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Introduction

It is with great pleasure that we welcome you to the 8th International Conference on Natural Language
and Speech Processing (ICNLSP 2025), held at Southern Denmark University from August 25-27, 2025.
This volume serves as a comprehensive record of the innovative research and groundbreaking insights on
different topics discussed during the conference.

This year’s conference attracted 130 submissions from around the globe. The acceptance rate was around
34 %. The 45 accepted papers represent the culmination of rigorous inquiry and intellectual dedication,
covering a diverse range of topics within NLP field. Indeed, they showcase the current state of knowledge
and shed light on new directions for future exploration. We thank the authors for their valuable contribu-
tions.

In order to recognize outstanding scientific contributions, we decided this year to present two awards for
the best papers (full and short ones). We congratulate the winners and extend our sincere gratitude to the
scientific committee who selected the winners based on recommendations from the program committee,
and on the originality, significance, and quality of the research, as well as the clarity of presentation.

We are profoundly honored by the participation of our distinguished keynote speakers, Prof. Dr. Barbara
Plank, Prof. Dr. Anders Sggaard, and Prof. Peter Schneider-Kamp. whose insights and vision profoundly
enriched the conference.

We thank the conference management members for their efforts, and the program committee and review-
ers for their diligent work in curating the high-quality content contained within these pages.

Finally, we are deeply grateful to Southern Denmark University, Danish Data Science Academy, and
International Speech Communication Association (ISCA) for their support.

Mourad Abbas, Tariq Yousef, and Lukas Galke
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Zero-Shot Commonsense Validation and Reasoning with Large Language
Models: An Evaluation on SemEval-2020 Task 4 Dataset

Rawand Alfugaha

Mohammad AL-Smadi

College of Information Technology Digital Learning and Online Education Office

Lusail University
Doha, Qatar
ralfogha@lu.edu.qga

Abstract

This study evaluates the performance of Large
Language Models (LLMs) on SemEval-2020
Task 4 dataset, focusing on commonsense val-
idation and explanation. Our methodology
involves evaluating multiple LLMs, includ-
ing LLaMA3-70B, Gemma2-9B, and Mixtral-
8x7B, using zero-shot prompting techniques.
The models are tested on two tasks: Task A
(Commonsense Validation), where models de-
termine whether a statement aligns with com-
monsense knowledge, and Task B (Common-
sense Explanation), where models identify the
reasoning behind implausible statements. Per-
formance is assessed based on accuracy, and
results are compared to fine-tuned transformer-
based models. The results indicate that larger
models outperform previous models and per-
form closely to human evaluation for Task A,
with LLaMA3-70B achieving the highest ac-
curacy of 98.40% in Task A whereas, lagging
behind previous models with 93.40% in Task
B. However, while models effectively identify
implausible statements, they face challenges in
selecting the most relevant explanation, high-
lighting limitations in causal and inferential
reasoning.

1 Introduction

Commonsense reasoning is a crucial aspect of Nat-
ural Language Processing (NLP) that enables mod-
els to understand and validate knowledge beyond
explicit textual data. The motivation behind this
research comes from the need to develop NLP
models that can reason beyond surface-level text
representations and apply real-world knowledge
to language understanding tasks. Existing bench-
marks, such as CommonGen (Lin et al., 2019),
SemEval-2020 Task 4: Commonsense Validation
and Explanation (Wang et al., 2020), Common-
SenseQA 2.0 (Talmor et al., 2022), and COPEN
(Peng et al., 2022), have highlighted various aspects
of commonsense reasoning, including generative

Qatar University
Doha, Qatar
malsmadi@qu.edu.qga

commonsense reasoning, multi-hop reasoning, and
physical commonsense knowledge. However, these
tasks still pose challenges in handling nuanced rea-
soning (El-Sayed and Pacholczyk, 2002), causal
inference(Yao et al., 2021), and knowledge integra-
tion (Chen et al., 2020).

The SemEval-2020 Task 4: Commonsense Val-
idation and Explanation (Wang et al., 2020) has
served as a benchmark for evaluating various NLP
models’ capabilities in this domain. The task con-
sistes of three sub-tasks, where in this research we
will focus on the first two namely: Task A - Com-
monsense Validation: Determining whether a given
statement aligns with commonsense knowledge,
and Task B - Commonsense Explanation: Identify-
ing the reasoning behind why a statement is against
common sense. Table 1 provides examples on both
tasks as they appear in the dataset.

This paper aims to explore how well large lan-
guage models (LLMs) perform on commonsense
reasoning tasks using zero-shot prompting. By eval-
uating multiple LLMs on SemEval-2020 Task 4, we
investigate their ability to reason effectively with-
out explicit fine-tuning. We present an overview
of existing research, detail our methodology, and
analyze experimental results to assess the strengths
and limitations of current approaches.

2 Related Work

SemEval-2020 Task 4, which focuses on Common-
sense Validation and Explanation, attracted consid-
erable attention, with numerous teams participating
in its three subtasks. This literature review high-
lights the best-performing models in Tasks A and B,
showcasing their methodologies and contributions
to the field.

CN-HIT-IT.NLP (Zhang et al., 2020) emerged
as the leading model in Subtask A, employing a
variant of K-BERT (Liu et al., 2019a) as its en-
coder. This model stands out for its integration of



Task

Example

Task A: Commonsense Validation

Which statement is against common sense?

- Statement 1: He put a turkey into the fridge. ( Correct)
- Statement 2: He put an elephant into the fridge. (Against
commonsense)

Task B: Commonsense Explanation

Why is this statement against common sense?

Statement: He put an elephant into the fridge.
- A: An elephant is much bigger than a fridge. ( Correct)
- B: Elephants are usually white while fridges are usually

white.

- C: An elephant cannot eat a fridge.

Table 1: Examples of Commonsense Validation and Explanation Tasks

knowledge graphs, specifically ConceptNet (Speer
et al., 2017), which allows it to extract relevant
triples that enhance the understanding of language
representations. This approach underscores the
importance of leveraging structured knowledge to
improve commonsense reasoning capabilities.

In Subtask B, ECNU-SenseMaker (Zhao et al.,
2020) achieved top performance by also utilizing K-
BERT (Liu et al., 2019a). This model innovatively
combines structured knowledge from ConceptNet
(Speer et al., 2017) with unstructured text through
a Knowledge-enhanced Graph Attention Network.
This integration facilitates a deeper understanding
of commonsense knowledge, demonstrating the
effectiveness of combining different types of infor-
mation to enhance model performance.

Another notable model, ITE-NLP-NUT (Xing
et al., 2020), utilized RoBERTa as its encoder.
This model’s unique contribution lies in its second
pretraining phase, which involved a textual cor-
pus from the Open Mind Common Sense (OMCS)
project (Singh et al., 2002). By exploring various
prompt templates for input construction, this model
illustrates the potential of tailored input strategies
in improving commonsense validation tasks

Team Solomon (Srivastava et al., 2020) was
ranked 5th and 4th in Subtasks A and B, re-
spectively. Their approach, which also relied on
RoBERTa, highlighted the capacity of large-scale
pretrained language models to encapsulate com-
monsense knowledge effectively without external
resources.

Across the two subtasks, the dominant trend was
the use of large-scale pretrained language mod-
els such as K-BERT (Liu et al., 2019a), RoBERTa
(Liu et al., 2019b), BERT (Devlin et al., 2018),
and GPT-2 (Radford et al., 2019), often fine-tuned

with additional commonsense knowledge sources.
Additionally, models incorporating external struc-
tured knowledge sources (e.g., ConceptNet) gen-
erally outperformed purely language-model-based
approaches.

3 Methodology

Our study aims at evaluating the performance of
multiple Large Language Models (LLMs) for com-
monsense validation and reasoning using zero-shot
prompting. This approach leverages pre-trained
LLMs without task-specific fine-tuning, relying
solely on their inherent reasoning capabilities. For
this purposes, we utilize the SemEval-2020 Task
4 dataset (Wang et al., 2020), which comprises
labeled statements designed for commonsense val-
idation and explanation tasks. To ensure a fair
comparison between explicitly fine-tuned models
and those evaluated solely with zero-shot prompt-
ing, we use only the test set for evaluation. The
test set contains 1,000 entries for each task (Task A
and Task B), providing a standardized benchmark
for assessing model performance. The dataset is
publicly available and can be accessed at .

As depicted in Figure 1, the methodology con-
sists of the following key stages:

* Pre-processing: preparing the input test data
templatic prompt to ensure compatibility with
zero-shot prompting.

* Model Calling: Applying zero-shot prompt-
ing to multiple LLMs, including LLaMA3,
Gemma2, and Mixtral to assess their com-
monsense validation and reasoning abilities.

1https://github.com/wangcunxiang/

SemEval2020-Task4-Commonsense-Validation-and-Explanation



Task A: Test Data

Which statement is against common sense?

Statement 1: He put a turkey into the fridge.
Statement 2: He put an elephant into the fridge.

v

SemEval 2020 - Task4 Dataset

Zero-shot Context

Prepare Prompt

F

Why is this statement against common

. GROG
sense? Statement: He put an elephant inta the

v

Statement 2: He put an elephant into the fridge.

Statermnent: He put an elephant into the fridge.

fridge.

= A: An elephant is much bigger than a
fridge.

= B: Elephants are usually white while
fridges are usually white.

= C: An elephant eannot eat a fridge.

= A:An elephant is much bigger than a
fridge.

Figure 1: The architecture of the commonsense validation and reasoning with zero-shot prompting of LLM:s.

LLM:s are directly accessible through the Gro-
qCloud 2> Models API endpoint using the
model IDs

* Performance Metrics: Evaluating model out-
puts based on accuracy to quantify their effec-
tiveness.

* Comparative Analysis: Benchmarking zero-
shot LLMs performance against fine-tuned
transformer models to examine the impact of
training on commonsense validation and rea-
soning tasks.

4 Results and Discussion

Table 2 presents the performance of the models on
the commonsense validation (Task A) and common-
sense explanation (Task B) tasks from SemEval-
2020 Task 4. The results for human performance
and transformer-based models (CN-HIT-IT.NLP,
ECNU-SenseMaker, IIE-NLP-NUT, and Solomon)
are as reported in the original SemEval-2020 Task
4 paper (Wang et al., 2020). In contrast, the results
for the LLMs (LLaMA3, Gemma?2, and Mixtral)
are obtained from our experiments with zero-shot
prompting. Findings are reported in the following
subsections.

2https ://console.groq.com/docs/models

4.1 Performance Analysis

Among the models evaluated in this study, L3-70B
(LLaMA3-70B) demonstrated the highest perfor-
mance in Task A, scoring 98.4%, with an evidence
that large-scale LLMs can effectively validate com-
monsense knowledge with zero-shot prompting.
However, its performance in Task B (93.4%) lags
behind the transformer-based models reported as
top 4 performing models in the Task paper. These
models were explicitly fine-tuned for the task and
some of them used external resources for the mod-
els training. This indicates that while LLMs are
highly proficient in identifying implausible state-
ments, they still struggle with selecting the most
relevant explanation, demonstrating limitations in
causal and inferential reasoning.

Similarly, the G2-9B (Gemma2-9B) model
achieves strong performance in Task A (97.9%)
but showing a more significant decline in Task B
(91.0%). This further highlights the challenge of
explanation selection, as these models may recog-
nize implausibility without fully understanding the
underlying causal mechanisms.

A size-dependent trend is observed in the
LLaMA3 models. The smaller L3-8B (LLaMA3-
8B) demonstrates significantly weaker perfor-
mance than its larger version, with 84.4% in Task A
and 83.1% in Task B. Finaly, the M8x7B (Mixtral-
8x7B) model exhibited the weakest performance,
with 66.0% in Task A and 50.9% in Task B. Its
near-random performance in explanation selection



Model Task A (Validation) (%) Task B (Explanation) (%)
Human 99.1 97.8
CN-HIT-IT.NLP 97.0 94.80
ECNU-SenseMaker 96.7 95.0
IIE-NLP-NUT 96.4 94.3
Solomon 96.0 94.0
L3-70B (LLaMA3-70B) 98.40 93.40
G2-9B (Gemma2-9B) 97.90 91.00
L3-8B (LLaMA3-8B) 84.40 83.10
MS8x7B (Mixtral-8x7B) 66.00 50.90

Table 2: Performance of different models on Task A (Commonsense Validation) and Task B (Commonsense
Explanation) for English data. The models are: L3-70B (LLaMA3-70B), G2-9B (Gemma2-9B), L3-8B (LLaMA3-

8B), and M8x7B (Mixtral-8x7B).

id sent0 sentl L3-70B G2-9B MS8x7B L3-8B
459 The dog pounced on the The cat pounced on the  sentO sent0  Other  sent0
rabbit rabbit
737  She purchased four super- She purchased four theater ~ sentl sentl sentl sentl
market tickets. tickets.
174 Witches are not made of Toads are not made of  sent0 sent0 sent0 sent0
wood wood
Table 3: Sample of common misclassified instances for TaskA. Model abbreviations: L.3-70B = LLaMA3-70B, G2-

9B = Gemma2-9B, M8x7B = Mixtral-8x7B, L3-8B = LLaMA3-8B. Keep in mind that Task A is about identifying

which statement is against common sense?

suggests that it struggles not only with causal in-
ference but also with general commonsense under-
standing, likely due to limitations in its training
data or architecture. It is important to note that
this lower accuracy was not due to weak reason-
ing abilities but rather due to inconsistencies in the
output format, where the model provided both clas-
sification and explanation instead of following the
expected template for the output.

4.2 TImplications for Zero-Shot Commonsense
Reasoning

The results indicate that while LLMs often recog-
nize implausible statements but fail to select the
most relevant explanation, highlighting deficits in
causal and inferential reasoning. This suggests that
current zero-shot approaches may capture surface-
level plausibility but lack deeper reasoning abilities
necessary for explanation generation.
Furthermore, the comparison between pre-
trained LLMs and task-specific models from
SemEval-2020 Task 4 suggests that explicit fine-
tuning on commonsense explanation data remains
beneficial. While larger models such as L3-70B
outperform fine-tuned models in validation, they do

not surpass them in explanation selection, reinforc-
ing the need for additional adaptation to improve
causal reasoning.

4.3 Common Misclassification Patterns

An analysis of misclassified instances provides in-
sights into the reasoning patterns of different mod-
els. In Task A, some models failed to differentiate
between subtle variations in sentence structure. For
example, the model incorrectly classified the fol-
lowing pair:

The dog pounced on the rabbit. The cat
pounced on the rabbit.

This type of error suggests that the models may
rely on statistical patterns rather than deep semantic
understanding.

In Task B, errors were primarily related to the
selection of the most plausible explanation. A no-
table example is:

False Statement: "There are four years
each season."

Correct Explanation: "A year can be
divided into four seasons."



id FalseSent. OptionA OptionB OptionC L3-70B G2-9B MS8x7B L3-8B
1388 Roberts’ A room Robert Robert can A A A A
room is cannot won’t let sleep in his
sleeping close the room room
his eyes, sleep be-
because cause he
he has no needs rest.
eyes.
1444  There Different A yearcan A season C C Other C
are four seasons be divided is shorter
years each have dif- into four than a
season. ferent seasons. year.
tempera-
tures.
1172 Peoplecan Sleep is Sleeping Sleeping is A A C A
need sleep. not a thing is nature an activity
to have it for every that every
granted. living living
being. thing does.

Table 4: Sample of common misclassified instances for TaskB. Model abbreviations: L3-70B = LLaMA3-70B,
G2-9B = Gemma2-9B, M8x7B = Mixtral-8x7B, L3-8B = LLaMA3-8B. Task B is about selecting the reason for

Why is this statement against common sense?

Some models selected incorrect explanations, in-
dicating potential limitations in their ability to link
cause-effect relationships effectively. It should be
noted that sentence IDs 1388, 1444, and 1172 are
not present in the common misclassified instances
of Task A.

Despite the overall strong performance, the re-
sults also highlight challenges in certain reasoning
aspects. The models demonstrated difficulty in se-
lecting the most appropriate explanation for an im-
plausible statement in Task B, even though they per-
formed well in identifying implausible statements
in Task A. This suggests that while the models
recognize commonsense inconsistencies, they may
struggle to justify their choices accurately. One
possible explanation for this challenge is that Task
B requires models to establish causal or inferential
relationships between a false statement and its ex-
planation. While Task A is a binary classification
task requiring identification of implausible state-
ments, Task B introduces additional complexity by
demanding a deeper understanding of reasoning
patterns and cause-effect relationships. Selecting
the correct explanation requires not only recogniz-
ing a logical inconsistency but also evaluating mul-
tiple plausible justifications and determining which
one best aligns with human commonsense knowl-
edge. This suggests that current LLMs, despite

their powerful language modeling capabilities, may
still struggle with selecting the most contextually
relevant explanation among multiple plausible op-
tions, as this task requires a nuanced understanding
of real-world implications and reasoning structures
(Mondorf and Plank, 2024).

Additionally, the low measured performance of
Mixtral-8x7B can be attributed to output inconsis-
tencies. The model frequently produced both an an-
swer and an explanation, which deviated from the
required response format. This indicates that we
cannot rely on the achieved results for this model
to evaluate its performance on both tasks. More
post-processing steps are required to ensure con-
sistent output formatting when evaluating model
performance.

4.4 Conclusion

This study demonstrates that large-scale LLMs, par-
ticularly LLaMA3-70B and Gemma2-9B, exhibit
strong commonsense reasoning capabilities even in
a zero-shot setting. These models outperform state-
of-the-art fine-tuned transformer-based models, in-
dicating that LLMs can generalize well across com-
monsense validation tasks. However, challenges
remain in explanation selection and maintaining
consistent output formats. Future research may in-
clude exploring Commonsense knowledge-graph
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LLMs (Li et al., 2022; Zhao et al., 2024; Toroghi
et al., 2024), in addition to fine-tuning strategies,
retrieval-augmented approaches, and structured
prompting techniques to enhance the inferential
reasoning capabilities of LLMs in zero-shot set-
tings.
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Abstract

Access to spoken language remains a challenge
for deaf and hard-of-hearing individuals due
to the limitations of lipreading. Cued Speech
(CS) addresses this by combining lip move-
ments with hand cues—specific shapes and
placements near the face—making each syl-
lable visually distinct. This system comple-
ments cochlear implants and supports oral lan-
guage, phonological awareness, and literacy.
This paper introduces the first open-source sys-
tem for automatically generating CS in video
format. It takes as input a video recording,
the corresponding audio signal, and an ortho-
graphic transcript. These elements are pro-
cessed through a modular pipeline, which in-
cludes phonetic mapping, temporal alignment,
spatial placement, and real-time rendering of a
virtual coding hand. The system is multilingual
by design, with current resources focused on
French. An evaluation under varied conditions
showed decoding rates up to 92% for manually
coded stimuli, and averages exceeding 80% for
automatically generated ones. Visual clarity of
hand shapes proved more critical than timing
or angle. Stylized designs and frontal views en-
hanced decoding performance, while attempts
at naturalistic rendering or visual effects of-
ten degraded it. These findings indicate that
visual abstraction improves readability. This
work provides a reproducible and scientifically
grounded framework for visual phonetic encod-
ing, and delivers a practical tool for education,
accessibility, and research.

1 Introduction

1.1 Visual Access to Spoken Language
through Cued Speech

Speech production involves both acoustic and vi-
sual cues. While lip movements convey useful
information, many phonemes appear identical on
the lips and form so-called “visemes”—groups
of phonemes that are visually indistinguishable
(Fisher, 1968; Massaro and Palmer Jr, 1998). As

a result, lipreading remains highly ambiguous:
correct word identification rarely exceeds 30%
(Ronnberg, 1995; Ronnberg et al., 1998).

To address this limitation, R. Orin Cornett in-
troduced Cued Speech (CS) (Cornett, 1967), a vi-
sual communication system designed to make each
phoneme visually distinct. CS combines lip move-
ments with hand cues—specific handshapes and
positions placed around the face—that encode con-
sonants and vowels. It provides full visual access to
spoken language and supports phonological aware-
ness, literacy development, and spoken language
acquisition in deaf or hard-of-hearing individuals
(Clarke and Ling, 1976; Neef and Iwata, 1985). CS
has since been adapted to over 65 languages'.

Cued Speech is widely used by speech-language
pathologists to support early language acquisition
in deaf children. Among others, in France, it is pro-
moted by the Association pour la Langue francaise
Parlée Complétée (ALPC)?, and in the US by the
National Cued Speech Association®. Numerous
studies have shown that CS enhances access to
phonological structure, supports literacy develop-
ment, and fosters inclusive education (Leybaert and
Charlier, 1996; Colin et al., 2017; LaSasso et al.,
2010). Together, these findings highlight its impor-
tance in supporting language acquisition pathways
for deaf learners.

Building on its demonstrated benefits for access
to spoken language, Cued Speech and Sign Lan-
guages serve distinct linguistic and cultural func-
tions. They are not mutually exclusive: while some
deaf children follow a sign language pathway, ac-
cess to reading and writing typically requires ex-
posure to spoken language. By offering a precise
visual representation of sounds, Cued Speech sup-
ports this process. It is therefore relevant to all
deaf learners aiming to acquire spoken language,

"https://www.academieinternationale.org/
Zhttps://alpc.asso.fr/
3https: //cuedspeech.org/



whether or not they use a sign language. This
distinction is essential to avoid misinterpretations:
Cued Speech is not a language and is not intended
to replace natural sign languages such as LSF, but
to complement them when access to spoken lan-
guage is required or preferred.

Following the general principles of CS, the
French adaptation was developed in the 1970s. It
uses eight handshapes to encode consonants and
five facial positions to encode vowels. Each sylla-
ble is represented by a combination of lip move-
ment and a hand cue, also called a key, formed
by a handshape—position pair. A simple syllable
like CV or V is coded by a single key, while more
complex structures, such as CCV, require multiple
successive keys: for example, a ’C-’ followed by
a’CV’ structure. To illustrate this system, Figure
1 shows the handshapes used for consonants, and
Figure 2 shows the vowel positions around the face.
Both figures include the neutral position used when
no speech is pronounced.

Figure 1: Handshapes representing consonants

Figure 2: Positions representing vowels

Below is a concrete example showing how a
sentence is encoded into cues:

text: Tu es gris.
phones: tyegpi

CV sequence: cvvccy
cues-structure: C-V.-V.C-.C-V

cues code: 5-t.5-t.7-s.3-m

The internal consistency of Cued Speech makes
it well-suited for automation. Generating cues
from speech or text opens the door to a wide range
of applications: cued videos for learning and ac-
cess, training tools for families and educators, and
greater availability of CS in contexts where trained
coders are not present. More broadly, automatic
cueing can support language acquisition in deaf
children, improve communication in mixed hear-
ing environments, and reinforce lipreading skills.

This paper presents the first complete and share-
able system for automatic CS generation. It takes
as input a video recording, its audio signal, and a
transcript, and produces a new version of the video
in which a synchronized virtual hand encodes the
CS transcription. The architecture was built en-
tirely from scratch, formalizing each stage of the
process from segmentation to cue rendering. It is
designed for multilingual use and has been imple-
mented and tested for French. The full system is
open-source, and all components have been evalu-
ated with end-user testing.

1.2 Related Works

The first attempt to automate cue generation, Au-
toCuer, was developed by R. Orin Cornett himself
(Cornett et al., 1977). Between 1995 and 2000, a
series of studies at the Massachusetts Institute of
Technology (MIT) explored real-time automatic
cueing for American English (Bratakos, 1995; Sex-
ton, 1997; Bratakos et al., 1998; Duchnowski et al.,
2000). These remain the most advanced docu-
mented efforts in the field. Their system relied on
speaker-dependent automatic speech recognition
to extract phonemes from live recordings, which
were then converted into hand cues and displayed
as a virtual hand overlaid on the video. Evalua-
tions showed significant gains in decoding accu-
racy, with some conditions yielding scores twice as
high as lipreading alone. However, many compo-
nents required manual adjustments (Sexton, 1997):
cue positions were initialized by hand, transitions
were interpolated without formal modeling, and the
mapping rules were not described in reusable form.
The lack of published code or reproducible design
has prevented further development or reuse.
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To date, no operational or open-source tool exists
for automatic CS generation in any language, de-
spite increasing scientific interest and documented
benefits.

1.3 Foundations and Scope

Developing a complete system was a necessary
step, independently of data availability. It provided
the opportunity to define a structured architecture,
implement a fully functional version, and formal-
ize the modeling of each component. The resulting
system is transparent, reproducible, and already
usable in real conditions. It operates with minimal
computational cost, can be refined through expert
feedback, and offers a solid basis for future im-
provements, including data-driven modules once
annotated resources become available.

A French Cued Speech corpus has recently been
collected and partially annotated (Bigi et al., 2022),
but the annotation process is still ongoing due to
the precision required.

This work then marks the beginning of a long-
term effort to build a reliable and extensible frame-
work for automatic CS generation. It defines a
shared foundation for future developments in aug-
mented video production and evaluation.

2 System Description

While many studies describe individual aspects of
CS production—such as articulation, speech coor-
dination, timing, or spatial organization—formal
descriptions remain rare. Few are presented in
a way that supports computational modeling or
system implementation. The literature describes
many aspects of CS production. However, for-
mal accounts of its speech coordination, timing,
and spatial organization remain rare. Few works
address these questions, and the descriptions are
rarely framed in terms of computational modeling.

In this work, the cueing process was analyzed
by combining published linguistic descriptions (At-
tina, 2005; Aboutabit, 2007) with structured discus-
sions conducted with experienced coders. This led
to the identification of four core processing com-
ponents, which structure the system: determining
what to code (i.e., the sequence of keys from the
phoneme transcription), when to display the cues
(synchronization with the speech signal), where to
place the hand (spatial positioning, angle, and size),
and how to render it visually (hand design).

The four components are interdependent: timing

depends on phoneme alignment, spatial position-
ing requires both timing and content, and visual
rendering builds on all previous stages. This struc-
ture is the result of the analysis described above.
It defines an architecture for cue generation and
supports the implementation of a consistent and ex-
tensible system. The same framework has guided
the present system and can serve as a reference for
future developments.

For example, the system is multilingual by de-
sign in the sense that language-specific knowl-
edge is externalized into modular, open-format re-
source files. The core components—covering nor-
malization, phonetic transcription, alignment, and
cue generation—are implemented in a language-
independent way. Language-specific resources,
such as dictionaries, acoustic models, and cueing
rules, are handled through separate, editable files.
This modular architecture follows the same strat-
egy as adopted in SPPAS for text normalization
(Bigi, 2014), phonetic transcription (Bigi, 2016),
and alignment (Bigi and Meunier, 2018). Its ap-
plicability to multiple languages has already been
validated in these components (Lancien et al., 2020;
Bigi et al., 2021; Pakrashi et al., 2023), and is here
extended to the novel task of Cued Speech genera-
tion.

Figure 3 presents the full processing pipeline,
from user inputs to the final coded video. It il-
lustrates the modular organization of the system
and the sequence of required operations. The first
stages involve automatic processing of the input
transcript, audio, and video using the open-source
SPPAS toolkit (Bigi, 2015), including normaliza-
tion, phonetization, forced-alignment, and face
analysis. These annotations are used without man-
ual correction and provide the foundation for re-
producible experiments. The subsequent steps im-
plement the proposed framework, computing the
sequence of keys, their temporal and spatial prop-
erties, and rendering the virtual hand accordingly.

2.1 What to Code

The first component of the system determines the
sequence of keys to be produced from the phoneme
transcription. Each key encodes a consonant—vowel
association as a pair of handshape and position.
Based on the aligned phoneme sequence, the sys-
tem infers the structure and associates each seg-
mental unit with a key of type C-, -V, or CV. A
deterministic finite automaton (DFA) formalizes
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Figure 3: Workflow of the full process: from the user’s data to the coded video

all valid transitions and decomposes complex syl-
lables into successive keys.

This component was previously described and
evaluated in a dedicated study (Bigi, 2023). On
a manually annotated corpus, the predicted se-
quences aligned closely with those produced by
expert coders, with most deviations reflecting in-
dividual preferences rather than systemic errors.
The DFA-based system was found to be both reli-
able and sufficient. A web-based text-to-cue con-
verter*, developed in collaboration with the deaf
community, provides public access to this module
for educational and training use.

2.2 When to Display the Cues

Once the sequence of keys is defined, the next step
is to determine their temporal coordination with
speech. It is already known that the hand must
anticipate the associated phonemes to allow visual
decoding. This principle has been consistently sup-
ported in the literature (Cornett, 1967; Bratakos
et al., 1998; Duchnowski et al., 1998, 2000) and
confirmed by French studies (Cathiard et al., 2003;
Attina, 2005; Aboutabit, 2007), which highlight the
role of anticipation in perception.

Four timing models were implemented: three
drawn from previous work, and a fourth developed
specifically for this system. The notation intro-
duced in (Attina, 2005) is used throughout. Al
marks the acoustic onset of the key—consonant
onset in C-’ or "CV’ keys, vowel onset in ’-V’
keys. A3 marks the acoustic offset—vowel end in
"CV’ or ’-V’ keys, consonant end in *C-’ keys. M1

4https ://auto-cuedspeech.org/textcue.html

and M2 represent the start and end of the manual
transition. The interval A1-A3 corresponds to the
acoustic duration of the key, while M1 and M2 are
the time points to be predicted by the models.

Model 1 reproduces the configuration described
in (Duchnowski et al., 1998), in which the hand
appears 100 ms before the phoneme, with no tran-
sition phase. This model was implemented for
reference purposes but was not included in the ex-
perimental protocol, as later studies (Duchnowski
et al., 2000) have shown that Model 2 yields better
results. Model 2 introduces a fixed transition of
150 ms, so that the hand reaches its target 100 ms
prior to the phoneme onset.

Model 3 adjusts anticipation values based on
the consonant—-vowel structure of the key. It is de-
rived from French-language studies (Attina, 2005),
which reported consistent variation in cue timing
across key types. Transitions are defined as propor-
tions of the A1-A3 interval, assuming an average
duration of 400 ms. For ’CV’ and ’C-’ keys, M1
starts 62% before A1 and M2 occurs 10% after Al.
For ’-V’ keys, M1 starts 46% before A1 and M2
occurs 21% after Al.

Model 4 was developed specifically for this sys-
tem. It extends previous models by incorporat-
ing finer adjustments derived from coder expertise
and by explicitly modeling transitions involving
the neutral position, which are absent from earlier
systems. The model adapts timing to speech rate
and defines transition points as proportions of the
Al-A3 interval.

For the first key, corresponding to a transition
from the neutral zone to a facial position, M1 oc-
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curs 140% before A1 and M2 20% before Al. For
the second key, these values are 125% and 15%
before Al. For the third, 100% and 10%. For
subsequent keys, M1 is set to 90% and M2 to 5%
before Al. For the return to neutral, M1 is delayed
to 20% after A1, and M2 to 80% after M1.

2.3 Where to Place the Hand in the Video?

This component determines the position, angle, and
size of the hand relative to the speaker’s face for
each frame of the video.

The vowel positions were first defined by expert
coders on a theoretical face, then formalized us-
ing the 68-point facial landmark model given by
SPPAS. Each position is computed as a function
of facial landmarks. The formulas used for the
positions of French Cued Speech were derived in
collaboration with expert coders and adapted to en-
sure consistency across speakers and morphologies.
They are summarized in Table 1 and illustrated
in Figure 4. No variability was introduced at this
stage: for each frame, the fingertip is placed at the
target coordinates.

X = y=
8 ys +4- (ys — ys7)
T4+ 3 |23 —xol Y1 — % ly1 — ol
g ys — 5 - lys — ys

T4 —ﬁ “|ras — 4| Yoo X
zo— 3 lvs—xol  ya— g |ya—ysl
T8 ys + 1.2 - |ys — ysr

~»wzZgeoxs

Table 1: Estimated positions from facial landmarks

Figure 4: Estimated positions relatively to the landmarks

Hand orientation is also controlled to improve
visual realism. Three models were implemented.
Model 0 uses a fixed angle of 60°, serving as a base-
line (Figure 5). Model 1 introduces expert-defined

Figure 5: Hand angle of Model 0 is 60°.

variations by position. Excluding the neutral zone,
the average angle is 71.2°, with a standard devia-
tion of 9.3°. Model 2 uses a data-driven approach:
five annotated frames per position were manually
selected to estimate average orientations. It yields
an average angle of 61.8° and a standard deviation
of 12.5°. Detailed values are given in Table 2.

Position Model 1 Model 2
n (chest) 50° 50°
b (cheek bone) 75° 62°
¢ (chin) 67° 59°
m (mouth) 73° 56°
s (side) 83° 83°
t (throat) 58° 49°

Table 2: Hand angles (in degrees) for Models 1 and 2.

The hand size is scaled proportionally to face
height and remains fixed throughout. Transitions
between positions follow a straight-line trajectory
at constant speed. Handshape transitions occur at
the midpoint of this trajectory, using a three-frame
fade between the two handshapes. These simpli-
fications reflect a design choice: only one spatial
parameter is introduced at a time for evaluation.

This component of the system then produces a
complete 2D hand trajectory of the hand, it’s angle
and it’s size, for each frame of the given video.

2.4 How to Represent the Hand in the Video?

The final module of the system handles the visual
rendering of the cueing hand, based on the timing
and spatial information computed in the previous
stages. This component determines how the hand
appears in the video and offers several options in
terms of style and visual clarity.

Four handsets were integrated into the system.
Two are based on photographs: a male hand set
(’l’), and a female hand set (’b’) shown in Figure 5.
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The other two use 2D illustrations: ’d’ displays a
uniform yellow shape, while ’c’ assigns colors to
specific keys to reduce visual confusions—key 3 is
pink, key 8 is blue, and the neutral hand is white;
all others remain yellow. These assignments build
on prior work (Duchnowski et al., 1998) indicating
that color can help distinguish keys that are visually
similar but phonologically distinct.

Figure 6 shows examples of these handsets,
along with enhancement filters described below.

Figure 6: Some hands configurations: "l+1", "14+2",
lld+3ll’ VVdH, llCH

Three visual enhancements were implemented
to explore whether additional graphic information
could improve the visual distinction between simi-
lar handshapes. Each one is exclusive and applies
to a single rendering at a time. The first one adds a
dot at the fingertip target and a line along the index
for keys 3 and 8, to improve distinction from keys
4 and 2, similarly to the ’c’ handset. The second
one draws a line along the back of the hand and
a dot at the target point, highlighting orientation.
The 3rd one overlays the full 21-point hand sights
with connecting lines, as illustrated in Figure 5.

This rendering module supports both realistic
and stylized outputs and can be adapted to user
needs or preferences.

2.5 System Summary

The system covers the full pipeline of automatic
CS generation. Starting from a video, an audio
signal, and an orthographic transcript, it performs
phoneme alignment, transformation into keys, syn-
chronization of each key with the speech signal,
analysis of facial landmarks, determination of hand
angle, hand size, handshape transitions, spatial tran-
sitions between positions, and visual rendering.
The process results in a synchronized and aug-
mented video, where a virtual hand encodes the
Cued Speech transcription with precise timing and
positioning. All elements—phonetic inference, tim-
ing models, spatial computation, and graphical out-
put—are integrated into a reproducible framework.

This combination of coverage and modularity is, to
our knowledge, the first of its kind.

This framework is implemented in Python and
released under an open-source license. Its graphical
user interface and user-friendly installation process
allow non-specialists to use it.

3 System Evaluation

The system was evaluated through a decoding task
with eight deaf participants, all fluent in French
Cued Speech and familiar with video-based cueing.
The goal was to assess the readability of automati-
cally generated cues and to compare different con-
figuration options. The task consisted in watching
short cued videos and writing down what was de-
coded. Their responses were scored using SCLite,
designed for evaluating ASR output. It aligns each
decoded transcription with a reference using utter-
ance IDs and computes word-level scores: correct
(Corr), substituted (Sub), deleted (Del), and in-
serted (Ins). In this setting, the reference is the
recorded sentence, and the hypothesis is the partic-
ipant’s transcription.

Decoding accuracy was then used as a proxy for
system performance. This metric was deliberately
chosen to reflect the perceptual clarity of the gen-
erated cues, independently of participant-specific
inference or language comprehension skills. Al-
though comprehension-based tasks might better re-
flect communicative effectiveness, they would con-
found system output quality with individual-level
interpretation strategies. By focusing on transcrip-
tion alignment, the evaluation isolates the contribu-
tion of the system itself, ensuring a more rigorous
and interpretable measure of cue readability.

3.1 Experimental Conditions

The evaluation was conducted during the 2024 an-
nual internship organized by the ALPC. Eight deaf
adults participated on a voluntary basis and gave
informed consent. All participants watched a stan-
dardized instructional video before the session. The
protocol was anonymous, non-intrusive, and ap-
proved by the organizing institution.

Each participant decoded 20 silent videos: five
manually coded by a professional (used as a refer-
ence set), and fifteen automatically generated using
the system with different configurations. To con-
trol for inter-participant variability, each participant
was assigned to a single experimental dimension:
timing, angle, hand appearance, or visual enhance-
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ment. This allowed for within-subject comparisons
across three variants per parameter. Each system
configuration was identified by a four-character
code: the first digit refers to the timing model (2,
3, or 4), the second to the angle model (0, 1, or
2), the third to hand appearance (’b’, °c’, or ’d’),
and the fourth to optional enhancements (1, 2 or 3).
Participants were divided into four groups:

* Group 1 - Timing: P1 and P5 decoded sets
2.1.1.0, 3.1.1.0, and 4.1.1.0.

* Group 2 — Angle: P2 and P6 decoded sets
4.0.1.0,4.1.1.0, and 4.2.1.0.

* Group 3 — Appearance: P3 and P7 decoded
sets 4.1.b.0, 4.1.c.0, and 4.1.d.0.

¢ Group 4 - Enhancement: P4 and P8 decoded
sets 4.1.1.1, 4.1.1.2, and 4.1.1.3.

The five manually coded reference videos were
presented first. The fifteen system-generated clips
followed, in a fixed interleaved order balancing
topic and condition. Playback issues affected two
participants (three clips for P1, two for P2) due to
local hardware errors. Since all videos had been
generated beforehand, only playback was affected
and the evaluation protocol remained valid. This is
reported here in accordance with FAIR principles.

3.2 Global Decoding Performance

Table 3 presents the decoding scores for the con-
trol set (professionally coded) and for the system-
generated output (all configurations combined).
Manual coding achieved 92.3% accuracy. The
system, with no participant training or adaptation,
reached 80.7%.

SPK Corr Sub Del Ins Err
Control 923 52 25 23 10.0
Allsets 80.7 9.7 9.6 13 206

Table 3: Participant decoding scores

These results were obtained using strict word-
level alignment. Minor spelling differences were
counted as substitutions, and no correction was
applied to participant input. The control score re-
flects the best achievable performance under these
conditions and serves as an oracle reference.

That the system reaches over 80% under the
same constraints is a key finding. Participants
had no prior exposure to the system and received

no training. Despite this, several decoded videos
scored near the reference level. The output is there-
fore not only intelligible but already close to expert
quality for a majority of sentences.

The most frequent errors were deletions, increas-
ing from 2.5% in the control set to 9.6% with sys-
tem output. Substitutions also rose, though to a
lesser extent. Informal debriefings suggest that fast
speech segments were harder to decode, especially
when hand transitions compressed timing contrasts.

To our knowledge, this is the first publicly doc-
umented benchmark comparing professional and
system-generated Cued Speech. These results show
that automatic cue generation is not only feasible,
but already yields intelligible output close to expert
performance. This first benchmark sets a high base-
line for future systems and provides a reproducible
framework for comparison.

The 80.7% score reported above reflects an av-
erage across multiple system variants. It includes
different timing strategies, spatial models, hand ap-
pearances, and visual enhancements. The result
therefore combines heterogeneous outputs, some
of which led to higher decoding scores than others.

3.3 Detailed evaluation and discussion

The three sentence sets used in the experiment
yielded average decoding scores of 83.6%, 84.4%,
and 74.9%, respectively, indicating noticeable
differences in difficulty. Without normalization,
such variation would interfere with the analysis of
model-specific effects. To control for these biases,
all scores were normalized by participant and by
sentence set. This adjustment accounts for individ-
ual decoding ability and for intrinsic difficulty of
the material. Final results are reported as z-scores:
a positive value indicates that the participant de-
coded better than their own average, and a negative
value indicates below-average decoding accuracy.

3.3.1 Group 1 - Timing Models

Participant P1 showed slightly negative perfor-
mance on the baseline (model 2), and slightly
positive scores on models 3 and 4 (z = —0.07,
+0.04, +0.06). P5 had the best result on model 2
(z = 40.08), followed closely by model 4 (40.02),
with model 3 performing lower (—0.04). Overall,
model 4 seems less sensitive to speaker or mate-
rial, while model 3 is more sensitive to speaker or
sentence variation.
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3.3.2 Group 2 - Angle Models

For P2, model 1 yielded the best performance
(4+0.03), followed by model 2 (—0.04), while
model O performed neutrally (—0.001). P6
achieved highest scores on models 0 and 1 (4-0.07
and +0.06), with lower performance on model 2
(—0.03). The results suggest that moderate expert-
defined angle variation (model 1) provides a good
compromise between visual consistency and real-
ism, while corpus-derived angles (model 2) may
introduce instability.

3.3.3 Group 3 - Hand Appearance

P3 had a slight preference for the ’d’ design
(4+0.01), with lower results on the ’b’ and "¢’ de-
signs (—0.09, —0.03). P7 also favored ’d’ (+0.12),
followed by ’b’ (4-0.05), and had a neutral response
to ’c’ (—0.01). Unlike earlier findings reported in
(Duchnowski et al., 1998), our results do not repli-
cate a consistent benefit from color coding: one
participant improved with the ’¢’ design, while an-
other performed better without it. These observed
trends confirm that the simplified, high-contrast ’d’
illustrations enhance decoding performance, likely
due to their visual clarity and reduced ambiguity.

3.3.4 Group 4 - Visual Enhancements

P4 showed balanced performance across the three
enhancement types (z-scores ranging from 0.0 to
+0.04), while P8 experienced a sharp decline, par-
ticularly on Skeleton (—0.19). These results sug-
gest that while visual enhancements may assist
some users, they may also introduce distracting or
overly complex visual elements, especially for less
experienced decoders.

3.3.5 Discussion

The experimental results converge on a configura-
tion that favors clarity over realism. The most
effective combination includes a fixed anticipa-
tion model refined by phonetic context (Model 4),
expert-defined orientation values (Model 1), and
a stylized 2D design with strong visual contrast
(’d’). This setup does not aim to reproduce natu-
ral hand movement but rather to enhance cue dis-
criminability. It consistently produced the best de-
coding scores across participants and conditions.
Visual enhancements overlays did not improve per-
formance and occasionally introduced confusion,
suggesting that additional graphic elements may
interfere with the perception of essential features.
These findings support the adoption of a simpli-

fied, controlled rendering strategy as the system’s
default configuration for future use.

These results highlight that controlled visual sim-
plicity can effectively outperform realism by en-
hancing usability and reducing cognitive load in
accessibility-focused systems.

4 Conclusion

Despite the documented benefits of Cued Speech
for phonological awareness and literacy, no opera-
tional system has yet addressed its automatic gener-
ation in a reproducible and open manner. The only
prior effort explicitly targeting cue generation in
video, developed at MIT in the late 1990s, remains
undocumented, non-reproducible, and is no longer
maintained.

This paper presents the first functional and pub-
licly available system for automatic Cued Speech
generation. It targets French and implements a
modular pipeline structured into four components:
determining what to code, when to display, where
to place, and how to render. Each step is formally
defined and operational, from phoneme alignment
to video rendering with an integrated virtual hand.
The system provides explicit control over linguistic
content, synchronization, spatial placement, and
visual output.

Evaluation with deaf participants confirmed that
the output is readable and effective: decoding accu-
racy averaged 80.7%, compared to 92.3% for pro-
fessionally coded videos. This result was obtained
without participant training or adaptation. Among
the tested parameters, hand appearance had the
strongest impact. The highest scores were obtained
with a stylized 2D design, limited angle variation,
and no visual enhancement. These findings indi-
cate that intelligibility benefits from simplification
rather than natural imitation.

This work defines a complete and reproducible
framework for Cued Speech generation in video.
Moreover, it provides a usable tool with a graphical
interface, ready for practical use and offering a ref-
erence baseline for future systems. The system is
already integrated into the actively maintained soft-
ware platform SPPAS, and has been successfully
used by non-technical users in applied settings.

The next step will involve inserting transitional
frames when needed, to reduce deletion errors and
improve comfort. The goal is to better match the
rhythm of the speaker with the decoding strategies
used by human coders.
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Limitations

This study presents the first fully documented and
reproducible system for automatic CS generation.
However, several limitations must be acknowl-
edged.

First, the system has been implemented and eval-
uated only for French. While the architecture is de-
signed to support multiple languages, further work
is needed to confirm its adaptability to different
phonological inventories and cueing conventions.
This is currently being addressed through the ongo-
ing adaptation of the system to American English.

Second, although the evaluation protocol was
carefully designed, the number of participants re-
mains limited. This constraint, inherent to the diffi-
culty of recruiting expert Cued Speech users, may
affect the generalizability of some findings.

Third, while the current design provides trans-
parency and control, it may miss fine-grained vari-
ations observed in natural cueing. To address this,
a follow-up project has been launched to explore
targeted data-driven modeling, restricted to cases
where statistical learning is justified — in line with
principles of ecological minimalism and method-
ological necessity.

Finally, two aspects of the system have been
fixed a priori and remain to be systematically eval-
uated: the precise spatial placement of hand po-
sitions around the face, and the trajectory mod-
eling, which currently assumes straight-line mo-
tion at constant speed. While hand cue positions
are algorithmically inferred from facial landmarks,
we acknowledge that systematic validation against
manual annotations remains limited due to the com-
plexity of recruiting trained evaluators. Preliminary
cross-checks on held-out data indicate promising
consistency, and ongoing work is extending this
evaluation as resources permit.

Ethical Considerations

This study did not involve the collection of any
sensitive or identifying information. Participation
was voluntary, based on informed consent, and
fully anonymous. Participants were not evaluated;
rather, their responses served solely to assess the
intelligibility of the system’s outputs.

The experiment followed the principles of
the ALPC association’s internal ethics charter,
which promotes respect, autonomy, and non-
discrimination in all interactions with deaf partici-
pants and their families.
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A Reproducibility

All data and source code referenced in this pa-
per comply with the principles of open science.
The source code of the proposed system is re-
leased under the GNU Affero General Public Li-
cense v3 (AGPLv3). It is part of SPPAS and can
be downloaded at https://sourceforge.net/
projects/sppas/.

The experimental scripts are also made available
under the same license and can be obtained from
the author upon request.

The datasets used in this work are distributed
under both the Open Database License v1.0
(ODbL) and the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC
4.0) licenses. They can be downloaded at https:
//hdl.handle.net/11403/clelfpc/vie.

Software and Evaluation Tools:

* The full speech segmentation pipeline, includ-
ing text normalization, phonetic transcription,
and alignment, was performed using SPPAS,
version 4.11 (https://sppas.org/),

e Evaluation metrics were computed us-
ing SCTK 2.4.12 (https://github.com/
usnistgov/SCTK).
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Abstract

Topic models are statistical tools that allow
their users to gain qualitative and quantitative
insights into the contents of textual corpora
without the need for close reading (Nielbo et al.,
2024). They can be applied in a wide range
of settings from discourse analysis (Bednarek,
2024), through pretraining data curation (Peng
et al., 2025), to text filtering (Ma et al., 2016).
Topic models are typically parameter-rich, com-
plex models, and interpreting these parameters
can be challenging for their users. It is typical
practice for users to interpret topics based on
the top 10 highest ranking terms on a given
topic. This list-of-words approach, however,
gives users a limited and biased picture of the
content of topics (Gillings and Hardie, 2022).
Thoughtful user interface design and visual-
izations can help users gain a more complete
and accurate understanding of topic models’
output. While some visualization utilities do
exist for topic models, these are typically lim-
ited to a certain type of topic model. We intro-
duce topicwizard !, a framework for model-
agnostic topic model interpretation, that pro-
vides intuitive and interactive tools that help
users examine the complex semantic relations
between documents, words and topics learned
by topic models.

1 Introduction

Topic models are statistical instruments, which
have been developed to wuncover human-
interpretable topics in corpora of text (Blei,
2012). These methods have allowed analysts gain
insights into the contents of large corpora, the
manual reading of which would be impractical or
impossible. Topic models also often offer a more
impartial account of a corpus’ content (Nielbo
etal., 2024).

Typically, topic models’ outputs are presented to
users in the form of the highest-ranking words and

1https://github.com/x—tabdeveloping/
topicwizard
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Kristoffer Laigaard Nielbo
Aarhus University
kln@cas.au.dk

perhaps documents on a given topic. While this
allows users to gain a superficial understanding of
a topic, one might miss crucial details, and a lot
of nuances, when topic models are exmined this
way (Gillings and Hardie, 2022). We suggest that
topic models capture more detailed information
about topics than simple word lists convey, and that
carefully designed interfaces can help users better
explore this complexity.

1.1 Topic Models are Diverse

While topic models all carry out a similar task, they
can also be very different from each other in how
they conceptualize topic discovery.

Topic models originally relied on a bag-of-words
model of documents where they are represented as
sparse vectors of word-occurrence counts, with an
optionally applied weighting scheme, such as tf-
idf. Most commonly, these models either discover
topics by matrix factorization (Gillis and Vavasis
2014, Kherwa, Pooja and Bansal, Poonam 2017)
or by fitting a probabilistic generative model over
these representations (Blei et al. 2003, Yin and
Wang 2014, Hofmann 1999) or biterms (Yan et al.,
2013).

contextual models |clustering

LDA LSl NMF S3 KeyNMF  BERTopic

DMM

Figure 1: A Simplified Taxonomy of Topic Models
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More recent topic models, however, also rely on
context-sensitive, dense text representations from
neural networks (Reimers and Gurevych, 2019).
These models can conceptualize topic discovery as
document clustering and post-hoc term importance
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estimation (Grootendorst 2022, Angelov 2020),
document generation with amortized variational
inference (autoencoders) (Bianchi et al. 2021a,
Bianchi et al. 2021b), semantic relation reconstruc-
tion (Wu et al., 2024), or semantic decomposition
(Kardos et al. 2025a, Kristensen-McLachlan et al.
2024).

1.2 Topic Models are Alike

Despite these differences, all topic models have
a lot in common. Topic models, in essence,
learn a three-way relationship between words ,
documents and topics.

topic-term matrix document-topic matrix

w; t

M N

Figure 2: Common Components Computed by Topic
Models

All topic models have a method for extracting the
K most relevant words from the discovered topics.
These top K words are calculated from a topic-
term matrix (¢), which is either inferred as part
of topic discovery. This matrix has N rows, corre-
sponding to the number of topics, and M columns
corresponding to the size of the model’s vocabu-
lary. In addition, models compute a document-
topic-matrix (©), where rows represent the D
documents in the corpus, while the N columns
represent topics. This matrix contains the impor-
tance/relevance of a topic in a document.

1.3 Contribution

We introduce topicwizard, a model-agnostic
topic model visualization framework that allows
users to investigate complex semantic relations be-
tween words, documents and topics in their cor-
pora. topicwizard is natively compatible with
topic modelling libraries, which use the scikit-learn
API (Pedregosa et al., 2011), such as tweetopic
(Kardos, 2022) and Turftopic (Kardos et al., 2025b)
and comes with compatibility layers for Gensim
and BERTopic.

2 Related Work

Due to Latent Dirichlet Allocation’s (LDA) pop-
ularity, a considerable amount of work has been
dedicated to visualizing and interpreting its outputs.
Chuang et al. (2012b) discuss best practices and
design considerations for visualization and inter-
pretation systems for LDA. Chuang et al. (2012a)
introduced the Termite system for interactively vi-
sualizing and interpreting LDA output. The main
visualization in Termite is a stylized version of
the topic-term matrix (see Figure 8), where circles
of different size are at the intersection of terms
and topics indicating their importance. The au-
thors also propose a scheme for selecting the most
topically salient words, since displaying all words
in the corpus would not be feasible. As a conse-
quence, Termite can only display a limited number
of words. Additionally, Termite is no longer under
active maintenance 2.

LDAvis (Sievert and Shirley, 2014) is an inter-
active visualization R package for LDA (see Fig-
ure 9). LDAvis combines elements of previous
topic visualization systems, including an inter-topic
distance map, term distribution plots, and a term-
weighting scheme to show only the most specific
and (relevant) terms. Similar to Termite, the orig-
inal LDAvis package is no longer maintained. Its
Python port, PyLDAvis, receives occasional up-
dates, but does not enjoy feature parity with the
original package.

Notable visualization utilities are also included
in the BERTopic library (Grootendorst, 2022),
which boasts model-specific plotting functions,
such as an inter-topic map, document cluster vi-
sualizations, and term distribution bar-charts. Simi-
larly, Turftopic (Kardos et al., 2025b) also contains
model-specific visualization utilites for a number
of models, including cluster maps, concept com-
passes for S3 (Kardos et al., 2025a) and interactive
timeline plots for dynamic topic models. While
these visualizations are useful, they are typically of
limited interactivity, and are limited to a particular
type of model.

3 topicwizard

To address these challenges, we outline
topicwizard, a novel system for topic model
interpretation. Our framework is model-agnostic,

The Termite repository on Github was last committed to
11 years prior to the writing of this article
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Figure 3: An overview of visualizations and pages in the topicwizard framework
All visualizations were produced using KeyNMF (Kristensen-McLachlan et al., 2024)

allows users to investigate topic models from a
number of distinct perspectives, and is highly
interactive, thereby providing a more complete
picture of topic models’ output,

3.1 Topic Models Learn Topic
Representations

Topic models’ primary objective is to discover la-
tent themes in a corpus. Being able to understand
what concepts make up such topics, and how these
topics are related is perhaps the most important
aspect of interpreting topic models.

In topicwizard (see Figure 3a), similar to Siev-
ert and Shirley (2014) an inter-topic map is
displayed, which shows the relative distances of
topics to each other. While Sievert and Shirley
(2014) utilize PCA for this visualization, projec-
tions in topicwizard are calculated with UMAP
(Mclnnes et al., 2018), since it is better at captur-
ing local structure. The size of the topics on the
graph is determined by a topic importance score.
This score, and thereby the size on the graph indi-
cates how prevalent a given topic is in the corpus
overall, also taking into account the length of the
documents. Topic importance is calculated in the
following manner:

D
st=) O -|d
d

where Oy, is the importance of topic ¢ and docu-
ment d and |d| is the number of terms in a given
document, and D is the size of the corpus.

To provide users with insights about topics’
word content, the topic-word plot displays the
distribution of the highest ranking words for a
given topic, and also how globally prevelant these
words are across topics >. Since 10-20 words are
rarely enough to give a complete picture of the
words relevant to a topic, a more comprehensive

topic wordcloud is also displayed To aid fur-
ther analysis, users can also manually name topics
on this page.

3.2 Topic Models Learn Word Embeddings

While topic models’ are mainly oriented at discov-
ering topics, they also implicitly learn meaningful
representation of words within the corpus. Each
column of the topic-term matrix can technically
be thought of as a semantic embedding for a given
word, with the dimensions being interpretable. This
implicit learning of word representations allows us
to examine words’ relation to each other in a cor-
pus, without explicit reference to the topics.

In topicwizard (see Figure 3c), a word map
is displayed to users, allowing them to quickly and
interactively investigate the semantic landscape of
words in their corpus. Word positions are calcu-
lated by projecting word embeddings to two dimen-
sions using UMAP.

Word embeddings are useful for investigating as-
sociative relations in corpora, and have been used
for a variety purposes such as query expansion

3Unlike LDAvis, we do not compute relevance scores,
since they rely on the assumption that ¢ contains word proba-
bilities.
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(Kuzi et al., 2016), or to uncover authorship pat-
terns in literature (Baunvig, 2024). Clicking on a
word on the word map highlights the words most
closely related to the selected one and displays
the topical distribution of the selected term and its
neighbourhood on the word-topic plot. Dis-
playing closely associated words with the selected
keywords in topic models can give practitioners a
more nuanced picture of word use (Liu and Lei,
2018).

3.3 Topic Models Organize Documents

An important aspect of topic models is that they
learn a representation of documents in the corpus
they are fitted on. Document representations dis-
covered by topic models were historically used for
a number of purposes, including retrieval (Yi and
Allan, 2009), and studying information dynamics
(Barron et al., 2018).

In topicwizard (see Figure 3d), a
document map is displayed, where docu-
ment’s UMAP-projected embeddings can be
seen, and documents are coloured based on most
prevalent topic. In the case of BoW models, these
representations are derived from the document-
topic matrix, while with contextual models, the
pre-computed sentence embeddings are used.

Secondly, individual documents’ contents can be
investigated on a document-topic plot , which
displays the distribution of the most relevant topics,
a document-topic timeline, which displays
how the topical content changes throughout the
course of the document and a document viewer ,
where a snippet of the document is displayed, and
the most topically relevant words are highighted.
The combination of these document inspection util-
ities can help users ground and verify topic models’
output in the documents themselves, which elevates
trust (Chuang et al., 2012b). Additionally, this in-
terface encourages close reading, which provides
additional insight into the corpus’ content.

3.4 Topics Augment User-Defined Groups

Commonly, users of topic models also have some
externally defined grouping of documents, which
might be relevant for their analyses. This could
be binning documents by time period, predefined
categories or place of origin. While most topic
models do not utilize external labels, meaningful
inferences can be made about topics’ relation to
these labels post-hoc.

An important part of this process is to compute a

group-topic matrix, the cells of which contain the
summed importance of a given topic for documents
in a given group:

D
Gij=> O I(gr=1)
k

where G; is the importance of group i for topic j,
gk is the group label of document k, and I(gy = i)
is the indicator function.

In topicwizard (see Figure 3b), semantic dis-
tances between user-defined groups can be seen
on the group map , where group-topic represen-
tations are projected to 2D space using UMAP.
Groups are coloured based on the dominant topic
in the group. Topic distributions in groups can
be seen on the group-topic plot , and groups’
lexical content can be examined in detail on the
group wordcloud to the right.

3.5 Software Design Considerations

The topicwizard Python package was designed
with both research and enterprise use in mind. As
such, our goal was to develop a package that is
accessible to new users and sufficiently flexible to
accommodate specific use cases — ranging from
academic writing and technical reporting to enabel-
ing business analysts to interact with topic models
via a web interface.

The Web Application (see Figures 4 - 7) was de-
signed to make topic model interpretation as seem-
less and quick as possible, in as many environments
as possible, including Jupyter notebooks, in the
browser, or deployed to the cloud. which produces
a readily deployable Docker project to a specified
folder.

The Figures API makes it trivial for our users
to produce specific figures tailored to their needs.
This is especially crucial for producing publica-
tions, since some colour schemes, fonts or aspect
ratios, while appropriate for an interactive web ap-
plication, might not be visually appealing in a static
document.

4 Conclusion

This paper introduces topicwizard, a comprehen-
sive, interactive, and model-agnostic topic model
visualization framework. Our framework is a no-
table extension over previous topic model visualiza-
tion systems, thanks to a) supporting a much wider
range of models b) allowing users to ground topic
models in the corpus, and investigate them from
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numerous angles and c) being flexible, actively sup-
ported, and production-ready. The topicwizard
software package has so far been downloaded more
than 45000 times from PyPI, demonstrating that
practitioners have already found it useful.

Limitations

While topicwizard is the most comprehensive
topic model visualization tool to date, it still lacks
coverage of a number of aspects of topic modelling.
It, for instance, does not have visualization utili-
ties for dynamic, hierarchical and supervised topic
models. This is a clear limitation and will have to
be addressed in future package releases.

Our framework, as of now, does not provide any
utilities for comparing outputs from different topic
models either. This is yet another aspect that future
work should address.

Furthermore, while we consider model-
angosticity to be one of the strengths of our
approach, it does, to an extent, limit its usefulness
for certain models. Certain visualizations, such
as concept compasses, might be highly useful
tools for examining the output of Semantic Signal
Separation, but their utility might be limited for
clustering topic models. We encourage our users,
therefore, to use topicwizard in tandem with
model-specific interpretation utilities from libraries
such as BERTopic or Turftopic.
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A Appendix

See Figures 4-7 for screenshots of topicwizard, Figure 9 for LDAvis and Figure 8 for Termite.
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Figure 4: Screenshot of the Topics page in the topicwizard Web Application
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Abstract

Hyperdimensional Computing (HDC) is a
promising approach for various machine learn-
ing tasks. In this work, we focus on its
application to encoding large text datasets,
where the curse of dimensionality presents
a significant challenge. To mitigate this is-
sue, we employ compression techniques that
are based on classical models such as Term
Frequency-Inverse Document Frequency (TF-
IDF) and Latent Dirichlet Allocation (LDA).
We derive theoretical expressions for Compres-
sion Rate, Jensen-Shannon Divergence, and
ROUGE score, which quantify text size reduc-
tion, preservation of word distributions, and re-
tention of key information, respectively. These
expressions are validated using the IMDB,
arXiv, and AG News datasets. Our results
demonstrate that TF-IDF compression can re-
duce the encoded text size to 10% (or less in
some cases) of the original input while also
achieving slightly worse distinguishability be-
tween classes in classification tasks.

