Jing Li

NUT

Other people with similar names: Jing Li (李婧) (May refer to several people)


2025

pdf bib
Safety Alignment via Constrained Knowledge Unlearning
Zesheng Shi | Yucheng Zhou | Jing Li | Yuxin Jin | Yu Li | Daojing He | Fangming Liu | Saleh Alharbi | Jun Yu | Min Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite significant progress in safety alignment, large language models (LLMs) remain susceptible to jailbreak attacks. Existing defense mechanisms have not fully deleted harmful knowledge in LLMs, which allows such attacks to bypass safeguards and produce harmful outputs. To address this challenge, we propose a novel safety alignment strategy, Constrained Knowledge Unlearning (CKU), which focuses on two primary objectives: knowledge localization and retention, and unlearning harmful knowledge. CKU works by scoring neurons in specific multilayer perceptron (MLP) layers to identify a subset U of neurons associated with useful knowledge. During the unlearning process, CKU prunes the gradients of neurons in U to preserve valuable knowledge while effectively mitigating harmful content. Experimental results demonstrate that CKU significantly enhances model safety without compromising overall performance, offering a superior balance between safety and utility compared to existing methods. Additionally, our analysis of neuron knowledge sensitivity across various MLP layers provides valuable insights into the mechanics of safety alignment and model knowledge editing.

pdf bib
MTSA: Multi-turn Safety Alignment for LLMs through Multi-round Red-teaming
Weiyang Guo | Jing Li | Wenya Wang | Yu Li | Daojing He | Jun Yu | Min Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The proliferation of jailbreak attacks against large language models (LLMs) highlights the need for robust security measures. However, in multi-round dialogues, malicious intentions may be hidden in interactions, leading LLMs to be more prone to produce harmful responses. In this paper, we propose the Multi-Turn Safety Alignment (MTSA) framework, to address the challenge of securing LLMs in multi-round interactions. It consists of two stages: In the thought-guided attack learning stage, the red-team model learns about thought-guided multi-round jailbreak attacks to generate adversarial prompts. In the adversarial iterative optimization stage, the red-team model and the target model continuously improve their respective capabilities in interaction. Furthermore, we introduce a multi-turn reinforcement learning algorithm based on future rewards to enhance the robustness of safety alignment. Experimental results show that the red-team model exhibits state-of-the-art attack capabilities, while the target model significantly improves its performance on safety benchmarks.

pdf bib
Speed Up Your Code: Progressive Code Acceleration Through Bidirectional Tree Editing
Longhui Zhang | Jiahao Wang | Meishan Zhang | GaoXiong Cao | Ensheng Shi | Mayuchi Mayuchi | Jun Yu | Honghai Liu | Jing Li | Min Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have made significant strides in code acceleration (CA) tasks. Current works typically fine-tune LLMs using slow-fast code pairs mined from online programming platforms. Although these methods are widely recognized for their effectiveness, the training data often lack clear code acceleration patterns and offer only limited speed improvements. Moreover, existing training methods, such as direct instruction fine-tuning (IFT), tend to overlook the hierarchical relationships among acceleration patterns. In this work, we introduce BITE, a novel training paradigm designed to improve LLMs’ CA capabilities through two key innovations: (1) Bidirectional tree editing, which generates high-quality training data by incrementally transforming given code into both its most efficient and least efficient variants, and (2) Progressive code acceleration learning, which enables LLMs to internalize multi-level CA strategies by learning increasingly sophisticated acceleration patterns. Additionally, we introduce a new CA evaluation benchmark and metric for comprehensive assessment of model performance on CA tasks. Extensive experiments on both our benchmark and existing benchmarks demonstrate the effectiveness of our approach. Notably, BITE enables Qwen-1.5B to outperform prompt-enhanced GPT-4 and current training-based methods on average across five programming languages.

pdf bib
DRPruning: Efficient Large Language Model Pruning through Distributionally Robust Optimization
Hexuan Deng | Wenxiang Jiao | Xuebo Liu | Jing Li | Min Zhang | Zhaopeng Tu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) deliver impressive results but face challenges from increasing model sizes and computational costs. Structured pruning reduces model size and speeds up inference but often causes uneven degradation across domains, leading to biased performance. To address this, we propose *DRPruning*, a method that dynamically adjusts the data distribution during training to restore balanced performance across heterogeneous and multi-tasking data. Experiments in monolingual and multilingual settings show that DRPruning surpasses similarly sized models in both pruning and continued pretraining over perplexity, downstream tasks, and instruction tuning. Further analysis demonstrates the robustness of DRPruning towards various domains and distribution shifts. Furthermore, DRPruning can determine optimal reference losses and data ratios automatically, suggesting potential for broader applications. Code and scripts are available at https://github.com/hexuandeng/DRPruning.

