist-
ing of a context sentence, a target word, and alterna-
tive words suggested by multiple human annotators.
MultiLS allowed annotators to use a target as an
alternative when they could not identify a valid
simplification, which often occured when the tar-
get was already simple enough (Shardlow et al.,
2024a). This annotation scheme enables us to ex-
clude instances where LS is inherently difficult.
We removed such instances where the top-ranked
alternative was unchanged from the target word.
This process resulted in the number of instances
per language shown in Table 2. We randomly split
the selected instances into two parts, assigning 90
instances for development and the rest for testing.5

3.3 LS Systems

We employed two small LLMs: Qwen 2.5 1.5B
(Qwen for short) (Qwen Team, 2024) and Llama
3.2 1B (Llama for short) (Meta AI, 2024). Both
models were trained on multiple languages from
their larger counterparts.6 To make these mod-
els perform LS, we adopted two approaches: in-
context learning and knowledge distillation.7

3.3.1 In-Context Learning
In-context learning (Brown et al., 2020), which pro-
vides several examples as few-shot to guide model
behavior, is a common technique to improve output
quality. We used five fixed examples in the prompt
(5-shot) following the template in Appendix A.
These examples were sampled from the pilot split
of MultiLS, which was separated from the main
evaluation data.

3.3.2 Knowledge Distillation
Knowledge distillation, which involves transferring
knowledge of larger teacher models to smaller stu-
dent models, has been widely used to adapt LLMs
to specific tasks, including LS (Baez and Saggion,
2023; Xiao et al., 2024). Recent approaches com-
monly employ simple supervised fine-tuning of stu-
dent models with hard labels derived from teacher
model outputs, due to the advanced capabilities of
closed-source LLMs (Xu et al., 2024). Following

5As up to three instances share the same context, we assign
90 instances with 30 unique contexts to the development data.

6We used base LLMs instead of instruction-tuned versions
as base LLMs. See Appendix C for details.

7See Appendix B for the hyperparameter settings.

Context: Electronically controlled motorized zoom
lenses are placed on both camera and projector, and
synchronized with one another so that both lenses zoom
together and at the same focal length at all times.
Target Word: focal
Gold Alternatives: main, main, central, central, basic,
primary, focal

Table 1: Example from the MultiLS English subset.
For this instance, ACC is met if the output alternative
is "main" or "central", which are the most suggested
alternatives. POT is met if the output alternative is
one of "main", "central", "basic", and "primary". If the
output alternative is "focal", which is unchanged from
the target word, it does not meet either metric.

# Original # Selected Avg. Context
Language Instances Instances Length

English 570 515 25.4
Spanish 593 502 29.3
Catalan 445 261 45.0
German 570 547 37.7
Japanese 570 562 20.3

Table 2: Statistics of MultiLS instances per language.

this framework, we performed knowledge distilla-
tion (fine-tuned) by synthesizing LS instances.

Synthesizing Context and Targets We ran-
domly extracted context sentences from Wikipedia
for each language. Sentences were parsed using
MeCab8 for Japanese and spaCy9 for the other lan-
guages. We retained only those containing between
10 and 100 words as contexts.10

To ensure that target words were simplifiable,
we excluded proper nouns and out-of-vocabulary
words from the set of candidate words within each
context sentence. From the remaining candidates,
we randomly selected one of the five least fre-
quent words as the target word, based on Zipf fre-
quency.11

Synthesizing Alternative Words To obtain alter-
native words for the context-target pairs described
above, we employed the instruction-tuned Gemma
2 9B (Gemma Team, 2024) as a teacher model,
an LLM known for its strong performance across
diverse languages. The model was prompted to
generate a single alternative word using the same
5-shot setting described in § 3.3.1.

8https://taku910.github.io/mecab/
9https://spacy.io/

10For Japanese, simple tokenization rules were applied. See
Appendix D for details.

11Calculated using wordfreq Python library: https://
github.com/rspeer/wordfreq/
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The performance of fine-tuned student mod-
els can often be improved by removing low-
quality outputs from the teacher (Jung et al., 2023;
Huang et al., 2023). Therefore, we filtered out
low-confidence alternatives, approximating confi-
dence using output probabilities (described later in
§ 3.4.4). For each language, we generated alter-
natives for 60,000 synthesized context-target pairs
and selected the top 30,000 high-confidence in-
stances for training.

Fine-tuning Models We fine-tuned each student
model for each language separately, using the cor-
responding 30,000 instances for up to five epochs.
To reduce memory consumption, we adopted the
QLoRA framework (Dettmers et al., 2023). In this
setup, the weights of base models were quantized
to 4-bit precision using the bitsandbytes12 library.
Fine-tuning was then performed via 16-bit LoRA
adapters. Following Dettmers et al. (2023), we
only fine-tuned Query and Key projections layers
within the attention modules. Each type of student
model was fine-tuned with three different random
seeds. We saved a checkpoint every 0.2 epochs and
selected the one that achieved the highest Poten-
tial@1 (described later in § 3.4.1) on the develop-
ment set. The prompt template in Appendix A was
used for training and inference.