1 Introduction

Hyperdimensional Computing (HDC) is a machine
learning approach inspired by principles of neural
computation. It represents and manipulates data
through high-dimensional vectors, typically in the
order of thousands or millions, enabling informa-
tion processing and storage. This methodology
exhibits inherent robustness to noise, offers effi-
cient learning capabilities, and effectively handles
complex, unstructured data (Kanerva, 2009). HDC
has gained considerable interest in emerging ap-
plications, such as robotics and health diagnostics,
alongside established areas including data center
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recommendation systems (Mitrokhin et al., 2019;
Neubert and Schubert, 2021; Yunhui et al., 2021).
This increasing adoption and interest highlights the
need for a robust theoretical justification. To ad-
dress this, researchers have investigated HDC from
different perspectives. These studies include an in-
depth examination of its geometric characteristics
(Pourmand et al., 2024), a comprehensive analysis
of its algebraic foundations (Yu et al., 2024), and a
detailed investigation of encoding structures used
within HDC systems (Thomas et al., 2021). Each
perspective contributes to a deeper understanding
of HDC and its potential applications.

Kanerva (2009) identified several valuable as-
pects of different HDC realizations. These include
their robustness to noise, which allows HDC to
maintain performance despite disruptions. Their
inherent transparency also helps the understanding
and interpretation of results. Furthermore, HDC ex-
hibit useful distributed properties, which enable ef-
ficient parallel processing, for example using GPUs.
HDC have been successfully applied in various sci-
entific fields (Rahimi et al., 2019; Kanerva, 2009),
and their application to Natural Language Process-
ing (NLP) tasks is of particular interest. Specifi-
cally, Kleyko et al. (2023) demonstrated success-
ful applications of HDC to translation, sentence
similarity, and topic classification problems. How-
ever, Thomas et al. (2021) pointed out important
limitations of basic HDC. Among these, a critical
challenge is the curse of dimensionality. This ef-
fect describes how increases in data size can cause
an exponential rise in vector space dimensionality,
complicating analysis and processing.

To address the challenge of the curse of dimen-

28



sionality in HDC, we propose using text compres-
sion techniques. In this paper, we aim at explor-
ing two classical techniques for text compression:
TF-IDF selection (Spirck Jones, 1972) and LDA
(Blei et al., 2003). Our contribution to the state-
of-the-art in HDC is threefold: First, in Section 2
we introduce a novel model — compression HDC
(CHDC) which combines a theory-based encod-
ing procedure with data compression using TF-IDF
or LDA. This model allows encoding information
efficiently while reducing the size of representa-
tions. Second, we analyze the compression effect
of these techniques (Section 3.1), providing theo-
rems that estimate the compression rate. Third, we
examine the encoding effect of the binary uniform
HDC (Section 3.2), showing that our results are
robust to different conditions. In Section 4, we ex-
perimentally validate our theoretical findings, for
the quality of the proposed compression and en-
coding processes. Finally, Section 5 wraps up and
discusses prospects.

2 Model Setup

The scheme of our proposed model is presented in
Figure 1. Before any text analysis is performed, a
standard procedure of pre-processing is used and is
therefore not shown in the scheme. This procedure
involves four steps applied to a large text (docu-
ment): first, only letters and numbers are retained;
second, the text is broken down into words; third,
lemmatization is applied, which reduces words to
their base or dictionary form (lemma); and finally,
stemming is applied, which reduces words to their
root form.

HDC

= Embedd
encoding > moedding

Large text - Compression >

Figure 1: Workflow of the compression HDC model,
illustrating the processing of a large text using text com-
pression and HDC encoding (blue), to produce a final
embedding.

The core of our proposed compression HDC
model is defined by two components: compres-
sion and HDC encoding. These components are
detailed in Sections 2.1 and 2.2, respectively.

2.1 Compression procedure

Let W = {wi,...,wy} represent a set of M
unique words and corpus D = {dy,...,dy} isa
set of N documents. Given these sets (JV, D), our

goal is to reduce the number of words in each doc-
ument by focusing on the most informative ones.
To achieve this, we assign a score to each word
and extract the set of word-score pairs {(w, sy)}.
For the TF-IDF-based compression, we define the
score as follows:

Definition 1. The TF-IDF score for a word w; in
a corpus D is defined as:

N

N
1

Sw = ts(w, D) = fow,j In —, (D
N & N

where f, ; is the frequency of word w in document
dj, Ny, is the number of documents in D containing
word w.

Note that our definition differs from the standard
TF-IDF definition, which depends on w, d and D
and does not contain averaging over documents.

Latent Dirichlet Allocation (LDA) assumes that
documents are represented as bags of words, where
each document is a mixture of 71" topics, with T'
being a predefined number of topics. The proba-
bility of a word w belonging to topic ¢ is denoted
as ¢z . The matrix ® = {¢y,..., ¢p} € RTM,
where each ¢, represents the probability distribu-
tion of words for topic ¢, is determined by maxi-
mizing the likelihood function P(W, D|®, «), and
a € RZ are the parameters of the Dirichlet distri-
bution (Blei et al., 2003). Based on the LDA model,
we define the score as follows:

Definition 2. The LDA-based score for a word w
in topic t is defined as:

St,aw = th,w . (2)

We consider the documents unordered and refer
to them interchangeably using either the index j
or the document d itself, as an element of D. For
words and word-related quantities, we will refer
to them interchangeably using either the word w
itself or the index ¢, specifying the ordering when
necessary. Thus, for example, f; ; and f,, 4 denote
the same quantity.

We present the following compression criteria.
For TF-IDF-based compression, we select the p-
quantile of words with the highest scores from
the set {(w, s) }wew, resulting in a reduced dic-
tionary V), containing approximately p/M words.
For LDA-based compression, we select the top
pM words from each topic, based on their topic
probabilities s,, ;. Because each word has a prob-
ability of belonging to every topic, the resulting
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reduced dictionary W, typically contains fewer
than T'p M words. Subsequently, we create a new
set of compressed documents D’ = {d},...,dy},
where each d; is formed by combining words from
Wy, preserving the most important words of the
original document and their sequential order within
each document.

To evaluate the compression quality, we intro-
duce three classical performance metrics:

1. Compression rate. A standard metric in com-
pression theory, defined as the ratio:

popgt

il ldsl
where |d;| and |d}| denote the total number of
non-unique words in the uncompressed doc-
ument d; and the compressed document d’;,
respectively. This metric directly quantifies

the reduction in text size achieved by compres-
sion.

CR = (3)

2. Jensen-Shannon divergence. For distribu-
tions p and ¢, the Jensen-Shannon diver-
gence (JSD) measures the dissimilarity be-
tween word distributions and is defined as:

ISD(lI) = 5 [Dic (pllm) + Drcwallm)] @)

where Dxr, is the Kulback-Leibler divergence,
m = (p+ ¢)/2. For TF-IDF compression, we
calculate the JSD between the average word
frequencies in the original and compressed
documents, defined as:

1 & 1 &
pz‘ZN;fim qi:ﬁjz:;fi,ju (%)

where f; ; and fi’7 ; are the frequencies of word
w; in documents d; and d;-, respectively.

For LDA compression, we use the average
JSD across all topics,rdeﬁned as:

ISD(pllq) = > m ISD(pr, 1), O

t=1

1 N
Tt = N Zzt,dj s (7)
j=1

where z; 4 is an indicator function that equals
1 if topic ¢ is the most probable topic for doc-
ument d, and zero otherwise. The densities p;
and ¢, are defined as:

1 N

Pri = 5 > fidzeay s ®)
j=1
1 N

qt,i = N, Z fz/] Zt,d; )
j=1

with f; j and f; ; given in (5), and Ny is the
number of documents for which topic ¢ is the
most probable one. Further details on the prop-
erties of JSD are available in Lin (1991). This
metric allows us to evaluate how well the com-
pressed documents retain the original word
distributions.

. ROUGE score. As a summarization metric,

used to evaluate the quality of text summa-
rization, we use the ROUGE-LCS score, intro-
duced in Lin (2004), where LCS(r, s) denotes
the length of the longest sequence of words
that appear in both r and s in the same order.
The ROUGE-FI1 score is defined as:

RP

E-F1=2
ROUG R+ P’

(10)

where recall R = |LCS(r,s)|/|r| and pre-
cision P = |LCS(r,s)|/|s|; |r|, |s|, and
| LCS(r, s)| are the word counts in the cor-
responding sequences. This metric is used to
assess how well the compressed documents
retain the key information of the original doc-
uments.

2.2 Encoding procedure

We now describe the steps of the encoding proce-
dure, following the work by Kanerva (1988):
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1. We consider the English alphabet plus dig-

its, denoted as A, and assign to each element
ar € A a random vector ¢(ay) from the
space H = {#1}”, where D is the dimen-
sion of the space. In this vector space, we
define a coordinate-wise multiplication opera-
tion ® and a coordinate-wise sign operation .
The multiplication is a simple coordinate-wise
product, while the sign operation is applied
after a coordinate-wise summation, with the
sign of zero defined as 1.

. We use word-wise encoding. To encode a

word, we apply a permutation operation p to
each character’s vector ¢(ay,), shifting all but
the first coordinate to the left. The encoding
vector for word w; is then:

dw) = & p"(dlar)), (an

0<k<|w;|

where |w;| is the number of characters in word
wj.



3. The document encoding is obtained by apply-
ing the sign operation to the coordinate-wise
summation of all word vectors:

¢(d) = @ d(w:) . (12)

The outcome of this encoding procedure is a func-

tion ¢(d) that maps a text to the vector space H.

3 Theoretical analysis

We divide our theoretical analysis into two main
components: compression and encoding, based on
the compression HDC model (Figure 1) and the
previous section. These components are supported
by intuition, assumptions and theorems in the fol-
lowing subsections.

3.1 Compression

In this section, we present our compression analysis
separately for TF-IDF and LDA-based approaches.
The original TF-IDF and LDA statistics were in-
troduced by (Aizawa, 2003) and (Blei et al., 2003),
respectively.

3.1.1 TF-IDF part

We analyze the TF-IDF score ts(w;, D) as a ran-
dom variable. The randomness stems from the
frequency f; ; and the number of documents N,
containing the word w;. The frequency f; ; is re-
lated to the number of occurrences n; ; of word w;
in document d; as n; j = f; j|d;|. We can represent
the documents schematically as:

dj:wl...wl...wM...wM. (13)
N——

1,5 M, j

Thus, each document can be considered as a ran-
dom vector (11,5, 12,5, ..., nar,;). To proceed with
our analysis, we make the following assumptions:
Assumption 1 (Poisson-like distribution and in-
dependence across documents). 7o model the TF-
IDF distribution, we assume that the number of
occurrences n; j of word w; in document d; are
independent of the document d; and follows a dis-
tribution Dist()\;), where:

i ) 1—f(>\7?);C a
(niy = k) = f(Ai)ﬁ’

k=0;

k>0. 14

Here, f()\;) is an auxiliary function introduced to
make our theoretical analysis tractable and ensure
a monotonically growing TF-IDF approximate es-
timate, prioritizing words with larger \; for encod-
ing.

The next assumption allows us to exclude ran-
domness from the TF part:

Assumption 2 (Average frequency). The TF part
can be fixed at p;, by approximating the average
frequency as:

1< 1 <A i En;
2 oL i
N2 o= N i Y e 09
j=1 Jj=1
M
where E|d;| = Z)\i.
i=1

Thus randomness retains only in the IDF part,
i.e. in N,,. To estimate the number of documents
where word w occurs at least once, we have:

N
Ny => 1(w e dy),

=1

(16)

which is a sum of N ii.d. Bernoulli variables
Bern(gy) with ¢, = 1 — exp(—Ay). Hence, the
expectation of N, is ¢, N, and for the TF-IDF
approximate we obtain:

Awf(Aw)

ts(w) = e E In(1 —e ).

a7

To ensure a monotonically growing TF-IDF approx-
imation, we make the next assumption:

Assumption 3 (Function f(x)). Function f(x) is
defined as:

A e,

f(>\):1+/\ (18)

This results in the following score approximate
expectation:

A2, A

A
ST FES WA

ts(w) = — 19

with the asymptotic behavior ts(w)E|d| = 1 —
3/(2)\) + O(A72), i.e. attaining gradually 1 from
below.

Figure 2 illustrates the true TF-IDF score (1) for
IMDB dataset and our approximate expectation
ts(w) as a function of the parameter estimate Ay,
obtained using the method of moments from the
equation:

N
1 3 Aw f(Aw)
- nw" B —~—
N pt (R TR )

Nw

(20)

(here and below, estimators of random variables are
denoted with a wide hat). As can be observed, ts(w)
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Figure 2: Comparison of the true TF-IDF statistics ts(w)
(1) for IMDB dataset and its approximate expectation
ts(w) (19).

grows monotonically, as does the average true TF-
IDF. However, the true TF-IDF values exhibit a
noticeable vertical scatter (see blue points at A, <
0.4) due to the inherent randomness of the true
TF-IDF score.

The compression method outlined in Section 2.1
selects words with the largest TF-IDF score:

Wy = {w EW: ts(w) > ts([(lfp)M})}- (21)

Here and below X 1) denote is the k-th order statis-
tic of { X (w1), ..., X (wps)}. Due to the complex-
ity of ts(w), we use expectation ts(w) to select the
pM words with the highest values of Xw:

W, ={w; €W : A > Ao}, 22)

where X* = X([(l,p) M) 1s the minimal value /)\\w
of the word w included in set Wp. Although W,
and )7\/\1, are not identical due to the randomness of
ts(w;) and \,,, the monotonicity of ts(w) implies
that both sets will contain the same words, except
for those in the vicinity of A,, where some words
will be randomly added and others excluded from
Wp. To simplify our analysis, we assume that the
sets W, and Wp differ negligibly:
Assumption 4 (Negligible difference in selected
words). We assume that W, and WV, differ negli-
gibly.

For the theorems, we require an informational
inequality (proof follows from Pinsker’s inequality
and Lin, 1991):

Lemma 1. For Jensen-Shannon divergence, we
have:

1 1
1 V2 (@m) + V2 (q,m)] < ISD(plla) < 5V (p,q),
(23)

where V(p,q) = ) |pi — a; andm = (p + q)/2.

We now formulate the theorems (see Ap-
pendix A.1.1 for the proof).

Theorem 1 (TF-IDF compression). Based on as-
sumptions -4, we have the consistent estimators

for CR, JSD(p||q) and ROUGE-F1:

— W, /Xw
CR = Zwew”g(A ) : (24)
ZwEWg()\w)
_ 2CR
JSD = win | =—
(pllg) [Zp n<CR+1>
wEWp
ln2 ~ 1 Z/)\w 2
+5mD Put g [ > Aln( A) , 29
%)GW/W\,, 2 weW, CR 1+CR
ROUGE-F1 = 2 "R (26)
CR+1
where g(z) = 2*/(1 + z) and p, =
9 Aw)/ D 9(Aw).
wew

Theorem 2 (Quantile criteria). Under assump-
tions 1-4, the TF-IDF compression model with
p-quantile criteria has the following bounds from
Table 1.

3.1.2 LDA part

We now examine the LDA compression procedure.
For a fixed topic ¢, the distribution of words is a
Dirichlet random variable, ®; ~ Dir(«), where «
is a vector of parameters (av,...,ans) (see Blei
et al., 2003, for details). As outlined in Section 2.1,
we define the set:

Wip ={wi €W : ®rw > P (fa—pym) I (27)

where @, ,, is the probability of word w belong-
ing to topic . To determine the distribution of
Q4 (1(1—p)Mm1)> We need the marginal distributions
of q)t,wi .

Lemma 2. If® = (®q,...,Pp) ~ Dir(a), then
its marginal distributions are beta distributed ran-
dom variables:

M
d;, ~ Beta (ai, Zak — ai> .

k=1

(28

This lemma allows us to identify and general-
ize the object of our interest. Applying the same
conceptual approach as in the TF-IDF part, we fo-
cus on the quantile value of the (®;1,..., P vr),
where each ®; ; is distributed as in (28).

The model has an additional parameter o, which
we set to (0.5, ...,0.5), implying that we are un-
sure about word significance in topic ¢:
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Assumption 5 (Non-significance).
(0.5,...,0.5).

Under Assumption5, we have a set of
Beta(0.5,0.5[M — 1]) random variables. Using
the same expectation approach as in the TF-IDF
case, we focus on estimating E®; (. To proceed,
we use the following lemma (see Arnold and Groen-
eveld, 1979, for the proof):

(0% =

Lemma 3. For iid. random variables
X1, ..., X, with mean | and variance o2, we have
the following inequality:
n—=k k-1
—0 A SEXp —n<o Py (29)
For X ~ Beta(a, [3), we have:
« -1

= =M 30
F= 018 ) (30)

2 aff
= = 31
M CEN R R ey

M-1 o,

s ) M G2

we can estimate the bounds of

EQy (11-p)n1)-

Before proceeding with the theorems, we clarify
the distribution of the number of occurrences. Un-
like the TF-IDF model, where we calculated n; ;
directly, in the LDA model, we operate with ®; ;
values. Therefore, we assume:

Hence,

Assumption 6 (Poisson distribution). For each
topic t, we assume that the number of occurrences
of each word w; in a document d; are independent
random variables following the Poisson distribu-
tion:

di = wi...wp (33)
———

vt,1~Pois(Py 1C)

wWnh .. - WM 5

v, m~Pois(®y pC)

where vy ; is the number of occurrences of word w;
in a document d; belonging to topic t.

This assumption is quite strict, as it assumes
a constant C that regulates the number of occur-
rences of each word in the document, and that this
constant is the same for all topics. As we argue
below, we use it to estimate the number of words
in a document on a given topic.
__ Given a matrix of words in topic probabilities
®; ., we formulate the following theorems:

Theorem 3 (LDA compression estimators). Un-
der assumptions 5-6, we have asymptotically-

unbiased estimators for CR, JSD(p||q), and

ROUGE-F1:
— T_ ™ &\) w
CR = Zt—; tz“’ewpa b (34)
Zt 17t Zwew
2CR
JSD (pllq s Dy ln
=33 | 58 <CR+1>

1 & By 2
*22”[2 an( )

t=1 weEW
In2 ~
D DL D DK T (35)
t=1  weW\W,
ROUGE-F1 = 2 — CR (36)
CR+1

with m, defined by Eq. (7).

Theorem 4 (LDA compression bounds). Under
assumptions 5—6, the LDA compression model with
p-quantile criteria has the following bounds from
Table 1.

3.2 Encoding

To prove the applicability of our proposed CHDC
approach, we now turn to encoding implications
and focus on estimating the quality of document
analysis based on an average document size. As in
the previous section, we consider documents as a
bag of words (13). Consider now two documents,
di and dy. Given the binary HDC encoding, we
map our documents to the ¢(d;) and ¢(dz), ac-
cording to the rules from Section 2.2. As pointed
in (Kanerva, 1988), the HDC model should distin-
guish the vectors ¢(d;) and ¢(d2), which means
that:

(¢(d1), #(d2)) — 0

with D — oo (here (., .) denotes the standard Eu-
clidean dot-product). To estimate the effect of the
encoding under fixed D, we propose to consider:

(37

P((¢(d1), ¢(d2)) = €D), (38)

where D is the vector-space dimension, € is small
parameter that characterize distinguishability, ¢ is
the encoding function, mentioned before. Notice
that the ¢(d) is a random vector, since we use a ran-
dom binary HDC encoding. Therefore, we need to
be sure that the probability of P({¢(d1), ¢(d2)) >
eD) is low.
Let’s rewrite the dot-product as follows:

(39)

D D
(¢(dr), p(d2)) = Z¢1,i¢2,i = me
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Swew 9Gw) Swew 9Cw) 4 Lpm T mam]t, Te 1+ CRuin 1+ CRmax
2p . 1 ~ 52 52 . 1 ~ CRmin . CRmax
-4 R e Gkl LS [+ T 3 ST | R G

Table 1: Bounds for the performance metrics: compression rate (CR), Jensen-Shannon divergence (JSD), and
ROUGE-F1 score, under TF-IDF (Theorem 2) and LDA (Theorem 4) compression.

where X; are dependent Bernoulli-type ran-
dom variables taking values in {%1}, with
’Yi(Xh ve 7Xi—17 Xi_|_1, ceoy XD) = ]P)()(z =
1{X1,...,Xp}\ Xi). Unfortunately, we can’t di-
rectly apply known techniques due to the possible
dependency of the {X;}2 |. However, we propose
the following lemma to overcome this problem (for
proof, see Appendix A.2):

Lemma 4. Assume {X;}; are dependent ran-
dom variables with Bernoulli-type distribution and
P(X; = 11Xi,,...,Xi,) < p. Then there are
{Y}}; independent Bernoulli variables with P(Y; =
1) = p and we have:

D D
P (ZX > 5D> <P (ZY > 5D> . (40)
i=1 i=1

The given lemma allows us to consider X; as in-
dependent random variables with the same bound y
on its probability. To estimate the value of probabil-
ity in (38), we propose using the following lemma
(see Chernoff, 1952, for proof):

Lemma 5 (Chernoff bound). For a sum of indepen-
dent random variables X = Z X;, we have:

7

. —ta tX;
P(X >a) < tlr>1(f) [e HIEe ] . 41)

To justify the model, we formulate the following
theorem (for the proof, see Appendix A.2):

Theorem S. The probability (38) is upper bounded

by:
P({(¢(dr), #(d2)) > D) < F(D,v,¢),  (42)
where:
1. The upper boundary:
InF(D,e,7) = %1 —¢)ln {1_77 1 J_rﬂ
~Dn [”E] . @3)
2y

2. The Bernoulli probability v satisfies the in-
equality:

1 1 \d| 11 2
_ < = -~ = P
2<7_2+<WWﬂ>md 2 "\ 7 @Y

where |d| = E|d;| is the average length of
the document, the round brackets denote the
binomial coefficient, and the asymptotical ex-
pansion in the r.h.s is obtained using Stirling’s
approximation.

The function F' attains a maximum value of 1
when € + 1 = 2v. As we move away from this
line, the function rapidly declines, with the decline
becoming sharper as D increases. This implies that

2
<2, —.
= ]

For example, in the IMDB dataset, compression
for p = 0.1 from an average document length of
122 words to 100 words increases € by a factor

of approximately 1/122/100 ~ 1.1, just slightly
worsening distinguishability.

(45)

4 Experiments

To verify our theoretical results, we propose a two-
stage experimental setup, focusing on compression
effect estimation and encoding results.

4.1 Compression analysis

We explore TF-IDF and LDA text compression
techniques using Algorithm 1 (see A.4) applying
it to IMDB reviews (Maas et al., 2011), AG News
Dataset (Zhang et al., 2015), and arXiv dataset
(Clement et al., 2019). Figure 3 (see A.3) presents
the results, comparing direct calculations of the
three metrics (CR, JSD and ROUGE-F1) with
their theoretical expectations for different quantile
parameters p. The green bounds show the possi-
ble ranges of metric scatter due to the randomness
of word distributions (Theorems 2 and 4). The
three upper panel rows demonstrate that TF-IDF
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TF-IDF LDA
D é\p=0.01 gp:O.l gp:l é\p=0401 gp:OAl gp:l
256 0.17+0.02 | 0.13+0.01 | 0.12+0.01 | 0.16 £0.02 | 0.13£0.01 | 0.12£0.01
1024 | 0.174+0.02 | 0.13+0.01 | 0.12+0.01 | 0.16 £0.01 | 0.12£0.01 | 0.12£0.01
4096 | 0.17£0.02 | 0.13+0.01 | 0.12+0.01 | 0.16£0.01 | 0.12+0.01 | 0.12+£0.01
16384 | 0.17+0.02 | 0.12£0.01 | 0.11+0.01 | 0.16 £0.01 | 0.12+£0.01 | 0.11 +£0.01

Table 2: Encoding analysis for TF-IDF and LDA compression techniques using the IMDB dataset. The table shows
average scalar product values for dictionary compression parameters p = 0.01, 0.1, and 1 (|d| = 60, 100, 122,

respectively) and vector space dimension D.

compression accurately captures all three metrics
across all datasets and different values of p, be-
cause the relevant variables are directly observed
and the assumptions are reasonable. In contrast,
the three lower panels show that the LDA compres-
sion estimators perform worse, likely because the
underlying distributional assumptions do not fully
correspond to the actual distributions.

4.2 Encoding analysis

To validate the results in Section 3.2, we analyze
how the encoding procedure impacts the distin-
guishability of randomly selected documents using
the IMDB dataset. This dataset, which comprises
two classes, simplifies our analysis (Algorithm 2)
while still revealing key insights. We use Monte
Carlo simulations with 100 iterations for the alpha-
bet A and 100 iterations for document sampling
(pairs from different classes), resulting in 10000
total iterations. Table 2 presents estimates of the
parameter €, defined as:

& =D E[(¢(d1,p), d(d2.p))] (46)

where dy , and da, are randomly selected docu-
ments from different classes after compression, and
p is the compression parameter. The table shows re-
sults for p = 1 (no compression, |d| ~ 122 words),
p = 0.1 (medium compression, |d| ~ 100 words),
and p = 0.01 (high compression, |d| ~ 60 words).

The estimates &,, are similar for TF-IDF and
LDA compression techniques, decreasing approx-
imately with the square root of the average doc-
ument size |d| and remaining within 20% of the
theoretical upper boundary (45).

5 Discussion

This paper introduces a novel approach to ad-
dress dimensionality concerns in Hyperdimen-
sional Computing (HDC) by adding compression.
We propose a model that combines TF-IDF or LDA-
based compression with binary HDC to mitigate
the curse of dimensionality. Section 3 presents the

core concepts, and Section 4 provides experimen-
tal results validating our approach. Our method
demonstrates that significantly reducing the encod-
ing space of the initial dictionary only slightly com-
promises class distinguishability in classification
tasks. Specifically, reducing the dictionary by 10
times increases the distinguishability parameter by
10%, and reducing it by 100 times increases the
parameter by 40%, while still maintaining a low
value (far from 1).

Theorems 1 and 3 provide estimators that ac-
curately estimate the necessary parameters, with
TF-IDF compression showing particularly low er-
ror and LDA offering slightly better explainability
in encoding analysis (see Table 2).

Despite our numerical results aligning with the-
ory, we identify two drawbacks that warrant further
research and development in this field:

1. We observe that the bounds provided in The-
orems 2—4 are not sufficiently tight. Because
these bounds are estimated using the distribu-
tion properties of the datasets, it is difficult to
obtain tighter bounds for the given metrics.

2. The encoding effect diminishes with increas-
ing vector space size D. This effect, explained
by Theorem 3.2, is due to the upper boundary
function F' becoming concentrated in a nar-
row region near the line e +1 = 2y as D
increases, which reduces the confidence inter-
vals of the estimates &, without lowering the
estimates themselves.

Our results provide several insights into the ap-
plication of TF-IDF- and LDA-based compression
techniques and demonstrate the potential of Com-
pression HDC for broader practical application to
empirical problems, where noise significantly hin-
ders data compression and classification.
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A Appendix / supplemental material

A.1 Compression analysis

In the given section, we provide the theoretical
justification of the analysis provided in the paper
before. The first part of the upcoming appendix
correspond to the TF-IDF and LDA theories.
A.1.1 TF-IDF part

Lemma 1. From Theorem 3 in (Lin, 1991) we have:

1
I1SD(pllg) < §V(p, q)

Using definition of JSD and Pinsker inequality:

15D(pl|q) = % [Drr(pllm) + Drr(gllm)] >

LV m) + V(g m)

Now, we are ready to move to the proofs of the
theorems.

Theorem I-Theorem 2. 1. Follow the definition
of CR, we have:

cr - N2l Bl
%Zj |d|j Eld|

Based on the model in Assumption 1 we have:

)\2

E|d| =
ST

(47)

Notice that after the compression procedure, we
leave only the words from W,; hence, given the
(47), we have:

ZwGWp g()\w)

CR ~ ,
ZwEW g()‘w)

2
1+
Theorem 1.1 by using the consistent estimator (20)
for )\, and using Slutsky’s theorem.

Also, we easily obtain the bounds for Theo-
rem 2.1 for CR:

where g(z) = . We obtain the result of the

)

oM mingew, g(xw) Mmaxwewp Q(Xw) (48)
> 9(w) > 9(hw)

2. Using the Jensen-Shannon divergence defini-
tion and Lemma 3 we have:

3SD(ll0) = 3 [Dics(pllm) + D (allm)]

where p = {py} and ¢ = {q}, defined in
(5). Notice that based on Assumption 1we have the
following form for p,, and q,,:

Nw Tw

Pw = 775 quw = 77,7 49)
|d] ||

Hence we have CRp,, = ¢q,,. Next, we can easily
find the consistent estimator for p,,:

~

D
SRS
because of Slutsky’s theorem and consistent esti-
mator for \,,. Now, using the definition of Dy :

pu]
Dir(pllg) = pwlog ((T) 7

and previous properties: CR xp,, = g, and g, = 0
forw e W\ Wp we obtain the results.
For the bounds in Theorem 2 we use Lemma 3.
3. ROUGE-L score. Here, we focus on the
classical text compression score. ROUGE-L has
three components to analyze:

(50)

(5D

E|L
1. Precision: P = |LCS|
E,|d|
2. Recall: R = E|LCS|
Epld|
R-P
3. F- 1 =2
score RiP

Notice that our procedure preserves the order,
hence E|LCS| = E,|d|. Hence, we have the fol-
lowing:

1. Precision: P =1

2. Recall: R = CR

CR

3. F- F1=2
score CR+1

Now, since f(x) = 1 is increasing for x >
x

0, we proved our bounds.

A.1.2 LDA part
Theorem 3-4.

]E !
1. Notice that CR ~ il

Eld]’

hence using As-

sumption 6

M M T
Eld| =Y Evi=> Y mC®,,,
=1

i=1 t=1
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where 7 - probability of document’s topic is t.

Hence using the

M ~
R = ZZ‘:1 Zwewt,tp 7Tt‘1)t,w7

M —~
Doic1 2w Tt Prw
N
N Z Zt.d; We obtain the consistent

J=1
estimator of the CR.

The upper bound can be obtained as follows:

CR—Zﬂ't Z (I)wty

’wEWp t

where 7, =

where @, ; ~ EX;), j corresponding number of
order statistics and X = {X1,..., X/} sequence
of Beta distributed r.v. as in 2. Hence using the

Z m = 1, we can proceed with the Lemma 3 to
t

obtain:
— V2o M —i
CRzp-r : (52)
i=[(1-p)M]
—_— < y J—
CR < (p Y3 E—— 1) (53)
i= F(l p) M

This leads us to the following:

T <CR < p+pyV2(M—1)
- P

2. We want to examine the value of the:

Z T ISD(pt, Gt )

JSD(pl[q) =

where p; ; N, Zf”ztd and g ;

7j=1
N, Z 1l j#t.d;- Under assumption Assumption 6,

7j=1
we have:

= f;/fl=1/cr

Therefore, we have: CR x p;; = g;;. Also, we
have:

DPti/qti

~ C x ét,i

P
Pti == ~_x — (I)t,i — Pt
Zk C X (pt’k

hence using Slutsky’s theorem and consistent es-
timators for 7; and p; ;, ¢; ; we have the consistent
estimator.

Bounds for JSD are obtained as in the proof of
Theorem 2, using the definition (6)

3. The same idea as in the proof of the Theo-
rem 2 works here.

A.2 Encoding analysis

In the given section, we provide the theoretical
justification of the encoding analysis, provided in
the paper.

Lemma 4. Let’s consider ui,...,up indepen-
dent uniform distributions on [0, 1]. Denote Y; =
1(u; < p), then {Y;}; are independent. Here we as-
sume 1(...) € {£1}, to satisfy the Bernoulli-type
distribution of Xj;.

Notice that P(X; =
¢ =P(X;

1) = P(u; < ¢;), where
= 1|Xy,...,X;_1) and thence:

D D
X; <Y:>IPZX >eD) <IP><ZY>5D)

i=1

Theorem 5.

Probability estimation part.

In the given appendix, we justify the ideas pro-
vided in the encoding part in the theory section.
Notice that we aimed to consider the given proba-

bility:
P({¢(d1), ¢(d2))

D
P (ZX >eD | =%
=1

Using the Lemma 5, we can obtain:

>eD) =

. _ D
b g e )

where X is a Bernoulli random variable with pa-
rameter y and values in {+1}. Hence, we have:

. e _in\D
b g e )

= inf L(t)

t>0

To find the minimum of the L(t), we need to

derive the first-order condition:
d

SL(t) =0

This is equivalent to:
(v(e* = 1) + 1)

>0, sincey < 1

X ((v=1)(eD+ D) —

e*(eD — D)) =
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(1—=9)D(e+1) =vD(1 —¢)e* =

1 1—~1 1
tmin = = In |: yo* E:| =clIn C(e)C(7)
v 1l—c¢

2 2 N——
C(e)

After rearranging, we have:

exp [—D(s In/C(e,~)

1—y

_ln(p C(s,’y)—i—m))}:

Cley)HV2

exp [—Dln (1 —V—FVC(&,V))] =

(e-1)/2
1(l1—vy1+4c¢ 1+e¢
e —DIn |z |—2
P n<2{ v 1*5} Y >

*x

Hence, this probability decreases with increasing
D or by managing the expression in scopes. Simple
algebra shows that for the same level of D and ¢,

we can increase the expression +x by increasing the

1
~ value after the critical point 7. = ; 8.

Compression connection part.

Next, we aim to connect the encoding analysis
with the compression part. We provide the follow-
ing explanation. Consider the following relation-
ship:

v =P(prigei =1) =7+ (1-7)°

where ¢; is the i-th position of the vector-
encoding of randomly generated document d.
Notice that:

||

:Y =P Sign Z ¢Z,] =1 =

j=1

M
P | sign | > #{wildiw, | =1,

k=1

Vi

where the support of the v; is determined by the
M
all possible sums of Z +#{wy}. The behavior of

k=1

this sum is quite unpredictable, but we can say that
the given distribution is symmetrical. To estimate
P(signv; = 1) we will consider the probability of
n = P(v; = 0). Hence (by symmetry), we have:

.1 7
7 - 5 + 57
i.e., we cut half of the probability from the left tail

of the distribution and add it to the right one. We
propose the following estimation of the 7:

”§<ﬁ%05ﬂ

This bound is easy to obtain assuming v; ~
|d|
Z v;, where v; is independent Bernoulli r.v. with
i=1
values 1 and equal proabilities.

Based on the CR definition, CR x|d| = |d'|,
hence for compressed object the value of n will be
bounded by:

CR |d| 1
”§<memO2®d

The RHS is increasing with the decreasing of the
CR. As aresult, we have:

1 dl \ 1
2+me02d

A.3 Additional results

In the given section we provide the figures, pro-
viding a comprehensive compression analysis com-
paring TF-IDF and LDA techniques across three
distinct datasets (IMDB, AG News, and arXiv).
The analysis evaluates three key metrics - Com-
pression Ratio (CR), Jensen-Shannon Divergence
(JSD), and ROUGE-F1 scores - as functions of
dictionary compression quantile p, with results
plotted against their theoretical estimators. The
green shaded regions represent confidence inter-
vals around the estimated values, while the black
dots indicate the true theoretical values for com-
parison. Both TF-IDF (top three rows) and LDA
(bottom three rows) methods show varying perfor-
mance patterns across the different datasets, with
the estimation curves generally tracking well with
their corresponding theoretical benchmarks.
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Figure 3: Compression analysis for TF-IDF (top three rows) and LDA (bottom three rows) techniques. The results
compare the compression ratio CR, Jensen-Shannon divergence JSD, and ROUGE-F1 scores, as functions of the

dictionary compression quantile p, with their theoretical

A.4 Experiment algorithms

Here, we describe the algorithms referenced in the
main text and used throughout the experimental
section. For both of the central components of the
paper — the analysis of compression-based repre-
sentations and the evaluation of statistical bounds —
we provide clear pseudo-code that can be directly
translated into practical implementations. The goal
of presenting the algorithms in the appendix is to
give the reader a transparent view of how the theo-
retical quantities are computed in practice, bridging

estimators across the IMDB, AG News, and arXiv datasets .

the gap between abstract definitions and experimen-
tal procedures. Each algorithm is written in a way
that emphasizes the logical flow of operations, start-
ing from the input dataset, applying compression or
transformation, and proceeding to the estimation of
key quantities such as divergences, bounds, and er-
ror measures. By doing so, we aim to highlight that
the computational steps are straightforward and re-
producible, and that they can be adapted to other
datasets or models with minimal modification.
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Algorithm 1 Clusterization statistics collection

Input: Dataset X, compression model feomp €
{tf-idf, LDA}, puaiues list of possible compres-
sion parameters.
Return: D), dictionary of statistics.
Dy« {}
for p in pyaiyes do
Xc — fcomp(Xap)
17}0 — Stats(X.,p) {Calculate statistics
based on Theorems 1 — 4 with X}
Y, « TrueValues(X.,p) {Calculate true
values based on definitions in Section 3.1.}
D,p] + (171,, Y,) {Save the bounds and esti-
mators for the given value of p}
end for

Algorithm 2 Encoding statistics collection

Input: Dataset X, dimension size D, epochs
number of epochs of Monte Carlp, compression
model feomp € {tf-idf, LDA}, pyaiues list of
possible compression parameters.

Return: F the list of encoding statistics

E

foriin[1,...,epochs] do
®(A) «— U({£1}4*) {Generate random
vectors}

€p « {p : 0} {Dict for interesting values of
p}
for jin[1,...,epochs] do
for p in pyaiyes do
llydIQ — fcomp(d1>p)7 fcomp(d%p)
{Compress the documents}
&Y, ¢y + o(d}), p(dy) {Encode the doc-

uments }
/ /
~ ~ ¢
lp] = 2l + 120
end for
end for

Ep[p] = €plp|/epochs { Average the value of
dot-product}
E=EUSE,
end for
E = (mean(FE),std(E)) {Average and get std
of all estimators}
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Abstract

Traditional Emirati Arabic, a culturally rich and
linguistically distinct dialect, remains underrep-
resented in modern automatic speech recog-
nition (ASR) systems. This paper addresses
the gap by introducing a curated speech cor-
pus derived from heritage broadcasts and liter-
ary sources, and by evaluating the performance
of state-of-the-art ASR models on this low-
resource dialect. We examine the zero-shot and
fine-tuned performance of five pre-trained mod-
els—Wav2Vec2, XLS-R, Whisper, and Mas-
sively Multilingual Speech (MMS)—on our
traditional Emirati Arabic dataset. Our re-
sults show that fine-tuning improves both Word
Error Rate (WER) and Character Error Rate
(CER), with MMS achieving the best results
post-adaptation. Through detailed error analy-
sis, we highlight challenges posed by dialectal
morphology, phonology, and lexical variation,
and propose targeted adaptations for dialect-
specific ASR. This work establishes a founda-
tional benchmark for traditional Emirati ASR
and contributes to the broader goal of preserv-
ing linguistic heritage through speech technol-

ogy.
1 Introduction

Automatic Speech Recognition (ASR) technolo-
gies have achieved remarkable performance in high-
resource languages such as English and Mandarin.
However, their effectiveness diminishes sharply for
low-resource languages and dialects, particularly
those with significant phonological and morpholog-
ical variation. Arabic presents unique challenges
in this regard, being a highly diglossic language
with numerous regional dialects, many of which
are underserved by current ASR systems.
Traditional Emirati Arabic is one such di-
alect. Rooted in the oral traditions of the United
Arab Emirates, it retains linguistic features from
Bedouin, coastal, and mountain communities that
are increasingly overshadowed by Modern Stan-
dard Arabic (MSA) and urban Gulf variants. This

Kentaro Inui
Mohamed bin Zayed University of Al
Abu Dhabi, UAE

kentaro.inui@mbzuai.ac.ae

Shady Shehata
University of Waterloo
Ontario, Canada

shady. shehata@uwaterloo.ca

dialect is not only linguistically distinct but also
culturally significant, encoding idiomatic expres-
sions, heritage knowledge, and regional identity.

Table 1: Linguistic Features of Traditional Emirati Di-
alect

Feature Type Example from | Description

Transcript

Phonological
a > (Chaih),

~ pronounced
as /ch/ (instead
of /j/); conso-
nant reduction
from ¢a L (ma
huwa)

Morphological
Prefix o for
future  tense;
Gulf-specific
plural verb
conjugation
Heritage terms
for “our fam-
ily”, “elders”,
“neighbors”,
“our friends”

Ay, Oslath,
€99

Lexical .
La, onds U,
5, e

Syntactic
Use of 5»9¢—
(yawm) for con-
ditionals; con-
tracted demon-

strative _giJla

Discourse Markers
Filler word

L"’\_.'_J ; Gulf
expression

Js-b meaning
“immediately”

S Jsb e

Despite its value, traditional Emirati Arabic has
been largely ignored in computational linguistics.
Existing ASR systems are ill-equipped to handle its
unique phonetic and lexical traits. To address this
gap, we develop a dedicated speech dataset sourced
from the Alsanaa (Dalmook, 2021) program and
related literary content, and evaluate how modern
ASR models perform on this data.

In this paper, we present:
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* A curated traditional Emirati speech corpus
with standardized transcription and prepro-
cessing

* A comparative evaluation of five leading ASR
models (Wav2Vec2, XLS-R, Whisper Small,
Whisper Medium, MMS) in zero-shot and
fine-tuned scenarios

* Insights into model-specific strengths and lim-
itations for dialectal Arabic ASR.

2 Related Work

2.1 ASR for Arabic and Dialectal Variants

ASR systems have achieved remarkable progress
for major world languages, yet robust solutions
for Arabic dialects-particularly traditional Emirati
Arabic-remain limited due to unique linguistic fea-
tures and data scarcity. The Emirati dialect, with its
distinct phonological and grammatical character-
istics, poses significant challenges for ASR, espe-
cially given the lack of dedicated speech resources.
Addressing such dialectal diversity is crucial for
both technological inclusion and cultural preserva-
tion.

Recent advances in self-supervised learning
(SSL) have enabled substantial improvements in
ASR for low-resource languages and dialects. Mod-
els such as wav2vec2, HuBERT, and WavLM have
demonstrated strong performance gains when fine-
tuned on limited labeled data (Zhao and Zhang,
2022). Cross-lingual models, including XLS-R
and Meta’s MMS, further extend these capabili-
ties, with XLS-R achieving impressive results even
with as little as five minutes of training data in In-
donesian language experiments (Sakti and Titalim,
2023). For Arabic, multilingual SSL models gener-
ally outperform monolingual approaches, as shown
by Younis and Mohammad (2023), who report that
fine-tuned XLS-R and MMS models achieve lower
word error rates (WER) compared to monolingual
baselines.

End-to-end models such as Whisper have also
gained traction for their ability to generalize across
languages. Talafha et al. (2023) benchmarked
Whisper on multiple Arabic dialects, finding that
while zero-shot performance often surpasses fully
fine-tuned XLS-R models, significant drops occur
for previously unseen dialects, including Emirati.
The VoxArabica system further demonstrates the
potential of SSL-based models for both dialect iden-

tification and ASR across a wide range of Arabic
varieties (Waheed et al., 2023).

Hybrid approaches that combine deep learning
with traditional phonetic modeling have also been
explored. Dhouib et al. (2022) provide a systematic
review of Arabic ASR research, highlighting the
predominance of MSA-focused studies and the un-
derrepresentation of dialectal variants. Novel archi-
tectures, such as CNN-LSTM with attention mecha-
nisms, have shown promise for dialectal ASR, with
Alsayadi et al. (2022) reporting improved WER on
SASSC and MGB-3 datasets.

2.2 Low-Resource ASR Techniques

Transfer learning is a key strategy for improv-
ing ASR in low-resource settings. Elmahdy et al.
(2014) utuilize MSA data to enhance recognition of
under-resourced Arabic dialects, achieving notable
WER reductions for Qatari Arabic. Data augmen-
tation methods, including SpecAugment, synthetic
speech, and self-training, have also proven effec-
tive. Bartelds et al. (2023) demonstrate that self-
training and TTS-based augmentation consistently
reduce WER for minority languages. Similarly,
Khudhair and Talib (2022) show that combining
data augmentation with language modeling yields
competitive results for Arabic ASR.

Innovative data creation pipelines further address
resource scarcity. Yeroyan and Karpov (2024) in-
troduce a workflow for generating ASR datasets
from audiobooks, enabling practical ASR develop-
ment for languages with limited training data.

2.3 Datasets and Benchmarking

The development of high-quality datasets is foun-
dational for Arabic ASR research. The Casablanca
dataset covers eight Arabic dialects, including Emi-
rati, and provides comprehensive annotations for
benchmarking (Talafha et al., 2024). Mixat offers
Emirati-English code-switching data, highlighting
the challenges of bilingual ASR (Ali and Aldar-
maki, 2024). SADA (Alharbi et al., 2024) and
QASR (Mubarak et al., 2021) further expand re-
sources for Gulf and multi-dialect Arabic speech,
supporting supervised training and a range of
speech and NLP tasks.

Efforts to benchmark code-switching ASR are
exemplified by Hamed et al. (2022), who introduce
a new Egyptian Arabic-English corpus and demon-
strate the benefits of combining DNN-hybrid and
Transformer approaches. Despite these advances,
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challenges remain in achieving consistent evalua-
tion and broad dialectal coverage.

2.4 Gaps and Motivation

While recent work has advanced ASR for Arabic
and its dialects, systematic evaluation and adapta-
tion of state-of-the-art pre-trained models for tra-
ditional Emirati Arabic remain largely unexplored.
This study addresses this gap by benchmarking and
fine-tuning leading ASR models on Emirati speech,
aiming to identify effective strategies for robust
dialectal ASR and contribute to the broader field of
low-resource speech technology.

3 Dataset

To develop and evaluate ASR models for tradi-
tional Emirati Arabic, we curated a dialect-specific
speech corpus sourced from Alsanaa (Dalmook,
2021) program, broadcast by Aloula station and
supported by the Hamdan bin Mohammed Her-
itage Center. The dataset includes 102 MP3 audio
files (approximately 4 hours) and their correspond-
ing transcriptions, extracted from alsanaa book, a
heritage literature book authored by Abdullah Bin
Dalmook. These recordings capture authentic Emi-
rati Arabic speech, preserving the dialectal nuances
and linguistic patterns unique to the region.

Given the lack of existing Emirati ASR corpora,
we aligned the audio and text manually, converting
them into structured plain-text pairs. The dataset
was partitioned into 80% training, 10% validation,
and 10% test splits. Notably, the audio is spoken
by a single male speaker, limiting speaker diversity
but preserving dialectal authenticity.

lis ) dad! sVl o
Osblar ol oadsY s e
Okl 81 ) amg oAl O
(58 Vs o late audl Yy
e ey L

Figure 1: Sample transcription

Preprocessing included:

* Diacritics and punctuation removal to stan-
dardize transcriptions

* Audio cropping (removal of non-speech in-
tro/outro segments)

* Mono conversion and resampling to 16 kHz
* Normalization to standardize amplitude levels

This dataset captures phonological, morphologi-
cal, and lexical features unique to traditional Emi-
rati Arabic and serves as a foundational resource
for dialect-specific ASR. The full dataset and pre-
processing pipeline are available online.'

4 Models and Training

We adopt a comparative experimental framework
to evaluate the performance of state-of-the-art ASR
models on traditional Emirati Arabic. Our ap-
proach consists of two main stages: zero-shot eval-
uation and fine-tuning.

4.1 Model Selection

We evaluated five pre-trained ASR architectures,
each fine-tuned or adapted for Emirati Arabic or
closely related dialects:

Wav2Vec 2.0 (eabayed/wav2vec2emiratidialict;)

Wav2Vec 2.0 is a self-supervised learning frame-
work for speech recognition that learns audio
representations via a contrastive task, enabling
strong performance with limited labeled data
(Baevski et al., 2020). Its architecture combines a
convolutional feature encoder with a Transformer
network, allowing effective modeling of phonetic
and lexical features in low-resource settings. The
model used here is further adapted to Emirati Ara-
bic using audio from regional media, resulting in
315 million parameters and improved recognition
of dialectal nuances.

XLS-R (jonatasgrosman/wav2vec2-large-xlsr
-53-arabic) XLS-R extends Wav2Vec 2.0 to
the multilingual domain, pre-trained on over
436,000 hours of speech in 128 languages (Babu
et al., 2021). This enables robust cross-lingual
transfer and strong performance on low-resource
dialects. The Arabic-adapted variant, with 315
million parameters, is fine-tuned on Common
Voice 6.1 and the Arabic Speech Corpus, making it
well-suited for Emirati Arabic (Babu et al., 2021).

Whisper Small
(ayoubkirouane/whisper-small-ar) Whisper
is a transformer-based encoder-decoder ASR
system trained on diverse multilingual data

"https://github.com/MahaAlBlooki/
alsanaa-emirati-dataset
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(Radford et al., 2022). The small Arabic model
(241M parameters) is fine-tuned on the Mozilla
Common Voice v11 dataset for Arabic, and further
adapted for Emirati speech, balancing efficiency
with accuracy.

Whisper Medium
(Seyfelislem/whisper-medium-arabic) This
variant of Whisper, with 763 million parameters,
is optimized for Arabic speech recognition.
Fine-tuning on Emirati data enhances its ability to
transcribe dialectal speech, leveraging the robust
encoder-decoder architecture of Whisper.

MMS (facebook/mms-1b-all) Massively Mul-
tilingual Speech (MMS) is a self-supervised model
trained on over 1,000 languages, including Arabic
dialects (Zhang et al., 2023). With 965 million
parameters, MMS is designed for broad language
coverage and demonstrates strong zero-shot and
few-shot ASR capabilities. While not specifically
fine-tuned for Emirati Arabic, its multilingual train-
ing enables generalization to underrepresented di-
alects.
Each model was evaluated in two modes:

e Zero-shot inference: Direct evaluation with-
out further training on our dataset.

* Fine-tuning: Models were adapted to the
Emirati dataset using transfer learning.

4.2 Fine-Tuning Strategy

Fine-tuning involved freezing most pretrained lay-
ers and training only the final layers (e.g., projec-
tion heads and classification layers). The following
configuration was used:

* Optimizer: AdamW with weight decay

* Learning rate schedule: Linear warm-up fol-
lowed by decay

* Batch size: Adjusted per model based on
memory constraints

* Epochs: Trained until validation loss conver-
gence (early stopping applied)

¢ Data augmentation: Speed perturbation and
SpecAugment to improve generalization

¢ Gradient accumulation: Enabled to simulate
larger batch sizes on limited hardware

5 Evaluation

5.1 Maetrics

We use two standard ASR metrics:

* Word Error Rate (WER): Percentage of
word-level errors (insertions, deletions, substi-
tutions).

e Character Error Rate (CER): Measures
character-level discrepancies; useful for mor-
phologically rich languages and dialects.

Both metrics were calculated on the validation
and test splits of our Emirati dataset.

5.2 Evaluation Protocol

All models were tested directly on the test set with-
out any adaptation to measure out-of-the-box gener-
alization. After training, models were evaluated on
the same test set to assess improvements in recog-
nition accuracy.

5.3 Qualitative Analysis

Beyond quantitative metrics, we conducted a quali-
tative error analysis focused on the recognition of
dialect-specific lexical items, morphological trans-
formations (e.g., future tense prefixes), and com-
mon phonological shifts (e.g., hamza deletion, /j/
— /ch/ substitutions).

6 Results

We evaluated the zero-shot and fine-tuned perfor-
mance of several state-of-the-art pre-trained ASR
models-Wav2Vec 2.0, XLS-R, Whisper (small and
medium), and MMS-on traditional Emirati Arabic
speech. Performance was measured using WER
and CER, providing insight into both word-level
and subword recognition accuracy.

6.1 Baseline Performance

In the zero-shot setting in Table 2, Wav2Vec 2.0
achieved the best results among all models, with
a WER of 46.50% and CER of 17.13%. This sug-
gests that its self-supervised pre-training enables
effective generalization to unseen dialects, captur-
ing phonetic patterns even when word-level recog-
nition is challenging. MMS ranked second (WER
67.21%, CER 24.56%), likely benefiting from its
broad multilingual training and explicit support for
Arabic dialects. XLS-R, despite its cross-lingual
design, performed poorly (WER 88.26%, CER
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Model WER (%) | CER (%)
Wav2Vec 2.0 46.50 17.13
XLS-R 88.26 40.37
Whisper Small 93.06 81.02
Whisper Medium | 86.10 75.01
MMS 67.21 24.56

Table 2: Average WER and CER on the whole dataset
in baseline inference

40.37%), indicating potential limitations in its cov-
erage of Gulf Arabic and a significant domain gap
when applied to Emirati speech. Whisper mod-
els showed the weakest zero-shot performance,
with Whisper Small reaching 93.06% WER and
81.02% CER, and Whisper Medium slightly better
at 86.10% WER and 75.01% CER. The high CER
values for Whisper indicate substantial difficulties
at the character level, likely due to mismatches be-
tween the pre-training data and the phonological
characteristics of Emirati Arabic.

Qualitative analysis of model errors revealed that
models often misrecognized dialect-specific vocab-
ulary and morphemes, with XLLS-R and Whisper
in particular producing transcriptions influenced
by other Arabic dialects. For example, XLS-R fre-
quently substituted Emirati morphemes with those
more typical of Egyptian or Levantine Arabic, re-
flecting gaps in dialectal representation in the pre-
training corpus.

These results highlight the challenges of recog-
nizing traditional Emirati Arabic with existing ASR
models and underscore the importance of dialect-
specific adaptation. The findings establish a bench-
mark for future work and inform model selection
and adaptation strategies for low-resource dialectal
ASR, with broader implications for Arabic speech
technology research

6.2 Fine-Tuned Performance

Table 3 summarizes the impact of fine-tuning each
ASR model on the Emirati Alsanaa dataset. Fine-
tuning led to substantial performance gains for
some architectures, while others showed limited
or even negative adaptation.

MMS exhibited the most pronounced improve-
ment, with WER dropping from 67.21% to 41.04%
and CER from 24.56% to 13.34%. This 26.17 and
11.22 percentage point reduction in WER and CER,
respectively, highlights the effectiveness of MMS’s
multilingual pre-training in facilitating rapid adap-

tation to low-resource dialects. After fine-tuning,
MMS outperformed all other models, establishing
a new benchmark for Emirati Arabic ASR.

Wav2Vec 2.0 also benefited from fine-tuning,
achieving a modest reduction in WER (from
46.50% to 44.30%) and CER (from 17.13% to
15.96%). The relatively small improvement sug-
gests that the model’s self-supervised representa-
tions already captured much of the dialectal varia-
tion present in the dataset, resulting in stable per-
formance before and after adaptation.

In contrast, XLS-R’s performance deteriorated
after fine-tuning, with WER rising from 88.26% to
89.78% and CER from 40.37% to 42.31%. This de-
cline may indicate overfitting to the limited training
data or challenges in adapting broad cross-lingual
representations to specific dialectal features, a phe-
nomenon noted in low-resource ASR adaptation
literature.

The Whisper models showed mixed results.
Fine-tuning Whisper Small led to further degra-
dation, with WER exceeding 100% (100.04%); it
seemed like the model was encountering a repeti-
tion or loop behavior at the end of some transcrip-

tions. For instance, in one of the transcriptions,
4w g5, a gibberish prediction of what is supposed to

be lgzls5 (cheek-kissed) is repeated many times
consecutively, which isn’t in the original text. This
type of repetition has artificially inflated the WER
of Whisper Small model. On the other hand, the
CER increased to 75.53%, suggesting substantial
insertion errors and a mismatch between model
architecture and the Emirati dialect under data-
scarce conditions. Whisper Medium showed only
marginal change, with WER shifting from 86.10%
to 88.60% and persistently high CER, indicating
that additional data or specialized adaptation tech-
niques may be required for effective dialectal ASR
with Whisper.

Overall, these results underscore the importance
of model selection and adaptation strategy for low-
resource dialectal ASR. While MMS demonstrates
strong adaptability to Emirati Arabic, other archi-
tectures may require more sophisticated fine-tuning
or larger datasets to achieve competitive perfor-
mance.

6.3 Error Analysis

A detailed error analysis reveals notable differ-
ences in how each model adapts to traditional
Emirati Arabic, highlighting both architectural
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Figure 2: Sample transcription with decoding repetition

strengths and persistent challenges. Models based
on self-supervised pre-training, such as MMS and
Wav2Vec 2.0, consistently outperformed Whisper
variants, suggesting that phonetic representation
learning is more effective for dialectal ASR than
multitask training approaches.

A key observation is the relationship between
zero-shot and fine-tuned performance: models with
strong zero-shot results (e.g., Wav2Vec 2.0) exhib-
ited only modest improvements after fine-tuning,
while models with moderate zero-shot performance
(e.g., MMS) showed substantial gains. This pattern

Model WER (%) | CER (%)
Wav2Vec 2.0 443 15.96
XLS-R 89.78 42.31
Whisper Small 100.04 75.53
Whisper Medium | 88.60 72.03
MMS 41.04 13.34

Table 3: Average WER and CER on test set after fine-
tuning

underscores the importance of evaluating both gen-
eralization and adaptability when selecting ASR
architectures for low-resource dialects.

Across all models, CER was consistently lower
than WER, indicating that character-level recog-
nition is more robust than word-level recogni-
tion. This discrepancy, especially pronounced in
Wav2Vec 2.0 and MMS, suggests that while pho-
netic patterns are captured effectively, models strug-
gle with accurate word segmentation and lexical
reconstruction. Integrating language models during
post-processing may help mitigate these issues.

Architectural differences also affected data effi-
ciency. MMS demonstrated high data efficiency,
achieving significant improvements with limited
Emirati data, whereas XLS-R and Whisper re-
quired more extensive adaptation to yield compa-
rable results. Notably, fine-tuned Whisper Small
frequently truncated longer utterances, omitting
culturally salient content and narrative details. Ad-
ditionally, repetition errors were observed, with
the model generating nonsensical word sequences,
artificially inflating the WER.

Dialectal specialization remains a significant
challenge. Even after fine-tuning, high error rates
persisted-particularly for Whisper Small and XLS-
R, which are primarily pre-trained on Egyptian or
MSA data. These models often substituted Emirati
morphemes with forms from other dialects, reflect-
ing insufficient representation of Gulf Arabic in the
pre-training corpus. Furthermore, inconsistent dia-
critization in XLS-R outputs, despite ground-truth
normalization, introduced additional errors.

These findings emphasize the need for careful
model selection, larger dialectal datasets, and po-
tentially pre-training strategies tailored to Gulf Ara-
bic. The persistent performance gaps highlight the
ongoing challenge of developing inclusive ASR
technologies for underrepresented dialects, under-
scoring the importance of both technical innovation
and investment in dialectal language resources.

7 Limitations

This work faces several limitations, one of which
is dataset diversity. The dataset includes a single
speaker (male), limiting phonetic and demographic
diversity. This may bias model performance toward
that speaker’s vocal and dialectal traits. Another
limitation is duration. With only 4 hours of au-
dio, the dataset is relatively small, constraining
model generalization. Additionally, dialect cover-
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age is limited. While rich in traditional features,
the dataset does not fully represent all sub-dialectal
varieties across the UAE (e.g., eastern vs. western
tribal variants). Moreover, the evaluation scope
of WER and CER focused on transcription accu-
racy, without assessing downstream tasks, such as
speaker identification or sentiment analysis.

Future work should explore speaker diver-
sity, cross-dialectal robustness, and larger-scale
datasets.

8 Conclusion

This paper presents the first ASR benchmark for
traditional Emirati Arabic, a linguistically and cul-
turally significant but technologically underserved
dialect. By compiling a novel dataset and evaluat-
ing state-of-the-art ASR models in both zero-shot
and fine-tuned settings, we demonstrate the value
of transfer learning and domain-specific adaptation.

Our results demonstrate that self-supervised
models with strong multilingual pre-training, par-
ticularly MMS, achieve superior adaptability and
performance after fine-tuning, while other archi-
tectures exhibit varying degrees of success. The
persistent gap between character- and word-level
accuracy underscores the need for improved mod-
eling of dialectal lexical and phonological features.

This work contributes to Arabic dialectal ASR
research and highlights the role of speech technol-
ogy in preserving oral heritage. We release our
dataset and preprocessing tools to encourage fur-
ther research on Gulf Arabic ASR.

9 Ethics Statement

This research adheres to the ACL Ethics Policy.
All audio recordings used in this study were pub-
licly available and sourced from cultural heritage
broadcasts and literary materials produced by the
Hamdan bin Mohammed Heritage Center. Proper
credit has been given to the original author, Abdul-
lah Bin Dalmook, whose work was used with the
intent of preserving linguistic and cultural heritage.

The dataset features speech from a single speaker
who is a public broadcaster and author. No person-
ally identifiable or sensitive information is included.
The goal of this research is to support inclusive
technology and cultural preservation, not surveil-
lance or misuse.