pdf bib
Multi-Modality Expansion and Retention for LLMs through Parameter Merging and Decoupling
Junlin Li | Guodong Du | Jing Li | Sim Kuan Goh | Wenya Wang | Yequan Wang | Fangming Liu | Ho-Kin Tang | Saleh Alharbi | Daojing He | Min Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fine-tuning Large Language Models (LLMs) with multimodal encoders on modality-specific data expands the modalities that LLMs can handle, leading to the formation of Multimodal LLMs (MLLMs). However, this paradigm heavily relies on resource-intensive and inflexible fine-tuning from scratch with new multimodal data. In this paper, we propose MMER (Multi-modality Expansion and Retention), a training-free approach that integrates existing MLLMs for effective multimodal expansion while retaining their original performance. Specifically, MMER reuses MLLMs’ multimodal encoders while merging their LLM parameters. By comparing original and merged LLM parameters, MMER generates binary masks to approximately separate LLM parameters for each modality. These decoupled parameters can independently process modality-specific inputs, reducing parameter conflicts and preserving original MLLMs’ fidelity. MMER can also mitigate catastrophic forgetting by applying a similar process to MLLMs fine-tuned on new tasks. Extensive experiments show significant improvements over baselines, proving that MMER effectively expands LLMs’ multimodal capabilities while retaining 99% of the original performance, and also markedly mitigates catastrophic forgetting.

pdf bib
Neural Parameter Search for Slimmer Fine-Tuned Models and Better Transfer
Guodong Du | Zitao Fang | Jing Li | Junlin Li | Runhua Jiang | Shuyang Yu | Yifei Guo | Yangneng Chen | Sim Kuan Goh | Ho-Kin Tang | Daojing He | Honghai Liu | Min Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Foundation models and their checkpoints have significantly advanced deep learning, boosting performance across various applications. However, fine-tuned models often struggle outside their specific domains and exhibit considerable redundancy. Recent studies suggest that combining a pruned fine-tuned model with the original pre-trained model can mitigate forgetting, reduce interference when merging model parameters across tasks, and improve compression efficiency. In this context, developing an effective pruning strategy for fine-tuned models is crucial. Leveraging the advantages of the task vector mechanism, we preprocess fine-tuned models by calculating the differences between them and the original model. Recognizing that different task vector subspaces contribute variably to model performance, we introduce a novel method called **N**eural **P**arameter **S**earch (**NPS**) for slimming down fine-tuned models. This method enhances pruning efficiency by searching through neural parameters of task vectors within low-rank subspaces. Our method has three key applications: enhancing knowledge transfer through pairwise model interpolation, facilitating effective knowledge fusion via model merging, and enabling the deployment of compressed models that retain near-original performance while significantly reducing storage costs. Extensive experiments across vision, NLP, and multi-modal benchmarks demonstrate the effectiveness and robustness of our approach, resulting in substantial performance gains.

pdf bib
Impromptu Cybercrime Euphemism Detection
Xiang Li | Yucheng Zhou | Laiping Zhao | Jing Li | Fangming Liu
Proceedings of the 31st International Conference on Computational Linguistics

Detecting euphemisms is essential for content security on various social media platforms, but existing methods designed for detecting euphemisms are ineffective in impromptu euphemisms. In this work, we make a first attempt to an exploration of impromptu euphemism detection and introduce the Impromptu Cybercrime Euphemisms Detection (ICED) dataset. Moreover, we propose a detection framework tailored to this problem, which employs context augmentation modeling and multi-round iterative training. Our detection framework mainly consists of a coarse-grained and a fine-grained classification model. The coarse-grained classification model removes most of the harmless content in the corpus to be detected. The fine-grained model, impromptu euphemisms detector, integrates context augmentation and multi-round iterations training to better predicts the actual meaning of a masked token. In addition, we leverage ChatGPT to evaluate the mode’s capability. Experimental results demonstrate that our approach achieves a remarkable 76-fold improvement compared to the previous state-of-the-art euphemism detector.

