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Introduction

It is with great pleasure that we welcome you to the 8th International Conference on Natural Language
and Speech Processing (ICNLSP 2025), held at Southern Denmark University from August 25-27, 2025.
This volume serves as a comprehensive record of the innovative research and groundbreaking insights on
different topics discussed during the conference.
This year’s conference attracted 130 submissions from around the globe. The acceptance rate was around
34 %. The 45 accepted papers represent the culmination of rigorous inquiry and intellectual dedication,
covering a diverse range of topics within NLP field. Indeed, they showcase the current state of knowledge
and shed light on new directions for future exploration. We thank the authors for their valuable contribu-
tions.
In order to recognize outstanding scientific contributions, we decided this year to present two awards for
the best papers (full and short ones). We congratulate the winners and extend our sincere gratitude to the
scientific committee who selected the winners based on recommendations from the program committee,
and on the originality, significance, and quality of the research, as well as the clarity of presentation.
We are profoundly honored by the participation of our distinguished keynote speakers, Prof. Dr. Barbara
Plank, Prof. Dr. Anders Søgaard, and Prof. Peter Schneider-Kamp. whose insights and vision profoundly
enriched the conference.
We thank the conference management members for their efforts, and the program committee and review-
ers for their diligent work in curating the high-quality content contained within these pages.
Finally, we are deeply grateful to Southern Denmark University, Danish Data Science Academy, and
International Speech Communication Association (ISCA) for their support.

Mourad Abbas, Tariq Yousef, and Lukas Galke

iii



Organizers:

Chairs:
Dr. Mourad Abbas
Dr. Tariq Yousef

Program Committee Chair:
Prof. Lukas Galke

Publicity Chair:
Dr. Abed Alhakim Freihat

Program Committee:
Ahmed Abdelali, SDAIA, KSA.
Hend Al-Khalifa, KSU, KSA.
Mehmet Fatih Amasyalı, Yildiz Technical University, Turkey.
Yuan An, Drexel University, USA.
Nicklas Sindlev Andersen, SDU, Denmark.
Nicolas Ballier, University Paris Cité, France.
Fayssal Bouarourou, University of Strasbourg, France.
Pierrette Bouillon, University of Geneva, Switzerland.
William Brach, Slovak University of Technology, Slovakia.
Daniel Braun, University of Twente, Netherlands.
Giuseppe Celano, Leipzig University, Germany.
Gérard Chollet, CNRS, France.
Hadda Cherroun, Amar Telidji University, Algeria.
Christian Møller Dahl, SDU, Denmark.
Najim Dehak, Johns Hopkins University, USA.
Alexandra Diehl, University of Zurich, Switzerland.
Andor Diera, Ulm University, Germany.
Dota Dong, Max Planck Institute for Psycholinguistics, Netherlands.
Ashraf Elnagar, University of Sharjah, UAE.
Pascale Feldkamp, Aarhus University, Denmark.
Abed Alhakim Freihat, University of Trento, Italy.
Mounim El Yacoubi, Telecom SudParis, France.
Lukas Galke, SDU, Denmark.
Christian Heumann, Ludwig Maximilian University of Munich, Germany.
Kevin Hirschi, University of Texas at San Antonio, USA.
Torben Johansen, SDU, Denmark.
Kristiina Jokinen, University of Helsinki, Finland.
Eric Laporte, Gustave Eiffel University, France.
Márton Kardos, Aarhus University, Denmark.
Pierre Lison, University of Oslo, Norway.
Mohammed Mediani, UAE University, UAE.

iv



Hermann Ney, RWTH Aachen University, Germany.
Jacob Nielsen, SDU, Denmark.
Martin Rehm, SDU, Denmark.
Uwe Reichel, University of Munich, Germany.
Michael Richter, Leipzig University, Germany.
Shadi Saleh, Prime Technologies, Czech Republic.
Yücel Saygin, Sabanci University, Turkey.
Thomas Schmidt, University of Regensburg, Germany.
Nasredine Semmar, CEA, France.
Rachele Sprugnoli, University of Parma, Italy.
Peter Sullivan, University of British Columbia, Canada.
Irina Temnikova, Big Data for Smart Society Institute, Bulgaria.
María Inés Torres, University of the Basque Country, Spain.
Jan Trmal, AppTek, USA.
Nikos Tsourakis, University of Geneva, Switzerland.
Iraklis Varlamis, Harokopio University of Athens, Greece.
Christian Vedel, SDU, Denmark.
Christian Wartena, University of Applied Sciences and Arts Hannover, Germany.
Ke Yang, University of Texas at San Antonio, USA.
Fayçal Ykhlef, CDTA, Algeria.
Tariq Yousef, SDU, Denmark.
Mai Zaki, American University of Sharjah, UAE.
Zaifu Zhan, University of Minnesota, USA.
Mike Zhang, Aalborg University, Denmark.

Scientific Committee:
Prof. Christian Møller Dahl, SDU, Denmark.
Dr. Nicklas Sindlev Andersen, SDU, Denmark.

Conference Management:
Lisa Eckford-Soper, SDU, Denmark.
Rula Mreisheh, SDU, Denmark.
Esben Andreas Wrona Bay Sørensen, SDU, Denmark.

Invited Speakers:

Prof. Dr. Barbara Plank, LMU Munich, Germany.
Prof. Dr. Anders Søgaard, University of Copenhagen, Denmark.
Prof. Peter Schneider-Kamp, SDU, Denmark.

v



Invited Talks

Human-Centered LLMs for Inclusive Language Technology
Prof. Dr. Barbara Plank, LMU Munich, Germany

Prof. Dr. Barbara Plank is full professor and
chair for AI and Computational Linguistics at LMU
Munich, Head of the Munich AI and NLP (MaiNLP)
lab, and co-director of the Center for Information
and Language Processing (CIS). She is also a vis-
iting full professor at the IT University of Copen-
hagen.

What to think of NLP these days?
Prof. Dr. Anders Søgaard, University of Copenhagen.

Prof. Dr. Anders Søgaard is a full professor of nat-
ural language processing (NLP) and machine learning at
the University of Copenhagen in Denmark. Jointly affil-
iated with the Dpt. of Computer Science, the Dpt. of
Philosophy, the Pioneer Centre for Artificial Intelligence,
and the Center for Social Data Science. Previously at
University of Potsdam, Amazon Core Machine Learning,
and Google Research. Father of three and a published
poet.

The Cost of Intelligence: Efficiency Is the Only Path to Democratized AI
Prof. Peter Schneider-Kamp, SDU, Denmark

Prof. Peter Schneider-Kamp is a Professor of Com-
puter Science at the University of Southern Denmark
(SDU), where he holds a chair in Artificial Intelligence
(AI) within the Center for Machine Learning. He
co-leads the Danish Foundation Models (DFM) project
on multilingual language models with a focus on Dan-
ish.

vi



vii



Table of Contents

Zero-Shot Commonsense Validation and Reasoning with Large Language Models: An Evaluation
on SemEval-2020 Task 4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Rawand Alfugaha, Mohammad AL-Smadi

Bridging the Gap: Design and Evaluation of an Automated System for French Cued Speech . . . 8
Brigitte Bigi

topicwizard - a Modern, Model-agnostic Framework for Topic Model Visualization and Interpretation 19
Márton Kardos, Kenneth Enevoldsen, Kristoffer Nielbo

Scalable Text Vectorization with Hyperdimensional Computing Through Selective Word Encoding 28
Timur Mudarisov, Evgeny Polyachenko, Zsofia Kraussl, Enriqueta Patricia Becerra Sanchez, Tatiana
Petrova, Radu State

ASR Models for Traditional Emirati Arabic: Challenges, Adaptations, and Performance Evaluation 42
Maha Alblooki, Kentaro Inui, Shady Shehata

Style-Controlled Response Generation for Dialog Systems with Intimacy Interpretation . . . . . . 50
Takuto Miura, Kiyoaki Shirai, Natthawut Kertkeidkachorn

Next Speaker Prediction for Multi-Speaker Dialogue with Large Language Models . . . . . . . . 60
Lukas Hilgert, Jan Niehues

Adapting ASR Models for Speech-to-Punctuated-Text Recognition with Utterance Gluing . . . . 72
Agata Jakubiak, Piotr Stachyra, Piotr Czubowski, Hubert Borkowski, Sebastian Łątka, Radosław Iżak,
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Abstract

This study evaluates the performance of Large
Language Models (LLMs) on SemEval-2020
Task 4 dataset, focusing on commonsense val-
idation and explanation. Our methodology
involves evaluating multiple LLMs, includ-
ing LLaMA3-70B, Gemma2-9B, and Mixtral-
8x7B, using zero-shot prompting techniques.
The models are tested on two tasks: Task A
(Commonsense Validation), where models de-
termine whether a statement aligns with com-
monsense knowledge, and Task B (Common-
sense Explanation), where models identify the
reasoning behind implausible statements. Per-
formance is assessed based on accuracy, and
results are compared to fine-tuned transformer-
based models. The results indicate that larger
models outperform previous models and per-
form closely to human evaluation for Task A,
with LLaMA3-70B achieving the highest ac-
curacy of 98.40% in Task A whereas, lagging
behind previous models with 93.40% in Task
B. However, while models effectively identify
implausible statements, they face challenges in
selecting the most relevant explanation, high-
lighting limitations in causal and inferential
reasoning.

1 Introduction

Commonsense reasoning is a crucial aspect of Nat-
ural Language Processing (NLP) that enables mod-
els to understand and validate knowledge beyond
explicit textual data. The motivation behind this
research comes from the need to develop NLP
models that can reason beyond surface-level text
representations and apply real-world knowledge
to language understanding tasks. Existing bench-
marks, such as CommonGen (Lin et al., 2019),
SemEval-2020 Task 4: Commonsense Validation
and Explanation (Wang et al., 2020), Common-
SenseQA 2.0 (Talmor et al., 2022), and COPEN
(Peng et al., 2022), have highlighted various aspects
of commonsense reasoning, including generative

commonsense reasoning, multi-hop reasoning, and
physical commonsense knowledge. However, these
tasks still pose challenges in handling nuanced rea-
soning (El-Sayed and Pacholczyk, 2002), causal
inference(Yao et al., 2021), and knowledge integra-
tion (Chen et al., 2020).

The SemEval-2020 Task 4: Commonsense Val-
idation and Explanation (Wang et al., 2020) has
served as a benchmark for evaluating various NLP
models’ capabilities in this domain. The task con-
sistes of three sub-tasks, where in this research we
will focus on the first two namely: Task A - Com-
monsense Validation: Determining whether a given
statement aligns with commonsense knowledge,
and Task B - Commonsense Explanation: Identify-
ing the reasoning behind why a statement is against
common sense. Table 1 provides examples on both
tasks as they appear in the dataset.

This paper aims to explore how well large lan-
guage models (LLMs) perform on commonsense
reasoning tasks using zero-shot prompting. By eval-
uating multiple LLMs on SemEval-2020 Task 4, we
investigate their ability to reason effectively with-
out explicit fine-tuning. We present an overview
of existing research, detail our methodology, and
analyze experimental results to assess the strengths
and limitations of current approaches.

2 Related Work

SemEval-2020 Task 4, which focuses on Common-
sense Validation and Explanation, attracted consid-
erable attention, with numerous teams participating
in its three subtasks. This literature review high-
lights the best-performing models in Tasks A and B,
showcasing their methodologies and contributions
to the field.

CN-HIT-IT.NLP (Zhang et al., 2020) emerged
as the leading model in Subtask A, employing a
variant of K-BERT (Liu et al., 2019a) as its en-
coder. This model stands out for its integration of

1



Task Example
Task A: Commonsense Validation Which statement is against common sense?

- Statement 1: He put a turkey into the fridge. ( Correct)
- Statement 2: He put an elephant into the fridge. (Against
commonsense)

Task B: Commonsense Explanation Why is this statement against common sense?
Statement: He put an elephant into the fridge.
- A: An elephant is much bigger than a fridge. ( Correct)
- B: Elephants are usually white while fridges are usually
white.
- C: An elephant cannot eat a fridge.

Table 1: Examples of Commonsense Validation and Explanation Tasks

knowledge graphs, specifically ConceptNet (Speer
et al., 2017), which allows it to extract relevant
triples that enhance the understanding of language
representations. This approach underscores the
importance of leveraging structured knowledge to
improve commonsense reasoning capabilities.

In Subtask B, ECNU-SenseMaker (Zhao et al.,
2020) achieved top performance by also utilizing K-
BERT (Liu et al., 2019a). This model innovatively
combines structured knowledge from ConceptNet
(Speer et al., 2017) with unstructured text through
a Knowledge-enhanced Graph Attention Network.
This integration facilitates a deeper understanding
of commonsense knowledge, demonstrating the
effectiveness of combining different types of infor-
mation to enhance model performance.

Another notable model, IIE-NLP-NUT (Xing
et al., 2020), utilized RoBERTa as its encoder.
This model’s unique contribution lies in its second
pretraining phase, which involved a textual cor-
pus from the Open Mind Common Sense (OMCS)
project (Singh et al., 2002). By exploring various
prompt templates for input construction, this model
illustrates the potential of tailored input strategies
in improving commonsense validation tasks

Team Solomon (Srivastava et al., 2020) was
ranked 5th and 4th in Subtasks A and B, re-
spectively. Their approach, which also relied on
RoBERTa, highlighted the capacity of large-scale
pretrained language models to encapsulate com-
monsense knowledge effectively without external
resources.

Across the two subtasks, the dominant trend was
the use of large-scale pretrained language mod-
els such as K-BERT (Liu et al., 2019a), RoBERTa
(Liu et al., 2019b), BERT (Devlin et al., 2018),
and GPT-2 (Radford et al., 2019), often fine-tuned

with additional commonsense knowledge sources.
Additionally, models incorporating external struc-
tured knowledge sources (e.g., ConceptNet) gen-
erally outperformed purely language-model-based
approaches.

3 Methodology

Our study aims at evaluating the performance of
multiple Large Language Models (LLMs) for com-
monsense validation and reasoning using zero-shot
prompting. This approach leverages pre-trained
LLMs without task-specific fine-tuning, relying
solely on their inherent reasoning capabilities. For
this purposes, we utilize the SemEval-2020 Task
4 dataset (Wang et al., 2020), which comprises
labeled statements designed for commonsense val-
idation and explanation tasks. To ensure a fair
comparison between explicitly fine-tuned models
and those evaluated solely with zero-shot prompt-
ing, we use only the test set for evaluation. The
test set contains 1,000 entries for each task (Task A
and Task B), providing a standardized benchmark
for assessing model performance. The dataset is
publicly available and can be accessed at 1.

As depicted in Figure 1, the methodology con-
sists of the following key stages:

• Pre-processing: preparing the input test data
templatic prompt to ensure compatibility with
zero-shot prompting.

• Model Calling: Applying zero-shot prompt-
ing to multiple LLMs, including LLaMA3,
Gemma2, and Mixtral to assess their com-
monsense validation and reasoning abilities.

1https://github.com/wangcunxiang/
SemEval2020-Task4-Commonsense-Validation-and-Explanation
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Figure 1: The architecture of the commonsense validation and reasoning with zero-shot prompting of LLMs.

LLMs are directly accessible through the Gro-
qCloud 2 Models API endpoint using the
model IDs

• Performance Metrics: Evaluating model out-
puts based on accuracy to quantify their effec-
tiveness.

• Comparative Analysis: Benchmarking zero-
shot LLMs performance against fine-tuned
transformer models to examine the impact of
training on commonsense validation and rea-
soning tasks.

4 Results and Discussion

Table 2 presents the performance of the models on
the commonsense validation (Task A) and common-
sense explanation (Task B) tasks from SemEval-
2020 Task 4. The results for human performance
and transformer-based models (CN-HIT-IT.NLP,
ECNU-SenseMaker, IIE-NLP-NUT, and Solomon)
are as reported in the original SemEval-2020 Task
4 paper (Wang et al., 2020). In contrast, the results
for the LLMs (LLaMA3, Gemma2, and Mixtral)
are obtained from our experiments with zero-shot
prompting. Findings are reported in the following
subsections.

2https://console.groq.com/docs/models

4.1 Performance Analysis
Among the models evaluated in this study, L3-70B
(LLaMA3-70B) demonstrated the highest perfor-
mance in Task A, scoring 98.4%, with an evidence
that large-scale LLMs can effectively validate com-
monsense knowledge with zero-shot prompting.
However, its performance in Task B (93.4%) lags
behind the transformer-based models reported as
top 4 performing models in the Task paper. These
models were explicitly fine-tuned for the task and
some of them used external resources for the mod-
els training. This indicates that while LLMs are
highly proficient in identifying implausible state-
ments, they still struggle with selecting the most
relevant explanation, demonstrating limitations in
causal and inferential reasoning.

Similarly, the G2-9B (Gemma2-9B) model
achieves strong performance in Task A (97.9%)
but showing a more significant decline in Task B
(91.0%). This further highlights the challenge of
explanation selection, as these models may recog-
nize implausibility without fully understanding the
underlying causal mechanisms.

A size-dependent trend is observed in the
LLaMA3 models. The smaller L3-8B (LLaMA3-
8B) demonstrates significantly weaker perfor-
mance than its larger version, with 84.4% in Task A
and 83.1% in Task B. Finaly, the M8x7B (Mixtral-
8x7B) model exhibited the weakest performance,
with 66.0% in Task A and 50.9% in Task B. Its
near-random performance in explanation selection

3



Model Task A (Validation) (%) Task B (Explanation) (%)
Human 99.1 97.8
CN-HIT-IT.NLP 97.0 94.80
ECNU-SenseMaker 96.7 95.0
IIE-NLP-NUT 96.4 94.3
Solomon 96.0 94.0
L3-70B (LLaMA3-70B) 98.40 93.40
G2-9B (Gemma2-9B) 97.90 91.00
L3-8B (LLaMA3-8B) 84.40 83.10
M8x7B (Mixtral-8x7B) 66.00 50.90

Table 2: Performance of different models on Task A (Commonsense Validation) and Task B (Commonsense
Explanation) for English data. The models are: L3-70B (LLaMA3-70B), G2-9B (Gemma2-9B), L3-8B (LLaMA3-
8B), and M8x7B (Mixtral-8x7B).

id sent0 sent1 L3-70B G2-9B M8x7B L3-8B
459 The dog pounced on the

rabbit
The cat pounced on the
rabbit

sent0 sent0 Other sent0

737 She purchased four super-
market tickets.

She purchased four theater
tickets.

sent1 sent1 sent1 sent1

174 Witches are not made of
wood

Toads are not made of
wood

sent0 sent0 sent0 sent0

Table 3: Sample of common misclassified instances for TaskA. Model abbreviations: L3-70B = LLaMA3-70B, G2-
9B = Gemma2-9B, M8x7B = Mixtral-8x7B, L3-8B = LLaMA3-8B. Keep in mind that Task A is about identifying
which statement is against common sense?

suggests that it struggles not only with causal in-
ference but also with general commonsense under-
standing, likely due to limitations in its training
data or architecture. It is important to note that
this lower accuracy was not due to weak reason-
ing abilities but rather due to inconsistencies in the
output format, where the model provided both clas-
sification and explanation instead of following the
expected template for the output.

4.2 Implications for Zero-Shot Commonsense
Reasoning

The results indicate that while LLMs often recog-
nize implausible statements but fail to select the
most relevant explanation, highlighting deficits in
causal and inferential reasoning. This suggests that
current zero-shot approaches may capture surface-
level plausibility but lack deeper reasoning abilities
necessary for explanation generation.

Furthermore, the comparison between pre-
trained LLMs and task-specific models from
SemEval-2020 Task 4 suggests that explicit fine-
tuning on commonsense explanation data remains
beneficial. While larger models such as L3-70B
outperform fine-tuned models in validation, they do

not surpass them in explanation selection, reinforc-
ing the need for additional adaptation to improve
causal reasoning.

4.3 Common Misclassification Patterns
An analysis of misclassified instances provides in-
sights into the reasoning patterns of different mod-
els. In Task A, some models failed to differentiate
between subtle variations in sentence structure. For
example, the model incorrectly classified the fol-
lowing pair:

The dog pounced on the rabbit. The cat
pounced on the rabbit.

This type of error suggests that the models may
rely on statistical patterns rather than deep semantic
understanding.

In Task B, errors were primarily related to the
selection of the most plausible explanation. A no-
table example is:

False Statement: "There are four years
each season."
Correct Explanation: "A year can be
divided into four seasons."
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id FalseSent. OptionA OptionB OptionC L3-70B G2-9B M8x7B L3-8B
1388 Roberts’

room is
sleeping

A room
cannot
close
his eyes,
because
he has no
eyes.

Robert
won’t let
the room
sleep be-
cause he
needs rest.

Robert can
sleep in his
room

A A A A

1444 There
are four
years each
season.

Different
seasons
have dif-
ferent
tempera-
tures.

A year can
be divided
into four
seasons.

A season
is shorter
than a
year.

C C Other C

1172 People can
need sleep.

Sleep is
not a thing
to have it
granted.

Sleeping
is nature
for every
living
being.

Sleeping is
an activity
that every
living
thing does.

A A C A

Table 4: Sample of common misclassified instances for TaskB. Model abbreviations: L3-70B = LLaMA3-70B,
G2-9B = Gemma2-9B, M8x7B = Mixtral-8x7B, L3-8B = LLaMA3-8B. Task B is about selecting the reason for
Why is this statement against common sense?

Some models selected incorrect explanations, in-
dicating potential limitations in their ability to link
cause-effect relationships effectively. It should be
noted that sentence IDs 1388, 1444, and 1172 are
not present in the common misclassified instances
of Task A.

Despite the overall strong performance, the re-
sults also highlight challenges in certain reasoning
aspects. The models demonstrated difficulty in se-
lecting the most appropriate explanation for an im-
plausible statement in Task B, even though they per-
formed well in identifying implausible statements
in Task A. This suggests that while the models
recognize commonsense inconsistencies, they may
struggle to justify their choices accurately. One
possible explanation for this challenge is that Task
B requires models to establish causal or inferential
relationships between a false statement and its ex-
planation. While Task A is a binary classification
task requiring identification of implausible state-
ments, Task B introduces additional complexity by
demanding a deeper understanding of reasoning
patterns and cause-effect relationships. Selecting
the correct explanation requires not only recogniz-
ing a logical inconsistency but also evaluating mul-
tiple plausible justifications and determining which
one best aligns with human commonsense knowl-
edge. This suggests that current LLMs, despite

their powerful language modeling capabilities, may
still struggle with selecting the most contextually
relevant explanation among multiple plausible op-
tions, as this task requires a nuanced understanding
of real-world implications and reasoning structures
(Mondorf and Plank, 2024).

Additionally, the low measured performance of
Mixtral-8x7B can be attributed to output inconsis-
tencies. The model frequently produced both an an-
swer and an explanation, which deviated from the
required response format. This indicates that we
cannot rely on the achieved results for this model
to evaluate its performance on both tasks. More
post-processing steps are required to ensure con-
sistent output formatting when evaluating model
performance.

4.4 Conclusion
This study demonstrates that large-scale LLMs, par-
ticularly LLaMA3-70B and Gemma2-9B, exhibit
strong commonsense reasoning capabilities even in
a zero-shot setting. These models outperform state-
of-the-art fine-tuned transformer-based models, in-
dicating that LLMs can generalize well across com-
monsense validation tasks. However, challenges
remain in explanation selection and maintaining
consistent output formats. Future research may in-
clude exploring Commonsense knowledge-graph
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LLMs (Li et al., 2022; Zhao et al., 2024; Toroghi
et al., 2024), in addition to fine-tuning strategies,
retrieval-augmented approaches, and structured
prompting techniques to enhance the inferential
reasoning capabilities of LLMs in zero-shot set-
tings.

References
Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A

review: Knowledge reasoning over knowledge graph.
Expert systems with applications, 141:112948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In arXiv preprint arXiv:1810.04805.

Mazen El-Sayed and Daniel Pacholczyk. 2002. A quali-
tative reasoning with nuanced information. In Logics
in Artificial Intelligence, pages 283–295, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Xiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoff-
mann, Cyprien de Masson d’Autume, Phil Blunsom,
and Aida Nematzadeh. 2022. A systematic investiga-
tion of commonsense knowledge in large language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 11838–11855, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2019. Commongen: A constrained text genera-
tion challenge for generative commonsense reason-
ing.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2019a. K-bert: En-
abling language representation with knowledge graph.
In arXiv preprint arXiv:1909.07606.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. In arXiv preprint arXiv:1907.11692.

Philipp Mondorf and Barbara Plank. 2024. Beyond
accuracy: Evaluating the reasoning behavior of
large language models–a survey. arXiv preprint
arXiv:2404.01869.

Hao Peng, Xiaozhi Wang, Shengding Hu, Hailong Jin,
Lei Hou, Juanzi Li, Zhiyuan Liu, and Qun Liu. 2022.
Copen: Probing conceptual knowledge in pre-trained
language models. arXiv preprint arXiv:2211.04079.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. In Tech-
nical Report.

Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the gen-
eral public. In On the Move to Meaningful Internet
Systems 2002: CoopIS, DOA, and ODBASE, pages
1223–1237, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: an open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17,
page 4444–4451. AAAI Press.

Vertika Srivastava, Sudeep Kumar Sahoo, Yeon Hyang
Kim, Rohit R.r, Mayank Raj, and Ajay Jaiswal. 2020.
Team Solomon at SemEval-2020 task 4: Be rea-
sonable: Exploiting large-scale language models for
commonsense reasoning. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages 585–
593, Barcelona (online). International Committee for
Computational Linguistics.

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan
Berant. 2022. Commonsenseqa 2.0: Exposing the
limits of ai through gamification.

Armin Toroghi, Willis Guo, Mohammad Mahdi Abdol-
lah Pour, and Scott Sanner. 2024. Right for right
reasons: Large language models for verifiable com-
monsense knowledge graph question answering. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
6601–6633, Miami, Florida, USA. Association for
Computational Linguistics.

Cunxiang Wang, Shuailong Liang, Yili Jin, Yilong
Wang, Xiaodan Zhu, and Yue Zhang. 2020. Semeval-
2020 task 4: Commonsense validation and expla-
nation. In Proceedings of The 14th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Luxi Xing, Yuqiang Xie, Yue Hu, and Wei Peng.
2020. IIE-NLP-NUT at SemEval-2020 task 4:
Guiding PLM with prompt template reconstruction
strategy for ComVE. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages 346–
353, Barcelona (online). International Committee for
Computational Linguistics.

Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing
Gao, and Aidong Zhang. 2021. A survey on causal
inference. ACM Transactions on Knowledge Discov-
ery from Data (TKDD), 15(5):1–46.

Yice Zhang, Jiaxuan Lin, Yang Fan, Peng Jin, Yuan-
chao Liu, and Bingquan Liu. 2020. Cn-hit-it.nlp at
semeval-2020 task 4: Enhanced language represen-
tation with multiple knowledge triples. In Proceed-
ings of The 14th International Workshop on Semantic
Evaluation. Association for Computational Linguis-
tics.

6



Qian Zhao, Siyu Tao, Jie Zhou, Linlin Wang, and Xin
Lin. 2020. Ecnu-sensemaker at semeval-2020 task
4: Leveraging heterogeneous knowledge resources
for commonsense validation and explanation. In Pro-
ceedings of The 14th International Workshop on Se-
mantic Evaluation. Association for Computational
Linguistics.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. Large
language models as commonsense knowledge for
large-scale task planning. Advances in Neural Infor-
mation Processing Systems, 36.

7



Bridging the Gap: Design and Evaluation of an Automated System for
French Cued Speech

Brigitte Bigi
Laboratoire Parole et Langage, CNRS, Aix Marseille Univ, 13100 Aix-en-Provence - France

brigitte.bigi@cnrs.fr

Abstract

Access to spoken language remains a challenge
for deaf and hard-of-hearing individuals due
to the limitations of lipreading. Cued Speech
(CS) addresses this by combining lip move-
ments with hand cues—specific shapes and
placements near the face—making each syl-
lable visually distinct. This system comple-
ments cochlear implants and supports oral lan-
guage, phonological awareness, and literacy.
This paper introduces the first open-source sys-
tem for automatically generating CS in video
format. It takes as input a video recording,
the corresponding audio signal, and an ortho-
graphic transcript. These elements are pro-
cessed through a modular pipeline, which in-
cludes phonetic mapping, temporal alignment,
spatial placement, and real-time rendering of a
virtual coding hand. The system is multilingual
by design, with current resources focused on
French. An evaluation under varied conditions
showed decoding rates up to 92% for manually
coded stimuli, and averages exceeding 80% for
automatically generated ones. Visual clarity of
hand shapes proved more critical than timing
or angle. Stylized designs and frontal views en-
hanced decoding performance, while attempts
at naturalistic rendering or visual effects of-
ten degraded it. These findings indicate that
visual abstraction improves readability. This
work provides a reproducible and scientifically
grounded framework for visual phonetic encod-
ing, and delivers a practical tool for education,
accessibility, and research.

1 Introduction

1.1 Visual Access to Spoken Language
through Cued Speech

Speech production involves both acoustic and vi-
sual cues. While lip movements convey useful
information, many phonemes appear identical on
the lips and form so-called “visemes”—groups
of phonemes that are visually indistinguishable
(Fisher, 1968; Massaro and Palmer Jr, 1998). As

a result, lipreading remains highly ambiguous:
correct word identification rarely exceeds 30%
(Rönnberg, 1995; Rönnberg et al., 1998).

To address this limitation, R. Orin Cornett in-
troduced Cued Speech (CS) (Cornett, 1967), a vi-
sual communication system designed to make each
phoneme visually distinct. CS combines lip move-
ments with hand cues—specific handshapes and
positions placed around the face—that encode con-
sonants and vowels. It provides full visual access to
spoken language and supports phonological aware-
ness, literacy development, and spoken language
acquisition in deaf or hard-of-hearing individuals
(Clarke and Ling, 1976; Neef and Iwata, 1985). CS
has since been adapted to over 65 languages1.

Cued Speech is widely used by speech-language
pathologists to support early language acquisition
in deaf children. Among others, in France, it is pro-
moted by the Association pour la Langue française
Parlée Complétée (ALPC)2, and in the US by the
National Cued Speech Association3. Numerous
studies have shown that CS enhances access to
phonological structure, supports literacy develop-
ment, and fosters inclusive education (Leybaert and
Charlier, 1996; Colin et al., 2017; LaSasso et al.,
2010). Together, these findings highlight its impor-
tance in supporting language acquisition pathways
for deaf learners.

Building on its demonstrated benefits for access
to spoken language, Cued Speech and Sign Lan-
guages serve distinct linguistic and cultural func-
tions. They are not mutually exclusive: while some
deaf children follow a sign language pathway, ac-
cess to reading and writing typically requires ex-
posure to spoken language. By offering a precise
visual representation of sounds, Cued Speech sup-
ports this process. It is therefore relevant to all
deaf learners aiming to acquire spoken language,

1https://www.academieinternationale.org/
2https://alpc.asso.fr/
3https://cuedspeech.org/
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whether or not they use a sign language. This
distinction is essential to avoid misinterpretations:
Cued Speech is not a language and is not intended
to replace natural sign languages such as LSF, but
to complement them when access to spoken lan-
guage is required or preferred.

Following the general principles of CS, the
French adaptation was developed in the 1970s. It
uses eight handshapes to encode consonants and
five facial positions to encode vowels. Each sylla-
ble is represented by a combination of lip move-
ment and a hand cue, also called a key, formed
by a handshape–position pair. A simple syllable
like CV or V is coded by a single key, while more
complex structures, such as CCV, require multiple
successive keys: for example, a ’C-’ followed by
a ’CV’ structure. To illustrate this system, Figure
1 shows the handshapes used for consonants, and
Figure 2 shows the vowel positions around the face.
Both figures include the neutral position used when
no speech is pronounced.

Figure 1: Handshapes representing consonants

Figure 2: Positions representing vowels

Below is a concrete example showing how a
sentence is encoded into cues:

text: Tu es gris.
phones: t y e g K i
CV sequence: C V V C C V
cues-structure: C-V.-V.C-.C-V
cues code: 5-t.5-t.7-s.3-m

The internal consistency of Cued Speech makes
it well-suited for automation. Generating cues
from speech or text opens the door to a wide range
of applications: cued videos for learning and ac-
cess, training tools for families and educators, and
greater availability of CS in contexts where trained
coders are not present. More broadly, automatic
cueing can support language acquisition in deaf
children, improve communication in mixed hear-
ing environments, and reinforce lipreading skills.

This paper presents the first complete and share-
able system for automatic CS generation. It takes
as input a video recording, its audio signal, and a
transcript, and produces a new version of the video
in which a synchronized virtual hand encodes the
CS transcription. The architecture was built en-
tirely from scratch, formalizing each stage of the
process from segmentation to cue rendering. It is
designed for multilingual use and has been imple-
mented and tested for French. The full system is
open-source, and all components have been evalu-
ated with end-user testing.

1.2 Related Works

The first attempt to automate cue generation, Au-
toCuer, was developed by R. Orin Cornett himself
(Cornett et al., 1977). Between 1995 and 2000, a
series of studies at the Massachusetts Institute of
Technology (MIT) explored real-time automatic
cueing for American English (Bratakos, 1995; Sex-
ton, 1997; Bratakos et al., 1998; Duchnowski et al.,
2000). These remain the most advanced docu-
mented efforts in the field. Their system relied on
speaker-dependent automatic speech recognition
to extract phonemes from live recordings, which
were then converted into hand cues and displayed
as a virtual hand overlaid on the video. Evalua-
tions showed significant gains in decoding accu-
racy, with some conditions yielding scores twice as
high as lipreading alone. However, many compo-
nents required manual adjustments (Sexton, 1997):
cue positions were initialized by hand, transitions
were interpolated without formal modeling, and the
mapping rules were not described in reusable form.
The lack of published code or reproducible design
has prevented further development or reuse.
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To date, no operational or open-source tool exists
for automatic CS generation in any language, de-
spite increasing scientific interest and documented
benefits.

1.3 Foundations and Scope

Developing a complete system was a necessary
step, independently of data availability. It provided
the opportunity to define a structured architecture,
implement a fully functional version, and formal-
ize the modeling of each component. The resulting
system is transparent, reproducible, and already
usable in real conditions. It operates with minimal
computational cost, can be refined through expert
feedback, and offers a solid basis for future im-
provements, including data-driven modules once
annotated resources become available.

A French Cued Speech corpus has recently been
collected and partially annotated (Bigi et al., 2022),
but the annotation process is still ongoing due to
the precision required.

This work then marks the beginning of a long-
term effort to build a reliable and extensible frame-
work for automatic CS generation. It defines a
shared foundation for future developments in aug-
mented video production and evaluation.

2 System Description

While many studies describe individual aspects of
CS production—such as articulation, speech coor-
dination, timing, or spatial organization—formal
descriptions remain rare. Few are presented in
a way that supports computational modeling or
system implementation. The literature describes
many aspects of CS production. However, for-
mal accounts of its speech coordination, timing,
and spatial organization remain rare. Few works
address these questions, and the descriptions are
rarely framed in terms of computational modeling.

In this work, the cueing process was analyzed
by combining published linguistic descriptions (At-
tina, 2005; Aboutabit, 2007) with structured discus-
sions conducted with experienced coders. This led
to the identification of four core processing com-
ponents, which structure the system: determining
what to code (i.e., the sequence of keys from the
phoneme transcription), when to display the cues
(synchronization with the speech signal), where to
place the hand (spatial positioning, angle, and size),
and how to render it visually (hand design).

The four components are interdependent: timing

depends on phoneme alignment, spatial position-
ing requires both timing and content, and visual
rendering builds on all previous stages. This struc-
ture is the result of the analysis described above.
It defines an architecture for cue generation and
supports the implementation of a consistent and ex-
tensible system. The same framework has guided
the present system and can serve as a reference for
future developments.

For example, the system is multilingual by de-
sign in the sense that language-specific knowl-
edge is externalized into modular, open-format re-
source files. The core components—covering nor-
malization, phonetic transcription, alignment, and
cue generation—are implemented in a language-
independent way. Language-specific resources,
such as dictionaries, acoustic models, and cueing
rules, are handled through separate, editable files.
This modular architecture follows the same strat-
egy as adopted in SPPAS for text normalization
(Bigi, 2014), phonetic transcription (Bigi, 2016),
and alignment (Bigi and Meunier, 2018). Its ap-
plicability to multiple languages has already been
validated in these components (Lancien et al., 2020;
Bigi et al., 2021; Pakrashi et al., 2023), and is here
extended to the novel task of Cued Speech genera-
tion.

Figure 3 presents the full processing pipeline,
from user inputs to the final coded video. It il-
lustrates the modular organization of the system
and the sequence of required operations. The first
stages involve automatic processing of the input
transcript, audio, and video using the open-source
SPPAS toolkit (Bigi, 2015), including normaliza-
tion, phonetization, forced-alignment, and face
analysis. These annotations are used without man-
ual correction and provide the foundation for re-
producible experiments. The subsequent steps im-
plement the proposed framework, computing the
sequence of keys, their temporal and spatial prop-
erties, and rendering the virtual hand accordingly.

2.1 What to Code

The first component of the system determines the
sequence of keys to be produced from the phoneme
transcription. Each key encodes a consonant–vowel
association as a pair of handshape and position.
Based on the aligned phoneme sequence, the sys-
tem infers the structure and associates each seg-
mental unit with a key of type C-, -V, or CV. A
deterministic finite automaton (DFA) formalizes
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Figure 3: Workflow of the full process: from the user’s data to the coded video

all valid transitions and decomposes complex syl-
lables into successive keys.

This component was previously described and
evaluated in a dedicated study (Bigi, 2023). On
a manually annotated corpus, the predicted se-
quences aligned closely with those produced by
expert coders, with most deviations reflecting in-
dividual preferences rather than systemic errors.
The DFA-based system was found to be both reli-
able and sufficient. A web-based text-to-cue con-
verter4, developed in collaboration with the deaf
community, provides public access to this module
for educational and training use.

2.2 When to Display the Cues
Once the sequence of keys is defined, the next step
is to determine their temporal coordination with
speech. It is already known that the hand must
anticipate the associated phonemes to allow visual
decoding. This principle has been consistently sup-
ported in the literature (Cornett, 1967; Bratakos
et al., 1998; Duchnowski et al., 1998, 2000) and
confirmed by French studies (Cathiard et al., 2003;
Attina, 2005; Aboutabit, 2007), which highlight the
role of anticipation in perception.

Four timing models were implemented: three
drawn from previous work, and a fourth developed
specifically for this system. The notation intro-
duced in (Attina, 2005) is used throughout. A1
marks the acoustic onset of the key—consonant
onset in ’C-’ or ’CV’ keys, vowel onset in ’-V’
keys. A3 marks the acoustic offset—vowel end in
’CV’ or ’-V’ keys, consonant end in ’C-’ keys. M1

4https://auto-cuedspeech.org/textcue.html

and M2 represent the start and end of the manual
transition. The interval A1–A3 corresponds to the
acoustic duration of the key, while M1 and M2 are
the time points to be predicted by the models.

Model 1 reproduces the configuration described
in (Duchnowski et al., 1998), in which the hand
appears 100 ms before the phoneme, with no tran-
sition phase. This model was implemented for
reference purposes but was not included in the ex-
perimental protocol, as later studies (Duchnowski
et al., 2000) have shown that Model 2 yields better
results. Model 2 introduces a fixed transition of
150 ms, so that the hand reaches its target 100 ms
prior to the phoneme onset.

Model 3 adjusts anticipation values based on
the consonant–vowel structure of the key. It is de-
rived from French-language studies (Attina, 2005),
which reported consistent variation in cue timing
across key types. Transitions are defined as propor-
tions of the A1–A3 interval, assuming an average
duration of 400 ms. For ’CV’ and ’C-’ keys, M1
starts 62% before A1 and M2 occurs 10% after A1.
For ’-V’ keys, M1 starts 46% before A1 and M2
occurs 21% after A1.

Model 4 was developed specifically for this sys-
tem. It extends previous models by incorporat-
ing finer adjustments derived from coder expertise
and by explicitly modeling transitions involving
the neutral position, which are absent from earlier
systems. The model adapts timing to speech rate
and defines transition points as proportions of the
A1–A3 interval.

For the first key, corresponding to a transition
from the neutral zone to a facial position, M1 oc-
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curs 140% before A1 and M2 20% before A1. For
the second key, these values are 125% and 15%
before A1. For the third, 100% and 10%. For
subsequent keys, M1 is set to 90% and M2 to 5%
before A1. For the return to neutral, M1 is delayed
to 20% after A1, and M2 to 80% after M1.

2.3 Where to Place the Hand in the Video?
This component determines the position, angle, and
size of the hand relative to the speaker’s face for
each frame of the video.

The vowel positions were first defined by expert
coders on a theoretical face, then formalized us-
ing the 68-point facial landmark model given by
SPPAS. Each position is computed as a function
of facial landmarks. The formulas used for the
positions of French Cued Speech were derived in
collaboration with expert coders and adapted to en-
sure consistency across speakers and morphologies.
They are summarized in Table 1 and illustrated
in Figure 4. No variability was introduced at this
stage: for each frame, the fingertip is placed at the
target coordinates.

x = y =
n x8 y8 + 4 · (y8 − y57)
b x4 +

1
2 · |x36 − x0| y1 − 1

3 · |y1 − y0|
c x8 y8 − 1

5 · |y8 − y57|
m x48 − 1

4 · |x48 − x4| y60
s x0 − 2

3 · |x8 − x0| y4 − 1
2 · |y4 − y3|

t x8 y8 + 1.2 · |y8 − y57|

Table 1: Estimated positions from facial landmarks

Figure 4: Estimated positions relatively to the landmarks

Hand orientation is also controlled to improve
visual realism. Three models were implemented.
Model 0 uses a fixed angle of 60°, serving as a base-
line (Figure 5). Model 1 introduces expert-defined

Figure 5: Hand angle of Model 0 is 60°.

variations by position. Excluding the neutral zone,
the average angle is 71.2°, with a standard devia-
tion of 9.3°. Model 2 uses a data-driven approach:
five annotated frames per position were manually
selected to estimate average orientations. It yields
an average angle of 61.8° and a standard deviation
of 12.5°. Detailed values are given in Table 2.

Position Model 1 Model 2
n (chest) 50° 50°
b (cheek bone) 75° 62°
c (chin) 67° 59°
m (mouth) 73° 56°
s (side) 83° 83°
t (throat) 58° 49°

Table 2: Hand angles (in degrees) for Models 1 and 2.

The hand size is scaled proportionally to face
height and remains fixed throughout. Transitions
between positions follow a straight-line trajectory
at constant speed. Handshape transitions occur at
the midpoint of this trajectory, using a three-frame
fade between the two handshapes. These simpli-
fications reflect a design choice: only one spatial
parameter is introduced at a time for evaluation.

This component of the system then produces a
complete 2D hand trajectory of the hand, it’s angle
and it’s size, for each frame of the given video.

2.4 How to Represent the Hand in the Video?
The final module of the system handles the visual
rendering of the cueing hand, based on the timing
and spatial information computed in the previous
stages. This component determines how the hand
appears in the video and offers several options in
terms of style and visual clarity.

Four handsets were integrated into the system.
Two are based on photographs: a male hand set
(’l’), and a female hand set (’b’) shown in Figure 5.
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The other two use 2D illustrations: ’d’ displays a
uniform yellow shape, while ’c’ assigns colors to
specific keys to reduce visual confusions—key 3 is
pink, key 8 is blue, and the neutral hand is white;
all others remain yellow. These assignments build
on prior work (Duchnowski et al., 1998) indicating
that color can help distinguish keys that are visually
similar but phonologically distinct.

Figure 6 shows examples of these handsets,
along with enhancement filters described below.

Figure 6: Some hands configurations: "l+1", "l+2",
"d+3", "d", "c"

Three visual enhancements were implemented
to explore whether additional graphic information
could improve the visual distinction between simi-
lar handshapes. Each one is exclusive and applies
to a single rendering at a time. The first one adds a
dot at the fingertip target and a line along the index
for keys 3 and 8, to improve distinction from keys
4 and 2, similarly to the ’c’ handset. The second
one draws a line along the back of the hand and
a dot at the target point, highlighting orientation.
The 3rd one overlays the full 21-point hand sights
with connecting lines, as illustrated in Figure 5.

This rendering module supports both realistic
and stylized outputs and can be adapted to user
needs or preferences.

2.5 System Summary

The system covers the full pipeline of automatic
CS generation. Starting from a video, an audio
signal, and an orthographic transcript, it performs
phoneme alignment, transformation into keys, syn-
chronization of each key with the speech signal,
analysis of facial landmarks, determination of hand
angle, hand size, handshape transitions, spatial tran-
sitions between positions, and visual rendering.

The process results in a synchronized and aug-
mented video, where a virtual hand encodes the
Cued Speech transcription with precise timing and
positioning. All elements—phonetic inference, tim-
ing models, spatial computation, and graphical out-
put—are integrated into a reproducible framework.

This combination of coverage and modularity is, to
our knowledge, the first of its kind.

This framework is implemented in Python and
released under an open-source license. Its graphical
user interface and user-friendly installation process
allow non-specialists to use it.

3 System Evaluation

The system was evaluated through a decoding task
with eight deaf participants, all fluent in French
Cued Speech and familiar with video-based cueing.
The goal was to assess the readability of automati-
cally generated cues and to compare different con-
figuration options. The task consisted in watching
short cued videos and writing down what was de-
coded. Their responses were scored using SCLite,
designed for evaluating ASR output. It aligns each
decoded transcription with a reference using utter-
ance IDs and computes word-level scores: correct
(Corr), substituted (Sub), deleted (Del), and in-
serted (Ins). In this setting, the reference is the
recorded sentence, and the hypothesis is the partic-
ipant’s transcription.

Decoding accuracy was then used as a proxy for
system performance. This metric was deliberately
chosen to reflect the perceptual clarity of the gen-
erated cues, independently of participant-specific
inference or language comprehension skills. Al-
though comprehension-based tasks might better re-
flect communicative effectiveness, they would con-
found system output quality with individual-level
interpretation strategies. By focusing on transcrip-
tion alignment, the evaluation isolates the contribu-
tion of the system itself, ensuring a more rigorous
and interpretable measure of cue readability.

3.1 Experimental Conditions

The evaluation was conducted during the 2024 an-
nual internship organized by the ALPC. Eight deaf
adults participated on a voluntary basis and gave
informed consent. All participants watched a stan-
dardized instructional video before the session. The
protocol was anonymous, non-intrusive, and ap-
proved by the organizing institution.

Each participant decoded 20 silent videos: five
manually coded by a professional (used as a refer-
ence set), and fifteen automatically generated using
the system with different configurations. To con-
trol for inter-participant variability, each participant
was assigned to a single experimental dimension:
timing, angle, hand appearance, or visual enhance-
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ment. This allowed for within-subject comparisons
across three variants per parameter. Each system
configuration was identified by a four-character
code: the first digit refers to the timing model (2,
3, or 4), the second to the angle model (0, 1, or
2), the third to hand appearance (’b’, ’c’, or ’d’),
and the fourth to optional enhancements (1, 2 or 3).
Participants were divided into four groups:

• Group 1 – Timing: P1 and P5 decoded sets
2.1.l.0, 3.1.l.0, and 4.1.l.0.

• Group 2 – Angle: P2 and P6 decoded sets
4.0.l.0, 4.1.l.0, and 4.2.l.0.

• Group 3 – Appearance: P3 and P7 decoded
sets 4.1.b.0, 4.1.c.0, and 4.1.d.0.

• Group 4 – Enhancement: P4 and P8 decoded
sets 4.1.l.1, 4.1.l.2, and 4.1.l.3.

The five manually coded reference videos were
presented first. The fifteen system-generated clips
followed, in a fixed interleaved order balancing
topic and condition. Playback issues affected two
participants (three clips for P1, two for P2) due to
local hardware errors. Since all videos had been
generated beforehand, only playback was affected
and the evaluation protocol remained valid. This is
reported here in accordance with FAIR principles.

3.2 Global Decoding Performance
Table 3 presents the decoding scores for the con-
trol set (professionally coded) and for the system-
generated output (all configurations combined).
Manual coding achieved 92.3% accuracy. The
system, with no participant training or adaptation,
reached 80.7%.

SPK Corr Sub Del Ins Err
Control 92.3 5.2 2.5 2.3 10.0
All sets 80.7 9.7 9.6 1.3 20.6

Table 3: Participant decoding scores

These results were obtained using strict word-
level alignment. Minor spelling differences were
counted as substitutions, and no correction was
applied to participant input. The control score re-
flects the best achievable performance under these
conditions and serves as an oracle reference.

That the system reaches over 80% under the
same constraints is a key finding. Participants
had no prior exposure to the system and received

no training. Despite this, several decoded videos
scored near the reference level. The output is there-
fore not only intelligible but already close to expert
quality for a majority of sentences.

The most frequent errors were deletions, increas-
ing from 2.5% in the control set to 9.6% with sys-
tem output. Substitutions also rose, though to a
lesser extent. Informal debriefings suggest that fast
speech segments were harder to decode, especially
when hand transitions compressed timing contrasts.

To our knowledge, this is the first publicly doc-
umented benchmark comparing professional and
system-generated Cued Speech. These results show
that automatic cue generation is not only feasible,
but already yields intelligible output close to expert
performance. This first benchmark sets a high base-
line for future systems and provides a reproducible
framework for comparison.

The 80.7% score reported above reflects an av-
erage across multiple system variants. It includes
different timing strategies, spatial models, hand ap-
pearances, and visual enhancements. The result
therefore combines heterogeneous outputs, some
of which led to higher decoding scores than others.

3.3 Detailed evaluation and discussion

The three sentence sets used in the experiment
yielded average decoding scores of 83.6%, 84.4%,
and 74.9%, respectively, indicating noticeable
differences in difficulty. Without normalization,
such variation would interfere with the analysis of
model-specific effects. To control for these biases,
all scores were normalized by participant and by
sentence set. This adjustment accounts for individ-
ual decoding ability and for intrinsic difficulty of
the material. Final results are reported as z-scores:
a positive value indicates that the participant de-
coded better than their own average, and a negative
value indicates below-average decoding accuracy.

3.3.1 Group 1 – Timing Models

Participant P1 showed slightly negative perfor-
mance on the baseline (model 2), and slightly
positive scores on models 3 and 4 (z = −0.07,
+0.04, +0.06). P5 had the best result on model 2
(z = +0.08), followed closely by model 4 (+0.02),
with model 3 performing lower (−0.04). Overall,
model 4 seems less sensitive to speaker or mate-
rial, while model 3 is more sensitive to speaker or
sentence variation.
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3.3.2 Group 2 – Angle Models
For P2, model 1 yielded the best performance
(+0.03), followed by model 2 (−0.04), while
model 0 performed neutrally (−0.001). P6
achieved highest scores on models 0 and 1 (+0.07
and +0.06), with lower performance on model 2
(−0.03). The results suggest that moderate expert-
defined angle variation (model 1) provides a good
compromise between visual consistency and real-
ism, while corpus-derived angles (model 2) may
introduce instability.

3.3.3 Group 3 – Hand Appearance
P3 had a slight preference for the ’d’ design
(+0.01), with lower results on the ’b’ and ’c’ de-
signs (−0.09, −0.03). P7 also favored ’d’ (+0.12),
followed by ’b’ (+0.05), and had a neutral response
to ’c’ (−0.01). Unlike earlier findings reported in
(Duchnowski et al., 1998), our results do not repli-
cate a consistent benefit from color coding: one
participant improved with the ’c’ design, while an-
other performed better without it. These observed
trends confirm that the simplified, high-contrast ’d’
illustrations enhance decoding performance, likely
due to their visual clarity and reduced ambiguity.

3.3.4 Group 4 – Visual Enhancements
P4 showed balanced performance across the three
enhancement types (z-scores ranging from 0.0 to
+0.04), while P8 experienced a sharp decline, par-
ticularly on Skeleton (−0.19). These results sug-
gest that while visual enhancements may assist
some users, they may also introduce distracting or
overly complex visual elements, especially for less
experienced decoders.

3.3.5 Discussion
The experimental results converge on a configura-
tion that favors clarity over realism. The most
effective combination includes a fixed anticipa-
tion model refined by phonetic context (Model 4),
expert-defined orientation values (Model 1), and
a stylized 2D design with strong visual contrast
(’d’). This setup does not aim to reproduce natu-
ral hand movement but rather to enhance cue dis-
criminability. It consistently produced the best de-
coding scores across participants and conditions.
Visual enhancements overlays did not improve per-
formance and occasionally introduced confusion,
suggesting that additional graphic elements may
interfere with the perception of essential features.
These findings support the adoption of a simpli-

fied, controlled rendering strategy as the system’s
default configuration for future use.

These results highlight that controlled visual sim-
plicity can effectively outperform realism by en-
hancing usability and reducing cognitive load in
accessibility-focused systems.

4 Conclusion

Despite the documented benefits of Cued Speech
for phonological awareness and literacy, no opera-
tional system has yet addressed its automatic gener-
ation in a reproducible and open manner. The only
prior effort explicitly targeting cue generation in
video, developed at MIT in the late 1990s, remains
undocumented, non-reproducible, and is no longer
maintained.

This paper presents the first functional and pub-
licly available system for automatic Cued Speech
generation. It targets French and implements a
modular pipeline structured into four components:
determining what to code, when to display, where
to place, and how to render. Each step is formally
defined and operational, from phoneme alignment
to video rendering with an integrated virtual hand.
The system provides explicit control over linguistic
content, synchronization, spatial placement, and
visual output.

Evaluation with deaf participants confirmed that
the output is readable and effective: decoding accu-
racy averaged 80.7%, compared to 92.3% for pro-
fessionally coded videos. This result was obtained
without participant training or adaptation. Among
the tested parameters, hand appearance had the
strongest impact. The highest scores were obtained
with a stylized 2D design, limited angle variation,
and no visual enhancement. These findings indi-
cate that intelligibility benefits from simplification
rather than natural imitation.

This work defines a complete and reproducible
framework for Cued Speech generation in video.
Moreover, it provides a usable tool with a graphical
interface, ready for practical use and offering a ref-
erence baseline for future systems. The system is
already integrated into the actively maintained soft-
ware platform SPPAS, and has been successfully
used by non-technical users in applied settings.

The next step will involve inserting transitional
frames when needed, to reduce deletion errors and
improve comfort. The goal is to better match the
rhythm of the speaker with the decoding strategies
used by human coders.
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Limitations

This study presents the first fully documented and
reproducible system for automatic CS generation.
However, several limitations must be acknowl-
edged.

First, the system has been implemented and eval-
uated only for French. While the architecture is de-
signed to support multiple languages, further work
is needed to confirm its adaptability to different
phonological inventories and cueing conventions.
This is currently being addressed through the ongo-
ing adaptation of the system to American English.

Second, although the evaluation protocol was
carefully designed, the number of participants re-
mains limited. This constraint, inherent to the diffi-
culty of recruiting expert Cued Speech users, may
affect the generalizability of some findings.

Third, while the current design provides trans-
parency and control, it may miss fine-grained vari-
ations observed in natural cueing. To address this,
a follow-up project has been launched to explore
targeted data-driven modeling, restricted to cases
where statistical learning is justified — in line with
principles of ecological minimalism and method-
ological necessity.