We acknowledge the potential risks of dialec-
tal ASR systems being misused for sociolinguistic
profiling or discrimination. To mitigate this, our

work is released with a cultural preservation focus,
encouraging ethical use in academic and heritage
documentation contexts.
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Abstract

This paper proposes a novel method to control
the style of the dialog system’s utterances ac-
cording to the user’s level of intimacy with the
system. Specifically, the dialog model gener-
ates responses in a polite style when the user
exhibits a low level of intimacy with the sys-
tem and in a casual style when the user’s inti-
macy is high. The proposed model consists
of two submodels: the Intimacy Interpreter
and Response Generator. The Intimacy Inter-
preter generates an embedding that represents
the user’s intimacy. This model is trained by
contrastive learning using an intimacy-labeled
dialog corpus. The Response Generator accepts
a dialog context and an intimacy embedding,
and then generates a response in an appropriate
style. We apply two loss functions to fine-tune
a Large Language Model (LLM) to train the
Response Generator. The results of automatic
and human evaluations show that the proposed
method outperforms the baselines in terms of
style control in response generation.

1 Introduction

In recent years, free dialog systems that allow users
to converse about any topic have attracted consid-
erable attention (Khatri et al., 2018; Higashinaka
et al., 2021; Dinan et al., 2020). These systems
need to have a comfortable conversation with the
user and establish a long-term friendly relationship
to facilitate conversation between the user and the
dialog system (Ram et al., 2018).

To establish friendly relationships, humans
change their speech style based on their level
of intimacy and social connections with others
to facilitate smooth communication (Wardhaugh
and Fuller, 2021; Hovy, 1987; Silverstein, 2003).
This ability is referred to as “style control” here-
after. The style control should also be considered
in conversations between a human and a system
(Kageyama et al., 2018). Consequently, a free di-
alog system is required to have the capability for

style control.

The goal of this research is to develop a dialog
system that dynamically adjusts styles according to
the user’s feelings toward the dialog system. A typ-
ical example of style control is that a speaker uses
formal/polite expressions or informal/casual ex-
pressions by the relationship with their partner (Aa-
pakallio, 2021; Liu and Kobayashi, 2022). Miura
et al. (2024a) reported that speakers tend to use a
polite style when intimacy with a partner is low and
a casual style when intimacy is high. Therefore,
we aim to dynamically recognize the user’s level
of intimacy through their dialog history and enable
the dialog system to flexibly use a polite or casual
style when intimacy is low or high.

This paper proposes a model that accurately iden-
tifies the user’s level of intimacy with the dialog
system and generates responses in an appropriate
style. An intimacy interpreter is introduced to ob-
tain a user embedding that represents the user’s
intimacy, and then this embedding is fed into a re-
sponse generator, which is obtained by fine-tuning
a Large Language Model (LLM), as a soft prompt.
It enables the dialog system to appropriately con-
trol polite and casual styles.

The contributions of this paper are summarized
as follows.

* We develop a dialog system that dynamically
captures the user’s intimacy and adjusts re-
sponses to be either polite or casual style ac-
cordingly.

* We propose a new framework to obtain an
abstract representation of the user’s intimacy
and incorporate it into a dialog model for style
control.

* The effectiveness of the proposed method is
demonstrated through automatic and human
evaluations.
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2 Related Work

Methods for generating responses in a particular
style have been actively studied. Niu and Bansal
(2018) defined such a task, created a model for
identifying a speech style, and proposed a method
for generating responses in a given style (e.g., a
polite or casual style). Gao et al. (2019) proposed
a model that generated responses in a given style
while maintaining consistency with the dialog con-
text by sharing the latent space between conver-
sational modeling and style modeling. Zhu et al.
(2021) assumed that conversational modeling and
style modeling are contradictory, and proposed a
method to separate the representations of content
and style within the shared latent space proposed
by Gao et al. (2019), where each is represented
in different dimensions of the latent space. Zheng
et al. (2021) proposed a method for automatically
constructing a dialog corpus containing utterances
in a given style, which was used to train a dia-
log model that generated responses in line with the
specified style. Specifically, they trained a Seq2Seq
(Sequence-to-Sequence) model that transformed a
sentence into an equivalent sentence in the speci-
fied style using a text corpus of that style. A new
dialog corpus was constructed by converting the
style of utterances in an original dialog corpus us-
ing the trained style conversion model. Yang et al.
(2020) proposed STYLEDGPT to fine-tune a pre-
trained language model to obtain a dialog model
that generates utterances in the target style. They
designed loss functions for fine-tuning, which were
based on a language model of a given style and a
classification model for identifying the style of an
utterance.

In recent years, several studies have leveraged
the text generation capabilities of rapidly advancing
LLMs to address style control. Konen et al. (2024)
controlled a style in text generation by adding style
vectors to the activation of hidden layers in an LLM.
Two types of style vectors were proposed: the
training-based and activation-based style vectors.
The former trained the style vectors using the cross-
entropy loss between the output of the LLM for
the empty input token and the target sentence. The
latter employed the activation vectors of the layers
in the LLM for the given target sentences to obtain
the style vector. Li et al. (2024) created a dialog
corpus containing utterances in 38 different style
categories using an LLM, allowing fine-grained
styles to be handled in dialog system development.

First, a prompt including the name of a target style
is given to the LLM to generate a description of
the style and an example sentence. Next, the style
description and the example sentence were given
to the LLM to generate a rationale that the style of
the sentence was consistent with the given style de-
scription. Finally, the style name, style description,
example sentences, and style rationale as well as
a plain context were provided to the LLM to gen-
erate a response to the given context in the target
style. The constructed dialog corpus consisted of
the pairs of the input contexts and the generated
responses in different styles.

Although the aforementioned studies can gener-
ate natural responses in a specific style, they are
limited to considering a single style in style control.
In contrast, this study aims to dynamically control
multiple styles based on the user’s state.

Miura et al. (2024b) proposed a dialog system
that flexibly switched between two different styles,
the polite style and the casual style, according to
the changes in the user’s intimacy with the dialog
system. The dialog model was trained to gener-
ate responses in the polite style when the user’s
intimacy is low and in the casual style when the in-
timacy is high, by referring to the intimacy estima-
tion model and two language models of the polite
and casual styles. In addition, the style discrimina-
tion model was employed to train a dialog model so
that the probability of the polite (or casual) style of
generated responses, which was estimated by the
style discrimination model, became high when the
user’s intimacy was low (or high). This learning
method succeeded in achieving better style control
capability than general dialog models. However,
there is much room to improve the accuracy of style
control due to the poor performance of the intimacy
estimation model incorporated in the dialog model.
Therefore, this study aims to develop a model for
interpreting the user’s intimacy by creating user
embeddings, so the model could accurately capture
the user’s intimacy and appropriately perform style
control.

3 Proposed Method

3.1 Overview

Figure 1 shows an overview of the dialog model
that changes the style based on the recognized
user’s intimacy. Given a dialog history X, the pro-
posed system generates Y which is a response to X.
Here, X is a conversation between a system S and
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Y =54 | That’s good to hear. |
*
( Response Generator (LLM) )

*
8-0U0O0UU0ud:-.-

soft
prompt

token sequence

T

S1: It's been a while.

U1: Yes, it's been a month.

S2: How is work going these days?
Uz: Not bad.

S3: Have you gone on that trip?

Us3: Yes, 1 did and it was a lot of fun.

X={51,U1,52,U2,53,Us}

Intimacy
Interpreter

XY ={U1,Uz2U3}

Figure 1: Overview of proposed method

a user U, denoted as X = {S1,Uy, - -, S, Un},
while Y is the next utterance of the system, i.e.,
Y = Sn+1-

The proposed system consists of two submod-
els. The first is the Intimacy Interpreter. It takes
the user’s past utterances X" = {Uy,- - -, U,} as
input and interprets the user’s degree of intimacy
with the dialog system. The output of the Intimacy
Interpreter is an intimacy embedding, a vector rep-
resentation of the user’s intimacy. The second is the
Response Generator, which is based on an LLM. It
takes the dialog history X = {S1, U, -+, Sn, Upn}
as input and produces a response Y as output. At
the beginning of the input token sequence, a soft
prompt of the user’s intimacy is added. This is a
single token embedding derived from the intimacy
embedding. Specifically, the size of the intimacy
embedding produced by the Intimacy Interpreter
is changed to that of the token embeddings of the
LLM by the Fully Connected Layer (FCL). It is
expected that the response is generated in a casual
style when the user’s intimacy is high and in a
polite style when it is low. The length of the dia-
log history is 3 in Figure 1, but it can be changed
arbitrarily.

The following sections describe the details of
the Intimacy Interpreter and Response Generator,
respectively.

3.2 Intimacy Interpreter

The Intimacy Interpreter aims to capture the com-
plex and vague nature of the user’s intimacy by
representing it as an abstract vector. Hereafter, the
Intimacy Interpreter is denoted as Pr;(V|X"). The

model takes as input the n consecutive utterances
of a user in a dialog context, X* = {Uy, - - -, Uy},
and outputs a vector V' representing the user’s inti-
macy with the dialog system.

This study applies contrastive learning to train
the Intimacy Interpreter. An intimacy-labeled dia-
log corpus D;,, where each dialog is labeled with
a 5-point Likert scale indicating the level of inti-
macy of a speaker with a dialog partner, is used for
contrastive learning. The details of this corpus are
described in 4.1.1. The user’s n consecutive utter-
ances in D;,, are extracted as a sample (X}, I L;),
where I L; denotes the five-scale intimacy label as-
signed to the sample X*. Two samples X;* and X
are randomly taken from the training data. If the
intimacy labels I L; and I L; assigned to these two
samples are the same, the parameters of the Inti-
macy Interpreter are updated so that the embedded
vectors V; and V; become similar. If /L; and IL;
are not equal, the parameters are updated so that V;
and V; are different. Specifically, the contrastive
loss for training Prr(V|X™) is defined as Equation

(1).
1 — simeos(Vi,V;) it IL; = IL;

|IL;—IL;|-max(0, simeos(Vi, Vj))
if IL; # IL;

L= (D

Simeoes(+, +) represents the cosine similarity be-
tween the two sample embedding vectors. When
IL; # ILj, the loss becomes large when the dif-
ference between IL; and IL; is large by giving
|IL; — IL;| as the weight. The Intimacy Inter-
preter is obtained by fine-tuning the pre-trained
BERT (Devlin et al., 2019) using this loss.

3.3 Response Generator

The Response Generator is denoted as
Pra(Y|V',X), where X is the dialog his-
tory, V'’ is the soft prompt derived from the
intimacy embedding (V'), and Y is the response to
be generated. This subsection describes the details
of training the Response Generator.

3.3.1 Loss for Style Control

As described earlier, the Response Generator is
obtained by fine-tuning an LLM. Following the
study of (Miura et al., 2024b), two loss func-
tions, the intimacy-aware word-level loss and the
intimacy-aware sentence-level loss, are used to
fine-tune the LLM so that the Response Gener-
ator generates responses in the appropriate style
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(polite or casual) according to the user’s intimacy.
Preliminary The intimacy-labeled dialog cor-
pus D, described in subsection 3.2 is also used
to train the the Response Generator. In addition,
two style corpora are prepared to handle polite and
casual styles in response generation. One is Cj,
which consists of polite style sentences, and the
other is C';, which consists of the casual sentences.
Before the training of the Response Generator,
an intimacy estimation model P(I|X™) is trained
in advance. This model predicts I, the user’s level
of intimacy with a dialog system, given the user’s
past n utterances (X*) as input. In our model,
I is defined as either “low” or “high”. The inti-
macy estimation model is pre-trained using D;,,.
Note that this is a different model from the Inti-
macy Interpreter Pr;(V|X"). The Intimacy Inter-
preter produces the intimacy embedding, while the
intimacy estimation model is a binary classifier.
Intimacy-aware Word-Level Loss Two style
language models are pre-trained. A polite style
language model P,,(7) is trained using Cy,, and
a casual style language model P,,(T) is trained
using C,. These models evaluate how likely the
given sentence 7' is in the polite or casual style.
They are employed to calculate the polite style
word-level loss L%, and the casual style word-level
loss LY, respectively, as shown in Equation (2).

m
L def .
Ly, = dpyllby) € Y Drr(pyllpy). @)
i=1

where s denotes the style, either po (polite) or ca
(casual). This loss is computed for each dialog
sample (X, Y) in the training data. Y is denoted
as a token sequence {y1,- - -, ym}. Let py =
{Py., - *» Py, } be the distribution of the predicted
probability of the next word given by the dialog
model Pra(Y|V', X), and py = {Py,, - Dy, }
be the probability distribution predicted by the
style language model Ps(7T"). Dk, is the Kullback-
Leibler divergence of the two probability distribu-
tions, indicating whether the words generated by
the dialog model follow the specified (polite or
casual) style.

As shown in Equation (3), the intimacy-aware
word-level loss is defined as the weighted sum
of two losses, where p(I=low|X™") is the weight
for Lty and p(I=high|X") is the weight for LS.
p(I=low|X") and p(I=high|X™") are the probabil-
ities of the low intimacy and high intimacy classes,
respectively, predicted by the intimacy estimation

model.

Lin

p(I=low|X") - LP? 4 p(I=high|X") - L’
3)
It is expected that this loss will cause the Re-
sponse Generator to generate more polite style
tokens when the intimacy is low, and more ca-
sual style tokens when the intimacy is high.
Intimacy-aware Sentence-Level Loss  First, we
train a style discrimination model P’(S|T’) that
classifies the style S of a sentence 7'. The style .S
is either polite or casual. The style discrimination
model is pre-trained from training data in which ut-
terances in C), are samples of the polite class and
utterances in C, are samples of the casual class.
Let Y be the response generated by
Pra(Y|V',X). The style of Y is identified
using the style discrimination model P’(S|T"), and
the p(S=polite|Y") and p(S=casual|Y), the pre-
dicted probabilities of the polite and casual classes
respectively, are calculated. The intimacy-aware
sentence-level loss L is defined as the weighted
sum of the logarithms of these probabilities, as
shown in Equation (4).

Ln déf—p(]=10w|X“) -log p(S=polite|Y")
—p(I=high| X™) - log p(S=casual|Y') (4)

This loss will contribute to making the Response
Generator to generate polite (or casual) style sen-
tences when intimacy is low (or high).

3.3.2 Negative Log-likelihood Loss

The two losses described in 3.3.1 are designed to
maintain style consistency. A model fine-tuned
solely by these losses may exhibit inconsistency
between the dialog context and the generated re-
sponse. Therefore, a common loss for training
dialog models, the negative log-likelihood loss de-
fined as shown in Equation (5), is also used. The
value p(Y |V, X') denotes the probability of the
ground-truth response Y in the training data being
generated by the Response Generator for a given
soft prompt of user’s intimacy V' and the dialog
context X.

Lypr, = —log p(Y|V', X) ©)

3.3.3 Training Objective

The loss for training the Response Generator, L p,
is a weighted sum of two losses for style control
(L and L) and a loss for content generation
(Lnr1) as follows:

Lp=Buw Ly +Bs- L+ Byrr - Lo (6)

53



The weights 3., 85, and Sy are hyperparame-
ters.

3.4 Training Details

Our entire dialog model, shown in Figure 1, is
trained based on two losses: L; and Lp. On the
one hand, the parameters of the Intimacy Interpreter
Prr(V|X™) are updated using L;. On the other
hand, the parameters of the Response Generator
Pra(Y|V', X) and the FCL that transforms the
dimension of the intimacy embedding are updated
using Lp.! The Response Generator is based on
the LLM, which is computationally expensive to
fine-tune. Therefore, LoRA (Hu et al., 2022) is
applied to fine-tune the Response Generator.

4 Experiments

4.1 Datasets

4.1.1 Dialog Corpus with Intimacy Label

The JID corpus (Miura et al., 2024a) is used as the
intimacy-labeled corpus D;,,. This corpus consists
of recorded and transcribed conversations of about
10 minutes between two speakers. For each con-
versation, the intimacy labels of each of the two
speakers are annotated using a five-point Likert
scale. The number of subjects who participated in
the dialogs is 19, the number of dialogs is 54, and
the total number of utterances is 6,984.

The 54 dialogs in the JID corpus are divided
into three subsets: a training set of 33 dialogs, a
validation set of 9, and a test set of 12. As men-
tioned in section 3, the dialog model accepts the
preceding dialog context of the user and the system,
X ={51,U1, - ,Sn,U,}, as input and generates
the subsequent response S, 11 as output. Hereafter,
the pair of a dialog context and its corresponding
response, denoted by (X, Sy,+1), will be referred
to as “response instance.” The first n X 2 utterances
and the next utterance in a dialog are extracted as
(X, Sp+1)- One speaker in the corpus is designated
as the system and the other as the user. This proce-
dure is then repeated with the utterance shifted one
by one to obtain multiple response instances. In
this experiment, the context length is set to n = 3.
The statistics of the dataset are shown in Table 1.

4.1.2 Style Corpus
Two style corpora of the polite and casual style,
Cpo and C¢,, are required to train style language

'The blue modules in Figure 1 indicate the models trained
with the loss Lp.

Training Validation Test
Dialog 33 9 12
Response Instance | 4,032 921 1,284

Table 1: Statistics of Dataset

RDIFBXMIHL T, BLMBE L THEEERL TS LS,
(For the following dialog context, generate a response as B.)

[Dialog Context]

Figure 2: Template of Zero-shot Prompt

RDIFFXMIH L T, BLEBE L TIHEELERL TSESL,

EEL, ADBICIIK EEEHIL T, BEEIBOEEIATELIZALT,
BEEDE RN 2 FNERX A NTIEEELEHLL TS S,

(For the following dialog context, generate a response as B. Guess the level
of intimacy A has with B and generate a response in a polite style if the
level of intimacy is low and in a casual style if the level of intimacy is high.)

[Dialog Context]
Figure 3: Template of Style Control Prompt

--------- 1st step
CDIED AL BICII BEE I
(From this dialog, the level of intimacy that A feels towards B is)

[Dialog Context]
--------- -2nd step
RDIFXMIHL T, BLEIBBE L TIHSEEFLERL TS LS,
77L. [ [output of the first step] | & )T BEREBEX T, MEEIEL
BRI TELRZANT, BEESBOELIN S 2 FNEI AN TIEEE
EHLTSEZL,
(With the interpretation of [output of the first step] , generate responses
in a polite style if the level of intimacy is low, and in a casual style if the
level of intimacy is high.)

[Dialog Context]

Figure 4: Template of Two-step Prompt

models and a style discrimination model. The Ke-
iCO corpus (Liu and Kobayashi, 2022) is used as
Cpo. This corpus contains utterances using various
types of honorific expressions in Japanese. Besides,
Cyq 1s constructed by extracting utterances from
conversations between speakers who know each
other in the BTSJ Japanese Natural Conversation
corpus (Usami, 2021). C), and C, contain 7,324
and 13,521 utterances, respectively.

4.2 Experimental Settings

The following methods are compared in the experi-
ment.

* Zero-shot prompt (Zero-shot) This method
uses an LLLM as a dialog model without fine-
tuning or prompting for style control. We only
give an instruction for generating responses
to the input dialog context. The details of the
prompt are shown in Figure 2.

» Zero-shot prompt for style control (Style
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control prompt) This method uses a pre-
trained LLM as a dialog model, where a
prompt is given to instruct the LLM to gen-
erate utterances taking the style control into
account. The details of the prompt are shown
in Figure 3.

Two-step prompt (Two-step) This method
uses a pre-trained LLM as a dialog model
using two sequential prompts. We first instruct
the LLM to infer the user’s level of intimacy,
and then to generate the system’s response in a
polite or casual style according to the inferred
level of intimacy. See Figure 4 for details.

STYLEDGPT This is a model where the style
is controlled by STYLEDGPT (Yang et al.,
2020). Specifically, we fine-tune the LLM to
generate utterances that are consistent with
the style of the entire JID corpus. The style
language model is trained on training data
from the JID corpus. The style discrimination
model, which distinguishes whether an utter-
ance is in the style of the JID corpus, is trained
using utterances from the JID corpus as pos-
itive samples and sentences from Japanese
Wikipedia as negative samples.

Ours,yto This is our proposed method de-
scribed in section 3.

Oursgolg Our proposed method where the
gold intimacy labels in the JID corpus are used
instead of the prediction by the intimacy es-
timation model. When calculating the losses
in Equation (3) and (4), p(/=low|X*) and
p(I=high| X") given as follows.

IL
-5 O
L

5 ®)

p(I=low|X") =
p(I=high| X*) =

1L represents the five-level intimacy label as-
signed to X in the JID corpus. This model
evaluates our approach of considering the
user’s intimacy for the appropriate style con-
trol under the ideal condition where the user’s
intimacy is correctly predicted.

4.3 Implementation Details

4.3.1 Intimacy Interpreter and Response
Generator

The Intimacy Interpreter described in subsection
3.2 is obtained by contrastive learning based on

the Japanese BERT model?, which was pre-trained
on large-scale corpora of Japanese Wikipedia and
Japanese CC-100.

The Response Generator described in subsec-
tion 3.3 is obtained by fine-tuning 1lm-3-3.7b%,
which is an LLM based on Transformer (Vaswani
et al., 2017) and has been trained on various large
Japanese datasets. We also adopted 1lm-3-3.7b as
the LLM for other baseline dialog models.

For the hyperparameters during training, the
learning rate for the Intimacy Interpreter is 1le 6,
while that for the Response Generator is 1e =%, For
both models, the batch size is 4 and the number
of epochs is 5. These values were optimized on
the validation set according to the StyCor criteria,
which will be defined in subsection 4.5. The Adam
optimizer was used to learn the models.

The hyperparameters (,,, Bs, and 8y r, in Equa-
tion (6) are set to 0.5, 1, and 0.005, respectively.
These values are determined so that the influence
of the three types of losses is uniform. Specifically,
we calculate the average of the absolute value of
each of the three losses in the training data and then
determine the weight of each loss as the approxi-
mate inverse ratio of the average to the minimum
value.

4.4 Other Submodels

Several submodels are pre-trained before training
of the Intimacy Interpreter and Response Genera-
tor.

The style language models Pp,(7") and P, (T")
are obtained by fine-tuning GPT-2. We use the pre-
trained model japanese-gpt2-medium*, which has
been trained on a large Japanese dialog dataset. All
utterances in Cy, and C, are used to train Py, (7")
and P, (T), respectively. The learning rate is set to
5e—4, the batch size to 4, and the epoch to 20. The
Adam optimizer is used to fine-tune the models.

The style discrimination model P’'(S|T) is ob-
tained by fine-tuning the Japanese BERT model?.
A total of 20,575 utterances are used, comprising
7,274 polite utterances in C), and 13,301 casual ut-
terances in C,. The learning rate is set to le 7, the
batch size to 128, and the epoch to 10. The Adam
optimizer is used to fine-tune the model. The ac-
curacy of the style discrimination model was 99%
when it was evaluated on the 100 test utterances

“https://huggingface.co/tohoku-nlp/bert-large-japanese-
v2

3https://huggingface.co/llm-jp/llm-jp-3-3.7b

*https://huggingface.co/rinna/japanese-gpt2-medium
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(50 polite and 50 casual) that were not used for
training.

The intimacy estimation model P(I|X*") is
based on the Japanese BERT model®>. The JID
corpus is used for fine-tuning the BERT. The learn-
ing rate is set to 5e5, the batch size to 1, and the
epoch to 10. The Adam optimizer is used to train
the model. The accuracy of the intimacy estimation
model on the test data was 69%.

4.5 Evaluation Criteria

Both automatic and human evaluations are carried
out to assess responses generated by various meth-
ods.

4.5.1 Automatic Evaluation

In the automatic evaluation, the quality of the gen-
erated responses is evaluated from three perspec-
tives: relevance, diversity, and style. The relevance
is measured by BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). Specifically, the similarity
between a generated response and a ground-truth
response is evaluated using BLEU-1, BLEU-2,
ROUGE-1, and ROUGE-2. The diversity is mea-
sured by Distinct-1 (Dist-1) and Distinct-2 (Dist-2),
following the experiment of (Li et al., 2016). The
style is evaluated by measuring “Style Correlation’
(StyCor). The StyCor metric is defined as the cor-
relation between the probability of the casual style
p(S=casual|Y") and the ground-truth level of the
intimacy.> This correlation is high when both the
predicted probability of the casual style and the
level of intimacy are high, or both are low (i.e., the
probability of the polite style is high and the level
of intimacy is low).

[l

4.5.2 Human Evaluation

The quality of the generated responses is evaluated
by humans. To reduce the burden on evaluators,
STYLEDGPT and Ours,y, are excluded from the
human evaluation. A hundred response instances
are randomly taken from the test set of the JID
corpus. The dialog context X of each response in-
stance is used as input, and a response is generated
using the dialog models. Subjects evaluate these
responses from the following three perspectives.

* Style Control: Does the response align with
the appropriate style for the relationship be-
tween the two speakers? Annotators are also

The five-scale score is normalized to values between 0
and 1.

instructed to read the dialog context and guess
the relationship between the speakers.

» Relevance: Is the content of the response rele-
vant and consistent with the context?

* Fluency: Is the response natural, fluent, and
free of grammatical errors?

For each item, the quality of the responses was
assessed by giving a score on a 5-point Likert scale
from 1 (inappropriate) to 5 (appropriate). Five na-
tive Japanese speakers participated in the manual
evaluation. Agreement between annotators’ scores
was measured using Fleiss’s kappa (Fleiss and Ja-
cob, 1973).

5 Results

5.1 Results of Automatic Evaluation

The results of the automatic evaluation are shown
in Table 2. The StyCor of Ours,u, and Oursggg
were 0.239 and 0.250, respectively, outperforming
other baseline methods. This confirms that the
proposed method, which adjusts the style based on
the level of intimacy, can effectively control the
polite and casual styles. The decrease of StyCor of
Oursyye compared to Oursgeg may be due to the
low accuracy of the intimacy estimation model.

In the evaluation of the relevance, STYLEDGPT
and our proposed models achieved better BLEU
and ROUGE scores than other baselines, since
these models are fine-tuned using the JID corpus,
which was the same domain as the test data. How-
ever, our models performed slightly worse than
STYLEDGPT. On the other hand, the diversity
(Dist-1 and Dist-2) of all models was high.

Although the BLEU and ROUGE of our method
are worse than those of STYLEDGPT, we think
that these indicators are only for reference in auto-
matic evaluation. BLEU and ROUGE only evaluate
the similarity between the generated and ground-
truth responses, while there could be other appro-
priate responses that are not included in the dataset.
On the other hand, our proposed method clearly
outperforms STYLEDGPT in terms of StyCor, in-
dicating superior style control capabilities.

To sum up, our models can improve the ability of
the style control with a little decrease in relevance.

5.2 Results of Human Evaluation

The results of the human evaluation are shown in
Table 3. The “Score” column shows the average
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Method Relevance Diversity Style
BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 | Dist-1 Dist-2 | StyCor
Zero-shot 0.0483 0.0034 0.0780 0.0044 0.942 0978 | 0.164
Style control prompt | 0.0578 0.0053 0.1014 0.0073 0.965 0.991 | 0.207
Two-step 0.0575 0.0028 0.0932 0.0041 0.946 0.984 | 0.162
STYLEDGPT 0.2520 0.1571 0.3392 0.2108 0.925 0.935 | 0.171
Ours,yo 0.2067 0.1205 0.2986 0.1725 0.895 0.900 | 0.239
Oursgolq 0.2544 0.1463 0.3390 0.1999 0.925 0.930 | 0.250
Table 2: Results of Automatic Evaluation
Method Style Control Relevance Fluency
Score K P Score K P Score K P
Zero-shot 431 050 1le %[ 413 050 0.086 | 451 0.68 9e 'l*
Style control prompt | 4.34 0.51 9e %% | 422 053 0.553 | 463 072 8¢ T*
Two-step 433 051 6e 5% | 402 044 0.002*% | 449 0.69 2e!2*
Oursgolq 4.61 0.60 - 426 0.54 - 486 0.84 -

Table 3: Results of Human Evaluation. * means p < 0.05.

G, 9

score of the five subjects, while the “x” column
indicates Fleiss’s k. Welch’s test is performed to
verify whether there was a significant difference
in the scores between Oursglqg and other methods.
The “p” column represents the p-value of this sta-
tistical test.

For Style Control, Oursgq received the highest
score. Additionally, significant differences with all
other methods were confirmed. This demonstrates
the effectiveness of the approach proposed in this
study, which considers the user’s level of intimacy
for the appropriate selection of polite and casual
styles. The x value was 0.60, which indicated mod-
erate agreement.

In terms of Relevance, Oursgq achieved the
highest score. However, significant differences
were only observed when compared to Two-step.
The proposed method performed comparably to the
baseline methods in generating responses relevant
to the dialog context.

The Fluency score of the proposed method was
significantly higher than the other models, indi-
cating its superior ability to generate natural utter-
ances.

6 Ablation Study

Table 4 shows the results of the ablation study. The
Ours-SCL is the model where two intimacy-aware
style control losses, L™ and L, are removed from
Equation (6). The Ours-II indicates the removal of
the Intimacy Interpreter, which is almost equiva-

lent to the dialog model presented in (Miura et al.,
2024b).° This model is trained using the gold inti-
macy labels to calculate the loss Lp, so the above
two models are compared to Oursgyq.

The results demonstrated that both the use of
the style control losses and the incorporation of
the Intimacy Interpreter could improve the StyCor
score. Especially, a significant decrease was found
in Ours-SCL, indicating that the intimacy-aware
style control losses are effective in changing the
style appropriately. On the other hand, the contribu-
tion of the Intimacy Interpreter was rather limited.
It should be noted that both the style control losses
and the Intimacy Interpreter could also improve the
relevance and diversity of the generated responses.

7 Conclusion

In this paper, we proposed the novel method to
control the style of a dialog system based on the
user’s level of intimacy. The model that interpreted
the user’s level of intimacy was incorporated into
the dialog model. This Intimacy Interpreter was
trained by contrastive learning using the dialog
corpus annotated with the intimacy labels. Further-
more, based on the LLM, which had an excellent
capability to generate general responses, we ap-
plied two loss functions to improve the model’s
ability to control the style. The results of both au-

®The base LLM:s are different: 1lm-jp-3-3.7b was used in
this paper, while GPT-2 was used in (Miura et al., 2024b).
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Methods Relevance Diversity Style
BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 |Dist-1 Dist-2 | StyCor
Ours-SCL (w/o style control loss) | 0.2105 0.1175  0.2954 0.1697 |0.879 0.889 | 0.200
Ours-1II (w/o intimacy interpreter) | 0.2170 0.1257  0.3086 0.1826 |0.907 0917 | 0.247
Oursgolg 0.2544 0.1463  0.3390 0.1999 |0.925 0.930 | 0.250

Table 4: Results of Ablation Study

tomatic and human evaluations demonstrated that
the proposed method outperformed the baseline
in generating responses in a casual style when the
user’s level of intimacy was high and in a polite
style when it was low.

The proposed dialog model was trained using a
dialog corpus annotated with the speaker’s level of
intimacy. However, the availability of such a corpus
is rather limited, while the construction of new
corpora requires considerable costs. Therefore, it is
essential to explore ways to enable LLMs to acquire
the ability to control the style without relying on the
intimacy-labeled corpus. Another important future
work is to explore new style control frameworks
that do not rely on pre-training the style language
models and/or the style discrimination model.
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Abstract

Currently Large Language Models (LLMs) are
mostly used through a chatbot interface with
the user manually deciding when the system
should respond. In multi-speaker conversations
(e.g., two humans and one robot) it is not clear
who speaks when. We therefore investigate
the ability of LLMs to predict the dialog struc-
ture. First, we frame the task as Next Speaker
Prediction (NSP) and create a multi-domain
test set. Secondly, we build dedicated systems
for the NSP task using LLMs and finally per-
formed automatic and human evaluation. Our
final system matches the human performance
when tested on unseen data and exceeds it on
data of the same domain as the training data.

1 Introduction

In multi-speaker dialogues, it is important for the
participants to know when to speak, as talking at
the wrong time may be irritating for the other speak-
ers and may even hinder the speakers to reach their
goals. It is crucial for dialogue systems to handle
this task well as speaking too often may be annoy-
ing to the user while speaking rarely may seem
unresponsive to the user and opposes the system’s
purpose.

Large Language Models (LLMs) are the core
of modern dialogue systems. Currently they are
mostly used through a chatbot interface where they
only respond after the user sends a chat message.
Here, there is no need for dedicated dialog struc-
ture modeling as the user always decides when
the model should respond. For spoken dialogue
with two speakers, the modeling is not as trivial
as it is not clear when one speaker ends their turn.
For multi-speaker scenarios it is significantly more
challenging when the LLM should respond as the
users could be chatting with each other directly
during the course of dialogue.

i used to live downtown san jose and every once in
a while i just get with garlic and i don’t know if it’s from
gilroy probably not nut i like to think it was so [laugh]
P09: yeah
P09: wow
P12: what are actually some nice places to go around here
cause i’ve moved here recently so [unintelligible]
P09: napa napa is nice
P10: oh
P10: napa is nice [unintelligible]
P12: oh yeah actually i went there last week and they had
uhhh i think sonoma had a hot air balloon festival there
[...] butit’s pretty nice seeing them at sunrise so yeah it
was really beautiful yeah

Annotators’ votes:
P09: 7, 2,P10: 2

Zero-shot LLM: P12
Fine-tuned LLM: P09

Next utterance:
P09: people like to go wine tasting

Figure 1: Example of a part of a dialogue from DiPCo
(Segbroeck et al., 2020). We show the previous utter-
ances, which next speaker our human annotators pre-
dicted, what the LLMs in different setting predicted,
and what the actual next speaker and utterance are.

We model this ability as the Next Speaker Pre-
diction (NSP) task like Wei et al. (2023). We think
it is a suitable proxy task as good performance on
predicting the next speaker should indicate the qual-
ity of the system’s ability to decide the correct time
to actively contribute to the conversation.

We want to investigate multi-speaker dialogue
from multiple domains to test generalization, esti-
mate the performance of LLMs, and find out how
well they have to perform. Therefore, our research
on the NSP task covers the following aspects:

* We create a multi-domain benchmark for the
NSP task utilizing multiple existing dialogue
datasets.

* We run a user study with eleven annotators
to gather a human baseline. This evaluation
gives insights on the ambiguity of the task.
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* We analyze the ability of various size LLMs
to perform the NSP task and build dedicated
models that reach or exceed our estimate of
human performance.

2 Next Speaker Prediction Benchmark

To evaluate how well our approaches perform on
the NSP task, we compile a benchmark consisting
of multiple datasets. Using datasets from multiple
domains enable us to estimate the generalization of
the evaluated systems. Additionally, we collect a
human baseline on subsamples of the datasets to
get an estimate of the human performance on NSP.
While the dialogue structure from the datasets of-
fers a ground truth for the next speaker, we want to
find out if human annotators would consider other
options as equally possible. Also, we obtain an
overview how ambiguous the task is for human
annotators.

2.1 Datasets

For the NSP task, we need datasets of dialogues
where the speaker is denoted for every utterance.
As the following utterance then always determines
which speaker will be the next after the current one,
we can easily model the NSP task. For dialogues
with only two speakers, the NSP task is fairly triv-
ial. Therefore, we only investigated multi-speaker
dialogue datasets.

We use three dialogue datasets for our bench-
mark (Table 1) to cover multiple domains. We
chose these three datasets to cover multiple do-
mains. Also, there is an existing baseline for the
NSP task for MultiLIGHT (ML, Wei et al. (2023)).
The other two datasets both include the type of
noise that a dialogue system would also encounter
in a real-life setting. Additionally, the conversation
domains are realistic settings than ML’s (Table 1).
We use two of these similar datasets as this allows
us to compare how well our approaches generalize
an unseen domain and different noise as DiPCo
includes no training data. The datasets differ in the
numbers of participating speakers in one conversa-
tion, the domain of the conversation (topic, setting),
and the amount of noise in the sense of very short
utterances that introduce no or almost no substance
to the conversation.

ML is a text-only dataset created specifically
for dialogue research. The authors also performed
experiments on the NSP task with at time of publi-
cation current Transformer-based language models

Dataset AMI  DiPCo ML
# Speakers 4 4 3

. . dinner  fantasy
Domain meeting

party  role-play

Noisy yes yes no
# Utterance 12627 3400 9164
# Dialogues 16 5 323
Avg. utts. 789.19  680.00  28.37

Table 1: Properties of the investigated datasets (specific
numbers from the test splits). We list the number of
speakers per dialogue, the topics of the conversations,
if they contain some form of noise (short / interrupting
utterances), and the number of utterances in total, the
number of dialogues, and the average number of con-
secutive utterances per dialogue.

Dataset AMI DiPCo
Speaker 0 32.18 23.93
Speaker 1 26.88  25.75
Speaker 2 23.36 28.04
Speaker 3 18.75 22.28

Table 2: Contributed utterances (in percentage) from
each speaker across all dialogues. For AMI, the speaker
that speaks earlier in the dialogue, seems to have more
dialogue utterances while there seems to be now such
accumulation for DiPCo.

that they fine-tuned on this task. The AMI meet-
ing corpus (Carletta et al., 2005) and the Dinner
Party Corpus (DiPCo) (Segbroeck et al., 2020) are
primarily audio (and video for AMI) datasets from
recorded conversations.

The type of conversations in AMI are meetings
and in DiPCo dinner party talk. Both contain noise
like “Umm”, “Hmm”, and “Yeah” that introduce no
or almost no substance to the conversation in some
cases. While these appear to happen at random
times, these kinds of utterances are also present
in a setting where an LLM gets its input via an
Automatic Speech Recognition system. Also, for
utterances like “Yeah” it is hard to determine if
“Yeah” is just noise or an import acknowledgment
of a previous utterance. So, we only filter out obvi-
ous irrelevant utterances for the DiPCo dataset like
“[Noise]” to reduce the noisiness while keeping
potentially important utterances.

Datasets Statistics In a first step, we investigated
the dataset statistics in order to identify the various
challenges of the datasets.

For example, we analyzed the percentage of con-
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Dataset AMI DiPCo ML

4 91.51 89.66 29.32
8 66.79 49.33 14.04
16 40.53 2042 1348
32 20.71 6.04 1348
64 8.60 0.84 1348

Table 3: Percentage of contexts where at least one
speaker is missing depending on the number of recent
utterances included in the prompt.

tributed utterances per speaker within each dia-
logue to see if one specific speaker speaks signif-
icantly more often which could lead to a bias to
predict that speaker more often as the next one. We
number the speakers ascending by their order of
appearance. For AMI, the speakers that appear ear-
lier in the conversation seem to speak more often.
After qualitative analysis, we concluded that this
is the case because in AMI the person opening the
meeting is also the organizer of the meeting itself.
We saw no such clear trend for DiPCo.

We want to only include the recent dialogue ut-
terances in our benchmark as the dialogues in the
datasets are up to several hundred utterances long
(Table 1) which could overwhelm both human an-
notators and NLP systems. We therefore examined
the number of times where at least one speaker is
missing from our dialogue excerpt to find out in
how many cases the context is missing information
about some speakers. We start with four included
recent utterances and iteratively double the amount
up to 64. For ML, the number does not continue
to decrease after 16 included utterances (Table 3).
This is a result of the fact that in the beginning of
the dialogue, not all speakers have spoken yet. As
the dialogues in ML are short, this situation is quite
common. For the other two, including quadrati-
cally more recent utterances linearly reduces the
number of excerpts with missing speakers. This
shows that very often in a small enough context
window only a subset of the speakers interact with
each other.

2.2 Human Baselines

In a first step, we analyze the difficulty of the task
through a human evaluation. While the dialogues
from the datasets were generated by humans, like
many other Natural Language Processing (NLP)
tasks, the NSP task is also ambiguous. We therefore
collect human data on the NSP task for samples of
consecutive utterances of the test splits of all three

datasets. Our sample size is 63 dialogue utterances
for AMI (0.50% of the full test set), 55 for DiPCo
(2.00%), and 91 for ML (0.96%). As the dialogues
in ML are fairly short, our sample includes three
full dialogues. These sample sizes should in our
opinion capture the natures of the datasets while
also keeping the annotation work at a reasonable
level. The user study involved eleven participants
for each dataset. We average each’s accuracy to get
the human baseline (Table 6).

We included the last 32 utterances and did not
rename the speakers in the prompts. We chose
32 as this number is higher than the number of
utterances in full dialogues for the ML dataset and
is not overwhelmingly large for human annotators.
For the names, we assumed that the annotators
should be able to distinguish the names more easily
with the original ones from the dataset.

Dataset Fleiss’ kappa
AMI 0.17
DiPCo 0.14
ML 1 0.49
ML 2 0.43
ML 3 0.32

Table 4: Fleiss’ kappa for multi-rater agreement on the
samples used for the gathering the human baseline.

We provide the Fleiss’ kappa multi-rater agree-
ment measure (Fleiss, 1971) for each dataset sam-
ple (Table 4). For ML, we show the score for each
of three dialogues that are included in our sam-
ple. The scores low showing the ambiguity of the
task. The difference between ML and the other
two datasets are in our opinion a result of it hav-
ing fewer speakers per dialogue and having less
noisy utterances. Manual inspection and anecdo-
tal evidence from the annotators showed that the
annotators agreed or were sure in their prediction
respectively for some turns (most annotators picked
one speaker) but disagreed or were unsure in their
prediction respectively in other cases (annotators
picked different speakers, no clear “favorite”).

3 Next Speaker Prediction with LLMs

We want to use state-of-the-art technology to build
a next speaker predictor. This leads to LLMs as
they excel on other NLP tasks. Additionally, their
task during the pre-training phase is predicting the
next token which corresponds to predicting the next
speaker when the prompt is a dialogue transcript
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with annotated speakers. This implies that the NSP
task is “natural” for LLMs given their training.

While the authors of ML perform similar experi-
ments, they were with the smaller encoder-decoder
language models R2C2 (Shuster et al., 2022), T5
(Raffel et al., 2020), and BART (Lewis et al., 2020)
which are smaller than today’s models and were
trained on less data and did not receive the exten-
sive post-training of current LLMs. Furthermore,
the authors of ML had to fine-tune these models to
perform this task while current LLMs can be used
with zero-shot prompts.

To model the NSP task as an LLM task, we
prompt the LLMs to predict the next speaker by
utilizing the information we provide (Appendix A):
An instruction for the task and the most recent ut-
terances of the current dialogue as context. Each ut-
terance starts with the corresponding speaker. Each
dataset already contains identifiers for the speakers.
For ML, each speaker has a descriptive name like
“jester””. The other two datasets use string identi-
fiers like “P12” or “MTDO11UID”.

For every dialogue turn we include the last eight
utterances as context for the LLMs and rename
the speakers to the same generic identifier across
all datasets to increase the similarity of the task
across the datasets. We replace them with renam-
ings where each speaker has a pseudonym in the
format of “speaker <number>". ML also includes
descriptions of the character of each speaker and
the location of the dialogue. We did not include
this information to keep the task comparable.

Although LLMs are able to perform on zero-
shot, often specialized models perform better. We
therefore train LLMs supervised on the NSP task
on multi-domain data by mixing the training splits
from the AMI and the ML dataset. We use a bal-
anced mixture (similar number of training data
points) to ensure generalization across domains.
We train with pairs of the prompt used in the zero-
shot setting and the expected speaker from the
datasets, so that the model learns how to map the
recent dialogue turns to the next speaker.

4 [Experiments

We evaluate the LLMs on the test splits of the
datasets, compare them to random and human base-
lines, and perform ablation studies on our modeling
decisions.

We chose next speaker accuracy as our main eval-
uation metrics as this is the most straightforward

metric with the given data. As the distributions of
utterances per speaker are fairly balanced (Table 2),
we did not employ metrics like F;. While accu-
racy is a “hard” metric and does not account for
ambiguity, we assume that the fairly large dataset
size and direct comparison against baselines still
gives a good estimate how well the LLMs (and
especially our fine-tuned one) do for NSP. Nev-
ertheless, we analyze the agreement of the LLMs
with the annotators (section 4.3).

4.1 Setup

We perform all our experiments with models from
the Llama 3 family (Dubey et al., 2024). We use the
3B (3.2. 3B) and 8B (3.1 8B) parameter version for
zero-shot and fine-tuning experiments while we use
the bigger version (3.3 70B) only in a zero-shot set-
ting as fine-tuning this model requires significantly
more compute and the smaller models responded
already very well to fine-tuning.

The fine-tuning data mixture consists of all the
available training data from the AMI meeting cor-
pus and 33% from ML. We use only 33% to bal-
ance the number of data points from each dataset.
DiPCo has no train split. We conduct ablation stud-
ies on all mentioned modeling decisions including
the preprocessing (subsection 4.4). We made these
decisions that impacted our main results during de-
velopment on the basis of the validation sets which
all utilized datasets provide.

4.2 Random Baselines

To compare our results to another baseline, we
present three random baselines. Each is designed to
model two very distinct types of dialogue flow and
a combination of both. These baselines are: One
where the speaker is picked randomly but always
switches after each dialogue utterance (denoted as
always). Then, we assume that the speaker never
switches, so we predict the last speaker to also be
the next speaker (denoted as never). At last, we
model a combination of both where we pick the
speaker completely randomly without excluding
the last speaker (denoted as usually). We run each
method five times and average the results.

4.3 Main Experiments

We differentiate between the results on the full test
sets and the samples for the human baseline.

Results on the full Tests Sets The accuracy
scores (Table 5) for the random baselines illustrate
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Dataset AMI DiPCo ML
Random Baselines

Always 22.10 26.62 45091
Usually 25.17 2521 33.36
Never 3341 19.32 8.91
Zero-shot

Llama 3.23B 2528 25.66 28.10
Llama 3.1 8B  34.88 30.94 4041
Llama 3.3 70B 35.81 3298 52.06
Fine-tuned

Llama3.23B 4591 3691 59.40
Llama 3.1 8B  47.85 3848 59.85

Table 5: NSP accuracy on the full test splits. We com-
pare the accuracy of the random baselines and the Llama
3 models in a zero-shot and fine-tuned setting. Fine-
tuning improves performance beyond the 70B model’s
performance. Even the dataset we did not train on
(DiPCo) benefits from fine-tuning on the NSP task.

what we already saw during qualitative analysis
of the datasets: In the AMI meeting corpus, the
speakers often deliver multiple utterances after an-
other while in the ML dataset the speaker almost
always switches. Llama 3.1 8B performs a bit or
clearly better than the random baselines on AMI
and DiPCo, which highlights the importance of a
multi-domain benchmark. On ML however, sim-
ply randomly picking one of the other two speaker
as the next performs better. The smallest model
we tested (3.2 3B) only manages to predict next
speaker as well as completely randomly picking
one. The bigger 70B model outperforms the ran-
dom baselines clearly on DiPCo and ML. We see
a clear trend that scaling the model size increases
the ability to predict the next speaker.

When fine-tuning 3.1 8B on the task, it signif-
icantly outperforms itself in the zero-shot setting,
the random baselines, and the bigger version. The
performance even improves beyond the 70B model
on the DiPCo dataset, which has no training split
meaning that this dataset is out-of-domain for the
fine-tuned models, and we see generalization for
different domains. The case for 3.2 3B is similar
but with slightly lower scores than 3.1 8B.

Results on the Samples of Tests Sets for Human
Baselines On DiPCo and ML, our collected hu-
man baseline outperforms the random baselines
albeit not all of them by a big margin (Table 6).
For AMLI, it is even slightly below the best tech-
nique (“never”) that assumes the last speaker will

Dataset AMI DiPCo ML
Human 30.88 3322 48.65
Random Baselines

Always 20.63 27.64 4549
Usually 17.78 2691 35.16
Never 32.06 1455 11.87
Zero-shot

Llama 3.2 3B 15.87 21.82 25.27
Llama 3.1 8B 3492 23.64 3297
Llama 3.3 70B 30.16 34.55 51.65
Fine-tuned

Llama3.23B 47.62 40.00 61.54
Llama 3.1 8B  58.73 3455 59.34

Table 6: NSP accuracy on the samples of the test splits
for the human baseline. We compare the accuracy
of the human annotators, random baselines, and the
Llama 3 models in a zero-shot and fine-tuned setting.
Fine-tuning beats human accuracy on the datasets with
training data but also on DiPCo.

always be the next speaker. In the zero-shot set-
ting, the smallest Llama model shows the same
pattern as on the full test sets. The medium LLM
however achieves a higher accuracy on AMI as
the human baseline, while struggling to reach the
random baseline on the other two datasets which
may be specific to these samples. The 70B ver-
sion roughly matches the human performance on
all datasets. The scaling trends we observed on the
full test sets is also present on the samples except
for AMI, where the 70B model underperforms the
8B model.

Fine-tuning the two smaller models shows sim-
ilar effects as we saw on the full test split: The
NSP accuracy is increased greatly compared to the
zero-shot setting and even sightly outperforms the
70B model on the datasets where training data ex-
ists. For DiPCo, the performance of Llama 3.1 8B
is the same as the one of 3.3 70B. The fine-tuned
3B model manages to outperform both the 8B and
70B model on DiPCo. As it showed reduced per-
formance compared to the 8B model on the full
test sets and as this sample set is small, we assume
that these differences between the models are partly
noise while still showing the effectiveness of our
fine-tuning in general for the NSP task.

Agreement of Annotators and LLMs As men-
tioned before, this task is a highly ambiguous task.
However, there are also situations where only a
small set of possible next speakers are correct. We
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wanted to investigate this and therefore use the hu-
man annotations as additional references.

We analyze the agreement of the LLMs with
the human annotators. To do this, we remove one
annotator at a time from the pool of annotators. We
then compare their agreement with the rest of the
annotators and with the LLMs by measuring the
accuracy of their predictions. We then average the
results for all annotators.

Additionally, we show how many of the predic-
tions can be counted as correct with these condi-
tions which decreases with the number of required
agreeing annotators increasing (row "Correct an-
swers", column "all").

In this setup, we counted a prediction as cor-
rect if at least n annotators propose this prediction.
This allows for situations where then no answer
is correct and therefore it does not matter what
the model predicts and for situation where multi-
ple solutions are correct. Additionally, we show
how many of the predictions can be counted as cor-
rect with these conditions which decreases with the
number of required agreeing annotators increasing
(row "Correct answers", column "all").

Also, we show how many choices a predictor has
with the given threshold as for example only three
possible next speakers can be counted as correct
if the number of annotators is ten and the thresh-
old for the number of agreeing annotator is three.
Therefore, the number of possible correct answers
also decreases with a higher threshold. The re-
ported numbers for the annotators and the models
display the percentage of correct predictions (given
a threshold) out of the possible correct answers.
We then also list the distribution of choices within
this set — how many predictions are possibly cor-
rect. Per bin of possibly correct prediction, we also
report the accuracy of each predictor.

For the AMI dataset, we see mixed results: From
a threshold of three and more, the larger model has
lower agreement than the 8B model. The fine-tuned
model shows a similar regression for a threshold of
three and five. For seven agreeing annotators, the
fine-tuned model has a slightly higher agreement,
yet the 70B model is lower than Llama 3.1 8B in
zero-shot. We think that these results come from
the fact that fine-tuning on the AMI training data
pushed the 8B LLM towards the distribution by
the dataset increasing the NSP accuracy, which
disagrees with our human annotators. That the 70B
model also has a lower agreement could be a sign
of its training data containing part of AMI and it

memorizing it better than the 8B model.

For DiPCo, we see that the 8B model in the
fine-tuned setting has a clearly higher (threshold of
one and three) or slightly higher (threshold of five)
agreement than in the zero-shot setting (Table 8).
Here, we also see that the 70B version has higher
agreement than the 8B model in zero-shot. This
matches our observations from the accuracy scores
before that increased model sizes correlates with
an improved NSP ability. Fine-tuning Llama 8B
therefore improves for most tested thresholds the
agreement with the human annotators on DiPCo
and moves it closer to that of the 70B model. As
we did not fine-tune the 8B model on data from
DiPCo, we think that these results together with the
increase in NSP accuracy show that training on the
NSP task with dialogue datasets does generalize to
better NSP performance — matching or exceeding
human performance in NSP accuracy.

4.4 Ablation Studies

We also examine our modeling decisions when fine-
tuning Llama 3.1 8B.

Dataset AMI DiPCo ML
Speaker Renaming

Original 42.04 3935 54.58
Renamed 47.85 3848 59.85
Context Length

4 46.32  34.66 59.47
8 47.85 3848 59.85
16 4792 3946 60.13
32 4758 37.86 60.21
64 46.72 3629 59.73
Training Data Mixture

Zero-shot 3488 3094 4041
AMI 47.84 3735 4275
ML 24.08 28.25 60.07
AMI +33% ML 47.85 38.48 59.85

Table 9: Comparison of the accuracy results from the
ablation studies. Renaming the speakers to a dataset-
across scheme increases performance in general. Includ-
ing more previous utterances in the prompt only helps
until 16 utterances. Training only on one of the two
available datasets is worse than using both.

Speaker Renaming We compare the unmodified
versions of the datasets with our renamed versions.
Renaming improves performance on all datasets
except for DiPCo (Table 9). This is probably the
case as the speaker names in DiPCo (e.g., “P12”)
are already fairly generic but distinct. This also
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# choices all

2 3 4

At least one out of ten agreeing annotator

Correct answers  100.00  2.31 21.07 43.00 33.62
Annotators 92.06 68.75 8699 8§9.60 100.00
Zero-shot 8B 88.46  75.00 63.70 92.28 100.00
Fine-tuned 8B 88.74  81.25 87.67 80.87 100.00
Zero-shot 70B 89.32  75.00 69.18 91.61 100.00
At least three of ten agreeing annotator

Correct answers  100.00  42.14  54.98 2.89 0.00
Annotators 68.40 56.51 76.12  95.00 0.00
Zero-shot 8B 66.67 4349  82.68 100.00  0.00
Fine-tuned 8B 5483 4486 6142  75.00 0.00
Zero-shot 70B 61.18 3493 79.27 100.00 0.00
At least five of ten agreeing annotator

Correct answers  82.40  98.42 1.58 0.00 0.00
Annotators 56.39  56.23  66.67 0.00 0.00
Zero-shot 8B 45.01 44.13 100.00 0.00 0.00
Fine-tuned 8B 3993  39.15  88.89 0.00 0.00
Zero-shot 70B 39.23  39.32 3333 0.00 0.00
At least seven of ten agreeing annotator

Correct answers  29.29  100.00  0.00 0.00 0.00
Annotators 59.61  59.61 0.00 0.00 0.00
Zero-shot 8B 4433 4433 0.00 0.00 0.00
Fine-tuned 8B 4581  45.81 0.00 0.00 0.00
Zero-shot 70B 4236 42.36 0.00 0.00 0.00

Table 7: Agreement between annotators and LLMs (AMI): We show the NSP accuracy for each annotator (results
averaged) and the LLMs when the other annotators serve as the ground truth. We show different thresholds for
agreeing annotators that an answer counts as correct. We also display the accuracy grouped by the number of
choices a predictor has (if too many annotators have to agree, the number of possible correct answers shrink).

means that not renaming the speakers for the user
study should not skew our comparison.

Context Length We also compare how the num-
ber of included most recent dialogue utterances
influences the accuracy of the predictions: We vary
the number of included utterances in the prompt
as context for the models in steps of the power of
two from four to 64. There seems to be a limit on
how much context in the form of previous dialogue
utterances helps the model in its decision even with
the number of not included speakers decreasing
(Table 3). We picked eight recent utterances for our
experiments as it showed the best performance on
the validation sets, and it enables faster inference
than for 16 utterances. As the accuracies differ
only sightly across the context lengths we tried, it
seems that the model mostly relies on the last few
utterances for its decision while also being able
to focus on them even if the included dialogue is
longer.

Training Data Mixture As we have two datasets
from our benchmark with training data, we want
to find out how the specific selection of training
data impacts the generalization ability of the fine-
tuned models. Only training on the AMI data al-
ready shows large improvements for the two sim-
ilar datasets (AMi and DiPCo) but only small im-
provements for ML. Only training on this dataset
however reduces the performance on the other two
datasets. A weighted combination of both datasets
(roughly equal amount of datapoints from both)
resulted in performance similar like training on
the “corresponding” dataset. We even saw slight
transfer learning for DiPCo.

5 Related Work

Previous research on dialogue turns is different
from our approach as we assume both the setting
of a multi-speaker dialogue either in text form or as
a transcript and a text-only LLLM as the predictor.
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# choices all

1 2 3 4

At least one of ten agreeing annotator

Correct answers  100.00  0.00 5.95 50.58 4347
Annotators 92.07 0.00 61.11 88.89 100.00
Zero-shot 8B 92.56 0.00 88.89 86.60 100.00
Fine-tuned 8B 98.18 0.00 94.44 97.06 100.00
Zero-shot 70B 96.53 0.00 61.11 97.71 100.00
At least three of ten agreeing annotator

Correct answers 100.00 4430 51.74 3.97 0.00
Annotators 6198 5485 67.73 66.67 0.00
Zero-shot 8B 5521 37.69 6741 91.67 0.00
Fine-tuned 8B 6198 50.00 7093 79.17 0.00
Zero-shot 70B 6198 48.13 7252 79.17 0.00
At least five of ten agreeing annotator

Correct answers  70.74  100.00 0.00 0.00 0.00
Annotators 55.61 5561 0.00 0.00 0.00
Zero-shot 8B 46.26 4626 0.00 0.00 0.00
Fine-tuned 8B 46.73 46.73 0.00 0.00 0.00
Zero-shot 70B 53.04 53.04 000 0.00 0.00
At least seven of ten agreeing annotator

Correct answers  25.12  100.00 0.00 0.00 0.00
Annotators 4342 4342 0.00 0.00 0.00
Zero-shot 8B 4539 4539 0.00 0.00 0.00
Fine-tuned 8B 4276 42776  0.00 0.00 0.00
Zero-shot 70B 50.66 5066 0.00 0.00 0.00

Table 8: Agreement between annotators and LLMs (DiPCo): We show the NSP accuracy for each annotator (results
averaged) and the LLMs when the other annotators serve as the ground truth. We show different thresholds for
agreeing annotators that an answer counts as correct. We also display the accuracy grouped by the number of
choices a predictor has (if too many annotators have to agree, the number of possible correct answers shrink).

Transition Relevance Places Methods for turn-
taking use LLMs to predict transition-relevant
places within a stream of words. Transition-
relevant places are points in a dialogue where a turn-
shift can happen. Ekstedt and Skantze (2020) fine-
tuned GPT-2 to predict these spots in written and
spoken dialogues. Later work (Umair et al., 2024)
investigated if more recent LLMs (e.g., Llama 3.1
8B) can do the same.

Audio / Visual Cues Multimodal approaches for
NSP use visual cues like gaze and hand gestures
(Ishii et al., 2016; Malik et al., 2020). This research
incorporates gaze transition patterns and eye con-
tact timing structure (Ishii et al., 2016) or head
movement (Ishii et al., 2015) to predict the next
speaker using support vector machines. Malik et al.
(2020) utilized focus of attention among others to
train classic machine learning classifiers for NSP.
Other systems rely on voice activity projection for
turn-taking prediction (Inoue et al., 2024a,b) which

predicts future voice activity based on the current
audio signal.

6 Conclusion

Our research goal was to investigate the ability
of LLMs to predict the next speaker in a multi-
speaker dialogue setting. We also compared their
performance with humans and fine-tuned LLMs to
improve them on NSP. The experiments on our
compiled benchmark show that LLMs like Llama
3.3 70B can match the human performance on the
NSP task in accuracy and it also shows very high
agreement with human predictors. Smaller LLMs
can achieve this performance or even exceed it by
fine-tuning on dialogue datasets when the dialogue
flow (e.g., with some short noisy utterances) is sim-
ilar. We think that these results imply an ability of
LLMs to “know” when to talk at transition-relevant
places in a multi-speaker dialogue — either through
large model size or fine-tuning on dialogues. Fu-
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ture work will investigate how multimodal LLMs
handle the NSP task as this work did not investi-
gate the impact of additional auditory and visual
information about the dialogue.

Limitations

Our investigation is limited to text-only dialogues
and does not cover the use of audio or visual cues.
We do not predict the next speaker on a per-token
or per-word basis but rather after a full utterance.
This assume that the system only receives full ut-
terances as input which is the case if the dialogue
participants interact via text or through an audio
transcript.
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A  Prompt

Here, we present the prompt that both the tested
LLMs and the human participants received to
complete the NSP task:

Your task is to predict the next
speaker given the full conversation
history. Do not provide any explanation.
Do not complete the conversation.

This is the conversation history:
<conversation history>

Predict the next speaker by outputting
the name and only the name of the
next speaker. Carefully consider the
motives of the participating speakers
in the conversation. Do not provide
any explanation. Do not complete the
conversation.

B Inference and Training Details

* Hugging Face Transformers library (Wolf
et al., 2020) for loading and running the mod-
els.!