3.3.3 Baselines

As a baseline, we employed the instruction-tuned
Gemma 2 9B (Gemma for short) in the same 5-shot
setting used for the teacher model.

3.4 Evaluation

3.4.1 Automatic LS Metrics

To automatically evaluate the performance of LS
systems, we used Accuracy@1@top1 (ACC) and
Potential@1 (POT), as defined in Saggion et al.
(2022). As shown in Table 1, ACC is the percent-
age of predictions matching the most frequently
suggested alternative. POT is the percentage of pre-
dictions matching any suggested alternative. Given
that all instances were assumed simplifiable after
the selection process in § 3.3.1, any predictions un-
changed from the target word were not considered
a match for either ACC or POT, even if the target
word was included in the gold alternatives.

12https://github.com/bitsandbytes-foundation/
bitsandbytes

3.4.2 Latency Evaluation
To estimate model response time in resource-
constrained environments, we constructed a vir-
tual small-scale infrastructure using computing
instances from Amazon Web Services (AWS).
We selected m6g.large and m6g.xlarge comput-
ing instances from AWS Elastic Computing Cloud,
which provide 2 and 4 virtual CPUs and 8 GB
and 16 GB of memory, respectively. These config-
urations reflect the hardware commonly found in
smartphones and tablets. Both computing instances
are based on Graviton processors, which are widely
applied in mobile devices.13

Total latency mainly consists of prompt process-
ing time and inference time. As both depend on the
number of tokens in the prompt and the generated
output, we measured the average pre-token prompt
processing and inference times for each model us-
ing llama.cpp. Notably, llama.cpp caches the initial
fixed portion of the prompt (i.e., few-shot exam-
ples), so its processing latency is not incurred on
subsequent inferences. While this caching is key to
the efficiency, it makes dynamic prompting strate-
gies impractical, as they would require frequent
cache invalidation.

3.4.3 Manual LS Evaluation
To gain a more nuanced understanding of LS qual-
ity and safety from a user perspective, we con-
ducted a manual evaluation. We randomly sampled
100 instances per language and assigned harmful-
ness tags to the alternatives generated by each sys-
tem. Our manual evaluation focused on instances
that were not covered by our automatic metrics.
For this purpose, we only assigned tags to alterna-
tives that were neither unchanged from the target
nor included in the gold alternatives.

Taking into account the standard human evalua-
tion criteria of fluency, adequacy, and simplicity in
TS, we defined the following four harmful tags:

• Grammar Error: The alternative is grammati-
cally incorrect, including inflection, and con-
jugation errors.

• Change of Meaning: Replacing the target with
the alternative drastically changes the mean-
ing of context.

• More Difficult: The alternative is clearly more
difficult than the target, even though it pre-
serves the meaning to some extent.

13https://aws.amazon.com/ec2/instance-types/
m6g/
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LS Performance Latency (msec / token)

Model Settings English Spanish Catalan German Japanese m6g.large m6g.xlarge
ACC POT ACC POT ACC POT ACC POT ACC POT read pred read pred

Gemma(9B) 5-shot .529 .751 .427 .774 .333 .690 .405 .643 .252 .494 652 581 326 292

Qwen(1.5B) 5-shot .358 .534 .274 .473 .076 .205 .186 .298 .064 .150 91 275 45 139
fine-tuned .382 .574 .318 .537 .129 .265 .119 .206 .076 .154 86 274 43 138

Llama(1B) 5-shot .202 .278 .053 .092 .047 .105 .090 .142 .023 .042 70 219 35 110
fine-tuned .370 .544 .293 .529 .160 .292 .138 .217 .058 .145 66 221 33 107

Table 3: Performance of models on the MultiLS dataset. Gemma was quantized to 4-bit due to memory constraints.

• Gibberish: The alternative does not make
sense at all.

For each language, annotation was performed by
a single in-house annotator, all of whom were na-
tive speakers except for Catalan. The Catalan anno-
tation was conducted by a CEFR C1 level speaker
with over ten years of experience. The task was
designed as a simple binary decision to minimize
subjectivity, ensuring the evaluation framework is
easily extensible to other languages and domains.

Based on the automatically and manually as-
signed tags, alternatives were categorized into fol-
lowing three groups. Tags determined by automatic
metrics are marked with A, while those requiring
manual annotation are marked with M.

• Beneficial

– ACC (A) : equivalent to Accuracy@1@top1.
– POT (A) : Potential@1 but not ACC
– Good (M) : no harmful tags were assigned.