pdf bib
STARE at the Structure: Steering ICL Exemplar Selection with Structural Alignment
Jiaqian Li | Qisheng Hu | Jing Li | Wenya Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In-Context Learning (ICL) has become a powerful paradigm that enables LLMs to perform a wide range of tasks without task-specific fine-tuning. However, the effectiveness of ICL heavily depends on the quality of exemplar selection. In particular, for structured prediction tasks such as semantic parsing, existing ICL selection strategies often overlook structural alignment, leading to suboptimal performance and poor generalization. To address this issue, we propose a novel two-stage exemplar selection strategy that achieves a strong balance between efficiency, generalizability, and performance. First, we fine-tune a BERT-based retriever using structure-aware supervision, guiding it to select exemplars that are both semantically relevant and structurally aligned. Then, we enhance the retriever with a plug-in module, which amplifies syntactically meaningful information in the hidden representations. This plug-in is model-agnostic, requires minimal overhead, and can be seamlessly integrated into existing pipelines. Experiments on four benchmarks spanning three semantic parsing tasks demonstrate that our method consistently outperforms existing baselines with multiple recent LLMs as inference-time models.

pdf bib
To See a World in a Spark of Neuron: Disentangling Multi-Task Interference for Training-Free Model Merging
Zitao Fang | Guodong Du | Shuyang Yu | Yifei Guo | Yiwei Zhang | Yiyao Cao | Jing Li | Ho-Kin Tang | Sim Kuan Goh
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Fine-tuning pre-trained models on targeted datasets enhances task-specific performance but often comes at the expense of generalization. Model merging techniques, which integrate multiple fine-tuned models into a single multi-task model through task arithmetic, offer a promising solution. However, task interference remains a fundamental challenge, leading to performance degradation and suboptimal merged models. Existing approaches largely overlooked the fundamental roles of neurons, their connectivity, and activation, resulting in a merging process and a merged model that does not consider how neurons relay and process information. In this work, we present the first study that relies on neuronal mechanisms for model merging. Specifically, we decomposed task-specific representations into two complementary neuronal subspaces that regulate input sensitivity and task adaptability. Leveraging this decomposition, we introduced NeuroMerging, a novel merging framework developed to mitigate task interference within neuronal subspaces, enabling training-free model fusion across diverse tasks. Through extensive experiments, we demonstrated that NeuroMerging achieved superior performance compared to existing methods on multi-task benchmarks across both natural language and vision domains. Our findings highlighted the importance of aligning neuronal mechanisms in model merging, offering new insights into mitigating task interference and improving knowledge fusion. Our project is available at [this http URL](https://ZzzitaoFang.github.io/projects/NeuroMerging/).

pdf bib
Adaptive Detoxification: Safeguarding General Capabilities of LLMs through Toxicity-Aware Knowledge Editing
Yifan Lu | Jing Li | Yigeng Zhou | Yihui Zhang | Wenya Wang | Xiucheng Li | Meishan Zhang | Fangming Liu | Jun Yu | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) exhibit impressive language capabilities but remain vulnerable to malicious prompts and jailbreaking attacks. Existing knowledge editing methods for LLM detoxification face two major challenges. First, they often rely on entity-specific localization, making them ineffective against adversarial inputs without explicit entities. Second, these methods suffer from over-editing, where detoxified models reject legitimate queries, compromising overall performance. In this paper, we propose ToxEdit, a toxicity-aware knowledge editing approach that dynamically detects toxic activation patterns during forward propagation. It then routes computations through adaptive inter-layer pathways to mitigate toxicity effectively. This design ensures precise toxicity mitigation while preserving LLMs’ general capabilities. To more accurately assess over-editing, we also enhance the SafeEdit benchmark by incorporating instruction-following evaluation tasks. Experimental results on multiple LLMs demonstrate that our ToxEdit outperforms previous state-of-the-art methods in both detoxification performance and safeguarding general capabilities of LLMs.

pdf bib
ProjectEval: A Benchmark for Programming Agents Automated Evaluation on Project-Level Code Generation
Kaiyuan Liu | Youcheng Pan | Yang Xiang | Daojing He | Jing Li | Yexing Du | Tianrun Gao
Findings of the Association for Computational Linguistics: ACL 2025

Recently, LLM agents have made rapid progress in improving their programming capabilities. However, existing benchmarks lack the ability to automatically evaluate from users’ perspective, and also lack the explainability of the results of LLM agents’ code generation capabilities. Thus, we introduce ProjectEval, a new benchmark for LLM agents project-level code generation’s automated evaluation by simulating user interaction. ProjectEval is constructed by LLM with human reviewing. It has three different level inputs of natural languages or code skeletons. ProjectEval can evaluate the generated projects by user interaction simulation for execution, and by code similarity through existing objective indicators. Through ProjectEval, we find that systematic engineering project code, overall understanding of the project and comprehensive analysis capability are the keys for LLM agents to achieve practical projects. Our findings and benchmark provide valuable insights for developing more effective programming agents that can be deployed in future real-world production.