¢ Inference

— All models were loaded in 8-bit precision
via bitsandbytes. 2

— Temperature: 0.0 (no sampling)
* Training

— Supervised Fine-tuning Trainer script
from Hugging Face Transformer Rein-
forcement Learning library. 3

— LoRA (Hu et al., 2022) with rank r = 8.

* Hardware equipment: Up to two NVIDIA
RTX 6000 Ada Generation GPUs at the same
time.

C Data Collection for Human Baseline

We describe our process of collecting data for the
human baseline in detail.

"https://github.com/huggingface/transformers

2https://github.com/bitsandbytes—foundation/
bitsandbytes

Shttps://github.com/huggingface/trl/

C.1 Sample Selection

We targeted a sample of 1% of each test sets to keep
the amount of work for the voluntary annotators
small while still capturing the nature of the datasets.
However, the different natures added additional
constraints. For ML, we only selected three full
dialogues leading to approximately 1% of the data.
For AMI, a sample of 1% would have been outside
of our annotator budget. Therefore, we selected a
sample of 0.5%. For DiPCo, 1% was not enough
to capture the dataset’s nature, so we doubled the
sample size here.

To decide which samples of the test sets to use
during data collection, we performed several ran-
dom samples of consecutive dialogue utterances
and selected the one showing the most similar ac-
curacy in a zero-shot setting to the full dataset.

C.2 Annotation Acquisition

We asked colleagues working in the field of NLP
and Computer Vision to fill out the forms for our
user study to acquire a human baseline. The par-
ticipation was not mandatory, and we offered no
compensation. We informed the participants that
the data created by them during this user study will
be incorporated into a scientific publication.

We presented the participants of our data collec-
tion for the human baseline the following introduc-
tion texts:

* Human Baseline for Next Speaker Predic-
tion on the AMI Meeting Corpus Dataset
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of)
the AMI Meeting Corpus Dataset (https://
groups.inf.ed.ac.uk/ami/corpus/). You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please read the instructions in the first prompt
carefully. The following questions (63 in to-
tal) will have the same prompt and will only
change the newest (and oldest) conversation
step.

* Human Baseline for Next Speaker Predic-
tion on the Dinner Party Corpus (DiPCo)
Dataset
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
Dinner Party Corpus (DiPCo) Dataset (https:
//arxiv.org/abs/1909.13447). You will
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be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please read the instructions in the first prompt
carefully. The following questions (55 in to-
tal) will have the same prompt and will only
change the newest (and oldest) conversation
step.

Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 1/3

I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
MultiLIGHT dataset (https://arxiv.org/
abs/2304.13835). This is the first of three
full conversations I want your help for. You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (26 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 2/3

I want to acquire a human baseline for the
task of next speaker prediction on (a sample
of) the MultiLIGHT dataset (https://arxiv.
org/abs/2304.13835). This is the second of
three full conversations I want your help for.
You will be presented the same prompt as the
models I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (31 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

* Human Baseline for Next Speaker Predic-

tion on the MultiLIGHT Dataset 3/3

I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
MultiLIGHT dataset (https://arxiv.org/
abs/2304.13835). This is the third of three
full conversations I want your help for. You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (34 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

The introduction text for ML differs from the

other datasets as we used a different setup for the
online form. This switch from the setup for ML
to the one used for AMI and DiPCo was mostly
done out of convenience during the creation of the
online form and should not impact the results of
the data collection.

After this introduction text, the participants were

shown the exact same prompt template as they were
presented to the LLMs (subsection 2.2). To select
the next speaker, they could choose from all appear-
ing speakers in that dialogue with a radio button
control element.
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Abstract

Punctuation prediction is a necessary part of
ASR models, usually accomplished in a cas-
caded framework, where a secondary text-
based model supplements an unpunctuated
ASR output with punctuation marks. However,
this approach results in ignoring acoustic con-
text, which makes it poorly suited to certain
languages. In this paper, we explore previously
proposed ideas on an alternative approach,
i.e. Speech-To-Punctuated-Text (STPT) mod-
els, and present a solution that allows adapt-
ing existing ASR models to output punctuated
text. Additionally, we propose utterance glu-
ing, a method of augmenting data to circum-
vent the lack of speech corpora with long ut-
terances and punctuated references. Our STPT
models trained on augmented data outperform
STPT models trained on regular data, as well
as traditional cascaded models, suggesting that
acoustic-based punctuation prediction may be
a good alternative to the more common text-
based punctuation prediction.

1 Introduction

With the advances in Automatic Speech Recogni-
tion (ASR), speech recognition models have be-
come useful in many contexts. Still, there are areas
in ASR research which, despite their influence on
practical usage, remain under-researched. One of
these is punctuation prediction — the task of giving
proper punctuation to the ASR output.
Appropriate punctuation in a text is important
both for its readability to humans (Akos Tiindik
et al., 2018), and for the success of downstream
tasks which use it as input, such as machine trans-
lation (Vandeghinste et al., 2018) or named entity
recognition (Nguyen et al., 2020). Long blocks of
text, if not separated into sentences, can be diffi-
cult for humans and machines to parse through and
understand; additionally, some sentences may be
ambiguous without appropriate punctuation. For
these reasons, no matter the use-case of an ASR

model, having a properly punctuated output is gen-
erally preferable.

Despite this, a still widely-used approach to ASR
models is to make them output unpunctuated, low-
ercase text. Such text is often subject to a sep-
arate process called punctuation prediction (Gra-
vano et al., 2009), which adds punctuation to it.
Many punctuation prediction models do not use
any acoustic features present in speech, relying
only on the text output of ASR as their input; this is
referred to as lexical punctuation prediction. How-
ever, this approach presents issues.

Firstly, if a text may be correctly punctuated in
multiple ways, it is impossible for the model to
distinguish between them without access to acous-
tic context. This is especially striking in languages
that rely more heavily on the acoustic context rather
than the grammatical structure of the sentence to
disambiguate between different meanings, such as
Spanish (Hualde, 2005) or French (Price, 2005),
wherein questions are often distinguished from
declarative statements exclusively through prosody.

Secondly, since the lexical punctuation predic-
tion relies on the text output of the ASR, any ASR
errors are likely to result in punctuation errors, as
the punctuation prediction model tries to punctuate
the incorrect sentence.

Thirdly, this approach adds the burden of main-
taining an additional model alongside the ASR
model itself. This is additionally problematic when
working with limited memory and computational
power, such as when running on mobile devices.

A practiced solution to the first and second is-
sue is creating hybrid punctuation prediction mod-
els which use acoustic features as input alongside
text (Klejch et al., 2017), and have access to addi-
tional acoustic context not present in the text itself.
These models are usually bigger and more complex
than purely lexical models, which makes the third
issue even more prevalent. A less common solu-
tion, which addresses all three issues, is creating
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ASR models that directly output punctuated text,
and learn to place punctuation marks based solely
on the speaker’s prosody (Nozaki et al., 2022;
Kim et al., 2023). This is referred to as acoustic
punctuation prediction, and is the solution we are
developing.

The biggest roadblock in developing robust
Speech-To-Punctuated-Text (STPT) models is the
lack of appropriate speech corpora with both punc-
tuated references and long utterances. Discard-
ing corpora without punctuation marks (e.g., Lib-
riSpeech (Panayotov et al., 2015) and Multilingual
LibriSpeech(Pratap et al., 2020)) means severely
limiting training data, which unavoidably results
in worse recognition metrics, especially in low-
resource languages. Moreover, many widely-used
speech corpora used for ASR training contain
mostly one-sentence utterances (e.g., Common
Voice (Ardila et al., 2019)). An STPT model
trained on such a dataset is likely to learn to output
periods and question marks at the ends of utter-
ances only. This is usually not preferable, as most
ASR models are unlikely to process only one sen-
tence at a time.

In this paper, we propose a method of training
an STPT model aimed at tackling both these is-
sues without compromising on the Word Error Rate
(WER) of the model.

2 Related Work

Creating an end-to-end ASR model that takes
speech as input and outputs punctuated text
has been previously undertaken for English and
Japanese (Nozaki et al., 2022) and for English (Kim
et al., 2023).

Mimura et al. (2021) tackled a close topic; how-
ever, their goals were much broader, including re-
moval of filler words and changing the speech to
be more formal, so their findings are largely inap-
plicable to our research.

Recently, STPT models have become much more
popular, with models such as NVIDIA’s Parakeet'
and Canary? being published. These projects did
not focus on punctuation; they used punctuated and
capitalized transcripts as the training data, so the
models learned to produce punctuation in the out-
put, but the creators do not claim to have used any
specific methods to improve punctuation results,

"https://huggingface.co/nvidia/parakeet-tdt-0.
6b-v2

Zhttps://huggingface.co/nvidia/canary-qwen-2.
5b

and they do not share any metrics showing their
punctuation performance. We will be focusing on
the punctuation-oriented research of Nozaki et al.
(2022) and Kim et al. (2023) in our analysis.

2.1 Architecture changes

The main innovation suggested by Nozaki et al.
(2022) on creating an STPT model is the addition
of an auxiliary loss in an intermediate layer. In
their experiments, this addition improved the per-
formance of the model in multiple metrics; how-
ever, in the experiments conducted by Kim et al.
(2023), the auxiliary loss did not seem to improve
the performance of the model significantly.

Kim et al. (2023) focused on streaming, chunk-
based ASR, in which their model was only pro-
vided with fragments of sentences at a time. This,
as explored in more detail in Section 2.2, seems to
make punctuation detection much more difficult.

2.2 Punctuation in long utterances

Nozaki et al. (2022) acknowledge that the English
training corpus they use, MuST-C (Di Gangi et al.,
2019), contains only single-sentence utterances, but
they do not attempt to solve this issue. Their model
achieves good results on single-sentence test cases,
but they do not test it on longer utterances. Their
Japanese test utterances are single-sentence only,
while only one-sixth of the training ones contain
more than one sentence.

Kim et al. (2023) also used MuST-C, but ad-
dressed the problem in two ways. Firstly, they con-
catenated random pairs of training utterances, so
that every new utterance consisted of two sentences.
Additionally, they also tested the model on long-
form speech. The results on long-form test cases
were worse than those achieved by Nozaki et al.
(2022) on single-sentence test cases, particularly on
periods and question marks. However, the model
presented by Kim et al. (2023) achieved worse re-
sults on periods in single-sentence test cases than
it did on periods in long-form test cases, which
counter-intuitively suggests that it was actually bet-
ter at predicting mid-utterance periods than it was
at predicting utterance-ending ones. This is likely
caused by the fact that its streaming ASR had ac-
cess to less context, which made it difficult for the
model to detect ends of utterances.

73



3 Proposed Method

Broadly speaking, we wanted our method to be as
easy to adapt and use as possible. Because of that,
the ideas we propose are focused on data process-
ing, and could be implemented to add punctuation
prediction to any ASR model; although, as men-
tioned before in relation to (Kim et al., 2023), some
architectures seem better suited to the task of punc-
tuation prediction than others.

3.1 Punctuation adaptation

In our research, we decided to adapt regular ASR
models on punctuated data, rather than training
STPT models from scratch. This has many ad-
vantages; namely, adapting a model for punctua-
tion prediction is much faster and less resource-
intensive than training an STPT model, which
is practical for production contexts where time
needed to deploy a new model is a factor. Ad-
ditionally, with this method, training corpora with-
out proper punctuation can still be used in the
early phases of training to improve the final ASR
model. Finally, with punctuation adaptation, any-
one can add punctuation prediction to their existing
ASR model, without restarting the training process,
which makes the method easier to test and use.

3.2 Utterance gluing

As previously described, since many ASR corpora
contain only one sentence in each utterance, STPT
models trained on them struggle with placing pe-
riods and question marks in places other than the
ends of utterances. Concatenating pairs of utter-
ances has been proposed as a solution (Kim et al.,
2023); however, an STPT model trained on con-
catenated utterances could learn to recognize ar-
tifacts generated by concatenation (e.g., changes
of speakers, loudness, or in the background noise),
and place punctuation there. We expanded on the
idea of concatenation to make the final utterances
resemble natural long-form speech in the following
ways:

* Only utterances recorded by the same speaker
are concatenated.

» Utterances shorter than 1second and very
quiet utterances (with RMS amplitude lower
than 0.01) are discarded.

» Every speaker’s utterances are sorted by RMS
amplitude, and concatenated with the ones

next to them on the sorted list, so that the
concatenated utterances have similar volumes.

* Groups of variable numbers of utterances are
concatenated, so that the model does not learn
to rely on the number of sentences in an utter-
ance.

* A short cross-fade (randomly chosen between
8, 10 and 12 ms) is added between the utter-
ances.

* Long periods of silence from the resulting
utterance are cut out, by randomly choosing
duration between 0.6, 0.7, 0.8 and 0.9 sec-
onds, and cutting out all parts of the recording
that are quieter than 0.2% of the maximum am-
plitude of a given recording and longer than
duration. A fragment of silence n seconds
long (where n is a random length shorter than
duration) is left behind, so that some silence
remains.

We call this method utterance gluing, as it is more
complex than simple concatenation. The script
used can be found online?.

3.3 Data processing

We decided to support recognizing periods, com-
mas, question marks, inverted question marks
(¢), exclamation marks, and inverted exclamation
marks (j). Our data processing pipeline for punctu-
ation data was as follows:

1. All punctuation marks other than those sup-
ported were removed from the reference text.
Additionally, all periods used in abbreviations
and initials were removed.

2. Every occurrence of a supported punctuation
mark was replaced by a tag, written as a sepa-
rate word; those tags were also placed in the
token vocabulary of the model.

4 Models
41 ASR

The ASR model used in this work is a conformer-
transducer, a sequence-to-sequence model, which
is a variation of an architecture derived from the
RNN-transducer (Graves, 2012). Specifically, we

Shttps://github.com/Samsunglabs/

adapting-asr-models-for-stpt-with-utterance-gluing

74



employ the first-pass model architecture as de-
scribed in section 2 in (Park et al., 2023) without a
feedback path from the joiner to the predictor. We
refrained from using the second-pass portion of the
architecture, focusing on the applicability of the
proposed method to a single-pass streaming model.
We release the code used for training on GitHub®.

The concept relies on employing transcriber and
predictor networks: the former operating on the
acoustic features X € R derived from the audio
signal, the latter on the utterance transcription en-
coding Y, representing wordpieces.

The transcriber takes an input sequence of acous-
tic features and outputs a transcription vector. In
this work, the transcriber is a stack of 16 conformer
layers (Gulati et al., 2020) capturing the global,
as well as local patterns by utilizing attention and
convolution layers. To ensure optimal resources uti-
lization, we used striding as a reduction technique
applied to the acoustic features, prior to processing
by the transcriber.

The predictor consists of two layers of an LSTM
network. Its purpose is to learn to model an out-
put sequence g = (90,91, --.,gu ), where U corre-
sponds to the tokens’ sequence length.

It is worth noting that the input sequence is the
original tokens’ sequence y = (y1, ..., yy) with
an encoded null output (), prepended to it. There-
fore, at the input, we process an extended input
vector § = (0, y1, ..., yu ), as proposed by previous
work (Graves, 2012). Utilization of a blank token
enables teaching the model how to align speech,
i.e. account for silent parts in utterances without
malforming the transcribed speech sequence in tem-
poral context.

These networks are jointly trained using a Joiner,
integrating the information from both networks,
with an objective function (commonly known as
RNN-T Loss) defined as log posterior probabil-
ity: £ = —In(y|x). Joiner adds the outputs of
transcriber and predictor, which are further passed
through activation layer and linear layers.

The ASR we trained had 30 million parameters.
An overview of the architecture used for the ASR
model used in this work is shown in Figure 1.

4.2 Lexical restoration

To evaluate our approach against lexical methods,
we also trained and tested transformer-based token
classification models. This was done due to the lack
of appropriate open-source models for this study;

Figure 1: Transducer architecture used in this work.
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the most appropriate being KREDOR’s punctuate-
all model*, based on (Guhretal., 2021), which does
not support exclamation marks and inverted punc-
tuation marks. For each language, an instance of
XLM-RoBERTa-large (Conneau et al., 2019) was
first fine-tuned on a mix of long- and short-form
utterances with a 1:4 ratio, and then further trained
on the former only. The needed datasets were ac-
cessed through the OPUS (Tiedemann, 2012) web-
site and included ParaCrawl (Baifion et al., 2020),
OpenSubtitles (Lison and Tiedemann, 2016), and
EuroParl (Koehn, 2005) to balance formal and in-
formal writing styles. For each dataset, short-form
sentences were retrieved and cleaned (e.g., abbrevi-
ations were removed). Then, a random subsample
was concatenated to form utterances 2-6 sentences
long. In total, each model was trained on more than
16 M utterances per epoch, with training ending af-
ter 15 epochs, or if the average of all punctuation
mark metrics plateaued for more than two epochs.

5 Experiments

5.1 Datasets used

We decided to run our experiments on German,
Polish, and Spanish, as those languages represent
three different language subgroups (Eberhard et al.,
2024), and we suspected that different approaches
to punctuation prediction might work best for dif-
ferent kinds of languages. Unfortunately, we could
not train an English model with MuST-C and com-
pare it to previous works on this subject, (Nozaki

4https: //huggingface.co/kredor/punctuate-all
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etal., 2022) and (Kim et al., 2023), since the dataset
is not currently available®.

5.1.1 Training and validation datasets

For punctuation training purposes, we searched
for open-source datasets with well-punctuated ref-
erences. We decided to use Common Voice
16.1 (Ardila et al.,, 2019) for Spanish and
German, and Common Voice 13.0 with Par-
laSpeech (Ljubesi¢ et al., 2025) for Polish. 1%
of the data was selected for validation. The number
of utterances and punctuation marks in each dataset
can be seen in Table 1.

For the purposes of our experiments, we cre-
ated four versions of each training and validation
dataset:

1. A non-glued, non-punctuated version, used to
train a regular ASR model.

2. A non-glued, punctuated version, with most of
the utterances only containing one sentence,
later referred to as “‘single-sentence punctu-
ated data" (single).

3. A concatenated, punctuated version, where
utterances were randomly concatenated into
groups of 2-3, resulting in 361k utterances in
German, 230k in Polish and 591k in Spanish,
and their references concatenated accordingly
(concat).

4. A glued, punctuated version, where utterances
were glued together into groups of 2-3, using
the methodology described in section 3.2, re-
sulting in 339k utterances in German, 199k
in Polish and 549k in Spanish, and their refer-
ences concatenated accordingly (glued).

Table 1: Number of utterances and punctuation marks
in original non-augmented datasets.

Language Utts . , P2 ? i !
German 867k 801k 218k 0 47k 0 22k
Polish 556k 446k 578k 0 51k 0 69k
Spanish 1418k 1418k 508k 5.7k 5.7k 4.5k 8.8k°

5https ://mt.fbk.eu/resources/ accessed 2025-01-21
®Although Spanish Common Voice has an unequal num-
ber of opening and closing exclamation marks, and very few
question marks, it was still the best dataset available for our

purpose.

5.1.2 Evaluation datasets

We needed to use real multi-sentence utterances to
evaluate the models on actual mid-utterance peri-
ods, question marks and exclamation marks. We
decided to use Multilingual LibriSpeech (MLS),
which contains many long utterances from audio-
books (Pratap et al., 2020). The released version
of this dataset does not contain punctuation in its
references, but we restored the punctuation using
the original books’ text. Then, for each language,
we selected 1024 utterances which contained at
least one question mark from the training subset
of the corpus, and we manually modified the ref-
erences to only contain the punctuation marks we
were using (e.g., replacing semicolons with peri-
ods). We did not simply remove the unsupported
punctuation marks, as we did in training data, be-
cause MLS contained much more of them than our
training datasets. However, we removed a few ut-
terances which contained punctuation that could
not be straightforwardly replaced. The dataset de-
tails can be seen in Table 2. The evaluation datasets
were released on GitHub?.

Table 2: Number of punctuation marks in evaluation
datasets.

Language Utts . , P ? i !
German 1020 1825 3210 O 1421 0 429
Polish 1014 2958 4051 0 1364 O 351
Spanish 1022 2525 3134 1338 1338 323 323

5.2 Experiment methodology

In our experiment, we wanted to compare the ef-
fectiveness of the following approaches: lexical
restoration and three variants of acoustic recogni-
tion: trained on single, concat, and glued punctu-
ated data.

5.2.1 Acoustic model training

To that end, firstly, we trained a multilingual ASR
model from scratch for 925k steps on the non-
punctuated version of all three training datasets.
Then, we adapted it on the non-punctuated train-
ing dataset for every language, resulting in three
regular, non-punctuated ASR models. Then we
adapted each of them on the single, concat, and
glued punctuated data, resulting in three different
STPT models for every language. Table 3 shows
the numbers of training steps for each checkpoint
chosen for evaluation.
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5.2.2 Vocabulary

The token vocabulary of all of the models was
the same. Tags used for punctuation prediction
were present in the vocabulary from the start, and
went unused by the earlier, non-punctuated models.
Therefore, adaptations consisted simply of running
training from a previously trained checkpoint, with
entirely new training and validation data, and no
other changes. When adapting a previously trained
ASR model with no punctuation tags in the vocab-
ulary, one could accomplish the same outcome by
replacing the least used tokens in the vocabulary
with punctuation tags. This would allow the model
to adapt for punctuation prediction without the size
of the vocabulary being changed, and without the
need to retrain the model from scratch.

5.2.3 Lexical models

Additionally, for every language, we used our lexi-
cal punctuation prediction model (as described in
Section 4.2) and KREDOR'’s punctuate-all model
to create two cascaded, lexical STPT models out of
the non-punctuated ASR models created in 5.2.1,
in order to compare the acoustic models with state-
of-the-art lexical punctuation prediction. It is worth
mentioning that our lexical models are more than
18 times larger, and KREDOR is about 9 times
larger, than our STPT models.

5.2.4 Performance metrics

To compare these approaches, we treated them as if
the models were binary classifiers deciding whether
or not the given punctuation mark should be placed
at a given position in the recognized text and com-
pared their precision, recall, and F1 scores. Addi-
tionally, we compared WERs of the models with
punctuation marks excluded.

Table 3: Number of training steps for chosen check-
points.

Language non-punct single concat glued
German 1891k 2143k 2000k 1980k
Polish 1569k 1703k 1600k 1654k
Spanish 1960k 2420k 2140k 2155k

5.3 Results and discussion

The evaluation results of the five previously de-
scribed approaches for each language can be seen
in Table 4. Since the lexical models used the out-
puts of non-punctuated ASR models, the WERs
listed in the lexical models’ rows are the WERSs
of acoustic models before punctuation adaptations.

They can be also used to see how punctuation adap-
tations affected WERs.

5.3.1 Exclamation marks

In our experiments, exclamation marks could not
be reliably recognized by any model (best F1 score
was 0.21, and most were far worse). In acoustic
models, this does not seem to stem from them be-
ing underrepresented in training data (see Table 1).
It is likely they are close enough to periods, both in
their pronunciation and their usage, that neither lex-
ical nor acoustic model can tell them apart. Since
mistaking exclamation marks for periods does not
usually impact the meaning of the text, we decided
to treat exclamation marks as equivalent to periods
in our results, and disregard inverted exclamation
marks.

5.3.2 Lexical models

Our lexical models achieved similar results to KRE-
DOR’s state-of-the-art model, with the notable
exception of question marks, where their results
were better. For that reason, going forward, we
will be using them as the lexical state-of-the-art
benchmark. Although our models were trained on
very similar data to each other, some metrics differ
strongly between languages. This suggests that lex-
ical punctuation prediction may be better suited for
some languages than for others.

5.3.3 Acoustic models

In general, the single acoustic models performed
very poorly, achieving the lowest F1 scores out of
the acoustic models on all languages and punctu-
ation marks, except for Spanish utterance-ending
periods. As predicted, they were almost unable
to produce mid-utterance periods and question
marks, with the notable exception of Spanish mid-
utterance periods.

In Polish and German, the glued models
achieved the highest F1 scores on all punctua-
tion marks, outperforming all other models, both
acoustic and lexical. The most notable differ-
ence between lexical and glued models was in
mid-utterance periods and mid-utterance question
marks, though in Polish the difference on utterance-
ending question marks was also large.

In Spanish, there is no clear best-performing
model. Our Spanish acoustic models were by far
the worst of the three languages at recognizing
question marks, and they were outperformed by
the lexical model. This is likely caused by question
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Table 4: Comparison of recalls, precisions and F1 scores of punctuation marks’ recognition between models. For
sentence-ending punctuation marks, results are split into mid-utterance and utterance-ending marks. Exclamation
marks have been treated as periods, and inverted exclamation marks have been deleted. WER values are calculated
with punctuation marks excluded.

mid . end . s mid ? end ? i
Language Model WER Rec Pre F1 |[Rec Pre F1 [Rec Pre F1 |Rec Pre F1 |Rec Pre F1 |Rec Pre Fl
KREDOR |0.24 |0.49 0.59 0.53{0.91 0.69 0.79]0.65 0.65 0.65|0.32 0.67 0.44|0.48 0.83 0.61 |- - -
lexical 0.24 10.50 0.53 0.52|0.88 0.72 0.79/0.64 0.67 0.65[0.41 0.62 0.49]0.53 0.88 0.66 |- - -
German single 0.21 0.02 0.90 0.03|0.90 0.64 0.75/0.64 0.51 0.57]0.01 0.73 0.02{0.37 0.76 0.49|- - -
concat 0.19 |0.57 0.72 0.63|0.93 0.69 0.80/0.63 0.66 0.64[0.34 0.77 0.47]0.48 0.86 0.61 |- - -
glued 0.19 |0.70 0.67 0.68(0.93 0.71 0.81|0.62 0.68 0.65[0.49 0.76 0.59|0.53 0.86 0.66 |- - -
KREDOR |0.28 |0.46 0.59 0.52{0.95 0.78 0.86[0.63 0.63 0.63]0.28 0.66 0.39|0.46 0.83 0.60 |- - -
lexical 0.28 0.46 0.57 0.51|0.94 0.78 0.85/0.61 0.62 0.62]0.39 0.61 0.47]0.48 0.85 0.61|- - -
Polish single 0.24 |0.00 0.32 0.01/0.92 0.73 0.81/0.67 0.49 0.56[0.05 0.89 0.09]0.32 0.67 0.44|- - -
concat 0.22 10.32 0.78 0.45|0.94 0.79 0.86|0.68 0.57 0.62]0.46 0.85 0.60|0.50 0.81 0.62|- - -
glued 0.21 |0.50 0.78 0.61[0.96 0.85 0.90|0.61 0.67 0.64|0.67 0.82 0.74|0.66 0.88 0.76 |- - -
KREDOR |0.24 |0.39 0.55 0.45{0.99 0.54 0.70{0.52 0.47 0.50|0.06 0.59 0.11/0.07 0.88 0.14 |- - -
lexical 0.24 10.45 0.54 0.49]0.91 0.63 0.74|0.44 0.52 0.48]0.24 0.54 0.330.34 0.87 0.49(0.31 0.73 0.43
Spanish  single 0.33 {0.27 0.68 0.39/0.99 0.64 0.78|0.36 0.50 0.42]0.02 0.41 0.03|0.01 0.75 0.02|0.03 0.62 0.05
concat 0.17 0.52 0.76 0.62|0.97 0.58 0.72(0.51 0.54 0.53|0.20 0.44 0.28]0.21 0.87 0.34/0.25 0.62 0.36
glued 0.16 |0.74 0.63 0.68]0.98 0.56 0.71]0.40 0.60 0.48]0.22 0.55 0.32|0.14 0.88 0.24(0.24 0.75 0.36

marks being underrepresented in the Spanish train-
ing corpus. In internal experiments which utilized
glued non-public data of better balance, higher re-
sults were achieved (0.39 recall and 0.88 precision
for mid-utterance question marks, 0.38 recall and
0.94 precision for utterance-ending question marks,
0.35 recall and 0.88 precision for inverted ques-
tion marks; for other punctuation marks, the results
were comparable to the glued model).

5.3.4 Effects on WER

The WER seems positively affected by concatena-
tion and gluing, although all acoustic models had
access to the same training data, just processed dif-
ferently. We think this is linked to the fact that
the evaluation data consists of long utterances; it
seems that training ASR models on long utterances
improves their performance in recognizing long
utterances.

5.3.5 Checkpoint instability

It is important to mention that during our training
runs, the punctuation results between even close
checkpoints varied strongly; it seemed difficult
for an STPT model to find a local minimum for
a punctuation task, as the model was trained for
minimizing WER in general, without any special
optimization for punctuation. It is likely that a
training method with two loss functions, one aimed
at minimizing WER and the other at optimizing
the punctuation performance, could be used to im-
proved the results further. That being said, we have
trained our models for a significant time, and the

checkpoints we are presenting are the best of many,
so we are reasonably sure that these are the best
punctuation results possible with this method, de-
spite the variability.

5.4 Possible new issues

We have found that acoustic punctuation prediction
addresses issues inherent to lexical punctuation pre-
diction, namely lexical ambiguity and dependence
on good ASR output for good results. In our hands-
on experiments, for example, a strong questioning
tone of voice was enough to produce a question
mark, regardless of whether the phrase spoken was
grammatically a question, a statement, or even in-
coherent babble.

However, this approach creates new issues that
need to be discussed. Some speakers may have a
flat tone of voice that does not indicate a question
when they are asking one. Some may pause while
speaking, without intending for a comma or a pe-
riod to be placed. In general, the performance of
acoustic punctuation prediction is more dependent
on the speaker, and how clearly they are speaking,
and less dependent on whether the phrases they
are using are grammatically correct, and have been
recognized correctly.

Since we have proven that acoustic models can
outperform lexical models, it seems that these is-
sues are less prevalent than the ones present in
lexical models, at least in our test cases.
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6 Conclusions

In this paper, we postulate that acoustic punctuation
prediction is a strong alternative to lexical punc-
tuation prediction. We show that multi-sentence
training utterances are necessary for training well-
functioning STPT models, and that punctuated
training corpora with single-sentence utterances
can be augmented to be used for STPT model train-
ing. We theorize about the problems caused by
concatenation, and we address them by develop-
ing our gluing technique. We show that gluing
improves the results over concatenation (weighted
avg F1 equal 0.5725 and 0.5371, respectively), and
that both methods are superior to training acous-
tic models on single-sentence utterances. We also
show that acoustic models can outperform lexical
punctuation prediction models (with weighted avg
F1 equal 0.4857), despite being much smaller.

7 Future work

The biggest challenge of end-to-end STPT models
is the lack of well-punctuated corpora with multi-
sentence utterances. This work was an attempt
to circumvent that, and could be developed by im-
proving the gluing methods further; however, if real
long-utterance corpora were developed, the models
trained on them would likely outperform the ones
presented here, and possibly any model trained on
glued data. Additionally, as we showed that lan-
guages can be better or worse suited for different
approaches to punctuation prediction, we hope that
more research on the topic will be conducted with
non-English languages in mind.

Since the acoustic punctuation prediction is gain-
ing popularity, as seen in models such as NVIDIA’s
Parakeet! and Canary?, we believe it is important to
measure and share the punctuation results of STPT
models and work to improve these results, instead
of treating punctuation as an afterthought. Judg-
ing by the high-quality outputs of these models,
even though the authors did not share punctuation
metrics, it seems that English STPT models can
be trained on non-augmented punctuated data from
scratch, since there is quite a large amount of such
English data. For other languages, methods pre-
sented in this paper may be needed.

Lastly, we suggest that future efforts in devel-
oping speech corpora include punctuation in their
references if possible, to enable further develop-
ments in this field.

8 Limitations

In our work, we have shown the advantage of acous-
tic models over lexical models when it comes to
small ASR models trained on relatively small cor-
pora, with relatively high WER. However, high
WER negatively impacts the performance of lexi-
cal models, as the input they receive is unreliable.
It would be useful to test these methods on larger,
better-performing ASR models, and find if acoustic
models continue to outperform lexical ones when
the WER is lower.

Additionally, we have focused on one specific ar-
chitecture — the sequence transducer — in our work.
We hope the methods shown here are transferrable
to different architectures, as none of our methods
were reliant on the features of the sequence trans-
ducer. However, it is possible that different archi-
tectures differ in their suitability for use for STPT,
and we do not know if the results shown here are
representative of how every architecture would per-
form. This has to be investigated further to reach
any definite conclusions.
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Abstract

Language identification is a task that often finds
applications in NLP pipelines that serve mul-
tiple languages. The task is classically pre-
sented as a sentence classification problem and
models’ performance degrades quickly when
applying them to short phrases or individual
words. Although challenging, fine-grained lan-
guage identification is key to improve the per-
formance of downstream tasks. This work ex-
plores the performance of both Encoder-Only
and Decoder-Only Transformer Language mod-
els for the task of automatic word-level lan-
guage identification. The results show that for
this particular task, small Encoder-Only models
outperform larger Decoder-Only models.

1 Introduction

This paper explores Word-Level Language Identi-
fication (WLID) within the context of a cascaded
Speech-to-Speech (S2S) translation system with
human supervision as an example application. Al-
though there are several promising end-to-end ap-
proaches, the cascaded approach remains the pre-
ferred choice when human intervention is desired
at multiple steps of the process. For the Speech-
to-Speech or dubbing task, an additional problem
occurs when the text to be uttered automatically
contains words belonging to a language other than
the target language. These words are a source of
errors because the normal rules for pronunciation
of the target language cannot be applied. There
are many possible sources for these words, such as
named entities, slang and loanwords. Fine-grained
language labels can enhance various applications,
including Text-to-Speech (TTS) models, by gen-
erating more accurate phoneme sequences (Vesik
et al., 2020; Zhu et al., 2022) or using language-
specific embeddings (Yang et al., 2024).

The contributions of this paper are three-fold:
1) We annotate a novel dataset for the word-level
language identification task under the translation

setting, 2) we benchmark multiple automatic ap-
proaches to this problem, including both Encoder-
Only and Decoder-Only Large Language Models
(LLMs) and 3) we propose new techniques to al-
leviate LLMs hallucinations in the context of the
WLID task.

1.1 Related work

To the best of our knowledge, there are no works
that address the WLID task in the context of dub-
bing. The closest related task is code-switching
identification, which we take as a starting point
since it is the most similar. There are however
significant differences between the two. Code-
switching is a stylistic choice of the speaker, typi-
cally used in informal contexts, whereas this work
deals with the presence of foreign words within
text in the target language, which mainly occurs as
a result of the translation of foreign media. Code-
switching techniques and models can thus be used
for this task, but the difference in domains and
formality levels means that the techniques and find-
ings of the standard code-switching approaches
might not translate to this specific task. This moti-
vates the need for specific training and evaluation
data to assess and improve the performance of au-
tomatic systems.

Automatic approaches to code-switching can in-
clude both hand-crafted rules and statistical models,
as well as hybrid systems that combine the two. Ili-
escu et al. (2021) compare multiple approaches
using semi-supervised data, whereas Osmelak and
Wintner (2023) train a Conditional Random Field
system whose input is a sequence of word-level
features. Sterner and Teufel (2023) proposed a
rule-based system (TongueSwitcher) and compared
it with a BERT-like model trained on the data la-
beled with TongueSwitcher and human labels, and
observed similar performance for German-English.
Additionally, much work has been done to study the
effects of code-switched text on the performance
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Table 1: Dataset statistics, including number of sentences (#sent), number of words (#words) and the number of
those words that have been tagged as English (#En words).

Spanish - TED Spanish - Media German - TED
#sent #words #En words #sent #words #En words #sent #words #En words
train 2048 39182 1849 - - - 1024 17719 1014
dev 1316 26076 310 - - - 1574 25269 300
test 2502 42294 454 1854 9959 139 2823 43197 575

of automatic models. Winata et al. (2021) com-
pare multiple techniques and finds that good results
are obtained with the XLLM-RoBERTa family of
models. Zhang et al. (2023) find that LLM’s perfor-
mance significantly decreases for code-switched
data across a variety of tasks (Sentiment Anal-
ysis, Machine Translation, Summarization and
Code-Switching Language Identification). Their
results show that it is competitive to finetune a
smaller model rather than using an LLM. In the
present work, we explore further the relative perfor-
mance of Encoder-Only models and larger LLMs
(Decoder-Only) using different approaches.

2 Methodology

2.1 Datasets

The main dataset used for the experiments reported
on this paper is the MuST-C dataset (Di Gangi
et al., 2019), a Speech Translation dataset that
contains the recordings of multiple English TED
talks as well as their translations into multiple lan-
guages. Specifically, we used the English-Spanish
and English-German translation sets. We also ex-
perimented with an in-house dataset of media con-
tent. This dataset consists of English media with
translations into Spanish.

The original MuST-C dataset does not include
WLID labels, so we asked 2 native speakers of the
target language to annotate each set. Table 1 reports
a summary of the dataset statistics. The majority
of the words are in Spanish, with around 1% of
the words being in English. However, 10% of the
sentences contain at least 1 English word, so even
if the amount of words is low, it is common enough
that the user-perceived quality is affected if this is-
sue is neglected. The manually annotated training
set was constructed so that there is a 1:1 proportion
between sentences with and without English words.
The remaining MuST-C train sentences were au-
tomatically annotated with Llama 3.1 70B, to be

used for semi-supervised experiments. !

2.2 Models

Both Encoder-Only and Decoder-Only models are
tested based on previous results from the litera-
ture. For the first case, XLM-RoBERTa (Conneau
et al., 2020) was used, in both base (270M) and
large (550M) configurations. We take the pre-
trained model and fine-tune it for the WLID task
following a token classification approach, similarly
to what is done for Named Entity Recognition
(NER). Additionally, the existing Encoder-Only
TongueSwitcher (Sterner and Teufel, 2023) model
is also tested, which is a multilingual BERT model
(Devlin et al., 2019) (172M) German-English code-
switching model. The TongueSwitcher model has
two versions: a pre-trained version that has been
trained for the language modeling task with 24.6M
Tweets that contain mixed German and English,
and a code-switch detection model that has been
further fine-tuned with supervised code-switching
annotations. For the second case, we used Decoder-
Only LLM from the Llama family. The recently
released Llama3.1 (Dubey et al., 2024) 8B and 70B
models were selected. After iterating through mul-
tiple prompts, we ended up with the prompt format
shown in Table 2. Making the model output a la-
bel for every word in the sentence rather than only
those on a different language, as well as forcing the
output to be generated in a CSV-like format were
significantly helpful to improve the accuracy of the
model and to ensure that the model copies the input
sentence.

Even after iterating multiple times to find the op-
timal prompt, we still observe many occurrences of
hallucinations, that is, the generation of a sequence
of words that differs from the original sentence to
be annotated. This is not acceptable because the
WLID system should add language annotations if

'The labels to reproduce the dataset are made available at
https://github.com/mattiadg/wlid-annotations.
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Table 2: Prompt format used for LLM inference.

Instruction

The input is a {default_language} sentence. Your task is to output the language for each word

in the sentence. Write one line for each word in the original sentence. Each output line will
contain the word and the language, separated by a comma and a space. If a word exists in
{default_language} and other languages, write {default_language}. Only answer to the last
question and do not write additional questions.

Input He comprado un ordenador ThinkPad.
He, Spanish
comprado, Spanish

Response un, Spanish

ordenador, Spanish
ThinkPad., English.

necessary, but leave the input text unchanged other-
wise. We propose two techniques to post-process
LLM hypothesis for which hallucinations are de-
tected. The first is to replace the LLM hypothesis
by the default hypothesis, which is the one where
no words are labelled as a foreign language. As
a second technique, we propose a post-processing
algorithm called AutoMap to match the generated
text against the original sentence. Specifically, we
initially assign the default target language label to
every word on the original sentence. Then, we
take each generated word and compare it with the
words in the original sentence. If there is a match,
we assign the label of the generated word. Figure 1
provides an example of AutoMap in action.

3 Experiments

All development decisions are made based on the
results on the MuST-C dev set. XLM-RoBERTa
models are trained with Adam (Kingma and Ba,
2015) using le-5 learning rate and batch size 16,
for a total of 8k steps with early-stopping every 500
steps. The learning rate is linearly scaled during
the first 10% steps. Table 3 reports the results for
the XLM-RoBERTa model based on the number of
available training samples. Additionally, we also
test wheter using the semi-supervised data anno-
tated with Llama 3.1 is helpful, by adding 2048
sentences to the largest configuration, for a total
of 4096 sentences (+SSup). Results are reported
using the F1 score of the English class, as all of the
tested configurations achieve 1.00 F1 score for the
non-English class after rounding-up. The model
is able to obtain acceptable results starting from
128 training samples, with increases in quality each
time the available data doubles in size, starting to
plateau when reaching 2048. Adding additional
semi-supervised data degrades the performance
rather than helping.

Table 3: XLM-RoBERTa results on the MuST-C Span-
ish dev set, using either the Base or the Large config-
uration. +SSup includes an additional 2048 examples
automatically annotated with Llama. F1 scores for the
English class.

Number of training samples

128 256 512 1024 2048 +SSup
B 073 075 078 081 0.82 0.62
L 077 080 0.80 0.82 0.83 0.67

LLM models were tested both using the in-
context learning (ICL) approach as well as fine-
tuning (FT) with LoRA (Hu et al., 2022). Sampling
is disabled when generating the LLM hypothesis,
as we found that this helped to slightly increase
quality and reduce hallucinations. Table 4 shows
the performance of the LLM ICL approach on the
MuST-C dev set. The train subset was shuffled
once and then the first n samples were selected to
be used in the prompt. That is, the example se-
lected for n = 1 is also used for n = 2 and so
on. We observe no performance improvements for
increasing the number of examples beyond 1.

Table 4: LLM evaluation results for MuST-C Span-
ish dev set, using n in-context samples. Results show
English-class F1 score.

n
Model 1 2 4 8 16 32

L-8B 054 052 049 047 0.50 0.50
L-70B 0.71 0.71 0.70 0.70 0.70 0.69

For fine-tuning with LoRA, the best results were
obtained with learning rate le-4, rank 16, o =32,
dropout 0.05 and 8 epochs of fine-tuning. Table 5
compares the results of both ICL and FT depending
on the post-processing technique. The results high-
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Figure 1: Example of AutoMap post-processing for LLM hallucination. The labels of the LLM hypothesis (bottom)
are mapped to the original text (top) by looking for exact matches (ignoring casing and punctuation) between the
hypothesis and the original text. The text is in Spanish and the shaded box represents a word detected as English.
The LLM hallucinated and failed to generate a label for "un browser, prueba con”, which also includes the English
word browser, so it retains the default labels for those words.

Table 5: LLM performance on the MuST-C Spanish
dev set. We compare scoring the raw output ((}), using
AutoMap with exact matches (Ams) and using AutoMap
but ignoring casing and punctuation (Am). F1 scores
for the English class.

8B 70B
0 Ams Am () Ams Am
ICL 001 045 054 023 060 0.71
FT 0.01 045 059 0.01 056 072

light the importance of the AutoMap technique
in mitigating hallucinations. It can be observed
how results are very poor without AutoMap, as the
model struggles to reproduce the input sentence.
However, the introduction of AutoMap (Ams) sig-
nificantly boosts the performance of the system.
Results are improved further if punctuation and
casing are not taken into account when looking for
word matches (Am), which indicates that casing
and punctuation account for a significant portion of
the mistakes. When using AutoMap, the finetuned
models improve the ICL results by 0.05 F1 for the
8B model, and 0.01 F1 for the 70B model. Once
again, this highlights the importance of AutoMap,
as it allows to extract better performance from the
fine-tuned models. The results also suggest that
fine-tuning is able to increase the linguistic knowl-
edge of the model, which helps to better detect
foreign words, but it is not helpful for the model to
learn to copy the input.

Table 6 shows the evaluation of the final mod-
els on the selected test sets. The English-German
models are also compared with two versions of
TongueSwitcher: the code-switch detection BERT-
based model (TS) pre-trained on ample English-
German code-switching data, as well as the base-
line TS model fine-tuned with our WLID data (FT-

Table 6: Final evaluation results on the test sets, for
XLM-RoBERTa (R-Base, R-Large) and Llama3.1 (L-
8B, L-70B) models. Precision/Recall for the English
class.

Spanish German
Ted Media Ted
Model P R P R P R
R-Base 0.68 094 0.69 091 0.62 0.92
R-Large 0.69 098 0.73 094 0.68 0.92
L-8B 0.40 093 0.60 0.86 0.42 0.95
L-70B 048 097 0.68 0.86 0.45 0.96
TS - - - - 0.64 0.49
FT-TS - - - - 0.73 0.86

TS). Similarly to what was observed on the dev set,
RoBERTa-based models outperform the Llama 3
models on the TED talks evaluation set, both for
the Spanish and the German case. The TS code-
switching system underperforms the other systems,
and its performance only recovers when it has been
trained with our WLID data (FT-TS). This high-
lights the need for specific data for WLID, as the
existing code-switching systems cannot be directly
applied to this task.

4 Conclusions

This work has introduced a new setting for word-
level language identification, and provided a set of
in-depth experiments to assess the performance of
automatic models. Two interesting findings arise
out of this research. First, there is still room for im-
provement on this task, on both the in-domain talks
and out-of-domain media settings. Secondly, un-
like current trends that tend to favor Decoder-Only
LLMs, Encoder-Only models are a competitive,
cost-efficient alternative for this task.

In terms of future work, Encoder-Only models
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can be extended to the multilingual setting in or-
der to simplify deployment, reduce costs and to
improve quality and robustness. Additionally, the
performance of both Encoder-Only and Decoder-
Only models should be tested on a zero-shot set-
ting, to assess their capabilities on language pairs
for which little or no training data exists.

References

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019. MuST-C: a
Multilingual Speech Translation Corpus. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2012-2017, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Abhimanyu Dubey et al. 2024. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783v1.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Dana-Maria Iliescu, Rasmus Grand, Sara Qirko,
and Rob van der Goot. 2021. Much gracias:
Semi-supervised code-switch detection for Spanish-
English: How far can we get? In Proceedings of
the Fifth Workshop on Computational Approaches
to Linguistic Code-Switching, pages 65-71, Online.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Doreen Osmelak and Shuly Wintner. 2023. The
denglisch corpus of German-English code-switching.
In Proceedings of the 5th Workshop on Research in
Computational Linguistic Typology and Multilingual
NLP, pages 42-51, Dubrovnik, Croatia. Association
for Computational Linguistics.

Igor Sterner and Simone Teufel. 2023. TongueSwitcher:
Fine-grained identification of German-English code-
switching. In Proceedings of the 6th Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 1-13, Singapore. Association for
Computational Linguistics.

Kaili Vesik, Muhammad Abdul-Mageed, and Miikka
Silfverberg. 2020. One model to pronounce them
all: Multilingual grapheme-to-phoneme conversion
with a transformer ensemble. In Proceedings of the
17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 146—152, Online. Association for Computa-
tional Linguistics.

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu,
Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2021. Are multilingual models effective in code-
switching? In Proceedings of the Fifth Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 142—153, Online. Association for
Computational Linguistics.

Huai-Zhe Yang, Chia-Ping Chen, Shan-Yun He, and
Cheng-Ruei Li. 2024. Bilingual and code-switching
tts enhanced with denoising diffusion model and gan.
In Interspeech 2024, pages 4938-4942.

Ruochen Zhang, Samuel Cahyawijaya, Jan Chris-
tian Blaise Cruz, Genta Winata, and Alham Aji.
2023. Multilingual large language models are not
(yet) code-switchers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12567—-12582, Singapore.
Association for Computational Linguistics.

Jian Zhu, Cong Zhang, and David Jurgens. 2022.
ByT5 model for massively multilingual grapheme-
to-phoneme conversion. In Proc. Interspeech 2022,
pages 446—450.

86



Beyond Shallow Heuristics: Leveraging Human Intuition
for Curriculum Learning

Vanessa Toborek!, Sebastian Miiller!*, Tim Selbach’,
Taméas Horvath"*3, Christian Bauckhage!*?
'University of Bonn, 2Lamarr Institute, *Fraunhofer IAIS
toborek@cs.uni-bonn.de

Abstract

Curriculum learning (CL) aims to improve
training by presenting data from ‘“easy” to
“hard”, yet defining and measuring linguistic
difficulty remains an open challenge. We in-
vestigate whether human-curated simple lan-
guage can serve as an effective signal for CL.
Using the article-level labels from the Simple
Wikipedia corpus, we compare label-based cur-
ricula to competence-based strategies relying
on shallow heuristics. Our experiments with a
BERT-tiny model show that adding simple data
alone yields no clear benefit. However, structur-
ing it via a curriculum — especially when intro-
duced first — consistently improves perplexity,
particularly on simple language. In contrast,
competence-based curricula lead to no consis-
tent gains over random ordering, probably be-
cause they fail to effectively separate the two
classes. Our results suggest that human intu-
ition about linguistic difficulty can guide CL
for language model pre-training.

1 Introduction

The growing scale of language models (LMs) has
increased interest in training strategies that improve
efficiency and convergence. Curriculum learning
(CL), inspired by developmental psychology, is one
such approach. CL structures training by present-
ing examples in a sensible order — typically from
“easy” to “hard” (Elman, 1993; Bengio et al., 2009;
Wang et al., 2021). While intuitively compelling
and empirically useful in certain NLP tasks (Platan-
ios et al., 2019; Nagatsuka et al., 2021), its overall
impact on masked language model (MLM) pre-
training remains debated (Surkov et al., 2022).

A key challenge in CL is the definition of lin-
guistic difficulty. Unlike other domains, language
difficulty may arise from multiple dimensions —
such as syntax, semantics or context. In the ab-
sence of gold standards, prior work often relies on
shallow heuristics (Platanios et al., 2019; Ranaldi

Rarity Class Example

low SL She is the author of the Twilight
series.

low EL  The history of poker is the sub-
ject of some debate.

high SL  Today, most automotive diesels
are turbocharged.

high EL  Pink Floyd watched The Beatles

recording Lovely Rita.

Table 1: Sentences showing examples of high and
low average word rarity for each class in the Simple
Wikipedia dataset (Kauchak, 2013).

et al., 2023). Yet, readability research suggests that
no single heuristic reliably captures linguistic com-
plexity (Battisti et al., 2020). In contrast, humans
intuitively consider multiple dimensions when sim-
plifying text. This motivates the central question
for this work: Can human-curated simple language
effectively guide CL for MLM pre-training ?

To answer this question, we study CL strate-
gies based on article-level labels from the Simple
Wikipedia corpus (Coster and Kauchak, 2011) and
compare them to competence-based CL with shal-
low difficulty heuristics (Platanios et al., 2019),
using BERT-tiny for MLM pre-training. Our exper-
iments show that merely adding simple language
data to training yields no overall improvement.
Still, incorporating it through a label-based curricu-
lum consistently improves not only overall perplex-
ity but particularly the simple language perplexity.
This effect vanishes when reversed: training on
everyday language first is detrimental to learning,
underscoring the importance of example ordering.
Surprisingly, competence-based curricula show no
benefit over random ordering.

Further, we find that simple and everyday lan-
guage articles have similar vocabulary sizes and
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high lexical and distributional overlap on the
chosen difficulty heuristics. This suggests that
competence-based CL fails here, because the
heuristics do not effectively separate the classes.
In contrast, the consistent gains from label-based
curricula imply that simple language encodes other
useful information, providing structure that bene-
fits pre-training when leveraged correctly. These
results suggest that simple language does indeed
help, when applied in a curriculum that makes use
of human intuition on linguistic difficulty.

2 Related Work

A common form of data-level CL orders the
data points according to a global difficulty mea-
sure. This approach has been applied to various
NLP tasks such as language modelling (Nagatsuka
et al., 2021; Ranaldi et al., 2023), machine transla-
tion (Platanios et al., 2019; Mohiuddin et al., 2022),
and questions answering (Liu et al., 2018) using
difficulty measures like input length (Nagatsuka
et al., 2021; Zaremba and Sutskever, 2015), word
rarity (Platanios et al., 2019), or domain similarity
(Mohiuddin et al., 2022). However, the choice of
metric is often intuitive and its overall effective-
ness remains debated, as the work by Surkov et al.
(2022) found that competence-based CL for MLM
offers little to no benefit.

A parallel line of work explores the benefits
of simplified language in neural network train-
ing. Mueller and Linzen (2023) show that pre-
training on simple language corpora strengthens the
syntactic inductive bias in encoder-decoder mod-
els. Huebner et al. (2021) demonstrate that child-
directed data facilitates grammar learning for down-
sized encoder-only models. Lucas et al. (2024) ex-
plore CL through a masking-based strategy, also
leveraging simplified language. While these stud-
ies focus on specific linguistic gains or efficiency
improvements, the role of simplified language in
global, data-level curriculum design remains un-
explored. We address this gap by investigating
whether editorially curated simple language — such
as that in Simple Wikipedia — can serve as an effec-
tive learning signal for CL, and how it compares to
commonly used difficulty heuristics.

3 Methodology

We use the following experimental setup to study
the effect of simple language in MLM pre-training.

Label # tokens # sentences
Simple (SL) 3,395,297 191, 318
Everyday (EL) 3,796,654 176,019

Table 2: Dataset statistics for simple (SL) and everyday
(EL) language in the Simple Wikipedia corpus.

Dataset We employ the Simple Wikipedia
dataset (Coster and Kauchak, 2011), the most pop-
ular, freely available simple language corpus in
English. It consists of articles from the Simple
English Wikipedia in simple language (SL) and
their counterparts from the English Wikipedia in
everyday language (EL). Each sentence inherits the
article-level label (SL or EL), which may introduce
some label noise due to within-article variation
in sentence complexity. Table 2 compares both
classes regarding their respective number of tokens
and sentences.

Difficulty Heuristics For the competence-based
CL, we consider three shallow heuristics for text
difficulty: sentence length, word rarity, and the
Flesch Reading Ease (FRE) score (cf. Platanios
et al. (2019), Ranaldi et al. (2023)). Refer to Ap-
pendix B for the details. In addition to these, we
include a random baseline, where difficulty scores
are sampled uniformly to isolate the effect of data
ordering from the progressive data exposure.

Curriculum Strategies We compare two CL
paradigms. First, following Platanios et al. (2019),
we implement the competence-based curriculum
approach. We sort the training examples accord-
ing to the aforementioned difficulty measures and
gradually expand the training set as model com-
petence increases. The curriculum proceeds until
the entire dataset is included. We provide the full
implementation details in Appendix A.

Second, we implement two label-based curric-
ula using the SL/EL distinction. The sequential
strategy first trains on SL until convergence, then
continues training on EL. To mitigate potential for-
getting from fully replacing the training data, we
propose an incremental strategy: the model is first
trained on SL alone, then continues on the com-
bined SL+EL set, each phase until convergence.
We also include a reverse sequential strategy (first
on EL, then SL) as a control strategy.

Training Setup We train a BERT-tiny model
with two transformer layers of hidden size 128,
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Strategy Perplexity ~ SL Perplexity EL Perplexity # Updates

Baseline EL 69.25 404 59.50 +a3s 81.78 +ass 658 667 +11319
Baseline SL+EL 69.61 +4s7 64.15 +s05 76.46% +sas 665333 L2111
Incremental 66.36 +253 63.29 1339 71.51° 1255 781333 £s3312
Sequential 65.31" 410 57.83" 14 74.39 +401 781333 1122202
Anti-Sequential ~ 70.32 4397 59.24 +40 81.70" 1437 682000 +102274
Length 69.05 +4.15 63.84 1412 76.37 446 672667 171760
Word Rarity 66.74 +34s 62.48 13 7412 ta12 664 666 +72304
FRE 68.05 +522 62.53 +a0s 75.32 +ss8 709 333 +105524
Random 68.07 a9 63.08 +a95 75.21 +s540 679333 Li0s388

Table 3: Performance of BERT-tiny across baseline and CL strategies. Perplexity is reported for the full dataset and
separately for the simple (SL) and everyday language (EL) subsets. Sequential label-based curriculum achieves best
overall and SL perplexity. No competence-based strategy shows consistent improvement over baselines. Reported
values are mean and standard deviations across 15 runs. » denotes significant changes.

two attention heads, an intermediate feed-forward
of size 512, a batch size of eight, and a learning rate
of 10~%. All models are trained until convergence,
with early stopping based on validation loss. All
experiments are repeated over 15 random seeds to
ensure statistical robustness.

Evaluation We evaluate model performance us-
ing overall perplexity as well as SL and EL subset
perplexities. This helps us assess general improve-
ments as well as register-specific gains. Our base-
lines include models trained with random sampling:
one on everyday language only (Baseline EL), the
other on a uniform mix (Baseline SL+EL).

4 Curriculum Learning Results

We summarise the final performance of the BERT-
tiny model across all training strategies in Table 3,
focusing on overall, SL, and EL perplexity, as
loss values are less informative. We compare
each strategy against a primary baseline (Baseline
SL+EL), trained on SL+EL using random data sam-
pling, with results averaged over 15 seeds. To
assess the statistical significance of our results,
we apply a one-sided Wilcoxon signed-rank test
for symmetric distributions, and a one-sided me-
dian bootstrap test otherwise. All p-values are ad-
justed using the Holm-Bonferroni method within
each experiment family (baseline, label-based CL,
competence-based CL), using o« = 0.05 and direc-
tional hypotheses. Appendix C details the direc-
tional hypotheses and the corresponding adjusted
p-values.

Does merely adding simple language to the train-
ing data improve model performance? The re-
sults provide a clear but mixed answer. Comparing
Baseline SL+EL to Baseline EL, we see a signifi-
cant improvement in EL perplexity but no improve-
ment in neither overall nor SL perplexity.

Can simple language effectively guide CL? We
find clear evidence in favour of simple language
guiding CL — provided that the sampling strategy
is right. Among the label-based CL strategies, only
the sequential variant significantly improves overall
as well as SL perplexity — achieving the best scores
across all strategies. Incremental improves EL per-
plexity, but not overall performance. To show that
the improvements of the sequential strategy are not
accidental, we also test its anti strategy (i.e. start-
ing training on EL, then progressing with SL): it
performs similarly to Baseline EL and yields signif-
icantly worse EL perplexity than Baseline SL+EL.
Both incremental and sequential strategies require
more updates than Baseline SL+EL to reach these
improvements.

Are shallow text features sufficient to guide
competence-based CL.? We have a negative an-
swer to this question. Across all three competence-
based difficulty measures, we observe no signifi-
cant improvement in perplexity compared to Base-
line SL+EL. The random strategy further suggests
that neither simply increasing the dataset size nor
imposing an order on shallow features leads to bet-
ter model performance.
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Figure 1: Distribution of sentence-level difficulty heuristics for SL and EL.

None of the heuristics cleanly separates the two classes.

5 Discussion

In this section we discuss the implications of the
results from the previous section with regards to
our three research questions.

Learning across registers: asymmetries and in-
terference The surprisingly strong performance
of Baseline EL on the SL subset suggests that EL
may implicitly cover much of the SL distribution,
possibly due to the compositionality of language.
However, simply adding SL to the randomly or-
dered training data does not improve overall per-
formance — and while it significantly improves EL
perplexity, it worsens performance on SL itself.
This asymmetry hints at a negative interference
effect as observed in multilingual model training
(Wang et al., 2020): though both classes stem from
the same language, they might be different enough
to cause gradient conflicts when used in the same
dataset. These findings emphasise that learning
patterns across language registers are not symmet-
ric, and underscore the importance of evaluating
perplexity for different subsets.

Structure matters: the effectiveness of label-
based curricula Models only benefit from SL
when introduced in a structured way. Sequential
label-based curricula, where training begins with
SL before using EL, consistently outperform other
strategies in overall and SL perplexity. This aligns
with the idea that simplified input can serve as a
scaffold, supporting the acquisition of more com-
plex patterns. While the effect mirrors principles
observed in human learning, the underlying reason
why structured exposure aids generalisation may
differ in MLM.

The limits of difficulty heuristics Competence-
based curricula using shallow difficulty heuristics
show no clear advantage over random strategies.
While this supports prior findings by Surkov et al.
(2022), our analysis offers further insight. Figure 1

Class

B SL EL
SL 100% 96.67%
EL 86.06% 100%

20 40 60 80 100

Flesch Reading Ease

Table 4: Vocabulary overlap be-
tween classes. Over 80% of EL’s
vocabulary is also present in SL,
showing high lexical similarity.

shows histograms comparing the distribution of
shallow heuristics in SL and EL. and Table 1 illus-
trates some examples. While it is plausible that EL
has samples at the “easy” extremes, as not every
sentence in everyday language is necessarily com-
plex, we also observe SL examples at the “complex”
extremes. Assuming that SL represents text that
is easier to understand for humans, this highlights
that the difficulty heuristics fail to meaningfully
separate the two classes.

Future Directions We find that while shallow
difficulty heuristics do not suffice to guide CL, the
information encoded in the language classes does.
Despite high lexical overlap and comparable size
(Tables 2 and 4), simple language may offer more
than surface-level simplicity. Prior work has shown
that both humans and neural models benefit from
regular, compositional input (Galke et al., 2024)
and simple language might reflect just that through
syntactic consistency or clearer discourse structure.
Future work could explore how such compositional
features manifest in simple language, and whether
they can be modelled or annotated as difficulty
signals — enabling broader and more effective CL
strategies in MLLM pre-training.