• Unchanged (A) : alternative was identical to
target.

• Harmful

– Degraded (M) : one or more non-Gibberish
harmful tags were assigned.

– Gibberish (M) : Gibberish was assigned.

See Appendix E for detailed examples of the
harmful tags and groups.

3.4.4 Filtering Strategy
To address the risk of introducing harmful simplifi-
cations discussed above, we propose and evaluate
a filtering strategy. This strategy leverages the out-
put probability score as a reliability signal in a
threshold-based decision mechanism to determine
whether to perform LS.

Probability Score We computed the probability
score as the sum of the log-probabilities of the to-
kens forming the alternative word, including the

token indicating the end of the word (e.g., a new-
line or EOS token). We considered the probability
scores of individual alternatives as candidate thresh-
olds. For each threshold value, alternatives with
scores above the threshold were accepted, while
others were rejected, and no simplification was ap-
plied.

Evaluation To quantitatively evaluate the effec-
tiveness of the proposed strategy, we defined the
following metrics:

• AUC (Beneficial vs Harmful): To assess
how well the probability score functions as a
safety signal, we computed the Area Under
the ROC Curve (Bradley, 1997) for classify-
ing alternatives as Beneficial vs. Harmful,
excluding Unchanged alternatives.

• BH0.1 (Beneficial Rate at 10% Harmful):
To quantify practical benefit under a
safety constraint, we reported the rate of
Beneficial achieved when the rate of
Harmful introduced was limited to 10% of
total instances. We chose the 10% threshold
to balance safety and utility by offering a
practical reference point for comparison that
remains adaptable to different needs.

4 Results

4.1 Automatic Evaluation
Table 3 shows the automatic metric scores for our
LS systems. The results confirm our hypothesis
that fine-tuning, as part of the knowledge distilla-
tion, improved the performance of small LLMs.
For example, fine-tuned Llama achieved 0.370
ACC on English, significantly higher than the 5-
shot score (0.202). Similar gains were observed for
both Llama and Qwen across most languages.

The fine-tuned Llama performed comparably to
Qwen despite its smaller size, suggesting that the
1B model can approach 1.5B model in performance
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Figure 2: Distribution of output alternative categories. G: Gemma, Q: Qwen, L: Llama. -5: 5-shot, -f: fine-tuned.

after training. However, neither student models
reached the teacher’s level.

Table 3 also reports the latency (ms/token) for
prompt reading (read) and output generation (pred).
Both student models showed substantially lower
latency than the teacher model. On m6g.large,
Llama’s read latency (66 msec/token) was nearly
10 times faster than Gemma’s (652 msec/token),
with similar trends across environments.

4.2 Manual Evaluation

Figure 2 shows the distribution of alternative cate-
gories, as judged by human evaluators, across mod-
els, settings, and languages. Each stacked bar rep-
resents the proportion of output alternatives falling
into the categories.

Under 5-shot settings, small LLMs, especially
Llama for English and Spanish, produced a high
proportion of Unchanged outputs, indicating safer
but less proactive simplification behavior. Fine-
tuning reduced Unchanged and corresponding rise
in Beneficial simplifications, reflecting a gen-
eral improvement in LS capability. However, fine-
tuning also introduced a safety trade-off, as it in-
creased the proportions of Harmful alternatives.

In contrast, such trade-off was not observed for
German and Japanese. For these languages, perfor-
mance remained low across both 5-shot and fine-
tuned settings, with Harmful alternatives consis-
tently dominating the results. This suggests a more
fundamental challenge stemming from the inherent
difficulty for current small LLMs to perform LS
effectively in these languages.

Lang Model Settings rB rH AUC BH0.1

En
Qwen 5-shot .63 .30 .679 .41

fine-tuned .63 .27 .707 .46

Llama 5-shot .30 .28 .510 .12
fine-tuned .61 .20 .797 .54

Es
Qwen 5-shot .51 .19 .737 .46

fine-tuned .63 .19 .850 .61

Llama 5-shot .09 .12 .907 .09
fine-tued .56 .21 .804 .50

Ca
Qwen 5-shot .34 .52 .735 .18

fine-tuned .38 .49 .904 .34

Llama 5-shot .15 .52 .614 .03
fine-tuned .46 .42 .813 .36

De
Qwen 5-shot .41 .38 .841 .34

fine-tuned .38 .51 .721 .16

Llama 5-shot .19 .40 .730 .11
fine-tuned .35 .55 .737 .16

Ja
Qwen 5-shot .33 .58 .807 .16

fine-tuned .21 .73 .799 .13

Llama 5-shot .16 .64 .745 .04
fine-tuned .28 .67 .845 .19

Table 4: Evaluation of Filtering Strategy. rB and rH
refer to the original rate of Beneficial and Harmful
outputs.