pdf bib
LLMs Can Also Do Well! Breaking Barriers in Semantic Role Labeling via Large Language Models
Xinxin Li | Huiyao Chen | Chengjun Liu | Jing Li | Meishan Zhang | Jun Yu | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Semantic role labeling (SRL) is a crucial task of natural language processing (NLP). Although generative decoder-based large language models (LLMs) have achieved remarkable success across various NLP tasks, they still lag behind state-of-the-art encoder-decoder (BERT-like) models in SRL. In this work, we seek to bridge this gap by equipping LLMs for SRL with two mechanisms: (a) retrieval-augmented generation and (b) self-correction. The first mechanism enables LLMs to leverage external linguistic knowledge such as predicate and argument structure descriptions, while the second allows LLMs to identify and correct inconsistent SRL outputs. We conduct extensive experiments on three widely-used benchmarks of SRL (CPB1.0, CoNLL-2009, and CoNLL-2012). Results demonstrate that our method achieves state-of-the-art performance in both Chinese and English, marking the first successful application of LLMs to surpass encoder-decoder approaches in SRL.

pdf bib
Reflection on Knowledge Graph for Large Language Models Reasoning
Yigeng Zhou | Wu Li | Yifan Lu | Jing Li | Fangming Liu | Meishan Zhang | Yequan Wang | Daojing He | Honghai Liu | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Recent research shows that supplementing Large Language Models (LLMs) with knowledge graphs can enhance their performance. However, existing methods often introduce noise in the retrieval and reasoning pipeline, hindering LLMs’ ability to effectively integrate external knowledge for complex multi-hop question answering. To address this, we propose RefKG, a novel framework designed to enhance the reasoning capabilities of LLMs through reflective engagement with knowledge graphs. RefKG autonomously conduct retrieval and reflection on knowledge graphs. It consists of three modules: Query Decoupling, LLM-Driven Knowledge Graph Exploration, and Inference with Knowledge Reconstruction. We also introduce a multi-task tuning strategy that not only integrates external knowledge into LLMs but also trains them to leverage this knowledge for answering questions. This significantly improves their performance on knowledge-intensive tasks. Experiments on fact verification and knowledge graph question answering demonstrate RefKG’s effectiveness.

2024

pdf bib
Multimodal Reasoning with Multimodal Knowledge Graph
Junlin Lee | Yequan Wang | Jing Li | Min Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal reasoning with large language models (LLMs) often suffers from hallucinations and the presence of deficient or outdated knowledge within LLMs. Some approaches have sought to mitigate these issues by employing textual knowledge graphs, but their singular modality of knowledge limits comprehensive cross-modal understanding. In this paper, we propose the Multimodal Reasoning with Multimodal Knowledge Graph (MR-MKG) method, which leverages multimodal knowledge graphs (MMKGs) to learn rich and semantic knowledge across modalities, significantly enhancing the multimodal reasoning capabilities of LLMs. In particular, a relation graph attention network is utilized for encoding MMKGs and a cross-modal alignment module is designed for optimizing image-text alignment. A MMKG-grounded dataset is constructed to equip LLMs with initial expertise in multimodal reasoning through pretraining. Remarkably, MR-MKG achieves superior performance while training on only a small fraction of parameters, approximately 2.25% of the LLM’s parameter size. Experimental results on multimodal question answering and multimodal analogy reasoning tasks demonstrate that our MR-MKG method outperforms previous state-of-the-art models.

pdf bib
Knowledge Fusion By Evolving Weights of Language Models
Guodong Du | Jing Li | Hanting Liu | Runhua Jiang | Shuyang Yu | Yifei Guo | Sim Kuan Goh | Ho-Kin Tang
Findings of the Association for Computational Linguistics: ACL 2024

Fine-tuning pre-trained language models, particularly large language models, demands extensive computing resources and can result in varying performance outcomes across different domains and datasets. This paper examines the approach of integrating multiple models from diverse training scenarios into a unified model. This unified model excels across various data domains and exhibits the ability to generalize well on out-of-domain data. We propose a knowledge fusion method named Evolver, inspired by evolutionary algorithms, which does not need further training or additional training data. Specifically, our method involves aggregating the weights of different language models into a population and subsequently generating offspring models through mutation and crossover operations. These offspring models are then evaluated against their parents, allowing for the preservation of those models that show enhanced performance on development datasets. Importantly, our model evolving strategy can be seamlessly integrated with existing model merging frameworks, offering a versatile tool for model enhancement. Experimental results on mainstream language models (i.e., encoder-only, decoder-only, encoder-decoder) reveal that Evolver outperforms previous state-of-the-art models by large margins.