6 Conclusion

We examined whether human-curated simple lan-
guage can guide CL in MLM pre-training. Our
results show that label-based curricula outperform
both random baselines and competence-based ap-
proaches relying on shallow difficulty heuristics.
While the two language classes show high lexical
and distributional overlap, their ordering — particu-
larly when first training on simple language before
moving to everyday language — leads to significant
gains in model performance. This suggests that
human intuition about linguistic difficulty provides
more effective structure for CL than traditional
surface-level heuristics.
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A Implementation Details

We provide our implementation details for the
competence-based CL strategy, where each training
sample is assigned a difficulty score and the dataset
is sorted accordingly. A predefined competence
function then controls the fraction of data avail-
able at each training step ¢, gradually increasing
the difficulty over time. Following Platanios et al.
(2019), we adopt the square-root based competence
function, which they found to be most effective:

t(1— 0(2)))

1
T € [0,1],

Csqrt(t) = min(1,
where ¢y denotes the initial competence at ¢ =
0 and T is the total number of steps in the CL
phase. In our experiments, we observed that shorter
competence phases tend to yield better results than
longer ones. We pick 7" = 50000 and ¢g = 0.05
as function parameters. The size of the training
dataset is updated every 5 000 steps depending on
the current function value.

B Difficulty Heuristics

In our work we consider three popular heuris-
tics to measure the difficulty of text for global,
data-level curriculum learning (cf. Platanios et al.
(2019) or Ranaldi et al. (2023)). Let S be a sen-
tence, represented by a finite sequence of words
(wi,ws, ..., wy,). The first heuristic, sentence
length, is defined by the number of words in the
sentence:

length(S) = |5].

Next, we use the word rarity metric as proposed
by Platanios et al. (2019), but normalise it by the
number of words to remove its strong correlation
with the sentence length:

word rarity(S) = | S| Zl (countc )>,

where IV denotes the size of the vocabulary of the
corpus and count.(w) the number of times w ap-
peared in the corpus. Last, we present the Flesch
Reading Ease (FRE) score as defined by Flesch
(1948). It is designed to evaluate the readability of
text and to return a score between 0 and 100:

FRE(S) = 206.835—1.015 x ASL—84.6 x ASW,

where ASL denotes the average sentence length,
which is always the actual sentence length since we

Strategy PPL SLPPL EL PPL
Baseline 445 (w)  .996 (w) .004 (w)
SL+EL

Incremental  .598 (b) 1.00 (w) .008 (w)
Sequential 019 (w)  .001 (w) .126 (w)
Anti- 252 () 1.00 (w) .008 (w)
Sequential

Length 890 (w) 977 (w) .899 (w)
Word Rarity  .890 (b) .977 (w) .718 (w)
FRE TJ79 (w) 977 (w)  .899 (w)
Random J79 (w) 977 (w)  .899 (w)

Table 5: Adjusted p-values for all statistical tests for
the models’ performance on overall perplexity (PPL),
simple language perplexity (SL PPL), and everyday
language perplexity (EL PPL). We choose a = 0.05
and boldface all significant results. We further indicate
which one-sided test was run: (w) Wilcoxon signed-rank
test or (b) boostrap median test.

only evaluate single sentences, and ASW denotes
the average syllables per word. Since the FRE was
designed to evaluate text samples of 100 words,
we can encounter negative FRE scores which are
outside the originally defined range.

C Details on the Significance Tests

Table 5 reports the adjusted p-values for all strate-
gies, assessing their performance relative to rele-
vant baselines. For each comparison, we applied a
one-sided test based on our directional hypotheses:
(1) whether adding SL (Baseline SL+EL) improves
over the baseline trained with EL (Baseline EL);
(2) whether label-based curricula (Incremental and
Sequential) improve over the full baseline (Base-
line SL+EL); (3) whether Anti-Sequential hurts
performance compared to Baseline SL+EL; and
(4) whether competence-based strategies (Length,
Word Rarity, FRE, Random) improve over the Base-
line SL+EL.
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Abstract

Large Language Models tend to struggle when
dealing with specialized domains. While all
aspects of evaluation hold importance, factu-
ality is the most critical one. Similarly, reli-
able fact-checking tools and data sources are
essential for hallucination mitigation. We ad-
dress these issues by providing a comprehen-
sive Fact-checking Benchmark FActBench cov-
ering four generation tasks and six state-of-the-
art Large Language Models (LLMs) for the
Medical domain. We use two state-of-the-art
Fact-checking techniques: Chain-of-Thought
(CoT) Prompting and Natural Language Infer-
ence (NLI). Our experiments show that the fact-
checking scores acquired through the Unani-
mous Voting of both techniques correlate best
with Domain Expert Evaluation.

1 Introduction

In the quickly evolving era of Natural Lan-
guage Processing (NLP), Large Language Models
(LLMs) are making their way into almost all use
cases and domains. In most tasks, they have shown
tremendous generative capabilities and a good un-
derstanding of text. However, they still tend to
hallucinate in critical domains like the Medical do-
main. Contemporary LLMs are typically evaluated
against general benchmarks and their assessment
of the Medical domain is usually lacking. While
it is essential to mitigate hallucinations, as a first
step some reliable automatic fact-checking indi-
cators are needed (Clusmann et al., 2023). The
field of automatic fact-checking in LLMs is rapidly
developing making it essential to find trustworthy
techniques and data sources.

The state-of-the-art techniques for Automatic
Fact Checking include Natural Language Infer-
ence (NLI) (Mor-Lan and Levi, 2024; Akhtar et al.,
2024) using DeBERTa (He et al., 2021), or through
Chain-of-thought (CoT) (Wei et al., 2022) by using
an LLM as a judge (Zheng et al., 2023). Given the

importance of Factual correctness in a critical do-
main such as medicine, it is helpful to rely on more
than one technique for Fact-checking. Therefore,
we explore the idea of Unanimous Voting such that
an atomic fact is only considered to be factually
correct if it is supported by both techniques.

Hallucinations can generally be divided into
input-conflicting, context-conflicting, and fact-
conflicting (Zhang et al., 2023). The focus of
our work lies in fact-conflicting, which is hal-
lucination, where facts in output contradict the
world knowledge. Additionally, our work builds on
top of FActScore, a CoT-based approach for fact-
checking. We adapt it to support user-provided
grounding documents, making it suitable for tasks
like RAG and Summarization. We present an auto-
matic Fact-Checking Benchmark FActBench! with
the following contributions:

* We fact-check six contemporary LLMs using
Atomic Facts (Min et al., 2023) on four gener-
ations tasks: Text Summarization, Lay Sum-
marization, Retrieval Augmented Generation
(RAG), and Open-ended Generation.

* We compare Intrinsic (Grounding Docu-
ment) and Extrinsic (Wikipedia Dump) Fact-
checking techniques in our experiments.

* We evaluate NLI, CoT as well as Unanimous
Voting (UnVot) for the final prediction using
domain expert evaluations as reference.

Details about all the datasets we use can be found in
their original papers, including appropriate licenses
and terms of use.

2 Related Work

Hallucinations are a common problem in Natural
Language Generation (NLG) tasks such as abstrac-

!Code for FActBench
github.com/jvladika/FactSumm/

can be found at
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tive text summarization, generative question an-
swering, or dialogue generation (Ji et al., 2023).
Detecting hallucinations is tied to the problem of
measuring the factuality of model output (Augen-
stein et al., 2023; Zhao et al., 2024). Hallucinations
can be detected with approaches looking at the un-
certainty in models’ logits (Varshney et al., 2023) or
with approaches that fact-check model output over
external knowledge sources (Chern et al., 2023).

Some recent works approached evaluation with
question answering (Scialom et al., 2021) or NLI
(Utama et al., 2022). Most recent methods leverage
LLMs by querying them with prompts that directly
ask for a score, like G-Eval (Liu et al., 2023a),
or evaluate the generated text with the veracity of
its atomic facts, like FActScore (Min et al., 2023).
Fadeeva et al. (2024) develop a method that does
not require external knowledge for fact-checking
as they leverage token-level uncertainty to identify
the potentially factually incorrect generated section
in the output. Similarly, Sankararaman et al. (2024)
introduces Provenance, a technique that uses NLI
models to check if the RAG output is factually
correct with reference to context. Lastly, Chen et al.
(2024) present FactCHD, a benchmarking for fact-
conflicting hallucination detection for the General,
Scientific, Health, and COVID-19 domains.

3 FActBench: Benchmark

In our Benchmark, we use two SotA techniques,
NLI and CoT, to evaluate 6 models on 4 different
tasks. We follow the approach introduced by Min
et al. (2023) to break all generations into a list of
atomic facts which are then used for fact-checking.
Since all our tasks with the exception of Open Gen-
eration, use a source document for grounding, we
opt for a hybrid approach such that we first perform
fact-checking using an intrinsic approach, followed
by an extrinsic one.? The latter only performs eval-
uation on atomic facts that have been marked as
hallucinations in the first step. We employ such an
approach because it is possible for an atomic fact
to be factually correct as per the world knowledge,
even if it is not supported by the grounding docu-
ment. We show this methodology in Figure 1 that
illustrates how different fact-checking techniques
and data sources interact with each other.

’In factuality evaluation, intrinsic hallucinations are those
that contradict the reference document, while extrinsic halluci-
nations are those that contradict the external world knowledge.

3.1 Techniques

Baseline: FActScore As a baseline, we first re-
port on task performance using the established
FActScore metric, following their external checks
on Wikipedia with no grounding document. The
reason we use it is its popularity in papers involv-
ing generative NLP tasks in the last couple of years
(Dhuliawala et al., 2024; Chang et al., 2024; Huang
et al., 2025). Later, our goal is to show that the
combination of methods we use instead of raw
FActScore lead to a more faithful evaluation frame-
work and a better alignment with human scores.

Natural Language Inference (NLI): We utilize
NLI as the first evaluation method. NLI aims to
predict the logical relation between a premise and
a hypothesis, including entailment, contradiction,
and a neutral stance. We use the generated answer
as the premise and the reference answer as the
hypothesis. The intuition behind this approach
is that a good answer should logically entail the
reference. NLI has been applied for evaluating the
quality of summaries and text generation (Mishra
et al., 2021; Laban et al., 2022; Steen et al., 2023).
Following this approach, we use DeBERTa-v3
(He et al., 2023), shown to work well with NLI and
reasoning tasks. We use the version Tasksource,
fine-tuned on a wide array of NLI & classification
datasets, which works well with long inputs (Sileo,
2023).3 We take entailment predictions as a sign of
the atomic fact being supported by the original text
and contradiction as a sign of hallucination. We
additionally check the contradicting atomic facts in
an extrinsic way, by predicting their NLI class with
the relevant Wikipedia context as the hypothesis.

Chain-of Thought (CoT) Prompting: For eval-
vation using Chain-of-Thought Prompting, we
adapted FActScore, an existing CoT-based fact-
checking tool. This technique is suitable for open-
ended generation and uses a Wikipedia dump as
the knowledge source. FActScore supports extrin-
sic fact-checking by retrieving the most relevant
passages from Wikipedia using user-defined topics.
We adapt FActScore to support external documents
as the basis for fact-checking. This "topic" should
be the name of a real Wikipedia article, from which
the relevant passages are retrieved. We also include
a LL.M-based topic generator so it is not required
to manually define the topic when evaluating using

3https://huggingface.co/tasksource/
deberta-base-long-nli

94



Chain-of-Thought

o0

||||||

Chain-of Thought

Natural Language
nference

(AL}

Figure 1: Block Diagram depicting how different fact-checking techniques interact with different data sources.
Chain-of-Thought uses an LLM whereas Natural Language Inference uses a small LM as the backbone.

passages from the Wikipedia dump. We use GPT-
40 mini as the backbone of FActScore+, which
serves as a compromise between cost and quality.

Unanimous Voting (UnVot): To produce a reli-
able fact-checking approach, we explore the idea of
Unanimous Voting. This means we only consider
an atomic fact to be correct if both NLI and CoT
support it. This technique is especially useful for
applications where high precision is needed.

Human Evaluation: We evaluate CoT, NLI, and
UnVot techniques by correlating to domain expert
judgment. We recruited 8 in-house employed in-
dividuals with a medical background to serve as
annotators. A random subset of 80 generations (20
per task) was manually annotated such that each
generation was evaluated by two annotators. They
were instructed to follow the same hybrid, using
both the original article and Wikipedia as a basis
for fact-checking. Annotators were asked to as-
sign a score between 1 and 100 to the generation
estimating the factual correctness of the text.

3.2 Tasks

We include four tasks in our Benchmark, including
Text Summarization, Lay Summarization, Retrieval
Augmented Generation, and Open-ended Genera-
tion. The prompts used for all four tasks are shown
in Appendix A. We summarize the datasets used
for the tasks in Table 1 and discuss them below.
All the datasets can be found in their respective
original papers, together with appropriate licenses.

Text Summarization. This task refers to the
ability of an LLM to summarize a long scientific
article into a summary. We used 1000 random
samples from the PubMed Summarization dataset
(Cohan et al., 2018), which is derived from the

original PubMed dump.

Lay Summarization. Contrary to normal text
summarization, Lay Summarization refers to the
model’s ability to create a layman summary of
biomedical articles. We use 1000 random samples
from the PLOS dataset introduced by Goldsack
et al. (2022).

Retrieval Augmented Generation (RAG). We
use BioASQ-QA (Krithara et al., 2023), a biomed-
ical question answering (QA) dataset designed
to reflect the real information needs of biomed-
ical experts. The questions are written by ex-
perts and evidence comes from PubMed. We use
the summary subset — 1130 questions paired with
human-selected evidence snippets from PubMed
and human-written "ideal answers" based on those
snippets. We use the gold snippets as input to an
LLM and prompt it to generate an answer to the
given question, thus simulating a RAG pipeline.

Open-ended Generation. In this setting, no
context is used and the model is prompted to gen-
erate an answer based on its knowledge. We again
use the BioASQ dataset from the RAG task — we
take the 1130 questions and use them as input to
an LLM by prompting it to answer the question.

Task Dataset #Source W #Gen W
Summ PubMed 3,053.9 256
Lay Summ PLOS 6,696.8 256
RAG BioASQ-QA 351.9 116.5
Gen BioASQ-QA 351.9 default

Table 1: Average word count of articles (#W) and #
generation tokens (#Gen W) during inference for tasks
with respective datasets. Summ = Text Summarization,
Lay Summ = Layman Summarization, RAG = Retrieval
Augmented Generation, Gen = Open-ended Generation.
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| Summarization Lay Summarization RAG (QA) Open-ended Gen
Models | CoT NLI UnVot | CoT NLI UnVot | CoT NLI UnVot | CoT NLI UnVot
FActBench (Grounding Document)
GPT-40 mini 95.8 77.4 86.6 95.4 94.8 95.1 254 717 51.5 445 504 47.5
Llama3.1 8b 95.3 87.8 85.28 95.4 93.5 94.4 35.6  76.7 56.1 744 356 55.0
Llama3.1 70b 96.52 84.59 82.84 96.1 94.1 95.1 313 763 53.8 37.3  46.5 41.8
Mistral 7b 95.8 8255 80.38 963 9732 9475 | 829 73.1 78.0 809 325 56.6
Mixtral 8 x 7b | 95.2  87.86 95.5 96.5 97.0 95.0 88.2 75.0 81.6 854 369 61.1
Gemma 9b 84.55 7195 68.77 | 8294 80.65 7548 | 35.8 44.0 43.7 54.1  30.5 28.0
FActBench (Grounding Document + Wikipedia)
GPT-40 mini 96.8 82.6 80.4 96.2 96.6 93.4 97.3 78.2 76.4 958 514 50.3
Llama3.1 8b 964  88.85 86.25 96.5 94.2 91.5 982 771 76.1 793  36.7 32.1
Llama3.1 7@b 97.27 85.71 83.9 97.0 94.8 92.0 972 768 75.1 90.9 477 459
Mistral 7b 96.51 8359 81.34 | 97.83 96.7 9493 | 98.6 735 72.7 92.1 332 31.9
Mixtral 8 x 7b | 969 88.68  86.24 97.5 97.2 95.1 97.7 753 74.0 93.0 37.8 36.5
Gemma 9b 93.03 7446 7099 | 91.11 81.68 7643 | 974 450 44.6 80.1 315 28.8
Baseline: FActScore (Wikipedia)

GPT-40 mini 51.34 52.6 19.4 414
Llama3.1 8b 43.97 494 25.3 71.3
Llama3.1 70b 50.08 48.8 24.0 34.8
Mistral 7b 46.11 50.02 61.1 78.4
Mixtral 8 x 7b 49.71 51.00 64.5 81.6

Gemma 9b 53.54 54.56 44.0 52.0

Table 2: Factchecking scores of six LLMs on four tasks using Chain-of-Thought (CoT) prompting, Natural Language
Inference (NLI), and Unanimous voting (UnVot). We show scores by incorporating two different knowledge sources.

3.3 Models

We include six LLMs in our experiments includ-
ing L1ama3.1 8b (Dubey et al., 2024) L1ama3. 1
70b, Mistral 7b (Jiang et al., 2023), Mixtral
8x7b (Jiang et al., 2024a), Gemma2 9b (Team et al.,
2024) and lastly, closed-source GPT-40 mini. We
provide the checkpoints and technical details in
Appendix B.

4 Results & Discussion

4.1 Correlation with Human Evaluation

Before discussing the benchmark results, we check
the effectiveness of the techniques used. We
performed human evaluation using the process
described in subsection 3.1. The average fact-
checking scores using the baseline, 3 techniques, as
well domain expert annotations are in Table 3. The
final Cohen’s inter-annotator agreement « is 0.75,
which signifies substantial agreement. The baseline
technique (FActScore) that uses only Wikipedia
as the knowledge source severely underestimates
the correctness of the generated text whereas the
Chain-of-Thought technique that uses Grounding
Document and Wikipedia overestimates it. Overall,
it can be seen that our UnVot score derived through
joint decisions of CoT and NLI correlates best with
domain expert judgment. Still, it is important to

point out that this holds true for the summariza-
tion, lay summarization, and RAG tasks, while the
pure generation task best correlated with baseline
FActScore system.

The high correlation of UnVot with human judg-
ment is an important finding. Hiring human an-
notators, especially domain experts, can be a very
expensive and time-consuming process. Having
a metric that highly correlates with human scor-
ing intuition can provide a good enough substitute
for situations where finding human annotators is
infeasible or impossible for certain labs, groups,
and application use cases. A lot of focus of recent
LLM research is put on aligning LLMs with human
values and intuition (Wang et al., 2023), and recent
LLM-as-judge evaluation metrics like G-Eval (Liu
et al., 2023b), Prometheus (Kim et al., 2024), and
TIGERScore (Jiang et al., 2024b) put a high empha-
sis on the correlation of their metrics with humans.
As future work, it would be interesting to com-
pare these metrics with UnVot as well, which we
currently skip due to resource constraints.

4.2 Task and LLM Performance

We summarize the Fact-checking scores in Table 2,
which show that the grounding helps LLMs to be
more truthful. In terms of tasks, LLMs tend to
hallucinate more when prompted to do open-ended
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Task Baseline CoT* NLI* UnVot* Human
Summ 54.81 96.87 8541 8345 84.0
LaySumm 52.5 97.6 91.09 88.94 88.7
RAG 38.43 100.0 83.04 83.04 87.3
PureGen 71.26 88.17 31.61 31.31 62.7

Table 3: Fact-checking scores on FActScore (Baseline),
Chain-of-Thought (CoT), Natural Language Inference
(NLI), Unanimous Voting (UnVot), and Domain Expert
Evaluation (Human). * refers to final scores with intrin-
sic followed by extrinsic fact-checking.

generation in the medical domain. However, the
performance on other grounding-based task show
that given the correct context and supporting docu-
ment, LLMs are good at understanding a complex
domain such as the medical domain. Within each
task, LLM performance is mostly uniform. As
expected, Open-ended generation is the most chal-
lenging task, which is expected due to the LLM
using its internal knowledge to answer questions,
which can lead to hallucinations. Lay summariza-
tion was the most factually correct task, likely ow-
ing to the nature of lay text where simpler terms
and phrasing is used, which reduces the possibility
of mixing up complex scientific terms with one
another, which would lead to hallucinations.

Surprisingly, we see no big difference in models
with respect to their sizes. However, both Mistral
and Mixtral lead the board for two summariza-
tion tasks. While Mixtral performs best for two
QA tasks with only the grounding document, GPT
comes on top after extrinsic checks, showing its
high awareness of Wikipedia in pre-trained knowl-
edge. Two L1lama models come close to Mixtral,
while Gemma performs the worst on all tasks.

5 Conclusion and Future Work

We present a Benchmark providing insights over
contemporary LLMs across 4 tasks in the medi-
cal domain. We discuss Chain-of-Thought, Natu-
ral Language Inference, and Unanimous Voting as
fact-checking techniques. Through Domain Expert
Evaluation, we show the Unanimous Voting tech-
nique to be most reliable. We also explored the
effectiveness of two knowledge sources, namely
a Grounding Document and Wikipedia, for evalu-
ation and found that using more than one knowl-
edge source leads to an increase in factuality scores.
Lastly, we found that LLMs are mostly factually
incorrect for Open-ended generation in the medical
domain and tend to be more faithful for tasks like

Summarization and RAG, where some context is
provided to the LLM for generation. We envision
our evaluation benchmark to be easily applied for
fact-checking across other domains in future.

Limitation

Due to the high computation costs, we use only one
model as the backbone for each factuality evalua-
tion technique. Even though we evaluated six Large
Language Models on four diverse tasks, these tasks
may not be enough to capture the entirety of LLM
performance and the quickly evolving landscape of
new models.

Additionally, our two evaluation techniques with
NLI and FactScore+ CoT are not perfect and it is
possible there were incorrect predictions of which
facts were supported or refuted by evidence. Even
though our manual inspection and human evalu-
ation showed a good correlation with automated
metrics, there will always be some mishaps and
incorrect verdicts.

Finally, our approach relies on making numerous
calls to the external API and to the Wikipedia dump
database instance in case of extrinsic fact-checking,
which can all slow down the overall pipeline. An
alternative would have been running locally hosted
open-source models, but this was out of our budget
due to computational costs. Future work could
explore these solutions and make the process faster.

Ethics Statement

Throughout our experiments, we strictly adhere
to the ACL Code of Ethics. The manual evalua-
tion was performed by in-house annotators who
received a full salary, and their annotation were
stored anonymously, mitigating any privacy con-
cerns. They were informed about the task and us-
ability of data in the research. The goal of the
research is to evaluate existing techniques and in-
troduce a new technique that can be used for fact-
checking LLM generated text on four tasks in the
medical domain. We use the LLMs through infer-
ence using open-source dataset and do not include
in any information in model weights. The discus-
sions and results in this paper are meant to further
promote research in the area of LLM Fact-checking
as well as create more awareness about their appli-
cations in the medical domain. All scripts will be
made available to the research community.
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A LLM Prompts:

The prompts used for LLM inferences on all four

tasks are illustrated in Table 4.

TEXT SUMMARIZATION PROMPT

Summarize the given article by including the following
key points:

Objective: What is the main research question or objective
of the study?

Background: What is the context or rationale for the study?
Methods: What study design, population, and methodolo-
gies were used?

Key Findings: What are the most significant results or
discoveries from the study?

Conclusions: What conclusions do the authors draw from
their findings?

Clinical Relevance: How might the study’s findings impact
medical practice or patient care?

Scientific Article: article Summary:

LAY SUMMARIZATION PROMPT

You will be provided a scientific article. Your task is to
write a lay summary that accurately conveys the back-
ground, methods, key findings, and significance of the
research in non-technical language understandable to a

general audience. Guidelines for crafting a lay summary:
Craft a detailed summary that explains the research find-

ings and their implications, providing thorough explana-

tions where necessary. ) ]
Ensure factual accuracy and alignment with the research

presented in the abstract, elaborating on key points and

methodologies.
Highlight the main findings and their implications for

real-world scenarios, delving into specific mechanisms
or methodologies used in the study and their broader sig-

nificance. o ]
Incorporate descriptive language to explain complex con-

cepts.
Maintain a balanced tone that is informative and engaging,

avoiding technical jargon or overly formal language.
Ensure the summary provides sufficient depth and context

to guide the reader through the research journey and ad-

dress potential questions or areas of confusion.
Scientific Article: article
Summary:

RETRIEVAL AUGMENTED GENERATION
PROMPT

Give a simple answer to the question based on the provided

context.
QUESTION: question
CONTEXT: context

OPEN-ENDED GENERATION PROMPT

Give a simple answer to the question based on your best

knowledge.
QUESTION: question

Table 4: The prompt in the Benchmark for LLM gener-

ation output for all tasks.

B Technical Details
B.1 LLM Generations

The inference procedure was done Together Al
Inference*. We used the instruct-tuned or chat ver-
sions of the models. As for GPT-40 mini, we used

*https://www. together.ai/

the OpenAI API and the latest snapshot available,
gpt-40-mini from Sep 13th, 2024. The check-
points used for LLM inferences of the open-source
models using Together Al are summarized in Ta-
ble 5.

Model checkpoint

Llama 3.1 8b meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
Llama 3.1 70b meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo

Mistral 7b mistralai/Mistral-7B-Instruct-v0.3
Mixtral 8x7b mistralai/Mixtral-8x7B-Instruct-v0.1
Gemma 2 9b google/gemma-2-9b-it

Table 5: Together Al checkpoints of all LLMs that were
used during Inferences.

B.2 Benchmark Computations

We used the OpenAl API° and the latest snap-
shot available, GPT-40-mini from Sep 13th, 2024
for Fact-checking using Chain-of-Thought prompt-
ing. We leveraged Nvidia V100-16GB and Nvidia
A100-80GB GPUs for performing fact-checking.

Shttps://platform.openai.com/
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Abstract

The diagnostic of neural networks, particularly
Large Language Models (LLMs), remains a
critical aspect of today’s Al-powered solutions,
whose training data are not available to users
for testing purposes. Practitioners usually aim
to fine-tune their models to maximize the ac-
curacy, by leveraging the traditional test met-
rics, whose application on large models re-
mains expensive. Recent advances considered
layer-based norms and power-law metrics for
a robust meta-analysis, without the need to ac-
cess training and test data. Inherently, elements
from Random Matrix Theory were used to re-
veal inner correlation patterns and size scales
within each layer, so to detect bottlenecks in
pre-trained models. This article extends the
use of such schemes by analyzing memory
dynamics and the probabilistic properties of
power-law metrics to study the information
flow within specific LLMs. Taken on a pre-
tained German LLM (LLaMmlein) and its orig-
inal English model (TinyLlama), this approach
confirmed embedded self-similar, fractal prop-
erties of power-law metrics, hinting heavy tails
and long-range correlations in the training pro-
cess with a substantial amount of undertrained
layers. This variability was found to be slightly
persistent in the original English TinyLlama
model and its German version, however the lat-
ter’s chat version exhibits a pure randomness
in its metrics. Findings stress out the role of at-
tention mechanism as the main driver of LLMs
training issues, while language-specific struc-
tures may cause metrics’ distortions, hence al-
tering the inter-layer information transmission
as a component of the training process.

1 Introduction

The advent of neural networks, coupled with in-
tensive computational innovations, popularized the
use of deep learning as a modeling standard, out-
performing other existing machine learning algo-
rithms. Although the widespread use of such ca-
pabilities opened new research areas, deep neural

networks (DNNSs) remain black box models, whose
effectiveness depends on complex hyperparameter
optimization (Wu et al., 2019) to achieve a robust
training. This forced practitioners to adopt expen-
sive feature engineering schemes, without clearly
setting up a strong theoretical background for users
(Martin et al., 2021).

Large Language Models (LLMs) have been ex-
tensively designed, as large scale models, to accom-
plish several complex tasks in Natural Language
Processing (NLP). Tuning and testing such models
require extensive learning time (Burns et al., 2025),
while training and test data are not always pub-
licly available. Moreover, such DNNs are based
on transformers (Vaswani et al., 2017) and require
a special attention because they feature memory
mechanisms, as for multihead attention and BiL-
STM (Graves and Schmidhuber, 2005). Although
these memory-based architectures are complex to
handle, they became the default choice for many
NLP architectures, as for the popular BERT model
(Devlin et al., 2019).

The term memory refers, for the particular case
of DNNs, to any mechanism by which a model
or agent stores, retrieves and uses historical infor-
mation (Zhang et al., 2024b), whether internally
or externally. This paper considers the memory
stemming from the information exchanged between
layers, that is the output flow of each layer in the
architecture, given by its weight matrix.

Random Matrix Theory (RMT) (Tulino and
Verdu, 2004) is considered as the central limit the-
orem for matrix analysis and was used to study
the overall performance of DNNs (Martin and Ma-
honey, 2021), on the basis of extracted eigenvalues
of each weight matrix in the architecture. While
earlier approaches considered mapping neural net-
works to a Gaussian process (Jacot et al., 2018),
Martin et al. (2021) set up a practical background
to identify similarities in the learning process of
multiple DNNS, particularly fitting issues and the
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bona fide of different regularization schemes to
reduce correlations inside each layer. This ex-
tended the concept of Self-Regularization theory
(Malevergne and Sornette, 2004), which assumes
the generic existence of a self-organized macro-
scopic state in any large multivariate system. Mar-
tin et al. (2021) came to the conclusion that an
implicit self-regularization at DNNs was prevail-
ing, at the contrast of explicit regularization (L1
and L2) constraining the norm of weight matrices.

This new field of research set up effective gen-
eralization metrics detailing the inner functioning
of DNNs, especially the learning process, the inter-
layer information flow and the intra-layer asymp-
totic convergence (Martin et al., 2021). It borrows
elements from statistical mechanics and was used
for many applications as for cyber threat detection
(Ferrag et al., 2024) and the description of feature
learning applications (Seroussi et al., 2023).

In parallel to the use of power laws (PL) in vari-
ous scientific fields, pattern similarities were stud-
ied under the name of fractal analysis, defining
the behavior of self-similar patterns whose occur-
rence is not purely random, but follows a power-
law behavior (Mandelbrot, 1982). The fractality
is an essential feature in language theory, denoting
the complexity stemming from word usage (Hiver
et al., 2022), and was recently used in information
processing (Wang et al., 2024). It fits the study
of the information correlation proposed by Martin
et al. (2021) which relies on a power-law fit over
heavy-tailed distributions.

While the training quality of popular NLP and
Computer Vision models came to scrutiny via
norms and PL-based metrics (Yang et al., 2023), it
ignored their inter-layer information exchange as a
component of the training process. This concern is
particularly determinant for LLMs, whose complex
architecture features two distinct types of attention
mechanisms (Vaswani et al., 2017; Martin et al.,
2021), as a key component a transformer.

Thus, this paper enriches the existing DNNs em-
pirical methodology by investigating the existence
of pattern similarity in the information transmission
on selected LLMs trained over English and German
corpora. It extends the layer-based meta-analysis
on such big architectures and details inter-layer
persistence behavior. The latter reveals short/long
term variations in the training process, whose non-
linearity is linked to underfitted layers.

For this aim, two German LLMs, namely

LLaMmlein_IB model' and a lightweight, small-
scale version LLaMmlein_120M model?, were used
in this paper to conduct a transfer learning experi-
ment, along the English TinyLlama, who served in
training the LLaMmlein.

Aside from a meta-analysis on each selected
LLM following Martin et al. (2021), an additional
memory check was conducted to dissect hidden
trends in the PL-based metrics. It revealed mild
persistency and underfitting of metrics featuring
information correlation and the size scale. Metrics
based solely on information correlation were found
to indicate heavy-tailed distribution of the eigenval-
ues and a high persistence, denoting the importance
of the size scale in the information flow analysis.

Findings indicate layers exhibit substantial un-
derfitting properties in both languages, mainly
due to attention mechanisms. Original TinyL-
lama (Zhang et al., 2024a), both the full and the
chat versions, have a mild persistent flow of in-
formation, compared to the German LLaMmlein
whose lightweight version is though slightly anti-
persistent. The size scale, measured by the maxi-
mum eigenvalue, proved to be important in harmo-
nizing the per-layer metrics. Differences in results
obtained from English and German LLMs could be
explained by the morphologically-rich characteris-
tic of the German language, known to be a SOV
(Subject-Object-Verb), while English language ex-
hibits a less complex SVO structure (Vikner, 2019).

The paper outlines the use of Random Matrix
Theory in DNNs analysis (Section 2), then de-
tails the Rescaled Range Analysis (Hurst, 1951),
as a method to study fractal properties and persis-
tency measurement (Section 3). Section 4 features
two language-based applications on English and
German LLMs and compares their metrics and per-
sistency measurements.

2 Random Matrix Theory

Train and test data have been the de facto tools to
assess machine learning models in general, and neu-
ral networks in particular. In the absence of such
data, elements from Random Matrix Theory were
applied on final weight matrices of neural networks
(Martin and Mahoney, 2021) to check their asymp-
totic convergence. It resulted several norms and
metrics, whose statistical properties were found to
"https://huggingface.co/LSX-UniWue/LLaMmlein_
1B

2https://huggingface.co/LSX-UniWue/LLaMmlein_
120M
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match DNNs accuracy, without accessing data used
to train the models (Martin et al., 2021). In other
terms, this strategy permits to discover whether a
layer learned too much from the noise (overfitting)
or alternatively has not learned enough from the
signal (underfitting), assuming data stem from two
components: signal and noise.

The WeightWatcher open source tool (Martin
et al., 2021) investigates the weight matrix W of
a given DNN layer, by analyzing its spectral prop-
erties. While every element of the weight matrix>
Wi; is assumed to follow a normal distribution
N (0, 0?), the empirical correlation (Wishart) ma-
trix X = %WTW is taken as the basis for quality
assessment, by extracting its eigenvalues spectrum.

The Marchenko-Pastur (MP) distribution
(Marchenko and Pastur, 1967) considers the
spectrum of eigenvalues bounded between A_
and Ay as relevant to the noise randomness. Its
probability density f(\) is given for a ' x N
matrix and a noise level o2 as:

2mo2 if A e P‘-v )‘+] ’

L=
it >_{0 i ¢ Ao AL

where A\ = o2(1 — \/%)2 and Ay = o%(1 +
Vh

The eigenvalues distribution, plotted as a his-
togram using the Empirical Spectral Density (ESD),
is an informative feature of the randomness prevail-
ing in every layer constituting the DNN, in addition
to reveal inter-layer differences.

Because many matrices hold strongly correlated
elements, the MP distribution is used to empirically
evaluate a noisy spectrum of eigenvalues, that could
be separated from other eigenvalues representing
the signal.

Martin and Mahoney (2021) found most weight
matrices in DNNs exhibit heavy-tailed distributions
of eigenvalues as they become increasingly cor-
related, suggesting rather drawing elements from
power-law generated data, as for Pareto distribu-
tion. This concept, known as Heavy-Tailed Self-
Regularization (HT-SR) theory, is linked to situa-
tions where separating the noise from the signal
becomes difficult to achieve, as eigenvalues are in
this case better modeled via heavy-tailed distribu-

3A layer with multiple weight matrices will have a single
concatenated weight matrix (Martin et al., 2021).

tions (Malevergne and Sornette, 2004), rather than
a simple MP distribution.

For this aim, Martin and Mahoney (2021) es-
timated a truncated power-law fit (Clauset et al.,
2009) over the MP curve, yielding the exponent «
from the equation ESD—eigenvalues: p(\) ~ A™¢
for A\ € [A_,\y]. The amplitude of the PL-
exponent « is considered as the information corre-
lation index within each weight matrix, denoting
the strength of the existing element-wise correla-
tions. Moreover, the o exponent is indeed a power-
law fit that can be considered as a complexity index
or a fractal dimension (Mandelbrot, 1982).

Based on the eigenvalues spectrum \; of each
correlation matrix X, several metrics were used as
for:

M
« Frobenius norm : |[W|% = || X ||, = > A2
=1

Spectral norm : |W|| = || X ||, = Amaz
* Weighted o : & = aLogAaz
« a norm (Shatten-norm) : |[W 3> = | X% =

M
2 A
1=1

where ), is the i*" eigenvalue of X, 45 is the
maximum eigenvalue and « is the fitted power-law
exponent, usually truncated because it needs defin-
ing specific lower and upper bounds, respectively
A_ and A, . For instance, Figure 1 reports simula-
tions yielding random-like eigenvalues fitted with
a scale-invariant Marchenko-Pastur curve between
A_ ~0.31 and Ay ~1.17 and spikes (signal) asso-
ciated with \; > Ay. The PL-fit yields a value of
0.571 for a.

The plain o metric is a scale-invariant, weak esti-
mation of the information correlation, as it ignores
the size scale (A,q;) Within each layer. The latter
remains an important determinant of HT-SR be-
cause DNNs are known to be non-linear, while
LLMs particularly feature attention layers with
large matrices. For small values of «, the size
scale A4 Was found to be a good proxy for es-
timating the difference between the noise and the
signal, however, for higher values of o (HT-SR),
the signal gets mixed with the noise and A4, is
non-informative.

A clear distinction between norm-metrics and
PL-based metric was given when studying the per-
formance of several DNNs models (Martin et al.,
2021; Yang et al., 2023). They concluded that
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Figure 1: Marchenko-Pastur distribution simulated
1,000 times on the correlation matrix of an initial ran-
dom matrix with £=10 and 62 = 2 . « is the PL-
exponent of the Marchenko-Pastur fit over the interval
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wl

PL-based metrics, aside from being good proxies
for overall accuracy measurements, remain robust
in detecting potential bottlenecks and training is-
sues than norm-based metrics. Hence, PL exponent
remains a robust empirical metric to asses well-
trained DNNs and quantify the layer-wise correla-
tion flow (Martin et al., 2021).

In practice, o was found to match an ideal DNN
fit when approaching 2. This means the DNN
model performs well as it facilitates the propaga-
tion of information/features across layers, because
it learns from both data signal and noise. Values in
the interval [4,6] are proxies of underfitting situa-
tions (not learning enough from the signal), while
lower values equaling 1.5 are synonyms of over-
fitting (learning too much from the noise) (Martin
et al., 2021). Large values of o > 6 are associated
with a pure randomness, which requires the aspect
ratio % to differentiate layers.

Because the size of DNNs layers changes accord-
ing to adopted architectures, Martin et al. (2021)
proposed to weight the o with the size scale to pro-
duce the weighted o metric. It was found that for
small values, the weighted « approximates well the
a Shatten-norm; the latter weighs the a exponent
for all eigenvalues within the layer.

Martin et al. (2021) reported that weighted «
and log o norm correlate at a higher level for well
trained models. The size scale, given by A4z,
could be informally linked to situations where in-
put clusters are at a greater distance. This means
the size scale is related, in the case of LLMs, to
the language morphologic aspects (sentence struc-
tures).

Particularly in LLMs, distortions in the se-
ries of PL exponents is called scale collapse,
mostly linked to transformers (Vaswani et al., 2017;
Lefaudeux et al., 2022). As memory-based blocks
of layers, transformers feature a complex inner
structure usually yielding larger weight matrices.

The study of such variations and the training
process requires detailing the information flow
throughout the whole network. The adoption of
advanced tool for self-similar patterns, known as
fractals (Mandelbrot, 1982) is clearly indicated to
test the persistency hypothesis on trained DNNs.
Persistent behavior of the aforementioned metrics
reinforces the hypothesis of a strong, correlated
inter-layer linkage propping up the information
flow. One can assert that anti-persistency of PL-
metrics may indicate colliding trends that alter the
training process and the inter-layer dynamics, while
persistency may reinforce the hypothesis of a har-
monized network design that better captures long-
range dependencies via attention layers.

3 Fractal Analysis

Mandelbrot tried first to uncover repeated pat-
terns able to explain the randomness of irregu-
lar shapes (Mandelbrot, 1982), as exemplified by
Koch’s snowflake. This led to the concept of self-
similar patterns, which stands for scale-dependent
shapes with a known geometry. Hence, the fractal
analysis was first established as a research field
in geometry having a wide range of applications,
from physics to hydrology. The fractal theory relies
on the definition of a fractal dimension, a hidden
variable that quantifies the irregularity of shapes
found in many objects.

In time series analysis, the fractal approach was
first featured when studying the Nile river flood-
ing history. Hurst (1951) designed the Rescaled
Range (R/S) Analysis and reckoned the Hurst ex-
ponent as a measure of a time series memory, later
corrected by Mandelbrot and extended to the frac-
tional Brownian motion (Mandelbrot and van Ness,
1968) when studying cotton prices in the United
States.

The R/S algorithm takes the variations of a given
time series of length 7" and divides them into N
adjacent intervals of length 7, where T' = N 7. For
each interval, the average value is computed and
a new time series is created as accumulated devi-
ations from the arithmetic mean values (hereafter
named profile). The difference (range) between the
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maximum and the minimum value of the profile,
and the standard deviation of the original time se-
ries for each interval, are calculated. Each range
is standardized by the corresponding standard de-
viation and forms a rescaled range so that the av-
erage rescaled range for a given interval of length
(R/S)7 is calculated.

The rescaled range scales are given by
(R/S); ~ crf!, where c is a finite constant in-
dependent of 7 (Taqgqu et al., 1995). To esti-
mate the power law relationship, a simple log-
log ordinary least squares regression is used for:
log (R/S), ~logc+ H x log T, where H is the
estimated Hurst exponent (Barunik and Kristoufek,
2010). R/S analysis was shown to be biased for
small 7 (Couillard and Davison, 2005), and em-
pirical application considered rather the expected
Hurst exponent (Weron, 2011). Values of H ex-
ceeding 0.5 are proxies of a persistent behavior re-
sulting from long-range correlations, while values
less than 0.5 are anti-persistent. A Hurst exponent
not significantly different from 0.5 is associated to
the standard Brownian motion. The Hurst exponent
H is also a proxy of the fractal dimension D in time
series, linked by the relationship: D =2 — H.

Given the relatively reduced number of layers in
most DNNs, this article considers the existence of
a single fractal dimension, approached by the Hurst
exponent. For each layer in an LLM, PL-metrics
are computed on the related weight matrix, yielding
three different series across the whole LLM to run
the R/S Analysis on each one of them.

4 Application

The study of memory properties of specific LLMs
is conducted on the weight matrices, stored af-
ter achieving the LLMs training. PL-based met-
rics adopted by Martin et al. (2021) were previ-
ously found to be robust when assessing hundreds
of LLMs, outperforming simple algebraic norms
(Frobenius and spectral norms).

The weighted « and log o norm are compound
metrics computed from a truncated PL-fit of the
eigenvalues and the size scale. These two metrics
will have a particular attention in this section, as
they go in-line with the PL-exponent yielded by
the R/S Analysis, known as the Hurst exponent.
The purpose lies on investigating the inter-layer
dynamic flow using above two metrics and uncover
potential variability known as scale collapse (Mar-
tin et al., 2021), which is assumed to reveal dys-

functions in the learning process. The « series will
not be considered for the R/S analysis, as it ignores
the size scale.

The selected LLMs are publicly available and
their PyTorch versions (Paszke et al., 2019) were
used to run the WeightWatcher diagnostic tool. The
R/S analysis was performed on the basis of esti-
mated PL-metrics, whose relatively reduced size
requires a corrected version of the Hurst exponent
(Weron, 2011) reported in Table 2.

4.1 English TinyLlama

TinyLlama model (Zhang et al., 2024a) was trained
on a complex architecture featuring flash attention
2 and various fused schemes, comprising xForm-
ers (Lefaudeux et al., 2022) as a research tool for
accelerated transformers.

Figure 2 displays the per-layer metrics for the
TinyLlama 1.1B model trained over 155 layers.
The weighted a and the log a norm are highly
correlated and clearly separable from the simple
« metric, which exhibits a pronounced variability.
This denotes the importance of the size scale, ab-
sent from the o metric, but present in the two others.
Similar patterns were found in the TinyLlama 1.1B
chat model (Figure 3), although its first layers are
less pronounced then the original model.

The variability of the above metrics is a result
of heavy-tailed eigenvalues distributions associated
to a scale collapse. This denotes implicit changes
or perturbations that occurred when training the
model, likely due to distillation, data augmentation
or fine-tuning.

Both LLMs feature a relatively high number of
layers found to be under-trained, as reported in Ta-
ble 1. These demonstrate high « values and are
linked to value-type (V) self attention layers (hav-
ing arank of 256). They are particularly aggregated
representations of the words in context (Vaswani
et al., 2017), compared to query (Q) and key (K)
matrices. The relative low number of over-trained
layers confirms difficulties of fine tuning LLMs
who are over-trained (Springer et al., 2025).

First layers, usually associated with higher met-
rics due to their effective normalization (Martin
et al., 2021), do not exhibit here higher values of
weighted « and the log o norm, compared to what
was reported in Martin et al. (2021).

Table 2 reveals a slight persistency of the
weighted o and log o norm metrics for the LLM
chat version (Hurst exponent respectively 0.60
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Figure 2: PL metrics estimated from TinyLlama 1.1B
model
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Figure 3: PL metrics estimated from TinyLlama 1.1B
Chat

and 0.61), while the full model exhibits a non-
persistent, Brownian-like behavior (Hurst exponent
0.51 each). The buildup of the chat version proved
to have more inter-layer information than the orig-
inal model, as a result of intensive fine-tuning on
synthetic dialogues provided by Zephyr (Tunstall
etal., 2023).

Both LLMs show similar PL-metric patterns and
persistence, reinforcing the hypothesis of a strong
transfer learning between the original model TinyL-
lama 1.1B and its chat version. The metric corre-
lations of weighted o and log & norm are almost
identical, respectively 0.879 and 0.887.

4.2 German LLaMmlein

The layer-to-layer information flow, as given
by three metrics in Figure 4 and Figure 5,
demonstrates key differences between the German
LLaMmlein and its lightweight version (LLaMm-
lein 120M chat). The latter features 85 layers, com-
pared to the 155 comprised in the former. Weighted
a and log o norm are highly correlated in both
models, however, the lightweight version displays
a relatively stable a metric, not as variable as in the
LLaMmlein 1B model, whose metrics have long-
range correlations (Hurst exponent 0.61 in Table 2.

Higher values of a for LLaMmlein 1B are asso-
ciated with V self attention layers of rank 256 (Fig-
ure 4), that carry context-based information of each
sentence/word fed to the LLM. The lightweight ver-
sion (LLaMmlein 120M) presents the lowest rate
of under-trained layers, despite its reduced depth.
This means this abridged version does not suffer
from over-parametrization, relative to the amount
of data. However, slight differences in the Hurst
exponent values indicate a weak anti-persistency of
the weighted o (Hurst exponent 0.46) compared to
Brownian-like log o norm (Hurst exponent 0.52).

The impact of the size scale (\,q;) Seems to
be mild in the lightweight version, in comparison
with the full model. This explains why the informa-
tion correlation series o does not feature very high
values in the lightweight model and exhibit a rela-
tive stability compared to the full model. The size
scale has, particularly for the lightweight version,
a linguistic feature embedded in the dataset®.

The German language features a SOV structure
(Vikner, 2019), at the contrary of the common SVO
structures found in English and French. This con-
siders German as a morphologically-rich language
(Gtlinther et al., 2019) whose structure is complex
but rich, compared to English. Moreover, German
LLMs are mostly trained on the basis of existing
English and/or Multilingual LLMs, while recent
attempts proposed a data curation methodology to
improve LLMs training (Burns et al., 2025).

Layer Id

— alpha — alpha_weighted — log_alpha_norm

Figure 4: PL metrics estimated from LLaMmlein 1B
model.

5 Conclusion

Machine learning models have long been associ-
ated with the train/test paradigm and the related
metrics to perform quality control checks. For
DNNs, practitioners use models without access

*Training data were de-duplicated on the paragraph level
and filtered using a token-to-word ratio.
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Figure 5: PL metrics estimated from LLaMmlein 120M
model.

Model Overtrained Undertrained
TinyLlama 1.1 B 1.3% 26.3%
TinyLlama 1.1 B Chat 1.3% 29.5%
LLaMmlein 1B 2.9% 28.8%
LLaMmlein 120M 2.3% 13.9%

Table 1: Percentages of over-/under-trained layers,
based on estimated « values, obtained from Weight-
Watcher tool (Martin and Mahoney, 2021)

to training data and are not able to perform inde-
pendent accuracy tests. Elements from statistical
mechanics were used to check the robustness of
DNNs on the basis of their weight matrices, as
information-carriers of the learning process. The
use of Random Matrix Theory helped revealing em-
bedded, heavy-tailed properties of eigenvalues via
a truncated power-law fit, whose exponent is taken
as a proxy of underfitting or overfitting presence in
the related layer. Hybrid metrics combining power-
law exponents and size scale proved to be accurate
in estimating the between/within layer information
flow, particularly in the case of LLMs who fea-
ture attention layers as memory-driver mechanisms.
The inter-layer information flow, as an element of
the training process, was found to exhibit a no-
ticeable persistence in terms of long-range correla-
tions. Such findings confirm the fractality of LLMs
learning process and the importance of language-
properties carried by data, whose complexity flags
substantial underfitting issues affecting attention
layers. The self-similarity analysis provides tools
to detect potential training bottlenecks, but also a
powerful way to assess transfer learning strategies
when designing lightweight and task- and language-
specific models. This proved particularly effective
for the German language, whose morphologically-
rich properties make the training difficult and re-
quire a special hyperparameter tuning and data pro-
cessing.

Model a  Weighted « Log a norm

TinyLlama 1.1 B 0.63 0.51 0.51
TinyLlama 1.1 B Chat 0.49 0.60 0.61
LLaMmlein 1B 0.79 0.61 0.61
LLaMmlein 120M 0.74 0.46 0.52

Table 2: Estimates of Hurst exponents for each model,
based on estimated «, weighted o and log o norm, ob-
tained from WeightWatcher tool (Martin and Mahoney,
2021)
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Abstract

Universal phoneme recognition typically re-
quires analyzing long speech segments and
language-specific patterns. Many speech
processing tasks require pure phoneme rep-
resentations free from contextual influence,
which motivated our development of CUPE
- a lightweight model that captures key
phoneme features in just 120 milliseconds,
about one phoneme’s length. CUPE pro-
cesses short, fixed-width windows indepen-
dently and, despite fewer parameters than cur-
rent approaches, achieves competitive cross-
lingual performance by learning fundamental
acoustic patterns common to all languages. Our
extensive evaluation through supervised and
self-supervised training on diverse languages,
including zero-shot tests on the UCLA Pho-
netic Corpus, demonstrates strong cross-lingual
generalization and reveals that effective univer-
sal speech processing is possible through mod-
eling basic acoustic patterns within phoneme-
length windows.

1 Introduction

Current speech processing systems depend heav-
ily on contextual information, creating a double-
edged sword for certain tasks. While extensive
context provides crucial bias toward appropriate
attention mechanisms, it simultaneously makes
it nearly impossible to isolate individual speech
units—particularly allophones—from their contex-
tual embeddings. Modern systems such as deriva-
tives of wav2vec 2.0 (Baevski et al., 2020) typi-
cally analyze 300-2500ms of speech, incorporating
extensive language-specific patterns and contex-
tual dependencies. While effective for automatic
speech recognition, this approach entangles pho-
netic content with contextual information, making
it extremely difficult to disentangle the acoustic
properties that define individual speech sounds.
The necessity for contextless processing emerges
from two critical considerations: alignment preci-

sion and representation purity. Extended tempo-
ral windows (e.g., 500ms) reduce inter-frame dis-
criminability as individual frame representations
become increasingly influenced by surrounding
context. Optimal alignment performance requires
maximally discriminative frame-level representa-
tions, where each frame maintains distinct charac-
teristics. As context window length increases, the
transformer’s attention mechanism progressively
attenuates frame-specific features through contex-
tual averaging, resulting in diminished temporal
resolution.

For paralinguistic tasks, contextless models func-
tion as quantization preprocessing stages. When
frame-level embeddings encode predominantly
contextual rather than local information, this ho-
mogenization undermines the model’s capacity to
capture subtle local acoustic variations essential for
allophone analysis and speaker-specific phonetic
characterization.

Our empirical results directly challenge the
assumption that more context is always bet-
ter—models using 120ms of speech windows actu-
ally perform on-par if not better than those using
full word context across multiple evaluation sce-
narios, while simultaneously providing access to
pure phonemic representations less contaminated
by contextual dependencies.

Our work makes three key contributions. First,
we demonstrate that universal phoneme recognition
can be achieved effectively with just 120ms of con-
text, a fraction of the 300-2500ms typically used in
current approaches. Second, we introduce CUPE,
a lightweight architecture (30M parameters) that
achieves competitive performance through focused
local feature extraction. Third, we provide a fea-
ture extraction method that captures pure phonemic
representations by eliminating contextual depen-
dencies, leading to cleaner and more interpretable
phoneme embeddings across languages. By operat-
ing on brief windows—approximately the duration
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of a typical phoneme (Crystal and House, 1988),
CUPE learns language-agnostic acoustic features
that characterize phonemes universally. This fo-
cus on fundamental acoustic patterns, independent
of language-specific context, enables robust cross-
lingual generalization and, crucially, provides ac-
cess to clean allophonic representations that are
essential for understanding speaker-specific pho-
netic variations.

The contextless nature of our approach enables
several practical applications:

* Timestamps Alignment: Generating time-
aligned transcripts from raw text and audio.
This task is critical for training downstream
text-to-speech models. Since this is the main
application for phoneme recognition, it helps
to have as little context information in each
frame so that there is a sharper contrast be-
tween frames for precise boundary detection.

* Speech style learning: It serves as a founda-
tional allophone encoder. Embeddings of each
frame can be used to generate acoustically
pure allophone variants of base phonemes.
This is also useful for training downstream
text-to-speech tasks which currently rely on
IPA dictionaries or sub-word tokens.

* Robust phoneme verification: Complement-
ing traditional ASR systems by detecting and
correcting errors that arise from over-reliance
on language context.

* Cross-linguistic research:  Generating
language-agnostic phoneme representations
that facilitate multilingual studies and enable
more accurate speech disorder diagnostics.

Through extensive evaluation, we validate CUPE
(Contextless Universal Phoneme Encoder), an ar-
chitecture that deliberately restricts analysis to
short windows. Our results demonstrate that this
constrained approach matches or exceeds the per-
formance of context-heavy models (XLS-R (Babu
et al., 2022)) across diverse languages while using
an order of magnitude fewer parameters and pro-
viding clean, context-independent phonemic repre-
sentations suitable for allophone analysis.

2 Contextless Universal Phoneme Model

Analysis of our evaluation datasets (Table 2) shows
phoneme durations averaging 80ms (range: 62-
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Figure 1: The windowing approach restricts the model’s
context for better localized learning, therefore, gener-
alizing better across languages without learning longer
patterns.

Classification layers

107ms), consistent with Crystal and House’s find-
ings of 70-120ms for English phonemes (Crys-
tal and House, 1988). Our architecture processes
acoustic features through Conv1D layers at 13.1ms
per frame, with a 120ms window and 80ms stride
to capture 1-2 phonemes per window. This ap-
proach provides precise frame-level analysis while
maintaining phoneme-level context, departing from
traditional methods that rely on broader windows.
To preserve acoustic continuity across overlapping
windows, we implement a cosine-based weighting
mechanism for feature fusion. The complete model
architecture is illustrated in Figure 1, with detailed
specifications provided in Table 1.

2.1 Window Slicer

The Window Slicer module addresses the funda-
mental challenge of processing continuous speech
signals by segmenting raw waveforms (16 kHz)
into overlapping windows. This design enables
localized feature extraction while preserving tem-
poral continuity at boundaries. Using a 120 ms
window size with an 80 ms stride provides suffi-
cient context for phonetic events while reducing
computational complexity from O(T?) to O(W?),
where 7' is the total sequence length and W is the
window size.

Given an input audio signal x € RB*T where
B is the batch size and T is the total number of
samples in the input sequence (I' = sample_rate X
duration):

wyi(t) = ap(t +1is), te€[0,W—-1] (1)

where b € [0,B — 1] is the batch index, i €
[0, N — 1] is the window index, t is the time in-
dex within each window, W = 1920 is the window
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size (120ms x 16kHz), s = 1280 is the stride
length (80 ms x 16kHz), and N = LT_SWJ +1is
the number of windows.

2.2 Feature Extractor

Drawing from raw waveform processing tech-
niques (Dai et al., 2017; Schneider et al., 2019),
our feature extraction stage implements a hierarchi-
cal CNN architecture that processes raw waveforms
directly. This design, detailed in Table 1, captures
increasingly abstract representations while main-
taining computational efficiency. Following the
success of Squeeze-and-Excitation Networks (Hu
et al., 2018) in speech recognition (Han et al.,
2020), we incorporate adaptive channel-wise re-
calibration through frequency attention. The archi-
tecture separates temporal and spectral processing
streams, inspired by multi-stream approaches (Han
et al., 2021), to capture both evolving acoustic pat-
terns and frequency relationships.

2.3 Windowwise Transformer

Our transformer encoder layers process indepen-
dent fixed windows instead of the whole clip, mod-
ifying the contextual processing of standard trans-
formers (Vaswani et al., 2017). This approach rep-
resents a departure from traditional speech trans-
formers by restricting context to local windows,
ensuring that phoneme recognition decisions rely
on relevant local context. Our preliminary exper-
iments showed a tendency to overfit with larger
transformer layers, leading us to maintain a light
architecture (13M parameters for transformer) with
a high dropout of 0.25. For comparison, the XLSR
model (Conneau et al., 2021) has over 300M pa-
rameters.

2.4 Classification and Window Stitching

The final stage of our pipeline consists of classifica-
tion and temporal integration. The transformer out-
puts first undergo classification through a two-layer
neural network, which maps the high-dimensional
representations to phoneme logits. This classifier
is designed to untangle complex phonetic repre-
sentations while maintaining computational effi-
ciency. To ensure temporal coherence across win-
dow boundaries, we implement a cosine-based

weighting scheme:

. _ >opcos(nt/Fy —m/2) - yr(b, t, c)
§b.t,c) = kacos(mf/Fw a2 te
t € [0, Fy)

2

where yy (b, t, ¢) represents the logit from window
k for batch b, time ¢, and class ¢. This weighted
stitching approach enables effective recognition of
phonemes shorter than the window length while
preserving temporal coherence.

3 Experimentation

We experiment with both supervised and self-
supervised learning for the proposed model. First,
we evaluated our model architecture using labeled
speech and phoneme sequences. Then, we adapted
the same architecture for self-supervised pretrain-
ing using vector quantization projections as targets,
following a wav2vec-inspired approach. For base-
line comparison, we use the XLS-R (Babu et al.,
2022) 300M architecture with an additional linear
classification layer. In non-pretrained evaluations,
we reset XLS-R’s parameters, while for pretrained
evaluations, we fine-tune the off-the-shelf model
with optional feature extraction layer freezing. The
experimental pipeline remains consistent across
all tests, varying only in context length (120m:s,
160ms, 360ms, or complete words), model selec-
tion (XLS-R or CUPE), XLS-R parameter reset
status, and feature extraction layer freezing status.

3.1 Datasets

We evaluate our model on three diverse speech
corpora:

(1) FLEUR (Few-shot Learning Evaluation of Uni-
versal Representations of Speech) (Conneau et al.,
2023): Used exclusively for self-supervised pre-
training, comprising 5 hours of audio data from
each of 102 languages. Table 2 reports trimmed
durations excluding leading and trailing silences.
(2) Multilingual Spoken Words Corpus (MSW)
(Mazumder et al., 2021): Contains isolated words
from Mozilla Common Voice. We use 32 high-
resource languages for training (10-hour limit per
language) and 6 low-resource languages (It, mt,
ia, sk, ka, as) for evaluation. Twelve languages
were excluded due to incompatibility with espeak-
NG (esp, 2022), the tool we used to generate IPA
phoneme sequences from text.
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Table 1: Detailed architecture specifications of the CUPE model with 30M trainable parameters.

Layer Output Shape Parameters TR RF Other Details
—Window (B, 1, 1920) - 80ms 120-360ms Speech waveforms at 16kHz
ConvlD-1 (B, n, 275) k=15, s=7, p=7 13.1ms 150ms + BatchNorm + GELU + D(0.1)
ConvlD-2 (B, 2n, 55) k=11, s=5, p=5 1.9ms 21.3ms + BatchNorm + GELU + D(0.1)
Conv1D-3 (B, 4n, 19) k=7, s=3, p=3 0.4ms 4.2ms + BatchNorm + GELU + D(0.1)
ConvlD-4 (B, 8n, 10) k=5, s=2, p=2 0.1ms 1.3ms + BatchNorm + GELU + D(0.1)
Freq. Attention (B, 8n, 10) k=1, s=1, p=0 0.1ms 0.6ms ® AvgPool+Conv1D+Sigmoid
gf::;’;r‘(ﬂm) g: SE ig; ll:; Z: gj 13.1ms  +11 frames 2xConvld, g=8, BN, GELU
:EZZH;I(SS) (:31?;,1821:’11(%) 11;}’ Z;}: g;g 13.1ms 1 frame 2xConvld, g=8, BN, GELU
Fusion (B, 8n, 10) k=1, s=1, p=0 13.1ms Concat (TS, SS) + 1x1 Conv + BN + GELU
Transformer (B, 10, 512) F,=10@120ms 13.1ms  Full window 4 layers, 8 heads, Pre-norm, D(0.25)
—FT-Classifier (B, 10, C) D=0.25 13.1ms  Full window Supervised only (512—2048—C)
—PT-Projection (B, 10, 256) D=0.25 13.1ms  Full window Unsuperyv. only (512—2048—256)

TR: Temporal Resolution, RF: Receptive Field, B: batch size, k: kernel, s: stride, p: padding, n: base channels (256)

(3) UCLA Phonetic Corpus (UPC) (Li et al.,
2021b): Features phonetically transcribed speech
from 95 languages. We partition this dataset based
on language overlap with XLS-R pretraining and
FLEUR: UPC-eval contains 64 previously unseen
languages, while UPC-seen includes 25 languages
present in both pretrained XL.S-R and FLEUR. The
remaining six languages (fa, ig, kea, ab, eu, haw),
exclusive to either XLS-R or FLEUR, serve as val-
idation data during supervised training.