4.3 Filtering Strategy

Table 4 presents the results of filtering strategy.
First, the AUC scores are notably high, espe-
cially under fine-tuned settings, suggesting that
log-probability serves as an effective signal for de-
tecting Harmful alternatives. Moreover, the fine-
tuned models generally show higher AUC across
model types and languages, which indicates that
knowledge distillation enhances the quality of prob-
ability as a safety indicator.

The BH0.1 metric shows the practical value of
this strategy. For example, in Spanish, fine-tuned
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Figure 3: Beneficial and Harmful alternatives and
their probability of Qwen in Catalan. (Top) Distri-
bution of raw probability scores. (Bottom) Rate of
Beneficial and Harmful alternatives after filtering at
each percentile threshold. Dotted lines are plotted on
thresholds where Harmful becomes 10%.

Qwen reduced Harmful rate from 19% to 10% with
only a slight drop in Beneficial from 63% to 61%.
BH0.1 also highlights the superiority of fine-tuning
to 5-shot settings.

To further explore these findings, we focus on
the behavior of Qwen models in Catalan. Here,
while the original Beneficial and Harmful rates
are close between 5-shot and fine-tuned settings,
the impact of filtering strategy differs significantly.
In Figure 3, the violin plot (top) visualizes the distri-
bution of log-probability scores, where fine-tuning
leads to a clear separation between Beneficial
and Harmful alternatives.

The line plot (bottom) tracks Beneficial and
Harmful rates across thresholds percentiles. For
the fine-tuned model, increasing the threshold
reduces Harmful rapidly, while Beneficial de-
clines more gradually. As a result, the Harmful
rate is reduced from nearly 50% to 10%, with most
Beneficial simplification preserved.

Context: There are also different editing styles in the
sense of how bold people are willing to be.
Target Word: editing
Gold Alternatives: changing, modifying, altering ...
Gemma 5-shot (4%): writing (Change of Meaning)
Qwen 5-shot (92%): writing (Change of Meaning)
Qwen fine-tuned (3%): proofreading (More Difficult)

Table 5: Example outputs from the LS systems. Per-
centages next to system names indicate log-probability
percentiles within each system.

5 Discussion

5.1 Case Study

To better understand the characteristics of model
outputs, particularly harmful simplifications over-
looked by automatic metrics and the potential of
the log-probability signal, we present an example
in Table 5. In this example, model output alter-
natives "writing" and "proofreading" were catego-
rized as Harmful, with the tags "Change of Mean-
ing" and "More Difficult", respectively. Crucially,
these alternatives were associated with lower log-
probability percentiles for Gemma (5-shot) and
fine-tuned Qwen, while they were much higher
for Qwen under the 5-shot setting. This case con-
firms our findings that fine-tuned models effectively
leverage log-probability to identify harmful alterna-
tives. It also shows that log-probability is a useful
signal for the teacher model, even without fine-
tuning. This validates the filtering processed used
during data synthesis. Examples in other languages
are described in Appendix F.

5.2 Safety

As exemplified by the case study above, harmful
LS alternatives pose a serious risk in real-world
scenarios. Our manual evaluation revealed key lim-
itations of standard automatic evaluation metrics
based on human-provided alternatives. They fail to
identify acceptable simplifications not in the gold
alternatives, and they do not expose harmful alter-
natives. Although manual evaluation is costly and
not scalable, our harmfulness annotations provide
a valuable basis for building automatic detection
methods, such as LLM-as-a-judge, to support more
practical safety assessment.

Harmful alternatives were particularly pro-
nounced in German and Japanese. In these lan-
guages, complex morphology may hinder the con-
sistent generation of correct and simple single-
word alternatives by small LLMs. Our error anal-
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ysis highlights a critical challenge related to this:
alternatives with the Grammar Error tag in German
and Japanese often received high probability scores
from small LLMs (both few-shot and fine-tuned),
making them difficult to distinguish from beneficial
alternatives or other harmful types. For instance,
the average log-probability score for Grammar Er-
ror from the fine-tuned Llama model in Japanese
was -2.992, which was notably higher than that
for Change of Meaning (-3.762) and Gibberish (-
4.457). This suggests that our filtering strategy had
limited effectiveness in mitigating grammar errors.

Interestingly, this issue was less prevalent in the
teacher model (see Appendix G for details across
all tags and models). This disparity implies that
non-small LLMs can better leverage output proba-
bility as a signal for grammatical correctness even
in morphologically complex languages. In con-
trast, small LLMs may struggle to capture these
fine-grained grammatical nuances with simple ap-
proaches such as in-context learning and knowl-
edge distillation. Incorporating instances with
grammatical errors as negative examples in con-
trastive learning may help student models learn to
avoid them, enhancing the reliability of threshold-
based filtering.