Finally, two aspects of the system have been
fixed a priori and remain to be systematically eval-
uated: the precise spatial placement of hand po-
sitions around the face, and the trajectory mod-
eling, which currently assumes straight-line mo-
tion at constant speed. While hand cue positions
are algorithmically inferred from facial landmarks,
we acknowledge that systematic validation against
manual annotations remains limited due to the com-
plexity of recruiting trained evaluators. Preliminary
cross-checks on held-out data indicate promising
consistency, and ongoing work is extending this
evaluation as resources permit.

Ethical Considerations

This study did not involve the collection of any
sensitive or identifying information. Participation
was voluntary, based on informed consent, and
fully anonymous. Participants were not evaluated;
rather, their responses served solely to assess the
intelligibility of the system’s outputs.

The experiment followed the principles of
the ALPC association’s internal ethics charter,
which promotes respect, autonomy, and non-
discrimination in all interactions with deaf partici-
pants and their families.
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A Reproducibility

All data and source code referenced in this pa-
per comply with the principles of open science.
The source code of the proposed system is re-
leased under the GNU Affero General Public Li-
cense v3 (AGPLv3). It is part of SPPAS and can
be downloaded at https://sourceforge.net/
projects/sppas/.

The experimental scripts are also made available
under the same license and can be obtained from
the author upon request.

The datasets used in this work are distributed
under both the Open Database License v1.0
(ODbL) and the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC
4.0) licenses. They can be downloaded at https:
//hdl.handle.net/11403/clelfpc/v10.

Software and Evaluation Tools:
• The full speech segmentation pipeline, includ-

ing text normalization, phonetic transcription,
and alignment, was performed using SPPAS,
version 4.11 (https://sppas.org/),

• Evaluation metrics were computed us-
ing SCTK 2.4.12 (https://github.com/
usnistgov/SCTK).
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Abstract
Topic models are statistical tools that allow
their users to gain qualitative and quantitative
insights into the contents of textual corpora
without the need for close reading (Nielbo et al.,
2024). They can be applied in a wide range
of settings from discourse analysis (Bednarek,
2024), through pretraining data curation (Peng
et al., 2025), to text filtering (Ma et al., 2016).
Topic models are typically parameter-rich, com-
plex models, and interpreting these parameters
can be challenging for their users. It is typical
practice for users to interpret topics based on
the top 10 highest ranking terms on a given
topic. This list-of-words approach, however,
gives users a limited and biased picture of the
content of topics (Gillings and Hardie, 2022).
Thoughtful user interface design and visual-
izations can help users gain a more complete
and accurate understanding of topic models’
output. While some visualization utilities do
exist for topic models, these are typically lim-
ited to a certain type of topic model. We intro-
duce topicwizard 1, a framework for model-
agnostic topic model interpretation, that pro-
vides intuitive and interactive tools that help
users examine the complex semantic relations
between documents, words and topics learned
by topic models.

1 Introduction

Topic models are statistical instruments, which
have been developed to uncover human-
interpretable topics in corpora of text (Blei,
2012). These methods have allowed analysts gain
insights into the contents of large corpora, the
manual reading of which would be impractical or
impossible. Topic models also often offer a more
impartial account of a corpus’ content (Nielbo
et al., 2024).

Typically, topic models’ outputs are presented to
users in the form of the highest-ranking words and

1https://github.com/x-tabdeveloping/
topicwizard

perhaps documents on a given topic. While this
allows users to gain a superficial understanding of
a topic, one might miss crucial details, and a lot
of nuances, when topic models are exmined this
way (Gillings and Hardie, 2022). We suggest that
topic models capture more detailed information
about topics than simple word lists convey, and that
carefully designed interfaces can help users better
explore this complexity.

1.1 Topic Models are Diverse

While topic models all carry out a similar task, they
can also be very different from each other in how
they conceptualize topic discovery.

Topic models originally relied on a bag-of-words
model of documents where they are represented as
sparse vectors of word-occurrence counts, with an
optionally applied weighting scheme, such as tf-
idf. Most commonly, these models either discover
topics by matrix factorization (Gillis and Vavasis
2014, Kherwa, Pooja and Bansal, Poonam 2017)
or by fitting a probabilistic generative model over
these representations (Blei et al. 2003, Yin and
Wang 2014, Hofmann 1999) or biterms (Yan et al.,
2013).

Figure 1: A Simplified Taxonomy of Topic Models

More recent topic models, however, also rely on
context-sensitive, dense text representations from
neural networks (Reimers and Gurevych, 2019).
These models can conceptualize topic discovery as
document clustering and post-hoc term importance
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estimation (Grootendorst 2022, Angelov 2020),
document generation with amortized variational
inference (autoencoders) (Bianchi et al. 2021a,
Bianchi et al. 2021b), semantic relation reconstruc-
tion (Wu et al., 2024), or semantic decomposition
(Kardos et al. 2025a, Kristensen-McLachlan et al.
2024).

1.2 Topic Models are Alike

Despite these differences, all topic models have
a lot in common. Topic models, in essence,
learn a three-way relationship between words ,
documents and topics .

Figure 2: Common Components Computed by Topic
Models

All topic models have a method for extracting the
K most relevant words from the discovered topics.
These top K words are calculated from a topic-
term matrix (ϕ), which is either inferred as part
of topic discovery. This matrix has N rows, corre-
sponding to the number of topics, and M columns
corresponding to the size of the model’s vocabu-
lary. In addition, models compute a document-
topic-matrix (Θ), where rows represent the D
documents in the corpus, while the N columns
represent topics. This matrix contains the impor-
tance/relevance of a topic in a document.

1.3 Contribution

We introduce topicwizard, a model-agnostic
topic model visualization framework that allows
users to investigate complex semantic relations be-
tween words, documents and topics in their cor-
pora. topicwizard is natively compatible with
topic modelling libraries, which use the scikit-learn
API (Pedregosa et al., 2011), such as tweetopic
(Kardos, 2022) and Turftopic (Kardos et al., 2025b)
and comes with compatibility layers for Gensim
and BERTopic.

2 Related Work

Due to Latent Dirichlet Allocation’s (LDA) pop-
ularity, a considerable amount of work has been
dedicated to visualizing and interpreting its outputs.
Chuang et al. (2012b) discuss best practices and
design considerations for visualization and inter-
pretation systems for LDA. Chuang et al. (2012a)
introduced the Termite system for interactively vi-
sualizing and interpreting LDA output. The main
visualization in Termite is a stylized version of
the topic-term matrix (see Figure 8), where circles
of different size are at the intersection of terms
and topics indicating their importance. The au-
thors also propose a scheme for selecting the most
topically salient words, since displaying all words
in the corpus would not be feasible. As a conse-
quence, Termite can only display a limited number
of words. Additionally, Termite is no longer under
active maintenance 2.

LDAvis (Sievert and Shirley, 2014) is an inter-
active visualization R package for LDA (see Fig-
ure 9). LDAvis combines elements of previous
topic visualization systems, including an inter-topic
distance map, term distribution plots, and a term-
weighting scheme to show only the most specific
and (relevant) terms. Similar to Termite, the orig-
inal LDAvis package is no longer maintained. Its
Python port, PyLDAvis, receives occasional up-
dates, but does not enjoy feature parity with the
original package.

Notable visualization utilities are also included
in the BERTopic library (Grootendorst, 2022),
which boasts model-specific plotting functions,
such as an inter-topic map, document cluster vi-
sualizations, and term distribution bar-charts. Simi-
larly, Turftopic (Kardos et al., 2025b) also contains
model-specific visualization utilites for a number
of models, including cluster maps, concept com-
passes for S3 (Kardos et al., 2025a) and interactive
timeline plots for dynamic topic models. While
these visualizations are useful, they are typically of
limited interactivity, and are limited to a particular
type of model.

3 topicwizard

To address these challenges, we outline
topicwizard, a novel system for topic model
interpretation. Our framework is model-agnostic,

2The Termite repository on Github was last committed to
11 years prior to the writing of this article
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Figure 3: An overview of visualizations and pages in the topicwizard framework
All visualizations were produced using KeyNMF (Kristensen-McLachlan et al., 2024)

allows users to investigate topic models from a
number of distinct perspectives, and is highly
interactive, thereby providing a more complete
picture of topic models’ output,

3.1 Topic Models Learn Topic
Representations

Topic models’ primary objective is to discover la-
tent themes in a corpus. Being able to understand
what concepts make up such topics, and how these
topics are related is perhaps the most important
aspect of interpreting topic models.

In topicwizard (see Figure 3a), similar to Siev-
ert and Shirley (2014) an inter-topic map is
displayed, which shows the relative distances of
topics to each other. While Sievert and Shirley
(2014) utilize PCA for this visualization, projec-
tions in topicwizard are calculated with UMAP
(McInnes et al., 2018), since it is better at captur-
ing local structure. The size of the topics on the
graph is determined by a topic importance score.
This score, and thereby the size on the graph indi-
cates how prevalent a given topic is in the corpus
overall, also taking into account the length of the
documents. Topic importance is calculated in the
following manner:

st =
D∑

d

Θdt · |d|

where Θdt is the importance of topic t and docu-
ment d and |d| is the number of terms in a given
document, and D is the size of the corpus.

To provide users with insights about topics’
word content, the topic-word plot displays the
distribution of the highest ranking words for a
given topic, and also how globally prevelant these
words are across topics 3. Since 10-20 words are
rarely enough to give a complete picture of the
words relevant to a topic, a more comprehensive
topic wordcloud is also displayed To aid fur-

ther analysis, users can also manually name topics
on this page.

3.2 Topic Models Learn Word Embeddings
While topic models’ are mainly oriented at discov-
ering topics, they also implicitly learn meaningful
representation of words within the corpus. Each
column of the topic-term matrix can technically
be thought of as a semantic embedding for a given
word, with the dimensions being interpretable. This
implicit learning of word representations allows us
to examine words’ relation to each other in a cor-
pus, without explicit reference to the topics.

In topicwizard (see Figure 3c), a word map
is displayed to users, allowing them to quickly and
interactively investigate the semantic landscape of
words in their corpus. Word positions are calcu-
lated by projecting word embeddings to two dimen-
sions using UMAP.

Word embeddings are useful for investigating as-
sociative relations in corpora, and have been used
for a variety purposes such as query expansion

3Unlike LDAvis, we do not compute relevance scores,
since they rely on the assumption that ϕ contains word proba-
bilities.

21



(Kuzi et al., 2016), or to uncover authorship pat-
terns in literature (Baunvig, 2024). Clicking on a
word on the word map highlights the words most
closely related to the selected one and displays
the topical distribution of the selected term and its
neighbourhood on the word-topic plot . Dis-
playing closely associated words with the selected
keywords in topic models can give practitioners a
more nuanced picture of word use (Liu and Lei,
2018).

3.3 Topic Models Organize Documents
An important aspect of topic models is that they
learn a representation of documents in the corpus
they are fitted on. Document representations dis-
covered by topic models were historically used for
a number of purposes, including retrieval (Yi and
Allan, 2009), and studying information dynamics
(Barron et al., 2018).

In topicwizard (see Figure 3d), a
document map is displayed, where docu-

ment’s UMAP-projected embeddings can be
seen, and documents are coloured based on most
prevalent topic. In the case of BoW models, these
representations are derived from the document-
topic matrix, while with contextual models, the
pre-computed sentence embeddings are used.

Secondly, individual documents’ contents can be
investigated on a document-topic plot , which
displays the distribution of the most relevant topics,
a document-topic timeline , which displays
how the topical content changes throughout the
course of the document and a document viewer ,
where a snippet of the document is displayed, and
the most topically relevant words are highighted.
The combination of these document inspection util-
ities can help users ground and verify topic models’
output in the documents themselves, which elevates
trust (Chuang et al., 2012b). Additionally, this in-
terface encourages close reading, which provides
additional insight into the corpus’ content.

3.4 Topics Augment User-Defined Groups
Commonly, users of topic models also have some
externally defined grouping of documents, which
might be relevant for their analyses. This could
be binning documents by time period, predefined
categories or place of origin. While most topic
models do not utilize external labels, meaningful
inferences can be made about topics’ relation to
these labels post-hoc.

An important part of this process is to compute a

group-topic matrix, the cells of which contain the
summed importance of a given topic for documents
in a given group:

Gij =
D∑

k

Θkj · I(gk = i)

where Gij is the importance of group i for topic j,
gk is the group label of document k, and I(gk = i)
is the indicator function.

In topicwizard (see Figure 3b), semantic dis-
tances between user-defined groups can be seen
on the group map , where group-topic represen-
tations are projected to 2D space using UMAP.
Groups are coloured based on the dominant topic
in the group. Topic distributions in groups can
be seen on the group-topic plot , and groups’
lexical content can be examined in detail on the
group wordcloud to the right.

3.5 Software Design Considerations
The topicwizard Python package was designed
with both research and enterprise use in mind. As
such, our goal was to develop a package that is
accessible to new users and sufficiently flexible to
accommodate specific use cases – ranging from
academic writing and technical reporting to enabel-
ing business analysts to interact with topic models
via a web interface.

The Web Application (see Figures 4 - 7) was de-
signed to make topic model interpretation as seem-
less and quick as possible, in as many environments
as possible, including Jupyter notebooks, in the
browser, or deployed to the cloud. which produces
a readily deployable Docker project to a specified
folder.

The Figures API makes it trivial for our users
to produce specific figures tailored to their needs.
This is especially crucial for producing publica-
tions, since some colour schemes, fonts or aspect
ratios, while appropriate for an interactive web ap-
plication, might not be visually appealing in a static
document.

4 Conclusion

This paper introduces topicwizard, a comprehen-
sive, interactive, and model-agnostic topic model
visualization framework. Our framework is a no-
table extension over previous topic model visualiza-
tion systems, thanks to a) supporting a much wider
range of models b) allowing users to ground topic
models in the corpus, and investigate them from
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numerous angles and c) being flexible, actively sup-
ported, and production-ready. The topicwizard
software package has so far been downloaded more
than 45000 times from PyPI, demonstrating that
practitioners have already found it useful.

Limitations

While topicwizard is the most comprehensive
topic model visualization tool to date, it still lacks
coverage of a number of aspects of topic modelling.
It, for instance, does not have visualization utili-
ties for dynamic, hierarchical and supervised topic
models. This is a clear limitation and will have to
be addressed in future package releases.

Our framework, as of now, does not provide any
utilities for comparing outputs from different topic
models either. This is yet another aspect that future
work should address.

Furthermore, while we consider model-
angosticity to be one of the strengths of our
approach, it does, to an extent, limit its usefulness
for certain models. Certain visualizations, such
as concept compasses, might be highly useful
tools for examining the output of Semantic Signal
Separation, but their utility might be limited for
clustering topic models. We encourage our users,
therefore, to use topicwizard in tandem with
model-specific interpretation utilities from libraries
such as BERTopic or Turftopic.
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A Appendix

See Figures 4-7 for screenshots of topicwizard, Figure 9 for LDAvis and Figure 8 for Termite.

Figure 4: Screenshot of the Topics page in the topicwizard Web Application

Figure 5: Screenshot of the Words page in the topicwizard Web Application
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Figure 6: Screenshot of the Documents page in the topicwizard Web Application

Figure 7: Screenshot of the Groups page in the topicwizard Web Application
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Figure 8: Screenshot of the Termite System
Figure from (Chuang et al., 2012a)

Figure 9: Screenshot of LDAvis
Figure from (Sievert and Shirley, 2014)

27



Scalable Text Vectorization with Hyperdimensional Computing Through
Selective Word Encoding

Timur Mudarisov
University of Luxembourg

Luxembourg
timur.mudarisov@uni.lu

Zsofia Kraussl
Bayes Business School

London
zsofia.kraussl@bayes.ac.uk

Evgeny Polyachenko
University of Luxembourg

Luxembourg
evgeny.polyachenko@uni.lu

Enriqueta Patricia Becerra Sanchez
University of Luxembourg

Luxembourg
enriqueta.becerra@uni.lu

Tatiana Petrova
University of Luxembourg

Luxembourg
tatiana.petrova@uni.lu

Radu State
University of Luxembourg

Luxembourg
radu.state@uni.lu

Abstract

Hyperdimensional Computing (HDC) is a
promising approach for various machine learn-
ing tasks. In this work, we focus on its
application to encoding large text datasets,
where the curse of dimensionality presents
a significant challenge. To mitigate this is-
sue, we employ compression techniques that
are based on classical models such as Term
Frequency-Inverse Document Frequency (TF-
IDF) and Latent Dirichlet Allocation (LDA).
We derive theoretical expressions for Compres-
sion Rate, Jensen-Shannon Divergence, and
ROUGE score, which quantify text size reduc-
tion, preservation of word distributions, and re-
tention of key information, respectively. These
expressions are validated using the IMDB,
arXiv, and AG News datasets. Our results
demonstrate that TF-IDF compression can re-
duce the encoded text size to 10% (or less in
some cases) of the original input while also
achieving slightly worse distinguishability be-
tween classes in classification tasks.

1 Introduction

Hyperdimensional Computing (HDC) is a machine
learning approach inspired by principles of neural
computation. It represents and manipulates data
through high-dimensional vectors, typically in the
order of thousands or millions, enabling informa-
tion processing and storage. This methodology
exhibits inherent robustness to noise, offers effi-
cient learning capabilities, and effectively handles
complex, unstructured data (Kanerva, 2009). HDC
has gained considerable interest in emerging ap-
plications, such as robotics and health diagnostics,
alongside established areas including data center

recommendation systems (Mitrokhin et al., 2019;
Neubert and Schubert, 2021; Yunhui et al., 2021).
This increasing adoption and interest highlights the
need for a robust theoretical justification. To ad-
dress this, researchers have investigated HDC from
different perspectives. These studies include an in-
depth examination of its geometric characteristics
(Pourmand et al., 2024), a comprehensive analysis
of its algebraic foundations (Yu et al., 2024), and a
detailed investigation of encoding structures used
within HDC systems (Thomas et al., 2021). Each
perspective contributes to a deeper understanding
of HDC and its potential applications.

Kanerva (2009) identified several valuable as-
pects of different HDC realizations. These include
their robustness to noise, which allows HDC to
maintain performance despite disruptions. Their
inherent transparency also helps the understanding
and interpretation of results. Furthermore, HDC ex-
hibit useful distributed properties, which enable ef-
ficient parallel processing, for example using GPUs.
HDC have been successfully applied in various sci-
entific fields (Rahimi et al., 2019; Kanerva, 2009),
and their application to Natural Language Process-
ing (NLP) tasks is of particular interest. Specifi-
cally, Kleyko et al. (2023) demonstrated success-
ful applications of HDC to translation, sentence
similarity, and topic classification problems. How-
ever, Thomas et al. (2021) pointed out important
limitations of basic HDC. Among these, a critical
challenge is the curse of dimensionality. This ef-
fect describes how increases in data size can cause
an exponential rise in vector space dimensionality,
complicating analysis and processing.

To address the challenge of the curse of dimen-
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sionality in HDC, we propose using text compres-
sion techniques. In this paper, we aim at explor-
ing two classical techniques for text compression:
TF-IDF selection (Spärck Jones, 1972) and LDA
(Blei et al., 2003). Our contribution to the state-
of-the-art in HDC is threefold: First, in Section 2
we introduce a novel model – compression HDC
(CHDC) which combines a theory-based encod-
ing procedure with data compression using TF-IDF
or LDA. This model allows encoding information
efficiently while reducing the size of representa-
tions. Second, we analyze the compression effect
of these techniques (Section 3.1), providing theo-
rems that estimate the compression rate. Third, we
examine the encoding effect of the binary uniform
HDC (Section 3.2), showing that our results are
robust to different conditions. In Section 4, we ex-
perimentally validate our theoretical findings, for
the quality of the proposed compression and en-
coding processes. Finally, Section 5 wraps up and
discusses prospects.

2 Model Setup

The scheme of our proposed model is presented in
Figure 1. Before any text analysis is performed, a
standard procedure of pre-processing is used and is
therefore not shown in the scheme. This procedure
involves four steps applied to a large text (docu-
ment): first, only letters and numbers are retained;
second, the text is broken down into words; third,
lemmatization is applied, which reduces words to
their base or dictionary form (lemma); and finally,
stemming is applied, which reduces words to their
root form.

Figure 1: Workflow of the compression HDC model,
illustrating the processing of a large text using text com-
pression and HDC encoding (blue), to produce a final
embedding.

The core of our proposed compression HDC
model is defined by two components: compres-
sion and HDC encoding. These components are
detailed in Sections 2.1 and 2.2, respectively.

2.1 Compression procedure
Let W = {w1, . . . , wM} represent a set of M
unique words and corpus D = {d1, . . . , dN} is a
set of N documents. Given these sets (W,D), our

goal is to reduce the number of words in each doc-
ument by focusing on the most informative ones.
To achieve this, we assign a score to each word
and extract the set of word-score pairs {(w, sw)}.
For the TF-IDF-based compression, we define the
score as follows:

Definition 1. The TF-IDF score for a word wi in
a corpus D is defined as:

sw = ts(w,D) = 1

N

N∑

j=1

fw,j ln
N

Nw
, (1)

where fw,j is the frequency of word w in document
dj ,Nw is the number of documents inD containing
word w.

Note that our definition differs from the standard
TF-IDF definition, which depends on w, d and D
and does not contain averaging over documents.

Latent Dirichlet Allocation (LDA) assumes that
documents are represented as bags of words, where
each document is a mixture of T topics, with T
being a predefined number of topics. The proba-
bility of a word w belonging to topic t is denoted
as ϕt,w. The matrix Φ = {ϕ1, . . . , ϕT } ∈ RT×M ,
where each ϕt represents the probability distribu-
tion of words for topic t, is determined by maxi-
mizing the likelihood function P(W,D|Φ, α), and
α ∈ RT

+ are the parameters of the Dirichlet distri-
bution (Blei et al., 2003). Based on the LDA model,
we define the score as follows:

Definition 2. The LDA-based score for a word w
in topic t is defined as:

st,w = ϕt,w . (2)

We consider the documents unordered and refer
to them interchangeably using either the index j
or the document d itself, as an element of D. For
words and word-related quantities, we will refer
to them interchangeably using either the word w
itself or the index i, specifying the ordering when
necessary. Thus, for example, fi,j and fw,d denote
the same quantity.

We present the following compression criteria.
For TF-IDF-based compression, we select the p-
quantile of words with the highest scores from
the set {(w, s)}w∈W , resulting in a reduced dic-
tionaryWp containing approximately pM words.
For LDA-based compression, we select the top
pM words from each topic, based on their topic
probabilities sw,t. Because each word has a prob-
ability of belonging to every topic, the resulting
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reduced dictionary Wp typically contains fewer
than TpM words. Subsequently, we create a new
set of compressed documents D′ = {d′1, . . . , d′N},
where each d′j is formed by combining words from
Wp, preserving the most important words of the
original document and their sequential order within
each document.

To evaluate the compression quality, we intro-
duce three classical performance metrics:

1. Compression rate. A standard metric in com-
pression theory, defined as the ratio:

CR =

∑N
j=1 |d′j |∑N
j=1 |dj |

, (3)

where |dj | and |d′j | denote the total number of
non-unique words in the uncompressed doc-
ument dj and the compressed document d′j ,
respectively. This metric directly quantifies
the reduction in text size achieved by compres-
sion.

2. Jensen-Shannon divergence. For distribu-
tions p and q, the Jensen-Shannon diver-
gence (JSD) measures the dissimilarity be-
tween word distributions and is defined as:

JSD(p||q) = 1

2
[DKL(p||m) +DKL(q||m)] , (4)

whereDKL is the Kulback-Leibler divergence,
m = (p+ q)/2. For TF-IDF compression, we
calculate the JSD between the average word
frequencies in the original and compressed
documents, defined as:

pi =
1

N

N∑

j=1

fi,j , qi =
1

N

N∑

j=1

f ′
i,j , (5)

where fi,j and f ′i,j are the frequencies of word
wi in documents dj and d′j , respectively.

For LDA compression, we use the average
JSD across all topics, defined as:

JSD(p||q) =
T∑

t=1

πt JSD(pt, qt) , (6)

πt =
1

N

N∑

j=1

zt,dj , (7)

where zt,d is an indicator function that equals
1 if topic t is the most probable topic for doc-
ument d, and zero otherwise. The densities pt
and qt are defined as:

pt,i =
1

Nt

N∑

j=1

fi,j zt,dj , (8)

qt,i =
1

Nt

N∑

j=1

f ′
i,j zt,dj , (9)

with fi,j and f ′i,j given in (5), and Nt is the
number of documents for which topic t is the
most probable one. Further details on the prop-
erties of JSD are available in Lin (1991). This
metric allows us to evaluate how well the com-
pressed documents retain the original word
distributions.

3. ROUGE score. As a summarization metric,
used to evaluate the quality of text summa-
rization, we use the ROUGE-LCS score, intro-
duced in Lin (2004), where LCS(r, s) denotes
the length of the longest sequence of words
that appear in both r and s in the same order.
The ROUGE-F1 score is defined as:

ROUGE-F1 = 2
RP

R+ P
, (10)

where recall R = |LCS(r, s)|/|r| and pre-
cision P = |LCS(r, s)|/|s|; |r|, |s|, and
|LCS(r, s)| are the word counts in the cor-
responding sequences. This metric is used to
assess how well the compressed documents
retain the key information of the original doc-
uments.

2.2 Encoding procedure

We now describe the steps of the encoding proce-
dure, following the work by Kanerva (1988):

1. We consider the English alphabet plus dig-
its, denoted as A, and assign to each element
ak ∈ A a random vector ϕ(ak) from the
space H = {±1}D, where D is the dimen-
sion of the space. In this vector space, we
define a coordinate-wise multiplication opera-
tion⊗ and a coordinate-wise sign operation⊕.
The multiplication is a simple coordinate-wise
product, while the sign operation is applied
after a coordinate-wise summation, with the
sign of zero defined as 1.

2. We use word-wise encoding. To encode a
word, we apply a permutation operation ρ to
each character’s vector ϕ(ak), shifting all but
the first coordinate to the left. The encoding
vector for word wi is then:

ϕ(wi) =
⊗

0≤k<|wi|
ρk(ϕ(ak)) , (11)

where |wi| is the number of characters in word
wi.
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3. The document encoding is obtained by apply-
ing the sign operation to the coordinate-wise
summation of all word vectors:

ϕ(d) =

|d|⊕

i=1

ϕ(wi) . (12)

The outcome of this encoding procedure is a func-
tion ϕ(d) that maps a text to the vector spaceH.

3 Theoretical analysis

We divide our theoretical analysis into two main
components: compression and encoding, based on
the compression HDC model (Figure 1) and the
previous section. These components are supported
by intuition, assumptions and theorems in the fol-
lowing subsections.

3.1 Compression
In this section, we present our compression analysis
separately for TF-IDF and LDA-based approaches.
The original TF-IDF and LDA statistics were in-
troduced by (Aizawa, 2003) and (Blei et al., 2003),
respectively.

3.1.1 TF-IDF part
We analyze the TF-IDF score ts(wi,D) as a ran-
dom variable. The randomness stems from the
frequency fi,j and the number of documents Nwi

containing the word wi. The frequency fi,j is re-
lated to the number of occurrences ni,j of word wi

in document dj as ni,j = fi,j |dj |. We can represent
the documents schematically as:

dj = w1 . . . w1︸ ︷︷ ︸
n1,j

. . . wM . . . wM︸ ︷︷ ︸
nM,j

. (13)

Thus, each document can be considered as a ran-
dom vector (n1,j , n2,j , ..., nM,j). To proceed with
our analysis, we make the following assumptions:
Assumption 1 (Poisson-like distribution and in-
dependence across documents). To model the TF-
IDF distribution, we assume that the number of
occurrences ni,j of word wi in document dj are
independent of the document dj and follows a dis-
tribution Dist(λi), where:

P(ni,j = k) =




1− f(λi) , k = 0 ;

f(λi)
λk
i e

−λi

k!(1− e−λi)
, k > 0 .

(14)

Here, f(λi) is an auxiliary function introduced to
make our theoretical analysis tractable and ensure
a monotonically growing TF-IDF approximate es-
timate, prioritizing words with larger λi for encod-
ing.

The next assumption allows us to exclude ran-
domness from the TF part:

Assumption 2 (Average frequency). The TF part
can be fixed at pi, by approximating the average
frequency as:

1

N

N∑

j=1

fi,j =
1

N

N∑

j=1

ni,j

|dj |
≈ Eni

E|dj |
= pi , (15)

where E|dj | =
M∑

i=1

λi.

Thus randomness retains only in the IDF part,
i.e. in Nw. To estimate the number of documents
where word w occurs at least once, we have:

Nw =
N∑

j=1

1(w ∈ dj) , (16)

which is a sum of N i.i.d. Bernoulli variables
Bern(qw) with qw = 1 − exp(−λw). Hence, the
expectation of Nw is qwN , and for the TF-IDF
approximate we obtain:

t̃s(w) = − λwf(λw)

(1− e−λw )E|d| ln(1− e−λw ) . (17)

To ensure a monotonically growing TF-IDF approx-
imation, we make the next assumption:

Assumption 3 (Function f(x)). Function f(x) is
defined as:

f(λ) =
λ

1 + λ
(1− e−λ) . (18)

This results in the following score approximate
expectation:

t̃s(w) = − λ2
w

(1 + λw)E|d|
ln

[
λw

1 + λw
(1− e−λw )

]
(19)

with the asymptotic behavior t̃s(w)E|d| = 1 −
3/(2λ) +O(λ−2), i.e. attaining gradually 1 from
below.

Figure 2 illustrates the true TF-IDF score (1) for
IMDB dataset and our approximate expectation
t̃s(w) as a function of the parameter estimate λ̂w,
obtained using the method of moments from the
equation:

nw ≡ 1

N

N∑

j=1

nw,j =
λ̂wf(λ̂w)

1− e−λ̂w
(20)

(here and below, estimators of random variables are
denoted with a wide hat). As can be observed, t̃s(w)
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Figure 2: Comparison of the true TF-IDF statistics ts(w)
(1) for IMDB dataset and its approximate expectation
t̃s(w) (19).

grows monotonically, as does the average true TF-
IDF. However, the true TF-IDF values exhibit a
noticeable vertical scatter (see blue points at λw <
0.4) due to the inherent randomness of the true
TF-IDF score.

The compression method outlined in Section 2.1
selects words with the largest TF-IDF score:

Wp = {w ∈ W : ts(w) ≥ ts(⌈(1−p)M⌉)}. (21)

Here and below X(k) denote is the k-th order statis-
tic of {X(w1), . . . , X(wM )}. Due to the complex-
ity of ts(w), we use expectation t̃s(w) to select the
pM words with the highest values of λ̂w:

Ŵp = {wi ∈ W : λ̂i ≥ λ̂∗} , (22)

where λ̂∗ ≡ λ̂(⌈(1−p)M⌉) is the minimal value λ̂w
of the word w included in set Ŵp. AlthoughWp

and Ŵp are not identical due to the randomness of
ts(wi) and λ̂w, the monotonicity of t̃s(w) implies
that both sets will contain the same words, except
for those in the vicinity of λ̂∗, where some words
will be randomly added and others excluded from
Wp. To simplify our analysis, we assume that the
setsWp and Ŵp differ negligibly:

Assumption 4 (Negligible difference in selected
words). We assume thatWp and Ŵp differ negli-
gibly.

For the theorems, we require an informational
inequality (proof follows from Pinsker’s inequality
and Lin, 1991):
Lemma 1. For Jensen-Shannon divergence, we
have:

1

4

[
V 2(p,m) + V 2(q,m)

]
≤ JSD(p||q) ≤ 1

2
V (p, q),

(23)

where V (p, q) =
∑

i

|pi − qi| and m = (p+ q)/2.

We now formulate the theorems (see Ap-
pendix A.1.1 for the proof).

Theorem 1 (TF-IDF compression). Based on as-
sumptions 1–4, we have the consistent estimators
for CR, JSD(p||q) and ROUGE-F1:

ĈR =

∑
w∈Ŵp

g(λ̂w)
∑

w∈W g(λ̂w)
, (24)

ĴSD(p||q) = 1

2


 ∑

w∈Ŵp

p̂w ln

(
2ĈR

ĈR + 1

)


+
ln 2

2

∑

w∈W/Ŵp

p̂w +
1

2


 ∑

w∈Ŵp

p̂w

ĈR
ln

(
2

1 + ĈR

)
 , (25)

̂ROUGE-F1 = 2
ĈR

ĈR + 1
, (26)

where g(x) = x2/(1 + x) and p̂w =
g(λ̂w)/

∑

w∈W
g(λ̂w).

Theorem 2 (Quantile criteria). Under assump-
tions 1–4, the TF-IDF compression model with
p-quantile criteria has the following bounds from
Table 1.

3.1.2 LDA part
We now examine the LDA compression procedure.
For a fixed topic t, the distribution of words is a
Dirichlet random variable, Φt ∼ Dir(α), where α
is a vector of parameters (α1, . . . , αM ) (see Blei
et al., 2003, for details). As outlined in Section 2.1,
we define the set:

Wt,p = {wi ∈ W : Φt,w ≥ Φt,(⌈(1−p)M⌉)} , (27)

where Φt,w is the probability of word w belong-
ing to topic t. To determine the distribution of
Φt,(⌈(1−p)M⌉), we need the marginal distributions
of Φt,wi .

Lemma 2. If Φ = (Φ1, . . . ,ΦM ) ∼ Dir(α), then
its marginal distributions are beta distributed ran-
dom variables:

Φi ∼ Beta

(
αi,

M∑

k=1

αk − αi

)
. (28)

This lemma allows us to identify and general-
ize the object of our interest. Applying the same
conceptual approach as in the TF-IDF part, we fo-
cus on the quantile value of the (Φt,1, . . . ,Φt,M ),
where each Φt,i is distributed as in (28).

The model has an additional parameter α, which
we set to (0.5, . . . , 0.5), implying that we are un-
sure about word significance in topic t:
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Assumption 5 (Non-significance). α =
(0.5, . . . , 0.5).

Under Assumption 5, we have a set of
Beta(0.5, 0.5[M − 1]) random variables. Using
the same expectation approach as in the TF-IDF
case, we focus on estimating EΦt,(k). To proceed,
we use the following lemma (see Arnold and Groen-
eveld, 1979, for the proof):

Lemma 3. For i.i.d. random variables
X1, . . . , Xn with mean µ and variance σ2, we have
the following inequality:

−σ
√

n− k

k
≤ EX(k) − µ ≤ σ

√
k − 1

n− k + 1
. (29)

For X ∼ Beta(α, β), we have:

µ =
α

α+ β
= M−1 , (30)

σ2 =
αβ

(α+ β)2(α+ β + 1)
= (31)

M − 1

M2(0.5M + 1)
≈ 2M−2 . (32)

Hence, we can estimate the bounds of
EΦt,(⌈(1−p)M⌉).

Before proceeding with the theorems, we clarify
the distribution of the number of occurrences. Un-
like the TF-IDF model, where we calculated ni,j
directly, in the LDA model, we operate with Φt,i

values. Therefore, we assume:

Assumption 6 (Poisson distribution). For each
topic t, we assume that the number of occurrences
of each word wi in a document dt are independent
random variables following the Poisson distribu-
tion:

dt = w1 . . . w1︸ ︷︷ ︸
υt,1∼Pois(Φt,1C)

. . . wM . . . wM︸ ︷︷ ︸
υt,M∼Pois(Φt,MC)

, (33)

where υt,i is the number of occurrences of word wi

in a document dt belonging to topic t.

This assumption is quite strict, as it assumes
a constant C that regulates the number of occur-
rences of each word in the document, and that this
constant is the same for all topics. As we argue
below, we use it to estimate the number of words
in a document on a given topic.

Given a matrix of words in topic probabilities
Φ̂t,w, we formulate the following theorems:

Theorem 3 (LDA compression estimators). Un-
der assumptions 5–6, we have asymptotically-
unbiased estimators for CR, JSD(p||q), and

ROUGE-F1:

ĈR =

∑T
t=1 πt

∑
w∈Wp,t

Φ̂t,w

∑T
t=1 πt

∑
w∈W Φ̂t,w

, (34)

ĴSD(p||q) = 1

2

T∑

t=1

πt

[∑

w∈W
Φ̂t,w ln

(
2ĈR

ĈR + 1

)]

+
1

2

T∑

t=1

πt

[∑

w∈W

Φ̂t,w

ĈR
ln

(
2

1 + ĈR

)]

+
ln 2

2

T∑

t=1

πt

∑

w∈W\Wp

Φ̂t,w , (35)

̂ROUGE-F1 = 2
ĈR

ĈR + 1
(36)

with πt defined by Eq. (7).

Theorem 4 (LDA compression bounds). Under
assumptions 5–6, the LDA compression model with
p-quantile criteria has the following bounds from
Table 1.

3.2 Encoding

To prove the applicability of our proposed CHDC
approach, we now turn to encoding implications
and focus on estimating the quality of document
analysis based on an average document size. As in
the previous section, we consider documents as a
bag of words (13). Consider now two documents,
d1 and d2. Given the binary HDC encoding, we
map our documents to the ϕ(d1) and ϕ(d2), ac-
cording to the rules from Section 2.2. As pointed
in (Kanerva, 1988), the HDC model should distin-
guish the vectors ϕ(d1) and ϕ(d2), which means
that:

⟨ϕ(d1), ϕ(d2)⟩ → 0 (37)

with D →∞ (here ⟨., .⟩ denotes the standard Eu-
clidean dot-product). To estimate the effect of the
encoding under fixed D, we propose to consider:

P(⟨ϕ(d1), ϕ(d2)⟩ ≥ εD) , (38)

where D is the vector-space dimension, ε is small
parameter that characterize distinguishability, ϕ is
the encoding function, mentioned before. Notice
that the ϕ(d) is a random vector, since we use a ran-
dom binary HDC encoding. Therefore, we need to
be sure that the probability of P(⟨ϕ(d1), ϕ(d2)⟩ >
εD) is low.

Let’s rewrite the dot-product as follows:

⟨ϕ(d1), ϕ(d2)⟩ =
D∑

i=1

ϕ1,iϕ2,i =
D∑

i=1

Xi , (39)
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Th. CR JSD ROUGE-F1

Th. 2

pM

minw∈Wp g(λ̂w)
∑

w∈W g(λ̂w)
; pM

maxw∈Wp g(λ̂w)
∑

w∈W g(λ̂w)




[
1

4

[
V̂

2
pm + V̂

2
qm

]
;
1

2
V̂pq

] [
2

CRmin

1 + CRmin

; 2
CRmax

1 + CRmax

]

Th. 4
[
p −

√
2p

1 − p
; p + p

√
2(M − 1)

] [
1

4

∑

t

π̂t

[
V̂

2
t,pm + V̂

2
t,qm

]
;
1

2

∑

t

π̂tV̂t,pq

] [
2

CRmin

1 + CRmin

; 2
CRmax

1 + CRmax

]

Table 1: Bounds for the performance metrics: compression rate (CR), Jensen-Shannon divergence (JSD), and
ROUGE-F1 score, under TF-IDF (Theorem 2) and LDA (Theorem 4) compression.

where Xi are dependent Bernoulli-type ran-
dom variables taking values in {±1}, with
γi(X1, . . . , Xi−1, Xi+1, . . . , XD) = P(Xi =
1|{X1, . . . , XD} \Xi). Unfortunately, we can’t di-
rectly apply known techniques due to the possible
dependency of the {Xi}Di=1. However, we propose
the following lemma to overcome this problem (for
proof, see Appendix A.2):

Lemma 4. Assume {Xi}i are dependent ran-
dom variables with Bernoulli-type distribution and
P(Xi = 1|Xi1 , . . . , Xik) ≤ p. Then there are
{Yi}i independent Bernoulli variables with P(Yi =
1) = p and we have:

P

(
D∑

i=1

Xi ≥ εD

)
≤ P

(
D∑

i=1

Yi ≥ εD

)
. (40)

The given lemma allows us to consider Xi as in-
dependent random variables with the same bound γ
on its probability. To estimate the value of probabil-
ity in (38), we propose using the following lemma
(see Chernoff, 1952, for proof):

Lemma 5 (Chernoff bound). For a sum of indepen-
dent random variables X =

∑

i

Xi, we have:

P(X ≥ a) ≤ inf
t>0

[
e−ta

∏

i

EetXi

]
. (41)

To justify the model, we formulate the following
theorem (for the proof, see Appendix A.2):

Theorem 5. The probability (38) is upper bounded
by:

P(⟨ϕ(d1), ϕ(d2)⟩ ≥ εD) ≤ F (D, γ, ε) , (42)

where:

1. The upper boundary:

lnF (D, ε, γ) =
D

2
(1− ε) ln

[
1− γ

γ

1 + ε

1− ε

]

−D ln

[
1 + ε

2γ

]
. (43)

2. The Bernoulli probability γ satisfies the in-
equality:

1

2
< γ ≤ 1

2
+

(
|d|
⌈|d|/2⌉

)
1

2|d|
≈ 1

2
+

√
2

π|d| , (44)

where |d| = E|di| is the average length of
the document, the round brackets denote the
binomial coefficient, and the asymptotical ex-
pansion in the r.h.s is obtained using Stirling’s
approximation.

The function F attains a maximum value of 1
when ε + 1 = 2γ. As we move away from this
line, the function rapidly declines, with the decline
becoming sharper as D increases. This implies that

ε ≲ 2

√
2

π|d| . (45)

For example, in the IMDB dataset, compression
for p = 0.1 from an average document length of
122 words to 100 words increases ε by a factor
of approximately

√
122/100 ≈ 1.1, just slightly

worsening distinguishability.

4 Experiments

To verify our theoretical results, we propose a two-
stage experimental setup, focusing on compression
effect estimation and encoding results.

4.1 Compression analysis
We explore TF-IDF and LDA text compression
techniques using Algorithm 1 (see A.4) applying
it to IMDB reviews (Maas et al., 2011), AG News
Dataset (Zhang et al., 2015), and arXiv dataset
(Clement et al., 2019). Figure 3 (see A.3) presents
the results, comparing direct calculations of the
three metrics (CR, JSD and ROUGE-F1) with
their theoretical expectations for different quantile
parameters p. The green bounds show the possi-
ble ranges of metric scatter due to the randomness
of word distributions (Theorems 2 and 4). The
three upper panel rows demonstrate that TF-IDF
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TF-IDF LDA
D ε̂p=0.01 ε̂p=0.1 ε̂p=1 ε̂p=0.01 ε̂p=0.1 ε̂p=1

256 0.17± 0.02 0.13± 0.01 0.12± 0.01 0.16± 0.02 0.13± 0.01 0.12± 0.01
1024 0.17± 0.02 0.13± 0.01 0.12± 0.01 0.16± 0.01 0.12± 0.01 0.12± 0.01
4096 0.17± 0.02 0.13± 0.01 0.12± 0.01 0.16± 0.01 0.12± 0.01 0.12± 0.01
16384 0.17± 0.02 0.12± 0.01 0.11± 0.01 0.16± 0.01 0.12± 0.01 0.11± 0.01

Table 2: Encoding analysis for TF-IDF and LDA compression techniques using the IMDB dataset. The table shows
average scalar product values for dictionary compression parameters p = 0.01, 0.1, and 1 (|d| ≈ 60, 100, 122,
respectively) and vector space dimension D.

compression accurately captures all three metrics
across all datasets and different values of p, be-
cause the relevant variables are directly observed
and the assumptions are reasonable. In contrast,
the three lower panels show that the LDA compres-
sion estimators perform worse, likely because the
underlying distributional assumptions do not fully
correspond to the actual distributions.

4.2 Encoding analysis
To validate the results in Section 3.2, we analyze
how the encoding procedure impacts the distin-
guishability of randomly selected documents using
the IMDB dataset. This dataset, which comprises
two classes, simplifies our analysis (Algorithm 2)
while still revealing key insights. We use Monte
Carlo simulations with 100 iterations for the alpha-
bet A and 100 iterations for document sampling
(pairs from different classes), resulting in 10000
total iterations. Table 2 presents estimates of the
parameter ε, defined as:

ε̂p = D−1 E|⟨ϕ(d1,p), ϕ(d2,p)⟩| (46)

where d1,p and d2,p are randomly selected docu-
ments from different classes after compression, and
p is the compression parameter. The table shows re-
sults for p = 1 (no compression, |d| ≈ 122 words),
p = 0.1 (medium compression, |d| ≈ 100 words),
and p = 0.01 (high compression, |d| ≈ 60 words).

The estimates ε̂p are similar for TF-IDF and
LDA compression techniques, decreasing approx-
imately with the square root of the average doc-
ument size |d| and remaining within 20% of the
theoretical upper boundary (45).

5 Discussion

This paper introduces a novel approach to ad-
dress dimensionality concerns in Hyperdimen-
sional Computing (HDC) by adding compression.
We propose a model that combines TF-IDF or LDA-
based compression with binary HDC to mitigate
the curse of dimensionality. Section 3 presents the

core concepts, and Section 4 provides experimen-
tal results validating our approach. Our method
demonstrates that significantly reducing the encod-
ing space of the initial dictionary only slightly com-
promises class distinguishability in classification
tasks. Specifically, reducing the dictionary by 10
times increases the distinguishability parameter by
10%, and reducing it by 100 times increases the
parameter by 40%, while still maintaining a low
value (far from 1).

Theorems 1 and 3 provide estimators that ac-
curately estimate the necessary parameters, with
TF-IDF compression showing particularly low er-
ror and LDA offering slightly better explainability
in encoding analysis (see Table 2).

Despite our numerical results aligning with the-
ory, we identify two drawbacks that warrant further
research and development in this field:

1. We observe that the bounds provided in The-
orems 2–4 are not sufficiently tight. Because
these bounds are estimated using the distribu-
tion properties of the datasets, it is difficult to
obtain tighter bounds for the given metrics.

2. The encoding effect diminishes with increas-
ing vector space sizeD. This effect, explained
by Theorem 3.2, is due to the upper boundary
function F becoming concentrated in a nar-
row region near the line ε + 1 = 2γ as D
increases, which reduces the confidence inter-
vals of the estimates ε̂, without lowering the
estimates themselves.

Our results provide several insights into the ap-
plication of TF-IDF- and LDA-based compression
techniques and demonstrate the potential of Com-
pression HDC for broader practical application to
empirical problems, where noise significantly hin-
ders data compression and classification.
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A Appendix / supplemental material

A.1 Compression analysis
In the given section, we provide the theoretical
justification of the analysis provided in the paper
before. The first part of the upcoming appendix
correspond to the TF-IDF and LDA theories.

A.1.1 TF-IDF part
Lemma 1. From Theorem 3 in (Lin, 1991) we have:

JSD(p||q) ≤ 1

2
V (p, q)

Using definition of JSD and Pinsker inequality:

JSD(p||q) = 1

2
[DKL(p||m) +DKL(q||m)] ≥

1

4
[V (p,m) + V (q,m)]

Now, we are ready to move to the proofs of the
theorems.

Theorem 1-Theorem 2. 1. Follow the definition
of CR, we have:

CR =
1
N

∑
j |d′|j

1
N

∑
j |d|j

≃ E|d′|
E|d|

Based on the model in Assumption 1 we have:

E|d| =
∑

w∈W

λ2
w

1 + λw
(47)

Notice that after the compression procedure, we
leave only the words from Ŵp; hence, given the
(47), we have:

CR ≃
∑

w∈Wp
g(λw)∑

w∈W g(λw)
,

where g(x) =
x2

1 + x
. We obtain the result of the

Theorem 1.1 by using the consistent estimator (20)
for λw and using Slutsky’s theorem.

Also, we easily obtain the bounds for Theo-
rem 2.1 for ĈR:

(
pM

minw∈Wp g(λ̂w)∑
w g(λ̂w)

, pM
maxw∈Wp g(λ̂w)∑

w g(λ̂w)

)
(48)

2. Using the Jensen-Shannon divergence defini-
tion and Lemma 3 we have:

JSD(p||q) = 1

2
[DKL(p||m) +DKL(q||m)] ,

where p = {pw} and q = {qw}, defined in
(5). Notice that based on Assumption 1we have the
following form for pw and qw:

pw =
nw

|d| , qw =
nw

|d′| (49)

Hence we have CRpw = qw. Next, we can easily
find the consistent estimator for pw:

p̂w =
λ̂w∑

k g(λ̂k)
, (50)

because of Slutsky’s theorem and consistent esti-
mator for λw. Now, using the definition of DKL:

DKL(p||q) =
∑

w

pw log

(
pw
qw

)
, (51)

and previous properties: CR×pw = qw and qw = 0
for w ∈ W \ Ŵp we obtain the results.

For the bounds in Theorem 2 we use Lemma 3.
3. ROUGE-L score. Here, we focus on the

classical text compression score. ROUGE-L has
three components to analyze:

1. Precision: P =
E|LCS|
Eq|d|

2. Recall: R =
E|LCS|
Ep|d|

3. F-score: F1 = 2
R · P
R+ P

Notice that our procedure preserves the order,
hence E|LCS| = Eq|d|. Hence, we have the fol-
lowing:

1. Precision: P ≡ 1

2. Recall: R = CR

3. F-score: F1 = 2
CR

CR+1

Now, since f(x) =
x

x+ 1
is increasing for x ≥

0, we proved our bounds.

A.1.2 LDA part
Theorem 3-4.

1. Notice that CR ≃ E|d′|
E|d| , hence using As-

sumption 6

E|d| =
M∑

i=1

Eυi =
M∑

i=1

T∑

t=1

πtCΦt,i,

37



where πt - probability of document’s topic is t.
Hence using the

ĈR =

∑M
i=1

∑
w∈Wt,tp

π̂tΦt,w
∑M

i=1

∑
w π̂tΦt,w

,

where π̂t =
1

N

N∑

j=1

zt,dj we obtain the consistent

estimator of the CR.
The upper bound can be obtained as follows:

ĈR =
∑

t

πt
∑

w∈Wp,t

Φw,t,

where Φw,t ≈ EX(j), j corresponding number of
order statistics and X = {X1, . . . , XM} sequence
of Beta distributed r.v. as in 2. Hence using the∑

t

πt = 1, we can proceed with the Lemma 3 to

obtain:

ĈR ≥ p−
√
2

M

M∑

i=⌈(1−p)M⌉

√
M − i

i
(52)

ĈR ≤


p+

√
2

M

M∑

i=⌈(1−p)M⌉

√
i− 1

M − i+ 1


 (53)

This leads us to the following:

p−
√

2p

1− p ≤ ĈR ≤ p+ p
√
2(M − 1)

2. We want to examine the value of the:

JSD(p||q) =
T∑

t=1

πtJSD(pt, qt),

where pt,i =
1

Nt

N∑

j=1

fi,jzt,dj and qt,i =

1

Nt

N∑

j=1

f ′i,jzt,dj . Under assumption Assumption 6,

we have:

pt,i/qt,i = fi/f
′
i = 1/CR

Therefore, we have: CR× pt,i = qt,i. Also, we
have:

p̂t,i =
C × Φt,i∑
k C × Φt,k

= Φt,i
P−→ pt,i,

hence using Slutsky’s theorem and consistent es-
timators for πt and pt,i, qt,i we have the consistent
estimator.

Bounds for JSD are obtained as in the proof of
Theorem 2, using the definition (6)

3. The same idea as in the proof of the Theo-
rem 2 works here.

A.2 Encoding analysis
In the given section, we provide the theoretical
justification of the encoding analysis, provided in
the paper.

Lemma 4. Let’s consider u1, . . . , uD indepen-
dent uniform distributions on [0, 1]. Denote Yi =
1(ui ≤ p), then {Yi}i are independent. Here we as-
sume 1(...) ∈ {±1}, to satisfy the Bernoulli-type
distribution of Xi.

Notice that P(Xi = 1) = P(ui ≤ qi), where
qi = P(Xi = 1|X1, . . . , Xi−1) and thence:

Xi ≤ Yi ⇒ P(
D∑

i=1

Xi ≥ εD) ≤ P

(
D∑

i=1

Yi ≥ εD
)

Theorem 5.
Probability estimation part.
In the given appendix, we justify the ideas pro-

vided in the encoding part in the theory section.
Notice that we aimed to consider the given proba-
bility:

P(⟨ϕ(d1), ϕ(d2)⟩ ≥ εD) =

P

(
D∑

i=1

Xi ≥ εD
)

= ⋆

Using the Lemma 5, we can obtain:

⋆ ≤ inf
t>0

[
e−εDt

(
EetX

)D]
,

where X is a Bernoulli random variable with pa-
rameter γ and values in {±1}. Hence, we have:

⋆ ≤ inf
t>0

[
e−εDt

(
γet + (1− γ)e−t

)D]
= inf

t>0
L(t)

To find the minimum of the L(t), we need to
derive the first-order condition:

d

dt
L(t) = 0

This is equivalent to:

(γ(e2t − 1) + 1)D−1

︸ ︷︷ ︸
>0, since γ < 1

×
(
(γ − 1)(εD +D)− γe2t(εD −D)

)
= 0
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(1− γ)D(ε+ 1) = γD(1− ε)e2t ⇒

tmin =
1

2
ln

[
1− γ
γ

1 + ε

1− ε

]
=

1

2
lnC(ε)C(γ)︸ ︷︷ ︸

C(ε,γ)

After rearranging, we have:

exp

[
−D

(
ε ln

√
C(ε, γ)

− ln
(
p
√
C(ε, γ) + 1−γ√

C(ε,γ)

))]
=

exp

[
−D ln

(
C(ε, γ)(ε+1)/2

1− γ + γC(ε, γ)

)]
=

exp


−D ln

(
1

2

[
1− γ

γ

1 + ε

1− ε

](ε−1)/2
1 + ε

γ

)

︸ ︷︷ ︸
⋆⋆




Hence, this probability decreases with increasing
D or by managing the expression in scopes. Simple
algebra shows that for the same level of D and ε,
we can increase the expression ⋆⋆ by increasing the

γ value after the critical point γε =
1 + ε

2
.

Compression connection part.
Next, we aim to connect the encoding analysis

with the compression part. We provide the follow-
ing explanation. Consider the following relation-
ship:

γ = P(ϕ1,iϕ2,i = 1) = γ̃2 + (1− γ̃)2

where ϕi is the i-th position of the vector-
encoding of randomly generated document d.