Table 2 summarizes the dataset statistics. The
corpora differ significantly in language family dis-
tribution and recording conditions. MSWC and
FLEUR predominantly feature Indo-European lan-
guages by duration, while UPC comprises 48.5%
African languages. MSWC offers diverse speakers
and recording environments per language, whereas
UPC contains just 60 utterances per language, typi-
cally from a single speaker in consistent recording
conditions.

3.2 Pre-Processing

One of the fundamental challenges in creating
a universal phoneme recognition system is ac-
commodating unique phoneme inventories across
languages. Prior work has explored two main
approaches: probabilistic matching (Liu et al.,
2023; Li et al., 2021a), which maps phonemes
from new languages to acoustically similar train-
ing phonemes, and attribute-based decomposition
(Glocker et al., 2023), which reconstructs language-
specific phonemes from 35 articulatory attributes
using the target language’s IPA inventory. While
both enable automated adaptation to new lan-
guages, they face tradeoffs in precision and fea-
ture completeness. Our approach instead employs

systematic manual mapping of rare phonemes to
standardized phoneme classes, prioritizing percep-
tual similarity over articulatory phonological rela-
tionships. Our mapping preserves high-frequency
palatalized consonants (8, nf, ) while merging
less frequent ones, maintains perceptually distinct
vowel contrasts (e.g., A vs 9, 1 s i), keeps length
distinctions for frequent vowels (a, e, i, o, ul),
and maps rare phonemes to frequent counterparts
based on confusion patterns (e.g., 0 — a, ¢ — k).
For affricates, we maintain distinct representations
for common ones (ts, tf, d3) while simplifying rare
variants (pf — f), guided by both frequency and
confusion patterns. The mapping dictionary is pub-
licly available along with the source code to facili-
tate adoption and improvement.

Table 2: Datasets’ details. L,,: total languages or lang
code.

Set Ly, Hrs WD(std) PPW(std) U/C

MSWCtrain 32 181  0.80(0.12)  6.30(1.45)  803/65
MSWCeval 6 156  0.82(0.12) 6.39(1.34) 117/56
Lithuanian It 52 0.87(0.12)  6.58(1.34) 66/42

Maltese mt 4.9 0.77(0.11)  6.25(1.30) 56/38

Interlingua ia 3.17  0.84(0.12)  5.98(1.26) 29/29

Slovak sk 1.37  0.88(0.11) 6.77(1.3) 43/38

Georgian ka 0.87 0.82(0.11) 6.97(1.33) 34/28

Assamese as 0.05 0.77(0.12)  5.80(1.21) 31/26

UPC-eval 67 0.82  0.93(0.20) 5.01(1.53)  237/59
UPC-seen 28 0.56  0.89(0.22) 4.89(1.32) 221/60
FLEURS 102 455 - - -

WD: avg. Word Duration (s), PPW: avg. Phonemes-Per-Word
U': Unmapped unique phonemes, C: Mapped phoneme classes.

3.3 Supervised Training

For each window, the model generates frame-
level logits (10 frames per 120ms window, 28
frames for 360ms), which are stitched into con-
tinuous phoneme sequences. Training uses CTC
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loss (Graves, 2012) with an additional silence-
awareness term:

L1 = Lctc + asLg 3)

1 - .
Lo =5 ;<0-5be§ +0.1g5(1 = M) 4

where 3} is the blank token probability, M is the
silence mask, B is batch size, and o (default 0.01)
balances silence detection with phoneme recogni-
tion.

Our training pipeline optimizes for efficient
learning through several mechanisms: AdamW
optimizer with OneCycleLR scheduling, gradient
norm clipping at threshold 7 = 1.0, and mixed-
precision BF16 training for balanced efficiency
and numerical stability. We trained all models on
MSWC-train using a batch size (B) of 300 words
until validation PER showed no further improve-
ment, requiring 20 epochs and approximately 7
hours on two A6000 GPUs. The trained models
and source code are available online?, with results
presented in Table 3.

3.4 Self-supervised Pre-Training

For self-supervised pre-training, we modify CUPE
by replacing the FT-Classifier with a prediction
head (two projection layers with residual con-
nections, layer normalization, GELU activation,
and dropout 0.1) while being projected to a 256-
dimensional feature space. The core architecture
remains unchanged.

The pre-training uses masked prediction on
120ms windows (80ms stride), masking 40% of fea-
tures based on energy profiles and acoustic bound-
aries, with per-batch constraints of 10-80%. A
vector quantizer with 256-entry codebook serves
as training target, using EMA updates (decay 0.99)
and Laplace smoothing. The training objective
combines reconstruction loss (smooth L1), con-
trastive loss with curriculum learning, codebook
diversity loss, and similarity regularization.

Optimization uses AdamW (weight decay 0.05)
with hierarchical learning rates (encoder: 5e-4,
quantizer: le-3, prediction head: 1.5e-3) and one-
cycle scheduling (15% warmup, momentum 0.8-
0.9). For evaluation, we freeze the feature extrac-
tor, replace the prediction head with classification

layers, and fine-tune only the transformer and FT-
Classifier components. We similarly evaluate XLS-
R with both full and frozen-backbone fine-tuning.

3.5 Results
3.5.1 Evaluation Metrics

We decoded model outputs using Greedy Best-
First Search and evaluated using Phoneme Error
Rate (PER), Ground-truth Probability (GP), and
Fl-score. GP and F1 are computed after optimal
alignment of true and predicted sequences, exclud-
ing insertions and deletions. While PER assigns a
full penalty (+1) for any substitution, insertion, or
deletion, it doesn’t measure the near-misses. We
introduce GP (GPm for macro, GPw for class-
weighted) to better evaluate fine-grained phonemic
distinctions like duration variants (i/i;) and vowel
contrasts (&/a) that are preserved in our approach
rather than merged. GP measures the model’s
probability assignment to ground-truth classes at
aligned time steps. It can be intuitively understood
as the proximity to truth, or conversely, the inverse
of the distance from truth. This proximity measure
instead of PER is more important for judging the
quality of embeddings for latent tasks.

Detailed analysis of model behavior is provided
in Appendix A. The confusion matrix in Figure
2 shows that contextless recognition errors follow
phonetically meaningful patterns, with confusions
primarily occurring between acoustically similar
sounds (e.g., front vowels, voiced/voiceless conso-
nant pairs) rather than random misclassifications.
The phoneme probability distributions over time
(Figure 3) illustrate CUPE’s temporal resolution
capabilities, showing distinct probability peaks cor-
responding to ground truth phonemes and smooth
transitions between adjacent sounds.

3.6 Key Insights and Limitations

Looking at Table 3, CUPE demonstrates remark-
able cross-lingual generalization despite having a
fraction of XLSR’s parameters. While the 360ms
model shows slightly better PER, this can be mis-
leading due to class imbalances - it performs better
on long and common vowels like /a:/ but struggles
with short but rare phonemes, highlighting why
GPm is a more balanced metric. Note that both
360ms and 120ms models have the same frame
length of 16ms, the only difference is the context
length. The significant performance difference in

Ohttps://github.com/tabahi/contexless-phonemes-CUPE

115



Table 3: Evaluation metrics (%) for two architectures, XLSR (300M) & CUPE (30M), trained on MSWC-train
without pretraining.

Evaluation on MSWC-eval Zero-shot PER on individual langs Zero-shot evaluation on UPC-eval

Model:Context | PER] GPm GPw F1 It mt ia sk ka as PER] GPm GPw F1

XLSR:word 49.9 35 51.7  60.6 | 59.5 48.7 37 453 484 658 66.5 31.2 517 529
XLSR:120ms 52.6 34 521 599 | 61.1 499 429 523 504 63.7 66.3 31.6 511 54.9
CUPE:word 46.4 39 55.1 63 545 471 331 425 44 60.5 58.8 329 525 58.3
CUPE:360ms 44.8 38.3 565 62.6 538 452 308 39.7 425 609 52.2 347 531 61

CUPE:160ms 47.8 36 55 648 572 462 362 452 44 60.7 57.5 329 541 58.8
CUPE:120ms 45.9 40 575 645 546 45 339 436 422 60.2 56.9 351 564 67.7

Table 4: Evaluation metrics (%) for pre-trained models CUPE-PT (30M, pretrained on FLEURS), fine-tuned on
MSWC-train, compared with XLSR (300M, off-the-shelf pretrained on 128 languages) with or without frozen
backbone (FB) feature extractor. The top 4 rows show the results for contextless (120ms) models, the bottom 4
rows show results for word-context models for reference. Only the UPC-eval languages are unseen languages for
zero-shot evaluation.

Model: Context Eval. on MSWC-eval PER| on individual langs (seen) UPC-eval UPC-seen
PER| GPm GPw F1 It mt ia sk ka as PER| GPm | PER| GPm

120ms Context Models

FB-XLSR 65.8 36.2 602 514 | 696 707 556 550 63.6 845 66.3 43.5 67.8 43.5

FB-CUPE-PT 49.8 34.9 53.0 60.5 | 593 475 385 485 446 614 66.5 354 69.7 38.2

XLSR 52.2 38.2 56.7 623 | 609 485 43.0 51.8 50.8 67.1 63.6 37.8 60.9 458

CUPE-PT 45.6 41.2 58.1 64.0 | 545 452 335 479 436 621 56.2 36.4 57.6 44.2
Word Context Models

FB-XLSR 43.5 40.0 584 68.1 | 539 428 301 382 373 553 66.9 48.5 70.3 434

FB-CUPEPT 70.4 1.9 29.6 54.3 73.6  65.1 712 77.1 70.5 62.5 69.0 3.2 73.2 2.7

XLSR 46.6 36.3 53.6 66.7 | 567 446 355 397 442 638 46.9 39.8 46.0 46.4

CUPE-PT 46.1 38.1 56.1 614 | 542 456 355 417 426 604 56.8 37.9 54.0 46.2

UPC evaluations, even when XLSR:120ms uses the
same windowing pipeline, suggests that model’s
heavy size could be an overfitting liability.

Table 4 reveals that while XLSR with a frozen
feature extractor achieves better overall metrics,
CUPE maintains competitive performance under
significant constraints. Notable observations in-
clude XLSR’s degraded performance on UPC with
frozen features and CUPE’s sharp performance
drop with word-context windows, perhaps due to
having to learn more phonemes per window while
most parameters are frozen. The completely un-
frozen CUPE model’s results mirror those in Table
3 even though the learning rate was set 10 times less
for fine-tuning. The best contextless model, CUPE-
PT:120ms, does not perform as well as pre-trained
XLSR with full word context, indicating that ad-
ditional context and parameters benefit large-scale
pretraining. Nevertheless, CUPE’s effectiveness
with frozen feature extractors shows that essential
phonetic information is learned by the feature ex-
tractor within brief temporal windows during pre-
training. Another sharp degradation is noticeable
for CUPE-PT word context compared to 120ms;
it is possibly due to 30M parameters being not
enough for longer sequences (1000ms vs 120ms).

Our approach faces several limitations in its cur-
rent form. The fixed 120 ms window presents inher-
ent trade-offs in phoneme recognition: too long for
short stop consonants and insufficient for capturing
long phonemes fully. The model shows the best
recall of stop consonants, but the worst recall of in-
frequent vowels. This issue is particularly evident
in languages with contrastive length distinctions,
where the model struggles to maintain consistent
performance across different phoneme durations.

The performance gap between supervised and
pre-trained+fine-tuned results points to architec-
tural limitations in both the projection mechanism
and loss objectives. The current projection ap-
proach may not optimally preserve phonetic fea-
tures during self-supervised learning, while the loss
objectives could better reflect the hierarchical na-
ture of phonemic contrasts. Additionally, the rela-
tively modest size of the model (30M parameters)
may limit its capacity to capture the full complexity
of cross-linguistic phonetic variations. Addition-
ally, our systematic mapping of rare phonemes,
while practical, may obscure certain phonological
contrasts. Although we achieve competitive results
on the UCLA Phonetic Corpus, direct comparisons
with methods such as Epitran (Li et al., 2021a) and
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Table 5: Zero-shot PER comparison on UPC (UCLA Phonetic Corpus) with other works. Our CUPE:120ms
results are fine-tuned on language splits matched to each baseline study for fair comparison, which differ from the
UPC-eval/UPC-seen partitions in Tables 3-4. Direct performance comparison is limited due to different phoneme
mapping systems. L,, = number of unseen test languages (of 95).

Study L, | PER (%) | Phoneme Inventory Approach
(Lietal., 2021a) 47 51.2 Epitran+Allovera+Panphon

Ours 47 46.1 Systematic mapping to 65 classes
(Liu et al., 2023) 10 64.7 Direct UPC inventory

Ours 10 44.1 Systematic mapping to 65 classes
(Liet al., 2022) 77 64.2 Bayesian tree-based estimation
Ours 77 48.6 Systematic mapping to 65 classes
(Glocker et al., 2023) 84 45.62 35 articulatory attribute system
Ours 84 48.98 Systematic mapping to 65 classes

Allophant (Glocker et al., 2023) are challenging
due to fundamentally different phoneme inventory
approaches.

While CUPE demonstrates strong performance
in contextless phoneme recognition, several limi-
tations warrant discussion. The model’s varying
performance across language families suggests po-
tential biases in the feature extraction process that
merit further investigation. Some languages with
distinct phonological structures or phoneme inven-
tories may require specialized preprocessing or ar-
chitectural adaptations to achieve optimal perfor-
mance. Additionally, the fixed 120ms window size,
while effective across our evaluation datasets, may
not be optimal for all languages or phonetic con-
texts—some phonemes naturally require longer or
shorter temporal windows for accurate characteri-
zation.

Most importantly, this work establishes the foun-
dation for more complex speech analysis systems.
We have demonstrated how to extract clean em-
beddings for individual allophones—the next crit-
ical step is implementing a sentence-level speech
style encoder that learns from these contextless al-
lophone embeddings. Such a system would enable
comprehensive analysis of speaker characteristics,
accent patterns, and speaking styles while maintain-
ing the interpretability and cross-linguistic general-
izability that contextless representations provide.

While our approach achieves competitive results
on the UCLA Phonetic Corpus compared to exist-
ing methods listed in Table 5, these comparisons
should be interpreted cautiously - each method
uses fundamentally different phoneme inventory
systems, from Epitran’s probabilistic mappings
(Li et al., 2021a) to Allophant’s 35 articulatory
attributes (Glocker et al., 2023), making direct per-
formance comparisons less meaningful. Our choice
of 65 systematically mapped classes represents a

different trade-off between granularity and gener-
alization. The 65 class system is pragmatic imple-
mentation which can be expanded depending on
the dataset. We selected 65 phonemes by empiri-
cally analyzing their occurrence across MSWC'’s
50 languages, including only those that appeared at
least 10,000 times. While phoneme mapping can
further reduce the number of classes, our findings
show that the impact on error rate is limited. For
instance, when we applied broad phoneme group
mapping to reduce the set to just 15 phonemes, the
PER on MSWC-eval dropped from 0.45 to 0.40.

4 Conclusion

Through this work, we have demonstrated that
effective universal phoneme recognition can be
achieved using brief 120ms windows of speech
input. Our CUPE model achieves competitive per-
formance while requiring an order of magnitude
fewer parameters than current approaches. The
model’s success in cross-lingual generalization val-
idates our core finding that essential phonetic infor-
mation can be captured through focused analysis of
brief speech segments. These results provide com-
pelling evidence that extensive temporal context
is not a requirement for robust speech processing
tasks. While our approach has some limitations,
particularly with very long phonemes and limited
phoneme inventory, it opens promising directions
for lightweight, language-agnostic speech process-
ing systems. CUPE’s effectiveness has significant
implications for real-world applications, from low-
latency speech recognition and ASR self-learning
to speech pathology diagnostics. Our results indi-
cate that future speech processing systems may ben-
efit from focusing on fundamental acoustic patterns
rather than extensive contextual dependencies.
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A Confusion Heatmaps
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Figure 2: Confusion matrix for contextless phoneme recognition on MSWC-eval dataset using CUPE:120ms
model trained on MSWC-train. The heatmap shows predicted phonemes (x-axis) versus ground truth phonemes
(y-axis), with color intensity indicating count frequency on a logarithmic scale. The ‘Un’ counts show the
unaligned trues or predictions (i.e., the true sequence had a phoneme that didn’t exist or aligned in the
predicted sequence and vice-versa). The matrix reveals systematic confusion patterns, with darker cells
along the diagonal indicating correct predictions. Notable off-diagonal clusters highlight acoustically similar
phoneme pairs that are challenging for contextless recognition, such as front vowels, central vowels, and
voiced/voiceless consonant pairs. The sparse structure demonstrates that most confusions occur within
phonetically related categories rather than across distant phoneme classes.

119



Phoneme 00s 04s 0.1s 01s 02s 03s 03s 03s 04s 05s 05s 06s 06s 07s 0.7s 08s 08s 0.8s 09s 09s 1.0s 11s 1.1s 11s 12s 1.3s 13s 14s 14s 14s 15s 16s 16s 1.6s 17

i B

[i 1 T N [ | I T 'm0t | I
it 2 1 B

i B

E Z | B T I TEnn FTRTEYITT TRTEI
e 8]

e 0]

e n HILR I I | I | | L_l I——l—I-I
° 18] | | - I

> o NS il 1 BN | |

A (0] . I I I L I

u [11]

u: 2]

U 131

w (14]

o [15]

o [e]

5 17

a [18]

a 191

> 120]

Iy 1211

o 22]

[ar 2| N | |

er [24] I .

au [25] [ | |

ou 26]

or 271

2] [28]

b 129)

t 130]

d 31

k [32]

9 133)

a 134]

ts 1351

s 136] | |

E— i -

1] 138]

d3 139] | I
i 140] |

3 141]

e 142)

f I |

CO— — " — —
6 1451 | |

5 461 | | h : | M i |
¢ “n

X 4]

Y 149]

h 501 |} | | |

s 151

E = T 0

. o E o 1 m i 11 1

n 541

n

1

]

Ground truth: /w & 1€ v 2 8 er went SIL da s t o: 1 f a loud dem/
Ground truth text: Wherever they went, the story followed hem.
SIL i front_vowels . central_vowels back_vowels low_vowels . diphthongs voiceless_stops voiced_stops . voiceless_fricatives ’i voiced_fricatives

. voiceless_affricates . voiced_affricates . nasals . laterals . rhotics . glides

Figure 3: Phoneme probability distributions over time for an example utterance using CUPE:120ms model. The
top panel shows a heatmap of phoneme probabilities (y-axis) across time frames (x-axis), with color intensity
representing probability values. Ground truth phoneme alignments are displayed at the bottom with text. The
visualization demonstrates the model’s ability to capture temporal phoneme transitions in contextless recognition,
with clear probability peaks corresponding to ground truth phonemes. Notable patterns include smooth transitions
between phonemes within words and distinct silence regions (SIL) between words, highlighting the model’s temporal
resolution at 13ms.
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Abstract

In this work, we explore the capability of Large
Language Models (LLMs) to annotate hate
speech and abusiveness while considering pre-
defined annotator personas within the strong-
to-weak data perspectivism spectra. We eval-
uated LLM-generated annotations against ex-
isting annotator modeling techniques for per-
spective modeling. Our findings show that
LLMs selectively use demographic attributes
from the personas. We identified prototypi-
cal annotators, with persona features that show
varying degrees of alignment with the origi-
nal human annotators. Within the data per-
spectivism paradigm, annotator modeling tech-
niques that do not explicitly rely on annotator
information performed better under weak data
perspectivism compared to both strong data per-
spectivism and human annotations, suggesting
LLM-generated views tend towards aggrega-
tion despite subjective prompting. However, for
more personalized datasets tailored to strong
perspectivism, the performance of LLM anno-
tator modeling approached, but did not exceed,
human annotators.

1 Introduction

Perspectivism in Natural Language Processing
(NLP) aims to preserve the spectrum of opinions
held by annotators in corpora (Cabitza et al., 2023).
Dataset annotation for this purpose often uses a
descriptive paradigm (Rottger et al., 2022), involv-
ing minimal instructions and multiple annotators
providing labels for every corpus sentence to cap-
ture diverse viewpoints. The number of annotators
involved can range significantly, from a minimum
of 2 to 2500 or more (Plepi et al., 2022; Frenda
et al., 2024).

Most traditional approaches aggregate labels to
obtain a single majority label (Davani et al., 2022;
Aroyo and Welty, 2015), which is commonly used
for training models. However, the perspectivist ap-
proach argues that critical information is lost when

labels are aggregated. More importantly, the opin-
ions of the minority, which may represent a signifi-
cant population, are undermined, leading to under-
representation and overshadowing of nuances inher-
ent in the dataset. This is crucial because people’s
views and opinions are indeed shaped by different
socio-cultural, demographic, economic, and expe-
riential backgrounds (Akhtar et al., 2021; Almanea
and Poesio, 2022; Demszky et al., 2020; Kennedy
et al., 2022). These factors impact how individuals
perceive, interpret, and respond to various topics,
making it unrealistic to assume everyone shares
similar views on the same subject. Recognizing
and reflecting opinion differences in our models is
therefore important for developing socially aware
NLP systems, treating disagreements not as errors
but as distinct perspectives. To address this, mod-
els have been developed that can learn from such
disaggregated labels (Leonardelli et al., 2023; Sul-
livan et al., 2023; Vitsakis et al., 2023; Garcia-Diaz
et al., 2023; Cui, 2023; Xu et al., 2024).

Furthermore, while some disagreements stem
from different perspectives, other factors also cause
disagreement in data annotations, including tempo-
ral factors, annotator inconsistencies, uncertainty,
ambiguities, lack of task understanding, or a per-
functory approach to annotation (Fleisig et al.,
2024). When modeling perspectives obtained
from subjective tasks, these perspectives are often
mixed with noise and errors, raising the question of
whether true perspectives or merely annotator in-
consistencies have been modeled. Some literatures
have quantified these uncertainties to a minimal
extent (Klemen and Robnik—Sikonja, 2022; Davani
et al., 2022).

In this work, we aimed to investigate how exist-
ing annotator modeling techniques would behave
when trained on deterministic LLM-generated an-
notations, in contrast to earlier work that explored
modeling individual human annotators’ perspec-
tives using disaggregated labels. We generated
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new annotations for the HS-Brexit and ConvAbuse
datasets using Llama2-13B, guided by persona-
based prompting derived from annotator informa-
tion provided by the original authors.

In generating these annotations, we implemented
two perspectivism approaches: strong and weak
data perspectivism. Weak perspectivism, also
known as reduced perspective, involves consider-
ing multiple labels which are ultimately aggregated
into one, representing a group opinion. Strong per-
spectivism, by contrast, utilizes and retains all dis-
tinct labels from training through evaluation (Cab-
itza et al., 2023; Frenda et al., 2024).

Our findings show that LLMs struggle to gen-
erate responses as diverse as humans, even with
diverse personas. They still partially align with
human annotations but tend to pick up only se-
lected persona features. Furthermore, we identified
latent annotation prototypes shared by multiple hu-
man annotators. These alignment patterns vary
across datasets and perspectivism strategies: for
instance, HS-Brexit with contrasting demographic
attributes shows stronger alignment with human
annotations under weak perspectivism, whereas
ConvAbuse demonstrates closer alignment with hu-
man annotations when strong data perspectivism
is used, involving highly personalized and overlap-
ping persona features.

2 Related Work

The first part of this section addresses how Large
Language Models (LLMs) have been used to gen-
erate different perspectives and their ability to
adopt an assigned persona. It also highlights the
lack of connection between perspectivism, based
on defined personas and annotations in subjective
tasks. The second part focuses on the use of LLMs
as annotators, examining their ability to generate
discrete multiple labels, identifying the lack of
persona-based labeling, and replicating human an-
notation behavior to enable alignment with human
annotations.

2.1 LLMs in Perspectivism and Adopting
Personas

LLMs have been explored for their ability to
simulate diverse human perspectives. Subjective
tasks often involve annotators with different back-
grounds, leading to divergent opinions which often
reflect demographic variation, different and sub-
stantial opinions, these make label aggregation in-

adequate (Rottger et al., 2022). Some works argue
that LLMs naturally contain persona traits, as they
are trained in large corpora, often culled from so-
cial networks that contain crowd-sourced data rich
with diverse viewpoints (Hu and Collier, 2024; Vit-
sakis et al., 2023). For example, Hayati et al. (2024)
showed that it is possible to generate multiple per-
spectives from LLMs and quantify the maximum
number of perspectives derivable from an LLM.
However, the influence of persona prompting re-
mains debated and the influence of specific persona
traits remains underexplored (Beck et al., 2024;
Sun et al., 2025). Hu and Collier (2024) suggests
that personas have minimal effect on LLM out-
puts, whereas a psycholinguistic research found
that LL.Ms can generate human-like outputs, even
surpassing humans in turing experiments, yet ex-
hibit unnaturally high accuracy that is not possible
within human populations (Aher et al., 2023). Fur-
thermore, Wang et al. (2024) found that LLMs
risk homogenizing or misrepresenting marginal-
ized identity groups, particularly when asked to
simulate them. These challenges highlight the dif-
ficulty in separating the LLM’s inherent persona
from externally applied persona prompts. Despite
this, prompting LLMs with well-defined personas,
particularly those grounded in demographic traits
from existing datasets, offers a practical way to ex-
amine how perspective alignment occurs between
machines and humans. However, small variations
in prompt configurations can lead to large differ-
ences in output, complicating reproducibility and
fairness evaluations.

2.2 LLM Annotations and Label Generation

Beyond simulating perspectives, LLMs are being
explored as direct substitutes for human annotators
(Ivey et al., 2024; Bavaresco et al., 2024), espe-
cially in settings where collecting human annota-
tions is expensive or slow (Huang et al., 2023; Glig-
ori¢ et al., 2024). Recent studies have examined the
ability of LLMs to generate discrete labels for clas-
sification tasks, often using crowd-sourced datasets
as benchmarks (Pavlovic and Poesio, 2024a; Gi-
lardi et al., 2023). Gilardi et al. (2023) found that
LLMs outperformed crowd-sourced workers in cer-
tain annotation tasks, while Pavlovic and Poesio
(2024b) demonstrated that adjusting temperature
values can control LLM behavior to better simu-
late annotation disagreement or consistency. These
findings suggest that LLMs can be tuned to exhibit
behavior similar to individual or aggregated hu-
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man annotators. LLMs have also been deployed
in replicating prior annotation experiments. For
example, Pavlovic and Poesio (2024a) replicated
a Learning With Disagreement task (Leonardelli
etal., 2023) using GPT-3 but did not incorporate the
demographic background of annotators, limiting
their insight into perspective-specific agreement.
While many experiments rely on LLMs generating
explanations or engaging in dialogue-based tasks,
fewer works have explored their ability to produce
discrete, disaggregated annotations comparable to
crowdsourced annotators. Likewise, existing an-
notator modeling techniques are yet to be fully
evaluated on annotations generated by LLMs. The
impact of LLM annotations and predefined per-
sonas on existing annotator modeling approaches
remains unexplored and is a key area we address
in our study.

3 Dataset

We used two datasets from the SemEval-2023 task
on learning with disagreements (Leonardelli et al.,
2023) and used Llama2-13B to generate annota-
tions for weak and strong data perspectivism vari-
ants resulting in six (6) datasets. Strong perspec-
tivism used prompts tailored to individual persona
descriptions, while weak perspectivism used group
descriptions to simulate aggregated viewpoints;
however, the persona descriptions in each variant
were limited to the demographic information and
features provided in the original work. All datasets
use binary labels for classification. Original dataset
statistics are presented in Table 1.

HS-Brexit The Hate Speech Brexit (HS-Brexit)
dataset (Akhtar et al., 2021) comprises 1,120 tweets
concerning Brexit and immigration, annotated for
hate speech, aggressiveness, and offensiveness.
This dataset features annotations from two distinct
groups of three individuals: a target group of Mus-
lims and first- or second-generation immigrants to
the UK (also classified as migrants in the original
study) and a control group of researchers with a
Western background making six annotators in all.

ConvAbuse The Conversational Abuse (ConvA-
buse) dataset, as described by Cercas Curry et al.
(2021), comprises roughly 4,000 English dialogues
between users and two conversational agents.
These user conversations were labeled by a mini-
mum of three gender studies experts, using a hier-
archical annotation system that included categories
for presence, severity, and directness of abuse. We

binarized the annotations into two classes, 0 and 1.
The ConvAbuse dataset is characterised by eight
(8) annotators, each providing a significant num-
ber of annotations. Also, not all the 8 annotators
labeled every instance contrary to the HS Brexit,
but each annotator has annotations.

4 Methodology

Firstly, we explore the ability of Llama2-13B to
generate discrete binary annotations on the datasets,
using defined personas. Secondly, we modeled
these personas with existing annotator modeling
techniques.

4.1 Annotation Generation

For the strong perspectivism variant of the datasets,
we prompt Llama2-13B with each text in the origi-
nal corpus. We extended the dataset with the gen-
erated annotations for each corresponding persona,
maintaining the original structure of the dataset
from the SemEval-2023 task. The strong variant
uses specific individual descriptions for each per-
sona as seen in Figure 1. In the original ConvAbuse
dataset, not all annotators annotated all instances,
but in the LLM version, all eight annotators were
represented in all instances. We generate annota-
tions at temperatures: 0, 0.1, 0.2, 0.5 and 0.8, for
each perspectives. We used the demographic de-
scription presented in the original work as guide for
our persona features. In weak perspectivism, we
followed the same approach. Figures 3 and 4 show
persona descriptions and Table 2 shows a sample
of the prompt used. The prompt and personas are
fully described in the Appendices A and B, respec-
tively. Also in Table 3, we show a summary of
the data statistics and the variance observed in the
inter-annotator agreement K-a as temperature in-
creases.

4.2 Annotator Modeling

We trained existing annotator models (Oluyemi
et al., 2024; Davani et al., 2022) using the LLM-
generated labels, following a classification pipeline
originally used with the human-annotated cor-
pus. We replicated these annotator modeling tech-
niques—User Token, Composite Embedding, Com-
posite+User Token Embedding, and Multi-task to
model perspectives by modeling annotators, and we
also added a text-only implementation without an-
notator information with SBERT. These techniques
used annotator IDs and text, with 6 annotations per
instance for the HSBrexit and 8 annotations per
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#A #1

N A/l K-a

HS-Brexit 6 1,120
ConvAbuse 8 4,050

1,120.00=£ 0.00
1,521.00+£ 206.91

6.00+ 0.00 0.35
3.00+ 0.88  0.65

Table 1: Original Dataset Statistics by Human Annotators. #A: number of annotators, #I: number of total instances,
N: number of annotations per annotator, A/I: annotations per instance, K-a: Krippendorff’s alpha agreement.

HSBrexit

ConvAbuse

3000 +

2000 +

Count

1000 +

I I

0 1
Annotation (0 or 1)

Persona
@ female Muslim migrant ® native English man
liberal English person @ native English woman
® male Muslim migrant ® neutral foreigner in the UK.

Annotation (0 or 1)

Persona
@ Ariel, non-binary, white, UK ® Mixed Asian
Emma, female, white, British @® Non-binary, white, US
Eve, female, white, UK Olivia, female, white, British
Katrin, female, white, UK ® Sophia, female, white, UK

Figure 1: Distribution of Annotations for ConvAbuse and HS-Brexit (Strong Perspective) by Persona

annotate this statement regarding Brexit. as a group
of (persona) in the UK or Europe, you must assign a
label to the statement Use 'O’ if the statement does not
express hate towards Brexit, and ’1’ if it does express
hate towards Brexit. Provide only the number as your
response without any additional text or explanation
for example "####Annotator: "####Annotator:0" or
"###Annotator: 1"

Table 2: An example prompt for weak perspectivism in HS-
Brexit

instance for the ConvAbuse to capture the persona
perspectives using the labels obtained from the gen-
erations at all temperatures but used the best scores
(generally between temperatures 0 and 0.1) in our
results and analysis. The annotator ID represents
each unique annotator(persona), encoded as em-
beddings. Each technique uses a different method
to generate encodings used to uniquely model the
personas. Finally, we compared the performance
of these annotator modeling techniques on LLM-
generated annotations and human annotations.

5 Results

Table 4 presents the F1 scores for the annotator
modeling techniques evaluated on both the original
and the synthetic datasets. Our analyses show some
trends in the performance of these models. In exist-
ing results that used human annotations, overall per-
formance was observed on the ConvAbuse dataset.
The inter-annotator agreement measured by Krip-
pendorft’s alpha was high for ConvAbuse and com-
paratively lower for the HSBrexit dataset. Interest-

ingly, the Llama2-annotated versions showed sig-
nificantly higher agreement levels than the original
human annotations across all temperature settings,
including at a high randomness level (Temperature
= 0.8) as seen in Tables 1 and 3. Prior research
established that the effectiveness of annotator mod-
eling techniques is largely dependent on the degree
of agreement and the number of annotations per
annotator (Oluyemi et al., 2024). Specifically, the
User-Token modeling approach performs best for
datasets with low agreement, while the Compos-
ite Embedding + User Token method is optimal
for datasets with high agreement. Both methods
rely on an explicit naming system, using annota-
tor IDs to individually predict the label outputs
for each annotator. However, our results indicate
that models without explicit annotator information
outperformed others on the Llama2 persona-based
datasets. For instance, SBERT, with no annota-
tor information and Composite Embedding- an ap-
proach that did not use explicit naming convention
(annotator ID) for modeling, both outperformed the
best-performing models on HSBrexit and achieved
comparable results on ConvAbuse. This suggests
that the optimal annotator modeling techniques for
human annotations may not be directly transfer-
able or equally effective for data annotated through
LLM personas.
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#A #1 N A/l

K-a (Strong) K-a (Weak)

HS-Brexit 6
ConvAbuse 8

1,120 1,120.00% 0.00
4,050  4,050.00+ 0.00

6.00+ 0.00 0.58 -0.81 (T=0.8-0)
8.00+£0.00 0.60-0.91 (T=0.8-0)

0.55-0.75 (T=0.8 - 0)
0.62-0.93 (T=0.8 - 0)

Table 3: LLAMAZ2 Dataset Statistics. #A: number of annotators, #I: number of total instances, N: number of
annotations per annotator, A/I: annotations per instance, K-a: Krippendorff’s alpha agreement (T=temperature
range). The K-« values are presented as a range from temperature 0.8 to 0, that is agreement decreases as temperature

increases.
Method SBERT  User Token Composite Embedding Composite Embedding + User Token = Multi-Tasking
Human-annotations

HS-Brexit 68.6 77.6 67.6 77.3 71.7

ConvAbuse 85.9 88.5 85.8 88.6 82.3
LLLAMAZ2-13B strong perspectivism

HS-Brexit 72.2 69.4 71.8 71.2

ConvAbuse 85.7 84.4 84.6 84.4
LLLAMAZ2-13B weak perspectivism

HS-Brexit 73.2 72.2 72.4 71.7 62.0

ConvAbuse 85.2 83.7 83.7 81.8 79.8

Table 4: Model performance based on individual annotator and persona F1 scores. Results for human annotations
was adapted from Oluyemi et al. (2024). We reported the best LLM results for temperatures 0 and 0.1.

5.1 Strong vs Weak Data Perspectivism in
Annotator Modeling

As presented in Tables 6 and 7 of Appendix C,
we adapted the two versions of data perspectivism
described by (Cabitza et al., 2023) and evaluated
the annotator modeling techniques on the datasets.
The strong perspectivist approach, which used fine-
grained persona profiles, generally produced higher
performance that was more aligned with the results
from human modeling for the ConvAbuse dataset at
temperature 0.1. The weak perspectivism approach,
characterized by contrasting group descriptions,
showed improved performance over the human ver-
sion in the HS-Brexit dataset across both strong
and weak variants, with a greater improvement ob-
served in the weak, group-based variant. However,
this performance increase was exclusively observed
in the Composite Embedding and SBERT models
without explicit annotator information.

5.2 Annotation Quality and Uncertainty

We analyzed the quality of annotations generated
by Llama2-13B across a spectrum of temperature
parameters. Even at high randomness with tem-
perature set to 0.8, inter-annotator agreement re-
mained high cf. Table 3. The distribution of labels
diverged significantly from that of the human an-
notators. To illustrate this, we compared the label
distributions using Probability Density Functions

(PDFs). The human annotations showed a sharp
peak near class 0, indicating a highly consistent
assignment of non-abusive class, despite disagree-
ment, in the HS-Brexit dataset as seen in Figure
2. In contrast, the PDF for the strong perspectivist
variant of the LLM showed a slightly right-skewed
peak between 0.1 and 0.2, suggesting that the LLM
assigned marginally higher soft labels than human
annotators. The weak perspectivist PDF was flatter
and more dispersed, with a small density spike near
a probability of 0.2, reflecting greater uncertainty
and inconsistency in labeling. The PDFs for the
ConvAbuse dataset is presented in the Appendix
D.

5.3 Prototypical Persona Annotators and
Human Alignment

Ablation 1: Table 5 shows that annotator models
trained on LLM annotations perform worse when
tested on human labels, indicating a lack of align-
ment. The decline likely comes from the lack of
corresponding match between LLLM personas and
the unknown individual human annotators.
Ablation 2: Figures 3 and 4 present an align-
ment analysis between LLM personas and human
annotators. We compute cosine similarity between
their annotation vectors. Using sample sizes of 5,
10, 50, and 100, stronger alignment was observed
at sizes 50 and 100. In the ConvAbuse strong vari-
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Comparison of PDFs: Human vs LLM Strong vs LLM Weak (HS-Brexit)
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Figure 2: Figure showing the Probability Density Function illustrating Uncertainty in LLM annotations Vs Human in HSBrexit

Alignment between Human Annotators and LLM Persona for
strong data perspectivism in ConvAbuse
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Human/LLM ID Persona (strong) Persona (weak)

1 Olivia, a female and white British person white British female people

2 Emma, a female and white British person white British with non-binary gender orientation
3 Ariel, a white person from the United Kingdom with a non-binary gender orientation non-binary gender people from the United States
4 Sophia, a female and white person from the United Kingdom white female people from the United Kingdom

5 Katrin, a female and white person from the United Kingdom white female from United States

6 Eve, a female and white person from the United Kingdom mixed Asian with a non-binary gender orientation
7 mixed Asian person mixed Asian female

8 a white person from the United States with a non-binary gender orientation mixed Asian female

Figure 3: Figure showing Prototypical LLM annotators and Alignment with Human Annotators in ConvAbuse

ant, ANN(2-8) showed varying degrees of align-
ment with LLM Persona 1 (Olivia, female, white,
British), while ANN(1) aligns more closely with
LLM Persona 4 (Sophia, female, white, from the
UK). Other LLM personas (2, 3, 5-8) exhibit no
correspondence with any human annotator. We

further trained annotator models on annotations
from LLM Personas 1 and 4, and evaluated them
against human-labeled data. These models showed
improved performance, approaching human-level
results for both Composite Embedding and SBERT,
as shown in Table 5.
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Model SBERT User Token Composite Embedding Composite Embedding + User Token
HL 85.9 88.5 85.8 88.6
LLM 85.7 84.4 84.6 84.4
LLM-H 83.1 83.4 84.5 84.2
LLM(1,4)-H 854 82.6 85.9

Table 5: Model performance based on different training and testing label splits: HL (models trained and tested on
Human Labels), LLM (models trained and tested on LLM Labels), LLM-H (models trained on LLM Labels, tested
on Human Labels), and LLM(1,4)-H (models trained on the most aligned LLLM personas 1 and 4 to human labels,

tested on Human Labels).

In the HS-Brexit dataset, alignment is less con-
sistent. In Figure 4, we see Persona 1, Male Mus-
lim migrant, belonging to the target group mapped
to annotators 4 and 5 of the human annotators be-
longing to the control group in the strong variant.
Human annotators 1-3 belong to the Muslim or
migrant group, while annotators 4—6 belong to the
group with Western background, denoted as locals.
Also, Persona 3 of the migrant group representing
"neutral foreigner" shows positive alignment in the
weak variant to the migrant group in human when
"Muslim" was removed. These findings suggest
that Llama2 includes prototypical personas capable
of partially representing multiple human annotators.
However, other defined personas fail to map to any
observed human annotation patterns (cf. Appendix
E).

6 Discussion and Conclusion

This work investigates Llama?2’s capacity to gener-
ate disaggregated labels for hate speech and offen-
siveness datasets using predefined personas, under
two perspectivism frameworks: strong (individual)
and weak (group) data perspectivism. We examine
the quality and alignment of LLM-generated anno-
tations with human-annotated datasets and evaluate
downstream performance across existing annotator
modeling techniques.

Llama2 annotations consistently exhibited
higher inter-annotator agreement (Krippendorft’s
alpha ranging 0.55-0.91) than human annotations
across both ConvAbuse and HS-Brexit datasets,
though agreement decreased at higher temperatures.
PDF analysis further indicated that LLM annota-
tions tend to converge around features inherent in
the model’s underlying corpus, suggesting a diver-
gence from human perspectives. As seen in Fig-
ure 2, the PDF using the soft label distribution of
the abusive class shows human annotations align-
ing towards the non-abusive class, strong perspec-
tivism aligning more towards the abusive class, and

weak perspectivism showing a relatively flat and
dispersed distribution depicting high uncertainty.

In terms of performance of annotator modeling
methods, LLM annotations shifted model efficacy.
While prior work confirmed that annotator mod-
els trained on human-annotated datasets with high
agreement (e.g., ConvAbuse) performed best with
the Composite Embedding + User Token model,
and those with low agreement (e.g., HS-Brexit)
favored the User Token model, our findings with
LLM-generated annotations demonstrate that sim-
pler models, specifically SBERT and Composite
Embedding models without explicit annotator in-
formation, showed improved results. This shift im-
plies that LLM-generated annotations align more
with generalized perspectives and are less suited
to highly personalized approaches. Comparing the
two perspectivism approaches, strong data perspec-
tivism on ConvAbuse, characterized by overlap-
ping and more personalized features, improved
the performance of annotator modeling techniques
over its weak counterpart. Conversely, weak per-
spectivism on HS-Brexit, with its contrasting de-
mographic features in groups, yielded improved
performance specifically with SBERT and Compos-
ite Embedding models, suggesting that contrasting
demographic diversity tends to influence the choice
of perspectivism approach and annotator modeling
performance in LLMs.

Our ablation studies revealed LLM personas do
not directly correspond to human annotators. How-
ever, as seen in Figure 3, we identified generalized
"prototypical persona features" working as repre-
sentatives of groups of humans (e.g., ANN 2-8 map-
ping to LLM Persona 1, ANN1 to LLM Persona 4).
Swapping the labels of corresponding annotators
in the original dataset with these prototypical an-
notator labels, and evaluating with the human test
set, slightly improved results, as seen in Table 5,
presenting a novel approach for modeling perspec-
tivism in LLMs. These findings suggest that while
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Alignment between Human Annotator and Best Matching LLM in strong data perspectivism-HSBrexit
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Human/LLM ID Persona (strong) Persona (weak)

1 Male Muslim Migrant first generation immigrants from developing countries

2 Female Muslim Migrant second generation immigrants and muslim students with Islamic back-
ground from developing countries

3 Neutral foreigner in the UK migrants

4 Native English man researchers with western background, having experience in linguistic
annotation

5 Native English Woman researchers with western background with NO islamic background

6 Liberal English person local that is someone whose ancestors were born in Europe or United

Kingdom

Figure 4: Figure showing Prototypical LLM annotators and Alignment with Human Annotators in HSBrexit

LLMs offer insights into subjective domains, their
capacity to fully embody external personas remains
limited to their underlying corpus, supporting an
aggregated view rather than personalization. Future
work should focus on standardization and generate
more diversified personas, systematically varying
features, and expanding evaluation to other LLMs
to fully investigate these prototypical attributes and
their potential in capturing a wider scope of per-
spectives.

7 Limitations

This study is based on two datasets and focuses
exclusively on binary classification tasks for hate
and offensive speech detection. One potential lim-
itation is that the data used to train Llama2-13B
may have been filtered, reducing its sensitivity to
detecting abusive content, potentially influencing
the observed results. Our analysis is also limited to

this model, and we did not investigate how newer
variants of Llama or other LLMs, like GPT 4o,
might influence the results. The personas used for
generating annotations were limited to the demo-
graphic features explicitly provided in the original
datasets, with slight modifications to fit the per-
spectivist spectrum. Furthermore, we did not quan-
tify the extent to which the model’s attention was
distributed between the persona and the input sen-
tences. Understanding this balance could provide
deeper insight into how strongly LL.Ms personalize
their annotations.

Another limitation of this study arises from the
design of the annotation prompt for the HS-Brexit
dataset variant, which focused on ‘hate speech to-
wards Brexit’. However, the prompt was structured
to provide general contextual information about
Brexit and simulate the prior knowledge of human
annotators. A follow-up experiment analysing the
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model’s attention mechanism revealed that the in-
stance of "Brexit" appearing first in the prompt
received a significantly higher attention score of
0.0654 than the "Brexit" label target which received
an attention score of 0.0050. Furthermore, when
‘immigrants’ was targeted instead, it received an
attention score of 0.0117, which was higher than
that given to ’Brexit’ as a target. This suggests
that the models have learned to recognise plausible
targets for hate speech, which warrants further in-
vestigation. However, this paper’s specific focus is
to investigate the impact of Annotator Personas on
LLM behaviour across the perspectivism spectrum.
It therefore does not include a deep analysis of the
model’s sensitivity to target plausibility. Neverthe-
less, we present this as a compelling avenue for
future research, while maintaining that our core
findings regarding persona-driven perspectivism re-
main valid within the described experimental setup.
Our codes are publicly available! to support future
work.
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Appendix
A Prompt Design

Prompt for Strong HS-Brexit annotate this
statement regarding Brexit. As a (persona) in the
UK, you must assign a label to the statement. Use
"0’ if the statement does not express hate towards
Brexit, and 1’ if it does express hate towards
Brexit. Provide only the number as your response
without any additional text or explanation for
example "###Annotator:0" or "###Annotator: 1"

Prompt for Weak HS-Brexit annotate this
statement regarding Brexit.  for a group of
(persona) in the UK or Europe, you must assign
a label to the statement. Use 'O’ if the statement
does not express hate towards Brexit, and ’1’ if it
does express hate towards Brexit. Provide only the
number as your response without any additional
text or explanation for example "### Annotator:0"
or "###Annotator: 1"

Prompt for Weak ConvAbuse annotate
these conversations between users and bots. As a
group of persona within the age range of 19-21,
a level 1 English speaker and an Undergraduate
student in Gender Studies and Sociology, you must
assign a label to the statement. Use 'O’ if the
statement is not abusive, and ’1’ if it does express
abusiveness by the user towards the bot or agent.
Provide only the number as your response without
any additional text or explanation. for example
"##t# Annotator:0" or "### Annotator:]"

Prompt for Strong ConvAbuse annotate
these conversations between users and bots. As a
persona within the age range of 19-21, a level 1
English speaker and an Undergraduate student in
Gender Studies and Sociology, you must assign a
label to the statement. Use 'O’ if the statement is
not abusive, and 1’ if it does express abusiveness
by the user towards the bot or agent. Provide
only the number as your response without any
additional text or explanation. for example "###
Annotator:0" or "### Annotator:]"

B Persona Descriptions

HS-Brexit Persona for Strong Perspectives

* Male Muslim Migrant

* Female Muslim Migrant

* Neutral foreigner in the UK
* Native English man

* Native English Woman

* Liberal English person
HS-Brexit Persona for Weak Perspectives

* researchers with Western background having
experience in linguistic annotation

* first or second generation muslim immigrant
students from developing countries

ConvAbuse Persona for Weak Perspectives

 white British female people

 white British with non-binary gender orienta-
tion

* non-binary gender people from the United
States

* white female people from the United King-
dom

e white female from United States

* mixed Asian with a non-binary gender orien-
tation

e mixed Asian female

» white people from the United States with a
non-binary gender orientation

ConvAbuse Persona for Strong Perspectives

* Olivia, a female and white british person
* Emma, a female and white british person

* Ariel, a white person from the United King-
dom with a non-binary gender orientation

* Sophia, a female and white person from the
United Kingdom

» Katrin, a female and white person from the
United Kingdom

* Eve, a female and white person from the
United Kingdom

* a mixed Asian person
* a white person from the United States with a

non-binary gender orientation
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C Model performance for Strong and Weak Data Perspectivism

Model « User-Token Composite Composite+ User-Token Multitasking SBERT

Strong Perspectivism

Human 0.65 88.5 85.8 88.6 82.3 85.9
0 0.91 84.1 83.0 84.4 46.9 83.1
0.1 0.87 84.4 84.6 84.3 81.1 85.7
0.2 0.81 80.5 81.5 80.0 46.8 81.5
0.5 0.68 69.9 70.7 71.1 45.1 69.4
0.8 0.60 63.5 65.1 64.4 62.6 64.6

Weak Perspectivism

0 0.93 83.7 83.7 81.8 69.0 85.2
0.1 0.88 80.1 79.3 78.3 79.8 82.0
0.2 0.82 81.2 81.5 81.2 70.3 82.1
0.5 0.67 71.7 69.7 714 64.7 69.5
0.8 0.62 61.7 61.4 62.3 58.1 61.4

Table 6: Performance of Annotator modeling methods for Strong and Weak data Perspectivism (ConvAbuse
dataset) across various temperatures.

Model « User-Token Composite Composite+ User-Token Multitasking SBERT

Strong Perspectivism

Human 0.35 77.6 67.6 71.3 71.7 68.6
0 0.81 69.3 71.3 71.2 65.1 722
0.1 0.73 69.4 71.8 71.0 61.8 69.2
0.2 0.67 66.3 63.8 61.9 61.4 67.2
0.5 0.62 61.5 61.3 61.4 49.5 62.2
0.8 0.58 524 56.1 54.2 51.2 56.6

Weak Perspectivism

0 0.75 722 72.4 71.7 60.3 73.2
0.1 0.69 66.6 65.8 65.5 62.0 69.1
0.2 0.62 62.2 63.8 69.9 59.2 66.8
0.5 0.54 58.0 584 579 39.2 56.1
0.8 0.55 552 57.8 56.7 554 56.6

Table 7: Performance of Annotator modeling methods for Strong and Weak data Perspectivism (HS-Brexit dataset)
across various temperatures.
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D Probability Density Function for Uncertainty and Annotation Quality
The Figure 5 shows the probability density function of the weak data perspectivism in ConvAbuse using

the majority class as a reference point.
PDFs: Human vs LLM Strong vs LLM Weak based on Majoritylabel(ConvAbuse)
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Figure 5: Probability Density Function ConvAbuse Dataset
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E Human Vs Persona Alignment and Prototypes ConvAbuse Dataset

Human Annotator SampleSize Best Match LLM Persona Similarity score

2 100 1 0.791
3 100 1 0.894
7 100 1 0.913
8 100 1 0.671
1 100 4 0.707
6 100 1 0.707
4 100 1 0.816
5 100 1 0.745

Table 8: Mapping of Human Annotators to Best Matching LLM Personas based on Cosine Similarity.

Prototypical Annotators and their Alignment with Human Annotators Across Varying Sample sizes
Alignment between Human Annotator and Best Matching LLM in strong data perspectivism-HSBrexit
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Figure 6: Showing the identified Prototypical annotators in HS-Brexit dataset and the alignment with human
annotators
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Alignment between Human Annotator and Best Matching LLM in strong data perspectivism-ConvAbuse
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Abstract

Retrieval Augmented Generation (RAG) has
risen to prominence for boosting the capa-
bilities of Large Language Models (LLMs)
through the integration of external knowledge.
Notably, the document chunking process plays
a central role in the performance of RAG
pipelines. Nevertheless, incoherent document
splits and inappropriate chunk sizes hinder re-
trieval efficiency and contextual accuracy. To
address this, we propose Recursive Seman-
tic Chunking (RSC), a dynamic and adaptive
chunking framework that ensures semantic co-
herence. It maintains coherence by recursively
splitting large chunks and merging smaller
ones. Unlike conventional methods, RSC pre-
serves contextual integrity while optimizing
retrieval efficiency. The evaluation across 4
distinct datasets outperformed traditional se-
mantic chunking techniques on evaluation met-
rics; contextual relevancy, contextual precision,
contextual recall, retrieval time, faithfulness
and answer relevancy. Results demonstrate
that RSC consistently outperforms traditional
chunking techniques, achieving higher contex-
tual relevancy and total score while maintain-
ing efficient retrieval times. These findings
highlight the potential to optimize RAG sys-
tems and to improve the document chunking
steps in the systems.

1 Introduction

Large Language Models (LLMs) are widely
adopted across various domains in the form of
chatbots, Al assistants, and other applications (Sid-
dharth and Luo, 2024; Sahlman et al., 2023). The
performance of LLMs is enhanced via the integra-
tion of external knowledge sources, specifically for
custom applications. In addition, we can leverage
the capabilities of LLMs without training them.
The aforementioned enhancement can be made via

*Corresponding author.
"Equal contribution.

Retreival-Augmented Generation (RAG) (Lewis
et al., 2020).

The RAG process begins with a user’s query be-
ing sent to the LLM, which generates a retrieval
request based on that query. This request is for-
warded to the retriever system, which searches
the vector database. Embeddings of documents
chunk i.e. context is stored in vector database. The
relevant context is then retrieved and combined
with the user’s query before being sent to the LLM
for a final response, as shown in Figure 1. Re-
searchers have developed various RAG-based solu-
tions across different domains, such as finance and
healthcare (Alkhalaf et al., 2024; He et al., 2024,
Feng et al., 2024; Mathur et al., 2024).

The critical aspect of the RAG pipeline is the
chunking of documents. Chunking in RAG sys-
tems is a technique that breaks down large docu-
ments into smaller, manageable segments known
as "chunks" (LangChain, 2024). This process is
crucial as it enhances the efficiency and accuracy
of information retrieval, which leads to better out-
comes for the system. The nature of context re-
trieved from the vector database is based on the
segmentation of these documents, therefore, the
choice of chunking techniques is a significant step
in the pipeline (Setty et al., 2024). The chunking
techniques directly affect the quality of retrieved-
context and retrieval time. It eventually affects
the quality of the product that is utilizing RAG-
based applications. The choice of chunking is
quite challenging i.e. larger chunks can lead to
slower retrieval, or retrieve irrelevant chunks and
small chunks may not adhere to a coherent infor-
mation unit. Recently, there has been a shift in re-
search focus towards optimal chunking techniques
i.e. (Yepes et al., 2024). Although frameworks
such as LangChain (Al, 2024) and Lamalndex (Liu,
2022) have various chunking strategies. Due to
complexities of the document structure, and cus-
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Figure 1: Information Flow in Retrieval Augmented
Generation (RAG)

tom systems, it is still a challenging task at hand.

In this paper, we propose Recursive Semantic
Chunking that focuses on optimizing the semantic
chunking of the documents. The following are the
key contributions of this work:

* We propose a Recursive Semantic Chunking
method, designed to split textual documents
into coherent semantic chunks of an appropri-
ate size.

* We introduce a dynamic method for adjusting
the chunk size. The recursive nature of this
method ensures that larger text segments are
progressively broken down while maintain-
ing semantic integrity. Smaller segments are
merged strategically, keeping the chunk size
balanced.

* We demonstrate that the proposed method im-
proves retrieval time compared to traditional
chunking techniques.

* As part of this work, we introduce
NewsMatrix-71, a large-scale, multi-domain
news dataset.

2 Related Work

Retrieval Augmented Generation systems rely on
the context returned from the retrieval algorithms,
making chunking a key factor in the pipeline
(Yepes et al., 2024). Therefore, the choice of
chunking strategies is a critical step. Ineffective
techniques can result in either incomplete chunks
leading to losing context or large chunks with irrel-
evant information negatively impacting the accu-
racy of the retrieval (Setty et al., 2024).

One of the common approaches is to split the
document based on fixed numbers of chunks. How-
ever, it has a potential loss of context in both cases
larger or smaller chunk size (Teja, 2023). To ad-
dress this, the researchers introduce recursive split
by character technique (LangChain, 2023). It re-
cursively splits keeping the longest text chunks
together with a need to define and constant adjust-
ment of chunk size overlapping making it compu-
tationally expensive.

Although the recursive text split tends to keep
the chunks semantically closed together, it does not
directly account for semantic meaning. Conversely,
semantic chunking (LangChain, 2024) groups the
text that is semantically similar together. It first
splits the text into sentences and groups them into
three sentences, then merges similar groups in the
embedding space. However, this technique does
not ensure optimal chunk sizes. Since its mech-
anism is dependent on the similarity of the em-
bedding vectors, it may lead to larger chunks and
cause hallucinations.

Agentic chunking (FullStackRetrieval, 2024)
pushed this idea further by leveraging Large Lan-
guage Models. It converts text into propositions
via LLMs (Chen et al., 2024). Propositions are de-
fined as standalone statements that convey a single
fact clearly without needing extra context. It can be
referred to as the smallest unit of meaning within
a text, each expressing one distinct idea. Propo-
sitions retain the semantic meaning in individual
statements as shown in the following example:

Once the propositions are created, these are
passed to an LLM, which is then prompted to group
these chunks. This approach offers flexibility and
higher accuracy. Nevertheless, it requires well-
crafted prompts and dependency on the capability
of the acquired LLM.

Working on efficient chunking techniques is an
open research area as not much has been explored
in this regard.
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Proposition Conversion Example

Original Sentence

“Three new products were launched
this year, expanding our reach into
international markets.”

Converted Propositions

“Three new products were launched
this year.”

“The company expanded into inter-
national markets.”

3 Dataset

We introduce a new large-scale news dataset,
named NewsMatrix-71'. It covers a diverse set
of news categories over multiple years.

3.1 Scraped News Dataset (NewsMatrix-71)

We compile this dataset by scraping English
news articles from Dawn?, Tribune?, and Daily
Times*. This dataset covers the span of three years
(2021-2023) and has up to 96,859 news articles
categorized into 71 unique topics, including Busi-
ness, Fashion, Health, World, and more. It offers a
diverse, time-spanning, and category-rich corpus
suitable for various NLP tasks. It captures a broad
spectrum of global and regional news, making it a
valuable resource for research. Given the size and
scope of this dataset, we will selectively release a
publicly available subset to facilitate reproducibil-
ity and further research.

4 Recursive Semantic Chunking

This section presents the Recursive Semantic
Chunking framework in detail. The primary objec-
tive is to ensure the splitting of chunks is seman-
tically coherent and maintains the integrity of the
content. In addition, the size of the chunks should
be optimal. The standard semantic chunking
technique tends to generate large chunks, which

!This data will be published publicly and free for research
purposes after the paper’s acceptance. It will be shared un-
der the Creative Commons Attribution 4.0 International
License (CC BY 4.0)

’Dawn

*Tribune

“Daily Times

negatively impact the performance of retrieval-
augmented generation systems. Furthermore, in
custom RAG projects, documents often belong to
specific topics, and larger chunks reduce system
efficiency.

Algorithm 1 provides a detailed outline of the
proposed chunking process. All predefined val-
ues are determined after extensive experimentation.
The following steps describe the pipeline.

Segmentation of Textual Data from Files

The data store consists of files f; containing tex-
tual data stored as strings 7;. Since LLMs have
token limits, each 7; undergoes a length check.
If it exceeds the threshold Ti,x, the file is split
into smaller segments {¢1,%2,...,t,}, ensuring
that |¢;| < Tiax. The splitting occurs at the nearest
sentence boundary (e.g., full stop, question mark)
to preserve linguistic coherence.

Initial Semantic Chunking

Each segment ¢; undergoes an initial semantic
chunking process (LangChain, 2024). In this step,
the semantically similar texts are grouped in the
embedding space, forming Cy = {c1,¢2,...,cm},
where ¢, represents an initial chunk.