2023

pdf bib
Rethinking Document-Level Relation Extraction: A Reality Check
Jing Li | Yequan Wang | Shuai Zhang | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Recently, numerous efforts have continued to push up performance boundaries of document-level relation extraction (DocRE) and have claimed significant progress in DocRE. In this paper, we do not aim at proposing a novel model for DocRE. Instead, we take a closer look at the field to see if these performance gains are actually true. By taking a comprehensive literature review and a thorough examination of popular DocRE datasets, we find that these performance gains are achieved upon a strong or even untenable assumption in common: all named entities are perfectly localized, normalized, and typed in advance. Next, we construct four types of entity mention attacks to examine the robustness of typical DocRE models by behavioral probing. We also have a close check on model usability in a more realistic setting. Our findings reveal that most of current DocRE models are vulnerable to entity mention attacks and difficult to be deployed in real-world end-user NLP applications. Our study calls more attentions for future research to stop simplifying problem setups, and to model DocRE in the wild rather than in an unrealistic Utopian world.

pdf bib
Chain of Thought with Explicit Evidence Reasoning for Few-shot Relation Extraction
Xilai Ma | Jing Li | Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

Few-shot relation extraction involves identifying the type of relationship between two specific entities within a text, using a limited number of annotated samples. A variety of solutions to this problem have emerged by applying meta-learning and neural graph techniques which typically necessitate a training process for adaptation. Recently, the strategy of in-context learning has been demonstrating notable results without the need of training. Few studies have already utilized in-context learning for zero-shot information extraction. Unfortunately, the evidence for inference is either not considered or implicitly modeled during the construction of chain-of-thought prompts. In this paper, we propose a novel approach for few-shot relation extraction using large language models, named CoT-ER, chain-of-thought with explicit evidence reasoning. In particular, CoT-ER first induces large language models to generate evidences using task-specific and concept-level knowledge. Then these evidences are explicitly incorporated into chain-of-thought prompting for relation extraction. Experimental results demonstrate that our CoT-ER approach (with 0% training data) achieves competitive performance compared to the fully-supervised (with 100% training data) state-of-the-art approach on the FewRel1.0 and FewRel2.0 datasets.

2022

pdf bib
A Dual-Channel Framework for Sarcasm Recognition by Detecting Sentiment Conflict
Yiyi Liu | Yequan Wang | Aixin Sun | Xuying Meng | Jing Li | Jiafeng Guo
Findings of the Association for Computational Linguistics: NAACL 2022

Sarcasm employs ambivalence, where one says something positive but actually means negative, and vice versa. The essence of sarcasm, which is also a sufficient and necessary condition, is the conflict between literal and implied sentiments expressed in one sentence. However, it is difficult to recognize such sentiment conflict because the sentiments are mixed or even implicit. As a result, the recognition of sophisticated and obscure sentiment brings in a great challenge to sarcasm detection. In this paper, we propose a Dual-Channel Framework by modeling both literal and implied sentiments separately. Based on this dual-channel framework, we design the Dual-Channel Network (DC-Net) to recognize sentiment conflict. Experiments on political debates (i.e. IAC-V1 and IAC-V2) and Twitter datasets show that our proposed DC-Net achieves state-of-the-art performance on sarcasm recognition. Our code is released to support research.

2019

pdf bib
Subtopic-driven Multi-Document Summarization
Xin Zheng | Aixin Sun | Jing Li | Karthik Muthuswamy
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In multi-document summarization, a set of documents to be summarized is assumed to be on the same topic, known as the underlying topic in this paper. That is, the underlying topic can be collectively represented by all the documents in the set. Meanwhile, different documents may cover various different subtopics and the same subtopic can be across several documents. Inspired by topic model, the underlying topic of a document set can also be viewed as a collection of different subtopics of different importance. In this paper, we propose a summarization model called STDS. The model generates the underlying topic representation from both document view and subtopic view in parallel. The learning objective is to minimize the distance between the representations learned from the two views. The contextual information is encoded through a hierarchical RNN architecture. Sentence salience is estimated in a hierarchical way with subtopic salience and relative sentence salience, by considering the contextual information. Top ranked sentences are then extracted as a summary. Note that the notion of subtopic enables us to bring in additional information (e.g. comments to news articles) that is helpful for document summarization. Experimental results show that the proposed solution outperforms state-of-the-art methods on benchmark datasets.