Notice that:

γ̃ = P


sign




|d|∑

j=1

ϕi,j


 = 1


 =

P


sign




M∑

k=1

#{wk}ϕi,wk

︸ ︷︷ ︸
νi


 = 1


 ,

where the support of the νi is determined by the

all possible sums of
M∑

k=1

±#{wk}. The behavior of

this sum is quite unpredictable, but we can say that
the given distribution is symmetrical. To estimate
P(sign νi = 1) we will consider the probability of
η = P(νi = 0). Hence (by symmetry), we have:

γ̃ =
1

2
+
η

2
,

i.e., we cut half of the probability from the left tail
of the distribution and add it to the right one. We
propose the following estimation of the η:

η ≤
( |d|
⌈|d|/2⌉

)
1

2|d|

This bound is easy to obtain assuming νi ≈
|d|∑

i=1

υi, where υi is independent Bernoulli r.v. with

values ±1 and equal proabilities.
Based on the CR definition, CR×|d| = |d′|,

hence for compressed object the value of η will be
bounded by:

η ≤
(

CR |d|
⌈CR |d|/2⌉

)
1

2CR |d|

The RHS is increasing with the decreasing of the
CR. As a result, we have:

γ = γ̃2+(1− γ̃)2 =
(
1

2
+
η

2

)2

+

(
1

2
− η

2

)2

≤

1

2
+

( |d|
⌈|d|/2⌉

)
1

2|d|

A.3 Additional results
In the given section we provide the figures, pro-
viding a comprehensive compression analysis com-
paring TF-IDF and LDA techniques across three
distinct datasets (IMDB, AG News, and arXiv).
The analysis evaluates three key metrics - Com-
pression Ratio (CR), Jensen-Shannon Divergence
(JSD), and ROUGE-F1 scores - as functions of
dictionary compression quantile p, with results
plotted against their theoretical estimators. The
green shaded regions represent confidence inter-
vals around the estimated values, while the black
dots indicate the true theoretical values for com-
parison. Both TF-IDF (top three rows) and LDA
(bottom three rows) methods show varying perfor-
mance patterns across the different datasets, with
the estimation curves generally tracking well with
their corresponding theoretical benchmarks.
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Figure 3: Compression analysis for TF-IDF (top three rows) and LDA (bottom three rows) techniques. The results
compare the compression ratio CR, Jensen-Shannon divergence JSD, and ROUGE-F1 scores, as functions of the
dictionary compression quantile p, with their theoretical estimators across the IMDB, AG News, and arXiv datasets .

A.4 Experiment algorithms

Here, we describe the algorithms referenced in the
main text and used throughout the experimental
section. For both of the central components of the
paper – the analysis of compression-based repre-
sentations and the evaluation of statistical bounds –
we provide clear pseudo-code that can be directly
translated into practical implementations. The goal
of presenting the algorithms in the appendix is to
give the reader a transparent view of how the theo-
retical quantities are computed in practice, bridging

the gap between abstract definitions and experimen-
tal procedures. Each algorithm is written in a way
that emphasizes the logical flow of operations, start-
ing from the input dataset, applying compression or
transformation, and proceeding to the estimation of
key quantities such as divergences, bounds, and er-
ror measures. By doing so, we aim to highlight that
the computational steps are straightforward and re-
producible, and that they can be adapted to other
datasets or models with minimal modification.
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Algorithm 1 Clusterization statistics collection
Input: Dataset X , compression model fcomp ∈
{tf-idf,LDA}, pvalues list of possible compres-
sion parameters.
Return: Dp dictionary of statistics.
Dp ← {}
for p in pvalues do
Xc ← fcomp(X, p)

Ŷp ← Stats(Xc, p) {Calculate statistics
based on Theorems 1 – 4 with Xc}
Yp ← TrueV alues(Xc, p) {Calculate true
values based on definitions in Section 3.1.}
Dp[p]← (Ŷp, Yp) {Save the bounds and esti-
mators for the given value of p}

end for

Algorithm 2 Encoding statistics collection

Input: Dataset X , dimension size D, epochs
number of epochs of Monte Carlp, compression
model fcomp ∈ {tf-idf,LDA}, pvalues list of
possible compression parameters.
Return: E the list of encoding statistics
E ← []
for i in [1, . . . , epochs] do
Φ(A) ← U({±1}|A×d|) {Generate random
vectors}
ε̂p ← {p : 0} {Dict for interesting values of
p}
for j in [1, . . . , epochs] do

for p in pvalues do
d′1, d

′
2 ← fcomp(d1, p), fcomp(d2, p)

{Compress the documents}
ϕ′1, ϕ

′
2 ← ϕ(d′1), ϕ(d

′
2) {Encode the doc-

uments}

ε̂p[p] = ε̂p[p] +
|⟨ϕ′1, ϕ′2⟩|

D
end for

end for
ε̂p[p] = ε̂p[p]/epochs {Average the value of
dot-product}
E = E ∪ ε̂p

end for
E = (mean(E), std(E)) {Average and get std
of all estimators}
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Abstract
Traditional Emirati Arabic, a culturally rich and
linguistically distinct dialect, remains underrep-
resented in modern automatic speech recog-
nition (ASR) systems. This paper addresses
the gap by introducing a curated speech cor-
pus derived from heritage broadcasts and liter-
ary sources, and by evaluating the performance
of state-of-the-art ASR models on this low-
resource dialect. We examine the zero-shot and
fine-tuned performance of five pre-trained mod-
els—Wav2Vec2, XLS-R, Whisper, and Mas-
sively Multilingual Speech (MMS)—on our
traditional Emirati Arabic dataset. Our re-
sults show that fine-tuning improves both Word
Error Rate (WER) and Character Error Rate
(CER), with MMS achieving the best results
post-adaptation. Through detailed error analy-
sis, we highlight challenges posed by dialectal
morphology, phonology, and lexical variation,
and propose targeted adaptations for dialect-
specific ASR. This work establishes a founda-
tional benchmark for traditional Emirati ASR
and contributes to the broader goal of preserv-
ing linguistic heritage through speech technol-
ogy.

1 Introduction

Automatic Speech Recognition (ASR) technolo-
gies have achieved remarkable performance in high-
resource languages such as English and Mandarin.
However, their effectiveness diminishes sharply for
low-resource languages and dialects, particularly
those with significant phonological and morpholog-
ical variation. Arabic presents unique challenges
in this regard, being a highly diglossic language
with numerous regional dialects, many of which
are underserved by current ASR systems.

Traditional Emirati Arabic is one such di-
alect. Rooted in the oral traditions of the United
Arab Emirates, it retains linguistic features from
Bedouin, coastal, and mountain communities that
are increasingly overshadowed by Modern Stan-
dard Arabic (MSA) and urban Gulf variants. This

dialect is not only linguistically distinct but also
culturally significant, encoding idiomatic expres-
sions, heritage knowledge, and regional identity.

Table 1: Linguistic Features of Traditional Emirati Di-
alect

Feature Type Example from
Transcript

Description

Phonological
é J
 k. (Chaih),
I. Ó (mub)

h. pronounced
as /ch/ (instead
of /j/); conso-
nant reduction
from ñë AÓ (ma
huwa)

Morphological
Q�.

	
j
	
JK. ,

	
àðAª

�
J
	
�K. ,

é
	
Kðñ��


Prefix H. for
future tense;
Gulf-specific
plural verb
conjugation

Lexical
A
	
J Ê ë , 	á�
 J
 Ëñ

�
Ê Ë @ ,

A
	
KPAK
, A

	
JªK. P

Heritage terms
for “our fam-
ily”, “elders”,
“neighbors”,
“our friends”

Syntactic
Q�. º

�
J K. Ðñ K
 ,

ú


æ
�
�ËAë

Use of Ðñ K

(yawm) for con-
ditionals; con-
tracted demon-
strative ú



æ
�
�ËAë

Discourse Markers
ú



	
æªK
, Èñ£ úÎ« Filler word

ú



	
æ ª K
 ; Gulf

expression úÎ«

Èñ £ meaning
“immediately”

Despite its value, traditional Emirati Arabic has
been largely ignored in computational linguistics.
Existing ASR systems are ill-equipped to handle its
unique phonetic and lexical traits. To address this
gap, we develop a dedicated speech dataset sourced
from the Alsanaa (Dalmook, 2021) program and
related literary content, and evaluate how modern
ASR models perform on this data.

In this paper, we present:
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• A curated traditional Emirati speech corpus
with standardized transcription and prepro-
cessing

• A comparative evaluation of five leading ASR
models (Wav2Vec2, XLS-R, Whisper Small,
Whisper Medium, MMS) in zero-shot and
fine-tuned scenarios

• Insights into model-specific strengths and lim-
itations for dialectal Arabic ASR.

2 Related Work

2.1 ASR for Arabic and Dialectal Variants

ASR systems have achieved remarkable progress
for major world languages, yet robust solutions
for Arabic dialects-particularly traditional Emirati
Arabic-remain limited due to unique linguistic fea-
tures and data scarcity. The Emirati dialect, with its
distinct phonological and grammatical character-
istics, poses significant challenges for ASR, espe-
cially given the lack of dedicated speech resources.
Addressing such dialectal diversity is crucial for
both technological inclusion and cultural preserva-
tion.

Recent advances in self-supervised learning
(SSL) have enabled substantial improvements in
ASR for low-resource languages and dialects. Mod-
els such as wav2vec2, HuBERT, and WavLM have
demonstrated strong performance gains when fine-
tuned on limited labeled data (Zhao and Zhang,
2022). Cross-lingual models, including XLS-R
and Meta’s MMS, further extend these capabili-
ties, with XLS-R achieving impressive results even
with as little as five minutes of training data in In-
donesian language experiments (Sakti and Titalim,
2023). For Arabic, multilingual SSL models gener-
ally outperform monolingual approaches, as shown
by Younis and Mohammad (2023), who report that
fine-tuned XLS-R and MMS models achieve lower
word error rates (WER) compared to monolingual
baselines.

End-to-end models such as Whisper have also
gained traction for their ability to generalize across
languages. Talafha et al. (2023) benchmarked
Whisper on multiple Arabic dialects, finding that
while zero-shot performance often surpasses fully
fine-tuned XLS-R models, significant drops occur
for previously unseen dialects, including Emirati.
The VoxArabica system further demonstrates the
potential of SSL-based models for both dialect iden-

tification and ASR across a wide range of Arabic
varieties (Waheed et al., 2023).

Hybrid approaches that combine deep learning
with traditional phonetic modeling have also been
explored. Dhouib et al. (2022) provide a systematic
review of Arabic ASR research, highlighting the
predominance of MSA-focused studies and the un-
derrepresentation of dialectal variants. Novel archi-
tectures, such as CNN-LSTM with attention mecha-
nisms, have shown promise for dialectal ASR, with
Alsayadi et al. (2022) reporting improved WER on
SASSC and MGB-3 datasets.

2.2 Low-Resource ASR Techniques

Transfer learning is a key strategy for improv-
ing ASR in low-resource settings. Elmahdy et al.
(2014) utuilize MSA data to enhance recognition of
under-resourced Arabic dialects, achieving notable
WER reductions for Qatari Arabic. Data augmen-
tation methods, including SpecAugment, synthetic
speech, and self-training, have also proven effec-
tive. Bartelds et al. (2023) demonstrate that self-
training and TTS-based augmentation consistently
reduce WER for minority languages. Similarly,
Khudhair and Talib (2022) show that combining
data augmentation with language modeling yields
competitive results for Arabic ASR.

Innovative data creation pipelines further address
resource scarcity. Yeroyan and Karpov (2024) in-
troduce a workflow for generating ASR datasets
from audiobooks, enabling practical ASR develop-
ment for languages with limited training data.

2.3 Datasets and Benchmarking

The development of high-quality datasets is foun-
dational for Arabic ASR research. The Casablanca
dataset covers eight Arabic dialects, including Emi-
rati, and provides comprehensive annotations for
benchmarking (Talafha et al., 2024). Mixat offers
Emirati-English code-switching data, highlighting
the challenges of bilingual ASR (Ali and Aldar-
maki, 2024). SADA (Alharbi et al., 2024) and
QASR (Mubarak et al., 2021) further expand re-
sources for Gulf and multi-dialect Arabic speech,
supporting supervised training and a range of
speech and NLP tasks.

Efforts to benchmark code-switching ASR are
exemplified by Hamed et al. (2022), who introduce
a new Egyptian Arabic-English corpus and demon-
strate the benefits of combining DNN-hybrid and
Transformer approaches. Despite these advances,
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challenges remain in achieving consistent evalua-
tion and broad dialectal coverage.

2.4 Gaps and Motivation
While recent work has advanced ASR for Arabic
and its dialects, systematic evaluation and adapta-
tion of state-of-the-art pre-trained models for tra-
ditional Emirati Arabic remain largely unexplored.
This study addresses this gap by benchmarking and
fine-tuning leading ASR models on Emirati speech,
aiming to identify effective strategies for robust
dialectal ASR and contribute to the broader field of
low-resource speech technology.

3 Dataset

To develop and evaluate ASR models for tradi-
tional Emirati Arabic, we curated a dialect-specific
speech corpus sourced from Alsanaa (Dalmook,
2021) program, broadcast by Aloula station and
supported by the Hamdan bin Mohammed Her-
itage Center. The dataset includes 102 MP3 audio
files (approximately 4 hours) and their correspond-
ing transcriptions, extracted from alsanaa book, a
heritage literature book authored by Abdullah Bin
Dalmook. These recordings capture authentic Emi-
rati Arabic speech, preserving the dialectal nuances
and linguistic patterns unique to the region.

Given the lack of existing Emirati ASR corpora,
we aligned the audio and text manually, converting
them into structured plain-text pairs. The dataset
was partitioned into 80% training, 10% validation,
and 10% test splits. Notably, the audio is spoken
by a single male speaker, limiting speaker diversity
but preserving dialectal authenticity.

AëA
	
J
	
®
�
� ú



ÎË @


éÊJ
Òm.
Ì'@ Z AJ


�
�


B@ 	áÓ

	
àñmÌ'A��
 Ñî

	
E @


	á�
J
Ëð



B@ A

	
JÊë Y

	
J«

	á�
Ê«@
	Q��Ó é

	
JJ

	
�
�
K @ @

	
X @


ú



	
æªK
 .H. QªË@

	á�
K.

, ú


æ
�
�
�
Bð

	á�
K. PA
	
�
�
JÓ é

	
JJ

	
�
�
K @

�
Bð

. Ñî
	
DJ
K. @ñm

Ì'A�ð @ðPA�

Figure 1: Sample transcription

Preprocessing included:

• Diacritics and punctuation removal to stan-
dardize transcriptions

• Audio cropping (removal of non-speech in-
tro/outro segments)

• Mono conversion and resampling to 16 kHz

• Normalization to standardize amplitude levels

This dataset captures phonological, morphologi-
cal, and lexical features unique to traditional Emi-
rati Arabic and serves as a foundational resource
for dialect-specific ASR. The full dataset and pre-
processing pipeline are available online.1

4 Models and Training

We adopt a comparative experimental framework
to evaluate the performance of state-of-the-art ASR
models on traditional Emirati Arabic. Our ap-
proach consists of two main stages: zero-shot eval-
uation and fine-tuning.

4.1 Model Selection

We evaluated five pre-trained ASR architectures,
each fine-tuned or adapted for Emirati Arabic or
closely related dialects:

Wav2Vec 2.0 (eabayed/wav2vec2emiratidialict1)
Wav2Vec 2.0 is a self-supervised learning frame-
work for speech recognition that learns audio
representations via a contrastive task, enabling
strong performance with limited labeled data
(Baevski et al., 2020). Its architecture combines a
convolutional feature encoder with a Transformer
network, allowing effective modeling of phonetic
and lexical features in low-resource settings. The
model used here is further adapted to Emirati Ara-
bic using audio from regional media, resulting in
315 million parameters and improved recognition
of dialectal nuances.

XLS-R (jonatasgrosman/wav2vec2-large-xlsr
-53-arabic) XLS-R extends Wav2Vec 2.0 to
the multilingual domain, pre-trained on over
436,000 hours of speech in 128 languages (Babu
et al., 2021). This enables robust cross-lingual
transfer and strong performance on low-resource
dialects. The Arabic-adapted variant, with 315
million parameters, is fine-tuned on Common
Voice 6.1 and the Arabic Speech Corpus, making it
well-suited for Emirati Arabic (Babu et al., 2021).

Whisper Small
(ayoubkirouane/whisper-small-ar) Whisper
is a transformer-based encoder-decoder ASR
system trained on diverse multilingual data

1https://github.com/MahaAlBlooki/
alsanaa-emirati-dataset
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(Radford et al., 2022). The small Arabic model
(241M parameters) is fine-tuned on the Mozilla
Common Voice v11 dataset for Arabic, and further
adapted for Emirati speech, balancing efficiency
with accuracy.

Whisper Medium
(Seyfelislem/whisper-medium-arabic) This
variant of Whisper, with 763 million parameters,
is optimized for Arabic speech recognition.
Fine-tuning on Emirati data enhances its ability to
transcribe dialectal speech, leveraging the robust
encoder-decoder architecture of Whisper.

MMS (facebook/mms-1b-all) Massively Mul-
tilingual Speech (MMS) is a self-supervised model
trained on over 1,000 languages, including Arabic
dialects (Zhang et al., 2023). With 965 million
parameters, MMS is designed for broad language
coverage and demonstrates strong zero-shot and
few-shot ASR capabilities. While not specifically
fine-tuned for Emirati Arabic, its multilingual train-
ing enables generalization to underrepresented di-
alects.

Each model was evaluated in two modes:

• Zero-shot inference: Direct evaluation with-
out further training on our dataset.

• Fine-tuning: Models were adapted to the
Emirati dataset using transfer learning.

4.2 Fine-Tuning Strategy

Fine-tuning involved freezing most pretrained lay-
ers and training only the final layers (e.g., projec-
tion heads and classification layers). The following
configuration was used:

• Optimizer: AdamW with weight decay

• Learning rate schedule: Linear warm-up fol-
lowed by decay

• Batch size: Adjusted per model based on
memory constraints

• Epochs: Trained until validation loss conver-
gence (early stopping applied)

• Data augmentation: Speed perturbation and
SpecAugment to improve generalization

• Gradient accumulation: Enabled to simulate
larger batch sizes on limited hardware

5 Evaluation

5.1 Metrics

We use two standard ASR metrics:

• Word Error Rate (WER): Percentage of
word-level errors (insertions, deletions, substi-
tutions).

• Character Error Rate (CER): Measures
character-level discrepancies; useful for mor-
phologically rich languages and dialects.

Both metrics were calculated on the validation
and test splits of our Emirati dataset.

5.2 Evaluation Protocol

All models were tested directly on the test set with-
out any adaptation to measure out-of-the-box gener-
alization. After training, models were evaluated on
the same test set to assess improvements in recog-
nition accuracy.

5.3 Qualitative Analysis

Beyond quantitative metrics, we conducted a quali-
tative error analysis focused on the recognition of
dialect-specific lexical items, morphological trans-
formations (e.g., future tense prefixes), and com-
mon phonological shifts (e.g., hamza deletion, /j/
→ /ch/ substitutions).

6 Results

We evaluated the zero-shot and fine-tuned perfor-
mance of several state-of-the-art pre-trained ASR
models-Wav2Vec 2.0, XLS-R, Whisper (small and
medium), and MMS-on traditional Emirati Arabic
speech. Performance was measured using WER
and CER, providing insight into both word-level
and subword recognition accuracy.

6.1 Baseline Performance

In the zero-shot setting in Table 2, Wav2Vec 2.0
achieved the best results among all models, with
a WER of 46.50% and CER of 17.13%. This sug-
gests that its self-supervised pre-training enables
effective generalization to unseen dialects, captur-
ing phonetic patterns even when word-level recog-
nition is challenging. MMS ranked second (WER
67.21%, CER 24.56%), likely benefiting from its
broad multilingual training and explicit support for
Arabic dialects. XLS-R, despite its cross-lingual
design, performed poorly (WER 88.26%, CER
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Model WER (%) CER (%)
Wav2Vec 2.0 46.50 17.13
XLS-R 88.26 40.37
Whisper Small 93.06 81.02
Whisper Medium 86.10 75.01
MMS 67.21 24.56

Table 2: Average WER and CER on the whole dataset
in baseline inference

40.37%), indicating potential limitations in its cov-
erage of Gulf Arabic and a significant domain gap
when applied to Emirati speech. Whisper mod-
els showed the weakest zero-shot performance,
with Whisper Small reaching 93.06% WER and
81.02% CER, and Whisper Medium slightly better
at 86.10% WER and 75.01% CER. The high CER
values for Whisper indicate substantial difficulties
at the character level, likely due to mismatches be-
tween the pre-training data and the phonological
characteristics of Emirati Arabic.

Qualitative analysis of model errors revealed that
models often misrecognized dialect-specific vocab-
ulary and morphemes, with XLS-R and Whisper
in particular producing transcriptions influenced
by other Arabic dialects. For example, XLS-R fre-
quently substituted Emirati morphemes with those
more typical of Egyptian or Levantine Arabic, re-
flecting gaps in dialectal representation in the pre-
training corpus.

These results highlight the challenges of recog-
nizing traditional Emirati Arabic with existing ASR
models and underscore the importance of dialect-
specific adaptation. The findings establish a bench-
mark for future work and inform model selection
and adaptation strategies for low-resource dialectal
ASR, with broader implications for Arabic speech
technology research

6.2 Fine-Tuned Performance

Table 3 summarizes the impact of fine-tuning each
ASR model on the Emirati Alsanaa dataset. Fine-
tuning led to substantial performance gains for
some architectures, while others showed limited
or even negative adaptation.

MMS exhibited the most pronounced improve-
ment, with WER dropping from 67.21% to 41.04%
and CER from 24.56% to 13.34%. This 26.17 and
11.22 percentage point reduction in WER and CER,
respectively, highlights the effectiveness of MMS’s
multilingual pre-training in facilitating rapid adap-

tation to low-resource dialects. After fine-tuning,
MMS outperformed all other models, establishing
a new benchmark for Emirati Arabic ASR.

Wav2Vec 2.0 also benefited from fine-tuning,
achieving a modest reduction in WER (from
46.50% to 44.30%) and CER (from 17.13% to
15.96%). The relatively small improvement sug-
gests that the model’s self-supervised representa-
tions already captured much of the dialectal varia-
tion present in the dataset, resulting in stable per-
formance before and after adaptation.

In contrast, XLS-R’s performance deteriorated
after fine-tuning, with WER rising from 88.26% to
89.78% and CER from 40.37% to 42.31%. This de-
cline may indicate overfitting to the limited training
data or challenges in adapting broad cross-lingual
representations to specific dialectal features, a phe-
nomenon noted in low-resource ASR adaptation
literature.

The Whisper models showed mixed results.
Fine-tuning Whisper Small led to further degra-
dation, with WER exceeding 100% (100.04%); it
seemed like the model was encountering a repeti-
tion or loop behavior at the end of some transcrip-
tions. For instance, in one of the transcriptions,
éJ
Óñ

�
K, a gibberish prediction of what is supposed to

be @ñîE
 @ñ
�
K (cheek-kissed) is repeated many times

consecutively, which isn’t in the original text. This
type of repetition has artificially inflated the WER
of Whisper Small model. On the other hand, the
CER increased to 75.53%, suggesting substantial
insertion errors and a mismatch between model
architecture and the Emirati dialect under data-
scarce conditions. Whisper Medium showed only
marginal change, with WER shifting from 86.10%
to 88.60% and persistently high CER, indicating
that additional data or specialized adaptation tech-
niques may be required for effective dialectal ASR
with Whisper.

Overall, these results underscore the importance
of model selection and adaptation strategy for low-
resource dialectal ASR. While MMS demonstrates
strong adaptability to Emirati Arabic, other archi-
tectures may require more sophisticated fine-tuning
or larger datasets to achieve competitive perfor-
mance.

6.3 Error Analysis

A detailed error analysis reveals notable differ-
ences in how each model adapts to traditional
Emirati Arabic, highlighting both architectural
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Figure 2: Sample transcription with decoding repetition

strengths and persistent challenges. Models based
on self-supervised pre-training, such as MMS and
Wav2Vec 2.0, consistently outperformed Whisper
variants, suggesting that phonetic representation
learning is more effective for dialectal ASR than
multitask training approaches.

A key observation is the relationship between
zero-shot and fine-tuned performance: models with
strong zero-shot results (e.g., Wav2Vec 2.0) exhib-
ited only modest improvements after fine-tuning,
while models with moderate zero-shot performance
(e.g., MMS) showed substantial gains. This pattern

Model WER (%) CER (%)
Wav2Vec 2.0 44.3 15.96
XLS-R 89.78 42.31
Whisper Small 100.04 75.53
Whisper Medium 88.60 72.03
MMS 41.04 13.34

Table 3: Average WER and CER on test set after fine-
tuning

underscores the importance of evaluating both gen-
eralization and adaptability when selecting ASR
architectures for low-resource dialects.

Across all models, CER was consistently lower
than WER, indicating that character-level recog-
nition is more robust than word-level recogni-
tion. This discrepancy, especially pronounced in
Wav2Vec 2.0 and MMS, suggests that while pho-
netic patterns are captured effectively, models strug-
gle with accurate word segmentation and lexical
reconstruction. Integrating language models during
post-processing may help mitigate these issues.

Architectural differences also affected data effi-
ciency. MMS demonstrated high data efficiency,
achieving significant improvements with limited
Emirati data, whereas XLS-R and Whisper re-
quired more extensive adaptation to yield compa-
rable results. Notably, fine-tuned Whisper Small
frequently truncated longer utterances, omitting
culturally salient content and narrative details. Ad-
ditionally, repetition errors were observed, with
the model generating nonsensical word sequences,
artificially inflating the WER.

Dialectal specialization remains a significant
challenge. Even after fine-tuning, high error rates
persisted-particularly for Whisper Small and XLS-
R, which are primarily pre-trained on Egyptian or
MSA data. These models often substituted Emirati
morphemes with forms from other dialects, reflect-
ing insufficient representation of Gulf Arabic in the
pre-training corpus. Furthermore, inconsistent dia-
critization in XLS-R outputs, despite ground-truth
normalization, introduced additional errors.

These findings emphasize the need for careful
model selection, larger dialectal datasets, and po-
tentially pre-training strategies tailored to Gulf Ara-
bic. The persistent performance gaps highlight the
ongoing challenge of developing inclusive ASR
technologies for underrepresented dialects, under-
scoring the importance of both technical innovation
and investment in dialectal language resources.

7 Limitations

This work faces several limitations, one of which
is dataset diversity. The dataset includes a single
speaker (male), limiting phonetic and demographic
diversity. This may bias model performance toward
that speaker’s vocal and dialectal traits. Another
limitation is duration. With only 4 hours of au-
dio, the dataset is relatively small, constraining
model generalization. Additionally, dialect cover-
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age is limited. While rich in traditional features,
the dataset does not fully represent all sub-dialectal
varieties across the UAE (e.g., eastern vs. western
tribal variants). Moreover, the evaluation scope
of WER and CER focused on transcription accu-
racy, without assessing downstream tasks, such as
speaker identification or sentiment analysis.

Future work should explore speaker diver-
sity, cross-dialectal robustness, and larger-scale
datasets.

8 Conclusion

This paper presents the first ASR benchmark for
traditional Emirati Arabic, a linguistically and cul-
turally significant but technologically underserved
dialect. By compiling a novel dataset and evaluat-
ing state-of-the-art ASR models in both zero-shot
and fine-tuned settings, we demonstrate the value
of transfer learning and domain-specific adaptation.

Our results demonstrate that self-supervised
models with strong multilingual pre-training, par-
ticularly MMS, achieve superior adaptability and
performance after fine-tuning, while other archi-
tectures exhibit varying degrees of success. The
persistent gap between character- and word-level
accuracy underscores the need for improved mod-
eling of dialectal lexical and phonological features.

This work contributes to Arabic dialectal ASR
research and highlights the role of speech technol-
ogy in preserving oral heritage. We release our
dataset and preprocessing tools to encourage fur-
ther research on Gulf Arabic ASR.

9 Ethics Statement

This research adheres to the ACL Ethics Policy.
All audio recordings used in this study were pub-
licly available and sourced from cultural heritage
broadcasts and literary materials produced by the
Hamdan bin Mohammed Heritage Center. Proper
credit has been given to the original author, Abdul-
lah Bin Dalmook, whose work was used with the
intent of preserving linguistic and cultural heritage.

The dataset features speech from a single speaker
who is a public broadcaster and author. No person-
ally identifiable or sensitive information is included.
The goal of this research is to support inclusive
technology and cultural preservation, not surveil-
lance or misuse.

We acknowledge the potential risks of dialec-
tal ASR systems being misused for sociolinguistic
profiling or discrimination. To mitigate this, our

work is released with a cultural preservation focus,
encouraging ethical use in academic and heritage
documentation contexts.
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Abstract

This paper proposes a novel method to control
the style of the dialog system’s utterances ac-
cording to the user’s level of intimacy with the
system. Specifically, the dialog model gener-
ates responses in a polite style when the user
exhibits a low level of intimacy with the sys-
tem and in a casual style when the user’s inti-
macy is high. The proposed model consists
of two submodels: the Intimacy Interpreter
and Response Generator. The Intimacy Inter-
preter generates an embedding that represents
the user’s intimacy. This model is trained by
contrastive learning using an intimacy-labeled
dialog corpus. The Response Generator accepts
a dialog context and an intimacy embedding,
and then generates a response in an appropriate
style. We apply two loss functions to fine-tune
a Large Language Model (LLM) to train the
Response Generator. The results of automatic
and human evaluations show that the proposed
method outperforms the baselines in terms of
style control in response generation.

1 Introduction

In recent years, free dialog systems that allow users
to converse about any topic have attracted consid-
erable attention (Khatri et al., 2018; Higashinaka
et al., 2021; Dinan et al., 2020). These systems
need to have a comfortable conversation with the
user and establish a long-term friendly relationship
to facilitate conversation between the user and the
dialog system (Ram et al., 2018).

To establish friendly relationships, humans
change their speech style based on their level
of intimacy and social connections with others
to facilitate smooth communication (Wardhaugh
and Fuller, 2021; Hovy, 1987; Silverstein, 2003).
This ability is referred to as “style control” here-
after. The style control should also be considered
in conversations between a human and a system
(Kageyama et al., 2018). Consequently, a free di-
alog system is required to have the capability for

style control.
The goal of this research is to develop a dialog

system that dynamically adjusts styles according to
the user’s feelings toward the dialog system. A typ-
ical example of style control is that a speaker uses
formal/polite expressions or informal/casual ex-
pressions by the relationship with their partner (Aa-
pakallio, 2021; Liu and Kobayashi, 2022). Miura
et al. (2024a) reported that speakers tend to use a
polite style when intimacy with a partner is low and
a casual style when intimacy is high. Therefore,
we aim to dynamically recognize the user’s level
of intimacy through their dialog history and enable
the dialog system to flexibly use a polite or casual
style when intimacy is low or high.

This paper proposes a model that accurately iden-
tifies the user’s level of intimacy with the dialog
system and generates responses in an appropriate
style. An intimacy interpreter is introduced to ob-
tain a user embedding that represents the user’s
intimacy, and then this embedding is fed into a re-
sponse generator, which is obtained by fine-tuning
a Large Language Model (LLM), as a soft prompt.
It enables the dialog system to appropriately con-
trol polite and casual styles.

The contributions of this paper are summarized
as follows.

• We develop a dialog system that dynamically
captures the user’s intimacy and adjusts re-
sponses to be either polite or casual style ac-
cordingly.

• We propose a new framework to obtain an
abstract representation of the user’s intimacy
and incorporate it into a dialog model for style
control.

• The effectiveness of the proposed method is
demonstrated through automatic and human
evaluations.
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2 Related Work

Methods for generating responses in a particular
style have been actively studied. Niu and Bansal
(2018) defined such a task, created a model for
identifying a speech style, and proposed a method
for generating responses in a given style (e.g., a
polite or casual style). Gao et al. (2019) proposed
a model that generated responses in a given style
while maintaining consistency with the dialog con-
text by sharing the latent space between conver-
sational modeling and style modeling. Zhu et al.
(2021) assumed that conversational modeling and
style modeling are contradictory, and proposed a
method to separate the representations of content
and style within the shared latent space proposed
by Gao et al. (2019), where each is represented
in different dimensions of the latent space. Zheng
et al. (2021) proposed a method for automatically
constructing a dialog corpus containing utterances
in a given style, which was used to train a dia-
log model that generated responses in line with the
specified style. Specifically, they trained a Seq2Seq
(Sequence-to-Sequence) model that transformed a
sentence into an equivalent sentence in the speci-
fied style using a text corpus of that style. A new
dialog corpus was constructed by converting the
style of utterances in an original dialog corpus us-
ing the trained style conversion model. Yang et al.
(2020) proposed STYLEDGPT to fine-tune a pre-
trained language model to obtain a dialog model
that generates utterances in the target style. They
designed loss functions for fine-tuning, which were
based on a language model of a given style and a
classification model for identifying the style of an
utterance.

In recent years, several studies have leveraged
the text generation capabilities of rapidly advancing
LLMs to address style control. Konen et al. (2024)
controlled a style in text generation by adding style
vectors to the activation of hidden layers in an LLM.
Two types of style vectors were proposed: the
training-based and activation-based style vectors.
The former trained the style vectors using the cross-
entropy loss between the output of the LLM for
the empty input token and the target sentence. The
latter employed the activation vectors of the layers
in the LLM for the given target sentences to obtain
the style vector. Li et al. (2024) created a dialog
corpus containing utterances in 38 different style
categories using an LLM, allowing fine-grained
styles to be handled in dialog system development.

First, a prompt including the name of a target style
is given to the LLM to generate a description of
the style and an example sentence. Next, the style
description and the example sentence were given
to the LLM to generate a rationale that the style of
the sentence was consistent with the given style de-
scription. Finally, the style name, style description,
example sentences, and style rationale as well as
a plain context were provided to the LLM to gen-
erate a response to the given context in the target
style. The constructed dialog corpus consisted of
the pairs of the input contexts and the generated
responses in different styles.

Although the aforementioned studies can gener-
ate natural responses in a specific style, they are
limited to considering a single style in style control.
In contrast, this study aims to dynamically control
multiple styles based on the user’s state.

Miura et al. (2024b) proposed a dialog system
that flexibly switched between two different styles,
the polite style and the casual style, according to
the changes in the user’s intimacy with the dialog
system. The dialog model was trained to gener-
ate responses in the polite style when the user’s
intimacy is low and in the casual style when the in-
timacy is high, by referring to the intimacy estima-
tion model and two language models of the polite
and casual styles. In addition, the style discrimina-
tion model was employed to train a dialog model so
that the probability of the polite (or casual) style of
generated responses, which was estimated by the
style discrimination model, became high when the
user’s intimacy was low (or high). This learning
method succeeded in achieving better style control
capability than general dialog models. However,
there is much room to improve the accuracy of style
control due to the poor performance of the intimacy
estimation model incorporated in the dialog model.
Therefore, this study aims to develop a model for
interpreting the user’s intimacy by creating user
embeddings, so the model could accurately capture
the user’s intimacy and appropriately perform style
control.

3 Proposed Method

3.1 Overview

Figure 1 shows an overview of the dialog model
that changes the style based on the recognized
user’s intimacy. Given a dialog history X , the pro-
posed system generates Y which is a response toX .
Here, X is a conversation between a system S and
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S1: It's been a while.
U1: Yes, it's been a month.
S2: How is work going these days?
U2: Not bad.
S3: Have you gone on that trip?
U3: Yes, I did and it was a lot of fun.

Intimacy
Interpreter

Response Generator (LLM)

 FCL

+
soft

prompt
token sequence

X = {S1,U1,S2,U2,S3,U3}
Xu = {U1,U2,U3}

V

V’

Y = S4 That’s good to hear.

Figure 1: Overview of proposed method

a user U , denoted as X = {S1, U1, · · ·, Sn, Un},
while Y is the next utterance of the system, i.e.,
Y = Sn+1.

The proposed system consists of two submod-
els. The first is the Intimacy Interpreter. It takes
the user’s past utterances Xu = {U1, · · ·, Un} as
input and interprets the user’s degree of intimacy
with the dialog system. The output of the Intimacy
Interpreter is an intimacy embedding, a vector rep-
resentation of the user’s intimacy. The second is the
Response Generator, which is based on an LLM. It
takes the dialog history X = {S1, U1, · · ·, Sn, Un}
as input and produces a response Y as output. At
the beginning of the input token sequence, a soft
prompt of the user’s intimacy is added. This is a
single token embedding derived from the intimacy
embedding. Specifically, the size of the intimacy
embedding produced by the Intimacy Interpreter
is changed to that of the token embeddings of the
LLM by the Fully Connected Layer (FCL). It is
expected that the response is generated in a casual
style when the user’s intimacy is high and in a
polite style when it is low. The length of the dia-
log history is 3 in Figure 1, but it can be changed
arbitrarily.

The following sections describe the details of
the Intimacy Interpreter and Response Generator,
respectively.

3.2 Intimacy Interpreter

The Intimacy Interpreter aims to capture the com-
plex and vague nature of the user’s intimacy by
representing it as an abstract vector. Hereafter, the
Intimacy Interpreter is denoted as PII(V |Xu). The

model takes as input the n consecutive utterances
of a user in a dialog context, Xu = {U1, · · ·, Un},
and outputs a vector V representing the user’s inti-
macy with the dialog system.

This study applies contrastive learning to train
the Intimacy Interpreter. An intimacy-labeled dia-
log corpus Din, where each dialog is labeled with
a 5-point Likert scale indicating the level of inti-
macy of a speaker with a dialog partner, is used for
contrastive learning. The details of this corpus are
described in 4.1.1. The user’s n consecutive utter-
ances in Din are extracted as a sample (Xu

i , ILi),
where ILi denotes the five-scale intimacy label as-
signed to the sampleXu

i . Two samplesXu
i andXu

j

are randomly taken from the training data. If the
intimacy labels ILi and ILj assigned to these two
samples are the same, the parameters of the Inti-
macy Interpreter are updated so that the embedded
vectors Vi and Vj become similar. If ILi and ILj

are not equal, the parameters are updated so that Vi
and Vj are different. Specifically, the contrastive
loss for training PII(V |Xu) is defined as Equation
(1).

LI=





1− simcos(Vi, Vj) if ILi = ILj

|ILi−ILj |·max(0, simcos(Vi, Vj))
if ILi ̸= ILj

(1)

simcos(·, ·) represents the cosine similarity be-
tween the two sample embedding vectors. When
ILi ̸= ILj , the loss becomes large when the dif-
ference between ILi and ILj is large by giving
|ILi − ILj | as the weight. The Intimacy Inter-
preter is obtained by fine-tuning the pre-trained
BERT (Devlin et al., 2019) using this loss.

3.3 Response Generator

The Response Generator is denoted as
PRG(Y |V ′, X), where X is the dialog his-
tory, V ′ is the soft prompt derived from the
intimacy embedding (V ), and Y is the response to
be generated. This subsection describes the details
of training the Response Generator.

3.3.1 Loss for Style Control
As described earlier, the Response Generator is
obtained by fine-tuning an LLM. Following the
study of (Miura et al., 2024b), two loss func-
tions, the intimacy-aware word-level loss and the
intimacy-aware sentence-level loss, are used to
fine-tune the LLM so that the Response Gener-
ator generates responses in the appropriate style
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(polite or casual) according to the user’s intimacy.
Preliminary The intimacy-labeled dialog cor-
pus Din described in subsection 3.2 is also used
to train the the Response Generator. In addition,
two style corpora are prepared to handle polite and
casual styles in response generation. One is Cpo

which consists of polite style sentences, and the
other is Cca which consists of the casual sentences.

Before the training of the Response Generator,
an intimacy estimation model P (I|Xu) is trained
in advance. This model predicts I , the user’s level
of intimacy with a dialog system, given the user’s
past n utterances (Xu) as input. In our model,
I is defined as either “low” or “high”. The inti-
macy estimation model is pre-trained using Din.
Note that this is a different model from the Inti-
macy Interpreter PII(V |Xu). The Intimacy Inter-
preter produces the intimacy embedding, while the
intimacy estimation model is a binary classifier.
Intimacy-aware Word-Level Loss Two style
language models are pre-trained. A polite style
language model Ppo(T ) is trained using Cpo, and
a casual style language model Pca(T ) is trained
using Cca. These models evaluate how likely the
given sentence T is in the polite or casual style.
They are employed to calculate the polite style
word-level loss Lpo

w and the casual style word-level
loss Lca

w , respectively, as shown in Equation (2).

Ls
w = d(pY||p̂Y)

def
=

m∑

i=1

DKL(pyi ||p̂yi), (2)

where s denotes the style, either po (polite) or ca
(casual). This loss is computed for each dialog
sample (X,Y ) in the training data. Y is denoted
as a token sequence {y1, · · ·, ym}. Let pY =
{py1 , · · ·, pym} be the distribution of the predicted
probability of the next word given by the dialog
model PRG(Y |V ′, X), and p̂Y = {p̂y1 , · · ·, p̂ym}
be the probability distribution predicted by the
style language model Ps(T ). DKL is the Kullback-
Leibler divergence of the two probability distribu-
tions, indicating whether the words generated by
the dialog model follow the specified (polite or
casual) style.

As shown in Equation (3), the intimacy-aware
word-level loss is defined as the weighted sum
of two losses, where p(I=low|Xu) is the weight
for Lpo

w and p(I=high|Xu) is the weight for Lca
w .

p(I=low|Xu) and p(I=high|Xu) are the probabil-
ities of the low intimacy and high intimacy classes,
respectively, predicted by the intimacy estimation

model.

Lin
w

def
= p(I=low|Xu) ·Lpo

w + p(I=high|Xu) ·Lca
w

(3)
It is expected that this loss will cause the Re-
sponse Generator to generate more polite style
tokens when the intimacy is low, and more ca-
sual style tokens when the intimacy is high.
Intimacy-aware Sentence-Level Loss First, we
train a style discrimination model P ′(S|T ) that
classifies the style S of a sentence T . The style S
is either polite or casual. The style discrimination
model is pre-trained from training data in which ut-
terances in Cpo are samples of the polite class and
utterances in Cca are samples of the casual class.

Let Ŷ be the response generated by
PRG(Y |V ′, X). The style of Ŷ is identified
using the style discrimination model P ′(S|T ), and
the p(S=polite|Ŷ ) and p(S=casual|Ŷ ), the pre-
dicted probabilities of the polite and casual classes
respectively, are calculated. The intimacy-aware
sentence-level loss Lin

s is defined as the weighted
sum of the logarithms of these probabilities, as
shown in Equation (4).

Lin
s

def
=−p(I=low|Xu) · log p(S=polite|Ŷ )

−p(I=high|Xu) · log p(S=casual|Ŷ ) (4)

This loss will contribute to making the Response
Generator to generate polite (or casual) style sen-
tences when intimacy is low (or high).

3.3.2 Negative Log-likelihood Loss
The two losses described in 3.3.1 are designed to
maintain style consistency. A model fine-tuned
solely by these losses may exhibit inconsistency
between the dialog context and the generated re-
sponse. Therefore, a common loss for training
dialog models, the negative log-likelihood loss de-
fined as shown in Equation (5), is also used. The
value p(Y |V ′, X) denotes the probability of the
ground-truth response Y in the training data being
generated by the Response Generator for a given
soft prompt of user’s intimacy V ′ and the dialog
context X .

LNLL = − log p(Y |V ′, X) (5)

3.3.3 Training Objective
The loss for training the Response Generator, LD,
is a weighted sum of two losses for style control
(Lin

w and Lin
s ) and a loss for content generation

(LNLL) as follows:

LD = βw · Lin
w + βs · Lin

s + βNLL · LNLL (6)
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The weights βw, βs, and βNLL are hyperparame-
ters.

3.4 Training Details
Our entire dialog model, shown in Figure 1, is
trained based on two losses: LI and LD. On the
one hand, the parameters of the Intimacy Interpreter
PII(V |Xu) are updated using LI . On the other
hand, the parameters of the Response Generator
PRG(Y |V ′, X) and the FCL that transforms the
dimension of the intimacy embedding are updated
using LD.1 The Response Generator is based on
the LLM, which is computationally expensive to
fine-tune. Therefore, LoRA (Hu et al., 2022) is
applied to fine-tune the Response Generator.

4 Experiments

4.1 Datasets
4.1.1 Dialog Corpus with Intimacy Label
The JID corpus (Miura et al., 2024a) is used as the
intimacy-labeled corpus Din. This corpus consists
of recorded and transcribed conversations of about
10 minutes between two speakers. For each con-
versation, the intimacy labels of each of the two
speakers are annotated using a five-point Likert
scale. The number of subjects who participated in
the dialogs is 19, the number of dialogs is 54, and
the total number of utterances is 6,984.

The 54 dialogs in the JID corpus are divided
into three subsets: a training set of 33 dialogs, a
validation set of 9, and a test set of 12. As men-
tioned in section 3, the dialog model accepts the
preceding dialog context of the user and the system,
X = {S1, U1, · · · , Sn, Un}, as input and generates
the subsequent response Sn+1 as output. Hereafter,
the pair of a dialog context and its corresponding
response, denoted by (X,Sn+1), will be referred
to as “response instance.” The first n×2 utterances
and the next utterance in a dialog are extracted as
(X,Sn+1). One speaker in the corpus is designated
as the system and the other as the user. This proce-
dure is then repeated with the utterance shifted one
by one to obtain multiple response instances. In
this experiment, the context length is set to n = 3.
The statistics of the dataset are shown in Table 1.

4.1.2 Style Corpus
Two style corpora of the polite and casual style,
Cpo and Cca, are required to train style language

1The blue modules in Figure 1 indicate the models trained
with the loss LD .

Training Validation Test
Dialog 33 9 12
Response Instance 4,032 921 1,284

Table 1: Statistics of Dataset

次の対話⽂脈に対して、あなたはBとして応答を⽣成してください。
(For the following dialog context, generate a response as B.)

【Dialog Context】

Figure 2: Template of Zero-shot Prompt

次の対話⽂脈に対して、あなたはBとして応答を⽣成してください。
ただし、AがBに抱く親密度を推測して、親密度が低い場合は丁寧なスタイルで、
親密度が⾼い場合はカジュアルなスタイルで応答を⽣成してください。
(For the following dialog context, generate a response as B. Guess the level 
of intimacy A has with B and generate a response in a polite style if the 
level of intimacy is low and in a casual style if the level of intimacy is high.)

【Dialog Context】

Figure 3: Template of Style Control Prompt

---------1st step
この対話からAがBに抱く親密度は
(From this dialog, the level of intimacy that A feels towards B is)

【Dialog Context】

---------2nd step
次の対話⽂脈に対して、あなたはBとして応答を⽣成してください。
ただし、「【output of the first step】」という解釈を踏まえて、親密度が低い
場合は丁寧なスタイルで、親密度が⾼い場合はカジュアルなスタイルで応答を
⽣成してください。
(With the interpretation of 【output of the first step】, generate responses 
in a polite style if the level of intimacy is low, and in a casual style if the 
level of intimacy is high.)

【Dialog Context】

Figure 4: Template of Two-step Prompt

models and a style discrimination model. The Ke-
iCO corpus (Liu and Kobayashi, 2022) is used as
Cpo. This corpus contains utterances using various
types of honorific expressions in Japanese. Besides,
Cca is constructed by extracting utterances from
conversations between speakers who know each
other in the BTSJ Japanese Natural Conversation
corpus (Usami, 2021). Cpo and Cca contain 7,324
and 13,521 utterances, respectively.

4.2 Experimental Settings
The following methods are compared in the experi-
ment.

• Zero-shot prompt (Zero-shot) This method
uses an LLM as a dialog model without fine-
tuning or prompting for style control. We only
give an instruction for generating responses
to the input dialog context. The details of the
prompt are shown in Figure 2.

• Zero-shot prompt for style control (Style
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control prompt) This method uses a pre-
trained LLM as a dialog model, where a
prompt is given to instruct the LLM to gen-
erate utterances taking the style control into
account. The details of the prompt are shown
in Figure 3.

• Two-step prompt (Two-step) This method
uses a pre-trained LLM as a dialog model
using two sequential prompts. We first instruct
the LLM to infer the user’s level of intimacy,
and then to generate the system’s response in a
polite or casual style according to the inferred
level of intimacy. See Figure 4 for details.

• STYLEDGPT This is a model where the style
is controlled by STYLEDGPT (Yang et al.,
2020). Specifically, we fine-tune the LLM to
generate utterances that are consistent with
the style of the entire JID corpus. The style
language model is trained on training data
from the JID corpus. The style discrimination
model, which distinguishes whether an utter-
ance is in the style of the JID corpus, is trained
using utterances from the JID corpus as pos-
itive samples and sentences from Japanese
Wikipedia as negative samples.

• Oursauto This is our proposed method de-
scribed in section 3.

• Oursgold Our proposed method where the
gold intimacy labels in the JID corpus are used
instead of the prediction by the intimacy es-
timation model. When calculating the losses
in Equation (3) and (4), p(I=low|Xu) and
p(I=high|Xu) given as follows.

p(I=low|Xu) = 1− IL
5 (7)

p(I=high|Xu) = IL
5 (8)

IL represents the five-level intimacy label as-
signed to Xu in the JID corpus. This model
evaluates our approach of considering the
user’s intimacy for the appropriate style con-
trol under the ideal condition where the user’s
intimacy is correctly predicted.

4.3 Implementation Details
4.3.1 Intimacy Interpreter and Response

Generator
The Intimacy Interpreter described in subsection
3.2 is obtained by contrastive learning based on

the Japanese BERT model2, which was pre-trained
on large-scale corpora of Japanese Wikipedia and
Japanese CC-100.

The Response Generator described in subsec-
tion 3.3 is obtained by fine-tuning llm-3-3.7b3,
which is an LLM based on Transformer (Vaswani
et al., 2017) and has been trained on various large
Japanese datasets. We also adopted llm-3-3.7b as
the LLM for other baseline dialog models.

For the hyperparameters during training, the
learning rate for the Intimacy Interpreter is 1e−6,
while that for the Response Generator is 1e−20. For
both models, the batch size is 4 and the number
of epochs is 5. These values were optimized on
the validation set according to the StyCor criteria,
which will be defined in subsection 4.5. The Adam
optimizer was used to learn the models.

The hyperparameters βw, βs, and βNLL in Equa-
tion (6) are set to 0.5, 1, and 0.005, respectively.
These values are determined so that the influence
of the three types of losses is uniform. Specifically,
we calculate the average of the absolute value of
each of the three losses in the training data and then
determine the weight of each loss as the approxi-
mate inverse ratio of the average to the minimum
value.

4.4 Other Submodels

Several submodels are pre-trained before training
of the Intimacy Interpreter and Response Genera-
tor.

The style language models Ppo(T ) and Pca(T )
are obtained by fine-tuning GPT-2. We use the pre-
trained model japanese-gpt2-medium4, which has
been trained on a large Japanese dialog dataset. All
utterances in Cpo and Cca are used to train Ppo(T )
and Pca(T ), respectively. The learning rate is set to
5e−4, the batch size to 4, and the epoch to 20. The
Adam optimizer is used to fine-tune the models.

The style discrimination model P ′(S|T ) is ob-
tained by fine-tuning the Japanese BERT model2.
A total of 20,575 utterances are used, comprising
7,274 polite utterances in Cpo and 13,301 casual ut-
terances inCca. The learning rate is set to 1e−7, the
batch size to 128, and the epoch to 10. The Adam
optimizer is used to fine-tune the model. The ac-
curacy of the style discrimination model was 99%
when it was evaluated on the 100 test utterances

2https://huggingface.co/tohoku-nlp/bert-large-japanese-
v2

3https://huggingface.co/llm-jp/llm-jp-3-3.7b
4https://huggingface.co/rinna/japanese-gpt2-medium
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(50 polite and 50 casual) that were not used for
training.

The intimacy estimation model P (I|Xu) is
based on the Japanese BERT model2. The JID
corpus is used for fine-tuning the BERT. The learn-
ing rate is set to 5e−6, the batch size to 1, and the
epoch to 10. The Adam optimizer is used to train
the model. The accuracy of the intimacy estimation
model on the test data was 69%.

4.5 Evaluation Criteria

Both automatic and human evaluations are carried
out to assess responses generated by various meth-
ods.

4.5.1 Automatic Evaluation
In the automatic evaluation, the quality of the gen-
erated responses is evaluated from three perspec-
tives: relevance, diversity, and style. The relevance
is measured by BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). Specifically, the similarity
between a generated response and a ground-truth
response is evaluated using BLEU-1, BLEU-2,
ROUGE-1, and ROUGE-2. The diversity is mea-
sured by Distinct-1 (Dist-1) and Distinct-2 (Dist-2),
following the experiment of (Li et al., 2016). The
style is evaluated by measuring “Style Correlation”
(StyCor). The StyCor metric is defined as the cor-
relation between the probability of the casual style
p(S=casual|Y ) and the ground-truth level of the
intimacy.5 This correlation is high when both the
predicted probability of the casual style and the
level of intimacy are high, or both are low (i.e., the
probability of the polite style is high and the level
of intimacy is low).

4.5.2 Human Evaluation
The quality of the generated responses is evaluated
by humans. To reduce the burden on evaluators,
STYLEDGPT and Oursauto are excluded from the
human evaluation. A hundred response instances
are randomly taken from the test set of the JID
corpus. The dialog context X of each response in-
stance is used as input, and a response is generated
using the dialog models. Subjects evaluate these
responses from the following three perspectives.

• Style Control: Does the response align with
the appropriate style for the relationship be-
tween the two speakers? Annotators are also

5The five-scale score is normalized to values between 0
and 1.

instructed to read the dialog context and guess
the relationship between the speakers.

• Relevance: Is the content of the response rele-
vant and consistent with the context?

• Fluency: Is the response natural, fluent, and
free of grammatical errors?

For each item, the quality of the responses was
assessed by giving a score on a 5-point Likert scale
from 1 (inappropriate) to 5 (appropriate). Five na-
tive Japanese speakers participated in the manual
evaluation. Agreement between annotators’ scores
was measured using Fleiss’s kappa (Fleiss and Ja-
cob, 1973).

5 Results

5.1 Results of Automatic Evaluation

The results of the automatic evaluation are shown
in Table 2. The StyCor of Oursauto and Oursgold
were 0.239 and 0.250, respectively, outperforming
other baseline methods. This confirms that the
proposed method, which adjusts the style based on
the level of intimacy, can effectively control the
polite and casual styles. The decrease of StyCor of
Oursauto compared to Oursgold may be due to the
low accuracy of the intimacy estimation model.

In the evaluation of the relevance, STYLEDGPT
and our proposed models achieved better BLEU
and ROUGE scores than other baselines, since
these models are fine-tuned using the JID corpus,
which was the same domain as the test data. How-
ever, our models performed slightly worse than
STYLEDGPT. On the other hand, the diversity
(Dist-1 and Dist-2) of all models was high.

Although the BLEU and ROUGE of our method
are worse than those of STYLEDGPT, we think
that these indicators are only for reference in auto-
matic evaluation. BLEU and ROUGE only evaluate
the similarity between the generated and ground-
truth responses, while there could be other appro-
priate responses that are not included in the dataset.
On the other hand, our proposed method clearly
outperforms STYLEDGPT in terms of StyCor, in-
dicating superior style control capabilities.

To sum up, our models can improve the ability of
the style control with a little decrease in relevance.