Recursive Semantic Chunking

For each chunk ¢;, € Cj, the semantic chunker is
recursively applied if its length exceeds the thresh-
old Tihunk (1,500 characters). With each recur-
sive iteration, the breakpoint threshold parameter
is gradually reduced, ensuring that large chunks
are broken into smaller, semantically meaningful
segments. The recursive function R(c,T') operates
as follows:

c if || <T
R(e,T) = {R(split(c,T _6),T—6) it Ic} >T
where ¢ represents a small reduction factor to
progressively decrease chunk size in each itera-
tion. The reduction factor ¢ is heuristically set to 3
after initial experimentation. Although not tuned
through systematic search, this value is selected
to ensure a gradual and controlled recursive break-
down of large chunks. This value is kept fixed
across all datasets to maintain consistency and re-
producibility.
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Merging Short Chunks

Following recursive chunking, some chunks may
become too short (i.e., less than Tiyerge, set to 350
characters). Extremely small chunks may lack se-
mantic coherence, leading to information loss. To
address this, the similarity score of smaller chunks
is calculated with both preceding and subsequent
chunks. It is merged with the chunk that has the
highest similarity score. This ensures semantic in-
tegrity while preventing the loss of meaningful text.
The merging process is defined as follows:

If |¢;| < Therge, compute:
Sprev = sim(c;, ¢i—1)
Shext = sim(c;, ¢i41)
Merge with highest similarity chunk
If Sprev > Shext, then:
Ci—1  Ci—1+ ¢
Else:
Cit1 < Ci + Cit1

Fort = 1lton :

Here, Sprev and Spex represent the similarity
scores between the small chunk ¢; and its neighbor-
ing chunks ¢;_; and ¢;4 1, respectively. The chunk
¢; 1s merged with the chunk that has the highest
similarity score, ensuring that the resulting merged
chunk maintains semantic coherence.

Uniform Chunk Size Adjustment

Finally, the algorithm checks whether any chunk
exceeds the threshold T§,, (2,500 characters). If a
chunk surpasses this limit, it undergoes a recursive
character-based text split (LangChain, 2023). The
final adjustment process is defined as:

If ‘Cl| > Thnal :

Fori = 1tom : Apply Recursive Split Function:

c¢i + RecursiveSplit(c;, Thina)

This step ensures that the final chunk set,
Chinal = {c1,c2,...,cn}, meets size constraints
while maintaining semantic coherence. The pro-
cessed chunks are then stored in vector databases
for RAG tasks.

Distinction from Baseline Chunkers

While our method incorporates components from
existing LangChain utilities, i.e. semantic chunk-
ing for initial grouping and character-based re-
cursive splitting for final chunk size enforcement.
These steps function as structural helpers rather
than the core of our approach. The key innova-
tion of RSC lies in its intermediate refinement

Algorithm 1: Recursive Semantic

Chunking

Input: Dataset D = {f1, f2,..., fn};
Maximum chunk size T, = 15,000;
Recursive chunking threshold Tchunk = 1,500;
Final chunk size threshold T,y = 2,500;
Minimum chunk size for merging Tiperge = 350
Output: Final set of chunks Cfipy

Initialization:
China < 0

Initial Semantic Chunking:
Apply chunking to each segment ¢ ;:
Co + {c1,¢2,. .., cm}

foreach chunk c;, € Cq do
if [cx| > Topunk then
Recursive Semantic Chunking:
R(ck, Tenunk) =
R(Split(cka Tehunk — 6)’ Tehunk — 6)
10 L ¢k < 12(6}€7 Tchunk)

C XN AW N

11 foreach chunk c;, € Cq do

12 if ek | < Toperge then

13 Compute similarity with previous chunk:
14 Sprev < similarity(cx—1, ¢k )

15 Compute similarity with next chunk:
16 Shext <— similarity(cg, cx4+1)

17 if Sprev 2> Shewt then

18 Merge with previous chunk:
19 Ck—1 4 Cp—1 + Ck

20 else

21 Merge with next chunk:

22 L Ck+1 $ Ck + Ck+1

23 Add merged chunks to Clina

24 foreach chunk ci, € Cnar do

25 if |k | > Tﬁ,,a[ then

26 Split chunk:

27 L C Split(ck7 Tﬁnn])

28 Return: Final set of chunks Cla

logic: recursive breakdown with dynamic thresh-
olds, similarity-based merging of smaller chunks,
and controlled preservation of semantic coherence.
These operations are not present in the baseline
LangChain chunkers and are designed to address
the limitations of fixed-size or purely embedding-
based segmentation. Therefore, while we lever-
age LangChain for low-level chunk initialization
and splitting, the significant performance improve-
ments observed in contextual and answer-level met-
rics stem from our recursive and adaptive chunking
strategy.

S5 Experimental Design

Our evaluation framework is designed to rigorously
assess the impact of our proposed technique: Re-
cursive Semantic Chunking (RSC). Incorporating
RSC in the RAG pipeline for question-answering
tasks, we demonstrate its capabilities in preserving
contextual coherence and improving retrieval preci-
sion. This section details our evaluation methodol-
ogy, covering dataset selection, synthetic question
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Table 1: Summary of Datasets used for Evaluating the
Proposed Chunking Technique, including Open-source
Corpora and the Custom Dataset NewsMatrix-71.

Dataset Words  Characters  Paragraphs  Source

BBC 854,490 5,039,982 2,225 BBC Dataset

SQuAD 152,394 966,345 1,204  SQuAD

QuaC 440,971 2,664,801 1,000 QuaC

NewsMatrix-71 677,258 4,227,679 1,500  Dawn, Tribune
Daily Times

generation, chunking techniques, implementation
setup, and performance metrics

5.1 Datasets

We evaluate our proposed chunking technique
using four datasets, including three open-source
corpora—BBC (Greene and Cunningham, 2006),
SQuAD (Rajpurkar et al., 2016), and QuaC (Choi
et al., 2018)—along with a custom-scraped news
dataset, NewsMatrix-71. The NewsMatrix-71
dataset, created by scraping English news arti-
cles, is stored in .txt format. For experimentation,
we use a 1,500-article subset containing 677,258
words and 4,227,679 characters. A summary of all
datasets is provided in Table 1.

5.2 Synthetic Question Generation

These evaluations of the chunking techniques are
based on the response from the question-answering
system. Therefore, we utilized LLM to create
synthetic questions from each dataset. For each
dataset, we randomly generate 50 synthetic ques-
tions per dataset to balance computational feasi-
bility with evaluation diversity. This quantity is
consistent with recent study Merola and Singh,
2025. This quantity is consistent with recent study
Merola and Singh, 2025. To generate synthetic
questions, we randomly selected passages from
each dataset. To ensure reasonable topic coverage,
we manually examined multiple random subsets
and selected one for question generation. While
this approach does not guarantee perfect topic strat-
ification, it provides a practical balance between
topic diversity and simplicity in sampling. We em-
ploy Gemini Flash 1.5 to generate corresponding
questions. The ChatPromptTemplate module from
LangChain is used to structure the input prompt,
guiding the model to generate relevant and context-
aware questions for each passage. Once generated,
the synthetic questions are stored and later used to
assess the retrieval and response quality of differ-
ent chunking techniques. By introducing synthetic

queries, we create an additional layer of evaluation
that allows us to measure how well-chunked text
segments support question-answering tasks beyond
the scope of existing datasets.

5.3 Chunking Techniques

To establish a baseline, we implement three widely
used chunking techniques. Recursive Character
Text Splitter segments (LangChain, 2023), and Se-
mantic Chunking (LangChain, 2024). Next, we
employ our proposed technique; Recursive Seman-
tic Chunking framework for comparison.

5.4 Implementation Details

For downstream question-answering tasks, we
store the chunks in the RAG pipeline using
LangChain’. All the techniques use “all-MiniLM-
L6-v2” %embedding. The resulting chunks are
stored in the Facebook AI Similarity Search
(FAISS) vector database (Douze et al., 2024). The
“ChatPromptTemplate module” is used with “Gem-
ini Flash 1.5” 7, a state-of-the-art Large Language
Model optimized for contextual reasoning.

5.5 [Evaluation metrics

We assess chunking techniques by integrating them
into the RAG pipeline for a question-answering
task. For evaluation, we use DeepEval by Confi-
dent AI 8, an open-source framework designed for
LLM evaluation. DeepEval leverages LLMs and
other NLP models to measure performance. In our
study, GPT-3.5-turbo generates answers, with eval-
uation metrics focusing on contextual accuracy and
relevance in both retrieval and generation stages.
The following formulas are taken from DeepEval
for evaluation. Additionally, we compare retrieval
time across different strategies.

Contextual Precision

It measures how well relevant nodes are ranked
higher in the retrieval context.

n

1 Rel. Nodes to k
CP= ——— IR —
Rel. Nodes ; ( k % Tk)

where 7, is 1 for relevant nodes, 0 otherwise.

SLangChain

®Sentence Embedding: all-MiniLM-L6-v2
"Gemini Flash 1.5

8https ://www.confident-ai.com
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Contextual Recall

The metric evaluates the ability of the system to
capture relevant information:

CR — Attributable Statements

Total Statements

Contextual Relevancy

It measures the overall relevance of the retrieval
context with respect to the query:

CRel — Relevant Statements

Total Statements

Answer Relevancy

Answer Relevancy evaluates the relevance of the
generated output:

Relevant Statements
AR =

Total Statements

Faithfulness

Faithfulness measures how factually accurate the
output is:

Truthful Claims

Faithful =
althiuiness Total Claims

Retrieval Time

The Retrieval Time RT is defined as the total time
taken to retrieve the context and generate the final
answer for a query:

RT = tend — Tstart

These evaluation metrics allow us to compare the
trade-offs between semantic integrity, retrieval ef-
fectiveness, and computational efficiency across
different chunking approaches.

6 Results and Analysis
6.1 Results

Table 2 shows the chunk counts for different tech-
niques. RSC achieves the best balance between
granularity and coherence. In contrast, the Re-
cursive Character Text Splitter generates the high-
est number of chunks due to its character-based
splitting, while Semantic Chunking produces the
fewest, resulting in larger segments. This bal-
ance reflects an important trade-off in RAG sys-
tem design. Excessive chunking can inflate the re-
trieval space, leading to fragmented context. While
larger chunks provide broader context, they in-
crease the risk of irrelevant retrieval, hallucinations,

Table 2: Number of Chunks Formed by Each Chunking
Method Across Datasets.

Dataset Recursive Semantic RSC
Character (Proposed)
BBC News 12,674 3,844 8,115
SQuAD 1,258 2,327 2,343
QuAC 2,464 2,307 4,121
NewsMatrix-71 3,793 2,961 5,474

and longer retrieval times. RSC finds a middle
ground, ensuring semantic integrity while main-
taining meaningful chunk sizes. By keeping the
chunk count within an optimal range, RSC im-
proves contextual relevancy, as further supported
by the downstream performance metrics in Table 3.

Table 3 presents the comparative performance
of chunking techniques on the question-answering
task across multiple datasets. The proposed Re-
cursive Semantic Chunking consistently outper-
forms other techniques, particularly in Contextual
Relevancy and Total Score, while maintaining an
optimal balance between chunk size and retrieval
efficiency.

The performance of chunking techniques across
the datasets reveals interesting trends as shown
in Figure 2. The best results are observed in
SQuAD and NewsMatrix-71. SQuAD, achiev-
ing the highest Total Score under RSC, highlights
the advantage of semantically coherent segmen-
tation in structured question-answering datasets.
NewsMatrix-71 achieves the highest Contextual
Relevancy with RSC, demonstrating its effective-
ness in handling diverse and large-scale articles.

In contrast, QuUAC performs the worst, partic-
ularly under Semantic Chunking and Recursive
Semantic Chunking. This is likely due to its conver-
sational nature, which demands deeper contextual
understanding.

While RSC does not lead in Answer Relevancy
across all datasets, it is an important metric for
evaluating end-to-end RAG performance. It consis-
tently achieves top performance in Total Score and
Contextual Relevancy. It is important to note that
Answer Relevancy may be influenced by factors be-
yond chunking quality, such as the formulation of
user queries (Sclar et al., 2024) or reasoning behav-
ior of the language model during generation (Jiang
et al., 2025). In contrast, Contextual Relevancy
more directly reflects the quality and alignment
of retrieved content with the query, making it a
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Table 3: Performance Metrics for Different Chunking
Techniques Across Datasets. Scores are out of 50, ex-
cept Total Score (out of 250). Retrieval time is mea-
sured in seconds.

Abbreviations: RC = Recursive Character, RSC = Re-
cursive Semantic Chunking,Avg Retv Time = Average
Retrieval Time

Bold values indicate the highest performance for
each metric.

Metric RC Sem RSC (Proposed)
BBC News
Answer Relevancy 45.89 43.89 41.97
Answer Faithfulness 38.51 35.18 42.55
Contextual Recall 43 45.5 46.33
Contextual Precision 47.02 44.82 48.98
Contextual Relevancy  11.40  8.78 11.56
Total Score 1 185.83 178.17 191.39
Avg Retv Time(s) | 0.721  0.799 0.716
NewsMatrix-71
Answer Relevancy 4792 4781 47.08
Answer Faithfulness 4396 43.93 40.11
Contextual Recall 46.33  46.5 45.67
Contextual Precision 48.5  47.26 48.83
Contextual Relevancy  13.94  14.71 19.83
Total Score T 200.65 200.21 201.52
Avg Retv Time(s) | 0.72 0.71 0.71
SQuAD
Answer Relevancy 4728 46.67 48.59
Answer Faithfulness 4498 43.71 46.5
Contextual Recall 50 49 50
Contextual Precision 47.09 47.99 47.99
Contextual Relevancy 17.7  20.09 20.12
Total Score 207.05 207.46 213.2
Avg Retv Time(s) | 0.97 0.97 0.96
QuAC
Answer Relevancy 454  44.69 43.67
Answer Faithfulness 41.675 44.25 43.63
Contextual Recall 47.08 45.33 48.58
Contextual Precision 43.67 45.16 45.76
Contextual Relevancy 12.47  9.64 9.38
Total Score 1 190.29 189.07 191.01
Avg Retv Time(s) | 0.62 0.65 0.64

stronger indicator of chunking effectiveness.

Overall, among the chunking techniques, RSC
achieves the highest Total Score across all datasets.
The recursive breakdown mechanism in RSC en-
sures that large chunks do not negatively impact
RAG tasks. Additionally, Contextual Relevancy
improves significantly with RSC, as evident in
datasets like BBC News (11.56) and NewsMatrix-

71 (19.83), demonstrating its capability to maintain
semantic coherence.

These findings suggest the impact of the type
and structure of data on the chunking techniques.
However, in comparison, RSC is the most effective
among the baseline chunking techniques.

[ ] —— Recursive Character Text Splitter
210 —— Proposed (Recursive Semantic Chunking)
PY —— Semantic Chunking
205
@,
200 S,
[
=
9 1905
(1]
9! ®
190 v~
185 *
180
®
SQUAD QuAC NewsMatrix-71 BBC-News
Dataset

Figure 2: Performance Comparison of Chunking Tech-
niques Across Datasets

6.2 Analysis

To evaluate the impact of Recursive Seman-
tic Chunking on retrieval efficiency and chunk
coherence, we conduct performance analysis
across multiple datasets. The evaluation uses
datasets of varying structures such as structured
question-answering datasets (SQuAD, QuAC) and
unstructured large-scale datasets (BBC News,
NewsMatrix-71). It ensures that our findings are
generalizable across multiple RAG tasks.

Study on Propositional Segmentation

We conduct a study to analyze the effect of propo-
sitional segmentation incorporated in our proposed
chunking technique. The hypothesis is that propo-
sitional segmentation enhances Contextual Rele-
vancy.

To validate our hypothesis, we experiment by
including propositional segmentation in RSC and
compare the results. For this case study, we employ
the BBC News dataset. The comparison of results
is presented in Table 4

The results confirm that propositional segmen-
tation improves Contextual Relevancy (11.56 to
16.09). However, it is to be that improvement
comes at the cost of increased retrieval time (from
0.716s to 0.8183s). In addition, it also has a com-
putational overhead to convert all the sentences
into propositions before they can be passed on for
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Table 4: Comparison of RSC with and without Proposi-
tional Segmentation on BBC News Dataset.

Metric RSC RSC
Without Propositions With Propositions

Answer Relevancy 41.97 42.95
Answer Faithfulness 42.55 39.51

Contextual Recall 46.33 45.14
Contextual Precision 48.98 47.99
Contextual Relevancy 11.56 16.09
Total Score T 191.39 191.68
Avg Retv Time(s) | 0.716 0.8183

chunking. However, it is an interesting area of
study for the future.

Challenges of Agentic Chunking

Although not included as a formal baseline, we
initially explored Agentic Chunking to assess the
viability of LLM-based chunking pipelines. How-
ever, due to its high computational demand, it is
excluded from comparative evaluation. Details
of Agentic Chunking are mentioned in Section 2.
Since the Agentic approach operates at the proposi-
tional level, so for this technique, on average, each
proposition requires 6 to 7 calls to the LLM for
chunk assignment and metadata updates. To start
with, we use this technique on the BBC dataset.
The dataset contained more than 75,000 proposi-
tions, but after 8 hours of processing, only 1,500
propositions were successfully assigned to chunks.
Due to the high computational overhead, we dis-
continued the experimentation. Hence, high com-
putational cost makes this approach impractical for
large-scale datasets.

Despite its inefficiencies, Agentic Chunking
may become viable in the future as LLMs improve
in speed and affordability. However, for now, RSC
provides a far more efficient and scalable solution.

The results and analysis confirm that RSC en-
hances retrieval efficiency and semantic coherence.
Additionally, our findings highlight a new direction
with propositional segmentation, which improves
Contextual Relevancy. Overall, RSC consistently
outperforms both Recursive Character Text Splitter
and Semantic Chunking in Total Score and Contex-
tual Relevancy, making it the preferred approach
for RAG generation pipeline. Moving forward, fu-
ture work will focus on optimizing propositional
segmentation to reduce retrieval time, ensuring that
the benefits of enhanced semantic coherence do not
come at the expense of computational overhead.

7 Conclusion

Our work offers a targeted contribution to opti-
mizing the chunking process in RAG-based sys-
tems. The proposed technique, Recursive Semantic
Chunking maintains a balance between retrieval
efficiency and context relevancy. The novelty of
RSC lies in the recursive nature of the proposed
method dynamically adjusting the chunk size and
going beyond the traditional approaches. The re-
sults, evaluated against the traditional techniques
i.e. recursive character split, semantic and agen-
tic techniques highlight the superiority of the pro-
posed methodology. Additionally, its robustness
is validated across structured question-answering
datasets and unstructured large-scale datasets, with
evaluation based on relevancy, retrieval quality, and
time efficiency. The evaluation is based on rele-
vancy, retrieval quality and time efficiency. These
findings have significant implications for RAG-
based applications such as medical, finance, legal,
and education etc. Looking forward, the retrieval
time will be further optimized with respect to Re-
cursive Semantic Chunking on varied datasets.

Limitation

The scope of this study is limited to textual data,
and it can be widened to more complex document
types which may include tables, codes etc. In addi-
tion, Recursive Semantic which depends on propo-
sitions provides a new direction. However, its high
computational cost, despite yielding improved re-
sults, highlights the need for a more efficient and
scalable approach.
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Abstract

Aspect-Based Sentiment Analysis (ABSA) re-
mains largely unexplored in low-resource lan-
guages like Urdu due to the absence of large-
scale, publicly available, and domain-diverse
annotated corpora. Additional challenges like
the scarcity of lexical resources, unstructured
Urdu websites, and linguistic complexities, fur-
ther hinder corpus development. These lim-
itations create a critical bottleneck that pre-
vents robust Urdu ABSA systems from being
deployed in practical scenarios. We address
this gap by proposing a weakly supervised
framework that automates corpus annotation
(~10K Budget tweets) leveraging seed-based
pattern matching with dynamic window analy-
sis. Through a comparative analysis of Large
Language Models (LLMs), and human anno-
tations on expertly curated datasets, we fur-
ther demonstrate the inherent complexity of
Urdu ABSA. Suboptimal results from a con-
ventional LSTM model that achieved a mean
performance of 0.52 precision, 0.49 recall, and
0.50 F1 score across various ABSA tasks val-
idate this challenge. In short, this work estab-
lishes a scalable and cost-effective annotation
framework that advances ABSA research for
Urdu and similar low-resource languages.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is a fine-
grained Opinion Mining (OM) domain that evalu-
ates sentiment toward specific attributes of entities,
offering valuable insights for customer feedback
analysis, product benchmarking, and market trend
monitoring (Zhang et al., 2022). ABSA comprises
four key elements: aspect category (c), aspect term
(a), opinion term (o), and sentiment polarity (p).
Figure 1 illustrates these elements through an anno-
tation example of a customer’s review. Examining
single or multiple combinations of these elements
to understand opinions in diverse scenarios gives
rise to various ABSA tasks (Magsood, 2023). For
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Figure 1: Aspect Based Sentiment Analysis

instance, the extraction of aspect categories consti-
tutes the Aspect Category Detection (ACD) task,
whereas sentiment analysis over these categories
leads to the Aspect Category Sentiment (ACS) task.
Similarly, evaluating sentiment toward explicit as-
pect terms constitutes the Aspect Sentiment Classi-
fication (ASC) task.

A fundamental prerequisite for any OM system
is an accessible benchmark corpus of annotated
reviews (Zhou et al., 2019; Hu et al., 2021). This
requirement becomes particularly acute for low-
resource languages like Urdu, where despite sub-
stantial social media presence, available ABSA
datasets remain inadequate characterized by non-
public availability, absence of benchmark stan-
dards, sparse annotations, and limited-domain cov-
erage (Rani and Anwar, 2020; Ahmad and Wan,
2021). While manual annotation of ABSA ele-
ments becomes prohibitively expensive for large-
scale datasets containing multi-aspect sentences in
various domains. Additional challenges include the
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scarcity of lexical resources, prevalent use of non-
standard encoding in Urdu web content, unique
linguistic features, and informal language on social
media (Khattak et al., 2021). These constraints
collectively impede corpus development, creating
significant barriers in building robust Urdu ABSA
models and complicating the adaptation of existing
methodologies (Zhou et al., 2019; Liu et al., 2020;
Zhang et al., 2022).

Besides, leveraging weak supervision has
demonstrated potential in the realm of social
media mining (Magsood, 2023; Tekumalla and
Banda, 2023). Although weak labels may not
achieve manual-level precision but they enable
rapid dataset expansion and robust model train-
ing especially when combined with a subset of
high-quality manual labels (Zhang et al., 2022).
Despite the success of Large Language Models
(LLMs) like GPT-4.0 and DeepSeek in capturing
linguistic patterns, these approaches have not been
widely explored in existing literature, particularly
for dataset annotations in Urdu. While, applying
English-centric models to translated Urdu tweets
exacerbates the issue, yielding poor results due to
translation quality limitations (Zhang et al., 2021).

This work pioneers Urdu ABSA by introducing
a weakly supervised annotation framework that au-
tomates labeling of all core ABSA elements for
the ‘Budget’ domain, overcoming dataset scarcity
without costly manual effort. Our systematic eval-
uation reveals LLMs (GPT-4, DeepSeek) limited
transferability to Urdu, while experiments demon-
strate our method’s superiority over them. To our
knowledge, this constitutes the first comprehensive
study of such techniques for Urdu. Baseline LSTM
experiments further highlight Urdu-specific ABSA
challenges, underscoring the need for advanced ar-
chitectures. Our key contribution addresses Urdu’s
critical resource gap through scalable dataset cre-
ation methodology that eliminates manual anno-
tation bottleneck to facilitate fine-grained Urdu
ABSA.

2 Related Work

This section discusses the existing Urdu datasets
developed for opinion mining tasks, analyzing their
annotation methodologies, and domain applicabil-

ity.

2.1 Opinion Mining Datasets in Urdu

Researchers contributed to the field of Urdu senti-
ment analysis by presenting annotated corpora, but
most focus on document- or sentence-level senti-
ment classification rather than fine-grained ABSA.
Early efforts, such as those by Rani and Anwar
(2020), introduced a manually annotated corpus
of 10,000 tweets from sports domains (cricket and
football), labeling aspects, categories, and polari-
ties. However, the absence of opinion term annota-
tions limits applications of ABSA tasks. Similarly,
ul Haq et al. (2020) presented a corpus of 8,760
political tweets with polarity and four category la-
bels but did not annotate aspect terms or opinion
expressions, restricting deeper sentiment analysis.
Moreover, their dataset is not publicly available
and labeled manually, hindering scalability and re-
producibility.

To address the scarcity of ABSA-specific re-
sources, Ahmad and Wan (2021) translated the
SemEval-2014 ABSA dataset (2951 restaurant and
4721 laptop reviews) into Urdu, providing aspect
terms, polarities, and category labels. While this
enables some ABSA experimentation, the reliance
on machine translation raises concerns about lin-
guistic accuracy and cultural relevance. Other
datasets, such as Ghafoor et al. (2023) introduced
SentiUrdulM dataset (1 million tweets), leverag-
ing large-scale emoticon-based labeling but remain
unsuitable for ABSA due to their document-level
granularity. Similarly, Amjad et al. (2021) curated
a dataset of 3,564 tweets for threat detection, but
its binary classification focus makes it irrelevant
for aspect-level sentiment tasks. Beyond Twitter
data, researchers have collected Urdu reviews from
blogs and news platforms. (Mukhtar and Khan,
2018; Mukhtar et al., 2017; Khan et al., 2021;
Rehman and Bajwa, 2016) developed datasets with
manually annotated sentiment labels at document-
level and suffer from limited domain coverage (e.g.,
movies, electronics). Additionally, many of these
datasets are not publicly available, and their anno-
tation methodologies are often poorly documented,
reducing their utility for ABSA research.

In short, existing Urdu sentiment analysis
datasets lack fine-grained annotations, suffer from
small sizes and narrow domains, and use incon-
sistent annotation methodologies. Most rely on
either biased translations or labor-intensive man-
ual labeling, which impedes scalability. Further-
more, existing resources neglect weakly-supervised
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approaches, while available multilingual models
and LLMs remain under-evaluated. Overall, these
limitations underscore the dire need for compre-
hensively annotated Urdu ABSA datasets in sev-
eral domains by combining both manual and au-
tomated annotation methods. This hybrid method-
ology ensures both high-quality annotations and
efficient scalability, ultimately enabling advanced
techniques for progress of ABSA in Urdu language.

3 Dataset

We collected approximately 13,000 tweets related
to Pakistan’s budgetary domain between May and
July 2020 using Twitter’s Standard APIL. Due to API
constraints, tweets were gathered in daily batches,
limited to a 7-day historical window, with a max-
imum of 100 tweets per query and 180 requests
per 15-minute interval. The search queries focused
on trending budgetary discourse in Pakistan, incor-
porating hashtags such as #Budget2020’, *#Pak-
istanEconomy’, and *#Commerce’. The dataset
provides a comprehensive representation of public
sentiments and economic debates surrounding Pak-
istan’s budget during the unprecedented COVID-19
lockdown period.

3.1 Pre-processing

The collected tweets underwent an extensive three-
stage pre-processing pipeline to ensure data quality
and linguistic consistency.

Tweet Level: We performed Unicode normaliza-
tion to address Arabic script variations, removed
punctuations, and social media artifacts (emojis,
hashtags, URLs, mentions) using regular expres-
sions. We eliminated duplicate entries and trun-
cated excessive consecutive repetitions (e.g., reduc-
ing "...22 20" (selected budget selected bud-
get...) to "&£ f\fizl,.u") (selected budget) to main-
tain textual conciseness.

Token Level: After conducting a systematic
comparison of tokenization approaches Qi et al.
(2020), Ali (2020), Vasiliev (2020) and space-based
methods, we preferred UrduHack for its superior
performance on informal Urdu text. Use of in-
formal language and noise on social media limit
the effectiveness of language-specific tokenizers,
introducing abnormal tokens. We analyzed incor-
rect tokens to identify the inherent patterns of their
abnormalities and normalized them accordingly.
This includes splitting merged stopwords (e.g.,
S Ly =S ), reducing character repetitions in

misspelled words (e.g., Oluuns |, —3luS), and
eliminating word repetitions (e.g., ¢ & & b — ).

Character Level: The final processing step
validated individual characters against Urdu Uni-
code ranges and removed residual artifacts (e.g.,
cleaning "***" and normalizing "§"02_ ;2c002u" to
S A,

This hierarchical pre-processing approach, doc-
umented comprehensively in Zoya et al. (2023),
resulted in dataset of approximately 10,000 tweets.

3.2 Dataset Variants

We created three versions of the dataset, introduc-
ing variation in the annotation process, as outlined
below:

Bronze Standard Dataset (BS): This dataset
is a raw output without manual curation from our
weakly supervised annotation system.

Silver Standard Dataset (SS): This represents
a refined version of the *BS’ dataset. The corpus
underwent a meticulous validation process combin-
ing automated consistency checks with expert hu-
man verification to ensure higher annotation qual-
ity. This approach filtered out erroneous labels
generated by our weakly supervised methods and
resulted in an 13% reduction of the original dataset
labels.

Gold Standard Dataset (GS): The GS dataset
was constructed through rigorous manual annota-
tion by three native Urdu speakers with expertise in
NLP. From the SS corpus, we selected a represen-
tative subset of 3000 tweets for fine-grained anno-
tations. Three annotators followed strict annotation
guidelines of Pontiki et al. (2014) standards, with
only labels receiving consensus from at least two
annotators being retained. The GS corpus serves as
a reliable ground truth for evaluating model perfor-
mance on Urdu ABSA tasks, while also revealing
additional linguistic patterns not captured in the
initial SS annotations. The statistics about these
datasets have been described in Table 1.

Dataset Tweets Asp_Cat. Asp_Terms Opinion_Terms
Bronze 9693 14 5179 5456
Silver 8949 14 4247 5364
Gold 3000 14 1126 1410

Table 1: Statistics of Datasets with Distinct Values

4 Methodology

We present our methodology for annotating Urdu
datasets for ABSA. First, we highlight the limita-
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tions of LLMs for this task, followed by our custom
framework designed to address these challenges.

4.1 LLMs Limitations for Dataset Annotation

The utilization of the GPT 4.0 and DeepSeek mod-
els for dataset annotation in Urdu revealed several
challenges. Firstly, the model encountered chal-
lenges in thoroughly capturing all aspects and sen-
timent words present in tweets. Secondly, an inher-
ent instability in labeling responses was observed,
as the model exhibited varying results for the same
query when executed multiple times. Thirdly, the
issue of selecting irrelevant words alongside sen-
timent and aspect terms introduced a lack of uni-
formity, necessitating post-processing efforts for
pruning. Fourthly, the model tended to repeat sen-
timent terms within aspect terms or vice versa.
Fifthly, breaking down tweets into shorter chunks
did not significantly improve their response quality.
Sixthly, the model demonstrated a tendency to ig-
nore rare words and occasionally overlook crucial
aspects. In conclusion, LLMs exhibited limitations
in fully grasping the context. A representative case
of tweet annotation generated by the LLM in Fig-
ure 4 (see appendix).

4.2 Dataset Annotation Framework for ABSA
in Urdu

Our dataset labeling approach encompasses two
fundamental phases: ACD and the annotation of
Aspect-Opinion-Sentiment (AOS) triplet. Initially,
ACD was completed through topic modeling and
clustering techniques. Subsequently, the identifica-
tion of triplet components within tweets was car-
ried out through methods like pattern mining and a
bidirectional window-based labeling strategy.

4.2.1 Aspect Category Detection

We used pre-trained sentence transformers Reimers
and Gurevych (2019) to generate embeddings and
applied both Top2Vec (Angelov, 2020) and tra-
ditional clustering algorithms (Ackermann et al.,
2014; Frey and Dueck, 2007) to identify nuanced
subtopics. Our analysis revealed optimal clus-
ter counts (39) based on cosine similarity metrics
and cluster validation techniques (Kaoungku et al.,
2018; Yuan and Yang, 2019). Notably, Top2Vec ini-
tially predicted 54 topics, but these were ultimately
clustered within the same range.

To reduce cluster overlap, we performed graph-
based analysis, where edges represented cosine
similarities between embeddings. Edge weights

were set to 0 for similarities below a threshold of
0.7, ensuring that only highly similar tweets were
grouped together while preserving distinct terms
across clusters. However, some topics (clusters)
exhibited irrelevance like synonymous terms or
polysemy of less substantial words. Such problem-
atic topics featuring highly coherent terms could
form distinct clusters, leading to favourable scores
in standard metrics. Conversely, some significant
topics might be overlooked due to lower coherence
or similarity scores between words, particularly if
such topics cover diverse perspectives not covered
well in the coherence metrics reference corpus. To
address these limitations, we incorporated a man-
ual curation step to refine and consolidate topics.
From the generated clusters, we selected distinct
categories (Table 3 in section 8) and further sub-
divided broad topics by analyzing top topic words
(Table 4 in section 8). For example, Social Wel-
fare’ was divided into *Education’, ’ Agriculture’,
"Health’, and ’Social Programs’.

4.2.2 Aspect-Opinion-Sentiment Triplet
Annotation

This triplet annotation process is divided into four
fundamental stages, which include word classifica-
tion, seed enrichment, tweet labeling, and evalua-
tion, as discussed below:

Words Classification: The selected topics con-
sist of a mixture of terms related to aspect and
opinion that require further classification. To sys-
tematically categorize these terms (seed terms), we
adopted a straightforward yet effective approach:
nouns were designated as aspect, while adjectives
were treated as indicators of opinion. The selec-
tion process for seed terms emphasized domain
relevance, frequency, and diversity, ensuring the
chosen nouns were explicit and closely related to
core topics. To enhance relevance, we excluded
irrelevant or ambiguous terms, rare occurrences,
verbs, adverbs, and any expressions introducing
sentiment bias or lacking clear aspect association.
This rigorous selection process resulted in a refined
lexicon of aspect and opinion seeds, with the com-
plete workflow detailed in Figure 2.

Seeds Enrichment: Given the limited coverage
of initial seed words for annotating all tweets
within each subtopic, we employed multiple strate-
gies to expand and refine our seed term collection.
As illustrated in Figure 3, our enrichment approach
incorporated sentiment lexicons, active learning,
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sentiment lexicon [42] to identify polar expressions
within our tweet corpus. This process yielded 1,322
positive and 1,395 negative terms that overlapped
between the lexicon and our budget-related tweets.
However, the lexicon exhibited notable limitations:
its coverage of domain-specific fiscal terminology
was incomplete, and its formal vocabulary often
mismatched the informal expressions and morpho-
logical variations prevalent in social media. Simi-
lar challenges emerged when we attempted to use
translated lexicons intended for sentiment analysis
in the English language.

Multiform words: We took into account vari-
ous word forms in our seed terms, including sin-
gular and plural forms, such as "c.$" (price) in
singular and “_se$" or "0 68" (prices) in plural.
Urdu’s rich inflectional system, where words vary
by tense, gender, number, and loanword integration,
renders conventional lemmatization and stemming
ineffective. For instance, contextual variants (e.g.,
verb conjugations or gendered forms) lack reliable
root-mapping rules. Moreover, Urdu has a diverse
vocabulary with numerous loanwords and context-
dependent variations that further complicate such
tasks. Consequently, we excluded this step to pre-
serve semantic precision given the absence of ro-
bust Urdu-specific linguistic tools.

Active Learning:. We utilized an active learn-
ing approach and created a preliminary dataset con-
sisting of hundred short tweets (5-10 words each).
Subsequently, we conducted manual labelling with
a specific focus on AOS triplets. This step pro-
vided valuable insights for various types of words
beyond the seed words and their contextual relation-
ships within the domain. Additionally, we noted
the prevalence of multi-word phrases as opposed to
single words for seed terms. We quantified phrase
frequencies and their sentiment associations, itera-
tively expanding the seed lexicon to include high-
impact multi-word terms. This comprehensive ex-
amination not only enriched our seed inventory
but also our understanding of the multifaceted lan-
guage used in the dataset.

Pattern Mining: Based upon the manually
labeled data from active learning, we identified
recurring patterns that encompassed consecutive
domain-specific words and Urdu case markers (§
(ka), S (kay), §(ki), 5'(ko), _ss(mein), (par),
«_(se), 2—(nay)). We developed a hybrid pattern
mining approach combining rule-based and statisti-
cal techniques. This integrated approach revealed
important multi-word expressions that served as
more precise indicators of aspects and opinions
compared to conventional single-word seeds. We
first analyzed recurring syntactic structures involv-
ing domain-specific terms paired with Urdu case
markers. Matching these patterns against tweets is
depicted in Algorithm 1 and a comprehensive list
of extracted patterns is provided in Table 5 (Section
8). We then implemented a sequential pattern min-
ing algorithm with minimum support thresholds to
discover statistically significant co-occurring word
sequences, prioritizing longer phrases that captured
more nuanced meanings. The extracted patterns
enabled us to automatically identify aspect-opinion
pairs in new tweets. For instance, in the structure
"[X] ka [Y]", X was classified as the aspect term
and Y as the opinion term. Sentiment polarity was
then assigned to these newly discovered opinion
terms through contextual analysis, leading to the
formation of AOS triplets (detailed in Appendix
Algorithm 2).
Embeddings: We utilized the pre-trained embed-
ding model FastText to identify the top 10 words
that exhibited the highest cosine similarity with our
seed terms, particularly focusing on expanding our
set of opinion words. Additionally, we considered
terms returned by the Top2vec model that exhib-
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Algorithm 1 Patterns Matching Algorithm

1: procedure EXTRACTPATTERNS(budget_tweets)
pattern < (\w+\sK'\s&.2)
extracted_patterns <— EmptyList()
for each tweet in budget_tweets["tweet_text"] do

2
3
4
5:
6: matches <— FindAllMatches(pattern, tweet)
7: for each match in matches do

8 pattern_text <— match.group(1)

9
0

10: AddPatternToExtractionList(extracted_pat-
terns, pattern_text)

11: end for

12: end for

13: return extracted_patterns

14: end procedure

ited similarity with seed terms by surpassing the
0.5 threshold in similarity score. We selectively
kept words that fell within the categories of aspect
or opinion-related terms. Any words failing to meet
these criteria were excluded from further consider-
ation. Exemplary instances have been presented in
the Table 6 (Appendix).

Labeling Tweets: Initially, we annotated using
mined patterns with analogous structures, resulting
in the creation of AOS triplets while accounting
for sentiment reversals caused by negators (e.g., no,
not). Annotated example can be seen in Figure 5 (in
Appendix), proved effective for contiguous word
patterns but limited for non-adjacent term relation-
ships. To address this limitation, we introduced
a window-based annotation strategy consisting of
two main steps: seeds cartesian product with senti-
ment polarity assignment and seeds co-occurrence
analysis.

Seeds Cartesian Product with Sentiment Po-
larity Assignment: In this phase, we performed
a Cartesian product operation between the aspect
seeds and sentiment seeds to form their pairs (a,
0). Despite that sentiment polarity was already pre-
defined in lexicons for numerous opinion words,
several pairs underwent cross-validation due to
domain-specific variations or informal language
use. As the sentiment of the same opinion word
may vary based on its association with different
aspect words. For example, the term increment is
considered positive when associated with salary
but negative when linked with poverty.

Window-based Strategy: We implemented a
dynamic window-based approach to detect co-
occurring aspect-opinion (a, o) pairs within tweets.
The tweet segmentation process entailed setting
a token threshold of 15 words from both the be-

ginning and end. Subsequently, we systematically
examined the co-existence of (a, o) pairs within
these segments. Meanwhile, we addressed nega-
tors when they co-occurred within a segment in the
context of the (a, o) pair, and selectively inverted
the sentiment for that particular (a, o) pair occur-
rence in the given tweet. Likewise, we advanced
to the next segment by adjusting the window after
every five words. Eventually, we reconstructed the
original tweet and gathered all unique AOS triplets
from every segment of a tweet. This comprehen-
sive methodology allowed us to discern nuanced
sentiment variations associated with (a, o) pairs
within the dynamic context of tweets. The entire
process is summarized below and labeled tweet
result is presented in Figure 6 (Appendix).

segment_length = 15

window_size = 5
S; = Segment(t_i, segment_length)
C;,; = CoExistence(.S; j, (a, 0))

N; ; = NegatorHandling(C; ;, negators)
S; = NextSegment(.S;, window_size)
R; = Reconstruct(.S;, N;)

AOS; = GatherTriplets(R;)

Evaluation: To assess label quality, we em-
ployed dual evaluation approaches as given below:
Automated Evaluation: We compared our
methodology’s outputs against both LLMs anno-
tations and Gold-standard (GS) labels on identi-
cal tweet samples. Our analysis revealed that our
proposed approach mostly outperformed LLMs in
AOS triplet accuracy.

Human Evaluation: We developed a weakly-
supervised validation protocol addressing multi-
aspect tweets where window-based strategies occa-
sionally produced spurious aspect-opinion associ-
ations in case of multiple aspects. The validation
process involved: (1) categorizing tweets by pres-
ence of aspect complexity (single/multiple), (2)
cross-referencing novel multi-aspect pairs with pre-
labeled single-aspect examples and pattern-mined
results, and (3) manual verification of unmatched
pairs on a sample representing at least 2% of the
tweets containing each such pair. If more than 50%
of the labels were deemed accurate in the chosen
sample, we retained them as final labels.
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Finally, to ensure label consistency across
datasets, we performed comparative analysis by
identifying tweet overlaps between all dataset vari-
ants and discrepancies were compared against the
GS labels. Then the F1 measure and accuracy were
computed (Table 2) as defined in (Pontiki et al.,
2014) and expressed below:

2.P-R
F1="""7
P+R

where precision (P) and recall (R) were determined
as:

ey

1SS N GS
p— 220l 2
1S5 N GS
R=122110 3
IGSNSS
Ace. = 120100 4
“ T 185UGS] @

Label | Acc. | P R F1

Aspect | 69.9 | 91.7 | 74.6 | 82.3
Opinion | 71.4 | 89 | 80.9 | 84.8
Polarity | 73.6 | 88.5 | 74.4 | 80.8
Category | 86.3 | 93.1 | 89.8 | 91.4

Table 2: Scores of evaluation measures on annotated
dataset labels.

5 Experimental Set-Up

5.1 Tasks

We performed experiments on three key ABSA
tasks, as given below:

Aspect Category Detection (ACD): Identifying
the categories for each tweet from a set of prede-
fined aspect categories.

Aspect Category Sentiment (ACS): Sentiment
polarity classification (positive/negative/neutral) to-
ward detected aspect categories.

Aspect Sentiment Classification (ASC): Senti-
ment polarity analysis targeting explicit aspect
terms.

5.2 Model

We implemented LSTM as our baseline model
initialized with 300-dimensional FastText embed-
dings. The model was trained with a batch size of
32, hidden state dimension of 300, and the adam op-
timizer (learning rate = 0.001) for 100 epochs. To
ensure robustness, we ran five training repetitions

using categorical cross-entropy loss. Hyperparam-
eters were tuned via Grid search, testing epochs
[10, 50, 100, 300], embedding dimensions [100,
300], learning rates [0.001, 0.01, 0.0001], batch
sizes [16, 32, 64, 128], and dropout rates [0.2, 0.3,
0.5], with early stopping (patience = 5) and strat-
ified 5-fold cross-validation. The hyperparameter
grid values are chosen based on optimal LSTM per-
formance observed in sentiment analysis-related
studies (Kumar et al., 2021; Naqvi et al., 2021).

5.3 Dataset Distribution

We implemented a rigorous train-test split (Table 7
in Section 8) on the SS dataset to maintain propor-
tional representation of both aspect categories and
sentiment polarities. The partitioning preserved
identical distributions of positive, negative, and
neutral sentiment labels across training (75%) and
testing (25%) subsets for each aspect category. The
equal percentage distribution provides a balanced
representation for classifier training and fosters
robust model development by minimizing biases
through learning from comparable instances across
various aspect categories.

5.4 Results Analysis

The LSTM baseline results reveal a consistent per-
formance trend across datasets (results in Appendix
8). For ACD, the GS achieves strong performance
at 100 epochs, while SS and BS show gradual im-
provements, peaking at 0.596 and 0.562 accuracy,
respectively. This aligns with the high F1 scores
(91.4 for Category, 82.3 for Aspect) in Table 2, con-
firming that our annotation framework produces
usable labels. In ACS, the GS reached near-ceiling
macro-F1 (0.877) by 50 epochs, whereas SS and
BS plateau at ~0.490.59 F1. This reflects the chal-
lenge of sentiment polarity prediction. The SS
consistent lead over BS dataset justifies our refine-
ment step, though both trail Gold due to inherent
noise. For ASC, all datasets struggle (F1 < 0.35),
mirroring the difficulty of fine-grained sentiment
analysis. The marginal gains with more epochs sug-
gest the LSTMs limited capacity to resolve ambigu-
ities. Traditional LSTM is viable for coarse tasks
(ACD) but face limitations in sentiment-related
tasks. However, the LSTM model was intention-
ally selected as a lower-bound baseline to assess
the discriminative strength of annotation quality
and task difficulty, without the confounding influ-
ence of pretraining or large-scale parameters in
advanced architectures. Despite balanced splits,

152



macro-F1 scores highlight challenges from label
imbalance, multi-label learning, and Urdu’s mor-
phological complexity. Progressive performance
gains from (Bronze— Silver—Gold) highlight an-
notation quality as a stronger factor than model
complexity.

6 Discussion

The proposed weakly-supervised framework
demonstrates significant advancements in Urdu
ABSA by overcoming the critical bottleneck of
manual annotation in dataset creation. The multidi-
mensional annotation requirements, encompassing
all ABSA elements, render fully manual annota-
tion impractical for scalable model development
due to its time-consuming nature and human la-
bor requirements. Our framework automates this
process, starting with a seed-based approach for
high-precision in noisy, code-mixed Urdu social
media text and mitigate limitation of domain cov-
erage through iterative enrichment using lexicon
expansion, syntactic patterns, and contextual em-
bedding strategies. This dynamic refinement trans-
forms static seeds into a robust, domain-adaptive
seeds inventory suited for low-resource and infor-
mal text settings. Thus, the core strength lies in
the novel integration of context-aware seed expan-
sion and morphologically-sensitive preprocessing,
which collectively reduce annotation costs.
Furthermore, the method demonstrates robust
capability in handling Urdu’s linguistic complexi-
ties through its hybrid approach combining n-gram
pattern matching with dynamic window labeling.
This approach effectively identifies multi-word as-
pects, such as "C.s S J; %" (petrol price), and
successfully resolves polarity inversion cases by
incorporating negation scope detection. Addition-
ally, an automated validation pipeline was intro-
duced that minimize human effort to maintain label
quality. The limited variation with Gold-Standard
dataset underscores the significance of high-quality
annotations from our proposed method. Compar-
ative analysis with prevailing LLMs reveals the
proposed framework achieves substantially bet-
ter performance for annotation task in Urdu, es-
pecially for aspect and opinion terms extraction
tasks. These advancements establish a practical
foundation for Urdu ABSA where fully supervised
approaches remain infeasible due to resource con-
straints. Regarding classification results, the perfor-
mance of conventional models like LSTM across

ABSA tasks and datasets are emphasized. Despite
extended training, the baseline LSTM’s limited im-
provement reveals its inability to capture Urdu’s
linguistic nuances in ABSA tasks. There were in-
stances where additional epochs do not yield signif-
icant gains, suggesting a potential saturation point
in the models learning curve. Although our eval-
uation is constrained to the budget domain due to
the availability of gold-standard annotations, frame-
work’s core components such as linguistic and syn-
tactic pattern rules, clustering mechanism, and seed
augmentation are domain-independent and easily
adaptable to other domains.

6.1 Limitations

The proposed dataset annotation methodology en-
deavors to address many challenges, yet certain
issues persist. Sentiments occurring beyond seg-
ment window lengths are occasionally overlooked,
although this is mitigated by considering segments
from multiple positions within tweets. The ex-
clusion of tweets lacking seed terms may inad-
vertently dismiss relevant sentiment expressions.
Overlapping labels or spurious associations may
emerge occasionally when a sentiment word ap-
plies in multiple perspectives or simultaneously
relates to multiple aspects within a tweet. In cases
like sarcasm, where the same word is employed in
diverse contexts (positively or neutrally), priority
is determined based on its frequency of occurrence.
Polysemous terms labeling (e.g., for budget pass
vs. approach) risks errors, highlighting needs for
context-aware rules.

7 Conclusion

Our research introduced a novel weak supervision
methodology for creating a benchmark dataset in
Urdu ABSA. We shed light on the inherent chal-
lenges in ABSA for under-resourced languages and
made a significant contribution to addressing the re-
source scarcity in Urdu ABSA. Our dataset encom-
passes tweets within the budget domain and was an-
notated at four distinct levels: aspect, opinion, sen-
timent, and category levels. The consistently high
F1 scores across all label annotations demonstrate
the proposed method’s effectiveness in producing
high-quality. Through a detailed comparative anal-
ysis involving LLMs and human annotations based
on expertly curated datasets, we illuminated the
intricate nature of our proposed dataset. Empirical
evaluations utilizing LSTM model showed limita-
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tions of conventional methods for various ABSA
subtasks and laid the groundwork for future ad-
vancements in ABSA techniques for Urdu.

8 Future Work

We aim to generalize our methodology to expand
ABSA dataset annotations into other domains. Our
focus will extend to advanced deep learning tech-
niques, moving beyond basic LSTM models for
diverse ABSA tasks in Urdu. We plan to con-
duct fine-tuning pre-trained models on an extended
dataset across various domains for a comprehensive
understanding of Urdu sentiment expressions. In
summary, our future trajectory involves leveraging
advanced techniques, annotating diverse datasets,
and refining models for domain-specific applica-
tions, ultimately enhancing Urdu ABSA tools.
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Appendix

Prompi: Extract all aspect expressions with their corresponding opinion expressions and sentiment
polarity (positive/ negative/neutral) in given fext:

& Aspect-Opinion-Sentiment Analysis

Text:

"y | i B3 e J Sy ygl o B2 gy allssd 1 jeb itlne Sle”

Extracted Pairs:

Sentiment Polarity (wJLi>

Aspect Term Opinion Term (Jl

P (sd) P (dh) i)
e Lrilse S Sl (Economic Strong Negative (L, iil

( s 52 51 rullgus (Bankrupt) 9 Negative (b
condition) wdio)
way | i B> (Facin
$jlw S (Budget preparation) = ) T [ J Negative (i)
difficulty) N

Figure 4: DeepSeek response to Annotate Tweet

S# Label Top 15 Words
(‘LSJ.,—L;L“ e s il 82 "JJ)K'S rj‘{‘; rr:l": lﬁ;ﬁ‘ Sl el by OlSmls ’)g)'}) i)
1 | Social ’Health’, ’Employment’, ’Virus’, "Farmer’, Epidemic’, *Agriculture’, ’Reforms’, *’Education’,
Welfare "Learning’, "Doctor’, ’Artists’, "Health’, *Students’, *Department’
RNV S35 ealas!l oLl 54w A3 ke el 012 5Vl )5 5w Y ,K:.,, WSl lae
2 Economy | ’Economic’, *Financial’, ’Expensive’, *Policy’, ’Interest’, ’Annual’, *Crisis’, ’Losses’,
’Economy’, *Dollar’, "Interest’, ’Economics’, ’Economic’, *Development’, *Treasury’
Lis asa S 0l sl OVl Bl s s B2 Ldn ,Olegs 5, s, Oledbl S Mais
3 Media "Details’, *Information’, *Press’, "Report’, ’Knowledge’, "Media’, *Journalist’, "News’,
’Protest’, ’speech’,’Report’, ’ Announcement’, "Public’, ’Institutions’, ’Governments’
C,ML:« L;)L.', ,C,ML:« ,MyK ,‘}-@“ ,d‘x\ ,C,MLL) ,gﬂﬁ ’(5”\7"“ ,c-b)_} ’dt‘“{\f: ’J:A.Jj,‘ ,O\JKD 1) ,‘_;b_, ’L;)KJ“”
4 Politics ’Government’, ’Federal’, *President’, *Rulers’, Opposition’, *Pakistan’, "Ministers’, Political’,
’Country’, ’State’, ’Assembly’, *Cabinet’, "Politics’, *Party’
ads e g St sl et b SBT3l
5 | Religion | °Iglam’, "Muhammad’, *Islamic’, "Muslim’, *Singer’, * Allah’, *Sharif’, *Scholar’,
’Scholars’, ’Schools’, *Religion’, Budget’, ’Government’, ’Interest’, ’Medina’
C\é; Sl bl b ol ol N ’u"‘i‘)ﬁi NG SRR ,tl’n ’JL, ,G\)’a\ s J0 fas- s, "~
6 Defense ’Bomb’, *Pension’, *Threat’, "War’, *Forces’, "Pakistan’, ’Defense’, ’Enemy’,
*Terror’, "Police’, *Technology’, ’Reforms’, ’Institutions’, ’Consideration’, *Global’
N gl d}:“".‘.nf, rL;L.‘.sj r"—-j:’l"" ’LS} ru‘uj ,u}b} ’Ej" g Ak, ’2.,—-}) rQ\’\J’" ,i’é JORE 2 s ’wjﬁ ’sz“":‘“
7 Project ’Subsidy’, "Project’, 'Projects’, ’Specialized’, ’Fund’, ’Expenditure’, ’'Rupees’, ’Money’,

’Expense’, "Loans’, *Corruption’, "Free’, ’Society’, 'Development’, *Policy’

Table 3: Selected subtopics derived from predicted clusters and topic modeling
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Aspect .
S# P Attributes
Category
1| Cdaes Sgw (U2 3 (gt c@é,é&.‘f Olal 2l (28 (g
Economy budget, general, expenditure, inflation, price, revenue, debt, interest
2 | @b, C,a,ia ¢l w8 Qe LV.E;\JJJ (e 2t
Federal budget, general, prime minister, president, cabinet, assembly, government
3 ﬁlﬁ '}c b bl ce sl (Jje 2
Education budget, general, institutions, teacher, student
4 | cs2 by edlg 55 (b (s S5 Jje 22
Health budget, general, doctor, health, hospital, care, epidemic
5 | cely)y X (o OLS ccely)y e 22
Agriculture budget, general, Agriculture, farmer, crop, locust
ARIPRELT 0150 Lo S Nl pl5 5 Gl 155, G5 WS S ity (Olodal e o2
6 | Social Welfare budget, general, reforms, Benazir income tax, development program,
Program reform program, income tax support program
7 C\é; Ao Lid (e 2
Defense budget, general, military, protection, attack
8 | cade Slelae pdde cslle ¢ ppoge condn (dj (22
Religion budget, general, religion, believers, scholars, holy places
9 | cela_ gl sl ¢ b 2K sl cé)L’ (Jje s
Political Party budget, general, party, policy, conference, opposition
10 | @sls u&éj (A L Jye L
Leadership budget, general, leader, chairman, corruption
Al oy (Ko (014252 Olaa b cadkiv OlY) o (Jj (22
11 L;L. o budget, general, provinces (Punjab, Sindh, Balochistan, Pakhunkhawan)
Provincial govt., cabinet, assembly
12| ol o, ol GBTgy bl (e 22
Public Dynamics budget, general, rich, poor, employment, salary, pension
13 | Ll b)) €Sy ¢ o i b (B2 (e (22
Media budget, general, journalist, media, news, channel, report, artist
14 | Jye £
Miscellaneous budget
Table 4: Conclusive sub-categories of budget topic
Patterns i & (A S s “"h‘ ' il
(Budget of) (Friend’s Budget) (Enemy’s Budget) (Decrease in)
L€ L Ly oLl Cg s caldl .;wol.?\;;\ S .
R . (Human-Friendly Budget) (Inhumane Budget) (Reduction in Government Expenditure)
(Budget of Aristocrats) o . . = B .
ek Al St Cupa plye 2 s oll, & e Sl
Phrases (Budget '(;f Destfuc tion) (Public-Friendly Budget) (Incomes—Enf:my Budget) | (Reduction in Educational Expenditure)
C2K o s CE S ol P NP & e sl C2
(Budget of Loss) (Educa[ion_Friend]y Budge[) (Health»Enemy Budget) (Reduction in Budget Loss)
22K Ll St Cpd o B B S s
(Mafia’s Budget) (Poor-Friendly Budget) (Labor-Enemy Budget) (Reduction in Fee)
Ct ey gl Cl Cays Ol g Cg s & e o ik
(Education-Friendly Budget) (Youth-Friendly Budget) (Muslim-Enemy Budget) (Reduction in in Petroleum Prices)
Total 240 20 39 59

Table 5: Phrases extracted by the Pattern Mining
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Algorithm 2 : MineSequentialPatterns

1: procedure MINESEQUENTIALPATTERNS(budget_tweets)
2 stopwords <— LoadStopwords() > Load stopwords
3 ps < PrefixSpanAlgo(data) > Initialize pattern mining algorithm
4 min_support < 20 > Set minimum support
5: > Mine frequent patterns with minimum support
6 result <— ps.Frequent(min_support)
7 > Filter patterns
8 filtered_patterns <— FILTERPATTERNS(result, stopwords)
9: > Display and store patterns
10 obt_patterns <— DISPLAYANDSTOREPATTERNS(filtered_patterns)
11: return obt_patterns > Return the obtained patterns
12: end procedure
1: function FILTERPATTERNS(result, stopwords)
2: filtered_patterns <— [] > List for filtered patterns
3: for each (support, pattern) in result do
4: > Check if pattern is valid
5: if [SPATTERN VALID(pattern, stopwords) then
6: > Keep valid pattern to list
7: filtered_patterns.append((pattern, support))
8: end if
9: end for
10: return filtered_patterns > Return the filtered patterns
11: end function
1: function ISPATTERN VALID(pattern, stopwords)
2 > Check length of pattern
3: if Length(pattern) > 1 then
4: > Count stopwords in pattern
5: stopwords_count <— COUNTSTOPWORDS(pattern, stopwords)
6: if stopwords_count < 1 then
7: is_subpattern < False > Initialize flag for subpattern
8: for each (_, other_pattern) in result do
9: > Check if pattern is subset of other pattern
10: if pattern ## other_pattern & ISSUBSET(pattern, other_pattern) then
11: is_subpattern <— True
12: break > Exit loop if subpattern is found
13: end if
14: end for
15: if not is_subpattern then
16: return True
17: else
18: return False
19: end if
20: else
21: return False
22: end if
23: else
24: return False
25: end if

26: end function
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Seeds Top 10 similar words

G2 | el R s el a0 8 2 L Risky’
(Loan) ’Loan’, ’Loans’, ’Debts’, ’Cabinet’, ’Debtor’, ’Interest’,
’Indebted’, ’Owing’, *Debt’, "Risky’

Y YOI 48 SO S O S S OIS PE SO 4 PR SR

(Govt.) ’Governments’, ’Governmental’, ’Nawaz Govt.”, ’Governments’, ’Bashar Govt.’,
’In Govt.’, ’In Govt.’, ’Are in Govt.’, ’Is in Govt.”, ’Ministry’
= 'w,1006',',1005' ,'gj\57gﬁf74' ) o,104" o ,105 ,'qﬁli)i' ,‘3,4{' ,&4}.1:3 ,‘&;})' ,',10084'

(Budget) ’4800 Billion’, ’Rodney’, ’Shadow Budget’, ’Cabinet’, ’Relief’, *50 Billion’,

’40 Billion’, ’47 Billion 75 Million’, *500 Billion’, *600 Billion’

o |l ioned tsd i e et Sl |l | oS o
(Inflation) | 'Hyperinflation’, ’And Inflation’, And Inflation’, *Then Inflation’, ’Inflation’,
’Inflation’, "Hosharba’, *Prices’, ’Prices’, ’And Poverty’

ol & a2 1T Ol el B el el B el S el g | )

(Salary) ’Salary’, ’Salaries’, ’From Salary’, ’Salary’, *Salaries’, ’Salaries’,

’Salary’, ’Salaries’, *Salary’, ’Salaries’

Table 6: Most Similar words by FastText model

"Urdu Tweet": " Gediy 5503 5 shaidi S il aal (A1 3 (g glalds osaidl Gimy Gedia cy
J}H‘U&HMJHP J_g.Ei.nU ail:_..;"

"Translated Tweet": "Anti-Poor budget disapproved. The disapproved.
PTIMF budget disapproved. Anti-labor budget disapproved. Anti-public budget disapproved.
"entries": [ {

{ "Aspect”: "=y (budget),

"Aspect”: "< (budget), " Opinion": "u-m-\ & " (anti-public),
"Opinion": "u-m-\ | s=" (anti-public), "Category": "< budget],
"Category": "< (budget), "Polarity": "Negatwe

"Polarity": "Negative" 1

I3 {

{ "Aspect": " Cw s " (government),
"Aspect”: "< (budget), " Opinion": " (Jaas "(rigged),

"Oplnlc:-n"' "J}hnb(dlsapprove)", "Category": "Gl " (Federal),
"Category': "&a" (budget), "Polarity": "Negative"
"Polarity": "Negative" 1

I3 {

{ "Aspect": " Cw s " (government),
"Aspect”: "< (budget), " Opinion": " skil" (disapprove),
"Opinion": " Qy-u-ud _s93" (anti-labor), "Category": "33 " (Federal),
"Category': "&a" (budget), "Polarity": "Negative"

"Polarity": "Negative" }

I3 ]

Figure 5: Pattern Mining: Aspect-Sentiment Labels Division Based on Identified Phrases-Similar color shows single
pattern
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"Urdu Tweet": " A S Gsnpd S Sl S 1K o3 Ol e alie | 3s A €S 5 Syly S iyl al A
DA 5 el 5 bl el sl Sia e

Translated Tweet: The puppet Prime Minister Imran Niazi's budget on the instructions of IMF is
a declaration of waragainst the poor of Pakistan. Curse such a change, Comrade Iftikhar.