While log-probability is effective for filter-
ing harmful alternatives, selecting an appropriate
threshold for real-world use requires careful tuning
based on human evaluation, taking into account
domain- and language-specific considerations and
practical application needs, to ensure both safety
and utility.

5.3 Latency
While the smaller models offer substantial speed
improvements, their practical inference speed for
real-time and on-device LS needs further consider-
ation. Assuming that a standard input consists of
30 tokens and the output alternative word is com-
posed of two tokens, the overall inference time for
fine-tuned Llama on the faster m6g.xlarge environ-
ment would be about 1.2 seconds: (30 tokens *
33 ms/token [read]) + (2 tokens * 107 ms/token
[pred]) = 1204 ms.

Although a response time of around one second
may be tolerable in some cases, further reduction
would likely improve the user experience on mobile
devices. One possible approach is to reduce the
prompt size by including only a limited window of
words surrounding the target, rather than the full
sentence. Naturally, this strategy would require

careful safety assessment.

6 Conclusion

This study addressed the challenge of building effi-
cient and safe LS systems using small LLMs, mo-
tivated by real-world needs. We proposed bench-
mark systems in five languages based on in-context
learning and knowledge distillation, and introduced
a filtering strategy using log-probability as a safety
signal. Experiments showed that small LLMs offer
significant efficiency gains, but that knowledge dis-
tillation, while improving automatic metrics score,
increases harmful outputs.

We demonstrated that output log-probability
serves as an effective signal for detecting harmful
simplifications. This signal enables filtering strat-
egy that reduce harmful outputs while retaining
beneficial ones. These findings lay the foundation
for lightweight LS systems that remain safe and
effective across languages.

Future work should improve training methods
to reduce harmfulness and explore real-time LS
for mobile environments. Ultimately, this research
advances deployable, trustworthy LS tools that sup-
port inclusive information access.

Limitations

Our study, while demonstrating the potential of
small LLMs for efficient and safer lexical simplifi-
cation, has several limitations that highlight direc-
tions for further investigation.

First, the manual evaluation of harmfulness was
conducted by a single annotator per language.
While the annotation task was designed as a simple
binary decision to minimize subjectivity, we were
unable to assess inter-annotator agreement, which
may affect the generalizability of the harmfulness
evaluations. Establishing a more robust evaluation
protocol with multiple annotators would be a valu-
able next steop to create a gold-standard dataset for
harmfulness detection in LS.

Next, we employed relatively simple prompt
engineering, using fixed 5-shot examples and
prompt templates to ensure reproducibility and es-
tablish baseline performance. We did not explore
advanced prompt engineering techniques, which
could potentially enhance the models’ performance.
Future work could investigate how more sophis-
ticated prompting strategies impact the trade-off
between performance and safety explored in this
study.
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This study adopted a narrow task definition, fo-
cusing on generating a single simpler alternative for
each target word. The systems were not designed
to produce multiple candidate simplifications or to
handle multi-word expressions, which are often im-
portant for user understanding and for simplifying
nuanced concepts. Extending our framework to
sentence- or paragpraph-level simplification would
be a crucial step towards more practical TS tools.

Furthermore, our investigation focused only on
generating simpler alternatives. Other important
aspects of lexical simplification, such as identifying
complex words and selecting the most appropriate
simplification, were not addressed in this work.
Integrating our safety-aware models into a full LS
pipeline is an essential direction for future research.

Finally, the sensitivity of model performance to
quantization is a critical limitation. Our method-
ology involves distinct quantization steps, 4-bit
precision during fine-tuning and GGUF for deploy-
ment, which can introduce performance discrepan-
cies. Although we observed only negligible per-
formance changes in this study, smaller models
are generally more vulnerable to degradation from
such processes. Therefore, there is a possibility
that our framework might not operate as expected
under different quantization schemes, potentially
affecting its reliability.
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Given the context and the specified target in
{language}, provide a simpler alternative word.

{5-shot examples}

Context: {context}
Target Word: {target}
Alternative Word:

Table 6: Prompt template for 5-shot settings.

Context: {context}
Target Word: {target}
Simplified: {alternative}

Table 7: Prompt template for training models. {alter-
native} was removed during the inference of fine-tuned
models.

A Prompts Provided to LLMs

We provided the prompt in Table 6 for few-shot
learning and in Table 7 for fine-tued models. The
prompt for fine-tuning was shortened to minimize
inference time.

B Hyperparameters

Table 8 shows the hyperparameter settings we used
for inference and training. For other hyperparame-
ters, we used default values of GenerationConfig,
TrainingArguments, and LoraConfig classes of
Huggingface Transformers.