5.2 Results of Human Evaluation

The results of the human evaluation are shown in
Table 3. The “Score” column shows the average
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Method
Relevance Diversity Style

BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 Dist-1 Dist-2 StyCor
Zero-shot 0.0483 0.0034 0.0780 0.0044 0.942 0.978 0.164
Style control prompt 0.0578 0.0053 0.1014 0.0073 0.965 0.991 0.207
Two-step 0.0575 0.0028 0.0932 0.0041 0.946 0.984 0.162
STYLEDGPT 0.2520 0.1571 0.3392 0.2108 0.925 0.935 0.171
Oursauto 0.2067 0.1205 0.2986 0.1725 0.895 0.900 0.239
Oursgold 0.2544 0.1463 0.3390 0.1999 0.925 0.930 0.250

Table 2: Results of Automatic Evaluation

Method Style Control Relevance Fluency
Score κ p Score κ p Score κ p

Zero-shot 4.31 0.50 1e−6* 4.13 0.50 0.086 4.51 0.68 9e−11*
Style control prompt 4.34 0.51 9e−5* 4.22 0.53 0.553 4.63 0.72 8e−7*
Two-step 4.33 0.51 6e−5* 4.02 0.44 0.002* 4.49 0.69 2e−12*
Oursgold 4.61 0.60 – 4.26 0.54 – 4.86 0.84 –

Table 3: Results of Human Evaluation. ∗ means p < 0.05.

score of the five subjects, while the “κ” column
indicates Fleiss’s κ. Welch’s test is performed to
verify whether there was a significant difference
in the scores between Oursgold and other methods.
The “p” column represents the p-value of this sta-
tistical test.

For Style Control, Oursgold received the highest
score. Additionally, significant differences with all
other methods were confirmed. This demonstrates
the effectiveness of the approach proposed in this
study, which considers the user’s level of intimacy
for the appropriate selection of polite and casual
styles. The κ value was 0.60, which indicated mod-
erate agreement.

In terms of Relevance, Oursgold achieved the
highest score. However, significant differences
were only observed when compared to Two-step.
The proposed method performed comparably to the
baseline methods in generating responses relevant
to the dialog context.

The Fluency score of the proposed method was
significantly higher than the other models, indi-
cating its superior ability to generate natural utter-
ances.

6 Ablation Study

Table 4 shows the results of the ablation study. The
Ours-SCL is the model where two intimacy-aware
style control losses, Lin

w and Lin
s , are removed from

Equation (6). The Ours-II indicates the removal of
the Intimacy Interpreter, which is almost equiva-

lent to the dialog model presented in (Miura et al.,
2024b).6 This model is trained using the gold inti-
macy labels to calculate the loss LD, so the above
two models are compared to Oursgold.

The results demonstrated that both the use of
the style control losses and the incorporation of
the Intimacy Interpreter could improve the StyCor
score. Especially, a significant decrease was found
in Ours-SCL, indicating that the intimacy-aware
style control losses are effective in changing the
style appropriately. On the other hand, the contribu-
tion of the Intimacy Interpreter was rather limited.
It should be noted that both the style control losses
and the Intimacy Interpreter could also improve the
relevance and diversity of the generated responses.

7 Conclusion

In this paper, we proposed the novel method to
control the style of a dialog system based on the
user’s level of intimacy. The model that interpreted
the user’s level of intimacy was incorporated into
the dialog model. This Intimacy Interpreter was
trained by contrastive learning using the dialog
corpus annotated with the intimacy labels. Further-
more, based on the LLM, which had an excellent
capability to generate general responses, we ap-
plied two loss functions to improve the model’s
ability to control the style. The results of both au-

6The base LLMs are different: llm-jp-3-3.7b was used in
this paper, while GPT-2 was used in (Miura et al., 2024b).
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Methods
Relevance Diversity Style

BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 Dist-1 Dist-2 StyCor
Ours-SCL (w/o style control loss) 0.2105 0.1175 0.2954 0.1697 0.879 0.889 0.200
Ours-II (w/o intimacy interpreter) 0.2170 0.1257 0.3086 0.1826 0.907 0.917 0.247
Oursgold 0.2544 0.1463 0.3390 0.1999 0.925 0.930 0.250

Table 4: Results of Ablation Study

tomatic and human evaluations demonstrated that
the proposed method outperformed the baseline
in generating responses in a casual style when the
user’s level of intimacy was high and in a polite
style when it was low.

The proposed dialog model was trained using a
dialog corpus annotated with the speaker’s level of
intimacy. However, the availability of such a corpus
is rather limited, while the construction of new
corpora requires considerable costs. Therefore, it is
essential to explore ways to enable LLMs to acquire
the ability to control the style without relying on the
intimacy-labeled corpus. Another important future
work is to explore new style control frameworks
that do not rely on pre-training the style language
models and/or the style discrimination model.
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Abstract

Currently Large Language Models (LLMs) are
mostly used through a chatbot interface with
the user manually deciding when the system
should respond. In multi-speaker conversations
(e.g., two humans and one robot) it is not clear
who speaks when. We therefore investigate
the ability of LLMs to predict the dialog struc-
ture. First, we frame the task as Next Speaker
Prediction (NSP) and create a multi-domain
test set. Secondly, we build dedicated systems
for the NSP task using LLMs and finally per-
formed automatic and human evaluation. Our
final system matches the human performance
when tested on unseen data and exceeds it on
data of the same domain as the training data.

1 Introduction

In multi-speaker dialogues, it is important for the
participants to know when to speak, as talking at
the wrong time may be irritating for the other speak-
ers and may even hinder the speakers to reach their
goals. It is crucial for dialogue systems to handle
this task well as speaking too often may be annoy-
ing to the user while speaking rarely may seem
unresponsive to the user and opposes the system’s
purpose.

Large Language Models (LLMs) are the core
of modern dialogue systems. Currently they are
mostly used through a chatbot interface where they
only respond after the user sends a chat message.
Here, there is no need for dedicated dialog struc-
ture modeling as the user always decides when
the model should respond. For spoken dialogue
with two speakers, the modeling is not as trivial
as it is not clear when one speaker ends their turn.
For multi-speaker scenarios it is significantly more
challenging when the LLM should respond as the
users could be chatting with each other directly
during the course of dialogue.

P11: i used to live downtown san jose and every once in
a while i just get with garlic and i don’t know if it’s from
gilroy probably not nut i like to think it was so [laugh]
P09: yeah
P09: wow
P12: what are actually some nice places to go around here
cause i’ve moved here recently so [unintelligible]
P09: napa napa is nice
P10: oh
P10: napa is nice [unintelligible]
P12: oh yeah actually i went there last week and they had
uhhh i think sonoma had a hot air balloon festival there
[...] but it’s pretty nice seeing them at sunrise so yeah it
was really beautiful yeah

Annotators’ votes:
P09: 7, P11: 2, P10: 2

Zero-shot LLM: P12
Fine-tuned LLM: P09

Next utterance:
P09: people like to go wine tasting

Figure 1: Example of a part of a dialogue from DiPCo
(Segbroeck et al., 2020). We show the previous utter-
ances, which next speaker our human annotators pre-
dicted, what the LLMs in different setting predicted,
and what the actual next speaker and utterance are.

We model this ability as the Next Speaker Pre-
diction (NSP) task like Wei et al. (2023). We think
it is a suitable proxy task as good performance on
predicting the next speaker should indicate the qual-
ity of the system’s ability to decide the correct time
to actively contribute to the conversation.

We want to investigate multi-speaker dialogue
from multiple domains to test generalization, esti-
mate the performance of LLMs, and find out how
well they have to perform. Therefore, our research
on the NSP task covers the following aspects:

• We create a multi-domain benchmark for the
NSP task utilizing multiple existing dialogue
datasets.

• We run a user study with eleven annotators
to gather a human baseline. This evaluation
gives insights on the ambiguity of the task.
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• We analyze the ability of various size LLMs
to perform the NSP task and build dedicated
models that reach or exceed our estimate of
human performance.

2 Next Speaker Prediction Benchmark

To evaluate how well our approaches perform on
the NSP task, we compile a benchmark consisting
of multiple datasets. Using datasets from multiple
domains enable us to estimate the generalization of
the evaluated systems. Additionally, we collect a
human baseline on subsamples of the datasets to
get an estimate of the human performance on NSP.
While the dialogue structure from the datasets of-
fers a ground truth for the next speaker, we want to
find out if human annotators would consider other
options as equally possible. Also, we obtain an
overview how ambiguous the task is for human
annotators.

2.1 Datasets

For the NSP task, we need datasets of dialogues
where the speaker is denoted for every utterance.
As the following utterance then always determines
which speaker will be the next after the current one,
we can easily model the NSP task. For dialogues
with only two speakers, the NSP task is fairly triv-
ial. Therefore, we only investigated multi-speaker
dialogue datasets.

We use three dialogue datasets for our bench-
mark (Table 1) to cover multiple domains. We
chose these three datasets to cover multiple do-
mains. Also, there is an existing baseline for the
NSP task for MultiLIGHT (ML, Wei et al. (2023)).
The other two datasets both include the type of
noise that a dialogue system would also encounter
in a real-life setting. Additionally, the conversation
domains are realistic settings than ML’s (Table 1).
We use two of these similar datasets as this allows
us to compare how well our approaches generalize
an unseen domain and different noise as DiPCo
includes no training data. The datasets differ in the
numbers of participating speakers in one conversa-
tion, the domain of the conversation (topic, setting),
and the amount of noise in the sense of very short
utterances that introduce no or almost no substance
to the conversation.

ML is a text-only dataset created specifically
for dialogue research. The authors also performed
experiments on the NSP task with at time of publi-
cation current Transformer-based language models

Dataset AMI DiPCo ML
# Speakers 4 4 3

Domain meeting
dinner
party

fantasy
role-play

Noisy yes yes no
# Utterance 12627 3400 9164
# Dialogues 16 5 323
Avg. utts. 789.19 680.00 28.37

Table 1: Properties of the investigated datasets (specific
numbers from the test splits). We list the number of
speakers per dialogue, the topics of the conversations,
if they contain some form of noise (short / interrupting
utterances), and the number of utterances in total, the
number of dialogues, and the average number of con-
secutive utterances per dialogue.

Dataset AMI DiPCo
Speaker 0 32.18 23.93
Speaker 1 26.88 25.75
Speaker 2 23.36 28.04
Speaker 3 18.75 22.28

Table 2: Contributed utterances (in percentage) from
each speaker across all dialogues. For AMI, the speaker
that speaks earlier in the dialogue, seems to have more
dialogue utterances while there seems to be now such
accumulation for DiPCo.

that they fine-tuned on this task. The AMI meet-
ing corpus (Carletta et al., 2005) and the Dinner
Party Corpus (DiPCo) (Segbroeck et al., 2020) are
primarily audio (and video for AMI) datasets from
recorded conversations.

The type of conversations in AMI are meetings
and in DiPCo dinner party talk. Both contain noise
like “Umm”, “Hmm”, and “Yeah” that introduce no
or almost no substance to the conversation in some
cases. While these appear to happen at random
times, these kinds of utterances are also present
in a setting where an LLM gets its input via an
Automatic Speech Recognition system. Also, for
utterances like “Yeah” it is hard to determine if
“Yeah” is just noise or an import acknowledgment
of a previous utterance. So, we only filter out obvi-
ous irrelevant utterances for the DiPCo dataset like
“[Noise]” to reduce the noisiness while keeping
potentially important utterances.

Datasets Statistics In a first step, we investigated
the dataset statistics in order to identify the various
challenges of the datasets.

For example, we analyzed the percentage of con-
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Dataset AMI DiPCo ML
4 91.51 89.66 29.32
8 66.79 49.33 14.04
16 40.53 20.42 13.48
32 20.71 6.04 13.48
64 8.60 0.84 13.48

Table 3: Percentage of contexts where at least one
speaker is missing depending on the number of recent
utterances included in the prompt.

tributed utterances per speaker within each dia-
logue to see if one specific speaker speaks signif-
icantly more often which could lead to a bias to
predict that speaker more often as the next one. We
number the speakers ascending by their order of
appearance. For AMI, the speakers that appear ear-
lier in the conversation seem to speak more often.
After qualitative analysis, we concluded that this
is the case because in AMI the person opening the
meeting is also the organizer of the meeting itself.
We saw no such clear trend for DiPCo.

We want to only include the recent dialogue ut-
terances in our benchmark as the dialogues in the
datasets are up to several hundred utterances long
(Table 1) which could overwhelm both human an-
notators and NLP systems. We therefore examined
the number of times where at least one speaker is
missing from our dialogue excerpt to find out in
how many cases the context is missing information
about some speakers. We start with four included
recent utterances and iteratively double the amount
up to 64. For ML, the number does not continue
to decrease after 16 included utterances (Table 3).
This is a result of the fact that in the beginning of
the dialogue, not all speakers have spoken yet. As
the dialogues in ML are short, this situation is quite
common. For the other two, including quadrati-
cally more recent utterances linearly reduces the
number of excerpts with missing speakers. This
shows that very often in a small enough context
window only a subset of the speakers interact with
each other.

2.2 Human Baselines

In a first step, we analyze the difficulty of the task
through a human evaluation. While the dialogues
from the datasets were generated by humans, like
many other Natural Language Processing (NLP)
tasks, the NSP task is also ambiguous. We therefore
collect human data on the NSP task for samples of
consecutive utterances of the test splits of all three

datasets. Our sample size is 63 dialogue utterances
for AMI (0.50% of the full test set), 55 for DiPCo
(2.00%), and 91 for ML (0.96%). As the dialogues
in ML are fairly short, our sample includes three
full dialogues. These sample sizes should in our
opinion capture the natures of the datasets while
also keeping the annotation work at a reasonable
level. The user study involved eleven participants
for each dataset. We average each’s accuracy to get
the human baseline (Table 6).

We included the last 32 utterances and did not
rename the speakers in the prompts. We chose
32 as this number is higher than the number of
utterances in full dialogues for the ML dataset and
is not overwhelmingly large for human annotators.
For the names, we assumed that the annotators
should be able to distinguish the names more easily
with the original ones from the dataset.

Dataset Fleiss’ kappa
AMI 0.17
DiPCo 0.14
ML 1 0.49
ML 2 0.43
ML 3 0.32

Table 4: Fleiss’ kappa for multi-rater agreement on the
samples used for the gathering the human baseline.

We provide the Fleiss’ kappa multi-rater agree-
ment measure (Fleiss, 1971) for each dataset sam-
ple (Table 4). For ML, we show the score for each
of three dialogues that are included in our sam-
ple. The scores low showing the ambiguity of the
task. The difference between ML and the other
two datasets are in our opinion a result of it hav-
ing fewer speakers per dialogue and having less
noisy utterances. Manual inspection and anecdo-
tal evidence from the annotators showed that the
annotators agreed or were sure in their prediction
respectively for some turns (most annotators picked
one speaker) but disagreed or were unsure in their
prediction respectively in other cases (annotators
picked different speakers, no clear “favorite”).

3 Next Speaker Prediction with LLMs

We want to use state-of-the-art technology to build
a next speaker predictor. This leads to LLMs as
they excel on other NLP tasks. Additionally, their
task during the pre-training phase is predicting the
next token which corresponds to predicting the next
speaker when the prompt is a dialogue transcript
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with annotated speakers. This implies that the NSP
task is “natural” for LLMs given their training.

While the authors of ML perform similar experi-
ments, they were with the smaller encoder-decoder
language models R2C2 (Shuster et al., 2022), T5
(Raffel et al., 2020), and BART (Lewis et al., 2020)
which are smaller than today’s models and were
trained on less data and did not receive the exten-
sive post-training of current LLMs. Furthermore,
the authors of ML had to fine-tune these models to
perform this task while current LLMs can be used
with zero-shot prompts.

To model the NSP task as an LLM task, we
prompt the LLMs to predict the next speaker by
utilizing the information we provide (Appendix A):
An instruction for the task and the most recent ut-
terances of the current dialogue as context. Each ut-
terance starts with the corresponding speaker. Each
dataset already contains identifiers for the speakers.
For ML, each speaker has a descriptive name like
“jester”. The other two datasets use string identi-
fiers like “P12” or “MTD011UID”.

For every dialogue turn we include the last eight
utterances as context for the LLMs and rename
the speakers to the same generic identifier across
all datasets to increase the similarity of the task
across the datasets. We replace them with renam-
ings where each speaker has a pseudonym in the
format of “speaker <number>”. ML also includes
descriptions of the character of each speaker and
the location of the dialogue. We did not include
this information to keep the task comparable.

Although LLMs are able to perform on zero-
shot, often specialized models perform better. We
therefore train LLMs supervised on the NSP task
on multi-domain data by mixing the training splits
from the AMI and the ML dataset. We use a bal-
anced mixture (similar number of training data
points) to ensure generalization across domains.
We train with pairs of the prompt used in the zero-
shot setting and the expected speaker from the
datasets, so that the model learns how to map the
recent dialogue turns to the next speaker.

4 Experiments

We evaluate the LLMs on the test splits of the
datasets, compare them to random and human base-
lines, and perform ablation studies on our modeling
decisions.

We chose next speaker accuracy as our main eval-
uation metrics as this is the most straightforward

metric with the given data. As the distributions of
utterances per speaker are fairly balanced (Table 2),
we did not employ metrics like F1. While accu-
racy is a “hard” metric and does not account for
ambiguity, we assume that the fairly large dataset
size and direct comparison against baselines still
gives a good estimate how well the LLMs (and
especially our fine-tuned one) do for NSP. Nev-
ertheless, we analyze the agreement of the LLMs
with the annotators (section 4.3).

4.1 Setup

We perform all our experiments with models from
the Llama 3 family (Dubey et al., 2024). We use the
3B (3.2. 3B) and 8B (3.1 8B) parameter version for
zero-shot and fine-tuning experiments while we use
the bigger version (3.3 70B) only in a zero-shot set-
ting as fine-tuning this model requires significantly
more compute and the smaller models responded
already very well to fine-tuning.

The fine-tuning data mixture consists of all the
available training data from the AMI meeting cor-
pus and 33% from ML. We use only 33% to bal-
ance the number of data points from each dataset.
DiPCo has no train split. We conduct ablation stud-
ies on all mentioned modeling decisions including
the preprocessing (subsection 4.4). We made these
decisions that impacted our main results during de-
velopment on the basis of the validation sets which
all utilized datasets provide.

4.2 Random Baselines

To compare our results to another baseline, we
present three random baselines. Each is designed to
model two very distinct types of dialogue flow and
a combination of both. These baselines are: One
where the speaker is picked randomly but always
switches after each dialogue utterance (denoted as
always). Then, we assume that the speaker never
switches, so we predict the last speaker to also be
the next speaker (denoted as never). At last, we
model a combination of both where we pick the
speaker completely randomly without excluding
the last speaker (denoted as usually). We run each
method five times and average the results.

4.3 Main Experiments

We differentiate between the results on the full test
sets and the samples for the human baseline.

Results on the full Tests Sets The accuracy
scores (Table 5) for the random baselines illustrate

63



Dataset AMI DiPCo ML
Random Baselines
Always 22.10 26.62 45.91
Usually 25.17 25.21 33.36
Never 33.41 19.32 8.91
Zero-shot
Llama 3.2 3B 25.28 25.66 28.10
Llama 3.1 8B 34.88 30.94 40.41
Llama 3.3 70B 35.81 32.98 52.06
Fine-tuned
Llama 3.2 3B 45.91 36.91 59.40
Llama 3.1 8B 47.85 38.48 59.85

Table 5: NSP accuracy on the full test splits. We com-
pare the accuracy of the random baselines and the Llama
3 models in a zero-shot and fine-tuned setting. Fine-
tuning improves performance beyond the 70B model’s
performance. Even the dataset we did not train on
(DiPCo) benefits from fine-tuning on the NSP task.

what we already saw during qualitative analysis
of the datasets: In the AMI meeting corpus, the
speakers often deliver multiple utterances after an-
other while in the ML dataset the speaker almost
always switches. Llama 3.1 8B performs a bit or
clearly better than the random baselines on AMI
and DiPCo, which highlights the importance of a
multi-domain benchmark. On ML however, sim-
ply randomly picking one of the other two speaker
as the next performs better. The smallest model
we tested (3.2 3B) only manages to predict next
speaker as well as completely randomly picking
one. The bigger 70B model outperforms the ran-
dom baselines clearly on DiPCo and ML. We see
a clear trend that scaling the model size increases
the ability to predict the next speaker.

When fine-tuning 3.1 8B on the task, it signif-
icantly outperforms itself in the zero-shot setting,
the random baselines, and the bigger version. The
performance even improves beyond the 70B model
on the DiPCo dataset, which has no training split
meaning that this dataset is out-of-domain for the
fine-tuned models, and we see generalization for
different domains. The case for 3.2 3B is similar
but with slightly lower scores than 3.1 8B.

Results on the Samples of Tests Sets for Human
Baselines On DiPCo and ML, our collected hu-
man baseline outperforms the random baselines
albeit not all of them by a big margin (Table 6).
For AMI, it is even slightly below the best tech-
nique (“never”) that assumes the last speaker will

Dataset AMI DiPCo ML
Human 30.88 33.22 48.65
Random Baselines
Always 20.63 27.64 45.49
Usually 17.78 26.91 35.16
Never 32.06 14.55 11.87
Zero-shot
Llama 3.2 3B 15.87 21.82 25.27
Llama 3.1 8B 34.92 23.64 32.97
Llama 3.3 70B 30.16 34.55 51.65
Fine-tuned
Llama 3.2 3B 47.62 40.00 61.54
Llama 3.1 8B 58.73 34.55 59.34

Table 6: NSP accuracy on the samples of the test splits
for the human baseline. We compare the accuracy
of the human annotators, random baselines, and the
Llama 3 models in a zero-shot and fine-tuned setting.
Fine-tuning beats human accuracy on the datasets with
training data but also on DiPCo.

always be the next speaker. In the zero-shot set-
ting, the smallest Llama model shows the same
pattern as on the full test sets. The medium LLM
however achieves a higher accuracy on AMI as
the human baseline, while struggling to reach the
random baseline on the other two datasets which
may be specific to these samples. The 70B ver-
sion roughly matches the human performance on
all datasets. The scaling trends we observed on the
full test sets is also present on the samples except
for AMI, where the 70B model underperforms the
8B model.

Fine-tuning the two smaller models shows sim-
ilar effects as we saw on the full test split: The
NSP accuracy is increased greatly compared to the
zero-shot setting and even sightly outperforms the
70B model on the datasets where training data ex-
ists. For DiPCo, the performance of Llama 3.1 8B
is the same as the one of 3.3 70B. The fine-tuned
3B model manages to outperform both the 8B and
70B model on DiPCo. As it showed reduced per-
formance compared to the 8B model on the full
test sets and as this sample set is small, we assume
that these differences between the models are partly
noise while still showing the effectiveness of our
fine-tuning in general for the NSP task.

Agreement of Annotators and LLMs As men-
tioned before, this task is a highly ambiguous task.
However, there are also situations where only a
small set of possible next speakers are correct. We
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wanted to investigate this and therefore use the hu-
man annotations as additional references.

We analyze the agreement of the LLMs with
the human annotators. To do this, we remove one
annotator at a time from the pool of annotators. We
then compare their agreement with the rest of the
annotators and with the LLMs by measuring the
accuracy of their predictions. We then average the
results for all annotators.

Additionally, we show how many of the predic-
tions can be counted as correct with these condi-
tions which decreases with the number of required
agreeing annotators increasing (row "Correct an-
swers", column "all").

In this setup, we counted a prediction as cor-
rect if at least n annotators propose this prediction.
This allows for situations where then no answer
is correct and therefore it does not matter what
the model predicts and for situation where multi-
ple solutions are correct. Additionally, we show
how many of the predictions can be counted as cor-
rect with these conditions which decreases with the
number of required agreeing annotators increasing
(row "Correct answers", column "all").

Also, we show how many choices a predictor has
with the given threshold as for example only three
possible next speakers can be counted as correct
if the number of annotators is ten and the thresh-
old for the number of agreeing annotator is three.
Therefore, the number of possible correct answers
also decreases with a higher threshold. The re-
ported numbers for the annotators and the models
display the percentage of correct predictions (given
a threshold) out of the possible correct answers.
We then also list the distribution of choices within
this set – how many predictions are possibly cor-
rect. Per bin of possibly correct prediction, we also
report the accuracy of each predictor.

For the AMI dataset, we see mixed results: From
a threshold of three and more, the larger model has
lower agreement than the 8B model. The fine-tuned
model shows a similar regression for a threshold of
three and five. For seven agreeing annotators, the
fine-tuned model has a slightly higher agreement,
yet the 70B model is lower than Llama 3.1 8B in
zero-shot. We think that these results come from
the fact that fine-tuning on the AMI training data
pushed the 8B LLM towards the distribution by
the dataset increasing the NSP accuracy, which
disagrees with our human annotators. That the 70B
model also has a lower agreement could be a sign
of its training data containing part of AMI and it

memorizing it better than the 8B model.
For DiPCo, we see that the 8B model in the

fine-tuned setting has a clearly higher (threshold of
one and three) or slightly higher (threshold of five)
agreement than in the zero-shot setting (Table 8).
Here, we also see that the 70B version has higher
agreement than the 8B model in zero-shot. This
matches our observations from the accuracy scores
before that increased model sizes correlates with
an improved NSP ability. Fine-tuning Llama 8B
therefore improves for most tested thresholds the
agreement with the human annotators on DiPCo
and moves it closer to that of the 70B model. As
we did not fine-tune the 8B model on data from
DiPCo, we think that these results together with the
increase in NSP accuracy show that training on the
NSP task with dialogue datasets does generalize to
better NSP performance – matching or exceeding
human performance in NSP accuracy.

4.4 Ablation Studies
We also examine our modeling decisions when fine-
tuning Llama 3.1 8B.

Dataset AMI DiPCo ML
Speaker Renaming
Original 42.04 39.35 54.58
Renamed 47.85 38.48 59.85
Context Length
4 46.32 34.66 59.47
8 47.85 38.48 59.85
16 47.92 39.46 60.13
32 47.58 37.86 60.21
64 46.72 36.29 59.73
Training Data Mixture
Zero-shot 34.88 30.94 40.41
AMI 47.84 37.35 42.75
ML 24.08 28.25 60.07
AMI + 33% ML 47.85 38.48 59.85

Table 9: Comparison of the accuracy results from the
ablation studies. Renaming the speakers to a dataset-
across scheme increases performance in general. Includ-
ing more previous utterances in the prompt only helps
until 16 utterances. Training only on one of the two
available datasets is worse than using both.

Speaker Renaming We compare the unmodified
versions of the datasets with our renamed versions.
Renaming improves performance on all datasets
except for DiPCo (Table 9). This is probably the
case as the speaker names in DiPCo (e.g., “P12”)
are already fairly generic but distinct. This also
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# choices all 1 2 3 4
At least one out of ten agreeing annotator
Correct answers 100.00 2.31 21.07 43.00 33.62
Annotators 92.06 68.75 86.99 89.60 100.00
Zero-shot 8B 88.46 75.00 63.70 92.28 100.00
Fine-tuned 8B 88.74 81.25 87.67 80.87 100.00
Zero-shot 70B 89.32 75.00 69.18 91.61 100.00
At least three of ten agreeing annotator
Correct answers 100.00 42.14 54.98 2.89 0.00
Annotators 68.40 56.51 76.12 95.00 0.00
Zero-shot 8B 66.67 43.49 82.68 100.00 0.00
Fine-tuned 8B 54.83 44.86 61.42 75.00 0.00
Zero-shot 70B 61.18 34.93 79.27 100.00 0.00
At least five of ten agreeing annotator
Correct answers 82.40 98.42 1.58 0.00 0.00
Annotators 56.39 56.23 66.67 0.00 0.00
Zero-shot 8B 45.01 44.13 100.00 0.00 0.00
Fine-tuned 8B 39.93 39.15 88.89 0.00 0.00
Zero-shot 70B 39.23 39.32 33.33 0.00 0.00
At least seven of ten agreeing annotator
Correct answers 29.29 100.00 0.00 0.00 0.00
Annotators 59.61 59.61 0.00 0.00 0.00
Zero-shot 8B 44.33 44.33 0.00 0.00 0.00
Fine-tuned 8B 45.81 45.81 0.00 0.00 0.00
Zero-shot 70B 42.36 42.36 0.00 0.00 0.00

Table 7: Agreement between annotators and LLMs (AMI): We show the NSP accuracy for each annotator (results
averaged) and the LLMs when the other annotators serve as the ground truth. We show different thresholds for
agreeing annotators that an answer counts as correct. We also display the accuracy grouped by the number of
choices a predictor has (if too many annotators have to agree, the number of possible correct answers shrink).

means that not renaming the speakers for the user
study should not skew our comparison.

Context Length We also compare how the num-
ber of included most recent dialogue utterances
influences the accuracy of the predictions: We vary
the number of included utterances in the prompt
as context for the models in steps of the power of
two from four to 64. There seems to be a limit on
how much context in the form of previous dialogue
utterances helps the model in its decision even with
the number of not included speakers decreasing
(Table 3). We picked eight recent utterances for our
experiments as it showed the best performance on
the validation sets, and it enables faster inference
than for 16 utterances. As the accuracies differ
only sightly across the context lengths we tried, it
seems that the model mostly relies on the last few
utterances for its decision while also being able
to focus on them even if the included dialogue is
longer.

Training Data Mixture As we have two datasets
from our benchmark with training data, we want
to find out how the specific selection of training
data impacts the generalization ability of the fine-
tuned models. Only training on the AMI data al-
ready shows large improvements for the two sim-
ilar datasets (AMi and DiPCo) but only small im-
provements for ML. Only training on this dataset
however reduces the performance on the other two
datasets. A weighted combination of both datasets
(roughly equal amount of datapoints from both)
resulted in performance similar like training on
the “corresponding” dataset. We even saw slight
transfer learning for DiPCo.

5 Related Work

Previous research on dialogue turns is different
from our approach as we assume both the setting
of a multi-speaker dialogue either in text form or as
a transcript and a text-only LLM as the predictor.
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# choices all 1 2 3 4
At least one of ten agreeing annotator
Correct answers 100.00 0.00 5.95 50.58 43.47
Annotators 92.07 0.00 61.11 88.89 100.00
Zero-shot 8B 92.56 0.00 88.89 86.60 100.00
Fine-tuned 8B 98.18 0.00 94.44 97.06 100.00
Zero-shot 70B 96.53 0.00 61.11 97.71 100.00
At least three of ten agreeing annotator
Correct answers 100.00 44.30 51.74 3.97 0.00
Annotators 61.98 54.85 67.73 66.67 0.00
Zero-shot 8B 55.21 37.69 67.41 91.67 0.00
Fine-tuned 8B 61.98 50.00 70.93 79.17 0.00
Zero-shot 70B 61.98 48.13 72.52 79.17 0.00
At least five of ten agreeing annotator
Correct answers 70.74 100.00 0.00 0.00 0.00
Annotators 55.61 55.61 0.00 0.00 0.00
Zero-shot 8B 46.26 46.26 0.00 0.00 0.00
Fine-tuned 8B 46.73 46.73 0.00 0.00 0.00
Zero-shot 70B 53.04 53.04 0.00 0.00 0.00
At least seven of ten agreeing annotator
Correct answers 25.12 100.00 0.00 0.00 0.00
Annotators 43.42 43.42 0.00 0.00 0.00
Zero-shot 8B 45.39 45.39 0.00 0.00 0.00
Fine-tuned 8B 42.76 42.76 0.00 0.00 0.00
Zero-shot 70B 50.66 50.66 0.00 0.00 0.00

Table 8: Agreement between annotators and LLMs (DiPCo): We show the NSP accuracy for each annotator (results
averaged) and the LLMs when the other annotators serve as the ground truth. We show different thresholds for
agreeing annotators that an answer counts as correct. We also display the accuracy grouped by the number of
choices a predictor has (if too many annotators have to agree, the number of possible correct answers shrink).

Transition Relevance Places Methods for turn-
taking use LLMs to predict transition-relevant
places within a stream of words. Transition-
relevant places are points in a dialogue where a turn-
shift can happen. Ekstedt and Skantze (2020) fine-
tuned GPT-2 to predict these spots in written and
spoken dialogues. Later work (Umair et al., 2024)
investigated if more recent LLMs (e.g., Llama 3.1
8B) can do the same.

Audio / Visual Cues Multimodal approaches for
NSP use visual cues like gaze and hand gestures
(Ishii et al., 2016; Malik et al., 2020). This research
incorporates gaze transition patterns and eye con-
tact timing structure (Ishii et al., 2016) or head
movement (Ishii et al., 2015) to predict the next
speaker using support vector machines. Malik et al.
(2020) utilized focus of attention among others to
train classic machine learning classifiers for NSP.
Other systems rely on voice activity projection for
turn-taking prediction (Inoue et al., 2024a,b) which

predicts future voice activity based on the current
audio signal.

6 Conclusion

Our research goal was to investigate the ability
of LLMs to predict the next speaker in a multi-
speaker dialogue setting. We also compared their
performance with humans and fine-tuned LLMs to
improve them on NSP. The experiments on our
compiled benchmark show that LLMs like Llama
3.3 70B can match the human performance on the
NSP task in accuracy and it also shows very high
agreement with human predictors. Smaller LLMs
can achieve this performance or even exceed it by
fine-tuning on dialogue datasets when the dialogue
flow (e.g., with some short noisy utterances) is sim-
ilar. We think that these results imply an ability of
LLMs to “know” when to talk at transition-relevant
places in a multi-speaker dialogue – either through
large model size or fine-tuning on dialogues. Fu-
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ture work will investigate how multimodal LLMs
handle the NSP task as this work did not investi-
gate the impact of additional auditory and visual
information about the dialogue.

Limitations

Our investigation is limited to text-only dialogues
and does not cover the use of audio or visual cues.
We do not predict the next speaker on a per-token
or per-word basis but rather after a full utterance.
This assume that the system only receives full ut-
terances as input which is the case if the dialogue
participants interact via text or through an audio
transcript.
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A Prompt

Here, we present the prompt that both the tested
LLMs and the human participants received to
complete the NSP task:

Your task is to predict the next
speaker given the full conversation
history. Do not provide any explanation.
Do not complete the conversation.

This is the conversation history:

<conversation history>

Predict the next speaker by outputting
the name and only the name of the
next speaker. Carefully consider the
motives of the participating speakers
in the conversation. Do not provide
any explanation. Do not complete the
conversation.

B Inference and Training Details

• Hugging Face Transformers library (Wolf
et al., 2020) for loading and running the mod-
els.1

• Inference

– All models were loaded in 8-bit precision
via bitsandbytes. 2

– Temperature: 0.0 (no sampling)

• Training

– Supervised Fine-tuning Trainer script
from Hugging Face Transformer Rein-
forcement Learning library. 3

– LoRA (Hu et al., 2022) with rank r = 8.

• Hardware equipment: Up to two NVIDIA
RTX 6000 Ada Generation GPUs at the same
time.

C Data Collection for Human Baseline

We describe our process of collecting data for the
human baseline in detail.

1https://github.com/huggingface/transformers
2https://github.com/bitsandbytes-foundation/

bitsandbytes
3https://github.com/huggingface/trl/

C.1 Sample Selection

We targeted a sample of 1% of each test sets to keep
the amount of work for the voluntary annotators
small while still capturing the nature of the datasets.
However, the different natures added additional
constraints. For ML, we only selected three full
dialogues leading to approximately 1% of the data.
For AMI, a sample of 1% would have been outside
of our annotator budget. Therefore, we selected a
sample of 0.5%. For DiPCo, 1% was not enough
to capture the dataset’s nature, so we doubled the
sample size here.

To decide which samples of the test sets to use
during data collection, we performed several ran-
dom samples of consecutive dialogue utterances
and selected the one showing the most similar ac-
curacy in a zero-shot setting to the full dataset.

C.2 Annotation Acquisition

We asked colleagues working in the field of NLP
and Computer Vision to fill out the forms for our
user study to acquire a human baseline. The par-
ticipation was not mandatory, and we offered no
compensation. We informed the participants that
the data created by them during this user study will
be incorporated into a scientific publication.

We presented the participants of our data collec-
tion for the human baseline the following introduc-
tion texts:

• Human Baseline for Next Speaker Predic-
tion on the AMI Meeting Corpus Dataset
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of)
the AMI Meeting Corpus Dataset (https://
groups.inf.ed.ac.uk/ami/corpus/). You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please read the instructions in the first prompt
carefully. The following questions (63 in to-
tal) will have the same prompt and will only
change the newest (and oldest) conversation
step.

• Human Baseline for Next Speaker Predic-
tion on the Dinner Party Corpus (DiPCo)
Dataset
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
Dinner Party Corpus (DiPCo) Dataset (https:
//arxiv.org/abs/1909.13447). You will
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be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please read the instructions in the first prompt
carefully. The following questions (55 in to-
tal) will have the same prompt and will only
change the newest (and oldest) conversation
step.

• Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 1/3
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
MultiLIGHT dataset (https://arxiv.org/
abs/2304.13835). This is the first of three
full conversations I want your help for. You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (26 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

• Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 2/3
I want to acquire a human baseline for the
task of next speaker prediction on (a sample
of) the MultiLIGHT dataset (https://arxiv.
org/abs/2304.13835). This is the second of
three full conversations I want your help for.
You will be presented the same prompt as the
models I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (31 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

• Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 3/3
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
MultiLIGHT dataset (https://arxiv.org/
abs/2304.13835). This is the third of three
full conversations I want your help for. You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (34 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

The introduction text for ML differs from the
other datasets as we used a different setup for the
online form. This switch from the setup for ML
to the one used for AMI and DiPCo was mostly
done out of convenience during the creation of the
online form and should not impact the results of
the data collection.

After this introduction text, the participants were
shown the exact same prompt template as they were
presented to the LLMs (subsection 2.2). To select
the next speaker, they could choose from all appear-
ing speakers in that dialogue with a radio button
control element.
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Samsung R&D Institute Poland
{a.jakubiak2,p.stachyra,h.borkowski,s.latka}@partner.samsung.com,

{p.czubowski,r.izak,k.jankowski,s.janicka,m.zielinski3}@samsung.com

Abstract

Punctuation prediction is a necessary part of
ASR models, usually accomplished in a cas-
caded framework, where a secondary text-
based model supplements an unpunctuated
ASR output with punctuation marks. However,
this approach results in ignoring acoustic con-
text, which makes it poorly suited to certain
languages. In this paper, we explore previously
proposed ideas on an alternative approach,
i.e. Speech-To-Punctuated-Text (STPT) mod-
els, and present a solution that allows adapt-
ing existing ASR models to output punctuated
text. Additionally, we propose utterance glu-
ing, a method of augmenting data to circum-
vent the lack of speech corpora with long ut-
terances and punctuated references. Our STPT
models trained on augmented data outperform
STPT models trained on regular data, as well
as traditional cascaded models, suggesting that
acoustic-based punctuation prediction may be
a good alternative to the more common text-
based punctuation prediction.

1 Introduction

With the advances in Automatic Speech Recogni-
tion (ASR), speech recognition models have be-
come useful in many contexts. Still, there are areas
in ASR research which, despite their influence on
practical usage, remain under-researched. One of
these is punctuation prediction – the task of giving
proper punctuation to the ASR output.

Appropriate punctuation in a text is important
both for its readability to humans (Ákos Tündik
et al., 2018), and for the success of downstream
tasks which use it as input, such as machine trans-
lation (Vandeghinste et al., 2018) or named entity
recognition (Nguyen et al., 2020). Long blocks of
text, if not separated into sentences, can be diffi-
cult for humans and machines to parse through and
understand; additionally, some sentences may be
ambiguous without appropriate punctuation. For
these reasons, no matter the use-case of an ASR

model, having a properly punctuated output is gen-
erally preferable.

Despite this, a still widely-used approach to ASR
models is to make them output unpunctuated, low-
ercase text. Such text is often subject to a sep-
arate process called punctuation prediction (Gra-
vano et al., 2009), which adds punctuation to it.
Many punctuation prediction models do not use
any acoustic features present in speech, relying
only on the text output of ASR as their input; this is
referred to as lexical punctuation prediction. How-
ever, this approach presents issues.

Firstly, if a text may be correctly punctuated in
multiple ways, it is impossible for the model to
distinguish between them without access to acous-
tic context. This is especially striking in languages
that rely more heavily on the acoustic context rather
than the grammatical structure of the sentence to
disambiguate between different meanings, such as
Spanish (Hualde, 2005) or French (Price, 2005),
wherein questions are often distinguished from
declarative statements exclusively through prosody.

Secondly, since the lexical punctuation predic-
tion relies on the text output of the ASR, any ASR
errors are likely to result in punctuation errors, as
the punctuation prediction model tries to punctuate
the incorrect sentence.

Thirdly, this approach adds the burden of main-
taining an additional model alongside the ASR
model itself. This is additionally problematic when
working with limited memory and computational
power, such as when running on mobile devices.

A practiced solution to the first and second is-
sue is creating hybrid punctuation prediction mod-
els which use acoustic features as input alongside
text (Klejch et al., 2017), and have access to addi-
tional acoustic context not present in the text itself.
These models are usually bigger and more complex
than purely lexical models, which makes the third
issue even more prevalent. A less common solu-
tion, which addresses all three issues, is creating
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ASR models that directly output punctuated text,
and learn to place punctuation marks based solely
on the speaker’s prosody (Nozaki et al., 2022;
Kim et al., 2023). This is referred to as acoustic
punctuation prediction, and is the solution we are
developing.

The biggest roadblock in developing robust
Speech-To-Punctuated-Text (STPT) models is the
lack of appropriate speech corpora with both punc-
tuated references and long utterances. Discard-
ing corpora without punctuation marks (e.g., Lib-
riSpeech (Panayotov et al., 2015) and Multilingual
LibriSpeech(Pratap et al., 2020)) means severely
limiting training data, which unavoidably results
in worse recognition metrics, especially in low-
resource languages. Moreover, many widely-used
speech corpora used for ASR training contain
mostly one-sentence utterances (e.g., Common
Voice (Ardila et al., 2019)). An STPT model
trained on such a dataset is likely to learn to output
periods and question marks at the ends of utter-
ances only. This is usually not preferable, as most
ASR models are unlikely to process only one sen-
tence at a time.

In this paper, we propose a method of training
an STPT model aimed at tackling both these is-
sues without compromising on the Word Error Rate
(WER) of the model.

2 Related Work

Creating an end-to-end ASR model that takes
speech as input and outputs punctuated text
has been previously undertaken for English and
Japanese (Nozaki et al., 2022) and for English (Kim
et al., 2023).

Mimura et al. (2021) tackled a close topic; how-
ever, their goals were much broader, including re-
moval of filler words and changing the speech to
be more formal, so their findings are largely inap-
plicable to our research.

Recently, STPT models have become much more
popular, with models such as NVIDIA’s Parakeet1

and Canary2 being published. These projects did
not focus on punctuation; they used punctuated and
capitalized transcripts as the training data, so the
models learned to produce punctuation in the out-
put, but the creators do not claim to have used any
specific methods to improve punctuation results,

1https://huggingface.co/nvidia/parakeet-tdt-0.
6b-v2

2https://huggingface.co/nvidia/canary-qwen-2.
5b

and they do not share any metrics showing their
punctuation performance. We will be focusing on
the punctuation-oriented research of Nozaki et al.
(2022) and Kim et al. (2023) in our analysis.

2.1 Architecture changes

The main innovation suggested by Nozaki et al.
(2022) on creating an STPT model is the addition
of an auxiliary loss in an intermediate layer. In
their experiments, this addition improved the per-
formance of the model in multiple metrics; how-
ever, in the experiments conducted by Kim et al.
(2023), the auxiliary loss did not seem to improve
the performance of the model significantly.

Kim et al. (2023) focused on streaming, chunk-
based ASR, in which their model was only pro-
vided with fragments of sentences at a time. This,
as explored in more detail in Section 2.2, seems to
make punctuation detection much more difficult.

2.2 Punctuation in long utterances

Nozaki et al. (2022) acknowledge that the English
training corpus they use, MuST-C (Di Gangi et al.,
2019), contains only single-sentence utterances, but
they do not attempt to solve this issue. Their model
achieves good results on single-sentence test cases,
but they do not test it on longer utterances. Their
Japanese test utterances are single-sentence only,
while only one-sixth of the training ones contain
more than one sentence.

Kim et al. (2023) also used MuST-C, but ad-
dressed the problem in two ways. Firstly, they con-
catenated random pairs of training utterances, so
that every new utterance consisted of two sentences.
Additionally, they also tested the model on long-
form speech. The results on long-form test cases
were worse than those achieved by Nozaki et al.
(2022) on single-sentence test cases, particularly on
periods and question marks. However, the model
presented by Kim et al. (2023) achieved worse re-
sults on periods in single-sentence test cases than
it did on periods in long-form test cases, which
counter-intuitively suggests that it was actually bet-
ter at predicting mid-utterance periods than it was
at predicting utterance-ending ones. This is likely
caused by the fact that its streaming ASR had ac-
cess to less context, which made it difficult for the
model to detect ends of utterances.
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3 Proposed Method

Broadly speaking, we wanted our method to be as
easy to adapt and use as possible. Because of that,
the ideas we propose are focused on data process-
ing, and could be implemented to add punctuation
prediction to any ASR model; although, as men-
tioned before in relation to (Kim et al., 2023), some
architectures seem better suited to the task of punc-
tuation prediction than others.

3.1 Punctuation adaptation

In our research, we decided to adapt regular ASR
models on punctuated data, rather than training
STPT models from scratch. This has many ad-
vantages; namely, adapting a model for punctua-
tion prediction is much faster and less resource-
intensive than training an STPT model, which
is practical for production contexts where time
needed to deploy a new model is a factor. Ad-
ditionally, with this method, training corpora with-
out proper punctuation can still be used in the
early phases of training to improve the final ASR
model. Finally, with punctuation adaptation, any-
one can add punctuation prediction to their existing
ASR model, without restarting the training process,
which makes the method easier to test and use.

3.2 Utterance gluing

As previously described, since many ASR corpora
contain only one sentence in each utterance, STPT
models trained on them struggle with placing pe-
riods and question marks in places other than the
ends of utterances. Concatenating pairs of utter-
ances has been proposed as a solution (Kim et al.,
2023); however, an STPT model trained on con-
catenated utterances could learn to recognize ar-
tifacts generated by concatenation (e.g., changes
of speakers, loudness, or in the background noise),
and place punctuation there. We expanded on the
idea of concatenation to make the final utterances
resemble natural long-form speech in the following
ways:

• Only utterances recorded by the same speaker
are concatenated.

• Utterances shorter than 1 second and very
quiet utterances (with RMS amplitude lower
than 0.01) are discarded.

• Every speaker’s utterances are sorted by RMS
amplitude, and concatenated with the ones

next to them on the sorted list, so that the
concatenated utterances have similar volumes.

• Groups of variable numbers of utterances are
concatenated, so that the model does not learn
to rely on the number of sentences in an utter-
ance.

• A short cross-fade (randomly chosen between
8, 10 and 12 ms) is added between the utter-
ances.

• Long periods of silence from the resulting
utterance are cut out, by randomly choosing
duration between 0.6, 0.7, 0.8 and 0.9 sec-
onds, and cutting out all parts of the recording
that are quieter than 0.2% of the maximum am-
plitude of a given recording and longer than
duration. A fragment of silence n seconds
long (where n is a random length shorter than
duration) is left behind, so that some silence
remains.

We call this method utterance gluing, as it is more
complex than simple concatenation. The script
used can be found online3.

3.3 Data processing

We decided to support recognizing periods, com-
mas, question marks, inverted question marks
(¿), exclamation marks, and inverted exclamation
marks (¡). Our data processing pipeline for punctu-
ation data was as follows:

1. All punctuation marks other than those sup-
ported were removed from the reference text.
Additionally, all periods used in abbreviations
and initials were removed.

2. Every occurrence of a supported punctuation
mark was replaced by a tag, written as a sepa-
rate word; those tags were also placed in the
token vocabulary of the model.

4 Models

4.1 ASR

The ASR model used in this work is a conformer-
transducer, a sequence-to-sequence model, which
is a variation of an architecture derived from the
RNN-transducer (Graves, 2012). Specifically, we

3https://github.com/SamsungLabs/
adapting-asr-models-for-stpt-with-utterance-gluing
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employ the first-pass model architecture as de-
scribed in section 2 in (Park et al., 2023) without a
feedback path from the joiner to the predictor. We
refrained from using the second-pass portion of the
architecture, focusing on the applicability of the
proposed method to a single-pass streaming model.
We release the code used for training on GitHub3.

The concept relies on employing transcriber and
predictor networks: the former operating on the
acoustic features X ∈ Rd derived from the audio
signal, the latter on the utterance transcription en-
coding Y , representing wordpieces.

The transcriber takes an input sequence of acous-
tic features and outputs a transcription vector. In
this work, the transcriber is a stack of 16 conformer
layers (Gulati et al., 2020) capturing the global,
as well as local patterns by utilizing attention and
convolution layers. To ensure optimal resources uti-
lization, we used striding as a reduction technique
applied to the acoustic features, prior to processing
by the transcriber.

The predictor consists of two layers of an LSTM
network. Its purpose is to learn to model an out-
put sequence g = (g0, g1, ..., gU ), where U corre-
sponds to the tokens’ sequence length.

It is worth noting that the input sequence is the
original tokens’ sequence y = (y1, ..., yU ) with
an encoded null output ∅, prepended to it. There-
fore, at the input, we process an extended input
vector ŷ = (∅, y1, ..., yU ), as proposed by previous
work (Graves, 2012). Utilization of a blank token
enables teaching the model how to align speech,
i.e. account for silent parts in utterances without
malforming the transcribed speech sequence in tem-
poral context.

These networks are jointly trained using a Joiner,
integrating the information from both networks,
with an objective function (commonly known as
RNN-T Loss) defined as log posterior probabil-
ity: L = −ln(y|x). Joiner adds the outputs of
transcriber and predictor, which are further passed
through activation layer and linear layers.

The ASR we trained had 30 million parameters.
An overview of the architecture used for the ASR
model used in this work is shown in Figure 1.

4.2 Lexical restoration

To evaluate our approach against lexical methods,
we also trained and tested transformer-based token
classification models. This was done due to the lack
of appropriate open-source models for this study;

Figure 1: Transducer architecture used in this work.

the most appropriate being KREDOR’s punctuate-
all model4, based on (Guhr et al., 2021), which does
not support exclamation marks and inverted punc-
tuation marks. For each language, an instance of
XLM-RoBERTa-large (Conneau et al., 2019) was
first fine-tuned on a mix of long- and short-form
utterances with a 1:4 ratio, and then further trained
on the former only. The needed datasets were ac-
cessed through the OPUS (Tiedemann, 2012) web-
site and included ParaCrawl (Bañón et al., 2020),
OpenSubtitles (Lison and Tiedemann, 2016), and
EuroParl (Koehn, 2005) to balance formal and in-
formal writing styles. For each dataset, short-form
sentences were retrieved and cleaned (e.g., abbrevi-
ations were removed). Then, a random subsample
was concatenated to form utterances 2-6 sentences
long. In total, each model was trained on more than
16M utterances per epoch, with training ending af-
ter 15 epochs, or if the average of all punctuation
mark metrics plateaued for more than two epochs.

5 Experiments

5.1 Datasets used

We decided to run our experiments on German,
Polish, and Spanish, as those languages represent
three different language subgroups (Eberhard et al.,
2024), and we suspected that different approaches
to punctuation prediction might work best for dif-
ferent kinds of languages. Unfortunately, we could
not train an English model with MuST-C and com-
pare it to previous works on this subject, (Nozaki

4https://huggingface.co/kredor/punctuate-all
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et al., 2022) and (Kim et al., 2023), since the dataset
is not currently available5.

5.1.1 Training and validation datasets

For punctuation training purposes, we searched
for open-source datasets with well-punctuated ref-
erences. We decided to use Common Voice
16.1 (Ardila et al., 2019) for Spanish and
German, and Common Voice 13.0 with Par-
laSpeech (Ljubešić et al., 2025) for Polish. 1%
of the data was selected for validation. The number
of utterances and punctuation marks in each dataset
can be seen in Table 1.

For the purposes of our experiments, we cre-
ated four versions of each training and validation
dataset:

1. A non-glued, non-punctuated version, used to
train a regular ASR model.

2. A non-glued, punctuated version, with most of
the utterances only containing one sentence,
later referred to as “single-sentence punctu-
ated data" (single).

3. A concatenated, punctuated version, where
utterances were randomly concatenated into
groups of 2-3, resulting in 361k utterances in
German, 230k in Polish and 591k in Spanish,
and their references concatenated accordingly
(concat).

4. A glued, punctuated version, where utterances
were glued together into groups of 2-3, using
the methodology described in section 3.2, re-
sulting in 339k utterances in German, 199k
in Polish and 549k in Spanish, and their refer-
ences concatenated accordingly (glued).

Table 1: Number of utterances and punctuation marks
in original non-augmented datasets.

Language Utts . , ¿ ? ¡ !
German 867k 801k 218k 0 47k 0 22k
Polish 556k 446k 578k 0 51k 0 69k

Spanish 1418k 1418k 508k 5.7k 5.7k 4.5k 8.8k6

5https://mt.fbk.eu/resources/ accessed 2025-01-21
6Although Spanish Common Voice has an unequal num-

ber of opening and closing exclamation marks, and very few
question marks, it was still the best dataset available for our
purpose.

5.1.2 Evaluation datasets

We needed to use real multi-sentence utterances to
evaluate the models on actual mid-utterance peri-
ods, question marks and exclamation marks. We
decided to use Multilingual LibriSpeech (MLS),
which contains many long utterances from audio-
books (Pratap et al., 2020). The released version
of this dataset does not contain punctuation in its
references, but we restored the punctuation using
the original books’ text. Then, for each language,
we selected 1024 utterances which contained at
least one question mark from the training subset
of the corpus, and we manually modified the ref-
erences to only contain the punctuation marks we
were using (e.g., replacing semicolons with peri-
ods). We did not simply remove the unsupported
punctuation marks, as we did in training data, be-
cause MLS contained much more of them than our
training datasets. However, we removed a few ut-
terances which contained punctuation that could
not be straightforwardly replaced. The dataset de-
tails can be seen in Table 2. The evaluation datasets
were released on GitHub3.

Table 2: Number of punctuation marks in evaluation
datasets.

Language Utts . , ¿ ? ¡ !
German 1020 1825 3210 0 1421 0 429
Polish 1014 2958 4051 0 1364 0 351

Spanish 1022 2525 3134 1338 1338 323 323

5.2 Experiment methodology

In our experiment, we wanted to compare the ef-
fectiveness of the following approaches: lexical
restoration and three variants of acoustic recogni-
tion: trained on single, concat, and glued punctu-
ated data.

5.2.1 Acoustic model training

To that end, firstly, we trained a multilingual ASR
model from scratch for 925k steps on the non-
punctuated version of all three training datasets.
Then, we adapted it on the non-punctuated train-
ing dataset for every language, resulting in three
regular, non-punctuated ASR models. Then we
adapted each of them on the single, concat, and
glued punctuated data, resulting in three different
STPT models for every language. Table 3 shows
the numbers of training steps for each checkpoint
chosen for evaluation.
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5.2.2 Vocabulary
The token vocabulary of all of the models was
the same. Tags used for punctuation prediction
were present in the vocabulary from the start, and
went unused by the earlier, non-punctuated models.
Therefore, adaptations consisted simply of running
training from a previously trained checkpoint, with
entirely new training and validation data, and no
other changes. When adapting a previously trained
ASR model with no punctuation tags in the vocab-
ulary, one could accomplish the same outcome by
replacing the least used tokens in the vocabulary
with punctuation tags. This would allow the model
to adapt for punctuation prediction without the size
of the vocabulary being changed, and without the
need to retrain the model from scratch.