"entries": [

{

"aspect”: " € o3 Ol e alie | 35" (Budget of Prime Minister Imran Niazi),

"sentiment": XA S ,su " (againstthe poor),

"category": " (Budget),
"polarity": "Negative"
b
{
"aspect”: "y € g3 Gl e plie |y 35" (Budget of Prime Minister Imran Niazi),
"sentiment": "< {Curse),
"category": "Ca" (Budget),
"polarity": "Negative"
}
]
Figure 6: Unique Labels obtained by bidirectional Window-based Strategy
Aspect Categories Train Test
Positive Negative Neutral Total P(%) Positive Negative Neutral Total P(%)
Education 42 78 20 139 10% 9 12 2 47 10%
Agriculture 5 10 3 18 1% 1 1 0 6 1%
Federal 246 459 114 820 57% 52 68 14 274 57%
Media 2 4 1 7 0% 1 2 0 3 1%
Economy 13 23 6 42 3% 3 3 1 14 3%
Provincial 18 34 8 60 4% 4 5 1 21 4%
Political party 11 21 5 37 3% 2 3 1 13 3%
Health 38 70 18 125 9% 8 10 2 42 9%
Project 4 7 2 13 1% 1 1 0 5 1%
Social Welfare Programs 20 36 9 65 5% 4 5 1 22 5%
Leadership 9 16 4 29 2% 2 3 0 10 2%
Defense 19 35 9 63 4% 4 5 1 21 4%
Religion 2 4 1 8 1% 1 1 0 3 1%
Miscellaneous 2 3 1 4 0% 0 1 0 2 0%
Total 429 800 201 1430 100% 91 120 24 483 100%
Percentage(%) 30% 56% 14% 75% - 29% 59% 12% 25% -

Table 7: Polarity-Specific Aspects Categories Distribution in Train-Test Split
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Task Epoch Gold-Standard Bronze-Standard | Silver-Standard

Acc. | macro-F1 | Acc. | macro-F1 | Acc. | macro-F1
Aspect Category 10 0.660 0.681 0.437 0.417 0.449 0.439
Detection (ACD) 50 0.711 0.722 0.505 0.526 0.580 0.526
100 0.732 0.733 0.528 0.506 0.596 0.545
300 0.717 0.723 0.562 0.525 0.590 0.549
10 0.669 0.802 0.531 0.456 0.524 0.536
Aspect Category 50 0.687 0.877 0.566 0.487 0.531 0.590
Sentiment (ACS) 100 0.706 0.877 0.571 0.493 0.556 0.571
300 0.706 0.877 0.575 0.494 0.524 0.590
Aspect Sentiment 10 0.575 0.296 0.561 0.243 0.582 0.258
Classification 50 0.577 0.304 0.577 0.304 0.583 0.281
(ASC) 100 0.578 0.318 0.581 0.313 0.589 0.302
300 0.583 0.321 0.583 0.318 0.591 0.318

Table 8: LSTM Average Results for five-runs on ABSA Tasks
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Abstract

Continual learning remains a challenge across
various natural language processing (NLP)
tasks, as models updated with new training data
often risk catastrophic forgetting of previously
acquired knowledge. We introduce a discrete
key-value bottleneck (DKVB) for encoder-only
language models, enabling efficient continual
learning through localized updates. Inspired
by a discrete key-value bottleneck in vision,
we consider new and NLP-specific challenges.
We compare different bottleneck architectures
for NLP and introduce a new, task-independent
initialization technique for the discrete keys.
We evaluate our DKVB for NLP in four con-
tinual learning scenarios and show that it al-
leviates catastrophic forgetting. Our experi-
ments demonstrate that the proposed approach
achieves competitive performance compared to
popular continual learning methods while incur-
ring lower computational costs. Furthermore,
we show that DKVB remains effective even
in challenging single-head continual learning
scenarios where no task ID is provided.!

1 Introduction

Large language models are receiving increasing
attention from the public due to their impressive
zero-shot and few-shot abilities in a wide range of
tasks (Brown et al., 2020). Yet, for easier tasks
where there is enough training data for supervised
fine-tuning, e. g., text classification, using smaller
encoder-only language models is still preferable
due to their often superior performance and lower
computational requirements (Yuan et al., 2023; Yu
et al., 2023; Qorib et al., 2024; Li et al., 2025).
Compared to large general-purpose models, fine-
tuned networks lack general portability to new
conditions and have limited generalization beyond
their training distribution (Luo et al., 2023). For
many target applications in natural language pro-
cessing (NLP), training and test data can have a

!Source code available at: github.com/drndr/dkvb_nlp

Fabian Karl

Ulm University

Ansgar Scherp
Ulm University

fabian.karl @uni-ulm.de ansgar.scherp@uni-ulm.de

difference in the underlying distribution (Hupkes
et al., 2023), and in the case of continual learning,
the input distribution can change over time (Wang
et al., 2024). To mitigate these challenges, differ-
ent changes to model architectures and training
regimens have been proposed (Biesialska et al.,
2020; Ke and Liu, 2022; Wang et al., 2024). While
many of these methods improve continual learn-
ing, they often require task-specific modules and
computationally demanding extensions to the base
model (Ke et al., 2021; Buzzega et al., 2020; Mo-
meni et al., 2025).

In this work, we propose an adaptation of the
Discrete Key-Value Bottleneck (DKVB) architec-
ture (Trauble et al., 2023) to the field of NLP. Dis-
cretization techniques can improve generalization
in neural networks without introducing new task-
specific parameters, regularization functions, or
memory buffers (Liu et al., 2021, 2023; Trauble
et al., 2023). More specifically, the DKVB architec-
ture has shown strong performance in low-resource,
class incremental learning scenarios for computer
vision. This is due to local, context-dependent
updates on learnable discrete key-value pairs that
prevent catastrophic forgetting in the models.

To address the challenges of adapting DKVB
to NLP, we begin by analyzing how different vari-
ants of the discrete key-value bottleneck interact
with pre-trained encoder-only language models in
standard learning scenarios. In doing so, we tackle
key challenges such as the high dimensionality of
text representations, the choice of pooling strate-
gies, and the design of an effective decoder head.
Subsequently, we take the best-performing DKVB
configurations and evaluate their performance in
continual learning scenarios. Finally, we show that
given a dictionary of discrete keys optimized on a
general-purpose corpus, DKVB achieves similar
effectiveness compared to leading continual learn-
ing approaches while requiring less training time.
The main contributions of our paper are:
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* We analyze different optimization techniques
and architectures of a DKVB in NLP using
BERT, RoBERTa, and DistillBERT.

* We compare our DKVB for NLP to baseline
methods in continual learning scenarios, i. e.,
domain incremental, class incremental, and
task-type incremental learning.

* We demonstrate that the DKVB alleviates
catastrophic forgetting and is more efficient
than most continual learning methods.

2 Related Work

2.1 Continual Learning

Sequentially learning multiple tasks remains a sig-
nificant challenge in the field of deep learning.
Standard neural networks trained on a new task
tend to forget most of the knowledge tied to tasks
they have previously learned, leading to the phe-
nomenon commonly labeled as catastrophic for-
getting (McCloskey and Cohen, 1989; Van de Ven
and Tolias, 2019). On the other hand, leveraging
knowledge learned from old tasks to improve per-
formance on new tasks, known as knowledge trans-
fer, is a highly sought-after capability in NLP (Ke
and Liu, 2022). Since re-training a model from
scratch is often expensive, various methods for con-
tinual learning have been proposed to handle these
challenges. Existing approaches in continual learn-
ing can be categorized into five distinct families:
regularization-based, optimization-based, replay-
based, architecture-based, and instruction-based,
with the latter being specific to large language mod-
els (Biesialska et al., 2020; Ke and Liu, 2022; Wang
etal., 2024; Shi et al., 2024). A detailed description
of these approaches can be found in Appendix A.

2.2 Discrete Representation Learning

Employing discrete variables in deep learning is
challenging, as indicated by the prevalence of con-
tinuous latent variables in most research methods,
even when the underlying modality inherently in-
volves discrete elements (e.g., text data). Van
Den Oord et al. (2017) were the first to show the
viability of large-scale discrete neural representa-
tion learning through the use of vector quantization.
Their Vector Quantized-Variational Autoencoder
(VQ-VAE) model utilizes a discrete latent space
and thus avoids the “posterior collapse” problem
common in many VAE models when the decoder
ignores the latent space of the encoder and relies

solely on the autoregressive properties of the input
samples (Goyal et al., 2017). Subsequently, their
methodologies have been widely employed in var-
ious applications, including audio (Borsos et al.,
2023), videos (Yan et al., 2021), and anomaly de-
tection (Marimont and Tarroni, 2021). More re-
cently, discretization has been utilized for machine
unlearning (Shah et al., 2023) and to improve disen-
tangled representation learning (Noh et al., 2023)
and robustness (Liu et al., 2021, 2023; Triduble
et al., 2023). Discretization methods with bottle-
necks have been shown to improve generalization
in reinforcement learning (Liu et al., 2021, 2023),
visual reasoning (Liu et al., 2023), and vision-based
continual learning (Trduble et al., 2023).

3 A Discrete Key-Value Bottleneck for
Encoder-only Language Models

The DKVB architecture as described in Trduble
et al. (2023) is fundamentally model and task-
agnostic, but so far has been only studied in the
field of computer vision. The use of DKVB in lan-
guage models poses new challenges, including the
(i) sequential nature of the input data, the (ii) high
dimensionality of the encoded representations, and
the (iii) difference in commonly used pooling tech-
niques between vision and language models. Be-
low, we describe DKVB’s base architecture, the key
initialization process, and our proposed architec-
tural adaptations and pre-experiments for finding
the most suitable architectural variant.

3.1 Base Architecture and Key Initialization

The DKVB architecture follows three steps: encode
input, process via a discrete bottleneck, and decode.
Figure 1 show an overview of the architecture.

o
IN

Encode Segment Match Closest

Mean Pool or
Input Keys and Fetch Value > Concetan:

Figure 1: The base Discrete Key-Value Bottleneck.
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In the first step, an encoder model projects input
vector x into a lower dimensional vector z € R™=.
This is followed by pooling (if needed) and parti-
tioning z into C' separate heads of dimension dj,.
Each head possesses a unique discrete key-value
codebook of size K, where the keys are initialized
before training and are mapped to randomly ini-
tialized trainable value codes. In the second step,
each head is first quantized by fetching the closest
key (based on L2 distance) from the corresponding
head’s codebook. Subsequently, the corresponding
value code of dimension d,,,;,,. is retrieved for each
head. Note the size of the bottleneck with respect
to trainable parameter scales with the number of
heads and codebook size. In the last step, the values
are passed to a decoder to produce the final output.
The decoder can be either parametric (with train-
able weights) or non-parametric (by applying the
softmax function to the mean pooled value codes).

The discrete keys of the bottleneck are initial-
ized before training. Due to the 1-1 mapping be-
tween the keys and value codes, there is no gradient
back-propagation between the values and keys. To
ensure that the keys are broadly distributed in the
feature space and have good representational power
for given downstream tasks, they are first randomly
initialized and then modified by using the encoded
input samples as the basis for applying exponential
moving average (EMA) updates (Van Den Oord
et al., 2017). Alternatively, the keys can be initial-
ized on input data different from the one in training,
albeit with some decrease in downstream task per-
formance (Trduble et al., 2023). After initialization,
the keys are frozen and are not influenced by later
changes in the input distribution shifts.

3.2 Architecture Adaptations for NLP

We introduce an adaptation of the DKVB architec-
ture for the specific challenges in natural language
processing. As argued above, these challenges are
related to the high dimensionality of the data, pool-
ing techniques, and decoding. We conduct pre-
experiments with different architectures to find the
most suitable bottleneck architecture variants and
consider the following NLP-specific challenges:

Dimensionality While natural language has an
inherently discrete symbolic representation, text
embeddings encode these discrete symbols into a
continuous latent space (Muennighoff et al., 2023).
This results in a high dimensional output z € R?*",
where ¢ is the token dimension (i.e., the number

of tokens in the fixed length input sequence) and
h is the hidden dimension. Previous experiments
with DKVB were conducted on low dimensional
image data that has been pooled before forwarding
output z € R” to the bottleneck (Triuble et al.,
2023). To address this difference, we design model
variants with pooling applied before or after the
bottleneck. Similarly, we experiment with creating
the heads by partitioning hidden dimension A and
token dimension ¢ separately.

Pooling Type Most modern convolutional net-
works in computer vision utilize max pooling as
pooling operation (He et al., 2015). Max pooling
retains the most important features in images but
is less commonly used in NLP due to the loss of
sequential information. The two most commonly
used pooling techniques in NLP are mean pool-
ing and pooling based on a special token (CLS).
In mean pooling, the contextualized token embed-
dings are averaged out, while the CLS pooling uti-
lizes a special token optimized to represent the
whole sequence (Devlin et al., 2018). We include
both variants in our architecture search.

Decoding Decoders with adjustable weights of-
fer more expressiveness than non-parametric de-
coders but are more sensitive to changes in the
training conditions (Ostapenko et al., 2022). For
simple tasks where linear mapping is sufficient, us-
ing just a softmax function as a non-parametric
decoder might be appropriate. However, for many
NLP tasks, it is crucial to capture complex pat-
terns in the encoded representations (Wang et al.,
2018). We include both approaches in our exper-
iments. For the parametric decoder, we concate-
nate the value codes and feed them into a simple
linear layer preceded by a dropout layer. In the
non-parametric version, we apply mean pooling
on the values and apply a softmax function on the
pooled representation.

3.3 Analyzing DKVB Variants for NLP

We analyze different variants of the DKVB archi-
tecture in encoder-only language models. For the
pre-experiments, we use two popular text classifi-
cation datasets. The R8 dataset, which is a subset
of the R21578 news dataset (Lewis, 1997) with 8
classes, and the Twenty Newsgroup (20ng) (Lang,
1995) which contains documents categorized into
20 newsgroups. We apply the standard train-test
split for both datasets, as used in (Galke and Scherp,
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Table 1: Accuracy and standard deviation (in subscript) of the different DKVB architecture variants on the R8 and

20ng datasets in a non-continual, standard learning setup, averaged over 5 runs.

Dataset: RS Dataset: 20ng
Decoder Seementation Pooling Before Pooling After Pooling Before Pooling After
g CLS Mean CLS Mean ‘ CLS Mean CLS Mean
Parametric hidden 69.8707 91.54779 88.55705 96.04p26 | 19.26540 53.62;00 48.35069 T7.830.89
token - - 88.061,00 95.20121 - - 44-650.86 69.330.95
. hidden 66.610'29 92.180‘36 88.530}22 94.240‘39 21.091,31 55.930‘75 52.030}24 73.510.20
Non Parametric .\ on - - 64.39020  73.70920 - - 10.95015  15.26,5
BERT (frozen) w/o DKVB 95.94¢,18 7211949
BERT w/o DKVB 98.000,34 84.060.53

2022). We first use a frozen BERT model as the pre-
trained encoder for DKVB and perform a hyper-
parameter search on the number of epochs, batch
size, and learning rates.

We report the performance of the best configura-
tions. For learning rates, we found it is beneficial
to have a high learning rate for the values layer.
Additionally, in the case of the parametric decoder
setup, a lower learning rate is applied to the decoder.
We use a key dimension of 12 and the number of
key-value pairs of 4, 096 for the discrete bottleneck
parameters as in (Trduble et al., 2023). Key ini-
tialization is done before training for three epochs
with an EMA decay of 0.2. Alongside the differ-
ent variants for the DKVB, we list the results of a
fine-tuned BERT and a frozen BERT with a fine-
tuned linear classifier on top for reference. This we
consider as the upper bounds.

The test performance of the different architec-
ture configurations can be seen in Table 1. The
gap between the best-performing DKVB architec-
ture and the fully fine-tuned BERT model is 2%
on R8 and 7% on 20ng. The frozen BERT model
achieved the same performance on R8 but attained
5% lower accuracy on 20ng compared to the best-
performing DKVB variant. Overall the best per-
formance was obtained by using the parametric
decoder, applying mean pooling after the bottle-
neck, and using the hidden dimension as the base of
the segmentation. To investigate the performance
on other encoder-only language models, we ex-
perimented with RoBERTa (Liu et al., 2019) and
DistilBERT (Sanh et al., 2019), and found the op-
timal bottleneck architecture to be the same (see
Appendix C).

4 Continual Learning Settings

The goal of continual learning (CL) is to sequen-
tially learn a function f : X — Y} for all tasks

k in sequence K. Each task k has a training set
My, = {(xi,yi,d;, t)}ﬁﬁ‘l, where z; € X is a
training sample, y; C Y} is a set of class labels,
d; € Dy, is the corresponding domain set (e. g.,
legal documents, movie reviews, news articles) of
the sample, ¢ € T} is the task-type of the training
set (e. g., sentiment analysis, topical classification,
natural language inference etc), and Ny, is the num-
ber of samples in task k. To evaluate the DKVB
architecture, we define three different incremental
learning setups based on these components.

In the Domain Incremental Learning (DIL)
setting, the task type and class labels are assumed
to be consistent across all tasks. The domain of the
input changes between tasks, with each task having
a set of non-overlapping domains Dy N Dy =
(. A common DIL task-type in NLP is sentiment
classification, where all tasks have the same class
labels (i. e., positive, negative, neutral), but include
samples from different source domains.

In the Class Incremental Learning (CIL) set-
ting, each task has a set of non-overlapping classes
Y: N Yy = (. During testing, any previously
learned class may be presented. CIL is gener-
ally considered the most challenging incremen-
tal learning scenario (Ke and Liu, 2022; Trau-
ble et al., 2023). Apart from catastrophic forget-
ting and knowledge transfer, this setting includes
the added complication of inter-task class separa-
tion (Kim et al., 2022). Inter-task class separation
requires learning decision boundaries between the
new task’s classes and the classes from previous
tasks without access to data from those previous
tasks.

The main challenge in the Task-type Incremen-
tal Learning (TIL) setting lies in the varying task-
types. While it is possible that the tasks also have
non-overlapping input domains and class labels in
these settings, what differentiates TIL from other
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incremental learning scenarios are the disjoint task-
types in each task t; # tgs. This task-type is not
identical to the type of objective function used in
training (i. e., classification loss or regression loss);
rather, it defines the downstream task of the model,
such as topical classification, sentiment analysis,
or measuring semantic similarity. The scenario
of using one model to learn different task-types
has also been heavily researched in the field of
multi-task learning (Crawshaw, 2020). The domi-
nant approach in TIL is using a multi-head config-
uration with a separate head (or output layer) for
each task. Since this decreases the probability of
catastrophic forgetting, the main challenge in TIL
is bi-directional knowledge transfer (Ke and Liu,
2022).

S Experimental Setup

In our continual learning experiments, we compare
the performance of DKVB to other CL methods
in the three settings described above, namely TIL,
DIL, and CIL. In addition, we adapt the challenging
single-head CIL setup from Trauble et al. (Trduble
et al., 2023) to topical text classification. We take
the best-performing bottleneck architectures from
the pre-experiments and apply the same bottleneck
parameters and hyperparameters. We use accuracy
as the primary evaluation metric in all our exper-
iments and present the average performance and
standard deviation over five runs. These runs in-
volve random initialization and randomized task
sequence order. Additionally, we report the average
per epoch runtime of each method. Details about
the implementation, hyperparameters, and bottle-
neck parameters can be found in the Appendix B.

Datasets For the main experiments, we use three
datasets, two of which have also been used in Ke
et al. (2021). We use the Document Sentiment
Classification (DSC) dataset in the DIL setting. It
consists of 10 subsets of product reviews with a
positive or negative sentiment label. Each subset
constitutes a separate task with 4, 000 training, 500
validation, and 500 test samples. Since the tasks
are similar and only differ in the product domain,
this dataset is used to evaluate knowledge trans-
fer. In the CIL setup, we use the earlier described
20ng dataset (Lang, 1995). Similarly to Ke et al.
(2021), we create a sequence of 10 tasks consisting
of two classes each. This setup is mainly used to
test the models’ abilities to overcome catastrophic
forgetting. For the TIL setup, we create a sequence

of tasks by combining four tasks from the GLUE
benchmark (Wang et al., 2018). This dataset, which
we call 4GLUE, includes four different task-types:
The RTE dataset is used for testing natural lan-
guage inference, the MRPC is used for measuring
semantic textual similarity, the SST-2 is a popular
dataset for sentiment analysis, and the QQP dataset
which is used for natural language inference and
question answering.

For the single-head CIL experiments, we use
two different versions of the R21578 news dataset
(Lewis, 1997), R8 (includes 8 classes) and R52
(with 52 classes). Due to the R21578 dataset’s
highly skewed class frequency distribution, we sim-
ulate a low-resource training scenario and include
only 100 samples from each class in both datasets.
On R8, we divide the dataset into 8 increments,
with one class for each increment. On R52, we cre-
ate 26 increments, each with two random classes.

Procedure We follow the CL evaluation proce-
dure of De Lange et al. (2021). A model is trained
sequentially on all tasks and is evaluated by aver-
aging the test performance of each task recorded
after the final training increment. This results in
each task in the sequence being a binary classifi-
cation problem. In the multi-head configurations
(for CIL and TIL), we use a separate decoder for
each task and provide the task ID during training
and evaluation. To further investigate the continual
learning capabilities of the DKVB, we implement
the single-head CIL setup of Triuble et al. (2023).
Compared to the multi-head CIL task, this setup
is considered to be more challenging and lacks
explicit task boundaries. For its evaluation, the
models are tested on the whole test data after each
increment, including previously unseen classes.

Baselines We use the best-performing methods
reported in Ke et al. (2021), selecting one from each
CL approach (cf. Section 2.1). From regularization-
based methods, we choose EWC (Serra et al.,
2018), acommon baseline with strong performance
in many CL studies. DER++ (Buzzega et al., 2020)
belongs to the replay-based methods and uses dis-
tilled knowledge from past experiences to guide the
incremental training process. OWM (Zeng et al.,
2019) is an optimization-based approach that con-
strains the gradient updates to a direction orthogo-
nal to the input space of previously trained tasks.
Lastly, CTR (Ke et al., 2021) is an architecture-
based approach that utilizes capsule networks to
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Table 2: Average Accuracy and Macro F1 scores of the tasks in the three continual learning scenarios, using the
average and standard deviation (in subscript) of 5 runs with randomized sequence orders.

CL Method Model DIL (DSC) CIL 20NG) TIL (4GLUE)
Acc F1 Acc F1 Acc F1
NCL BERT 88.500.63 87.830.64 53.950.49 38.9453 62.12¢.58 58.299.60
NCL BERT (frozen) 87.422‘23 86.582‘/7 96.351,0} 96.311‘22 71.900,1/ 69.100‘12
NCL Adapter-BERT 88.71220 88.10224 65.61934 58.62;763 68.74¢.30 63.860.53
DER++ BERT (frozen) 84‘301‘54 82.851.94 59.689,23 47‘6213,74 70.643,27 68.683,89
EWC BERT (fI’OZel’l) 86.214_89 85.53498 96.800_20 96.80020 66.549_74 58.261434
OWM BERT (frozen) 86.062463 85.282,65 88.80(),28 88. 160,30 67.542,]} 61.902,57
CTR Adapter-BERT | 88.73035 87.980.37 95.530.14 95.52016 T2.T1lo10 66.420.78
DKVB-NP Incremental BERT (frozen) 80.99,.07 79.58;.9; 59.67;.59 54.58; 66 58.122.89 50.14;.90
DKVB-NP Oracle BERT (frozen) | 83.93;;; 81.98,7 97.0602 95.84095 69.65034 68.92)3s
DKVB-NP Generic BERT (frozen) 82.12020 80.970.00 96.30007 96.270.10 68.790.51 65.370.03
DKVB—P Incremental BERT (frozen) 74‘094,88 68.015,]() 57.812,()() 52.892,77 58.773,23 51021.81
DKVB-P Oracle BERT (frozen) 81.18p.61 80.470.52 95.220.44 95.090.25 58.657.43 51.81;53
DKVB-P Generic BERT (frozen) 71‘71143() 57.75(),95 92.76(),;@8 92.73(),89 61.40(),57 54.76(),42

prevent catastrophic forgetting and facilitate knowl-
edge transfer. We also include three baselines with-
out any additional forgetting or knowledge transfer
handling, noted as naive continual learning (NCL).

For DKVB we take the best-performing architec-
tures from Section 3.3, and include both the para-
metric (DKVB-P) and non-parametric (DKVB-
NP) variants. We experiment with three different
strategies for key initialization. In the first two
strategies, we use the training data for initializing
the keys: in the incremental setup, the keys are
optimized in a continual fashion before each task
using only the training data of the given increment
(denoted as Incremental), while in the full initial-
ization setup, the keys are initialized once before
training, using the full training input distribution
(denoted as Oracle). In the third setup, we use
a cross-domain corpus different from the training
data to create general-purpose keys (denoted as
Generic). For this, we use a small version of the
English Wikipedia dump?, which is commonly in-
cluded in pre-training datasets. In all three setups,
we use an EMA decay of 0.2. For the Incremen-
tal and Oracle setups, the key initialization is set
to three epochs, while for the Generic we use one
epoch.

All CL methods (except CTR) are applied to a
frozen BERT model and have a single-head con-
figuration without any task-ID information for the
DIL scenario and a multi-head configuration with
task-ID provision on the CIL and TIL scenarios.
CTR is based on an Adapter-BERT (Houlsby et al.,
2019) backbone and requires a multi-head setup

Zhttps://huggingface.co/datasets/wikipedia

and task-ID information for its dynamic architec-
ture in all scenarios. For the single-head CIL ex-
periments, we include the naive baselines and the
replay-based DER++ method. The rest of the CL.
baseline methods either require explicit task bound-
aries for optimal performance (OWM, EWC) or
only work in a multi-head configuration (CTR).

6 Results

Main Experiments The results of the main ex-
periments are shown in Table 2. In the DIL setting
the difference in accuracy between the baseline
methods is low, with CTR having the highest score
of 88.73%. The performance of the DKVB vari-
ants in this scenario is below the baselines. In the
CIL setting, there is a substantial variation between
model performance, with half of the CL methods
achieving over 90% accuracy, while BERT NCL,
DER++, and the incremental DKVB variants have
an accuracy score below 60%. The best result
on the CIL dataset was achieved with the non-
parametric DKVB Oracle (97.06%) followed by
EWC (96.80%) and BERT frozen NCL (96.35%).
In the TIL scenario, the highest accuracy scores
were achieved with BERT frozen NCL (71.90%)
and CTR (72.71%). Within the DKVB variants the
best performance was consistently seen with the
non-parametric Oracle variant, closely followed by
the non-parametric Generic variant. On the CIL
and TIL scenarios both of these methods outper-
formed most of the baselines. Additional mea-
sures of the backward transfer performances can
be found in Appendix Section C.
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Runtime We measure the average epoch run-
times for each model to compare the computa-
tional costs of the different methods. The results
can be found in Table 3. Among the evaluated
methods, DKVB achieves runtime closest to NCL
with a frozen BERT, where training is limited
to optimizing a parametric decoder. While the
regularization-based EWC and the optimization-
based OWM methods also achieve a runtime com-
parable to the NCL frozen BERT model, adding
replay in DER++ and dynamic architecture in CTR
substantially increases runtime. The key initializa-
tion process scales with the number of samples, but
the overall computational cost of DKVB remains
lower than most continual learning methods since
initialization is done once before training and in-
volves just a forward pass. The average runtime of
key initialization is shown in Table 4

Table 3: Per-epoch training runtimes (in seconds), aver-
aged over a single run. Standard deviations are shown
as subscripts.

CL Method Model ‘ DIL (DSC) CIL (20NG) TIL (4GLUE)
NCL BERT 20.63 8.90.0 482.3450.4
NCL BERT (frozen) 4»40.6 1,90_0 105.51442
NCL Adapter-BERT 24134 10400 566.2772.7
DER++ BERT (frozen) 26.20.9 7425 249.7361.2
EWC BERT (frozen) 8,0008 2.30_2 129-0176,6
OWM BERT (frozen) 6.703 2.00.; 108.9148.6
CTR Adapter-BERT 487.104 195.20,; 3011.700
DKVB-NP  BERT (frozen) 4.6706 2.000,0 109.3549.2
DKVB-P BERT (frozen) 4.8807 2.0700 114.38,56.5

Table 4: Per-epoch key initialization runtimes (in sec-
onds) and corresponding sample sizes. Standard devia-
tions are shown as subscripts.

Key Initialization ‘ DIL (DSC) CIL (20NG) TIL (4GLUE)

4706 1.900 111.6;525
Incremental (m=4000)  (n=1600) (n=87 470)
Oracle 46905 19.501 535.22; ¢
(1=40000)  (1=16000)  (n=349881)

Generic 469.0,; 469.02 469.0,;
(n=205328) (n=205328)  (n=205328)

Single-head Class Incremental Learning The
single-head class incremental learning results are
shown in Figure 2. The highest accuracy scores are
81.17% on R8 and 47.78% on R52. Both scores
were achieved with the non-parametric DKVB vari-
ant using the Generic and Oracle key initialization,
respectively. On both datasets, the non-DKVB
models, which included the BERT frozen NCL
and DER++, displayed sharp drops in performance
between increments, indicating the occurrence of

catastrophic forgetting and overfitting on the cur-
rent training increment. DER++ showcased better
performance than the naive baseline but still under-
performed the Oracle and Generic variants, with a
final accuracy score of 16.70% on R8 and 35.75%
on R52. The detailed results with additional mod-
els (BERT NCL, EWC) can be found in Appendix
Section C.
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Figure 2: Progressive test accuracy scores in the single-
head class increment learning setup, averaged over 5
runs with fixed sequence order

7 Discussion

Key Insights Our experiments show that fine-
tuning encoder-only language models with an op-
timal discrete key-value bottleneck architecture
achieves comparable results to partial fine-tuning
in standard learning scenarios, but greatly benefits
CL, both in terms of performance and efficiency.
The best key initialization is obtained by unsuper-
vised access to the full input feature distribution,
but utilizing a general-purpose corpus for key ini-
tialization is also a viable option for NLP tasks.
Below, we discuss these key insights.

Architectural Variants We found that employ-
ing pooling before the bottleneck has a substantial
negative effect on the model performance (see Sec-
tion 3.3). This suggests that in contrast to lower
dimensional vision tasks (Trduble et al., 2023), it
is necessary to retain the full dimensionality of the
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text encodings. Similarly, CLS pooling is inferior
compared to mean pooling across all setups. Seg-
menting on the token dimension only worked in
the case of parametric decoding, indicating that the
DKVB module’s output yields better representa-
tional power if the segmentation happens on the
hidden dimension. An additional linear layer after
the DKVB module, acting as a parametric decoder,
can compensate for encodings with weaker rep-
resentational power. However, a non-parametric
decoder produces comparable results in most con-
figurations.

Continual Learning In the CL experiments re-
ported in Section 5, the non-parametric DKVB
variants achieved comparable results to other CL
methods and maintained runtimes on par with the
NCL frozen BERT variant, but only when using
pre-initialized keys.

When using incremental key initialization, per-
formance was consistently subpar, indicating that
DKVB requires access to a general-purpose corpus
or the full input distribution to achieve competi-
tive performance. While having access to the full
data distribution may be unrealistic in practice, our
experiments show that this is not needed in NLP.
Rather, when initializing the keys using a general-
purpose corpus, we obtain results that are close to
the Oracle setup.

The largest performance drop between the
DKYVB variants and other CL methods was seen
in the DIL setting. This suggests that DKVB’s
strength in preventing catastrophic forgetting
through distinct key-value bindings becomes its
weakness in DIL, as this compartmentalization re-
stricts the model’s ability to transfer knowledge
across different domains. Notably, NCL meth-
ods achieve similar results as the CL methods in
this DIL setup, indicating that pre-trained language
models without a bottleneck are already well-suited
for domain incremental learning.

In the CIL and TIL tasks, only the frozen BERT
NCL variant showcased performance comparable
to that of the CL methods. The strong performance
of frozen BERT in these experiments suggests that
if task-ID is available during testing, a simple multi-
head configuration with a frozen encoder is often
sufficient. Experiments in the single-head CIL
setup have shown to be more challenging. As the
models are tested on the full test set after each in-
crement, ideally, they should exhibit a progressive
increase in accuracy. But when no task-ID is pro-

vided and decoding is done with a single head, most
models overfit and suffer catastrophic forgetting
between increments, with DKVB being the only
model to demonstrate improved CL capability in
this scenario. This suggests that DKVB’s unique ar-
chitecture effectively maintains knowledge across
tasks without needing task-specific heads.

8 Conclusion

The discrete key-value bottleneck offers an efficient
approach to continual learning. It enables context-
dependent updates in the model without explicit
parameter isolation or dynamically expanding the
architecture. Considering the special challenges
of continual learning with text embeddings, we
analyzed twelve architectural variants of the bottle-
neck. The best variants apply mean pooling after
the bottleneck and utilize the hidden dimension
of the encoded input representation to create the
bottleneck heads.

We conducted a comprehensive evaluation
across different continual learning settings in
NLP, i.e., domain-incremental learning, class-
incremental learning, and task-type incremental
learning, and showed that with proper key initial-
ization, the discrete key-value bottleneck offers
consistent improvement in most settings and is
comparable to dedicated continual learning meth-
ods from the literature. Moreover, we showed that
it can be used even in the most challenging single-
head continual learning scenarios when no task-ID
is provided.

9 Limitations

Our study focuses solely on encoder-only language
models. While this raises questions about whether
our results could generalize to other model archi-
tectures, our choice was motivated by their prefer-
ence for supervised fine-tuning scenarios where the
balance between performance and computational
efficiency is crucial. Our experiments were also
limited to fine-tuning for classification-based down-
stream tasks. Consequently, it remains to be inves-
tigated whether our results extend to other NLP
tasks, such as semantic search, entity extraction, or
machine translation.
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Supplementary Materials
A Extended Related Work

Regularization-based methods This family of
methods involves incorporating explicit regulariza-
tion terms to maintain a balance between the old
and new tasks. This is usually done by adding
penalty or regularization to the loss function to
prevent large changes to parameters deemed impor-
tant for old tasks (Wang et al., 2024). A popular
method in this family is Elastic Weight Consider-
ation (EWC), which calculates the importance of
parameters with the Fisher information matrix, and
applies smaller updates to weights deemed critical
for earlier tasks (Kirkpatrick et al., 2017).

Replay-based methods These methods either re-
tain a subset of training examples from previous
tasks in memory such as A-GEM (Chaudhry et al.,
2018), or learn to generate pseudo samples from
previous tasks, like in DGR (Shin et al., 2017).
These samples are then incorporated into the train-
ing regimen of new tasks. While this can allevi-
ate catasthropical forgetting, the size of a memory
buffer is limited, which can potentially affect gen-
eralizability (Wang et al., 2024).

Optimization-based methods Explicitly manip-
ulating the optimization process is another way
to tackle the challenges of continual learning.
Gradient-projection methods ensure that gradient
updates happen exclusively in the orthogonal di-
rection to the gradients of an old tasks, thereby
preventing any impact on weights important for old
tasks (Zeng et al., 2019; Guo et al., 2022). Meta
learning strategies and methods focusing on obtain-
ing flat minima in the loss landscape can be also
utilized in continual learning (Javed and White,
2019; Mirzadeh et al., 2020).

Architecture-based methods Methods in this
family can be generally divided into parameter
isolation and, dynamic architecture approaches, de-
pending on whether the model architecture is fixed
or not (Wang et al., 2024). Models such as Sup-
Sup (Wortsman et al., 2020) and HAT (Serra et al.,
2018) optimize a binary mask to selectively choose
dedicated parameters for each task and fall under
the parameter isolation category. Other methods
dynamically expand the model with new parame-
ters to increase capacity for learning new tasks (Ke
etal., 2021; Hung et al., 2019).

Instruction-based methods This family is
unique to the field of NLP. These methods are
based on task-specific instructions given to encoder-
decoder or decoder only language models when a
new task is encountered. While some methods in
this family show promising knowledge transfer ca-
pabilities (Scialom et al., 2022; Yin et al., 2022;
Razdaibiedina et al., 2023), without explicit fine-
tuning they are mostly limited by the knowledge
acquired in the pre-training phase.

B Extended Experimental Setup

Implementation For all model backbones in our
experiments, we use the BERT-base model from
Huggingface® and use cross-entropy loss as our ob-
jective function. We base our discrete-key-value
bottleneck implementation on the vector-quantize-
pytorch* package. In the pre-experiments, we trun-
cate each input sample to 256 tokens. For the main
continual learning experiments, we rely on the Py-
Continual® framework and reuse their implementa-
tions and hyperparameters on the baseline methods.
To remain comparable to other studies using the
PyContinual framework, we kept the default pre-
processing steps, used a maximum token length
of 128, and applied the default convolutional de-
coder of the baseline models. For the single-head
class incremental learning experiments we use a
fixed randomized sequence order when creating the
increments, and used a token length of 256. The
source code for our experiments alongside the mod-
els can be found at github.com/drndr/dkvb_nlp.

Optimization As part of our pre-experiments,
we also conducted a hyperparameter search and
a sensitivity analysis on the bottleneck parame-
ters. Outside of the selected hyperparameters and
bottleneck parameters, all other configurations re-
mained fixed during the search. Our experiments
use the BERT-base architecture with a hidden size
of 768. For the optimizer, we chose AdamW with
a weight decay of 0.01. The dropout rate for the
parametric decoder was set to 0.1. For the refer-
ence fully fine-tuned BERT numbers we reused
the hyperparameters reported in (Galke and Scherp,
2022), for the frozen BERT variant we relied on the
parametric DKVB variant hyperparameters with
mean pooling. During fine-tuning, we carefully

3https://huggingface.co/bert-base-uncased
*https://github.com/lucidrains/vector-quantize-pytorch
Shttps://github.com/ZixuanKe/PyContinual
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optimized the models on both datasets using grid-
search-based manual tuning. A search space for
the selected hyperparameters was defined, specifi-
cally we chose the batch size from {8, 16, 32}, the
number of epochs from {5, 10}, the learning rate
for the values layer from {le-1, le-2,1e-3}, and
the decoder learning rate from {1e-3, le-4, le-5}.
The best performing (based on the validation loss)
configurations for each architecture variant can be
seen in Table 5. The hyperparameters were reused
for the continual learning main experiments.

In the single-head class incremental learning ex-
periments we conducted an additional manual hy-
perparameter search for the DKVB variants and
found a batch size of 16 with a global learning rate
of 1e — 2 to be the best performing. For EWC we
set the lambda parameter to 5,000. In the DER++
model we used a memory buffer size of 256 and
set the sampling reate in each increment to 16.

B.1 Bottleneck Parameters

In our experiments, we rely on the optimal bottle-
neck parameter analysis of (Triuble et al., 2023).
Additionally, we also conduct a small sensitivity
study for the discrete key dimension and number of
key-value pairs on the R8 dataset. For this, we
use the DKVB-NP model variant from the pre-
experiments and keep everything fixed, changing
only these two bottleneck parameters. For the base
hyperparameters, we reuse the best-performing
configurations.

Key dimension The number of dimensions of
the discrete keys strongly influences the utility of
the bottleneck. This can be explained as follows.
Keys that have too few dimensions increase the
chance of unintended key sharing between inputs
from different distributions, while discrete keys
with too high dimensionality can lead to insufficient
coverage of the embedding space. Similarly to
(Trzuble et al., 2023) we found the optimal key
dimension to be between 8 to 12. The results of
this analysis are depicted in Figure 3.

Number of key-value pairs The number of key-
value pairs determines the size of the discretized
representational space. In accordance with the
analysis of (Trdauble et al., 2023), we found that
increasing the number of key-value pairs leads to
a performance increase. Eventually further incre-
ments no longer yield substantial improvements in
performance. Note that increasing this parameter
also leads to increased model size and increases the

1 2 4 8 12 16 32 64 128 38
Dimensionality of the Discrete Keys,

(a)

8 16 32 64 128 256 512 1024 2048 4096
Number of Key-Value Pairs

(b)

Figure 3: Assessing the sensitivity of bottleneck param-
eters in regards of test accuracy: (a) Dimensionality of
discrete key (b) Number of key-value pairs

computational costs of key initialization as well.
The results of this analysis are depicted in Figure
3.

C Extended Results

Architectural Variants Results obtained using
the RoBERTa (Table 6) and DistilBERT (Table 7)
models demonstrate comparable performance pat-
terns to those observed with BERT. Interestingly,
DistilBERT produced slightly better accuracy on
most architecture variants compared to the other
two models. However the highest performance
was consistently seen with mean pooling after the
bottleneck on all three models. DistilBERT s im-
proved performance can likely be attributed to dif-
ferences in its tokenization and pooling implemen-
tation compared to other models.

Continual Learning Experiments In the field
of continual learning additional metrics are often
used to measure the performance over incremen-
tal learning. Two often used metrics are Forward
Transfer (FWT) and Backward Transfer (BWT)
(Lopez-Paz and Ranzato, 2017). BWT refers to
how learning a new task affects performance on a
previously learned task. It can be positive, when
learning a new task improves performance on the
earlier task, or negative, when it worsens it. Severe
negative backward transfer is often called catas-
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Table 5: Best hyperparameter configuration for each architecture variant based on validation loss

(A) Dataset: R8

(B) Dataset: 20ng

Model Segmentation Pooling #Epoch Batch size Values LR Decoder LR ‘ #Epoch Batch size Values LR Decoder LR
DKVB-P hidden Before CLS 5 32 le-2 le-4 10 16 le-1 le-3
DKVB-P hidden Before Mean 5 32 le-1 le-4 10 16 le-2 le-4
DKVB-P hidden After CLS 10 16 le-2 le-4 5 16 le-2 le-4
DKVB-P hidden After Mean 10 16 le-2 le-3 5 16 le-2 le-3
DKVB-P token After CLS 10 16 le-2 le-3 10 16 le-2 le-3
DKVB-P token After Mean 10 16 le-2 le-3 10 16 le-2 le-3
DKVB-NP hidden Before CLS 5 32 le-1 - 5 32 le-1 -
DKVB-NP  hidden Before Mean 5 32 le-1 - 10 32 le-1 -
DKVB-NP  hidden After CLS 10 16 le-1 - 5 16 le-1 -
DKVB-NP  hidden After Mean 10 32 le-1 - 10 16 le-1 -
DKVB-NP token After CLS 10 32 le-1 - 10 32 le-2 -
DKVB-NP token After Mean 10 32 le-1 - 10 32 le-2 -

Table 6: Accuracy and standard deviation (in subscript) of the different DKVB architecture variants with RoOBERTa
on the R8 and 20ng datasets in a non-continual, standard learning setup, averaged over 5 runs.

Dataset: R8 Dataset: 20ng
Decoder Segmentation Pooling Before Pooling After Pooling Before Pooling After
g CLS Mean CLS Mean | CLS Mean CLS Mean
Parametric hidden 49.48,05 91.360.40 91.730.81 94.25( 51.050.43 56.630.39 52.18;.11 75.080.2;
token - - 90.02;.05 94.050.37 - - 19.86;.03 27.300.92
. hidden 49.45¢.02 92.050.29 74.531.74 93.04¢.20 56.830.35 60.42 35 53.10;7.37 70.330.78
Non Parametric  y o - - 58.7400  66.33074 ‘ - - 9.8% 12514
RoBERTa (frozen) w/o DKVB 94.29¢,;7 69.420.30
RoBERTa w/o DKVB 97.54¢0.51 83.360.30

Table 7: Accuracy and standard deviation (in subscript) of the different DKVB architecture variants with DistiIBERT
on the R8 and 20ng datasets in a non-continual, standard learning setup, averaged over 5 runs.

Dataset: R8 Dataset: 20ng
. Pooling Before Pooling After Pooling Before Pooling After
Decoder Segmentation CLS Mean CLS Mean \ CLS Mean CLS Mean
Parametric hidden 90.22p30  92.17p25s  90.46044  96.09¢2; | 56.26053  60.24920  60.2603;  79.790.49
token - - 89.24¢.93 94.780.56 - - 45.457 13 68.060.90
. hidden 89.7924  92.02p3s  90.922 95.09¢.27 60.7304s  59.98p30 61.43950 75.110.44
Non Parametric 4o - - 66.37049  72.65024 ‘ - - 12.04051  18.70105
DistilBERT (frozen) w/o DKVB 94.62¢,6 68.560,38
DistilBERT w/o DKVB 97.830.24 83.84¢.23

trophic forgetting. FWT describes how learning a
new task influences performance on a future task.
Since pre-trained language models already posses
high transfer learning capabilities (Brown et al.,
2020), its difficult to isolate the effect of learning
specific task on future performance. Therefore we
focus on BWT which is formally defined as:

T-1

BWT = % ;(RT,i —Ri;) (1)
where R € RT*T is the results matrix of an
incremental learning scenario with 7" tasks, where
each entry R; ; being the test accuracy on task j
after training on task ¢ (Lopez-Paz and Ranzato,
2017).We report the BWT numbers on the three

continual learning scenarios in Table 8.
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Table 8: Average Backward Transfer (BWT) scores on the three continual learning scenarios

CL Method Model DIL CIL TIL

(DSC) (20NG) (4GLUE)
NCL BERT 0.29 —29.77 —20.00
NCL BERT (frozen) —0.10 —0.38 —6.70
NCL Adapter-BERT 0.39 —20.01 —16.05
DER++ BERT (frozen) —0.58 —27.11 —17.05
EWC BERT (frozen) 0.06 -0.27 —10.84
OWM BERT (frozen) 0.26 —15.44 —8.23
CTR Adapter-BERT 0.49 —0.50 -6.19
DKVB-NP Incremental BERT (frozen) —3.06 —27.73 —21.30
DKVB-NP Oracle BERT (frozen) -0.88 -0.12 -7.22
DKVB-NP Generic BERT (frozen) —1.17 —0.29 —7.97
DKYVB-P Incremental BERT (frozen) —4.88 —29.05 —20.99
DKVB-P Oracle BERT (frozen) —1.02 —0.41 —20.56
DKVB-P Generic BERT (frozen) —6.24 —4.94 —16.00

Table 9: Mean accuracy scores of single-head class incremental learning experiments on R8, averaged over 5 runs
with fixed sequence order

Increment # Test BERT BERT-frozen BERT-frozen BERT-frozen DKVB-NP DKVB-NP DKVB-NP
Samples DER++ EWC Incremental ~ Oracle Wiki
1. 1596 31.79 31.79 31.79 31.79 31.79 31.79 31.79
2. 253 5.52 5.52 8.60 31.79 5.57 31.80 31.79
3. 2840 49.47 49.47 46.47 12.65 49.70 67.70 43.19
4. 41 0.45 0.45 4.99 49.61 27.40 76.98 75.83
5. 190 3.70 3.70 14.57 49.56 41.02 71.57 77.56
6. 206 3.97 3.97 23.11 3.70 44.86 79.26 79.76
7. 108 1.64 1.64 14.89 3,74 43.85 79.72 80.61
8. 251 3.42 3.42 16.71 2.64 29.83 80.86 81.90

Table 10: Mean accuracy scores of single-head class incremental learning experiments on R52, averaged over 5
runs with fixed sequence order

Increment  # Test BERT BERT-frozen BERT-frozen BERT-frozen DKVB-NP DKVB-NP DKVB-NP

Samples DER++ EWC Incremental ~ Oracle Wiki
1. 45 0.70 0.50 0.56 0.50 0.73 0.54 0.60
2. 1600 26.20 27.10 26.07 0.50 27.10 27.10 0.92
3. 52 0.46 0.23 14.99 0.85 0.54 27.29 24.71
4. 29 0.35 0.35 9.60 3.69 0.46 29.51 27.30
5. 321 2.92 2.95 4.08 2.57 3.58 25.60 27.41
6. 37 0.35 0.07 18.76 0.35 0.42 27.22 27.63
7. 17 0.35 0.42 7.73 0.35 0.35 28.85 27.55
8. 44 0.54 0.46 4.53 0.35 0.70 27.57 27.67
9. 28 0.50 0.35 13.13 0.42 0.46 27.10 28.10
10. 110 1.40 1.40 12.73 0.35 1.40 25.58 28.56
11. 3046 42.17 42.17 44.18 0.35 44.82 42.17 28.87
12. 16 0.97 0.35 19.78 0.70 0.42 43.71 29.17
13. 10 0.15 0.23 25.31 0.97 0.35 44.85 29.48
14 193 3.15 3.15 21.58 0.42 3.15 52.64 30.30
15 213 3.38 3.38 23.62 3.38 2.95 42.52 31.80
16 154 1.09 1.09 6.43 3.38 1.55 42.83 35.83
17 145 1.40 1.40 26.11 1.47 1.83 45.40 36.12
18 32 0.50 0.50 23.19 0.50 0.50 45.52 17.95
19 203 3.15 3.15 31.43 1.83 3.30 45.71 11.10
20 227 3.15 3.15 25.42 3.15 3.62 38.94 10.34
21 2948 42.17 42.17 45.67 3.15 42.25 44.74 40.07
22 255 4.71 4.71 47.63 4225 4.71 48.84 41.96
23 59 0.58 0.38 23.27 42.17 0.77 47.15 42.23
24 48 0.58 0.58 22.85 0.58 0.62 37.96 42.48
25 59 0.58 0.58 42.04 0.58 0.70 38.55 43.11
26 243 3.38 3.38 35.75 0.58 3.62 47.78 45.04
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Abstract

In this study, we examine the impact of do-
main adaptation and question-answer pooling
on text-based aphasia prediction with standard
and medically specialised BERT models for
a German corpus. Modelling tasks comprise
aphasia type classification as well as multitask
regression of communicative, semantic, and
syntactic skills. We found that domain adap-
tation before finetuning as well as question-
answer pooling increased performance for the
standard but not for the specialised models on
all classification and regression tasks.

1 Introduction

Aphasia is a language impairment due to brain dam-
age, after a stroke, traumatic head injury, brain
tumours, or progressive neurological conditions.
Depending on the brain regions affected, aphasia
is featured differently. The most common types of
aphasia are: global, amnesic (anomic), Wernicke’s
and Broca’s aphasia (Caplan, 2003; Ardila, 2010).
In Broca’s aphasia, patients typically exhibit phone-
mic substitutions and have a non-fluent speech pat-
tern. Wernicke’s aphasia is characterised by an
effortless but nonsensical speech. Global aphasia
combines aspects of both Broca’s and Wernicke’s
aphasia. Amnesic aphasia is primarily character-
ized by word retrieval and naming problems. Apha-
sia subtype classification is not straightforward and
it is common that various aphasia types co-exist
(Fridriksson et al., 2018).

Effective evidence-based therapy consists of
high-intensity Speech-Language Therapy (SLT)
which has been shown to improve linguistic capa-
bilities (Peitz et al., 2024). However, this needs to
be based on detailed diagnostics using appropriate
tests. In German-speaking countries, the most com-
mon test used for aphasia diagnosis and monitoring
is the standardised Aachen Aphasia Test (AAT)
(Huber et al., 2013; Huber, 1983). This compre-
hensive test is designed to assess various aspects of

language function, including comprehension, ex-
pression, repetition, and naming skills. It also pro-
vides information of probabilistic aphasia subtype
and severity (Kohlschein et al., 2018). It consists of
an examination of spontaneous language and five
subtests. A 10-minute semi-structured interview,
recorded during therapy, is rated in six domains:
communicative behaviour, articulation/prosody, au-
tomatised language, semantics, phonology and syn-
tax (Kohlschein et al., 2017). However, AAT is
time-consuming and its result depends highly on
the rater (Kohlschein et al., 2018), which usually
is a highly trained speech and language therapist.
An automatic aphasia diagnosis based on the AAT
could help reduce waiting periods for patients and
clinicians’ burden as well as provide personalised
remote rehabilitation strategies.

Prior work employing Machine Learning (ML)
methods has explored aphasia and its subtype
classification using connected speech, derived ei-
ther from manual transcripts or Automatic Speech
Recognition (ASR) systems (Fromm et al., 2022).
These studies have focused on feature-based su-
pervised methods, including traditional discourse
features (e.g., syntactic complexity, proportion of
nouns, verbs, adjectives) or embeddings by end-
to-end approaches using large pre-trained models.
Zusag et al. reported an F1 score of 0.84 for de-
tecting amnesic aphasia, 0.77 for identifying Broca
aphasia; and 0.78 for Wernicke aphasia using a Sup-
port Vector Classifier (SVC) and linguistic features
(Zusag et al., 2023). Dunfield et al. employed sen-
tence representation similarity features to capture
symptoms of fluent aphasia and found a correlation
of 0.61 with the Western Aphasia Battery-Revised
Aphasia Quotient (Dunfield and Neumann, 2020).
These features include question-answer similarity,
closest question-answer pair identification, and bi-
nary sentence pair classification. The latter was
obtained using BERT to predict the likelihood of
a given sentence pair being related (Dunfield and
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Neumann, 2020). Cong et al. leveraged Large
Language Model (LLM)-surprisals to predict apha-
sia, its subtypes, and the level of severity. They
reported an F1 score of 0.92 for predicting aphasia
from healthy controls and 0.79 F1 score for identi-
fying aphasia subtypes (Cong et al., 2024b). In an-
other work, Cong et al. further employed surprisal
values of LLMs, including GPT-2, Llama2, and
BERT, alongside utterance length, to predict apha-
sia and its subtypes. Their results demonstrated an
F1-score of 0.61 for detecting aphasia and 0.86 for
classifying its subtypes in Chinese. For English,
they reported an F1-score of 0.79 for identifying
aphasia and 0.54 for distinguishing its subtypes
(Cong et al., 2024a).

The contributions of our work of automatised
aphasia assessment are as follows: (1) Aphasia
transcripts are atypical on the lexical, syntactic,
and semantic level. Such transcripts are usually
not contained in the training material of pre-trained
models, which might lower their general applicabil-
ity on such clinical data. We are going to address
this potential shortcoming by domain adaptation as
described in section 3.2. (2) Relevant information
is expected not to be contained only in the patients’
answers in isolation but also within the context of
the underlying question. We are going to address
this contextualization by embedding pooling alter-
natives as presented in section 3.3.

2 Data

The German dataset was collected within the au-
toAAT BMBEF project. It contains spontaneous
speech samples, manual transcripts, and their as-
sociated clinical scores from the AAT. Transcripts
were anonymised by removing all personal infor-
mation. This dataset is built on the work presented
in (Kohlschein et al., 2018). Many patients pro-
vided more than one recording due to repeated
treatment cycles.The scores comprise the aphasia
type classification and linguistic skills assessment.
Aphasia type is categorised into the four classes
Amnesic, Broca, Global, and Wernicke; since the
project focus is to automatise aphasia diagnosis
for tailored SLT, the dataset does not contain a
control group. Other types of aphasia, such as pri-
mary progressive aphasia or unclassifiable, have
been excluded of the analysis due to data sparsity.
Linguistic skills are assessed separately in various
impairment levels and on an expert-annotated six
point scale (with O being the most severe and 5

meaning no impairment). This study focuses on
three linguistic impairment levels: communicative
behaviour (understanding and responding to ques-
tions), semantic structure (word finding difficulties
and semantic paraphasias), and syntactic structure
(sentence completeness and complexity).

The dataset comprises 331 participants, 92 fe-
male, 239 male, with a mean age of 53 4 13 years.
The major aphasia types are represented by the
following numbers: 105 Global, 70 Broca, 32 Wer-
nicke, and 34 Amnesic. The rest of the participants
correspond to the excluded classes. Due to data
protection regulations, the dataset cannot be shared.
The dataset was split into speaker-disjunct training,
development (10%), and test (20%) sets stratified
on the aphasia type of each speaker by means of
splitutils (Reichel, 2024). A random seed of 42
was applied to ensure reproducibility. Texts were
cleaned by removing transcriber comments and
special annotation symbols. The linguistics skills
scales ranging from O to 5 were re-scaled to the
range [0, 1].

3 Methods

3.1 Modelling variants

For both tasks, aphasia type classification and lin-
guistic skills regression, we started from two dif-
ferent base models: the general-purpose model
dbmdzbert-base-german-uncased (Devlin et al.,
2019) (referred to as standard encoder in the fol-
lowing), and GerMedBERT/medbert-512 (Bressem
et al., 2023), which was pre-trained on medical
documents for applications in the clinical domain,
henceforth referred to as specialised encoder.

For each of these encoders, we further created
a variant domain-adapted to our specific aphasia
dataset as described in section 3.2. Each of these
four variants we combined with three different pool-
ing architectures as described in section 3.3. We
finetuned each of these 12 model variants on the
two clinical tasks with 5 different random seeds,
which we describe in section 3.4.

3.2 Domain adaptation

For domain adaptation, we followed the recipe of
(Lendvai et al., 2023) applying vocabulary exten-
sion and Masked Language Modelling (MLM). We
applied a 90/10 speaker disjunct and aphasia-label
stratified split of the training partition into MLM
training and development partition. Based on the
MLM training partition we extended the tokeniz-
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ers’ vocabularies with the lexical content of the
transcripts by adding up to 300 most frequent, yet
unknown words with a minimum length of five
characters. Subsequently, each base model was
finetuned on the MLM task with a standard Bert-
ForMaskedLLM head. Finetuning was done in 20
epochs with the AdamW optimizer, a learning rate
of 2e — 5, a perplexity loss, and a batch size of 16.
We kept the best model in terms of the lowest loss
for the development set.

3.3 Pooling

We applied three types of pooling of the last hidden
states of the encoder:

a: answer-only; we extract the embeddings only
for the patient’s answer and apply mean pooling of
these embeddings;

ga-c: answer contextualised by question; we
concatenate question and answer with a [SEP] to-
ken as for text entailment tasks (Putra et al., 2024),
extract the embeddings for this text pair, and apply
mean pooling on the answer part of this pair only,
which is forwarded to the classification head;

ga-cc: answer contextualised by question plus
question-answer coherence; as for ga-c we concate-
nate question and answer. Then, we concatenate
the initial CLS token embedding with the mean em-
bedding of the answer. This concatenated pooling
we forward to the classification head.

Schematically, the pooling variants can be ex-
pressed as follows (the underlined constituents go
into the pooling):

a: [CLS] answer
qa-c: [CLS| question [SEP] answer
qa-cc:  [CLS] question [SEP| answer

We expect ga-cc to capture not only answer con-
textualisation but also question-answer coherence
due to the ‘semantics’ of the CLS token. Since this
token had been pre-trained on the next sentence
prediction task, it is expected to represent the infor-
mation the pre-[SEP] text part contains about the
post-[SEP] text part, which can be considered as an
aspect of text coherence.

In total, we get 12 model variants defined by all
combinations of encoder type (standard, special-
ized), domain adaptation (yes, no) and pooling
(a, ga-c, ga-cc). The finetuning of these models
on the two downstream tasks is described in the
subsequent section 3.4.

3.4 Finetuning

Architecture: To each encoder, we add a two-

layer head with a non-linear (tanh) layer and a
linear output projection. For classification, this
output projection has 4 outputs, one per aphasia
type. For multitask regression, it has 3 outputs, one
for communicative, semantic, and syntactic skills,
respectively.

Hyperparameters: Each model was finetuned
in 8 epochs with the AdamW optimizer, a learn-
ing rate of 3e — 5 and an effective batch size of
32. For classification, we used the weighted cross
entropy loss and unweighted average recall (UAR)
as metrics to be maximised on the development
set. For regression, we used a Concordance Cor-
relation Coefficient (CCC) loss and CCC metrics
for the development set. We kept the models per-
forming best on the development set for further
evaluation on the test partition. Finetuning and
evaluation was repeated five times with different
random seeds (1, 9, 20, 21, 42, generated with
numpy.random.default_rng()).

4 Results

Figures 1 and 2 show the results in terms of UAR
and mean CCC for aphasia type classification and
linguistic skills regression, respectively. As an
overall tendency for the standard encoder, we ob-
serve that domain adaptation as well as question-
answer contextualisation slightly improve the per-
formances for classification as well as for regres-
sion, but not so for the specialised encoder.

The best aphasia type classification result, a
UAR of 0.653 averaged over all random seeds, was
obtained with the standard encoder, and the ga-cc
pooling variant accounting for contextualisation
and coherence. For linguistic skills multitask re-
gression, again, the standard encoder this time with
the ga-c pooling variant for contextualisation only
performed best, yielding a mean CCC of 0.755
averaged over all random seeds. Split into the lin-
guistic dimensions it achieved a CCC of 0.738 for
communicative, 0.695 for semantics, and 0.831 for
syntactic skills prediction.

5 Discussion and Co