C Model Selection

For selecting the teacher model, we considered
LLMs that are mid-sized, open-source, and capa-
ble of high multilingual performance, taking into
account the need to synthesize large amounts of
data. Table 9 presents the results for the candidate
models: Qwen 2.5 14B, Phi-3 medium (Microsoft,
2024), and Gemma 2 9B. Although these models
did not reach the performance of state-of-the-art LS
system by Enomoto et al. (2024), which used GPT-
4 along with ensembling and reranking, Gemma 2
9B was selected due to its relatively small size and
balanced high performance across languages.

For selecting suitable lightweight models, we
initially considered Gemma 2 2B, Llama 3.2 1B,
Qwen 2.5 1.5B, and Qwen 2.5 0.5B due to their
multilingual support and small model size. Gemma
2 2B was excluded due to its latency on the
m6g.xlarge instance, where the base model with 5-
shot setting required 139 ms/token for reading and
476 ms/token for prediction, which was not suffi-

Inference

Parameter Value

Decoding Greedy
Sampling Disabled

Temperature 1.0
Max generation length 10

Training

Parameter Value

Optimizer AdamW
Weight decay 0.01
Learning Rate 3e-5

Scheduler Linear
Batch Size 16
Max Epoch 5

Lora r 8
Lora alpha 4

Lora dropout 0.1

Table 8: Hyperparameters for training and inference.

cient for practical use. For the remaining LLMs, we
evaluated performance on development set across
both the base and instruction-tuned models under
three settings: 0-shot, 5-shot, and knowledge distil-
lation. In the 0-shot setting, the prompt was created
by removing {5-shot examples} from the prompt in
Table 6.

In the results in Table 9, the following trends
were observed. Firstly, Qwen 2.5 0.5B consistently
showed poor performance across all settings. Next,
for other models, the 5-shot setting generally out-
performed 0-shot. Lastly, while instruction-tuned
models slightly outperformed base models in the 5-
shot setting, the base models achieved better perfor-
mance in the knowledge distillation setting. Based
on these results, we selected Qwen 2.5 1.5B and
Llama 3.2 1B as representative models. To ensure a
fair comparison of the proposed methods, we used
the base models for both 5-shot and knowledge
distillation settings.

D Japanese Tokenization

Since Japanese does not use spaces to separate
words, tokenization is required to extract individual
words. We primarily used MeCab for tokenization.
However, considering the characteristics of the tar-
get words in MultiLS, we applied the following
rules to select candidate words during data synthei-
sis: (1) Consecutive nouns were grouped together
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Model IT Settings English Spanish Catalan German Japanese
ACC POT ACC POT ACC POT ACC POT ACC POT

GPT-4 - - .522 .833 .578 .844 .489 .767 .544 .800 .478 .722
Qwen 2.5 14B ✓ 5-shot .511 .767 .444 .778 .289 .600 .400 .611 .244 .489

Phi 3 medium (14B) ✓ 5-shot .467 .733 .478 .733 .200 .467 .367 .567 .278 .433
Gemma 2 9B ✓ 5-shot .489 .700 .422 .711 .333 .611 .478 .689 .200 .444

0-shot .311 .467 .089 .167 .044 .111 .000 .056 .067 .122
✓ 0-shot .289 .489 .333 .544 .067 .200 .111 .200 .067 .178

Qwen 2.5 1.5B 5-shot .300 .522 .300 .511 .067 .244 .178 .289 .089 .144
✓ 5-shot .333 .533 .322 .500 .078 .244 .144 .256 .089 .178

fine-tuned .344 .533 .378 .611 .144 .256 .144 .267 .089 .211
✓ fine-tuned .344 .567 .278 .433 .022 .133 .089 .144 .033 .111

0-shot .022 .022 .000 .044 .000 .011 .000 .000 .011 .011
✓ 0-shot .211 .378 .078 .189 .000 .022 .056 .089 .044 .078

Llama 3.2 1B 5-shot .211 .300 .022 .078 .033 .144 .089 .122 .056 .078
✓ 5-shot .289 .533 .233 .356 .033 .122 .089 .122 .056 .111

fine-tuned .444 .622 .367 .544 .167 .289 .189 .244 .122 .200
✓ fine-tuned .422 .622 .267 .478 .122 .333 .156 .256 .022 .156

0-shot .144 .178 .056 .111 .011 .044 .011 .033 .022 .056
✓ 0-shot .156 .233 .111 .233 .011 .044 .011 .033 .000 .011

Qwen 2.5 0.5B 5-shot .033 .067 .022 .056 .011 .011 .011 .044 .033 .067
✓ 5-shot .144 .244 .089 .133 .000 .011 .011 .022 .044 .067

fine-tuned .200 .344 .189 .311 .033 .067 .044 .056 .067 .111
✓ fine-tuned .267 .389 .156 .256 .000 .022 .022 .022 .056 .111

Table 9: Performance on MultiLS across various models and settings. For the performance of GPT-4, we used
outputs of Enomoto et al. (2024). Checkmarks on the IT column refer to the performance from instruction-tuned
version. Bold numbers are the better scores between the base and instruction-tuned models under the same
setting. Underlined numbers are the best performance among 0-shot and 5-shot settings. Red numbers are the best
performance across all settings.