5.2.3 Lexical models
Additionally, for every language, we used our lexi-
cal punctuation prediction model (as described in
Section 4.2) and KREDOR’s punctuate-all model
to create two cascaded, lexical STPT models out of
the non-punctuated ASR models created in 5.2.1,
in order to compare the acoustic models with state-
of-the-art lexical punctuation prediction. It is worth
mentioning that our lexical models are more than
18 times larger, and KREDOR is about 9 times
larger, than our STPT models.

5.2.4 Performance metrics
To compare these approaches, we treated them as if
the models were binary classifiers deciding whether
or not the given punctuation mark should be placed
at a given position in the recognized text and com-
pared their precision, recall, and F1 scores. Addi-
tionally, we compared WERs of the models with
punctuation marks excluded.

Table 3: Number of training steps for chosen check-
points.

Language non-punct single concat glued
German 1891k 2143k 2000k 1980k
Polish 1569k 1703k 1600k 1654k

Spanish 1960k 2420k 2140k 2155k

5.3 Results and discussion
The evaluation results of the five previously de-
scribed approaches for each language can be seen
in Table 4. Since the lexical models used the out-
puts of non-punctuated ASR models, the WERs
listed in the lexical models’ rows are the WERs
of acoustic models before punctuation adaptations.

They can be also used to see how punctuation adap-
tations affected WERs.

5.3.1 Exclamation marks
In our experiments, exclamation marks could not
be reliably recognized by any model (best F1 score
was 0.21, and most were far worse). In acoustic
models, this does not seem to stem from them be-
ing underrepresented in training data (see Table 1).
It is likely they are close enough to periods, both in
their pronunciation and their usage, that neither lex-
ical nor acoustic model can tell them apart. Since
mistaking exclamation marks for periods does not
usually impact the meaning of the text, we decided
to treat exclamation marks as equivalent to periods
in our results, and disregard inverted exclamation
marks.

5.3.2 Lexical models
Our lexical models achieved similar results to KRE-
DOR’s state-of-the-art model, with the notable
exception of question marks, where their results
were better. For that reason, going forward, we
will be using them as the lexical state-of-the-art
benchmark. Although our models were trained on
very similar data to each other, some metrics differ
strongly between languages. This suggests that lex-
ical punctuation prediction may be better suited for
some languages than for others.

5.3.3 Acoustic models
In general, the single acoustic models performed
very poorly, achieving the lowest F1 scores out of
the acoustic models on all languages and punctu-
ation marks, except for Spanish utterance-ending
periods. As predicted, they were almost unable
to produce mid-utterance periods and question
marks, with the notable exception of Spanish mid-
utterance periods.

In Polish and German, the glued models
achieved the highest F1 scores on all punctua-
tion marks, outperforming all other models, both
acoustic and lexical. The most notable differ-
ence between lexical and glued models was in
mid-utterance periods and mid-utterance question
marks, though in Polish the difference on utterance-
ending question marks was also large.

In Spanish, there is no clear best-performing
model. Our Spanish acoustic models were by far
the worst of the three languages at recognizing
question marks, and they were outperformed by
the lexical model. This is likely caused by question
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Table 4: Comparison of recalls, precisions and F1 scores of punctuation marks’ recognition between models. For
sentence-ending punctuation marks, results are split into mid-utterance and utterance-ending marks. Exclamation
marks have been treated as periods, and inverted exclamation marks have been deleted. WER values are calculated
with punctuation marks excluded.

Language Model WER mid . end . , mid ? end ? ¿
Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre F1

German

KREDOR 0.24 0.49 0.59 0.53 0.91 0.69 0.79 0.65 0.65 0.65 0.32 0.67 0.44 0.48 0.83 0.61 - - -
lexical 0.24 0.50 0.53 0.52 0.88 0.72 0.79 0.64 0.67 0.65 0.41 0.62 0.49 0.53 0.88 0.66 - - -
single 0.21 0.02 0.90 0.03 0.90 0.64 0.75 0.64 0.51 0.57 0.01 0.73 0.02 0.37 0.76 0.49 - - -
concat 0.19 0.57 0.72 0.63 0.93 0.69 0.80 0.63 0.66 0.64 0.34 0.77 0.47 0.48 0.86 0.61 - - -
glued 0.19 0.70 0.67 0.68 0.93 0.71 0.81 0.62 0.68 0.65 0.49 0.76 0.59 0.53 0.86 0.66 - - -

Polish

KREDOR 0.28 0.46 0.59 0.52 0.95 0.78 0.86 0.63 0.63 0.63 0.28 0.66 0.39 0.46 0.83 0.60 - - -
lexical 0.28 0.46 0.57 0.51 0.94 0.78 0.85 0.61 0.62 0.62 0.39 0.61 0.47 0.48 0.85 0.61 - - -
single 0.24 0.00 0.32 0.01 0.92 0.73 0.81 0.67 0.49 0.56 0.05 0.89 0.09 0.32 0.67 0.44 - - -
concat 0.22 0.32 0.78 0.45 0.94 0.79 0.86 0.68 0.57 0.62 0.46 0.85 0.60 0.50 0.81 0.62 - - -
glued 0.21 0.50 0.78 0.61 0.96 0.85 0.90 0.61 0.67 0.64 0.67 0.82 0.74 0.66 0.88 0.76 - - -

Spanish

KREDOR 0.24 0.39 0.55 0.45 0.99 0.54 0.70 0.52 0.47 0.50 0.06 0.59 0.11 0.07 0.88 0.14 - - -
lexical 0.24 0.45 0.54 0.49 0.91 0.63 0.74 0.44 0.52 0.48 0.24 0.54 0.33 0.34 0.87 0.49 0.31 0.73 0.43
single 0.33 0.27 0.68 0.39 0.99 0.64 0.78 0.36 0.50 0.42 0.02 0.41 0.03 0.01 0.75 0.02 0.03 0.62 0.05
concat 0.17 0.52 0.76 0.62 0.97 0.58 0.72 0.51 0.54 0.53 0.20 0.44 0.28 0.21 0.87 0.34 0.25 0.62 0.36
glued 0.16 0.74 0.63 0.68 0.98 0.56 0.71 0.40 0.60 0.48 0.22 0.55 0.32 0.14 0.88 0.24 0.24 0.75 0.36

marks being underrepresented in the Spanish train-
ing corpus. In internal experiments which utilized
glued non-public data of better balance, higher re-
sults were achieved (0.39 recall and 0.88 precision
for mid-utterance question marks, 0.38 recall and
0.94 precision for utterance-ending question marks,
0.35 recall and 0.88 precision for inverted ques-
tion marks; for other punctuation marks, the results
were comparable to the glued model).

5.3.4 Effects on WER

The WER seems positively affected by concatena-
tion and gluing, although all acoustic models had
access to the same training data, just processed dif-
ferently. We think this is linked to the fact that
the evaluation data consists of long utterances; it
seems that training ASR models on long utterances
improves their performance in recognizing long
utterances.

5.3.5 Checkpoint instability
It is important to mention that during our training
runs, the punctuation results between even close
checkpoints varied strongly; it seemed difficult
for an STPT model to find a local minimum for
a punctuation task, as the model was trained for
minimizing WER in general, without any special
optimization for punctuation. It is likely that a
training method with two loss functions, one aimed
at minimizing WER and the other at optimizing
the punctuation performance, could be used to im-
proved the results further. That being said, we have
trained our models for a significant time, and the

checkpoints we are presenting are the best of many,
so we are reasonably sure that these are the best
punctuation results possible with this method, de-
spite the variability.

5.4 Possible new issues

We have found that acoustic punctuation prediction
addresses issues inherent to lexical punctuation pre-
diction, namely lexical ambiguity and dependence
on good ASR output for good results. In our hands-
on experiments, for example, a strong questioning
tone of voice was enough to produce a question
mark, regardless of whether the phrase spoken was
grammatically a question, a statement, or even in-
coherent babble.

However, this approach creates new issues that
need to be discussed. Some speakers may have a
flat tone of voice that does not indicate a question
when they are asking one. Some may pause while
speaking, without intending for a comma or a pe-
riod to be placed. In general, the performance of
acoustic punctuation prediction is more dependent
on the speaker, and how clearly they are speaking,
and less dependent on whether the phrases they
are using are grammatically correct, and have been
recognized correctly.

Since we have proven that acoustic models can
outperform lexical models, it seems that these is-
sues are less prevalent than the ones present in
lexical models, at least in our test cases.
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6 Conclusions

In this paper, we postulate that acoustic punctuation
prediction is a strong alternative to lexical punc-
tuation prediction. We show that multi-sentence
training utterances are necessary for training well-
functioning STPT models, and that punctuated
training corpora with single-sentence utterances
can be augmented to be used for STPT model train-
ing. We theorize about the problems caused by
concatenation, and we address them by develop-
ing our gluing technique. We show that gluing
improves the results over concatenation (weighted
avg F1 equal 0.5725 and 0.5371, respectively), and
that both methods are superior to training acous-
tic models on single-sentence utterances. We also
show that acoustic models can outperform lexical
punctuation prediction models (with weighted avg
F1 equal 0.4857), despite being much smaller.

7 Future work

The biggest challenge of end-to-end STPT models
is the lack of well-punctuated corpora with multi-
sentence utterances. This work was an attempt
to circumvent that, and could be developed by im-
proving the gluing methods further; however, if real
long-utterance corpora were developed, the models
trained on them would likely outperform the ones
presented here, and possibly any model trained on
glued data. Additionally, as we showed that lan-
guages can be better or worse suited for different
approaches to punctuation prediction, we hope that
more research on the topic will be conducted with
non-English languages in mind.

Since the acoustic punctuation prediction is gain-
ing popularity, as seen in models such as NVIDIA’s
Parakeet1 and Canary2, we believe it is important to
measure and share the punctuation results of STPT
models and work to improve these results, instead
of treating punctuation as an afterthought. Judg-
ing by the high-quality outputs of these models,
even though the authors did not share punctuation
metrics, it seems that English STPT models can
be trained on non-augmented punctuated data from
scratch, since there is quite a large amount of such
English data. For other languages, methods pre-
sented in this paper may be needed.

Lastly, we suggest that future efforts in devel-
oping speech corpora include punctuation in their
references if possible, to enable further develop-
ments in this field.

8 Limitations

In our work, we have shown the advantage of acous-
tic models over lexical models when it comes to
small ASR models trained on relatively small cor-
pora, with relatively high WER. However, high
WER negatively impacts the performance of lexi-
cal models, as the input they receive is unreliable.
It would be useful to test these methods on larger,
better-performing ASR models, and find if acoustic
models continue to outperform lexical ones when
the WER is lower.

Additionally, we have focused on one specific ar-
chitecture – the sequence transducer – in our work.
We hope the methods shown here are transferrable
to different architectures, as none of our methods
were reliant on the features of the sequence trans-
ducer. However, it is possible that different archi-
tectures differ in their suitability for use for STPT,
and we do not know if the results shown here are
representative of how every architecture would per-
form. This has to be investigated further to reach
any definite conclusions.
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Abstract

Language identification is a task that often finds
applications in NLP pipelines that serve mul-
tiple languages. The task is classically pre-
sented as a sentence classification problem and
models’ performance degrades quickly when
applying them to short phrases or individual
words. Although challenging, fine-grained lan-
guage identification is key to improve the per-
formance of downstream tasks. This work ex-
plores the performance of both Encoder-Only
and Decoder-Only Transformer Language mod-
els for the task of automatic word-level lan-
guage identification. The results show that for
this particular task, small Encoder-Only models
outperform larger Decoder-Only models.

1 Introduction

This paper explores Word-Level Language Identi-
fication (WLID) within the context of a cascaded
Speech-to-Speech (S2S) translation system with
human supervision as an example application. Al-
though there are several promising end-to-end ap-
proaches, the cascaded approach remains the pre-
ferred choice when human intervention is desired
at multiple steps of the process. For the Speech-
to-Speech or dubbing task, an additional problem
occurs when the text to be uttered automatically
contains words belonging to a language other than
the target language. These words are a source of
errors because the normal rules for pronunciation
of the target language cannot be applied. There
are many possible sources for these words, such as
named entities, slang and loanwords. Fine-grained
language labels can enhance various applications,
including Text-to-Speech (TTS) models, by gen-
erating more accurate phoneme sequences (Vesik
et al., 2020; Zhu et al., 2022) or using language-
specific embeddings (Yang et al., 2024).

The contributions of this paper are three-fold:
1) We annotate a novel dataset for the word-level
language identification task under the translation

setting, 2) we benchmark multiple automatic ap-
proaches to this problem, including both Encoder-
Only and Decoder-Only Large Language Models
(LLMs) and 3) we propose new techniques to al-
leviate LLMs hallucinations in the context of the
WLID task.

1.1 Related work

To the best of our knowledge, there are no works
that address the WLID task in the context of dub-
bing. The closest related task is code-switching
identification, which we take as a starting point
since it is the most similar. There are however
significant differences between the two. Code-
switching is a stylistic choice of the speaker, typi-
cally used in informal contexts, whereas this work
deals with the presence of foreign words within
text in the target language, which mainly occurs as
a result of the translation of foreign media. Code-
switching techniques and models can thus be used
for this task, but the difference in domains and
formality levels means that the techniques and find-
ings of the standard code-switching approaches
might not translate to this specific task. This moti-
vates the need for specific training and evaluation
data to assess and improve the performance of au-
tomatic systems.

Automatic approaches to code-switching can in-
clude both hand-crafted rules and statistical models,
as well as hybrid systems that combine the two. Ili-
escu et al. (2021) compare multiple approaches
using semi-supervised data, whereas Osmelak and
Wintner (2023) train a Conditional Random Field
system whose input is a sequence of word-level
features. Sterner and Teufel (2023) proposed a
rule-based system (TongueSwitcher) and compared
it with a BERT-like model trained on the data la-
beled with TongueSwitcher and human labels, and
observed similar performance for German-English.
Additionally, much work has been done to study the
effects of code-switched text on the performance
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Table 1: Dataset statistics, including number of sentences (#sent), number of words (#words) and the number of
those words that have been tagged as English (#En words).

Spanish - TED Spanish - Media German - TED

#sent #words #En words #sent #words #En words #sent #words #En words
train 2048 39182 1849 - - - 1024 17719 1014
dev 1316 26076 310 - - - 1574 25269 300
test 2502 42294 454 1854 9959 139 2823 43197 575

of automatic models. Winata et al. (2021) com-
pare multiple techniques and finds that good results
are obtained with the XLM-RoBERTa family of
models. Zhang et al. (2023) find that LLM’s perfor-
mance significantly decreases for code-switched
data across a variety of tasks (Sentiment Anal-
ysis, Machine Translation, Summarization and
Code-Switching Language Identification). Their
results show that it is competitive to finetune a
smaller model rather than using an LLM. In the
present work, we explore further the relative perfor-
mance of Encoder-Only models and larger LLMs
(Decoder-Only) using different approaches.

2 Methodology

2.1 Datasets

The main dataset used for the experiments reported
on this paper is the MuST-C dataset (Di Gangi
et al., 2019), a Speech Translation dataset that
contains the recordings of multiple English TED
talks as well as their translations into multiple lan-
guages. Specifically, we used the English-Spanish
and English-German translation sets. We also ex-
perimented with an in-house dataset of media con-
tent. This dataset consists of English media with
translations into Spanish.

The original MuST-C dataset does not include
WLID labels, so we asked 2 native speakers of the
target language to annotate each set. Table 1 reports
a summary of the dataset statistics. The majority
of the words are in Spanish, with around 1% of
the words being in English. However, 10% of the
sentences contain at least 1 English word, so even
if the amount of words is low, it is common enough
that the user-perceived quality is affected if this is-
sue is neglected. The manually annotated training
set was constructed so that there is a 1:1 proportion
between sentences with and without English words.
The remaining MuST-C train sentences were au-
tomatically annotated with Llama 3.1 70B, to be

used for semi-supervised experiments. 1

2.2 Models

Both Encoder-Only and Decoder-Only models are
tested based on previous results from the litera-
ture. For the first case, XLM-RoBERTa (Conneau
et al., 2020) was used, in both base (270M) and
large (550M) configurations. We take the pre-
trained model and fine-tune it for the WLID task
following a token classification approach, similarly
to what is done for Named Entity Recognition
(NER). Additionally, the existing Encoder-Only
TongueSwitcher (Sterner and Teufel, 2023) model
is also tested, which is a multilingual BERT model
(Devlin et al., 2019) (172M) German-English code-
switching model. The TongueSwitcher model has
two versions: a pre-trained version that has been
trained for the language modeling task with 24.6M
Tweets that contain mixed German and English,
and a code-switch detection model that has been
further fine-tuned with supervised code-switching
annotations. For the second case, we used Decoder-
Only LLM from the Llama family. The recently
released Llama3.1 (Dubey et al., 2024) 8B and 70B
models were selected. After iterating through mul-
tiple prompts, we ended up with the prompt format
shown in Table 2. Making the model output a la-
bel for every word in the sentence rather than only
those on a different language, as well as forcing the
output to be generated in a CSV-like format were
significantly helpful to improve the accuracy of the
model and to ensure that the model copies the input
sentence.

Even after iterating multiple times to find the op-
timal prompt, we still observe many occurrences of
hallucinations, that is, the generation of a sequence
of words that differs from the original sentence to
be annotated. This is not acceptable because the
WLID system should add language annotations if

1The labels to reproduce the dataset are made available at
https://github.com/mattiadg/wlid-annotations.
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Table 2: Prompt format used for LLM inference.

Instruction The input is a {default_language} sentence. Your task is to output the language for each word
in the sentence. Write one line for each word in the original sentence. Each output line will
contain the word and the language, separated by a comma and a space. If a word exists in
{default_language} and other languages, write {default_language}. Only answer to the last
question and do not write additional questions.

Input He comprado un ordenador ThinkPad.

Response

He, Spanish
comprado, Spanish
un, Spanish
ordenador, Spanish
ThinkPad., English.

necessary, but leave the input text unchanged other-
wise. We propose two techniques to post-process
LLM hypothesis for which hallucinations are de-
tected. The first is to replace the LLM hypothesis
by the default hypothesis, which is the one where
no words are labelled as a foreign language. As
a second technique, we propose a post-processing
algorithm called AutoMap to match the generated
text against the original sentence. Specifically, we
initially assign the default target language label to
every word on the original sentence. Then, we
take each generated word and compare it with the
words in the original sentence. If there is a match,
we assign the label of the generated word. Figure 1
provides an example of AutoMap in action.

3 Experiments

All development decisions are made based on the
results on the MuST-C dev set. XLM-RoBERTa
models are trained with Adam (Kingma and Ba,
2015) using 1e-5 learning rate and batch size 16,
for a total of 8k steps with early-stopping every 500
steps. The learning rate is linearly scaled during
the first 10% steps. Table 3 reports the results for
the XLM-RoBERTa model based on the number of
available training samples. Additionally, we also
test wheter using the semi-supervised data anno-
tated with Llama 3.1 is helpful, by adding 2048
sentences to the largest configuration, for a total
of 4096 sentences (+SSup). Results are reported
using the F1 score of the English class, as all of the
tested configurations achieve 1.00 F1 score for the
non-English class after rounding-up. The model
is able to obtain acceptable results starting from
128 training samples, with increases in quality each
time the available data doubles in size, starting to
plateau when reaching 2048. Adding additional
semi-supervised data degrades the performance
rather than helping.

Table 3: XLM-RoBERTa results on the MuST-C Span-
ish dev set, using either the Base or the Large config-
uration. +SSup includes an additional 2048 examples
automatically annotated with Llama. F1 scores for the
English class.

Number of training samples

128 256 512 1024 2048 +SSup
B 0.73 0.75 0.78 0.81 0.82 0.62
L 0.77 0.80 0.80 0.82 0.83 0.67

LLM models were tested both using the in-
context learning (ICL) approach as well as fine-
tuning (FT) with LoRA (Hu et al., 2022). Sampling
is disabled when generating the LLM hypothesis,
as we found that this helped to slightly increase
quality and reduce hallucinations. Table 4 shows
the performance of the LLM ICL approach on the
MuST-C dev set. The train subset was shuffled
once and then the first n samples were selected to
be used in the prompt. That is, the example se-
lected for n = 1 is also used for n = 2 and so
on. We observe no performance improvements for
increasing the number of examples beyond 1.

Table 4: LLM evaluation results for MuST-C Span-
ish dev set, using n in-context samples. Results show
English-class F1 score.

n
Model 1 2 4 8 16 32

L-8B 0.54 0.52 0.49 0.47 0.50 0.50
L-70B 0.71 0.71 0.70 0.70 0.70 0.69

For fine-tuning with LoRA, the best results were
obtained with learning rate 1e-4, rank 16, α =32,
dropout 0.05 and 8 epochs of fine-tuning. Table 5
compares the results of both ICL and FT depending
on the post-processing technique. The results high-
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Tienes que instalar y actualizar un browser, prueba Firefox.con

Tienes que instalar y actualizar Firefox

Figure 1: Example of AutoMap post-processing for LLM hallucination. The labels of the LLM hypothesis (bottom)
are mapped to the original text (top) by looking for exact matches (ignoring casing and punctuation) between the
hypothesis and the original text. The text is in Spanish and the shaded box represents a word detected as English.
The LLM hallucinated and failed to generate a label for "un browser, prueba con", which also includes the English
word browser, so it retains the default labels for those words.

Table 5: LLM performance on the MuST-C Spanish
dev set. We compare scoring the raw output (∅), using
AutoMap with exact matches (Ams) and using AutoMap
but ignoring casing and punctuation (Am). F1 scores
for the English class.

8B 70B
∅ Ams Am ∅ Ams Am

ICL 0.01 0.45 0.54 0.23 0.60 0.71
FT 0.01 0.45 0.59 0.01 0.56 0.72

light the importance of the AutoMap technique
in mitigating hallucinations. It can be observed
how results are very poor without AutoMap, as the
model struggles to reproduce the input sentence.
However, the introduction of AutoMap (Ams) sig-
nificantly boosts the performance of the system.
Results are improved further if punctuation and
casing are not taken into account when looking for
word matches (Am), which indicates that casing
and punctuation account for a significant portion of
the mistakes. When using AutoMap, the finetuned
models improve the ICL results by 0.05 F1 for the
8B model, and 0.01 F1 for the 70B model. Once
again, this highlights the importance of AutoMap,
as it allows to extract better performance from the
fine-tuned models. The results also suggest that
fine-tuning is able to increase the linguistic knowl-
edge of the model, which helps to better detect
foreign words, but it is not helpful for the model to
learn to copy the input.

Table 6 shows the evaluation of the final mod-
els on the selected test sets. The English-German
models are also compared with two versions of
TongueSwitcher: the code-switch detection BERT-
based model (TS) pre-trained on ample English-
German code-switching data, as well as the base-
line TS model fine-tuned with our WLID data (FT-

Table 6: Final evaluation results on the test sets, for
XLM-RoBERTa (R-Base, R-Large) and Llama3.1 (L-
8B, L-70B) models. Precision/Recall for the English
class.

Spanish German
Ted Media Ted

Model P R P R P R

R-Base 0.68 0.94 0.69 0.91 0.62 0.92
R-Large 0.69 0.98 0.73 0.94 0.68 0.92
L-8B 0.40 0.93 0.60 0.86 0.42 0.95
L-70B 0.48 0.97 0.68 0.86 0.45 0.96
TS - - - - 0.64 0.49
FT-TS - - - - 0.73 0.86

TS). Similarly to what was observed on the dev set,
RoBERTa-based models outperform the Llama 3
models on the TED talks evaluation set, both for
the Spanish and the German case. The TS code-
switching system underperforms the other systems,
and its performance only recovers when it has been
trained with our WLID data (FT-TS). This high-
lights the need for specific data for WLID, as the
existing code-switching systems cannot be directly
applied to this task.

4 Conclusions

This work has introduced a new setting for word-
level language identification, and provided a set of
in-depth experiments to assess the performance of
automatic models. Two interesting findings arise
out of this research. First, there is still room for im-
provement on this task, on both the in-domain talks
and out-of-domain media settings. Secondly, un-
like current trends that tend to favor Decoder-Only
LLMs, Encoder-Only models are a competitive,
cost-efficient alternative for this task.

In terms of future work, Encoder-Only models
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can be extended to the multilingual setting in or-
der to simplify deployment, reduce costs and to
improve quality and robustness. Additionally, the
performance of both Encoder-Only and Decoder-
Only models should be tested on a zero-shot set-
ting, to assess their capabilities on language pairs
for which little or no training data exists.
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Abstract

Curriculum learning (CL) aims to improve
training by presenting data from “easy” to
“hard”, yet defining and measuring linguistic
difficulty remains an open challenge. We in-
vestigate whether human-curated simple lan-
guage can serve as an effective signal for CL.
Using the article-level labels from the Simple
Wikipedia corpus, we compare label-based cur-
ricula to competence-based strategies relying
on shallow heuristics. Our experiments with a
BERT-tiny model show that adding simple data
alone yields no clear benefit. However, structur-
ing it via a curriculum – especially when intro-
duced first – consistently improves perplexity,
particularly on simple language. In contrast,
competence-based curricula lead to no consis-
tent gains over random ordering, probably be-
cause they fail to effectively separate the two
classes. Our results suggest that human intu-
ition about linguistic difficulty can guide CL
for language model pre-training.

1 Introduction

The growing scale of language models (LMs) has
increased interest in training strategies that improve
efficiency and convergence. Curriculum learning
(CL), inspired by developmental psychology, is one
such approach. CL structures training by present-
ing examples in a sensible order – typically from
“easy” to “hard” (Elman, 1993; Bengio et al., 2009;
Wang et al., 2021). While intuitively compelling
and empirically useful in certain NLP tasks (Platan-
ios et al., 2019; Nagatsuka et al., 2021), its overall
impact on masked language model (MLM) pre-
training remains debated (Surkov et al., 2022).

A key challenge in CL is the definition of lin-
guistic difficulty. Unlike other domains, language
difficulty may arise from multiple dimensions –
such as syntax, semantics or context. In the ab-
sence of gold standards, prior work often relies on
shallow heuristics (Platanios et al., 2019; Ranaldi

Rarity Class Example

low SL She is the author of the Twilight
series.

low EL The history of poker is the sub-
ject of some debate.

high SL Today, most automotive diesels
are turbocharged.

high EL Pink Floyd watched The Beatles
recording Lovely Rita.

Table 1: Sentences showing examples of high and
low average word rarity for each class in the Simple
Wikipedia dataset (Kauchak, 2013).

et al., 2023). Yet, readability research suggests that
no single heuristic reliably captures linguistic com-
plexity (Battisti et al., 2020). In contrast, humans
intuitively consider multiple dimensions when sim-
plifying text. This motivates the central question
for this work: Can human-curated simple language
effectively guide CL for MLM pre-training?

To answer this question, we study CL strate-
gies based on article-level labels from the Simple
Wikipedia corpus (Coster and Kauchak, 2011) and
compare them to competence-based CL with shal-
low difficulty heuristics (Platanios et al., 2019),
using BERT-tiny for MLM pre-training. Our exper-
iments show that merely adding simple language
data to training yields no overall improvement.
Still, incorporating it through a label-based curricu-
lum consistently improves not only overall perplex-
ity but particularly the simple language perplexity.
This effect vanishes when reversed: training on
everyday language first is detrimental to learning,
underscoring the importance of example ordering.
Surprisingly, competence-based curricula show no
benefit over random ordering.

Further, we find that simple and everyday lan-
guage articles have similar vocabulary sizes and
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high lexical and distributional overlap on the
chosen difficulty heuristics. This suggests that
competence-based CL fails here, because the
heuristics do not effectively separate the classes.
In contrast, the consistent gains from label-based
curricula imply that simple language encodes other
useful information, providing structure that bene-
fits pre-training when leveraged correctly. These
results suggest that simple language does indeed
help, when applied in a curriculum that makes use
of human intuition on linguistic difficulty.

2 Related Work

A common form of data-level CL orders the
data points according to a global difficulty mea-
sure. This approach has been applied to various
NLP tasks such as language modelling (Nagatsuka
et al., 2021; Ranaldi et al., 2023), machine transla-
tion (Platanios et al., 2019; Mohiuddin et al., 2022),
and questions answering (Liu et al., 2018) using
difficulty measures like input length (Nagatsuka
et al., 2021; Zaremba and Sutskever, 2015), word
rarity (Platanios et al., 2019), or domain similarity
(Mohiuddin et al., 2022). However, the choice of
metric is often intuitive and its overall effective-
ness remains debated, as the work by Surkov et al.
(2022) found that competence-based CL for MLM
offers little to no benefit.

A parallel line of work explores the benefits
of simplified language in neural network train-
ing. Mueller and Linzen (2023) show that pre-
training on simple language corpora strengthens the
syntactic inductive bias in encoder-decoder mod-
els. Huebner et al. (2021) demonstrate that child-
directed data facilitates grammar learning for down-
sized encoder-only models. Lucas et al. (2024) ex-
plore CL through a masking-based strategy, also
leveraging simplified language. While these stud-
ies focus on specific linguistic gains or efficiency
improvements, the role of simplified language in
global, data-level curriculum design remains un-
explored. We address this gap by investigating
whether editorially curated simple language – such
as that in Simple Wikipedia – can serve as an effec-
tive learning signal for CL, and how it compares to
commonly used difficulty heuristics.

3 Methodology

We use the following experimental setup to study
the effect of simple language in MLM pre-training.

Label # tokens # sentences

Simple (SL) 3, 395, 297 191, 318
Everyday (EL) 3, 796, 654 176, 019

Table 2: Dataset statistics for simple (SL) and everyday
(EL) language in the Simple Wikipedia corpus.

Dataset We employ the Simple Wikipedia
dataset (Coster and Kauchak, 2011), the most pop-
ular, freely available simple language corpus in
English. It consists of articles from the Simple
English Wikipedia in simple language (SL) and
their counterparts from the English Wikipedia in
everyday language (EL). Each sentence inherits the
article-level label (SL or EL), which may introduce
some label noise due to within-article variation
in sentence complexity. Table 2 compares both
classes regarding their respective number of tokens
and sentences.

Difficulty Heuristics For the competence-based
CL, we consider three shallow heuristics for text
difficulty: sentence length, word rarity, and the
Flesch Reading Ease (FRE) score (cf. Platanios
et al. (2019), Ranaldi et al. (2023)). Refer to Ap-
pendix B for the details. In addition to these, we
include a random baseline, where difficulty scores
are sampled uniformly to isolate the effect of data
ordering from the progressive data exposure.

Curriculum Strategies We compare two CL
paradigms. First, following Platanios et al. (2019),
we implement the competence-based curriculum
approach. We sort the training examples accord-
ing to the aforementioned difficulty measures and
gradually expand the training set as model com-
petence increases. The curriculum proceeds until
the entire dataset is included. We provide the full
implementation details in Appendix A.

Second, we implement two label-based curric-
ula using the SL/EL distinction. The sequential
strategy first trains on SL until convergence, then
continues training on EL. To mitigate potential for-
getting from fully replacing the training data, we
propose an incremental strategy: the model is first
trained on SL alone, then continues on the com-
bined SL+EL set, each phase until convergence.
We also include a reverse sequential strategy (first
on EL, then SL) as a control strategy.

Training Setup We train a BERT-tiny model
with two transformer layers of hidden size 128,
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Strategy Perplexity SL Perplexity EL Perplexity # Updates

Baseline EL 69.25 ±4.04 59.50 ±4.38 81.78 ±4.85 658 667 ±113 192

Baseline SL+EL 69.61 ±4.87 64.15 ±5.05 76.46� ±5.28 665 333 ±102 111

Incremental 66.36 ±2.53 63.29 ±3.39 71.51� ±2.55 781 333 ±83 312

Sequential 65.31� ±4.19 57.83� ±4.52 74.39 ±4.91 781 333 ±122 292

Anti-Sequential 70.32 ±3.97 59.24 ±4.01 81.70� ±4.37 682 000 ±102 274

Length 69.05 ±4.15 63.84 ±4.12 76.37 ±4.46 672 667 ±71 760

Word Rarity 66.74 ±3.48 62.48 ±3.52 74.12 ±4.12 664 666 ±72 394

FRE 68.05 ±5.22 62.53 ±4.98 75.32 ±5.88 709 333 ±105 524

Random 68.07 ±4.92 63.08 ±4.95 75.21 ±5.40 679 333 ±105 388

Table 3: Performance of BERT-tiny across baseline and CL strategies. Perplexity is reported for the full dataset and
separately for the simple (SL) and everyday language (EL) subsets. Sequential label-based curriculum achieves best
overall and SL perplexity. No competence-based strategy shows consistent improvement over baselines. Reported
values are mean and standard deviations across 15 runs. � denotes significant changes.

two attention heads, an intermediate feed-forward
of size 512, a batch size of eight, and a learning rate
of 10−4. All models are trained until convergence,
with early stopping based on validation loss. All
experiments are repeated over 15 random seeds to
ensure statistical robustness.

Evaluation We evaluate model performance us-
ing overall perplexity as well as SL and EL subset
perplexities. This helps us assess general improve-
ments as well as register-specific gains. Our base-
lines include models trained with random sampling:
one on everyday language only (Baseline EL), the
other on a uniform mix (Baseline SL+EL).

4 Curriculum Learning Results

We summarise the final performance of the BERT-
tiny model across all training strategies in Table 3,
focusing on overall, SL, and EL perplexity, as
loss values are less informative. We compare
each strategy against a primary baseline (Baseline
SL+EL), trained on SL+EL using random data sam-
pling, with results averaged over 15 seeds. To
assess the statistical significance of our results,
we apply a one-sided Wilcoxon signed-rank test
for symmetric distributions, and a one-sided me-
dian bootstrap test otherwise. All p-values are ad-
justed using the Holm-Bonferroni method within
each experiment family (baseline, label-based CL,
competence-based CL), using α = 0.05 and direc-
tional hypotheses. Appendix C details the direc-
tional hypotheses and the corresponding adjusted
p-values.

Does merely adding simple language to the train-
ing data improve model performance? The re-
sults provide a clear but mixed answer. Comparing
Baseline SL+EL to Baseline EL, we see a signifi-
cant improvement in EL perplexity but no improve-
ment in neither overall nor SL perplexity.

Can simple language effectively guide CL? We
find clear evidence in favour of simple language
guiding CL – provided that the sampling strategy
is right. Among the label-based CL strategies, only
the sequential variant significantly improves overall
as well as SL perplexity – achieving the best scores
across all strategies. Incremental improves EL per-
plexity, but not overall performance. To show that
the improvements of the sequential strategy are not
accidental, we also test its anti strategy (i.e. start-
ing training on EL, then progressing with SL): it
performs similarly to Baseline EL and yields signif-
icantly worse EL perplexity than Baseline SL+EL.
Both incremental and sequential strategies require
more updates than Baseline SL+EL to reach these
improvements.

Are shallow text features sufficient to guide
competence-based CL? We have a negative an-
swer to this question. Across all three competence-
based difficulty measures, we observe no signifi-
cant improvement in perplexity compared to Base-
line SL+EL. The random strategy further suggests
that neither simply increasing the dataset size nor
imposing an order on shallow features leads to bet-
ter model performance.
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Figure 1: Distribution of sentence-level difficulty heuristics for SL and EL.
None of the heuristics cleanly separates the two classes.

SL EL

SL 100% 96.67%
EL 86.06% 100%

Table 4: Vocabulary overlap be-
tween classes. Over 80% of EL’s
vocabulary is also present in SL,
showing high lexical similarity.

5 Discussion

In this section we discuss the implications of the
results from the previous section with regards to
our three research questions.

Learning across registers: asymmetries and in-
terference The surprisingly strong performance
of Baseline EL on the SL subset suggests that EL
may implicitly cover much of the SL distribution,
possibly due to the compositionality of language.
However, simply adding SL to the randomly or-
dered training data does not improve overall per-
formance – and while it significantly improves EL
perplexity, it worsens performance on SL itself.
This asymmetry hints at a negative interference
effect as observed in multilingual model training
(Wang et al., 2020): though both classes stem from
the same language, they might be different enough
to cause gradient conflicts when used in the same
dataset. These findings emphasise that learning
patterns across language registers are not symmet-
ric, and underscore the importance of evaluating
perplexity for different subsets.

Structure matters: the effectiveness of label-
based curricula Models only benefit from SL
when introduced in a structured way. Sequential
label-based curricula, where training begins with
SL before using EL, consistently outperform other
strategies in overall and SL perplexity. This aligns
with the idea that simplified input can serve as a
scaffold, supporting the acquisition of more com-
plex patterns. While the effect mirrors principles
observed in human learning, the underlying reason
why structured exposure aids generalisation may
differ in MLM.

The limits of difficulty heuristics Competence-
based curricula using shallow difficulty heuristics
show no clear advantage over random strategies.
While this supports prior findings by Surkov et al.
(2022), our analysis offers further insight. Figure 1

shows histograms comparing the distribution of
shallow heuristics in SL and EL and Table 1 illus-
trates some examples. While it is plausible that EL
has samples at the “easy” extremes, as not every
sentence in everyday language is necessarily com-
plex, we also observe SL examples at the “complex”
extremes. Assuming that SL represents text that
is easier to understand for humans, this highlights
that the difficulty heuristics fail to meaningfully
separate the two classes.

Future Directions We find that while shallow
difficulty heuristics do not suffice to guide CL, the
information encoded in the language classes does.
Despite high lexical overlap and comparable size
(Tables 2 and 4), simple language may offer more
than surface-level simplicity. Prior work has shown
that both humans and neural models benefit from
regular, compositional input (Galke et al., 2024)
and simple language might reflect just that through
syntactic consistency or clearer discourse structure.
Future work could explore how such compositional
features manifest in simple language, and whether
they can be modelled or annotated as difficulty
signals – enabling broader and more effective CL
strategies in MLM pre-training.

6 Conclusion

We examined whether human-curated simple lan-
guage can guide CL in MLM pre-training. Our
results show that label-based curricula outperform
both random baselines and competence-based ap-
proaches relying on shallow difficulty heuristics.
While the two language classes show high lexical
and distributional overlap, their ordering – particu-
larly when first training on simple language before
moving to everyday language – leads to significant
gains in model performance. This suggests that
human intuition about linguistic difficulty provides
more effective structure for CL than traditional
surface-level heuristics.
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A Implementation Details

We provide our implementation details for the
competence-based CL strategy, where each training
sample is assigned a difficulty score and the dataset
is sorted accordingly. A predefined competence
function then controls the fraction of data avail-
able at each training step t, gradually increasing
the difficulty over time. Following Platanios et al.
(2019), we adopt the square-root based competence
function, which they found to be most effective:

csqrt(t) = min(1,

√
t(1− c20)

T
) ∈ [0, 1],

where c0 denotes the initial competence at t =
0 and T is the total number of steps in the CL
phase. In our experiments, we observed that shorter
competence phases tend to yield better results than
longer ones. We pick T = 50 000 and c0 = 0.05
as function parameters. The size of the training
dataset is updated every 5 000 steps depending on
the current function value.

B Difficulty Heuristics

In our work we consider three popular heuris-
tics to measure the difficulty of text for global,
data-level curriculum learning (cf. Platanios et al.
(2019) or Ranaldi et al. (2023)). Let S be a sen-
tence, represented by a finite sequence of words
(w1, w2, . . . , wm). The first heuristic, sentence
length, is defined by the number of words in the
sentence:

length(S) = |S|.
Next, we use the word rarity metric as proposed
by Platanios et al. (2019), but normalise it by the
number of words to remove its strong correlation
with the sentence length:

word rarity(S) = − 1

|S|
∑

w∈S
log

(
countc(w)

N

)
,

where N denotes the size of the vocabulary of the
corpus and countc(w) the number of times w ap-
peared in the corpus. Last, we present the Flesch
Reading Ease (FRE) score as defined by Flesch
(1948). It is designed to evaluate the readability of
text and to return a score between 0 and 100:

FRE(S) = 206.835−1.015×ASL−84.6×ASW,

where ASL denotes the average sentence length,
which is always the actual sentence length since we

Strategy PPL SL PPL EL PPL

Baseline
SL+EL

.445 (w) .996 (w) .004 (w)

Incremental .598 (b) 1.00 (w) .008 (w)
Sequential .019 (w) .001 (w) .126 (w)
Anti-
Sequential

.252 (b) 1.00 (w) .008 (w)

Length .890 (w) .977 (w) .899 (w)
Word Rarity .890 (b) .977 (w) .718 (w)
FRE .779 (w) .977 (w) .899 (w)
Random .779 (w) .977 (w) .899 (w)

Table 5: Adjusted p-values for all statistical tests for
the models’ performance on overall perplexity (PPL),
simple language perplexity (SL PPL), and everyday
language perplexity (EL PPL). We choose α = 0.05
and boldface all significant results. We further indicate
which one-sided test was run: (w) Wilcoxon signed-rank
test or (b) boostrap median test.

only evaluate single sentences, and ASW denotes
the average syllables per word. Since the FRE was
designed to evaluate text samples of 100 words,
we can encounter negative FRE scores which are
outside the originally defined range.

C Details on the Significance Tests

Table 5 reports the adjusted p-values for all strate-
gies, assessing their performance relative to rele-
vant baselines. For each comparison, we applied a
one-sided test based on our directional hypotheses:
(1) whether adding SL (Baseline SL+EL) improves
over the baseline trained with EL (Baseline EL);
(2) whether label-based curricula (Incremental and
Sequential) improve over the full baseline (Base-
line SL+EL); (3) whether Anti-Sequential hurts
performance compared to Baseline SL+EL; and
(4) whether competence-based strategies (Length,
Word Rarity, FRE, Random) improve over the Base-
line SL+EL.
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Abstract

Large Language Models tend to struggle when
dealing with specialized domains. While all
aspects of evaluation hold importance, factu-
ality is the most critical one. Similarly, reli-
able fact-checking tools and data sources are
essential for hallucination mitigation. We ad-
dress these issues by providing a comprehen-
sive Fact-checking Benchmark FActBench cov-
ering four generation tasks and six state-of-the-
art Large Language Models (LLMs) for the
Medical domain. We use two state-of-the-art
Fact-checking techniques: Chain-of-Thought
(CoT) Prompting and Natural Language Infer-
ence (NLI). Our experiments show that the fact-
checking scores acquired through the Unani-
mous Voting of both techniques correlate best
with Domain Expert Evaluation.

1 Introduction

In the quickly evolving era of Natural Lan-
guage Processing (NLP), Large Language Models
(LLMs) are making their way into almost all use
cases and domains. In most tasks, they have shown
tremendous generative capabilities and a good un-
derstanding of text. However, they still tend to
hallucinate in critical domains like the Medical do-
main. Contemporary LLMs are typically evaluated
against general benchmarks and their assessment
of the Medical domain is usually lacking. While
it is essential to mitigate hallucinations, as a first
step some reliable automatic fact-checking indi-
cators are needed (Clusmann et al., 2023). The
field of automatic fact-checking in LLMs is rapidly
developing making it essential to find trustworthy
techniques and data sources.

The state-of-the-art techniques for Automatic
Fact Checking include Natural Language Infer-
ence (NLI) (Mor-Lan and Levi, 2024; Akhtar et al.,
2024) using DeBERTa (He et al., 2021), or through
Chain-of-thought (CoT) (Wei et al., 2022) by using
an LLM as a judge (Zheng et al., 2023). Given the

importance of Factual correctness in a critical do-
main such as medicine, it is helpful to rely on more
than one technique for Fact-checking. Therefore,
we explore the idea of Unanimous Voting such that
an atomic fact is only considered to be factually
correct if it is supported by both techniques.

Hallucinations can generally be divided into
input-conflicting, context-conflicting, and fact-
conflicting (Zhang et al., 2023). The focus of
our work lies in fact-conflicting, which is hal-
lucination, where facts in output contradict the
world knowledge. Additionally, our work builds on
top of FActScore, a CoT-based approach for fact-
checking. We adapt it to support user-provided
grounding documents, making it suitable for tasks
like RAG and Summarization. We present an auto-
matic Fact-Checking Benchmark FActBench1 with
the following contributions:

• We fact-check six contemporary LLMs using
Atomic Facts (Min et al., 2023) on four gener-
ations tasks: Text Summarization, Lay Sum-
marization, Retrieval Augmented Generation
(RAG), and Open-ended Generation.

• We compare Intrinsic (Grounding Docu-
ment) and Extrinsic (Wikipedia Dump) Fact-
checking techniques in our experiments.

• We evaluate NLI, CoT as well as Unanimous
Voting (UnVot) for the final prediction using
domain expert evaluations as reference.

Details about all the datasets we use can be found in
their original papers, including appropriate licenses
and terms of use.

2 Related Work

Hallucinations are a common problem in Natural
Language Generation (NLG) tasks such as abstrac-

1Code for FActBench can be found at
github.com/jvladika/FactSumm/
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tive text summarization, generative question an-
swering, or dialogue generation (Ji et al., 2023).
Detecting hallucinations is tied to the problem of
measuring the factuality of model output (Augen-
stein et al., 2023; Zhao et al., 2024). Hallucinations
can be detected with approaches looking at the un-
certainty in models’ logits (Varshney et al., 2023) or
with approaches that fact-check model output over
external knowledge sources (Chern et al., 2023).

Some recent works approached evaluation with
question answering (Scialom et al., 2021) or NLI
(Utama et al., 2022). Most recent methods leverage
LLMs by querying them with prompts that directly
ask for a score, like G-Eval (Liu et al., 2023a),
or evaluate the generated text with the veracity of
its atomic facts, like FActScore (Min et al., 2023).
Fadeeva et al. (2024) develop a method that does
not require external knowledge for fact-checking
as they leverage token-level uncertainty to identify
the potentially factually incorrect generated section
in the output. Similarly, Sankararaman et al. (2024)
introduces Provenance, a technique that uses NLI
models to check if the RAG output is factually
correct with reference to context. Lastly, Chen et al.
(2024) present FactCHD, a benchmarking for fact-
conflicting hallucination detection for the General,
Scientific, Health, and COVID-19 domains.

3 FActBench: Benchmark

In our Benchmark, we use two SotA techniques,
NLI and CoT, to evaluate 6 models on 4 different
tasks. We follow the approach introduced by Min
et al. (2023) to break all generations into a list of
atomic facts which are then used for fact-checking.
Since all our tasks with the exception of Open Gen-
eration, use a source document for grounding, we
opt for a hybrid approach such that we first perform
fact-checking using an intrinsic approach, followed
by an extrinsic one.2 The latter only performs eval-
uation on atomic facts that have been marked as
hallucinations in the first step. We employ such an
approach because it is possible for an atomic fact
to be factually correct as per the world knowledge,
even if it is not supported by the grounding docu-
ment. We show this methodology in Figure 1 that
illustrates how different fact-checking techniques
and data sources interact with each other.

2In factuality evaluation, intrinsic hallucinations are those
that contradict the reference document, while extrinsic halluci-
nations are those that contradict the external world knowledge.

3.1 Techniques

Baseline: FActScore As a baseline, we first re-
port on task performance using the established
FActScore metric, following their external checks
on Wikipedia with no grounding document. The
reason we use it is its popularity in papers involv-
ing generative NLP tasks in the last couple of years
(Dhuliawala et al., 2024; Chang et al., 2024; Huang
et al., 2025). Later, our goal is to show that the
combination of methods we use instead of raw
FActScore lead to a more faithful evaluation frame-
work and a better alignment with human scores.

Natural Language Inference (NLI): We utilize
NLI as the first evaluation method. NLI aims to
predict the logical relation between a premise and
a hypothesis, including entailment, contradiction,
and a neutral stance. We use the generated answer
as the premise and the reference answer as the
hypothesis. The intuition behind this approach
is that a good answer should logically entail the
reference. NLI has been applied for evaluating the
quality of summaries and text generation (Mishra
et al., 2021; Laban et al., 2022; Steen et al., 2023).

Following this approach, we use DeBERTa-v3
(He et al., 2023), shown to work well with NLI and
reasoning tasks. We use the version Tasksource,
fine-tuned on a wide array of NLI & classification
datasets, which works well with long inputs (Sileo,
2023).3 We take entailment predictions as a sign of
the atomic fact being supported by the original text
and contradiction as a sign of hallucination. We
additionally check the contradicting atomic facts in
an extrinsic way, by predicting their NLI class with
the relevant Wikipedia context as the hypothesis.

Chain-of Thought (CoT) Prompting: For eval-
uation using Chain-of-Thought Prompting, we
adapted FActScore, an existing CoT-based fact-
checking tool. This technique is suitable for open-
ended generation and uses a Wikipedia dump as
the knowledge source. FActScore supports extrin-
sic fact-checking by retrieving the most relevant
passages from Wikipedia using user-defined topics.
We adapt FActScore to support external documents
as the basis for fact-checking. This "topic" should
be the name of a real Wikipedia article, from which
the relevant passages are retrieved. We also include
a LLM-based topic generator so it is not required
to manually define the topic when evaluating using

3https://huggingface.co/tasksource/
deberta-base-long-nli
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Figure 1: Block Diagram depicting how different fact-checking techniques interact with different data sources.
Chain-of-Thought uses an LLM whereas Natural Language Inference uses a small LM as the backbone.

passages from the Wikipedia dump. We use GPT-
4o mini as the backbone of FActScore+, which
serves as a compromise between cost and quality.

Unanimous Voting (UnVot): To produce a reli-
able fact-checking approach, we explore the idea of
Unanimous Voting. This means we only consider
an atomic fact to be correct if both NLI and CoT
support it. This technique is especially useful for
applications where high precision is needed.

Human Evaluation: We evaluate CoT, NLI, and
UnVot techniques by correlating to domain expert
judgment. We recruited 8 in-house employed in-
dividuals with a medical background to serve as
annotators. A random subset of 80 generations (20
per task) was manually annotated such that each
generation was evaluated by two annotators. They
were instructed to follow the same hybrid, using
both the original article and Wikipedia as a basis
for fact-checking. Annotators were asked to as-
sign a score between 1 and 100 to the generation
estimating the factual correctness of the text.

3.2 Tasks

We include four tasks in our Benchmark, including
Text Summarization, Lay Summarization, Retrieval
Augmented Generation, and Open-ended Genera-
tion. The prompts used for all four tasks are shown
in Appendix A. We summarize the datasets used
for the tasks in Table 1 and discuss them below.
All the datasets can be found in their respective
original papers, together with appropriate licenses.

Text Summarization. This task refers to the
ability of an LLM to summarize a long scientific
article into a summary. We used 1000 random
samples from the PubMed Summarization dataset
(Cohan et al., 2018), which is derived from the

original PubMed dump.
Lay Summarization. Contrary to normal text

summarization, Lay Summarization refers to the
model’s ability to create a layman summary of
biomedical articles. We use 1000 random samples
from the PLOS dataset introduced by Goldsack
et al. (2022).

Retrieval Augmented Generation (RAG). We
use BioASQ-QA (Krithara et al., 2023), a biomed-
ical question answering (QA) dataset designed
to reflect the real information needs of biomed-
ical experts. The questions are written by ex-
perts and evidence comes from PubMed. We use
the summary subset – 1130 questions paired with
human-selected evidence snippets from PubMed
and human-written "ideal answers" based on those
snippets. We use the gold snippets as input to an
LLM and prompt it to generate an answer to the
given question, thus simulating a RAG pipeline.

Open-ended Generation. In this setting, no
context is used and the model is prompted to gen-
erate an answer based on its knowledge. We again
use the BioASQ dataset from the RAG task – we
take the 1130 questions and use them as input to
an LLM by prompting it to answer the question.

Task Dataset #Source W #Gen W

Summ PubMed 3,053.9 256
Lay Summ PLOS 6,696.8 256
RAG BioASQ-QA 351.9 116.5
Gen BioASQ-QA 351.9 default

Table 1: Average word count of articles (#W) and #
generation tokens (#Gen W) during inference for tasks
with respective datasets. Summ = Text Summarization,
Lay Summ = Layman Summarization, RAG = Retrieval
Augmented Generation, Gen = Open-ended Generation.
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Summarization Lay Summarization RAG (QA) Open-ended Gen

Models CoT NLI UnVot CoT NLI UnVot CoT NLI UnVot CoT NLI UnVot

FActBench (Grounding Document)

GPT-4o mini 95.8 77.4 86.6 95.4 94.8 95.1 25.4 77.7 51.5 44.5 50.4 47.5
Llama3.1 8b 95.3 87.8 85.28 95.4 93.5 94.4 35.6 76.7 56.1 74.4 35.6 55.0
Llama3.1 70b 96.52 84.59 82.84 96.1 94.1 95.1 31.3 76.3 53.8 37.3 46.5 41.8
Mistral 7b 95.8 82.55 80.38 96.3 97.32 94.75 82.9 73.1 78.0 80.9 32.5 56.6
Mixtral 8 x 7b 95.2 87.86 95.5 96.5 97.0 95.0 88.2 75.0 81.6 85.4 36.9 61.1
Gemma 9b 84.55 71.95 68.77 82.94 80.65 75.48 35.8 44.0 43.7 54.1 30.5 28.0

FActBench (Grounding Document + Wikipedia)

GPT-4o mini 96.8 82.6 80.4 96.2 96.6 93.4 97.3 78.2 76.4 95.8 51.4 50.3
Llama3.1 8b 96.4 88.85 86.25 96.5 94.2 91.5 98.2 77.1 76.1 79.3 36.7 32.1
Llama3.1 70b 97.27 85.71 83.9 97.0 94.8 92.0 97.2 76.8 75.1 90.9 47.7 45.9
Mistral 7b 96.51 83.59 81.34 97.83 96.7 94.93 98.6 73.5 72.7 92.1 33.2 31.9
Mixtral 8 x 7b 96.9 88.68 86.24 97.5 97.2 95.1 97.7 75.3 74.0 93.0 37.8 36.5
Gemma 9b 93.03 74.46 70.99 91.11 81.68 76.43 97.4 45.0 44.6 80.1 31.5 28.8

Baseline: FActScore (Wikipedia)

GPT-4o mini 51.34 52.6 19.4 41.4
Llama3.1 8b 43.97 49.4 25.3 71.3
Llama3.1 70b 50.08 48.8 24.0 34.8
Mistral 7b 46.11 50.02 61.1 78.4
Mixtral 8 x 7b 49.71 51.00 64.5 81.6
Gemma 9b 53.54 54.56 44.0 52.0

Table 2: Factchecking scores of six LLMs on four tasks using Chain-of-Thought (CoT) prompting, Natural Language
Inference (NLI), and Unanimous voting (UnVot). We show scores by incorporating two different knowledge sources.

3.3 Models

We include six LLMs in our experiments includ-
ing Llama3.1 8b (Dubey et al., 2024) Llama3.1
70b, Mistral 7b (Jiang et al., 2023), Mixtral
8x7b (Jiang et al., 2024a), Gemma2 9b (Team et al.,
2024) and lastly, closed-source GPT-4o mini. We
provide the checkpoints and technical details in
Appendix B.

4 Results & Discussion

4.1 Correlation with Human Evaluation

Before discussing the benchmark results, we check
the effectiveness of the techniques used. We
performed human evaluation using the process
described in subsection 3.1. The average fact-
checking scores using the baseline, 3 techniques, as
well domain expert annotations are in Table 3. The
final Cohen’s inter-annotator agreement κ is 0.75,
which signifies substantial agreement. The baseline
technique (FActScore) that uses only Wikipedia
as the knowledge source severely underestimates
the correctness of the generated text whereas the
Chain-of-Thought technique that uses Grounding
Document and Wikipedia overestimates it. Overall,
it can be seen that our UnVot score derived through
joint decisions of CoT and NLI correlates best with
domain expert judgment. Still, it is important to

point out that this holds true for the summariza-
tion, lay summarization, and RAG tasks, while the
pure generation task best correlated with baseline
FActScore system.

