Towards Trustworthy Lexical Simplification: Exploring Safety and Efficiency with Small LLMs

Akio Hayakawa, Stefan Bott, Horacio Saggion


Abstract
Despite their strong performance, large language models (LLMs) face challenges in real-world application of lexical simplification (LS), particularly in privacy-sensitive and resource-constrained environments. Moreover, since vulnerable user groups (e.g., people with disabilities) are one of the key target groups of this technology, it is crucial to ensure the safety and correctness of the output of LS systems. To address these issues, we propose an efficient framework for LS systems that utilizes small LLMs deployable in local environments. Within this framework, we explore knowledge distillation with synthesized data and in-context learning as baselines. Our experiments in five languages evaluate model outputs both automatically and manually. Our manual analysis reveals that while knowledge distillation boosts automatic metric scores, it also introduces a safety trade-off by increasing harmful simplifications. Importantly, we find that the model’s output probability is a useful signal for detecting harmful simplifications. Leveraging this, we propose a filtering strategy that suppresses harmful simplifications while largely preserving beneficial ones. This work establishes a benchmark for efficient and safe LS with small LLMs. It highlights the key trade-offs between performance, efficiency, and safety, and demonstrates a promising approach for safe real-world deployment.
Anthology ID:
2025.inlg-main.15
Volume:
Proceedings of the 18th International Natural Language Generation Conference
Month:
October
Year:
2025
Address:
Hanoi, Vietnam
Editors:
Lucie Flek, Shashi Narayan, Lê Hồng Phương, Jiahuan Pei
Venue:
INLG
SIG:
SIGGEN
Publisher:
Association for Computational Linguistics
Note:
Pages:
215–231
Language:
URL:
https://preview.aclanthology.org/author-page-lei-gao-usc/2025.inlg-main.15/
DOI:
Bibkey:
Cite (ACL):
Akio Hayakawa, Stefan Bott, and Horacio Saggion. 2025. Towards Trustworthy Lexical Simplification: Exploring Safety and Efficiency with Small LLMs. In Proceedings of the 18th International Natural Language Generation Conference, pages 215–231, Hanoi, Vietnam. Association for Computational Linguistics.
Cite (Informal):
Towards Trustworthy Lexical Simplification: Exploring Safety and Efficiency with Small LLMs (Hayakawa et al., INLG 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/author-page-lei-gao-usc/2025.inlg-main.15.pdf