Context: An ingenious alphabet allowed the Maya to
record information on their monuments and temples,
giving anthropologists an excellent way to learn about
Maya life and culture.
Target Word: ingenious

Alternative GE CM MD GB Group

innovative Good
innovatively ✓ Degraded
sophisticated Good

adroit ✓ Degraded
anonymous ✓ Degraded

anonymously ✓ Gibberish
simple ✓ Degraded
simply ✓ ✓ Degraded

Table 10: Example tags provided to annotators.

as a single unit; (2) For inflected parts-of-speech
such as verbs and adjectives, auxiliary verbs were
included along with the word stem. It should be
noted that the above rules may not always yield
exact matches, as the dataset includes multi-word
expressions as target words.

E Manual Evaluation Examples

Table 10 shows examples of harmfulness tags as-
signed to alternatives. These are provided to anno-
tators as reference.

In this example, "ingenious" is the target word to
be simplified. While "sophisticated" and "innova-
tive" are appropriate simplifications, other alterna-
tives are harmful. Although replacing "ingenious"
with "sophisticated" makes the sentence ungram-
matical due to the article-adjective agreement (an
sophisticated), such an inconsistency is not consid-
ered a harmful simplification in our evaluation.

F Simplification Examples

Table 11 presents examples for languages other
than English.

In the Spanish example, the target word "dese-
quilibrado" (not in equilibrium) was simplified to
"equilibrado" (in equilibrium) by Llama under both
5-shot and fine-tuned settings, which reversed the
meaning of the context. These harmful outputs
had high log-probability scores, which made them
difficult to eliminate through the filtering strategy.
On the other hand, the teacher model produced a
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beneficial output, but its low log-probability would
likely lead to its removal.

In the Catalan example, fine-tuned Llama cre-
ated an adverb-looking word combining the word
"mal" (bad) with a replication of adverbial suffixes
"-ment". This output is clearly Gibberish, and sim-
ilar cases were observed multiple times in the fine-
tuned model. Such outputs need to be removed,
and the filtering strategy is likely to be effective in
achieving this.

In the German example, the output from Gemma
5-shot and Llama 5-shot were assigned Grammar
Error, while the output from Llama fine-tuned was
assigned More Difficult. For Llama 5-shot, a noun
was proposed while the output should be an adjec-
tive as with the target word. This suggests that the
system failed to fully understand the task of pro-
viding a contextually appropriate word. In German,
capitalized words indicate nouns. However, due
to the auto-regressive nature of the output, previ-
ously generated tokens cannot be revised. General
methods such as beam search can mitigate this
issue, but they are not applicable to real-time gen-
eration, and thus solutions will rely on strategies
during training. For the teacher model, grammati-
cal agreement requires "grundlegender" rather than
the output "grundlegende". The output is nearly
correct, and a finer-grained language-specific tags
may be needed for further analysis. The output
from Llama fine-tuned fits the and preserves the
intended meaning, but the word appears to be an
invented term. More Difficult was assigned to this
output, and its low log-probability suggests that
this kind of words could be filtered out.

Lastly, in the Japanese example, both outputs
from Qwen were assigned Grammar Error. Both
systems attempted to produce the appropriate verb
"使う", but the Qwen 5-shot output contains an
incorrect inflection, while the Qwen fine-tuned out-
put lacks an inflectional suffix. These outputs have
relatively high log-probabilities, and therefore it is
difficult to filter them out.

G Probability Scores across Categories

Table 12 shows the distribution of harmful tags and
their average log-probabilities for each model and
language. More Difficult is generally rare, but the
distribution of other tags varies across models and
languages. As mentioned in § 5.2, the average log-
probability score of Grammar Error from small
LLMs in German and Japanese are higher, often

comparable or sometimes superior to that of en-
tire outputs. This trend is not pronounced in other
languages or from the teacher model.
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Spanish

Context: Pero si eso ocurre habitualmente, tienes un flujo de fondos negativo y tu presupuesto está
desequilibrado.
(But if that happens habitually, you have a negative cash flow and your budget is not in equilibrium.)
Target Word: desequilibrado (not in equilibrium)
Gold Alternatives: inestable (unstable), desnivelado (uneven), desbalanceado (unbalanced) ...
Gemma 5-shot (5%): desbalanceado (unbalanced) (Beneficial (POT))
Llama 5-shot (55%): equilibrado (in equilibrium) (Change of Meaning)
Llama fine-tuned (77%): equilibrado (in equilibrium) (Change of Meaning)