The high correlation of UnVot with human judg-
ment is an important finding. Hiring human an-
notators, especially domain experts, can be a very
expensive and time-consuming process. Having
a metric that highly correlates with human scor-
ing intuition can provide a good enough substitute
for situations where finding human annotators is
infeasible or impossible for certain labs, groups,
and application use cases. A lot of focus of recent
LLM research is put on aligning LLMs with human
values and intuition (Wang et al., 2023), and recent
LLM-as-judge evaluation metrics like G-Eval (Liu
et al., 2023b), Prometheus (Kim et al., 2024), and
TIGERScore (Jiang et al., 2024b) put a high empha-
sis on the correlation of their metrics with humans.
As future work, it would be interesting to com-
pare these metrics with UnVot as well, which we
currently skip due to resource constraints.

4.2 Task and LLM Performance

We summarize the Fact-checking scores in Table 2,
which show that the grounding helps LLMs to be
more truthful. In terms of tasks, LLMs tend to
hallucinate more when prompted to do open-ended
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Task Baseline CoT* NLI* UnVot* Human
Summ 54.81 96.87 85.41 83.45 84.0
LaySumm 52.5 97.6 91.09 88.94 88.7
RAG 38.43 100.0 83.04 83.04 87.3
PureGen 71.26 88.17 31.61 31.31 62.7

Table 3: Fact-checking scores on FActScore (Baseline),
Chain-of-Thought (CoT), Natural Language Inference
(NLI), Unanimous Voting (UnVot), and Domain Expert
Evaluation (Human). * refers to final scores with intrin-
sic followed by extrinsic fact-checking.

generation in the medical domain. However, the
performance on other grounding-based task show
that given the correct context and supporting docu-
ment, LLMs are good at understanding a complex
domain such as the medical domain. Within each
task, LLM performance is mostly uniform. As
expected, Open-ended generation is the most chal-
lenging task, which is expected due to the LLM
using its internal knowledge to answer questions,
which can lead to hallucinations. Lay summariza-
tion was the most factually correct task, likely ow-
ing to the nature of lay text where simpler terms
and phrasing is used, which reduces the possibility
of mixing up complex scientific terms with one
another, which would lead to hallucinations.
Surprisingly, we see no big difference in models
with respect to their sizes. However, both Mistral
and Mixtral lead the board for two summariza-
tion tasks. While Mixtral performs best for two
QA tasks with only the grounding document, GPT
comes on top after extrinsic checks, showing its
high awareness of Wikipedia in pre-trained knowl-
edge. Two Llama models come close to Mixtral,
while Gemma performs the worst on all tasks.

5 Conclusion and Future Work

We present a Benchmark providing insights over
contemporary LLMs across 4 tasks in the medi-
cal domain. We discuss Chain-of-Thought, Natu-
ral Language Inference, and Unanimous Voting as
fact-checking techniques. Through Domain Expert
Evaluation, we show the Unanimous Voting tech-
nique to be most reliable. We also explored the
effectiveness of two knowledge sources, namely
a Grounding Document and Wikipedia, for evalu-
ation and found that using more than one knowl-
edge source leads to an increase in factuality scores.
Lastly, we found that LLMs are mostly factually
incorrect for Open-ended generation in the medical
domain and tend to be more faithful for tasks like

Summarization and RAG, where some context is
provided to the LLM for generation. We envision
our evaluation benchmark to be easily applied for
fact-checking across other domains in future.

Limitation

Due to the high computation costs, we use only one
model as the backbone for each factuality evalua-
tion technique. Even though we evaluated six Large
Language Models on four diverse tasks, these tasks
may not be enough to capture the entirety of LLM
performance and the quickly evolving landscape of
new models.
Additionally, our two evaluation techniques with
NLI and FactScore+ CoT are not perfect and it is
possible there were incorrect predictions of which
facts were supported or refuted by evidence. Even
though our manual inspection and human evalu-
ation showed a good correlation with automated
metrics, there will always be some mishaps and
incorrect verdicts.
Finally, our approach relies on making numerous
calls to the external API and to the Wikipedia dump
database instance in case of extrinsic fact-checking,
which can all slow down the overall pipeline. An
alternative would have been running locally hosted
open-source models, but this was out of our budget
due to computational costs. Future work could
explore these solutions and make the process faster.

Ethics Statement

Throughout our experiments, we strictly adhere
to the ACL Code of Ethics. The manual evalua-
tion was performed by in-house annotators who
received a full salary, and their annotation were
stored anonymously, mitigating any privacy con-
cerns. They were informed about the task and us-
ability of data in the research. The goal of the
research is to evaluate existing techniques and in-
troduce a new technique that can be used for fact-
checking LLM generated text on four tasks in the
medical domain. We use the LLMs through infer-
ence using open-source dataset and do not include
in any information in model weights. The discus-
sions and results in this paper are meant to further
promote research in the area of LLM Fact-checking
as well as create more awareness about their appli-
cations in the medical domain. All scripts will be
made available to the research community.
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A LLM Prompts:

The prompts used for LLM inferences on all four
tasks are illustrated in Table 4.

TEXT SUMMARIZATION PROMPT
Summarize the given article by including the following
key points:
Objective: What is the main research question or objective
of the study?
Background: What is the context or rationale for the study?
Methods: What study design, population, and methodolo-
gies were used?
Key Findings: What are the most significant results or
discoveries from the study?
Conclusions: What conclusions do the authors draw from
their findings?
Clinical Relevance: How might the study’s findings impact
medical practice or patient care?
Scientific Article: article Summary:

LAY SUMMARIZATION PROMPT
You will be provided a scientific article. Your task is to
write a lay summary that accurately conveys the back-
ground, methods, key findings, and significance of the
research in non-technical language understandable to a
general audience. Guidelines for crafting a lay summary:
Craft a detailed summary that explains the research find-
ings and their implications, providing thorough explana-
tions where necessary.
Ensure factual accuracy and alignment with the research
presented in the abstract, elaborating on key points and
methodologies.
Highlight the main findings and their implications for
real-world scenarios, delving into specific mechanisms
or methodologies used in the study and their broader sig-
nificance.
Incorporate descriptive language to explain complex con-
cepts.
Maintain a balanced tone that is informative and engaging,
avoiding technical jargon or overly formal language.
Ensure the summary provides sufficient depth and context
to guide the reader through the research journey and ad-
dress potential questions or areas of confusion.
Scientific Article: article
Summary:

RETRIEVAL AUGMENTED GENERATION
PROMPT
Give a simple answer to the question based on the provided
context.
QUESTION: question
CONTEXT: context

OPEN-ENDED GENERATION PROMPT
Give a simple answer to the question based on your best
knowledge.
QUESTION: question

Table 4: The prompt in the Benchmark for LLM gener-
ation output for all tasks.

B Technical Details

B.1 LLM Generations

The inference procedure was done Together AI
Inference4. We used the instruct-tuned or chat ver-
sions of the models. As for GPT-4o mini, we used

4https://www.together.ai/

the OpenAI API and the latest snapshot available,
gpt-4o-mini from Sep 13th, 2024. The check-
points used for LLM inferences of the open-source
models using Together AI are summarized in Ta-
ble 5.

Model checkpoint
Llama 3.1 8b meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
Llama 3.1 70b meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo
Mistral 7b mistralai/Mistral-7B-Instruct-v0.3
Mixtral 8x7b mistralai/Mixtral-8x7B-Instruct-v0.1
Gemma 2 9b google/gemma-2-9b-it

Table 5: Together AI checkpoints of all LLMs that were
used during Inferences.

B.2 Benchmark Computations
We used the OpenAI API5 and the latest snap-
shot available, GPT-4o-mini from Sep 13th, 2024
for Fact-checking using Chain-of-Thought prompt-
ing. We leveraged Nvidia V100-16GB and Nvidia
A100-80GB GPUs for performing fact-checking.

5https://platform.openai.com/
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Abstract
The diagnostic of neural networks, particularly
Large Language Models (LLMs), remains a
critical aspect of today’s AI-powered solutions,
whose training data are not available to users
for testing purposes. Practitioners usually aim
to fine-tune their models to maximize the ac-
curacy, by leveraging the traditional test met-
rics, whose application on large models re-
mains expensive. Recent advances considered
layer-based norms and power-law metrics for
a robust meta-analysis, without the need to ac-
cess training and test data. Inherently, elements
from Random Matrix Theory were used to re-
veal inner correlation patterns and size scales
within each layer, so to detect bottlenecks in
pre-trained models. This article extends the
use of such schemes by analyzing memory
dynamics and the probabilistic properties of
power-law metrics to study the information
flow within specific LLMs. Taken on a pre-
tained German LLM (LLaMmlein) and its orig-
inal English model (TinyLlama), this approach
confirmed embedded self-similar, fractal prop-
erties of power-law metrics, hinting heavy tails
and long-range correlations in the training pro-
cess with a substantial amount of undertrained
layers. This variability was found to be slightly
persistent in the original English TinyLlama
model and its German version, however the lat-
ter’s chat version exhibits a pure randomness
in its metrics. Findings stress out the role of at-
tention mechanism as the main driver of LLMs
training issues, while language-specific struc-
tures may cause metrics’ distortions, hence al-
tering the inter-layer information transmission
as a component of the training process.

1 Introduction

The advent of neural networks, coupled with in-
tensive computational innovations, popularized the
use of deep learning as a modeling standard, out-
performing other existing machine learning algo-
rithms. Although the widespread use of such ca-
pabilities opened new research areas, deep neural

networks (DNNs) remain black box models, whose
effectiveness depends on complex hyperparameter
optimization (Wu et al., 2019) to achieve a robust
training. This forced practitioners to adopt expen-
sive feature engineering schemes, without clearly
setting up a strong theoretical background for users
(Martin et al., 2021).

Large Language Models (LLMs) have been ex-
tensively designed, as large scale models, to accom-
plish several complex tasks in Natural Language
Processing (NLP). Tuning and testing such models
require extensive learning time (Burns et al., 2025),
while training and test data are not always pub-
licly available. Moreover, such DNNs are based
on transformers (Vaswani et al., 2017) and require
a special attention because they feature memory
mechanisms, as for multihead attention and BiL-
STM (Graves and Schmidhuber, 2005). Although
these memory-based architectures are complex to
handle, they became the default choice for many
NLP architectures, as for the popular BERT model
(Devlin et al., 2019).

The term memory refers, for the particular case
of DNNs, to any mechanism by which a model
or agent stores, retrieves and uses historical infor-
mation (Zhang et al., 2024b), whether internally
or externally. This paper considers the memory
stemming from the information exchanged between
layers, that is the output flow of each layer in the
architecture, given by its weight matrix.

Random Matrix Theory (RMT) (Tulino and
Verdú, 2004) is considered as the central limit the-
orem for matrix analysis and was used to study
the overall performance of DNNs (Martin and Ma-
honey, 2021), on the basis of extracted eigenvalues
of each weight matrix in the architecture. While
earlier approaches considered mapping neural net-
works to a Gaussian process (Jacot et al., 2018),
Martin et al. (2021) set up a practical background
to identify similarities in the learning process of
multiple DNNs, particularly fitting issues and the
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bona fide of different regularization schemes to
reduce correlations inside each layer. This ex-
tended the concept of Self-Regularization theory
(Malevergne and Sornette, 2004), which assumes
the generic existence of a self-organized macro-
scopic state in any large multivariate system. Mar-
tin et al. (2021) came to the conclusion that an
implicit self-regularization at DNNs was prevail-
ing, at the contrast of explicit regularization (L1
and L2) constraining the norm of weight matrices.

This new field of research set up effective gen-
eralization metrics detailing the inner functioning
of DNNs, especially the learning process, the inter-
layer information flow and the intra-layer asymp-
totic convergence (Martin et al., 2021). It borrows
elements from statistical mechanics and was used
for many applications as for cyber threat detection
(Ferrag et al., 2024) and the description of feature
learning applications (Seroussi et al., 2023).

In parallel to the use of power laws (PL) in vari-
ous scientific fields, pattern similarities were stud-
ied under the name of fractal analysis, defining
the behavior of self-similar patterns whose occur-
rence is not purely random, but follows a power-
law behavior (Mandelbrot, 1982). The fractality
is an essential feature in language theory, denoting
the complexity stemming from word usage (Hiver
et al., 2022), and was recently used in information
processing (Wang et al., 2024). It fits the study
of the information correlation proposed by Martin
et al. (2021) which relies on a power-law fit over
heavy-tailed distributions.

While the training quality of popular NLP and
Computer Vision models came to scrutiny via
norms and PL-based metrics (Yang et al., 2023), it
ignored their inter-layer information exchange as a
component of the training process. This concern is
particularly determinant for LLMs, whose complex
architecture features two distinct types of attention
mechanisms (Vaswani et al., 2017; Martin et al.,
2021), as a key component a transformer.

Thus, this paper enriches the existing DNNs em-
pirical methodology by investigating the existence
of pattern similarity in the information transmission
on selected LLMs trained over English and German
corpora. It extends the layer-based meta-analysis
on such big architectures and details inter-layer
persistence behavior. The latter reveals short/long
term variations in the training process, whose non-
linearity is linked to underfitted layers.

For this aim, two German LLMs, namely

LLaMmlein_1B model1 and a lightweight, small-
scale version LLaMmlein_120M model2, were used
in this paper to conduct a transfer learning experi-
ment, along the English TinyLlama, who served in
training the LLaMmlein.

Aside from a meta-analysis on each selected
LLM following Martin et al. (2021), an additional
memory check was conducted to dissect hidden
trends in the PL-based metrics. It revealed mild
persistency and underfitting of metrics featuring
information correlation and the size scale. Metrics
based solely on information correlation were found
to indicate heavy-tailed distribution of the eigenval-
ues and a high persistence, denoting the importance
of the size scale in the information flow analysis.

Findings indicate layers exhibit substantial un-
derfitting properties in both languages, mainly
due to attention mechanisms. Original TinyL-
lama (Zhang et al., 2024a), both the full and the
chat versions, have a mild persistent flow of in-
formation, compared to the German LLaMmlein
whose lightweight version is though slightly anti-
persistent. The size scale, measured by the maxi-
mum eigenvalue, proved to be important in harmo-
nizing the per-layer metrics. Differences in results
obtained from English and German LLMs could be
explained by the morphologically-rich characteris-
tic of the German language, known to be a SOV
(Subject-Object-Verb), while English language ex-
hibits a less complex SVO structure (Vikner, 2019).

The paper outlines the use of Random Matrix
Theory in DNNs analysis (Section 2), then de-
tails the Rescaled Range Analysis (Hurst, 1951),
as a method to study fractal properties and persis-
tency measurement (Section 3). Section 4 features
two language-based applications on English and
German LLMs and compares their metrics and per-
sistency measurements.

2 Random Matrix Theory

Train and test data have been the de facto tools to
assess machine learning models in general, and neu-
ral networks in particular. In the absence of such
data, elements from Random Matrix Theory were
applied on final weight matrices of neural networks
(Martin and Mahoney, 2021) to check their asymp-
totic convergence. It resulted several norms and
metrics, whose statistical properties were found to

1https://huggingface.co/LSX-UniWue/LLaMmlein_
1B

2https://huggingface.co/LSX-UniWue/LLaMmlein_
120M
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match DNNs accuracy, without accessing data used
to train the models (Martin et al., 2021). In other
terms, this strategy permits to discover whether a
layer learned too much from the noise (overfitting)
or alternatively has not learned enough from the
signal (underfitting), assuming data stem from two
components: signal and noise.

The WeightWatcher open source tool (Martin
et al., 2021) investigates the weight matrix W of
a given DNN layer, by analyzing its spectral prop-
erties. While every element of the weight matrix3

Wij is assumed to follow a normal distribution
N (0, σ2), the empirical correlation (Wishart) ma-
trix X = 1

NW
⊺W is taken as the basis for quality

assessment, by extracting its eigenvalues spectrum.
The Marchenko-Pastur (MP) distribution

(Marchenko and Pastur, 1967) considers the
spectrum of eigenvalues bounded between λ−
and λ+ as relevant to the noise randomness. Its
probability density f(λ) is given for a T × N
matrix and a noise level σ2 as:

f(λ) =

{
N
T

√
(λ+−λ)(λ−λ−)

2πσ2 if λ ∈ [λ−, λ+] ,

0 if λ /∈ [λ−, λ+] .

where λ− = σ2(1 −
√

T
N )2 and λ+ = σ2(1 +√

T
N )2

The eigenvalues distribution, plotted as a his-
togram using the Empirical Spectral Density (ESD),
is an informative feature of the randomness prevail-
ing in every layer constituting the DNN, in addition
to reveal inter-layer differences.

Because many matrices hold strongly correlated
elements, the MP distribution is used to empirically
evaluate a noisy spectrum of eigenvalues, that could
be separated from other eigenvalues representing
the signal.

Martin and Mahoney (2021) found most weight
matrices in DNNs exhibit heavy-tailed distributions
of eigenvalues as they become increasingly cor-
related, suggesting rather drawing elements from
power-law generated data, as for Pareto distribu-
tion. This concept, known as Heavy-Tailed Self-
Regularization (HT-SR) theory, is linked to situa-
tions where separating the noise from the signal
becomes difficult to achieve, as eigenvalues are in
this case better modeled via heavy-tailed distribu-

3A layer with multiple weight matrices will have a single
concatenated weight matrix (Martin et al., 2021).

tions (Malevergne and Sornette, 2004), rather than
a simple MP distribution.

For this aim, Martin and Mahoney (2021) es-
timated a truncated power-law fit (Clauset et al.,
2009) over the MP curve, yielding the exponent α
from the equation ESD–eigenvalues: ρ(λ) ∼ λ−α

for λ ∈ [λ−, λ+]. The amplitude of the PL-
exponent α is considered as the information corre-
lation index within each weight matrix, denoting
the strength of the existing element-wise correla-
tions. Moreover, the α exponent is indeed a power-
law fit that can be considered as a complexity index
or a fractal dimension (Mandelbrot, 1982).

Based on the eigenvalues spectrum λi of each
correlation matrix X , several metrics were used as
for:

• Frobenius norm : ∥W∥2F = ∥X∥F =
M∑
i=1

λ2i

• Spectral norm : ∥W∥∞ = ∥X∥∞ = λmax

• Weighted α : α̂ = αLogλmax

• α norm (Shatten-norm) : ∥W∥2α2α = ∥X∥αα =
M∑
i=1

λαi

where λi is the ith eigenvalue of X , λmax is the
maximum eigenvalue and α is the fitted power-law
exponent, usually truncated because it needs defin-
ing specific lower and upper bounds, respectively
λ− and λ+. For instance, Figure 1 reports simula-
tions yielding random-like eigenvalues fitted with
a scale-invariant Marchenko-Pastur curve between
λ− ≃0.31 and λ+ ≃1.17 and spikes (signal) asso-
ciated with λi > λ+. The PL-fit yields a value of
0.571 for α.

The plain αmetric is a scale-invariant, weak esti-
mation of the information correlation, as it ignores
the size scale (λmax) within each layer. The latter
remains an important determinant of HT-SR be-
cause DNNs are known to be non-linear, while
LLMs particularly feature attention layers with
large matrices. For small values of α, the size
scale λmax was found to be a good proxy for es-
timating the difference between the noise and the
signal, however, for higher values of α (HT-SR),
the signal gets mixed with the noise and λmax is
non-informative.

A clear distinction between norm-metrics and
PL-based metric was given when studying the per-
formance of several DNNs models (Martin et al.,
2021; Yang et al., 2023). They concluded that
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Figure 1: Marchenko-Pastur distribution simulated
1,000 times on the correlation matrix of an initial ran-
dom matrix with T

N =10 and σ2 = 2
3 . α is the PL-

exponent of the Marchenko-Pastur fit over the interval
[λ−,λ+].

PL-based metrics, aside from being good proxies
for overall accuracy measurements, remain robust
in detecting potential bottlenecks and training is-
sues than norm-based metrics. Hence, PL exponent
remains a robust empirical metric to asses well-
trained DNNs and quantify the layer-wise correla-
tion flow (Martin et al., 2021).

In practice, α was found to match an ideal DNN
fit when approaching 2. This means the DNN
model performs well as it facilitates the propaga-
tion of information/features across layers, because
it learns from both data signal and noise. Values in
the interval [4,6] are proxies of underfitting situa-
tions (not learning enough from the signal), while
lower values equaling 1.5 are synonyms of over-
fitting (learning too much from the noise) (Martin
et al., 2021). Large values of α > 6 are associated
with a pure randomness, which requires the aspect
ratio T

N to differentiate layers.
Because the size of DNNs layers changes accord-

ing to adopted architectures, Martin et al. (2021)
proposed to weight the α with the size scale to pro-
duce the weighted α metric. It was found that for
small values, the weighted α approximates well the
α Shatten-norm; the latter weighs the α exponent
for all eigenvalues within the layer.

Martin et al. (2021) reported that weighted α
and log α norm correlate at a higher level for well
trained models. The size scale, given by λmax,
could be informally linked to situations where in-
put clusters are at a greater distance. This means
the size scale is related, in the case of LLMs, to
the language morphologic aspects (sentence struc-
tures).

Particularly in LLMs, distortions in the se-
ries of PL exponents is called scale collapse,
mostly linked to transformers (Vaswani et al., 2017;
Lefaudeux et al., 2022). As memory-based blocks
of layers, transformers feature a complex inner
structure usually yielding larger weight matrices.

The study of such variations and the training
process requires detailing the information flow
throughout the whole network. The adoption of
advanced tool for self-similar patterns, known as
fractals (Mandelbrot, 1982) is clearly indicated to
test the persistency hypothesis on trained DNNs.
Persistent behavior of the aforementioned metrics
reinforces the hypothesis of a strong, correlated
inter-layer linkage propping up the information
flow. One can assert that anti-persistency of PL-
metrics may indicate colliding trends that alter the
training process and the inter-layer dynamics, while
persistency may reinforce the hypothesis of a har-
monized network design that better captures long-
range dependencies via attention layers.

3 Fractal Analysis

Mandelbrot tried first to uncover repeated pat-
terns able to explain the randomness of irregu-
lar shapes (Mandelbrot, 1982), as exemplified by
Koch’s snowflake. This led to the concept of self-
similar patterns, which stands for scale-dependent
shapes with a known geometry. Hence, the fractal
analysis was first established as a research field
in geometry having a wide range of applications,
from physics to hydrology. The fractal theory relies
on the definition of a fractal dimension, a hidden
variable that quantifies the irregularity of shapes
found in many objects.

In time series analysis, the fractal approach was
first featured when studying the Nile river flood-
ing history. Hurst (1951) designed the Rescaled
Range (R/S) Analysis and reckoned the Hurst ex-
ponent as a measure of a time series memory, later
corrected by Mandelbrot and extended to the frac-
tional Brownian motion (Mandelbrot and van Ness,
1968) when studying cotton prices in the United
States.

The R/S algorithm takes the variations of a given
time series of length T and divides them into N
adjacent intervals of length τ , where T = Nτ . For
each interval, the average value is computed and
a new time series is created as accumulated devi-
ations from the arithmetic mean values (hereafter
named profile). The difference (range) between the
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maximum and the minimum value of the profile,
and the standard deviation of the original time se-
ries for each interval, are calculated. Each range
is standardized by the corresponding standard de-
viation and forms a rescaled range so that the av-
erage rescaled range for a given interval of length
(R/S)τ is calculated.

The rescaled range scales are given by
(R/S)τ ≈ cτH , where c is a finite constant in-
dependent of τ (Taqqu et al., 1995). To esti-
mate the power law relationship, a simple log-
log ordinary least squares regression is used for:
log (R/S)τ ≈ log c +H × log τ , where H is the
estimated Hurst exponent (Barunik and Kristoufek,
2010). R/S analysis was shown to be biased for
small τ (Couillard and Davison, 2005), and em-
pirical application considered rather the expected
Hurst exponent (Weron, 2011). Values of H ex-
ceeding 0.5 are proxies of a persistent behavior re-
sulting from long-range correlations, while values
less than 0.5 are anti-persistent. A Hurst exponent
not significantly different from 0.5 is associated to
the standard Brownian motion. The Hurst exponent
H is also a proxy of the fractal dimensionD in time
series, linked by the relationship: D = 2−H .

Given the relatively reduced number of layers in
most DNNs, this article considers the existence of
a single fractal dimension, approached by the Hurst
exponent. For each layer in an LLM, PL-metrics
are computed on the related weight matrix, yielding
three different series across the whole LLM to run
the R/S Analysis on each one of them.

4 Application

The study of memory properties of specific LLMs
is conducted on the weight matrices, stored af-
ter achieving the LLMs training. PL-based met-
rics adopted by Martin et al. (2021) were previ-
ously found to be robust when assessing hundreds
of LLMs, outperforming simple algebraic norms
(Frobenius and spectral norms).

The weighted α and log α norm are compound
metrics computed from a truncated PL-fit of the
eigenvalues and the size scale. These two metrics
will have a particular attention in this section, as
they go in-line with the PL-exponent yielded by
the R/S Analysis, known as the Hurst exponent.
The purpose lies on investigating the inter-layer
dynamic flow using above two metrics and uncover
potential variability known as scale collapse (Mar-
tin et al., 2021), which is assumed to reveal dys-

functions in the learning process. The α series will
not be considered for the R/S analysis, as it ignores
the size scale.

The selected LLMs are publicly available and
their PyTorch versions (Paszke et al., 2019) were
used to run the WeightWatcher diagnostic tool. The
R/S analysis was performed on the basis of esti-
mated PL-metrics, whose relatively reduced size
requires a corrected version of the Hurst exponent
(Weron, 2011) reported in Table 2.

4.1 English TinyLlama

TinyLlama model (Zhang et al., 2024a) was trained
on a complex architecture featuring flash attention
2 and various fused schemes, comprising xForm-
ers (Lefaudeux et al., 2022) as a research tool for
accelerated transformers.

Figure 2 displays the per-layer metrics for the
TinyLlama 1.1B model trained over 155 layers.
The weighted α and the log α norm are highly
correlated and clearly separable from the simple
α metric, which exhibits a pronounced variability.
This denotes the importance of the size scale, ab-
sent from the αmetric, but present in the two others.
Similar patterns were found in the TinyLlama 1.1B
chat model (Figure 3), although its first layers are
less pronounced then the original model.

The variability of the above metrics is a result
of heavy-tailed eigenvalues distributions associated
to a scale collapse. This denotes implicit changes
or perturbations that occurred when training the
model, likely due to distillation, data augmentation
or fine-tuning.

Both LLMs feature a relatively high number of
layers found to be under-trained, as reported in Ta-
ble 1. These demonstrate high α values and are
linked to value-type (V) self attention layers (hav-
ing a rank of 256). They are particularly aggregated
representations of the words in context (Vaswani
et al., 2017), compared to query (Q) and key (K)
matrices. The relative low number of over-trained
layers confirms difficulties of fine tuning LLMs
who are over-trained (Springer et al., 2025).

First layers, usually associated with higher met-
rics due to their effective normalization (Martin
et al., 2021), do not exhibit here higher values of
weighted α and the log α norm, compared to what
was reported in Martin et al. (2021).

Table 2 reveals a slight persistency of the
weighted α and log α norm metrics for the LLM
chat version (Hurst exponent respectively 0.60
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Figure 2: PL metrics estimated from TinyLlama 1.1B
model
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Figure 3: PL metrics estimated from TinyLlama 1.1B
Chat

and 0.61), while the full model exhibits a non-
persistent, Brownian-like behavior (Hurst exponent
0.51 each). The buildup of the chat version proved
to have more inter-layer information than the orig-
inal model, as a result of intensive fine-tuning on
synthetic dialogues provided by Zephyr (Tunstall
et al., 2023).

Both LLMs show similar PL-metric patterns and
persistence, reinforcing the hypothesis of a strong
transfer learning between the original model TinyL-
lama 1.1B and its chat version. The metric corre-
lations of weighted α and log α norm are almost
identical, respectively 0.879 and 0.887.

4.2 German LLaMmlein
The layer-to-layer information flow, as given
by three metrics in Figure 4 and Figure 5,
demonstrates key differences between the German
LLaMmlein and its lightweight version (LLaMm-
lein 120M chat). The latter features 85 layers, com-
pared to the 155 comprised in the former. Weighted
α and log α norm are highly correlated in both
models, however, the lightweight version displays
a relatively stable α metric, not as variable as in the
LLaMmlein 1B model, whose metrics have long-
range correlations (Hurst exponent 0.61 in Table 2.

Higher values of α for LLaMmlein 1B are asso-
ciated with V self attention layers of rank 256 (Fig-
ure 4), that carry context-based information of each
sentence/word fed to the LLM. The lightweight ver-
sion (LLaMmlein 120M) presents the lowest rate
of under-trained layers, despite its reduced depth.
This means this abridged version does not suffer
from over-parametrization, relative to the amount
of data. However, slight differences in the Hurst
exponent values indicate a weak anti-persistency of
the weighted α (Hurst exponent 0.46) compared to
Brownian-like log α norm (Hurst exponent 0.52).

The impact of the size scale (λmax) seems to
be mild in the lightweight version, in comparison
with the full model. This explains why the informa-
tion correlation series α does not feature very high
values in the lightweight model and exhibit a rela-
tive stability compared to the full model. The size
scale has, particularly for the lightweight version,
a linguistic feature embedded in the dataset4.

The German language features a SOV structure
(Vikner, 2019), at the contrary of the common SVO
structures found in English and French. This con-
siders German as a morphologically-rich language
(Günther et al., 2019) whose structure is complex
but rich, compared to English. Moreover, German
LLMs are mostly trained on the basis of existing
English and/or Multilingual LLMs, while recent
attempts proposed a data curation methodology to
improve LLMs training (Burns et al., 2025).
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Figure 4: PL metrics estimated from LLaMmlein 1B
model.

5 Conclusion

Machine learning models have long been associ-
ated with the train/test paradigm and the related
metrics to perform quality control checks. For
DNNs, practitioners use models without access

4Training data were de-duplicated on the paragraph level
and filtered using a token-to-word ratio.
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Figure 5: PL metrics estimated from LLaMmlein 120M
model.

Model Overtrained Undertrained
TinyLlama 1.1 B 1.3% 26.3%
TinyLlama 1.1 B Chat 1.3% 29.5%
LLaMmlein 1B 2.9% 28.8%
LLaMmlein 120M 2.3% 13.9%

Table 1: Percentages of over-/under-trained layers,
based on estimated α values, obtained from Weight-
Watcher tool (Martin and Mahoney, 2021)

to training data and are not able to perform inde-
pendent accuracy tests. Elements from statistical
mechanics were used to check the robustness of
DNNs on the basis of their weight matrices, as
information-carriers of the learning process. The
use of Random Matrix Theory helped revealing em-
bedded, heavy-tailed properties of eigenvalues via
a truncated power-law fit, whose exponent is taken
as a proxy of underfitting or overfitting presence in
the related layer. Hybrid metrics combining power-
law exponents and size scale proved to be accurate
in estimating the between/within layer information
flow, particularly in the case of LLMs who fea-
ture attention layers as memory-driver mechanisms.
The inter-layer information flow, as an element of
the training process, was found to exhibit a no-
ticeable persistence in terms of long-range correla-
tions. Such findings confirm the fractality of LLMs
learning process and the importance of language-
properties carried by data, whose complexity flags
substantial underfitting issues affecting attention
layers. The self-similarity analysis provides tools
to detect potential training bottlenecks, but also a
powerful way to assess transfer learning strategies
when designing lightweight and task- and language-
specific models. This proved particularly effective
for the German language, whose morphologically-
rich properties make the training difficult and re-
quire a special hyperparameter tuning and data pro-
cessing.

Model α Weighted α Log α norm
TinyLlama 1.1 B 0.63 0.51 0.51
TinyLlama 1.1 B Chat 0.49 0.60 0.61
LLaMmlein 1B 0.79 0.61 0.61
LLaMmlein 120M 0.74 0.46 0.52

Table 2: Estimates of Hurst exponents for each model,
based on estimated α, weighted α and log α norm, ob-
tained from WeightWatcher tool (Martin and Mahoney,
2021)
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Abstract

Universal phoneme recognition typically re-
quires analyzing long speech segments and
language-specific patterns. Many speech
processing tasks require pure phoneme rep-
resentations free from contextual influence,
which motivated our development of CUPE
- a lightweight model that captures key
phoneme features in just 120 milliseconds,
about one phoneme’s length. CUPE pro-
cesses short, fixed-width windows indepen-
dently and, despite fewer parameters than cur-
rent approaches, achieves competitive cross-
lingual performance by learning fundamental
acoustic patterns common to all languages. Our
extensive evaluation through supervised and
self-supervised training on diverse languages,
including zero-shot tests on the UCLA Pho-
netic Corpus, demonstrates strong cross-lingual
generalization and reveals that effective univer-
sal speech processing is possible through mod-
eling basic acoustic patterns within phoneme-
length windows.

1 Introduction

Current speech processing systems depend heav-
ily on contextual information, creating a double-
edged sword for certain tasks. While extensive
context provides crucial bias toward appropriate
attention mechanisms, it simultaneously makes
it nearly impossible to isolate individual speech
units—particularly allophones—from their contex-
tual embeddings. Modern systems such as deriva-
tives of wav2vec 2.0 (Baevski et al., 2020) typi-
cally analyze 300-2500ms of speech, incorporating
extensive language-specific patterns and contex-
tual dependencies. While effective for automatic
speech recognition, this approach entangles pho-
netic content with contextual information, making
it extremely difficult to disentangle the acoustic
properties that define individual speech sounds.

The necessity for contextless processing emerges
from two critical considerations: alignment preci-

sion and representation purity. Extended tempo-
ral windows (e.g., 500ms) reduce inter-frame dis-
criminability as individual frame representations
become increasingly influenced by surrounding
context. Optimal alignment performance requires
maximally discriminative frame-level representa-
tions, where each frame maintains distinct charac-
teristics. As context window length increases, the
transformer’s attention mechanism progressively
attenuates frame-specific features through contex-
tual averaging, resulting in diminished temporal
resolution.

For paralinguistic tasks, contextless models func-
tion as quantization preprocessing stages. When
frame-level embeddings encode predominantly
contextual rather than local information, this ho-
mogenization undermines the model’s capacity to
capture subtle local acoustic variations essential for
allophone analysis and speaker-specific phonetic
characterization.

Our empirical results directly challenge the
assumption that more context is always bet-
ter—models using 120ms of speech windows actu-
ally perform on-par if not better than those using
full word context across multiple evaluation sce-
narios, while simultaneously providing access to
pure phonemic representations less contaminated
by contextual dependencies.

Our work makes three key contributions. First,
we demonstrate that universal phoneme recognition
can be achieved effectively with just 120ms of con-
text, a fraction of the 300-2500ms typically used in
current approaches. Second, we introduce CUPE,
a lightweight architecture (30M parameters) that
achieves competitive performance through focused
local feature extraction. Third, we provide a fea-
ture extraction method that captures pure phonemic
representations by eliminating contextual depen-
dencies, leading to cleaner and more interpretable
phoneme embeddings across languages. By operat-
ing on brief windows—approximately the duration
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of a typical phoneme (Crystal and House, 1988),
CUPE learns language-agnostic acoustic features
that characterize phonemes universally. This fo-
cus on fundamental acoustic patterns, independent
of language-specific context, enables robust cross-
lingual generalization and, crucially, provides ac-
cess to clean allophonic representations that are
essential for understanding speaker-specific pho-
netic variations.

The contextless nature of our approach enables
several practical applications:

• Timestamps Alignment: Generating time-
aligned transcripts from raw text and audio.
This task is critical for training downstream
text-to-speech models. Since this is the main
application for phoneme recognition, it helps
to have as little context information in each
frame so that there is a sharper contrast be-
tween frames for precise boundary detection.

• Speech style learning: It serves as a founda-
tional allophone encoder. Embeddings of each
frame can be used to generate acoustically
pure allophone variants of base phonemes.
This is also useful for training downstream
text-to-speech tasks which currently rely on
IPA dictionaries or sub-word tokens.

• Robust phoneme verification: Complement-
ing traditional ASR systems by detecting and
correcting errors that arise from over-reliance
on language context.

• Cross-linguistic research: Generating
language-agnostic phoneme representations
that facilitate multilingual studies and enable
more accurate speech disorder diagnostics.

Through extensive evaluation, we validate CUPE
(Contextless Universal Phoneme Encoder), an ar-
chitecture that deliberately restricts analysis to
short windows. Our results demonstrate that this
constrained approach matches or exceeds the per-
formance of context-heavy models (XLS-R (Babu
et al., 2022)) across diverse languages while using
an order of magnitude fewer parameters and pro-
viding clean, context-independent phonemic repre-
sentations suitable for allophone analysis.

2 Contextless Universal Phoneme Model

Analysis of our evaluation datasets (Table 2) shows
phoneme durations averaging 80ms (range: 62-

Window Slicer

1D CNN Feature Extractor
Frequency Attention

Spectral
Stream

Temporal
Stream

Fusion

Transformer layers
Classification layersWindow Sticher

/k/ /a/ /t//a/

Input Raw
Waveform

Output Phoneme
Sequence

Figure 1: The windowing approach restricts the model’s
context for better localized learning, therefore, gener-
alizing better across languages without learning longer
patterns.

107ms), consistent with Crystal and House’s find-
ings of 70-120ms for English phonemes (Crys-
tal and House, 1988). Our architecture processes
acoustic features through Conv1D layers at 13.1ms
per frame, with a 120ms window and 80ms stride
to capture 1-2 phonemes per window. This ap-
proach provides precise frame-level analysis while
maintaining phoneme-level context, departing from
traditional methods that rely on broader windows.
To preserve acoustic continuity across overlapping
windows, we implement a cosine-based weighting
mechanism for feature fusion. The complete model
architecture is illustrated in Figure 1, with detailed
specifications provided in Table 1.

2.1 Window Slicer
The Window Slicer module addresses the funda-
mental challenge of processing continuous speech
signals by segmenting raw waveforms (16 kHz)
into overlapping windows. This design enables
localized feature extraction while preserving tem-
poral continuity at boundaries. Using a 120 ms
window size with an 80 ms stride provides suffi-
cient context for phonetic events while reducing
computational complexity from O(T 2) to O(W 2),
where T is the total sequence length and W is the
window size.

Given an input audio signal x ∈ RB×T , where
B is the batch size and T is the total number of
samples in the input sequence (T = sample_rate×
duration):

wb,i(t) = xb(t+ is), t ∈ [0,W − 1] (1)

where b ∈ [0, B − 1] is the batch index, i ∈
[0, N − 1] is the window index, t is the time in-
dex within each window, W = 1920 is the window
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size (120 ms × 16 kHz), s = 1280 is the stride
length (80 ms × 16 kHz), and N =

⌊
T−W

s

⌋
+ 1 is

the number of windows.

2.2 Feature Extractor

Drawing from raw waveform processing tech-
niques (Dai et al., 2017; Schneider et al., 2019),
our feature extraction stage implements a hierarchi-
cal CNN architecture that processes raw waveforms
directly. This design, detailed in Table 1, captures
increasingly abstract representations while main-
taining computational efficiency. Following the
success of Squeeze-and-Excitation Networks (Hu
et al., 2018) in speech recognition (Han et al.,
2020), we incorporate adaptive channel-wise re-
calibration through frequency attention. The archi-
tecture separates temporal and spectral processing
streams, inspired by multi-stream approaches (Han
et al., 2021), to capture both evolving acoustic pat-
terns and frequency relationships.

2.3 Windowwise Transformer

Our transformer encoder layers process indepen-
dent fixed windows instead of the whole clip, mod-
ifying the contextual processing of standard trans-
formers (Vaswani et al., 2017). This approach rep-
resents a departure from traditional speech trans-
formers by restricting context to local windows,
ensuring that phoneme recognition decisions rely
on relevant local context. Our preliminary exper-
iments showed a tendency to overfit with larger
transformer layers, leading us to maintain a light
architecture (13M parameters for transformer) with
a high dropout of 0.25. For comparison, the XLSR
model (Conneau et al., 2021) has over 300M pa-
rameters.

2.4 Classification and Window Stitching

The final stage of our pipeline consists of classifica-
tion and temporal integration. The transformer out-
puts first undergo classification through a two-layer
neural network, which maps the high-dimensional
representations to phoneme logits. This classifier
is designed to untangle complex phonetic repre-
sentations while maintaining computational effi-
ciency. To ensure temporal coherence across win-
dow boundaries, we implement a cosine-based

weighting scheme:

ỹ(b, t, c) =

∑
k cos(πt/Fw − π/2) · yk(b, t, c)∑

k cos(πt/Fw − π/2) + ϵ
,

t ∈ [0, Fw]

(2)

where yk(b, t, c) represents the logit from window
k for batch b, time t, and class c. This weighted
stitching approach enables effective recognition of
phonemes shorter than the window length while
preserving temporal coherence.

3 Experimentation

We experiment with both supervised and self-
supervised learning for the proposed model. First,
we evaluated our model architecture using labeled
speech and phoneme sequences. Then, we adapted
the same architecture for self-supervised pretrain-
ing using vector quantization projections as targets,
following a wav2vec-inspired approach. For base-
line comparison, we use the XLS-R (Babu et al.,
2022) 300M architecture with an additional linear
classification layer. In non-pretrained evaluations,
we reset XLS-R’s parameters, while for pretrained
evaluations, we fine-tune the off-the-shelf model
with optional feature extraction layer freezing. The
experimental pipeline remains consistent across
all tests, varying only in context length (120ms,
160ms, 360ms, or complete words), model selec-
tion (XLS-R or CUPE), XLS-R parameter reset
status, and feature extraction layer freezing status.

3.1 Datasets

We evaluate our model on three diverse speech
corpora:
(1) FLEUR (Few-shot Learning Evaluation of Uni-
versal Representations of Speech) (Conneau et al.,
2023): Used exclusively for self-supervised pre-
training, comprising 5 hours of audio data from
each of 102 languages. Table 2 reports trimmed
durations excluding leading and trailing silences.
(2) Multilingual Spoken Words Corpus (MSW)
(Mazumder et al., 2021): Contains isolated words
from Mozilla Common Voice. We use 32 high-
resource languages for training (10-hour limit per
language) and 6 low-resource languages (lt, mt,
ia, sk, ka, as) for evaluation. Twelve languages
were excluded due to incompatibility with espeak-
NG (esp, 2022), the tool we used to generate IPA
phoneme sequences from text.
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Table 1: Detailed architecture specifications of the CUPE model with 30M trainable parameters.

Layer Output Shape Parameters TR RF Other Details
→Window (B, 1, 1920) - 80ms 120-360ms Speech waveforms at 16kHz
Conv1D-1 (B, n, 275) k=15, s=7, p=7 13.1ms 150ms + BatchNorm + GELU + D(0.1)
Conv1D-2 (B, 2n, 55) k=11, s=5, p=5 1.9ms 21.3ms + BatchNorm + GELU + D(0.1)
Conv1D-3 (B, 4n, 19) k=7, s=3, p=3 0.4ms 4.2ms + BatchNorm + GELU + D(0.1)
Conv1D-4 (B, 8n, 10) k=5, s=2, p=2 0.1ms 1.3ms + BatchNorm + GELU + D(0.1)
Freq. Attention (B, 8n, 10) k=1, s=1, p=0 0.1ms 0.6ms ⊙ AvgPool+Conv1D+Sigmoid
Temporal (B, 8n, 10) k=7, s=1, p=3

13.1ms ±11 frames 2×Conv1d, g=8, BN, GELU
Stream (TS) (B, 8n, 10) k=3, s=1, p=1
Spectral (B, 12n, 10) k=1, s=1, p=0

13.1ms 1 frame 2×Conv1d, g=8, BN, GELU
Stream (SS) (B, 8n, 10) k=1, s=1, p=0
Fusion (B, 8n, 10) k=1, s=1, p=0 13.1ms Concat (TS, SS) + 1x1 Conv + BN + GELU
Transformer (B, 10, 512) Fw=10@120ms 13.1ms Full window 4 layers, 8 heads, Pre-norm, D(0.25)
↪→FT-Classifier (B, 10, C) D=0.25 13.1ms Full window Supervised only (512→2048→C)
↪→PT-Projection (B, 10, 256) D=0.25 13.1ms Full window Unsuperv. only (512→2048→256)
TR: Temporal Resolution, RF: Receptive Field, B: batch size, k: kernel, s: stride, p: padding, n: base channels (256)

(3) UCLA Phonetic Corpus (UPC) (Li et al.,
2021b): Features phonetically transcribed speech
from 95 languages. We partition this dataset based
on language overlap with XLS-R pretraining and
FLEUR: UPC-eval contains 64 previously unseen
languages, while UPC-seen includes 25 languages
present in both pretrained XLS-R and FLEUR. The
remaining six languages (fa, ig, kea, ab, eu, haw),
exclusive to either XLS-R or FLEUR, serve as val-
idation data during supervised training.

Table 2 summarizes the dataset statistics. The
corpora differ significantly in language family dis-
tribution and recording conditions. MSWC and
FLEUR predominantly feature Indo-European lan-
guages by duration, while UPC comprises 48.5%
African languages. MSWC offers diverse speakers
and recording environments per language, whereas
UPC contains just 60 utterances per language, typi-
cally from a single speaker in consistent recording
conditions.

3.2 Pre-Processing

One of the fundamental challenges in creating
a universal phoneme recognition system is ac-
commodating unique phoneme inventories across
languages. Prior work has explored two main
approaches: probabilistic matching (Liu et al.,
2023; Li et al., 2021a), which maps phonemes
from new languages to acoustically similar train-
ing phonemes, and attribute-based decomposition
(Glocker et al., 2023), which reconstructs language-
specific phonemes from 35 articulatory attributes
using the target language’s IPA inventory. While
both enable automated adaptation to new lan-
guages, they face tradeoffs in precision and fea-
ture completeness. Our approach instead employs

systematic manual mapping of rare phonemes to
standardized phoneme classes, prioritizing percep-
tual similarity over articulatory phonological rela-
tionships. Our mapping preserves high-frequency
palatalized consonants (tj, nj, rj) while merging
less frequent ones, maintains perceptually distinct
vowel contrasts (e.g., 2 vs @, I vs i), keeps length
distinctions for frequent vowels (a:, e:, i:, o:, u:),
and maps rare phonemes to frequent counterparts
based on confusion patterns (e.g., 6 → a, C → k).
For affricates, we maintain distinct representations
for common ones (ts, tS, dZ) while simplifying rare
variants (pf → f), guided by both frequency and
confusion patterns. The mapping dictionary is pub-
licly available along with the source code to facili-
tate adoption and improvement.

Table 2: Datasets’ details. Ln: total languages or lang
code.

Set Ln Hrs WD(std) PPW(std) U/C

MSWCtrain 32 181 0.80(0.12) 6.30(1.45) 803/65
MSWCeval 6 15.6 0.82(0.12) 6.39(1.34) 117/56
Lithuanian lt 5.2 0.87(0.12) 6.58(1.34) 66/42
Maltese mt 4.9 0.77(0.11) 6.25(1.30) 56/38
Interlingua ia 3.17 0.84(0.12) 5.98(1.26) 29/29
Slovak sk 1.37 0.88(0.11) 6.77(1.3) 43/38
Georgian ka 0.87 0.82(0.11) 6.97(1.33) 34/28
Assamese as 0.05 0.77(0.12) 5.80(1.21) 31/26
UPC-eval 67 0.82 0.93(0.20) 5.01(1.53) 237/59
UPC-seen 28 0.56 0.89(0.22) 4.89(1.32) 221/60
FLEURS 102 455 - - -
WD: avg. Word Duration (s), PPW: avg. Phonemes-Per-Word
U : Unmapped unique phonemes, C: Mapped phoneme classes.

3.3 Supervised Training
For each window, the model generates frame-
level logits (10 frames per 120ms window, 28
frames for 360ms), which are stitched into con-
tinuous phoneme sequences. Training uses CTC
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loss (Graves, 2012) with an additional silence-
awareness term:

L1 = Lctc + αsLsil (3)

Lsil =
1

B

∑

t,b

(0.5ỹtbM
t
s + 0.1ỹtb(1−M t

s)) (4)

where ỹtb is the blank token probability,M t
s is the

silence mask, B is batch size, and αs (default 0.01)
balances silence detection with phoneme recogni-
tion.

Our training pipeline optimizes for efficient
learning through several mechanisms: AdamW
optimizer with OneCycleLR scheduling, gradient
norm clipping at threshold τ = 1.0, and mixed-
precision BF16 training for balanced efficiency
and numerical stability. We trained all models on
MSWC-train using a batch size (B) of 300 words
until validation PER showed no further improve-
ment, requiring 20 epochs and approximately 7
hours on two A6000 GPUs. The trained models
and source code are available online0, with results
presented in Table 3.

3.4 Self-supervised Pre-Training

For self-supervised pre-training, we modify CUPE
by replacing the FT-Classifier with a prediction
head (two projection layers with residual con-
nections, layer normalization, GELU activation,
and dropout 0.1) while being projected to a 256-
dimensional feature space. The core architecture
remains unchanged.

The pre-training uses masked prediction on
120ms windows (80ms stride), masking 40% of fea-
tures based on energy profiles and acoustic bound-
aries, with per-batch constraints of 10-80%. A
vector quantizer with 256-entry codebook serves
as training target, using EMA updates (decay 0.99)
and Laplace smoothing. The training objective
combines reconstruction loss (smooth L1), con-
trastive loss with curriculum learning, codebook
diversity loss, and similarity regularization.

Optimization uses AdamW (weight decay 0.05)
with hierarchical learning rates (encoder: 5e-4,
quantizer: 1e-3, prediction head: 1.5e-3) and one-
cycle scheduling (15% warmup, momentum 0.8-
0.9). For evaluation, we freeze the feature extrac-
tor, replace the prediction head with classification

layers, and fine-tune only the transformer and FT-
Classifier components. We similarly evaluate XLS-
R with both full and frozen-backbone fine-tuning.

3.5 Results

3.5.1 Evaluation Metrics
We decoded model outputs using Greedy Best-
First Search and evaluated using Phoneme Error
Rate (PER), Ground-truth Probability (GP), and
F1-score. GP and F1 are computed after optimal
alignment of true and predicted sequences, exclud-
ing insertions and deletions. While PER assigns a
full penalty (+1) for any substitution, insertion, or
deletion, it doesn’t measure the near-misses. We
introduce GP (GPm for macro, GPw for class-
weighted) to better evaluate fine-grained phonemic
distinctions like duration variants (i/i:) and vowel
contrasts (æ/a) that are preserved in our approach
rather than merged. GP measures the model’s
probability assignment to ground-truth classes at
aligned time steps. It can be intuitively understood
as the proximity to truth, or conversely, the inverse
of the distance from truth. This proximity measure
instead of PER is more important for judging the
quality of embeddings for latent tasks.

Detailed analysis of model behavior is provided
in Appendix A. The confusion matrix in Figure
2 shows that contextless recognition errors follow
phonetically meaningful patterns, with confusions
primarily occurring between acoustically similar
sounds (e.g., front vowels, voiced/voiceless conso-
nant pairs) rather than random misclassifications.
The phoneme probability distributions over time
(Figure 3) illustrate CUPE’s temporal resolution
capabilities, showing distinct probability peaks cor-
responding to ground truth phonemes and smooth
transitions between adjacent sounds.

3.6 Key Insights and Limitations

Looking at Table 3, CUPE demonstrates remark-
able cross-lingual generalization despite having a
fraction of XLSR’s parameters. While the 360ms
model shows slightly better PER, this can be mis-
leading due to class imbalances - it performs better
on long and common vowels like /a:/ but struggles
with short but rare phonemes, highlighting why
GPm is a more balanced metric. Note that both
360ms and 120ms models have the same frame
length of 16ms, the only difference is the context
length. The significant performance difference in

0https://github.com/tabahi/contexless-phonemes-CUPE
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Table 3: Evaluation metrics (%) for two architectures, XLSR (300M) & CUPE (30M), trained on MSWC-train
without pretraining.

Evaluation on MSWC-eval Zero-shot PER on individual langs Zero-shot evaluation on UPC-eval
Model:Context PER↓ GPm GPw F1 lt mt ia sk ka as PER↓ GPm GPw F1
XLSR:word 49.9 35 51.7 60.6 59.5 48.7 37 45.3 48.4 65.8 66.5 31.2 51.7 52.9
XLSR:120ms 52.6 34 52.1 59.9 61.1 49.9 42.9 52.3 50.4 63.7 66.3 31.6 51.1 54.9
CUPE:word 46.4 39 55.1 63 54.5 47.1 33.1 42.5 44 60.5 58.8 32.9 52.5 58.3
CUPE:360ms 44.8 38.3 56.5 62.6 53.8 45.2 30.8 39.7 42.5 60.9 52.2 34.7 53.1 61
CUPE:160ms 47.8 36 55 64.8 57.2 46.2 36.2 45.2 44 60.7 57.5 32.9 54.1 58.8
CUPE:120ms 45.9 40 57.5 64.5 54.6 45 33.9 43.6 42.2 60.2 56.9 35.1 56.4 67.7

Table 4: Evaluation metrics (%) for pre-trained models CUPE-PT (30M, pretrained on FLEURS), fine-tuned on
MSWC-train, compared with XLSR (300M, off-the-shelf pretrained on 128 languages) with or without frozen
backbone (FB) feature extractor. The top 4 rows show the results for contextless (120ms) models, the bottom 4
rows show results for word-context models for reference. Only the UPC-eval languages are unseen languages for
zero-shot evaluation.

Model:Context Eval. on MSWC-eval PER↓ on individual langs (seen) UPC-eval UPC-seen
PER↓ GPm GPw F1 lt mt ia sk ka as PER↓ GPm PER↓ GPm

120ms Context Models
FB-XLSR 65.8 36.2 60.2 51.4 69.6 70.7 55.6 55.0 63.6 84.5 66.3 43.5 67.8 43.5
FB-CUPE-PT 49.8 34.9 53.0 60.5 59.3 47.5 38.5 48.5 44.6 61.4 66.5 35.4 69.7 38.2
XLSR 52.2 38.2 56.7 62.3 60.9 48.5 43.0 51.8 50.8 67.1 63.6 37.8 60.9 45.8
CUPE-PT 45.6 41.2 58.1 64.0 54.5 45.2 33.5 47.9 43.6 62.1 56.2 36.4 57.6 44.2

Word Context Models
FB-XLSR 43.5 40.0 58.4 68.1 53.9 42.8 30.1 38.2 37.3 55.3 66.9 48.5 70.3 43.4
FB-CUPEPT 70.4 1.9 29.6 54.3 73.6 65.1 71.2 77.1 70.5 62.5 69.0 3.2 73.2 2.7
XLSR 46.6 36.3 53.6 66.7 56.7 44.6 35.5 39.7 44.2 63.8 46.9 39.8 46.0 46.4
CUPE-PT 46.1 38.1 56.1 61.4 54.2 45.6 35.5 41.7 42.6 60.4 56.8 37.9 54.0 46.2

UPC evaluations, even when XLSR:120ms uses the
same windowing pipeline, suggests that model’s
heavy size could be an overfitting liability.

Table 4 reveals that while XLSR with a frozen
feature extractor achieves better overall metrics,
CUPE maintains competitive performance under
significant constraints. Notable observations in-
clude XLSR’s degraded performance on UPC with
frozen features and CUPE’s sharp performance
drop with word-context windows, perhaps due to
having to learn more phonemes per window while
most parameters are frozen. The completely un-
frozen CUPE model’s results mirror those in Table
3 even though the learning rate was set 10 times less
for fine-tuning. The best contextless model, CUPE-
PT:120ms, does not perform as well as pre-trained
XLSR with full word context, indicating that ad-
ditional context and parameters benefit large-scale
pretraining. Nevertheless, CUPE’s effectiveness
with frozen feature extractors shows that essential
phonetic information is learned by the feature ex-
tractor within brief temporal windows during pre-
training. Another sharp degradation is noticeable
for CUPE-PT word context compared to 120ms;
it is possibly due to 30M parameters being not
enough for longer sequences (1000ms vs 120ms).

Our approach faces several limitations in its cur-
rent form. The fixed 120 ms window presents inher-
ent trade-offs in phoneme recognition: too long for
short stop consonants and insufficient for capturing
long phonemes fully. The model shows the best
recall of stop consonants, but the worst recall of in-
frequent vowels. This issue is particularly evident
in languages with contrastive length distinctions,
where the model struggles to maintain consistent
performance across different phoneme durations.

The performance gap between supervised and
pre-trained+fine-tuned results points to architec-
tural limitations in both the projection mechanism
and loss objectives. The current projection ap-
proach may not optimally preserve phonetic fea-
tures during self-supervised learning, while the loss
objectives could better reflect the hierarchical na-
ture of phonemic contrasts. Additionally, the rela-
tively modest size of the model (30M parameters)
may limit its capacity to capture the full complexity
of cross-linguistic phonetic variations. Addition-
ally, our systematic mapping of rare phonemes,
while practical, may obscure certain phonological
contrasts. Although we achieve competitive results
on the UCLA Phonetic Corpus, direct comparisons
with methods such as Epitran (Li et al., 2021a) and
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Table 5: Zero-shot PER comparison on UPC (UCLA Phonetic Corpus) with other works. Our CUPE:120ms
results are fine-tuned on language splits matched to each baseline study for fair comparison, which differ from the
UPC-eval/UPC-seen partitions in Tables 3-4. Direct performance comparison is limited due to different phoneme
mapping systems. Ln = number of unseen test languages (of 95).

Study Ln ↓ PER (%) Phoneme Inventory Approach
(Li et al., 2021a) 47 51.2 Epitran+Allovera+Panphon
Ours 47 46.1 Systematic mapping to 65 classes
(Liu et al., 2023) 10 64.7 Direct UPC inventory
Ours 10 44.1 Systematic mapping to 65 classes
(Li et al., 2022) 77 64.2 Bayesian tree-based estimation
Ours 77 48.6 Systematic mapping to 65 classes
(Glocker et al., 2023) 84 45.62 35 articulatory attribute system
Ours 84 48.98 Systematic mapping to 65 classes

Allophant (Glocker et al., 2023) are challenging
due to fundamentally different phoneme inventory
approaches.

While CUPE demonstrates strong performance
in contextless phoneme recognition, several limi-
tations warrant discussion. The model’s varying
performance across language families suggests po-
tential biases in the feature extraction process that
merit further investigation. Some languages with
distinct phonological structures or phoneme inven-
tories may require specialized preprocessing or ar-
chitectural adaptations to achieve optimal perfor-
mance. Additionally, the fixed 120ms window size,
while effective across our evaluation datasets, may
not be optimal for all languages or phonetic con-
texts—some phonemes naturally require longer or
shorter temporal windows for accurate characteri-
zation.

Most importantly, this work establishes the foun-
dation for more complex speech analysis systems.
We have demonstrated how to extract clean em-
beddings for individual allophones—the next crit-
ical step is implementing a sentence-level speech
style encoder that learns from these contextless al-
lophone embeddings. Such a system would enable
comprehensive analysis of speaker characteristics,
accent patterns, and speaking styles while maintain-
ing the interpretability and cross-linguistic general-
izability that contextless representations provide.

While our approach achieves competitive results
on the UCLA Phonetic Corpus compared to exist-
ing methods listed in Table 5, these comparisons
should be interpreted cautiously - each method
uses fundamentally different phoneme inventory
systems, from Epitran’s probabilistic mappings
(Li et al., 2021a) to Allophant’s 35 articulatory
attributes (Glocker et al., 2023), making direct per-
formance comparisons less meaningful. Our choice
of 65 systematically mapped classes represents a

different trade-off between granularity and gener-
alization. The 65 class system is pragmatic imple-
mentation which can be expanded depending on
the dataset. We selected 65 phonemes by empiri-
cally analyzing their occurrence across MSWC’s
50 languages, including only those that appeared at
least 10,000 times. While phoneme mapping can
further reduce the number of classes, our findings
show that the impact on error rate is limited. For
instance, when we applied broad phoneme group
mapping to reduce the set to just 15 phonemes, the
PER on MSWC-eval dropped from 0.45 to 0.40.

4 Conclusion

Through this work, we have demonstrated that
effective universal phoneme recognition can be
achieved using brief 120ms windows of speech
input. Our CUPE model achieves competitive per-
formance while requiring an order of magnitude
fewer parameters than current approaches. The
model’s success in cross-lingual generalization val-
idates our core finding that essential phonetic infor-
mation can be captured through focused analysis of
brief speech segments. These results provide com-
pelling evidence that extensive temporal context
is not a requirement for robust speech processing
tasks. While our approach has some limitations,
particularly with very long phonemes and limited
phoneme inventory, it opens promising directions
for lightweight, language-agnostic speech process-
ing systems. CUPE’s effectiveness has significant
implications for real-world applications, from low-
latency speech recognition and ASR self-learning
to speech pathology diagnostics. Our results indi-
cate that future speech processing systems may ben-
efit from focusing on fundamental acoustic patterns
rather than extensive contextual dependencies.
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A Confusion Heatmaps

Figure 2: Confusion matrix for contextless phoneme recognition on MSWC-eval dataset using CUPE:120ms
model trained on MSWC-train. The heatmap shows predicted phonemes (x-axis) versus ground truth phonemes
(y-axis), with color intensity indicating count frequency on a logarithmic scale. The ‘Un’ counts show the
unaligned trues or predictions (i.e., the true sequence had a phoneme that didn’t exist or aligned in the
predicted sequence and vice-versa). The matrix reveals systematic confusion patterns, with darker cells
along the diagonal indicating correct predictions. Notable off-diagonal clusters highlight acoustically similar
phoneme pairs that are challenging for contextless recognition, such as front vowels, central vowels, and
voiced/voiceless consonant pairs. The sparse structure demonstrates that most confusions occur within
phonetically related categories rather than across distant phoneme classes.
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Figure 3: Phoneme probability distributions over time for an example utterance using CUPE:120ms model. The
top panel shows a heatmap of phoneme probabilities (y-axis) across time frames (x-axis), with color intensity
representing probability values. Ground truth phoneme alignments are displayed at the bottom with text. The
visualization demonstrates the model’s ability to capture temporal phoneme transitions in contextless recognition,
with clear probability peaks corresponding to ground truth phonemes. Notable patterns include smooth transitions
between phonemes within words and distinct silence regions (SIL) between words, highlighting the model’s temporal
resolution at 13ms.
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Abstract

In this work, we explore the capability of Large
Language Models (LLMs) to annotate hate
speech and abusiveness while considering pre-
defined annotator personas within the strong-
to-weak data perspectivism spectra. We eval-
uated LLM-generated annotations against ex-
isting annotator modeling techniques for per-
spective modeling. Our findings show that
LLMs selectively use demographic attributes
from the personas. We identified prototypi-
cal annotators, with persona features that show
varying degrees of alignment with the origi-
nal human annotators. Within the data per-
spectivism paradigm, annotator modeling tech-
niques that do not explicitly rely on annotator
information performed better under weak data
perspectivism compared to both strong data per-
spectivism and human annotations, suggesting
LLM-generated views tend towards aggrega-
tion despite subjective prompting. However, for
more personalized datasets tailored to strong
perspectivism, the performance of LLM anno-
tator modeling approached, but did not exceed,
human annotators.

1 Introduction

Perspectivism in Natural Language Processing
(NLP) aims to preserve the spectrum of opinions
held by annotators in corpora (Cabitza et al., 2023).
Dataset annotation for this purpose often uses a
descriptive paradigm (Rottger et al., 2022), involv-
ing minimal instructions and multiple annotators
providing labels for every corpus sentence to cap-
ture diverse viewpoints. The number of annotators
involved can range significantly, from a minimum
of 2 to 2500 or more (Plepi et al., 2022; Frenda
et al., 2024).

Most traditional approaches aggregate labels to
obtain a single majority label (Davani et al., 2022;
Aroyo and Welty, 2015), which is commonly used
for training models. However, the perspectivist ap-
proach argues that critical information is lost when

labels are aggregated. More importantly, the opin-
ions of the minority, which may represent a signifi-
cant population, are undermined, leading to under-
representation and overshadowing of nuances inher-
ent in the dataset. This is crucial because people’s
views and opinions are indeed shaped by different
socio-cultural, demographic, economic, and expe-
riential backgrounds (Akhtar et al., 2021; Almanea
and Poesio, 2022; Demszky et al., 2020; Kennedy
et al., 2022). These factors impact how individuals
perceive, interpret, and respond to various topics,
making it unrealistic to assume everyone shares
similar views on the same subject. Recognizing
and reflecting opinion differences in our models is
therefore important for developing socially aware
NLP systems, treating disagreements not as errors
but as distinct perspectives. To address this, mod-
els have been developed that can learn from such
disaggregated labels (Leonardelli et al., 2023; Sul-
livan et al., 2023; Vitsakis et al., 2023; García-Díaz
et al., 2023; Cui, 2023; Xu et al., 2024).

Furthermore, while some disagreements stem
from different perspectives, other factors also cause
disagreement in data annotations, including tempo-
ral factors, annotator inconsistencies, uncertainty,
ambiguities, lack of task understanding, or a per-
functory approach to annotation (Fleisig et al.,
2024). When modeling perspectives obtained
from subjective tasks, these perspectives are often
mixed with noise and errors, raising the question of
whether true perspectives or merely annotator in-
consistencies have been modeled. Some literatures
have quantified these uncertainties to a minimal
extent (Klemen and Robnik-Šikonja, 2022; Davani
et al., 2022).

In this work, we aimed to investigate how exist-
ing annotator modeling techniques would behave
when trained on deterministic LLM-generated an-
notations, in contrast to earlier work that explored
modeling individual human annotators’ perspec-
tives using disaggregated labels. We generated
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new annotations for the HS-Brexit and ConvAbuse
datasets using Llama2-13B, guided by persona-
based prompting derived from annotator informa-
tion provided by the original authors.

In generating these annotations, we implemented
two perspectivism approaches: strong and weak
data perspectivism. Weak perspectivism, also
known as reduced perspective, involves consider-
ing multiple labels which are ultimately aggregated
into one, representing a group opinion. Strong per-
spectivism, by contrast, utilizes and retains all dis-
tinct labels from training through evaluation (Cab-
itza et al., 2023; Frenda et al., 2024).

Our findings show that LLMs struggle to gen-
erate responses as diverse as humans, even with
diverse personas. They still partially align with
human annotations but tend to pick up only se-
lected persona features. Furthermore, we identified
latent annotation prototypes shared by multiple hu-
man annotators. These alignment patterns vary
across datasets and perspectivism strategies: for
instance, HS-Brexit with contrasting demographic
attributes shows stronger alignment with human
annotations under weak perspectivism, whereas
ConvAbuse demonstrates closer alignment with hu-
man annotations when strong data perspectivism
is used, involving highly personalized and overlap-
ping persona features.

2 Related Work

The first part of this section addresses how Large
Language Models (LLMs) have been used to gen-
erate different perspectives and their ability to
adopt an assigned persona. It also highlights the
lack of connection between perspectivism, based
on defined personas and annotations in subjective
tasks. The second part focuses on the use of LLMs
as annotators, examining their ability to generate
discrete multiple labels, identifying the lack of
persona-based labeling, and replicating human an-
notation behavior to enable alignment with human
annotations.

2.1 LLMs in Perspectivism and Adopting
Personas

LLMs have been explored for their ability to
simulate diverse human perspectives. Subjective
tasks often involve annotators with different back-
grounds, leading to divergent opinions which often
reflect demographic variation, different and sub-
stantial opinions, these make label aggregation in-

adequate (Rottger et al., 2022). Some works argue
that LLMs naturally contain persona traits, as they
are trained in large corpora, often culled from so-
cial networks that contain crowd-sourced data rich
with diverse viewpoints (Hu and Collier, 2024; Vit-
sakis et al., 2023). For example, Hayati et al. (2024)
showed that it is possible to generate multiple per-
spectives from LLMs and quantify the maximum
number of perspectives derivable from an LLM.
However, the influence of persona prompting re-
mains debated and the influence of specific persona
traits remains underexplored (Beck et al., 2024;
Sun et al., 2025). Hu and Collier (2024) suggests
that personas have minimal effect on LLM out-
puts, whereas a psycholinguistic research found
that LLMs can generate human-like outputs, even
surpassing humans in turing experiments, yet ex-
hibit unnaturally high accuracy that is not possible
within human populations (Aher et al., 2023). Fur-
thermore, Wang et al. (2024) found that LLMs
risk homogenizing or misrepresenting marginal-
ized identity groups, particularly when asked to
simulate them. These challenges highlight the dif-
ficulty in separating the LLM’s inherent persona
from externally applied persona prompts. Despite
this, prompting LLMs with well-defined personas,
particularly those grounded in demographic traits
from existing datasets, offers a practical way to ex-
amine how perspective alignment occurs between
machines and humans. However, small variations
in prompt configurations can lead to large differ-
ences in output, complicating reproducibility and
fairness evaluations.

2.2 LLM Annotations and Label Generation
Beyond simulating perspectives, LLMs are being
explored as direct substitutes for human annotators
(Ivey et al., 2024; Bavaresco et al., 2024), espe-
cially in settings where collecting human annota-
tions is expensive or slow (Huang et al., 2023; Glig-
orić et al., 2024). Recent studies have examined the
ability of LLMs to generate discrete labels for clas-
sification tasks, often using crowd-sourced datasets
as benchmarks (Pavlovic and Poesio, 2024a; Gi-
lardi et al., 2023). Gilardi et al. (2023) found that
LLMs outperformed crowd-sourced workers in cer-
tain annotation tasks, while Pavlovic and Poesio
(2024b) demonstrated that adjusting temperature
values can control LLM behavior to better simu-
late annotation disagreement or consistency. These
findings suggest that LLMs can be tuned to exhibit
behavior similar to individual or aggregated hu-
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man annotators. LLMs have also been deployed
in replicating prior annotation experiments. For
example, Pavlovic and Poesio (2024a) replicated
a Learning With Disagreement task (Leonardelli
et al., 2023) using GPT-3 but did not incorporate the
demographic background of annotators, limiting
their insight into perspective-specific agreement.
While many experiments rely on LLMs generating
explanations or engaging in dialogue-based tasks,
fewer works have explored their ability to produce
discrete, disaggregated annotations comparable to
crowdsourced annotators. Likewise, existing an-
notator modeling techniques are yet to be fully
evaluated on annotations generated by LLMs. The
impact of LLM annotations and predefined per-
sonas on existing annotator modeling approaches
remains unexplored and is a key area we address
in our study.

3 Dataset

We used two datasets from the SemEval-2023 task
on learning with disagreements (Leonardelli et al.,
2023) and used Llama2-13B to generate annota-
tions for weak and strong data perspectivism vari-
ants resulting in six (6) datasets. Strong perspec-
tivism used prompts tailored to individual persona
descriptions, while weak perspectivism used group
descriptions to simulate aggregated viewpoints;
however, the persona descriptions in each variant
were limited to the demographic information and
features provided in the original work. All datasets
use binary labels for classification. Original dataset
statistics are presented in Table 1.

HS-Brexit The Hate Speech Brexit (HS-Brexit)
dataset (Akhtar et al., 2021) comprises 1,120 tweets
concerning Brexit and immigration, annotated for
hate speech, aggressiveness, and offensiveness.
This dataset features annotations from two distinct
groups of three individuals: a target group of Mus-
lims and first- or second-generation immigrants to
the UK (also classified as migrants in the original
study) and a control group of researchers with a
Western background making six annotators in all.

ConvAbuse The Conversational Abuse (ConvA-
buse) dataset, as described by Cercas Curry et al.
(2021), comprises roughly 4,000 English dialogues
between users and two conversational agents.
These user conversations were labeled by a mini-
mum of three gender studies experts, using a hier-
archical annotation system that included categories
for presence, severity, and directness of abuse. We

binarized the annotations into two classes, 0 and 1.
The ConvAbuse dataset is characterised by eight
(8) annotators, each providing a significant num-
ber of annotations. Also, not all the 8 annotators
labeled every instance contrary to the HS Brexit,
but each annotator has annotations.

4 Methodology

Firstly, we explore the ability of Llama2-13B to
generate discrete binary annotations on the datasets,
using defined personas. Secondly, we modeled
these personas with existing annotator modeling
techniques.

4.1 Annotation Generation
For the strong perspectivism variant of the datasets,
we prompt Llama2-13B with each text in the origi-
nal corpus. We extended the dataset with the gen-
erated annotations for each corresponding persona,
maintaining the original structure of the dataset
from the SemEval-2023 task. The strong variant
uses specific individual descriptions for each per-
sona as seen in Figure 1. In the original ConvAbuse
dataset, not all annotators annotated all instances,
but in the LLM version, all eight annotators were
represented in all instances. We generate annota-
tions at temperatures: 0, 0.1, 0.2, 0.5 and 0.8, for
each perspectives. We used the demographic de-
scription presented in the original work as guide for
our persona features. In weak perspectivism, we
followed the same approach. Figures 3 and 4 show
persona descriptions and Table 2 shows a sample
of the prompt used. The prompt and personas are
fully described in the Appendices A and B, respec-
tively. Also in Table 3, we show a summary of
the data statistics and the variance observed in the
inter-annotator agreement K-α as temperature in-
creases.

4.2 Annotator Modeling
We trained existing annotator models (Oluyemi
et al., 2024; Davani et al., 2022) using the LLM-
generated labels, following a classification pipeline
originally used with the human-annotated cor-
pus. We replicated these annotator modeling tech-
niques—User Token, Composite Embedding, Com-
posite+User Token Embedding, and Multi-task to
model perspectives by modeling annotators, and we
also added a text-only implementation without an-
notator information with SBERT. These techniques
used annotator IDs and text, with 6 annotations per
instance for the HSBrexit and 8 annotations per
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#A #I N A/I K-α

HS-Brexit 6 1,120 1,120.00± 0.00 6.00± 0.00 0.35
ConvAbuse 8 4,050 1,521.00± 206.91 3.00± 0.88 0.65

Table 1: Original Dataset Statistics by Human Annotators. #A: number of annotators, #I: number of total instances,
N: number of annotations per annotator, A/I: annotations per instance, K-α: Krippendorff’s alpha agreement.

Figure 1: Distribution of Annotations for ConvAbuse and HS-Brexit (Strong Perspective) by Persona

annotate this statement regarding Brexit. as a group
of (persona) in the UK or Europe, you must assign a
label to the statement Use ’0’ if the statement does not
express hate towards Brexit, and ’1’ if it does express
hate towards Brexit. Provide only the number as your
response without any additional text or explanation
for example "####Annotator:"####Annotator:0" or
"####Annotator:1"

Table 2: An example prompt for weak perspectivism in HS-
Brexit

instance for the ConvAbuse to capture the persona
perspectives using the labels obtained from the gen-
erations at all temperatures but used the best scores
(generally between temperatures 0 and 0.1) in our
results and analysis. The annotator ID represents
each unique annotator(persona), encoded as em-
beddings. Each technique uses a different method
to generate encodings used to uniquely model the
personas. Finally, we compared the performance
of these annotator modeling techniques on LLM-
generated annotations and human annotations.

5 Results

Table 4 presents the F1 scores for the annotator
modeling techniques evaluated on both the original
and the synthetic datasets. Our analyses show some
trends in the performance of these models. In exist-
ing results that used human annotations, overall per-
formance was observed on the ConvAbuse dataset.
The inter-annotator agreement measured by Krip-
pendorff’s alpha was high for ConvAbuse and com-
paratively lower for the HSBrexit dataset. Interest-

ingly, the Llama2-annotated versions showed sig-
nificantly higher agreement levels than the original
human annotations across all temperature settings,
including at a high randomness level (Temperature
= 0.8) as seen in Tables 1 and 3. Prior research
established that the effectiveness of annotator mod-
eling techniques is largely dependent on the degree
of agreement and the number of annotations per
annotator (Oluyemi et al., 2024). Specifically, the
User-Token modeling approach performs best for
datasets with low agreement, while the Compos-
ite Embedding + User Token method is optimal
for datasets with high agreement. Both methods
rely on an explicit naming system, using annota-
tor IDs to individually predict the label outputs
for each annotator. However, our results indicate
that models without explicit annotator information
outperformed others on the Llama2 persona-based
datasets. For instance, SBERT, with no annota-
tor information and Composite Embedding- an ap-
proach that did not use explicit naming convention
(annotator ID) for modeling, both outperformed the
best-performing models on HSBrexit and achieved
comparable results on ConvAbuse. This suggests
that the optimal annotator modeling techniques for
human annotations may not be directly transfer-
able or equally effective for data annotated through
LLM personas.
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#A #I N A/I K-α (Strong) K-α (Weak)

HS-Brexit 6 1,120 1,120.00± 0.00 6.00± 0.00 0.58 – 0.81 (T=0.8 – 0) 0.55 – 0.75 (T=0.8 – 0)
ConvAbuse 8 4,050 4,050.00± 0.00 8.00± 0.00 0.60 – 0.91 (T=0.8 – 0) 0.62 – 0.93 (T=0.8 – 0)

Table 3: LLAMA2 Dataset Statistics. #A: number of annotators, #I: number of total instances, N: number of
annotations per annotator, A/I: annotations per instance, K-α: Krippendorff’s alpha agreement (T=temperature
range). The K-α values are presented as a range from temperature 0.8 to 0, that is agreement decreases as temperature
increases.

Method SBERT User Token Composite Embedding Composite Embedding + User Token Multi-Tasking

Human-annotations

HS-Brexit 68.6 77.6 67.6 77.3 71.7
ConvAbuse 85.9 88.5 85.8 88.6 82.3

LLAMA2-13B strong perspectivism

HS-Brexit 72.2 69.4 71.8 71.2 65.1
ConvAbuse 85.7 84.4 84.6 84.4 81.1

LLAMA2-13B weak perspectivism

HS-Brexit 73.2 72.2 72.4 71.7 62.0
ConvAbuse 85.2 83.7 83.7 81.8 79.8

Table 4: Model performance based on individual annotator and persona F1 scores. Results for human annotations
was adapted from Oluyemi et al. (2024). We reported the best LLM results for temperatures 0 and 0.1.

5.1 Strong vs Weak Data Perspectivism in
Annotator Modeling

As presented in Tables 6 and 7 of Appendix C,
we adapted the two versions of data perspectivism
described by (Cabitza et al., 2023) and evaluated
the annotator modeling techniques on the datasets.
The strong perspectivist approach, which used fine-
grained persona profiles, generally produced higher
performance that was more aligned with the results
from human modeling for the ConvAbuse dataset at
temperature 0.1. The weak perspectivism approach,
characterized by contrasting group descriptions,
showed improved performance over the human ver-
sion in the HS-Brexit dataset across both strong
and weak variants, with a greater improvement ob-
served in the weak, group-based variant. However,
this performance increase was exclusively observed
in the Composite Embedding and SBERT models
without explicit annotator information.

5.2 Annotation Quality and Uncertainty
We analyzed the quality of annotations generated
by Llama2-13B across a spectrum of temperature
parameters. Even at high randomness with tem-
perature set to 0.8, inter-annotator agreement re-
mained high cf. Table 3. The distribution of labels
diverged significantly from that of the human an-
notators. To illustrate this, we compared the label
distributions using Probability Density Functions

(PDFs). The human annotations showed a sharp
peak near class 0, indicating a highly consistent
assignment of non-abusive class, despite disagree-
ment, in the HS-Brexit dataset as seen in Figure
2. In contrast, the PDF for the strong perspectivist
variant of the LLM showed a slightly right-skewed
peak between 0.1 and 0.2, suggesting that the LLM
assigned marginally higher soft labels than human
annotators. The weak perspectivist PDF was flatter
and more dispersed, with a small density spike near
a probability of 0.2, reflecting greater uncertainty
and inconsistency in labeling. The PDFs for the
ConvAbuse dataset is presented in the Appendix
D.

5.3 Prototypical Persona Annotators and
Human Alignment

Ablation 1: Table 5 shows that annotator models
trained on LLM annotations perform worse when
tested on human labels, indicating a lack of align-
ment. The decline likely comes from the lack of
corresponding match between LLM personas and
the unknown individual human annotators.

Ablation 2: Figures 3 and 4 present an align-
ment analysis between LLM personas and human
annotators. We compute cosine similarity between
their annotation vectors. Using sample sizes of 5,
10, 50, and 100, stronger alignment was observed
at sizes 50 and 100. In the ConvAbuse strong vari-
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Figure 2: Figure showing the Probability Density Function illustrating Uncertainty in LLM annotations Vs Human in HSBrexit

Human/LLM ID Persona (strong) Persona (weak)

1 Olivia, a female and white British person white British female people
2 Emma, a female and white British person white British with non-binary gender orientation
3 Ariel, a white person from the United Kingdom with a non-binary gender orientation non-binary gender people from the United States
4 Sophia, a female and white person from the United Kingdom white female people from the United Kingdom
5 Katrin, a female and white person from the United Kingdom white female from United States
6 Eve, a female and white person from the United Kingdom mixed Asian with a non-binary gender orientation
7 mixed Asian person mixed Asian female
8 a white person from the United States with a non-binary gender orientation mixed Asian female

Figure 3: Figure showing Prototypical LLM annotators and Alignment with Human Annotators in ConvAbuse

ant, ANN(2–8) showed varying degrees of align-
ment with LLM Persona 1 (Olivia, female, white,
British), while ANN(1) aligns more closely with
LLM Persona 4 (Sophia, female, white, from the
UK). Other LLM personas (2, 3, 5–8) exhibit no
correspondence with any human annotator. We

further trained annotator models on annotations
from LLM Personas 1 and 4, and evaluated them
against human-labeled data. These models showed
improved performance, approaching human-level
results for both Composite Embedding and SBERT,
as shown in Table 5.
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Model SBERT User Token Composite Embedding Composite Embedding + User Token

HL 85.9 88.5 85.8 88.6
LLM 85.7 84.4 84.6 84.4
LLM-H 83.1 83.4 84.5 84.2
LLM(1,4)-H 85.4 82.6 85.1 85.9

Table 5: Model performance based on different training and testing label splits: HL (models trained and tested on
Human Labels), LLM (models trained and tested on LLM Labels), LLM-H (models trained on LLM Labels, tested
on Human Labels), and LLM(1,4)-H (models trained on the most aligned LLM personas 1 and 4 to human labels,
tested on Human Labels).

In the HS-Brexit dataset, alignment is less con-
sistent. In Figure 4, we see Persona 1, Male Mus-
lim migrant, belonging to the target group mapped
to annotators 4 and 5 of the human annotators be-
longing to the control group in the strong variant.
Human annotators 1–3 belong to the Muslim or
migrant group, while annotators 4–6 belong to the
group with Western background, denoted as locals.
Also, Persona 3 of the migrant group representing
"neutral foreigner" shows positive alignment in the
weak variant to the migrant group in human when
"Muslim" was removed. These findings suggest
that Llama2 includes prototypical personas capable
of partially representing multiple human annotators.
However, other defined personas fail to map to any
observed human annotation patterns (cf. Appendix
E).

6 Discussion and Conclusion

This work investigates Llama2’s capacity to gener-
ate disaggregated labels for hate speech and offen-
siveness datasets using predefined personas, under
two perspectivism frameworks: strong (individual)
and weak (group) data perspectivism. We examine
the quality and alignment of LLM-generated anno-
tations with human-annotated datasets and evaluate
downstream performance across existing annotator
modeling techniques.

Llama2 annotations consistently exhibited
higher inter-annotator agreement (Krippendorff’s
alpha ranging 0.55–0.91) than human annotations
across both ConvAbuse and HS-Brexit datasets,
though agreement decreased at higher temperatures.
PDF analysis further indicated that LLM annota-
tions tend to converge around features inherent in
the model’s underlying corpus, suggesting a diver-
gence from human perspectives. As seen in Fig-
ure 2, the PDF using the soft label distribution of
the abusive class shows human annotations align-
ing towards the non-abusive class, strong perspec-
tivism aligning more towards the abusive class, and

weak perspectivism showing a relatively flat and
dispersed distribution depicting high uncertainty.

In terms of performance of annotator modeling
methods, LLM annotations shifted model efficacy.
While prior work confirmed that annotator mod-
els trained on human-annotated datasets with high
agreement (e.g., ConvAbuse) performed best with
the Composite Embedding + User Token model,
and those with low agreement (e.g., HS-Brexit)
favored the User Token model, our findings with
LLM-generated annotations demonstrate that sim-
pler models, specifically SBERT and Composite
Embedding models without explicit annotator in-
formation, showed improved results. This shift im-
plies that LLM-generated annotations align more
with generalized perspectives and are less suited
to highly personalized approaches. Comparing the
two perspectivism approaches, strong data perspec-
tivism on ConvAbuse, characterized by overlap-
ping and more personalized features, improved
the performance of annotator modeling techniques
over its weak counterpart. Conversely, weak per-
spectivism on HS-Brexit, with its contrasting de-
mographic features in groups, yielded improved
performance specifically with SBERT and Compos-
ite Embedding models, suggesting that contrasting
demographic diversity tends to influence the choice
of perspectivism approach and annotator modeling
performance in LLMs.

Our ablation studies revealed LLM personas do
not directly correspond to human annotators. How-
ever, as seen in Figure 3, we identified generalized
"prototypical persona features" working as repre-
sentatives of groups of humans (e.g., ANN 2-8 map-
ping to LLM Persona 1, ANN1 to LLM Persona 4).
Swapping the labels of corresponding annotators
in the original dataset with these prototypical an-
notator labels, and evaluating with the human test
set, slightly improved results, as seen in Table 5,
presenting a novel approach for modeling perspec-
tivism in LLMs. These findings suggest that while
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Human/LLM ID Persona (strong) Persona (weak)

1 Male Muslim Migrant first generation immigrants from developing countries
2 Female Muslim Migrant second generation immigrants and muslim students with Islamic back-

ground from developing countries
3 Neutral foreigner in the UK migrants
4 Native English man researchers with western background, having experience in linguistic

annotation
5 Native English Woman researchers with western background with NO islamic background
6 Liberal English person local that is someone whose ancestors were born in Europe or United

Kingdom

Figure 4: Figure showing Prototypical LLM annotators and Alignment with Human Annotators in HSBrexit

LLMs offer insights into subjective domains, their
capacity to fully embody external personas remains
limited to their underlying corpus, supporting an
aggregated view rather than personalization. Future
work should focus on standardization and generate
more diversified personas, systematically varying
features, and expanding evaluation to other LLMs
to fully investigate these prototypical attributes and
their potential in capturing a wider scope of per-
spectives.

7 Limitations

This study is based on two datasets and focuses
exclusively on binary classification tasks for hate
and offensive speech detection. One potential lim-
itation is that the data used to train Llama2-13B
may have been filtered, reducing its sensitivity to
detecting abusive content, potentially influencing
the observed results. Our analysis is also limited to

this model, and we did not investigate how newer
variants of Llama or other LLMs, like GPT 4o,
might influence the results. The personas used for
generating annotations were limited to the demo-
graphic features explicitly provided in the original
datasets, with slight modifications to fit the per-
spectivist spectrum. Furthermore, we did not quan-
tify the extent to which the model’s attention was
distributed between the persona and the input sen-
tences. Understanding this balance could provide
deeper insight into how strongly LLMs personalize
their annotations.

Another limitation of this study arises from the
design of the annotation prompt for the HS-Brexit
dataset variant, which focused on ‘hate speech to-
wards Brexit’. However, the prompt was structured
to provide general contextual information about
Brexit and simulate the prior knowledge of human
annotators. A follow-up experiment analysing the
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model’s attention mechanism revealed that the in-
stance of "Brexit" appearing first in the prompt
received a significantly higher attention score of
0.0654 than the "Brexit" label target which received
an attention score of 0.0050. Furthermore, when
‘immigrants’ was targeted instead, it received an
attention score of 0.0117, which was higher than
that given to ’Brexit’ as a target. This suggests
that the models have learned to recognise plausible
targets for hate speech, which warrants further in-
vestigation. However, this paper’s specific focus is
to investigate the impact of Annotator Personas on
LLM behaviour across the perspectivism spectrum.
It therefore does not include a deep analysis of the
model’s sensitivity to target plausibility. Neverthe-
less, we present this as a compelling avenue for
future research, while maintaining that our core
findings regarding persona-driven perspectivism re-
main valid within the described experimental setup.
Our codes are publicly available1 to support future
work.
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Appendix

A Prompt Design

Prompt for Strong HS-Brexit annotate this
statement regarding Brexit. As a (persona) in the
UK, you must assign a label to the statement. Use
’O’ if the statement does not express hate towards
Brexit, and ’1’ if it does express hate towards
Brexit. Provide only the number as your response
without any additional text or explanation for
example "###Annotator:0" or "###Annotator:1"

Prompt for Weak HS-Brexit annotate this
statement regarding Brexit. for a group of
(persona) in the UK or Europe, you must assign
a label to the statement. Use ’O’ if the statement
does not express hate towards Brexit, and ’1’ if it
does express hate towards Brexit. Provide only the
number as your response without any additional
text or explanation for example "### Annotator:0"
or "###Annotator:1"

Prompt for Weak ConvAbuse annotate
these conversations between users and bots. As a
group of persona within the age range of 19-21,
a level 1 English speaker and an Undergraduate
student in Gender Studies and Sociology, you must
assign a label to the statement. Use ’O’ if the
statement is not abusive, and ’1’ if it does express
abusiveness by the user towards the bot or agent.
Provide only the number as your response without
any additional text or explanation. for example
"### Annotator:0" or "### Annotator:]"

Prompt for Strong ConvAbuse annotate
these conversations between users and bots. As a
persona within the age range of 19-21, a level 1
English speaker and an Undergraduate student in
Gender Studies and Sociology, you must assign a
label to the statement. Use ’O’ if the statement is
not abusive, and ’1’ if it does express abusiveness
by the user towards the bot or agent. Provide
only the number as your response without any
additional text or explanation. for example "###
Annotator:0" or "### Annotator:]"

B Persona Descriptions

HS-Brexit Persona for Strong Perspectives

• Male Muslim Migrant

• Female Muslim Migrant

• Neutral foreigner in the UK

• Native English man

• Native English Woman

• Liberal English person

HS-Brexit Persona for Weak Perspectives

• researchers with Western background having
experience in linguistic annotation

• first or second generation muslim immigrant
students from developing countries

ConvAbuse Persona for Weak Perspectives

• white British female people

• white British with non-binary gender orienta-
tion

• non-binary gender people from the United
States

• white female people from the United King-
dom

• white female from United States

• mixed Asian with a non-binary gender orien-
tation

• mixed Asian female

• white people from the United States with a
non-binary gender orientation

ConvAbuse Persona for Strong Perspectives

• Olivia, a female and white british person

• Emma, a female and white british person

• Ariel, a white person from the United King-
dom with a non-binary gender orientation

• Sophia, a female and white person from the
United Kingdom

• Katrin, a female and white person from the
United Kingdom

• Eve, a female and white person from the
United Kingdom

• a mixed Asian person

• a white person from the United States with a
non-binary gender orientation
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C Model performance for Strong and Weak Data Perspectivism

Model α User-Token Composite Composite+ User-Token Multitasking SBERT

Strong Perspectivism

Human 0.65 88.5 85.8 88.6 82.3 85.9
0 0.91 84.1 83.0 84.4 46.9 83.1
0.1 0.87 84.4 84.6 84.3 81.1 85.7
0.2 0.81 80.5 81.5 80.0 46.8 81.5
0.5 0.68 69.9 70.7 71.1 45.1 69.4
0.8 0.60 63.5 65.1 64.4 62.6 64.6

Weak Perspectivism

0 0.93 83.7 83.7 81.8 69.0 85.2
0.1 0.88 80.1 79.3 78.3 79.8 82.0
0.2 0.82 81.2 81.5 81.2 70.3 82.1
0.5 0.67 71.7 69.7 71.4 64.7 69.5
0.8 0.62 61.7 61.4 62.3 58.1 61.4

Table 6: Performance of Annotator modeling methods for Strong and Weak data Perspectivism (ConvAbuse
dataset) across various temperatures.

Model α User-Token Composite Composite+ User-Token Multitasking SBERT

Strong Perspectivism

Human 0.35 77.6 67.6 77.3 71.7 68.6
0 0.81 69.3 71.3 71.2 65.1 72.2
0.1 0.73 69.4 71.8 71.0 61.8 69.2
0.2 0.67 66.3 63.8 61.9 61.4 67.2
0.5 0.62 61.5 61.3 61.4 49.5 62.2
0.8 0.58 52.4 56.1 54.2 51.2 56.6

Weak Perspectivism

0 0.75 72.2 72.4 71.7 60.3 73.2
0.1 0.69 66.6 65.8 65.5 62.0 69.1
0.2 0.62 62.2 63.8 69.9 59.2 66.8
0.5 0.54 58.0 58.4 57.9 39.2 56.1
0.8 0.55 55.2 57.8 56.7 55.4 56.6

Table 7: Performance of Annotator modeling methods for Strong and Weak data Perspectivism (HS-Brexit dataset)
across various temperatures.
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D Probability Density Function for Uncertainty and Annotation Quality

The Figure 5 shows the probability density function of the weak data perspectivism in ConvAbuse using
the majority class as a reference point.

Figure 5: Probability Density Function ConvAbuse Dataset
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E Human Vs Persona Alignment and Prototypes ConvAbuse Dataset

Human Annotator SampleSize Best Match LLM Persona Similarity score

2 100 1 0.791
3 100 1 0.894
7 100 1 0.913
8 100 1 0.671
1 100 4 0.707
6 100 1 0.707
4 100 1 0.816
5 100 1 0.745

Table 8: Mapping of Human Annotators to Best Matching LLM Personas based on Cosine Similarity.

Prototypical Annotators and their Alignment with Human Annotators Across Varying Sample sizes

Figure 6: Showing the identified Prototypical annotators in HS-Brexit dataset and the alignment with human
annotators
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Figure 7: Showing the identified Prototypical annotators in ConvAbuse dataset and the alignment with human
annotators
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Abstract

Retrieval Augmented Generation (RAG) has
risen to prominence for boosting the capa-
bilities of Large Language Models (LLMs)
through the integration of external knowledge.
Notably, the document chunking process plays
a central role in the performance of RAG
pipelines. Nevertheless, incoherent document
splits and inappropriate chunk sizes hinder re-
trieval efficiency and contextual accuracy. To
address this, we propose Recursive Seman-
tic Chunking (RSC), a dynamic and adaptive
chunking framework that ensures semantic co-
herence. It maintains coherence by recursively
splitting large chunks and merging smaller
ones. Unlike conventional methods, RSC pre-
serves contextual integrity while optimizing
retrieval efficiency. The evaluation across 4
distinct datasets outperformed traditional se-
mantic chunking techniques on evaluation met-
rics; contextual relevancy, contextual precision,
contextual recall, retrieval time, faithfulness
and answer relevancy. Results demonstrate
that RSC consistently outperforms traditional
chunking techniques, achieving higher contex-
tual relevancy and total score while maintain-
ing efficient retrieval times. These findings
highlight the potential to optimize RAG sys-
tems and to improve the document chunking
steps in the systems.

1 Introduction

Large Language Models (LLMs) are widely
adopted across various domains in the form of
chatbots, AI assistants, and other applications (Sid-
dharth and Luo, 2024; Sahlman et al., 2023). The
performance of LLMs is enhanced via the integra-
tion of external knowledge sources, specifically for
custom applications. In addition, we can leverage
the capabilities of LLMs without training them.
The aforementioned enhancement can be made via

*Corresponding author.
†Equal contribution.

Retreival-Augmented Generation (RAG) (Lewis
et al., 2020).

The RAG process begins with a user’s query be-
ing sent to the LLM, which generates a retrieval
request based on that query. This request is for-
warded to the retriever system, which searches
the vector database. Embeddings of documents
chunk i.e. context is stored in vector database. The
relevant context is then retrieved and combined
with the user’s query before being sent to the LLM
for a final response, as shown in Figure 1. Re-
searchers have developed various RAG-based solu-
tions across different domains, such as finance and
healthcare (Alkhalaf et al., 2024; He et al., 2024;
Feng et al., 2024; Mathur et al., 2024).

The critical aspect of the RAG pipeline is the
chunking of documents. Chunking in RAG sys-
tems is a technique that breaks down large docu-
ments into smaller, manageable segments known
as "chunks" (LangChain, 2024). This process is
crucial as it enhances the efficiency and accuracy
of information retrieval, which leads to better out-
comes for the system. The nature of context re-
trieved from the vector database is based on the
segmentation of these documents, therefore, the
choice of chunking techniques is a significant step
in the pipeline (Setty et al., 2024). The chunking
techniques directly affect the quality of retrieved-
context and retrieval time. It eventually affects
the quality of the product that is utilizing RAG-
based applications. The choice of chunking is
quite challenging i.e. larger chunks can lead to
slower retrieval, or retrieve irrelevant chunks and
small chunks may not adhere to a coherent infor-
mation unit. Recently, there has been a shift in re-
search focus towards optimal chunking techniques
i.e. (Yepes et al., 2024). Although frameworks
such as LangChain (AI, 2024) and LamaIndex (Liu,
2022) have various chunking strategies. Due to
complexities of the document structure, and cus-
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Figure 1: Information Flow in Retrieval Augmented
Generation (RAG)

tom systems, it is still a challenging task at hand.
In this paper, we propose Recursive Semantic

Chunking that focuses on optimizing the semantic
chunking of the documents. The following are the
key contributions of this work:

• We propose a Recursive Semantic Chunking
method, designed to split textual documents
into coherent semantic chunks of an appropri-
ate size.

• We introduce a dynamic method for adjusting
the chunk size. The recursive nature of this
method ensures that larger text segments are
progressively broken down while maintain-
ing semantic integrity. Smaller segments are
merged strategically, keeping the chunk size
balanced.

• We demonstrate that the proposed method im-
proves retrieval time compared to traditional
chunking techniques.

• As part of this work, we introduce
NewsMatrix-71, a large-scale, multi-domain
news dataset.

2 Related Work

Retrieval Augmented Generation systems rely on
the context returned from the retrieval algorithms,
making chunking a key factor in the pipeline
(Yepes et al., 2024). Therefore, the choice of
chunking strategies is a critical step. Ineffective
techniques can result in either incomplete chunks
leading to losing context or large chunks with irrel-
evant information negatively impacting the accu-
racy of the retrieval (Setty et al., 2024).

One of the common approaches is to split the
document based on fixed numbers of chunks. How-
ever, it has a potential loss of context in both cases
larger or smaller chunk size (Teja, 2023). To ad-
dress this, the researchers introduce recursive split
by character technique (LangChain, 2023). It re-
cursively splits keeping the longest text chunks
together with a need to define and constant adjust-
ment of chunk size overlapping making it compu-
tationally expensive.

Although the recursive text split tends to keep
the chunks semantically closed together, it does not
directly account for semantic meaning. Conversely,
semantic chunking (LangChain, 2024) groups the
text that is semantically similar together. It first
splits the text into sentences and groups them into
three sentences, then merges similar groups in the
embedding space. However, this technique does
not ensure optimal chunk sizes. Since its mech-
anism is dependent on the similarity of the em-
bedding vectors, it may lead to larger chunks and
cause hallucinations.

Agentic chunking (FullStackRetrieval, 2024)
pushed this idea further by leveraging Large Lan-
guage Models. It converts text into propositions
via LLMs (Chen et al., 2024). Propositions are de-
fined as standalone statements that convey a single
fact clearly without needing extra context. It can be
referred to as the smallest unit of meaning within
a text, each expressing one distinct idea. Propo-
sitions retain the semantic meaning in individual
statements as shown in the following example:

Once the propositions are created, these are
passed to an LLM, which is then prompted to group
these chunks. This approach offers flexibility and
higher accuracy. Nevertheless, it requires well-
crafted prompts and dependency on the capability
of the acquired LLM.

Working on efficient chunking techniques is an
open research area as not much has been explored
in this regard.
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Proposition Conversion Example

Original Sentence

“Three new products were launched
this year, expanding our reach into
international markets.”

Converted Propositions

“Three new products were launched
this year.”

“The company expanded into inter-
national markets.”

3 Dataset

We introduce a new large-scale news dataset,
named NewsMatrix-711. It covers a diverse set
of news categories over multiple years.

3.1 Scraped News Dataset (NewsMatrix-71)

We compile this dataset by scraping English
news articles from Dawn2, Tribune3, and Daily
Times4. This dataset covers the span of three years
(2021–2023) and has up to 96,859 news articles
categorized into 71 unique topics, including Busi-
ness, Fashion, Health, World, and more. It offers a
diverse, time-spanning, and category-rich corpus
suitable for various NLP tasks. It captures a broad
spectrum of global and regional news, making it a
valuable resource for research. Given the size and
scope of this dataset, we will selectively release a
publicly available subset to facilitate reproducibil-
ity and further research.

4 Recursive Semantic Chunking

This section presents the Recursive Semantic
Chunking framework in detail. The primary objec-
tive is to ensure the splitting of chunks is seman-
tically coherent and maintains the integrity of the
content. In addition, the size of the chunks should
be optimal. The standard semantic chunking
technique tends to generate large chunks, which

1This data will be published publicly and free for research
purposes after the paper’s acceptance. It will be shared un-
der the Creative Commons Attribution 4.0 International
License (CC BY 4.0)

2Dawn
3Tribune
4Daily Times

negatively impact the performance of retrieval-
augmented generation systems. Furthermore, in
custom RAG projects, documents often belong to
specific topics, and larger chunks reduce system
efficiency.

Algorithm 1 provides a detailed outline of the
proposed chunking process. All predefined val-
ues are determined after extensive experimentation.
The following steps describe the pipeline.

Segmentation of Textual Data from Files

The data store consists of files fi containing tex-
tual data stored as strings Ti. Since LLMs have
token limits, each Ti undergoes a length check.
If it exceeds the threshold Tmax, the file is split
into smaller segments {t1, t2, . . . , tn}, ensuring
that |tj | ≤ Tmax. The splitting occurs at the nearest
sentence boundary (e.g., full stop, question mark)
to preserve linguistic coherence.

Initial Semantic Chunking

Each segment tj undergoes an initial semantic
chunking process (LangChain, 2024). In this step,
the semantically similar texts are grouped in the
embedding space, forming C0 = {c1, c2, . . . , cm},
where ck represents an initial chunk.

Recursive Semantic Chunking

For each chunk ck ∈ C0, the semantic chunker is
recursively applied if its length exceeds the thresh-
old Tchunk (1,500 characters). With each recur-
sive iteration, the breakpoint threshold parameter
is gradually reduced, ensuring that large chunks
are broken into smaller, semantically meaningful
segments. The recursive function R(c, T ) operates
as follows:

R(c, T ) =

{
c if |c| ≤ T

R(split(c, T − δ), T − δ) if |c| > T

where δ represents a small reduction factor to
progressively decrease chunk size in each itera-
tion. The reduction factor δ is heuristically set to 3
after initial experimentation. Although not tuned
through systematic search, this value is selected
to ensure a gradual and controlled recursive break-
down of large chunks. This value is kept fixed
across all datasets to maintain consistency and re-
producibility.
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Merging Short Chunks
Following recursive chunking, some chunks may
become too short (i.e., less than Tmerge, set to 350
characters). Extremely small chunks may lack se-
mantic coherence, leading to information loss. To
address this, the similarity score of smaller chunks
is calculated with both preceding and subsequent
chunks. It is merged with the chunk that has the
highest similarity score. This ensures semantic in-
tegrity while preventing the loss of meaningful text.
The merging process is defined as follows:

For i = 1 to n :





If |ci| < Tmerge, compute:
Sprev = sim(ci, ci−1)

Snext = sim(ci, ci+1)

Merge with highest similarity chunk
If Sprev ≥ Snext, then:

ci−1 ← ci−1 + ci
Else:

ci+1 ← ci + ci+1

Here, Sprev and Snext represent the similarity
scores between the small chunk ci and its neighbor-
ing chunks ci−1 and ci+1, respectively. The chunk
ci is merged with the chunk that has the highest
similarity score, ensuring that the resulting merged
chunk maintains semantic coherence.

Uniform Chunk Size Adjustment
Finally, the algorithm checks whether any chunk
exceeds the threshold Tfinal (2,500 characters). If a
chunk surpasses this limit, it undergoes a recursive
character-based text split (LangChain, 2023). The
final adjustment process is defined as:

For i = 1 tom :

{
If |ci| > Tfinal :

Apply Recursive Split Function:
ci ← RecursiveSplit(ci, Tfinal)

This step ensures that the final chunk set,
Cfinal = {c1, c2, . . . , cm}, meets size constraints
while maintaining semantic coherence. The pro-
cessed chunks are then stored in vector databases
for RAG tasks.

Distinction from Baseline Chunkers
While our method incorporates components from
existing LangChain utilities, i.e. semantic chunk-
ing for initial grouping and character-based re-
cursive splitting for final chunk size enforcement.
These steps function as structural helpers rather
than the core of our approach. The key innova-
tion of RSC lies in its intermediate refinement

Algorithm 1: Recursive Semantic
Chunking

Input: Dataset D = {f1, f2, . . . , fN};
Maximum chunk size Tmax = 15,000;
Recursive chunking threshold Tchunk = 1,500;
Final chunk size threshold Tfinal = 2,500;
Minimum chunk size for merging Tmerge = 350
Output: Final set of chunks Cfinal

1 Initialization:
2 Cfinal ← ∅
3 Initial Semantic Chunking:
4 Apply chunking to each segment tj :
5 C0 ← {c1, c2, . . . , cm}
6 foreach chunk ck ∈ C0 do
7 if |ck| > Tchunk then
8 Recursive Semantic Chunking:
9 R(ck, Tchunk) =

R(split(ck, Tchunk − δ), Tchunk − δ)
10 ck ← R(ck, Tchunk)

11 foreach chunk ck ∈ C0 do
12 if |ck| ≤ Tmerge then
13 Compute similarity with previous chunk:
14 Sprev ← similarity(ck−1, ck)
15 Compute similarity with next chunk:
16 Snext ← similarity(ck, ck+1)
17 if Sprev ≥ Snext then
18 Merge with previous chunk:
19 ck−1 ← ck−1 + ck

20 else
21 Merge with next chunk:
22 ck+1 ← ck + ck+1

23 Add merged chunks to Cfinal

24 foreach chunk ck ∈ Cfinal do
25 if |ck| > Tfinal then
26 Split chunk:
27 ck ← split(ck, Tfinal)

28 Return: Final set of chunks Cfinal

logic: recursive breakdown with dynamic thresh-
olds, similarity-based merging of smaller chunks,
and controlled preservation of semantic coherence.
These operations are not present in the baseline
LangChain chunkers and are designed to address
the limitations of fixed-size or purely embedding-
based segmentation. Therefore, while we lever-
age LangChain for low-level chunk initialization
and splitting, the significant performance improve-
ments observed in contextual and answer-level met-
rics stem from our recursive and adaptive chunking
strategy.

5 Experimental Design

Our evaluation framework is designed to rigorously
assess the impact of our proposed technique: Re-
cursive Semantic Chunking (RSC). Incorporating
RSC in the RAG pipeline for question-answering
tasks, we demonstrate its capabilities in preserving
contextual coherence and improving retrieval preci-
sion. This section details our evaluation methodol-
ogy, covering dataset selection, synthetic question
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Table 1: Summary of Datasets used for Evaluating the
Proposed Chunking Technique, including Open-source
Corpora and the Custom Dataset NewsMatrix-71.

Dataset Words Characters Paragraphs Source

BBC 854,490 5,039,982 2,225 BBC Dataset
SQuAD 152,394 966,345 1,204 SQuAD
QuaC 440,971 2,664,801 1,000 QuaC
NewsMatrix-71 677,258 4,227,679 1,500 Dawn, Tribune

Daily Times

generation, chunking techniques, implementation
setup, and performance metrics

5.1 Datasets
We evaluate our proposed chunking technique
using four datasets, including three open-source
corpora—BBC (Greene and Cunningham, 2006),
SQuAD (Rajpurkar et al., 2016), and QuaC (Choi
et al., 2018)—along with a custom-scraped news
dataset, NewsMatrix-71. The NewsMatrix-71
dataset, created by scraping English news arti-
cles, is stored in .txt format. For experimentation,
we use a 1,500-article subset containing 677,258
words and 4,227,679 characters. A summary of all
datasets is provided in Table 1.

5.2 Synthetic Question Generation
These evaluations of the chunking techniques are
based on the response from the question-answering
system. Therefore, we utilized LLM to create
synthetic questions from each dataset. For each
dataset, we randomly generate 50 synthetic ques-
tions per dataset to balance computational feasi-
bility with evaluation diversity. This quantity is
consistent with recent study Merola and Singh,
2025. This quantity is consistent with recent study
Merola and Singh, 2025. To generate synthetic
questions, we randomly selected passages from
each dataset. To ensure reasonable topic coverage,
we manually examined multiple random subsets
and selected one for question generation. While
this approach does not guarantee perfect topic strat-
ification, it provides a practical balance between
topic diversity and simplicity in sampling. We em-
ploy Gemini Flash 1.5 to generate corresponding
questions. The ChatPromptTemplate module from
LangChain is used to structure the input prompt,
guiding the model to generate relevant and context-
aware questions for each passage. Once generated,
the synthetic questions are stored and later used to
assess the retrieval and response quality of differ-
ent chunking techniques. By introducing synthetic

queries, we create an additional layer of evaluation
that allows us to measure how well-chunked text
segments support question-answering tasks beyond
the scope of existing datasets.

5.3 Chunking Techniques

To establish a baseline, we implement three widely
used chunking techniques. Recursive Character
Text Splitter segments (LangChain, 2023), and Se-
mantic Chunking (LangChain, 2024). Next, we
employ our proposed technique; Recursive Seman-
tic Chunking framework for comparison.

5.4 Implementation Details

For downstream question-answering tasks, we
store the chunks in the RAG pipeline using
LangChain5. All the techniques use “all-MiniLM-
L6-v2” 6embedding. The resulting chunks are
stored in the Facebook AI Similarity Search
(FAISS) vector database (Douze et al., 2024). The
“ChatPromptTemplate module” is used with “Gem-
ini Flash 1.5” 7, a state-of-the-art Large Language
Model optimized for contextual reasoning.