Catalan

Context: En el manifest s’ha qualificat "d’escandalosa" la sentència contra els membres de "la Manada"
ja que "se’n riu i menysprea una dona jove" que va ser agredia "brutalment per un grup de salvatges".
(In the statement, the sentence against the members of "la Manada" was described as "scandalous" since
"laughs at and despises a young woman" who was assaulted "bruttally by a group of savages".)
Target Word: brutalment (bruttally)
Gold Alternatives: violentament (violently), fortament (strongly), durament (severely) ...
Gemma 5-shot (51%): violentament (violently) (Beneficial(POT))
Llama 5-shot (41%): brutalment (bruttally) (Unchanged)
Llama fine-tuned (8%): malamentamentamentamentamentamentamentamentament (Gibberish)

German

Context: Salzborn nennt als in die moderne Begriffsgenese von Demokratie eingeschriebene Werte: (...)
und die Gewähr elementarer Rechte der Menschen gegen den Staat.
(Salzborn names as values inscribed into the modern conceptual genesis of democracy: (...) and the
guarantee of elementary rights of human beings against the state.)
Target Word: elementarer (elementary)
Gold Alternatives: grundlegender (fundamental), wichtiger (important), essentieller (essential) ...
Gemma 5-shot (57%): grundlegende (fundamental) (Grammar Error)
Llama 5-shot (35%): Grundrecht (fundamental right) (Grammar Error)
Llama fine-tuned (9%): grundstehender (ground-standing) (More Difficult)

Japanese

Context: 迅速に適切な解決を図るために、相談窓口を活用することをお奨めします。
(To ensure a prompt and appropriate resolution, we recommend utilizing the consulation service.)
Target Word: 活用する (utilizing)
Gold Alternatives: 使う (use),利用する (make use of), ...
Gemma 5-shot (97%): 利用する (make use of) (Beneficial (ACC))
Qwen 5-shot (63%): 使おう (Grammar Error)
Qwen fine-tuned (76%): 使 (Grammar Error)

Table 11: Example outputs from the LS systems. Percentages next to system names indicate log-probability
percentiles within each system.
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English Spanish Catalan German Japanese
Tags # Logprob # Logprob # Logprob # Logprob # Logprob

Gemma-5shot

(All) 100 -1.615 100 -1.567 100 -1.679 100 -1.588 100 -2.268
More Difficult 4 -1.905 2 -1.989 0 - 1 -1.300 4 -2.031
Change of Meaning 14 -1.874 2 -1.266 6 -1.907 6 -1.620 4 -2.447
Grammar Error 1 -2.158 2 -1.409 3 -1.836 7 -1.835 10 -2.528
Gibberish 3 -2.056 1 -2.944 3 -2.227 1 -1.975 2 -3.617

Qwen-5shot

(All) 100 -1.884 100 -2.129 100 -3.592 100 -2.754 100 -4.132
More Difficult 2 -2.203 1 -3.013 0 - 3 -3.217 3 -3.882
Change of Meaning 20 -2.088 8 -2.957 24 -3.976 20 -3.834 23 -4.766
Grammar Error 3 -2.339 12 -2.469 24 -3.927 20 -3.254 15 -4.220
Gibberish 5 -1.991 0 - 13 -4.440 2 -4.253 2 -5.209

Qwen-fine-tuned

(All) 100 -1.297 100 -2.063 100 -4.431 100 -3.667 100 -3.337
More Difficult 2 -2.033 0 - 0 - 1 -4.934 1 -3.421
Change of Meaning 14 -1.617 12 -3.001 18 -5.692 34 -4.250 21 -3.697
Grammar Error 5 -1.514 9 -3.390 17 -5.161 10 -3.296 17 -3.018
Gibberish 7 -1.408 4 -5.029 21 -6.047 9 -5.206 37 -4.021

Llama-5shot

(All) 100 -1.807 100 -1.244 100 -2.873 100 -3.135 100 -4.204
More Difficult 3 -1.603 1 -1.802 0 - 2 -4.501 0 -
Change of Meaning 14 -2.045 8 -1.573 32 -3.246 13 -3.537 16 -4.520
Grammar Error 0 - 3 -1.851 28 -3.374 14 -3.275 19 -3.011
Gibberish 12 -1.604 1 -2.686 6 -3.517 13 -3.375 31 -6.016

Llama-fine-tuned

(All) 100 -1.161 100 -1.862 100 -2.880 100 -3.645 100 -3.360
More Difficult 0 - 0 - 0 - 4 -4.867 3 -4.091
Change of Meaning 11 -1.465 16 -2.720 17 -3.012 25 -4.147 20 -3.762
Grammar Error 3 -1.764 6 -2.834 13 -3.260 14 -3.304 12 -2.992
Gibberish 6 -1.697 3 -2.219 18 -4.415 15 -4.918 35 -4.457

Table 12: Average log-probability scores for each language and harmful tag.
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