5.5 Evaluation metrics

We assess chunking techniques by integrating them
into the RAG pipeline for a question-answering
task. For evaluation, we use DeepEval by Confi-
dent AI 8, an open-source framework designed for
LLM evaluation. DeepEval leverages LLMs and
other NLP models to measure performance. In our
study, GPT-3.5-turbo generates answers, with eval-
uation metrics focusing on contextual accuracy and
relevance in both retrieval and generation stages.
The following formulas are taken from DeepEval
for evaluation. Additionally, we compare retrieval
time across different strategies.

Contextual Precision

It measures how well relevant nodes are ranked
higher in the retrieval context.

CP =
1

Rel. Nodes

n∑

k=1

(
Rel. Nodes to k

k
× rk

)

where rk is 1 for relevant nodes, 0 otherwise.

5LangChain
6Sentence Embedding: all-MiniLM-L6-v2
7Gemini Flash 1.5
8https://www.confident-ai.com
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Contextual Recall
The metric evaluates the ability of the system to
capture relevant information:

CR =
Attributable Statements

Total Statements

Contextual Relevancy
It measures the overall relevance of the retrieval
context with respect to the query:

CRel =
Relevant Statements

Total Statements

Answer Relevancy
Answer Relevancy evaluates the relevance of the
generated output:

AR =
Relevant Statements

Total Statements

Faithfulness
Faithfulness measures how factually accurate the
output is:

Faithfulness =
Truthful Claims

Total Claims

Retrieval Time
The Retrieval Time RT is defined as the total time
taken to retrieve the context and generate the final
answer for a query:

RT = tend − tstart

These evaluation metrics allow us to compare the
trade-offs between semantic integrity, retrieval ef-
fectiveness, and computational efficiency across
different chunking approaches.

6 Results and Analysis

6.1 Results
Table 2 shows the chunk counts for different tech-
niques. RSC achieves the best balance between
granularity and coherence. In contrast, the Re-
cursive Character Text Splitter generates the high-
est number of chunks due to its character-based
splitting, while Semantic Chunking produces the
fewest, resulting in larger segments. This bal-
ance reflects an important trade-off in RAG sys-
tem design. Excessive chunking can inflate the re-
trieval space, leading to fragmented context. While
larger chunks provide broader context, they in-
crease the risk of irrelevant retrieval, hallucinations,

Table 2: Number of Chunks Formed by Each Chunking
Method Across Datasets.

Dataset Recursive Semantic RSC
Character (Proposed)

BBC News 12,674 3,844 8,115
SQuAD 1,258 2,327 2,343
QuAC 2,464 2,307 4,121
NewsMatrix-71 3,793 2,961 5,474

and longer retrieval times. RSC finds a middle
ground, ensuring semantic integrity while main-
taining meaningful chunk sizes. By keeping the
chunk count within an optimal range, RSC im-
proves contextual relevancy, as further supported
by the downstream performance metrics in Table 3.

Table 3 presents the comparative performance
of chunking techniques on the question-answering
task across multiple datasets. The proposed Re-
cursive Semantic Chunking consistently outper-
forms other techniques, particularly in Contextual
Relevancy and Total Score, while maintaining an
optimal balance between chunk size and retrieval
efficiency.

The performance of chunking techniques across
the datasets reveals interesting trends as shown
in Figure 2. The best results are observed in
SQuAD and NewsMatrix-71. SQuAD, achiev-
ing the highest Total Score under RSC, highlights
the advantage of semantically coherent segmen-
tation in structured question-answering datasets.
NewsMatrix-71 achieves the highest Contextual
Relevancy with RSC, demonstrating its effective-
ness in handling diverse and large-scale articles.

In contrast, QuAC performs the worst, partic-
ularly under Semantic Chunking and Recursive
Semantic Chunking. This is likely due to its conver-
sational nature, which demands deeper contextual
understanding.

While RSC does not lead in Answer Relevancy
across all datasets, it is an important metric for
evaluating end-to-end RAG performance. It consis-
tently achieves top performance in Total Score and
Contextual Relevancy. It is important to note that
Answer Relevancy may be influenced by factors be-
yond chunking quality, such as the formulation of
user queries (Sclar et al., 2024) or reasoning behav-
ior of the language model during generation (Jiang
et al., 2025). In contrast, Contextual Relevancy
more directly reflects the quality and alignment
of retrieved content with the query, making it a
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Table 3: Performance Metrics for Different Chunking
Techniques Across Datasets. Scores are out of 50, ex-
cept Total Score (out of 250). Retrieval time is mea-
sured in seconds.
Abbreviations: RC = Recursive Character, RSC = Re-
cursive Semantic Chunking,Avg Retv Time = Average
Retrieval Time
Bold values indicate the highest performance for
each metric.

Metric RC Sem RSC (Proposed)

BBC News
Answer Relevancy 45.89 43.89 41.97
Answer Faithfulness 38.51 35.18 42.55
Contextual Recall 43 45.5 46.33
Contextual Precision 47.02 44.82 48.98
Contextual Relevancy 11.40 8.78 11.56
Total Score ↑ 185.83 178.17 191.39
Avg Retv Time(s) ↓ 0.721 0.799 0.716

NewsMatrix-71
Answer Relevancy 47.92 47.81 47.08
Answer Faithfulness 43.96 43.93 40.11
Contextual Recall 46.33 46.5 45.67
Contextual Precision 48.5 47.26 48.83
Contextual Relevancy 13.94 14.71 19.83
Total Score ↑ 200.65 200.21 201.52
Avg Retv Time(s) ↓ 0.72 0.71 0.71

SQuAD
Answer Relevancy 47.28 46.67 48.59
Answer Faithfulness 44.98 43.71 46.5
Contextual Recall 50 49 50
Contextual Precision 47.09 47.99 47.99
Contextual Relevancy 17.7 20.09 20.12
Total Score ↑ 207.05 207.46 213.2
Avg Retv Time(s) ↓ 0.97 0.97 0.96

QuAC
Answer Relevancy 45.4 44.69 43.67
Answer Faithfulness 41.675 44.25 43.63
Contextual Recall 47.08 45.33 48.58
Contextual Precision 43.67 45.16 45.76
Contextual Relevancy 12.47 9.64 9.38
Total Score ↑ 190.29 189.07 191.01
Avg Retv Time(s) ↓ 0.62 0.65 0.64

stronger indicator of chunking effectiveness.

Overall, among the chunking techniques, RSC
achieves the highest Total Score across all datasets.
The recursive breakdown mechanism in RSC en-
sures that large chunks do not negatively impact
RAG tasks. Additionally, Contextual Relevancy
improves significantly with RSC, as evident in
datasets like BBC News (11.56) and NewsMatrix-

71 (19.83), demonstrating its capability to maintain
semantic coherence.

These findings suggest the impact of the type
and structure of data on the chunking techniques.
However, in comparison, RSC is the most effective
among the baseline chunking techniques.

SQuAD QuAC NewsMatrix-71 BBC-News
Dataset

180

185

190

195

200

205

210

Sc
or

e

Recursive Character Text Splitter
Proposed (Recursive Semantic Chunking)
Semantic Chunking

Figure 2: Performance Comparison of Chunking Tech-
niques Across Datasets

6.2 Analysis

To evaluate the impact of Recursive Seman-
tic Chunking on retrieval efficiency and chunk
coherence, we conduct performance analysis
across multiple datasets. The evaluation uses
datasets of varying structures such as structured
question-answering datasets (SQuAD, QuAC) and
unstructured large-scale datasets (BBC News,
NewsMatrix-71). It ensures that our findings are
generalizable across multiple RAG tasks.

Study on Propositional Segmentation

We conduct a study to analyze the effect of propo-
sitional segmentation incorporated in our proposed
chunking technique. The hypothesis is that propo-
sitional segmentation enhances Contextual Rele-
vancy.

To validate our hypothesis, we experiment by
including propositional segmentation in RSC and
compare the results. For this case study, we employ
the BBC News dataset. The comparison of results
is presented in Table 4

The results confirm that propositional segmen-
tation improves Contextual Relevancy (11.56 to
16.09). However, it is to be that improvement
comes at the cost of increased retrieval time (from
0.716s to 0.8183s). In addition, it also has a com-
putational overhead to convert all the sentences
into propositions before they can be passed on for
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Table 4: Comparison of RSC with and without Proposi-
tional Segmentation on BBC News Dataset.

Metric RSC RSC
Without Propositions With Propositions

Answer Relevancy 41.97 42.95
Answer Faithfulness 42.55 39.51
Contextual Recall 46.33 45.14
Contextual Precision 48.98 47.99
Contextual Relevancy 11.56 16.09
Total Score ↑ 191.39 191.68
Avg Retv Time(s) ↓ 0.716 0.8183

chunking. However, it is an interesting area of
study for the future.

Challenges of Agentic Chunking

Although not included as a formal baseline, we
initially explored Agentic Chunking to assess the
viability of LLM-based chunking pipelines. How-
ever, due to its high computational demand, it is
excluded from comparative evaluation. Details
of Agentic Chunking are mentioned in Section 2.
Since the Agentic approach operates at the proposi-
tional level, so for this technique, on average, each
proposition requires 6 to 7 calls to the LLM for
chunk assignment and metadata updates. To start
with, we use this technique on the BBC dataset.
The dataset contained more than 75,000 proposi-
tions, but after 8 hours of processing, only 1,500
propositions were successfully assigned to chunks.
Due to the high computational overhead, we dis-
continued the experimentation. Hence, high com-
putational cost makes this approach impractical for
large-scale datasets.

Despite its inefficiencies, Agentic Chunking
may become viable in the future as LLMs improve
in speed and affordability. However, for now, RSC
provides a far more efficient and scalable solution.

The results and analysis confirm that RSC en-
hances retrieval efficiency and semantic coherence.
Additionally, our findings highlight a new direction
with propositional segmentation, which improves
Contextual Relevancy. Overall, RSC consistently
outperforms both Recursive Character Text Splitter
and Semantic Chunking in Total Score and Contex-
tual Relevancy, making it the preferred approach
for RAG generation pipeline. Moving forward, fu-
ture work will focus on optimizing propositional
segmentation to reduce retrieval time, ensuring that
the benefits of enhanced semantic coherence do not
come at the expense of computational overhead.

7 Conclusion

Our work offers a targeted contribution to opti-
mizing the chunking process in RAG-based sys-
tems. The proposed technique, Recursive Semantic
Chunking maintains a balance between retrieval
efficiency and context relevancy. The novelty of
RSC lies in the recursive nature of the proposed
method dynamically adjusting the chunk size and
going beyond the traditional approaches. The re-
sults, evaluated against the traditional techniques
i.e. recursive character split, semantic and agen-
tic techniques highlight the superiority of the pro-
posed methodology. Additionally, its robustness
is validated across structured question-answering
datasets and unstructured large-scale datasets, with
evaluation based on relevancy, retrieval quality, and
time efficiency. The evaluation is based on rele-
vancy, retrieval quality and time efficiency. These
findings have significant implications for RAG-
based applications such as medical, finance, legal,
and education etc. Looking forward, the retrieval
time will be further optimized with respect to Re-
cursive Semantic Chunking on varied datasets.

Limitation

The scope of this study is limited to textual data,
and it can be widened to more complex document
types which may include tables, codes etc. In addi-
tion, Recursive Semantic which depends on propo-
sitions provides a new direction. However, its high
computational cost, despite yielding improved re-
sults, highlights the need for a more efficient and
scalable approach.
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Abstract

Aspect-Based Sentiment Analysis (ABSA) re-
mains largely unexplored in low-resource lan-
guages like Urdu due to the absence of large-
scale, publicly available, and domain-diverse
annotated corpora. Additional challenges like
the scarcity of lexical resources, unstructured
Urdu websites, and linguistic complexities, fur-
ther hinder corpus development. These lim-
itations create a critical bottleneck that pre-
vents robust Urdu ABSA systems from being
deployed in practical scenarios. We address
this gap by proposing a weakly supervised
framework that automates corpus annotation
(∼10K Budget tweets) leveraging seed-based
pattern matching with dynamic window analy-
sis. Through a comparative analysis of Large
Language Models (LLMs), and human anno-
tations on expertly curated datasets, we fur-
ther demonstrate the inherent complexity of
Urdu ABSA. Suboptimal results from a con-
ventional LSTM model that achieved a mean
performance of 0.52 precision, 0.49 recall, and
0.50 F1 score across various ABSA tasks val-
idate this challenge. In short, this work estab-
lishes a scalable and cost-effective annotation
framework that advances ABSA research for
Urdu and similar low-resource languages.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is a fine-
grained Opinion Mining (OM) domain that evalu-
ates sentiment toward specific attributes of entities,
offering valuable insights for customer feedback
analysis, product benchmarking, and market trend
monitoring (Zhang et al., 2022). ABSA comprises
four key elements: aspect category (c), aspect term
(a), opinion term (o), and sentiment polarity (p).
Figure 1 illustrates these elements through an anno-
tation example of a customer’s review. Examining
single or multiple combinations of these elements
to understand opinions in diverse scenarios gives
rise to various ABSA tasks (Maqsood, 2023). For

Figure 1: Aspect Based Sentiment Analysis

instance, the extraction of aspect categories consti-
tutes the Aspect Category Detection (ACD) task,
whereas sentiment analysis over these categories
leads to the Aspect Category Sentiment (ACS) task.
Similarly, evaluating sentiment toward explicit as-
pect terms constitutes the Aspect Sentiment Classi-
fication (ASC) task.

A fundamental prerequisite for any OM system
is an accessible benchmark corpus of annotated
reviews (Zhou et al., 2019; Hu et al., 2021). This
requirement becomes particularly acute for low-
resource languages like Urdu, where despite sub-
stantial social media presence, available ABSA
datasets remain inadequate characterized by non-
public availability, absence of benchmark stan-
dards, sparse annotations, and limited-domain cov-
erage (Rani and Anwar, 2020; Ahmad and Wan,
2021). While manual annotation of ABSA ele-
ments becomes prohibitively expensive for large-
scale datasets containing multi-aspect sentences in
various domains. Additional challenges include the
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scarcity of lexical resources, prevalent use of non-
standard encoding in Urdu web content, unique
linguistic features, and informal language on social
media (Khattak et al., 2021). These constraints
collectively impede corpus development, creating
significant barriers in building robust Urdu ABSA
models and complicating the adaptation of existing
methodologies (Zhou et al., 2019; Liu et al., 2020;
Zhang et al., 2022).

Besides, leveraging weak supervision has
demonstrated potential in the realm of social
media mining (Maqsood, 2023; Tekumalla and
Banda, 2023). Although weak labels may not
achieve manual-level precision but they enable
rapid dataset expansion and robust model train-
ing especially when combined with a subset of
high-quality manual labels (Zhang et al., 2022).
Despite the success of Large Language Models
(LLMs) like GPT-4.0 and DeepSeek in capturing
linguistic patterns, these approaches have not been
widely explored in existing literature, particularly
for dataset annotations in Urdu. While, applying
English-centric models to translated Urdu tweets
exacerbates the issue, yielding poor results due to
translation quality limitations (Zhang et al., 2021).

This work pioneers Urdu ABSA by introducing
a weakly supervised annotation framework that au-
tomates labeling of all core ABSA elements for
the ‘Budget’ domain, overcoming dataset scarcity
without costly manual effort. Our systematic eval-
uation reveals LLMs (GPT-4, DeepSeek) limited
transferability to Urdu, while experiments demon-
strate our method’s superiority over them. To our
knowledge, this constitutes the first comprehensive
study of such techniques for Urdu. Baseline LSTM
experiments further highlight Urdu-specific ABSA
challenges, underscoring the need for advanced ar-
chitectures. Our key contribution addresses Urdu’s
critical resource gap through scalable dataset cre-
ation methodology that eliminates manual anno-
tation bottleneck to facilitate fine-grained Urdu
ABSA.

2 Related Work

This section discusses the existing Urdu datasets
developed for opinion mining tasks, analyzing their
annotation methodologies, and domain applicabil-
ity.

2.1 Opinion Mining Datasets in Urdu

Researchers contributed to the field of Urdu senti-
ment analysis by presenting annotated corpora, but
most focus on document- or sentence-level senti-
ment classification rather than fine-grained ABSA.
Early efforts, such as those by Rani and Anwar
(2020), introduced a manually annotated corpus
of 10,000 tweets from sports domains (cricket and
football), labeling aspects, categories, and polari-
ties. However, the absence of opinion term annota-
tions limits applications of ABSA tasks. Similarly,
ul Haq et al. (2020) presented a corpus of 8,760
political tweets with polarity and four category la-
bels but did not annotate aspect terms or opinion
expressions, restricting deeper sentiment analysis.
Moreover, their dataset is not publicly available
and labeled manually, hindering scalability and re-
producibility.

To address the scarcity of ABSA-specific re-
sources, Ahmad and Wan (2021) translated the
SemEval-2014 ABSA dataset (2951 restaurant and
4721 laptop reviews) into Urdu, providing aspect
terms, polarities, and category labels. While this
enables some ABSA experimentation, the reliance
on machine translation raises concerns about lin-
guistic accuracy and cultural relevance. Other
datasets, such as Ghafoor et al. (2023) introduced
SentiUrdu1M dataset (1 million tweets), leverag-
ing large-scale emoticon-based labeling but remain
unsuitable for ABSA due to their document-level
granularity. Similarly, Amjad et al. (2021) curated
a dataset of 3,564 tweets for threat detection, but
its binary classification focus makes it irrelevant
for aspect-level sentiment tasks. Beyond Twitter
data, researchers have collected Urdu reviews from
blogs and news platforms. (Mukhtar and Khan,
2018; Mukhtar et al., 2017; Khan et al., 2021;
Rehman and Bajwa, 2016) developed datasets with
manually annotated sentiment labels at document-
level and suffer from limited domain coverage (e.g.,
movies, electronics). Additionally, many of these
datasets are not publicly available, and their anno-
tation methodologies are often poorly documented,
reducing their utility for ABSA research.

In short, existing Urdu sentiment analysis
datasets lack fine-grained annotations, suffer from
small sizes and narrow domains, and use incon-
sistent annotation methodologies. Most rely on
either biased translations or labor-intensive man-
ual labeling, which impedes scalability. Further-
more, existing resources neglect weakly-supervised
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approaches, while available multilingual models
and LLMs remain under-evaluated. Overall, these
limitations underscore the dire need for compre-
hensively annotated Urdu ABSA datasets in sev-
eral domains by combining both manual and au-
tomated annotation methods. This hybrid method-
ology ensures both high-quality annotations and
efficient scalability, ultimately enabling advanced
techniques for progress of ABSA in Urdu language.

3 Dataset

We collected approximately 13,000 tweets related
to Pakistan’s budgetary domain between May and
July 2020 using Twitter’s Standard API. Due to API
constraints, tweets were gathered in daily batches,
limited to a 7-day historical window, with a max-
imum of 100 tweets per query and 180 requests
per 15-minute interval. The search queries focused
on trending budgetary discourse in Pakistan, incor-
porating hashtags such as ’#Budget2020’, ’#Pak-
istanEconomy’, and ’#Commerce’. The dataset
provides a comprehensive representation of public
sentiments and economic debates surrounding Pak-
istan’s budget during the unprecedented COVID-19
lockdown period.

3.1 Pre-processing

The collected tweets underwent an extensive three-
stage pre-processing pipeline to ensure data quality
and linguistic consistency.
Tweet Level: We performed Unicode normaliza-
tion to address Arabic script variations, removed
punctuations, and social media artifacts (emojis,
hashtags, URLs, mentions) using regular expres-
sions. We eliminated duplicate entries and trun-
cated excessive consecutive repetitions (e.g., reduc-
ing " ...ٹجبڈٹکیلس " (selected budget selected bud-
get...) to " ٹجبڈٹکیلس ") (selected budget) to main-
tain textual conciseness.

Token Level: After conducting a systematic
comparison of tokenization approaches Qi et al.
(2020), Ali (2020), Vasiliev (2020) and space-based
methods, we preferred UrduHack for its superior
performance on informal Urdu text. Use of in-
formal language and noise on social media limit
the effectiveness of language-specific tokenizers,
introducing abnormal tokens. We analyzed incor-
rect tokens to identify the inherent patterns of their
abnormalities and normalized them accordingly.
This includes splitting merged stopwords (e.g.,

کایھت → کایھت ), reducing character repetitions in

misspelled words (e.g., ناتسسسسکاپ → ناتسکاپ ), and
eliminating word repetitions (e.g., یرفیرفیرف → یرف ).

Character Level: The final processing step
validated individual characters against Urdu Uni-
code ranges and removed residual artifacts (e.g.,
cleaning "***" and normalizing " u200cاک♡ےنوہ " to
" اکےنوہ ").

This hierarchical pre-processing approach, doc-
umented comprehensively in Zoya et al. (2023),
resulted in dataset of approximately 10,000 tweets.

3.2 Dataset Variants
We created three versions of the dataset, introduc-
ing variation in the annotation process, as outlined
below:

Bronze Standard Dataset (BS): This dataset
is a raw output without manual curation from our
weakly supervised annotation system.

Silver Standard Dataset (SS): This represents
a refined version of the ’BS’ dataset. The corpus
underwent a meticulous validation process combin-
ing automated consistency checks with expert hu-
man verification to ensure higher annotation qual-
ity. This approach filtered out erroneous labels
generated by our weakly supervised methods and
resulted in an 13% reduction of the original dataset
labels.

Gold Standard Dataset (GS): The GS dataset
was constructed through rigorous manual annota-
tion by three native Urdu speakers with expertise in
NLP. From the SS corpus, we selected a represen-
tative subset of 3000 tweets for fine-grained anno-
tations. Three annotators followed strict annotation
guidelines of Pontiki et al. (2014) standards, with
only labels receiving consensus from at least two
annotators being retained. The GS corpus serves as
a reliable ground truth for evaluating model perfor-
mance on Urdu ABSA tasks, while also revealing
additional linguistic patterns not captured in the
initial SS annotations. The statistics about these
datasets have been described in Table 1.

Dataset Tweets Asp_Cat. Asp_Terms Opinion_Terms
Bronze 9693 14 5179 5456
Silver 8949 14 4247 5364
Gold 3000 14 1126 1410

Table 1: Statistics of Datasets with Distinct Values

4 Methodology

We present our methodology for annotating Urdu
datasets for ABSA. First, we highlight the limita-
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tions of LLMs for this task, followed by our custom
framework designed to address these challenges.

4.1 LLMs Limitations for Dataset Annotation

The utilization of the GPT 4.0 and DeepSeek mod-
els for dataset annotation in Urdu revealed several
challenges. Firstly, the model encountered chal-
lenges in thoroughly capturing all aspects and sen-
timent words present in tweets. Secondly, an inher-
ent instability in labeling responses was observed,
as the model exhibited varying results for the same
query when executed multiple times. Thirdly, the
issue of selecting irrelevant words alongside sen-
timent and aspect terms introduced a lack of uni-
formity, necessitating post-processing efforts for
pruning. Fourthly, the model tended to repeat sen-
timent terms within aspect terms or vice versa.
Fifthly, breaking down tweets into shorter chunks
did not significantly improve their response quality.
Sixthly, the model demonstrated a tendency to ig-
nore rare words and occasionally overlook crucial
aspects. In conclusion, LLMs exhibited limitations
in fully grasping the context. A representative case
of tweet annotation generated by the LLM in Fig-
ure 4 (see appendix).

4.2 Dataset Annotation Framework for ABSA
in Urdu

Our dataset labeling approach encompasses two
fundamental phases: ACD and the annotation of
Aspect-Opinion-Sentiment (AOS) triplet. Initially,
ACD was completed through topic modeling and
clustering techniques. Subsequently, the identifica-
tion of triplet components within tweets was car-
ried out through methods like pattern mining and a
bidirectional window-based labeling strategy.

4.2.1 Aspect Category Detection
We used pre-trained sentence transformers Reimers
and Gurevych (2019) to generate embeddings and
applied both Top2Vec (Angelov, 2020) and tra-
ditional clustering algorithms (Ackermann et al.,
2014; Frey and Dueck, 2007) to identify nuanced
subtopics. Our analysis revealed optimal clus-
ter counts (39) based on cosine similarity metrics
and cluster validation techniques (Kaoungku et al.,
2018; Yuan and Yang, 2019). Notably, Top2Vec ini-
tially predicted 54 topics, but these were ultimately
clustered within the same range.

To reduce cluster overlap, we performed graph-
based analysis, where edges represented cosine
similarities between embeddings. Edge weights

were set to 0 for similarities below a threshold of
0.7, ensuring that only highly similar tweets were
grouped together while preserving distinct terms
across clusters. However, some topics (clusters)
exhibited irrelevance like synonymous terms or
polysemy of less substantial words. Such problem-
atic topics featuring highly coherent terms could
form distinct clusters, leading to favourable scores
in standard metrics. Conversely, some significant
topics might be overlooked due to lower coherence
or similarity scores between words, particularly if
such topics cover diverse perspectives not covered
well in the coherence metrics reference corpus. To
address these limitations, we incorporated a man-
ual curation step to refine and consolidate topics.
From the generated clusters, we selected distinct
categories (Table 3 in section 8) and further sub-
divided broad topics by analyzing top topic words
(Table 4 in section 8). For example, ’Social Wel-
fare’ was divided into ’Education’, ’Agriculture’,
’Health’, and ’Social Programs’.

4.2.2 Aspect-Opinion-Sentiment Triplet
Annotation

This triplet annotation process is divided into four
fundamental stages, which include word classifica-
tion, seed enrichment, tweet labeling, and evalua-
tion, as discussed below:

Words Classification: The selected topics con-
sist of a mixture of terms related to aspect and
opinion that require further classification. To sys-
tematically categorize these terms (seed terms), we
adopted a straightforward yet effective approach:
nouns were designated as aspect, while adjectives
were treated as indicators of opinion. The selec-
tion process for seed terms emphasized domain
relevance, frequency, and diversity, ensuring the
chosen nouns were explicit and closely related to
core topics. To enhance relevance, we excluded
irrelevant or ambiguous terms, rare occurrences,
verbs, adverbs, and any expressions introducing
sentiment bias or lacking clear aspect association.
This rigorous selection process resulted in a refined
lexicon of aspect and opinion seeds, with the com-
plete workflow detailed in Figure 2.

Seeds Enrichment: Given the limited coverage
of initial seed words for annotating all tweets
within each subtopic, we employed multiple strate-
gies to expand and refine our seed term collection.
As illustrated in Figure 3, our enrichment approach
incorporated sentiment lexicons, active learning,

149



Figure 2: Aspect Categories and Words Classification
Process

pattern mining, and embedding-based methods.
Sentiment Lexicon: We used an existing Urdu

Figure 3: Sentiment Classification From Predicted Top-
ics

sentiment lexicon [42] to identify polar expressions
within our tweet corpus. This process yielded 1,322
positive and 1,395 negative terms that overlapped
between the lexicon and our budget-related tweets.
However, the lexicon exhibited notable limitations:
its coverage of domain-specific fiscal terminology
was incomplete, and its formal vocabulary often
mismatched the informal expressions and morpho-
logical variations prevalent in social media. Simi-
lar challenges emerged when we attempted to use
translated lexicons intended for sentiment analysis
in the English language.

Multiform words: We took into account vari-
ous word forms in our seed terms, including sin-
gular and plural forms, such as "تمیق" (price) in
singular and "ںیتمیق" or "ںوتمیق" (prices) in plural.
Urdu’s rich inflectional system, where words vary
by tense, gender, number, and loanword integration,
renders conventional lemmatization and stemming
ineffective. For instance, contextual variants (e.g.,
verb conjugations or gendered forms) lack reliable
root-mapping rules. Moreover, Urdu has a diverse
vocabulary with numerous loanwords and context-
dependent variations that further complicate such
tasks. Consequently, we excluded this step to pre-
serve semantic precision given the absence of ro-
bust Urdu-specific linguistic tools.

Active Learning:. We utilized an active learn-
ing approach and created a preliminary dataset con-
sisting of hundred short tweets (5-10 words each).
Subsequently, we conducted manual labelling with
a specific focus on AOS triplets. This step pro-
vided valuable insights for various types of words
beyond the seed words and their contextual relation-
ships within the domain. Additionally, we noted
the prevalence of multi-word phrases as opposed to
single words for seed terms. We quantified phrase
frequencies and their sentiment associations, itera-
tively expanding the seed lexicon to include high-
impact multi-word terms. This comprehensive ex-
amination not only enriched our seed inventory
but also our understanding of the multifaceted lan-
guage used in the dataset.

Pattern Mining: Based upon the manually
labeled data from active learning, we identified
recurring patterns that encompassed consecutive
domain-specific words and Urdu case markers ( اک
(ka), ےک (kay), یک (ki), وک (ko), ںیم (mein), رپ (par),
ےس (se), ےن (nay)). We developed a hybrid pattern

mining approach combining rule-based and statisti-
cal techniques. This integrated approach revealed
important multi-word expressions that served as
more precise indicators of aspects and opinions
compared to conventional single-word seeds. We
first analyzed recurring syntactic structures involv-
ing domain-specific terms paired with Urdu case
markers. Matching these patterns against tweets is
depicted in Algorithm 1 and a comprehensive list
of extracted patterns is provided in Table 5 (Section
8). We then implemented a sequential pattern min-
ing algorithm with minimum support thresholds to
discover statistically significant co-occurring word
sequences, prioritizing longer phrases that captured
more nuanced meanings. The extracted patterns
enabled us to automatically identify aspect-opinion
pairs in new tweets. For instance, in the structure
"[X] ka [Y]", X was classified as the aspect term
and Y as the opinion term. Sentiment polarity was
then assigned to these newly discovered opinion
terms through contextual analysis, leading to the
formation of AOS triplets (detailed in Appendix
Algorithm 2).
Embeddings: We utilized the pre-trained embed-
ding model FastText to identify the top 10 words
that exhibited the highest cosine similarity with our
seed terms, particularly focusing on expanding our
set of opinion words. Additionally, we considered
terms returned by the Top2vec model that exhib-
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Algorithm 1 Patterns Matching Algorithm
1: procedure EXTRACTPATTERNS(budget_tweets)
2: pattern← (\w+\s اک \s ٹجب )
3: extracted_patterns← EmptyList()
4: for each tweet in budget_tweets["tweet_text"] do
5:
6: matches← FindAllMatches(pattern, tweet)
7: for each match in matches do
8: pattern_text← match.group(1)
9:

10: AddPatternToExtractionList(extracted_pat-
terns, pattern_text)

11: end for
12: end for
13: return extracted_patterns
14: end procedure

ited similarity with seed terms by surpassing the
0.5 threshold in similarity score. We selectively
kept words that fell within the categories of aspect
or opinion-related terms. Any words failing to meet
these criteria were excluded from further consider-
ation. Exemplary instances have been presented in
the Table 6 (Appendix).

Labeling Tweets: Initially, we annotated using
mined patterns with analogous structures, resulting
in the creation of AOS triplets while accounting
for sentiment reversals caused by negators (e.g., no,
not). Annotated example can be seen in Figure 5 (in
Appendix), proved effective for contiguous word
patterns but limited for non-adjacent term relation-
ships. To address this limitation, we introduced
a window-based annotation strategy consisting of
two main steps: seeds cartesian product with senti-
ment polarity assignment and seeds co-occurrence
analysis.

Seeds Cartesian Product with Sentiment Po-
larity Assignment: In this phase, we performed
a Cartesian product operation between the aspect
seeds and sentiment seeds to form their pairs (a,
o). Despite that sentiment polarity was already pre-
defined in lexicons for numerous opinion words,
several pairs underwent cross-validation due to
domain-specific variations or informal language
use. As the sentiment of the same opinion word
may vary based on its association with different
aspect words. For example, the term increment is
considered positive when associated with salary
but negative when linked with poverty.

Window-based Strategy: We implemented a
dynamic window-based approach to detect co-
occurring aspect-opinion (a, o) pairs within tweets.
The tweet segmentation process entailed setting
a token threshold of 15 words from both the be-

ginning and end. Subsequently, we systematically
examined the co-existence of (a, o) pairs within
these segments. Meanwhile, we addressed nega-
tors when they co-occurred within a segment in the
context of the (a, o) pair, and selectively inverted
the sentiment for that particular (a, o) pair occur-
rence in the given tweet. Likewise, we advanced
to the next segment by adjusting the window after
every five words. Eventually, we reconstructed the
original tweet and gathered all unique AOS triplets
from every segment of a tweet. This comprehen-
sive methodology allowed us to discern nuanced
sentiment variations associated with (a, o) pairs
within the dynamic context of tweets. The entire
process is summarized below and labeled tweet
result is presented in Figure 6 (Appendix).

segment_length = 15

window_size = 5

Si = Segment(t_i, segment_length)

Ci,j = CoExistence(Si,j , (a, o))

Ni,j = NegatorHandling(Ci,j , negators)

Si = NextSegment(Si, window_size)

Ri = Reconstruct(Si, Ni)

AOSi = GatherTriplets(Ri)

Evaluation: To assess label quality, we em-
ployed dual evaluation approaches as given below:
Automated Evaluation: We compared our
methodology’s outputs against both LLMs anno-
tations and Gold-standard (GS) labels on identi-
cal tweet samples. Our analysis revealed that our
proposed approach mostly outperformed LLMs in
AOS triplet accuracy.

Human Evaluation: We developed a weakly-
supervised validation protocol addressing multi-
aspect tweets where window-based strategies occa-
sionally produced spurious aspect-opinion associ-
ations in case of multiple aspects. The validation
process involved: (1) categorizing tweets by pres-
ence of aspect complexity (single/multiple), (2)
cross-referencing novel multi-aspect pairs with pre-
labeled single-aspect examples and pattern-mined
results, and (3) manual verification of unmatched
pairs on a sample representing at least 2% of the
tweets containing each such pair. If more than 50%
of the labels were deemed accurate in the chosen
sample, we retained them as final labels.
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Finally, to ensure label consistency across
datasets, we performed comparative analysis by
identifying tweet overlaps between all dataset vari-
ants and discrepancies were compared against the
GS labels. Then the F1 measure and accuracy were
computed (Table 2) as defined in (Pontiki et al.,
2014) and expressed below:

F1 =
2 · P ·R
P +R

(1)

where precision (P) and recall (R) were determined
as:

P =
|SS ∩GS|
|SS| (2)

R =
|SS ∩GS|
|GS| (3)

Acc. =
|GS ∩ SS|
|SS ∪GS| (4)

Label Acc. P R F1
Aspect 69.9 91.7 74.6 82.3

Opinion 71.4 89 80.9 84.8
Polarity 73.6 88.5 74.4 80.8
Category 86.3 93.1 89.8 91.4

Table 2: Scores of evaluation measures on annotated
dataset labels.

5 Experimental Set-Up

5.1 Tasks

We performed experiments on three key ABSA
tasks, as given below:
Aspect Category Detection (ACD): Identifying
the categories for each tweet from a set of prede-
fined aspect categories.
Aspect Category Sentiment (ACS): Sentiment
polarity classification (positive/negative/neutral) to-
ward detected aspect categories.
Aspect Sentiment Classification (ASC): Senti-
ment polarity analysis targeting explicit aspect
terms.

5.2 Model

We implemented LSTM as our baseline model
initialized with 300-dimensional FastText embed-
dings. The model was trained with a batch size of
32, hidden state dimension of 300, and the adam op-
timizer (learning rate = 0.001) for 100 epochs. To
ensure robustness, we ran five training repetitions

using categorical cross-entropy loss. Hyperparam-
eters were tuned via Grid search, testing epochs
[10, 50, 100, 300], embedding dimensions [100,
300], learning rates [0.001, 0.01, 0.0001], batch
sizes [16, 32, 64, 128], and dropout rates [0.2, 0.3,
0.5], with early stopping (patience = 5) and strat-
ified 5-fold cross-validation. The hyperparameter
grid values are chosen based on optimal LSTM per-
formance observed in sentiment analysis-related
studies (Kumar et al., 2021; Naqvi et al., 2021).

5.3 Dataset Distribution
We implemented a rigorous train-test split (Table 7
in Section 8) on the SS dataset to maintain propor-
tional representation of both aspect categories and
sentiment polarities. The partitioning preserved
identical distributions of positive, negative, and
neutral sentiment labels across training (75%) and
testing (25%) subsets for each aspect category. The
equal percentage distribution provides a balanced
representation for classifier training and fosters
robust model development by minimizing biases
through learning from comparable instances across
various aspect categories.

5.4 Results Analysis
The LSTM baseline results reveal a consistent per-
formance trend across datasets (results in Appendix
8). For ACD, the GS achieves strong performance
at 100 epochs, while SS and BS show gradual im-
provements, peaking at 0.596 and 0.562 accuracy,
respectively. This aligns with the high F1 scores
(91.4 for Category, 82.3 for Aspect) in Table 2, con-
firming that our annotation framework produces
usable labels. In ACS, the GS reached near-ceiling
macro-F1 (0.877) by 50 epochs, whereas SS and
BS plateau at ∼0.490.59 F1. This reflects the chal-
lenge of sentiment polarity prediction. The SS
consistent lead over BS dataset justifies our refine-
ment step, though both trail Gold due to inherent
noise. For ASC, all datasets struggle (F1 < 0.35),
mirroring the difficulty of fine-grained sentiment
analysis. The marginal gains with more epochs sug-
gest the LSTMs limited capacity to resolve ambigu-
ities. Traditional LSTM is viable for coarse tasks
(ACD) but face limitations in sentiment-related
tasks. However, the LSTM model was intention-
ally selected as a lower-bound baseline to assess
the discriminative strength of annotation quality
and task difficulty, without the confounding influ-
ence of pretraining or large-scale parameters in
advanced architectures. Despite balanced splits,
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macro-F1 scores highlight challenges from label
imbalance, multi-label learning, and Urdu’s mor-
phological complexity. Progressive performance
gains from (Bronze→Silver→Gold) highlight an-
notation quality as a stronger factor than model
complexity.

6 Discussion

The proposed weakly-supervised framework
demonstrates significant advancements in Urdu
ABSA by overcoming the critical bottleneck of
manual annotation in dataset creation. The multidi-
mensional annotation requirements, encompassing
all ABSA elements, render fully manual annota-
tion impractical for scalable model development
due to its time-consuming nature and human la-
bor requirements. Our framework automates this
process, starting with a seed-based approach for
high-precision in noisy, code-mixed Urdu social
media text and mitigate limitation of domain cov-
erage through iterative enrichment using lexicon
expansion, syntactic patterns, and contextual em-
bedding strategies. This dynamic refinement trans-
forms static seeds into a robust, domain-adaptive
seeds inventory suited for low-resource and infor-
mal text settings. Thus, the core strength lies in
the novel integration of context-aware seed expan-
sion and morphologically-sensitive preprocessing,
which collectively reduce annotation costs.

Furthermore, the method demonstrates robust
capability in handling Urdu’s linguistic complexi-
ties through its hybrid approach combining n-gram
pattern matching with dynamic window labeling.
This approach effectively identifies multi-word as-
pects, such as "تمیقیکلورٹپ" (petrol price), and
successfully resolves polarity inversion cases by
incorporating negation scope detection. Addition-
ally, an automated validation pipeline was intro-
duced that minimize human effort to maintain label
quality. The limited variation with Gold-Standard
dataset underscores the significance of high-quality
annotations from our proposed method. Compar-
ative analysis with prevailing LLMs reveals the
proposed framework achieves substantially bet-
ter performance for annotation task in Urdu, es-
pecially for aspect and opinion terms extraction
tasks. These advancements establish a practical
foundation for Urdu ABSA where fully supervised
approaches remain infeasible due to resource con-
straints. Regarding classification results, the perfor-
mance of conventional models like LSTM across

ABSA tasks and datasets are emphasized. Despite
extended training, the baseline LSTM’s limited im-
provement reveals its inability to capture Urdu’s
linguistic nuances in ABSA tasks. There were in-
stances where additional epochs do not yield signif-
icant gains, suggesting a potential saturation point
in the models learning curve. Although our eval-
uation is constrained to the budget domain due to
the availability of gold-standard annotations, frame-
work’s core components such as linguistic and syn-
tactic pattern rules, clustering mechanism, and seed
augmentation are domain-independent and easily
adaptable to other domains.

6.1 Limitations

The proposed dataset annotation methodology en-
deavors to address many challenges, yet certain
issues persist. Sentiments occurring beyond seg-
ment window lengths are occasionally overlooked,
although this is mitigated by considering segments
from multiple positions within tweets. The ex-
clusion of tweets lacking seed terms may inad-
vertently dismiss relevant sentiment expressions.
Overlapping labels or spurious associations may
emerge occasionally when a sentiment word ap-
plies in multiple perspectives or simultaneously
relates to multiple aspects within a tweet. In cases
like sarcasm, where the same word is employed in
diverse contexts (positively or neutrally), priority
is determined based on its frequency of occurrence.
Polysemous terms labeling (e.g., for budget pass
vs. approach) risks errors, highlighting needs for
context-aware rules.

7 Conclusion

Our research introduced a novel weak supervision
methodology for creating a benchmark dataset in
Urdu ABSA. We shed light on the inherent chal-
lenges in ABSA for under-resourced languages and
made a significant contribution to addressing the re-
source scarcity in Urdu ABSA. Our dataset encom-
passes tweets within the budget domain and was an-
notated at four distinct levels: aspect, opinion, sen-
timent, and category levels. The consistently high
F1 scores across all label annotations demonstrate
the proposed method’s effectiveness in producing
high-quality. Through a detailed comparative anal-
ysis involving LLMs and human annotations based
on expertly curated datasets, we illuminated the
intricate nature of our proposed dataset. Empirical
evaluations utilizing LSTM model showed limita-
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tions of conventional methods for various ABSA
subtasks and laid the groundwork for future ad-
vancements in ABSA techniques for Urdu.

8 Future Work

We aim to generalize our methodology to expand
ABSA dataset annotations into other domains. Our
focus will extend to advanced deep learning tech-
niques, moving beyond basic LSTM models for
diverse ABSA tasks in Urdu. We plan to con-
duct fine-tuning pre-trained models on an extended
dataset across various domains for a comprehensive
understanding of Urdu sentiment expressions. In
summary, our future trajectory involves leveraging
advanced techniques, annotating diverse datasets,
and refining models for domain-specific applica-
tions, ultimately enhancing Urdu ABSA tools.
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Appendix

Figure 4: DeepSeek response to Annotate Tweet

S# Label Top 15 Words

1
مارگورپ_یجامس

Social
Welfare

ہمکحم,ہبعش,ہبلط,تحص,ںوراکنف,رٹکاڈ,میلعت,نشیکوجیا,تاحالصا,تعارز,ءابو,ناسک,سرياو,راگزور,ھتلیہ

’Health’, ’Employment’, ’Virus’, ’Farmer’, ’Epidemic’, ’Agriculture’, ’Reforms’, ’Education’,
’Learning’, ’Doctor’, ’Artists’, ’Health’, ’Students’, ’Department’

2
تشیعم

Economy
ہنازخ,یتایقرت,یداصتقا,تایشاعم,دوس,رلاڈ,تشیعم,ےراسخ,نارحب,ہنالاس,دوس,یسیلاپ,اگنہم,یلام,یشاعم

’Economic’, ’Financial’, ’Expensive’, ’Policy’, ’Interest’, ’Annual’, ’Crisis’, ’Losses’,
’Economy’, ’Dollar’, ’Interest’, ’Economics’, ’Economic’, ’Development’, ’Treasury’

3
ایڈیم

Media
ںیتموکح,ںورادا,یماوع,نالعا,ریرقت,جاجتحا,ربخ,زوین,یفاحص,ایڈیم,تامولعم,ٹروپر,سیرپ,تاعالطا,تالیصفت

’Details’, ’Information’, ’Press’, ’Report’, ’Knowledge’, ’Media’, ’Journalist’, ’News’,
’Protest’, ’speech’,’Report’, ’Announcement’, ’Public’, ’Institutions’, ’Governments’

4
تسایس

Politics
یٹراپ,تسایس,ہنیباک,یلبمسا,ناویا,تسایر,ک�لم,یسایس,ءارزو,ناتسکاپ,نشیزوپا,نارمکح,ردص,یقافو,یراکرس

’Government’, ’Federal’, ’President’, ’Rulers’, ’Opposition’, ’Pakistan’, ’Ministers’, ’Political’,
’Country’, ’State’, ’Assembly’, ’Cabinet’, ’Politics’, ’Party’

5
بہذم

Religion
ہنیدم,دوس,تموکح,ٹجب,نید,سرادم,املع,خیش,فیرش,ہللا,راکولگ,ملسم,یمالسا,دمحم,مالسا

’Islam’, ’Muhammad’, ’Islamic’, ’Muslim’, ’Singer’, ’Allah’, ’Sharif’, ’Scholar’,
’Scholars’, ’Schools’, ’Religion’, ’Budget’, ’Government’, ’Interest’, ’Medina’

6
عافد

Defense
یملاع,تاعارم,ںورادا,تاحالصا,یجولانکیٹ,سیلوپ,تشہد,نمشد,عافد,کاپ,جاوفا,گنج,ہرطخ,نشنپ,مب

’Bomb’, ’Pension’, ’Threat’, ’War’, ’Forces’, ’Pakistan’, ’Defense’, ’Enemy’,
’Terror’, ’Police’, ’Technology’, ’Reforms’, ’Institutions’, ’Consideration’, ’Global’

7
ہبوصنم

Project
ںویسیلاپ,یتایقرت,ےرشاعم,یرف,نشپرک,ںوضرق,چرخ,ہسیپ,ےپور,تاجارخا,ڈنف,صتخم,ےبوصنم,ٹکیجورپ,یڈسبس

’Subsidy’, ’Project’, ’Projects’, ’Specialized’, ’Fund’, ’Expenditure’, ’Rupees’, ’Money’,
’Expense’, ’Loans’, ’Corruption’, ’Free’, ’Society’, ’Development’, ’Policy’

Table 3: Selected subtopics derived from predicted clusters and topic modeling
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S# Aspect
Category Attributes

1 تشیعم

Economy
دوس،ضرق،لوصحم،تمیق,یئاگنہم،تاجارخا،یمومع،ٹجب

budget, general, expenditure, inflation, price, revenue, debt, interest
2 قافو

Federal
تموکح،یلبمسا،ہنیباک،ردص،مظعاریزو،لرنج،ٹجب

budget, general, prime minister, president, cabinet, assembly, government
3 میلعت

Education
ملعبلاط،داتسا،ےرادا،لرنج،ٹجب

budget, general, institutions, teacher, student
4 تحص

Health
ابو،لاھبھکید،لاتپسہ،تحص،رٹکاڈ،لرنج،ٹجب

budget, general, doctor, health, hospital, care, epidemic
5 تعارز

Agriculture
یڈٹ،لصف،ناسک،تعارز،لرنج،ٹجب

budget, general, Agriculture, farmer, crop, locust

6
مارگورپ_یجامس

Social Welfare
Program

مارگورپٹروپسسکیٹمکنا،مارگورپیتاحالصا,مارگورپیتایقرتسکیٹمکناریظنیب،تاحالصا،لرنج،ٹجب

budget, general, reforms, Benazir income tax, development program,
reform program, income tax support program

7 عافد

Defense
ہلمح،ظفحت،یجوف،لرنج،ٹجب

budget, general, military, protection, attack
8 بہذم

Religion
تاماقمسدقم،ءاملع،نموم،بہذم،لرنج،ٹجب

budget, general, religion, believers, scholars, holy places
9 تعامج_یسایس

Political Party
نشیزوپا،سنرفناک،یسیلاپ،یٹراپ،لرنج،ٹجب

budget, general, party, policy, conference, opposition
10 تدایق

Leadership
نشپرک،نیمرئیچ،رڈیل،لرنج،ٹجب

budget, general, leader, chairman, corruption

11 یئابوص

Provincial

یلبمسا،ہنیباک،تموکح(ناوخنوتخپ،ناتسچولب،ھدنس،باجنپ)ہبوص،لرنج،ٹجب

budget, general, provinces (Punjab, Sindh, Balochistan, Pakhunkhawan)
govt., cabinet, assembly

12 ماوع

Public Dynamics
نشنپ،ہاوخنت،راگزور،بیرغ،ریما،لرنج،ٹجب

budget, general, rich, poor, employment, salary, pension
13 ایڈیم

Media
ٹسٹرآ،ٹروپر،لنیچ،ںیربخ،ایڈیم،یفاحص،لرنج،ٹجب

budget, general, journalist, media, news, channel, report, artist
14 لرنج

Miscellaneous
ٹجب

budget

Table 4: Conclusive sub-categories of budget topic

Patterns 'ٹجباک'

(Budget of)
'ٹجبتسود'

(Friend’s Budget)
'ٹجبنمشد'

(Enemy’s Budget)
'یمکںیم'

(Decrease in)

Phrases

ٹجباکءارما

(Budget of Aristocrats)
ٹجباکیہابت

(Budget of Destruction)
ٹجباکےراسخ

(Budget of Loss)
ٹجباکایفام

(Mafia’s Budget)
ٹجبتسودمیلعت

(Education-Friendly Budget)

ٹجبتسودناسنا

(Human-Friendly Budget)
ٹجبنمشدتیناسنا

(Inhumane Budget)
یمکںیمتاجارخایتموکح

(Reduction in Government Expenditure)
ٹجبتسودماوع

(Public-Friendly Budget)
ٹجبنمشدتادمآرب

(Incomes-Enemy Budget)
یمکںیمتاجارخایمیلعت

(Reduction in Educational Expenditure)
ٹجبتسودمیلعت

(Education-Friendly Budget)
ٹجبنمشدتحص

(Health-Enemy Budget)
یمکںیمہراسخٹجب

(Reduction in Budget Loss)
ٹجبتسودبیرغ

(Poor-Friendly Budget)
ٹجبنمشدرودزم

(Labor-Enemy Budget)
یمکںیمںوسیف

(Reduction in Fee)
ٹجبتسودناوجون

(Youth-Friendly Budget)
ٹجبنمشدملسم

(Muslim-Enemy Budget)

یمکںیمںوتمیقمیلورٹپ

(Reduction in in Petroleum Prices)
Total 240 20 39 59

Table 5: Phrases extracted by the Pattern Mining
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Algorithm 2 : MineSequentialPatterns

1: procedure MINESEQUENTIALPATTERNS(budget_tweets)
2: stopwords← LoadStopwords() . Load stopwords
3: ps← PrefixSpanAlgo(data) . Initialize pattern mining algorithm
4: min_support← 20 . Set minimum support
5: . Mine frequent patterns with minimum support
6: result← ps.Frequent(min_support)
7: . Filter patterns
8: filtered_patterns← FILTERPATTERNS(result, stopwords)
9: . Display and store patterns

10: obt_patterns← DISPLAYANDSTOREPATTERNS(filtered_patterns)
11: return obt_patterns . Return the obtained patterns
12: end procedure

1: function FILTERPATTERNS(result, stopwords)
2: filtered_patterns← [] . List for filtered patterns
3: for each (support, pattern) in result do
4: . Check if pattern is valid
5: if ISPATTERNVALID(pattern, stopwords) then
6: . Keep valid pattern to list
7: filtered_patterns.append((pattern, support))
8: end if
9: end for

10: return filtered_patterns . Return the filtered patterns
11: end function

1: function ISPATTERNVALID(pattern, stopwords)
2: . Check length of pattern
3: if Length(pattern) > 1 then
4: . Count stopwords in pattern
5: stopwords_count← COUNTSTOPWORDS(pattern, stopwords)
6: if stopwords_count ≤ 1 then
7: is_subpattern← False . Initialize flag for subpattern
8: for each (_, other_pattern) in result do
9: . Check if pattern is subset of other pattern

10: if pattern 6= other_pattern & ISSUBSET(pattern, other_pattern) then
11: is_subpattern← True
12: break . Exit loop if subpattern is found
13: end if
14: end for
15: if not is_subpattern then
16: return True
17: else
18: return False
19: end if
20: else
21: return False
22: end if
23: else
24: return False
25: end if
26: end function
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Seeds Top 10 similar words
ضرق

(Loan)
'راھدُا','ضرقرپ','ضورقم','راھدا','رادضرق','سیباک','ںوضرق','ےضرق','ہضرق' , ’Risky’

’Loan’, ’Loans’, ’Debts’, ’Cabinet’, ’Debtor’, ’Interest’,
’Indebted’, ’Owing’, ’Debt’, ’Risky’

تموکح

(Govt.)
'ترازو','تموکحےہ','تموکحںیہ','تموکحںیم','ےبوصوک','تموکحراشب','ںیتموکح','تموکحزاون','یتموکح','ںوتموکح'

’Governments’, ’Governmental’, ’Nawaz Govt.’, ’Governments’, ’Bashar Govt.’,
’In Govt.’, ’In Govt.’, ’Are in Govt.’, ’Is in Govt.’, ’Ministry’

ٹجب

(Budget)
'برا600','برا500','برا75برھک47','برا40','برا50','فیلیرےک','ٹجباک','ٹجبوڈیش','یئنڈور','برا4800'

’4800 Billion’, ’Rodney’, ’Shadow Budget’, ’Cabinet’, ’Relief’, ’50 Billion’,
’40 Billion’, ’47 Billion 75 Million’, ’500 Billion’, ’600 Billion’

یئاگنہم

(Inflation)
'تبرغروا','ںوتمیق','ںیتمیق','ءابرشوہ','یئاگنھم','ئاگنہم','یئاگنہمرھپ','یئاگنہمروا','یئاگنہموک','یئاگنہمرپ'

’Hyperinflation’, ’And Inflation’, ’And Inflation’, ’Then Inflation’, ’Inflation’,
’Inflation’, ’Hosharba’, ’Prices’, ’Prices’, ’And Poverty’

ہاوخنت

(Salary)
'وہاوخنت','ںیئاوخنت','ںوہاوخنت','ںيہاوخنت','ھاوخنت','ںیهاوخنت','هاوخنت','ہاوخنتےس','ںیہاوخنت','اوخنت'

’Salary’, ’Salaries’, ’From Salary’, ’Salary’, ’Salaries’, ’Salaries’,
’Salary’, ’Salaries’, ’Salary’, ’Salaries’

Table 6: Most Similar words by FastText model

Figure 5: Pattern Mining: Aspect-Sentiment Labels Division Based on Identified Phrases-Similar color shows single
pattern
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Figure 6: Unique Labels obtained by bidirectional Window-based Strategy

Aspect Categories Train Test

Positive Negative Neutral Total P(%) Positive Negative Neutral Total P(%)

Education 42 78 20 139 10% 9 12 2 47 10%
Agriculture 5 10 3 18 1% 1 1 0 6 1%
Federal 246 459 114 820 57% 52 68 14 274 57%
Media 2 4 1 7 0% 1 2 0 3 1%
Economy 13 23 6 42 3% 3 3 1 14 3%
Provincial 18 34 8 60 4% 4 5 1 21 4%
Political party 11 21 5 37 3% 2 3 1 13 3%
Health 38 70 18 125 9% 8 10 2 42 9%
Project 4 7 2 13 1% 1 1 0 5 1%
Social Welfare Programs 20 36 9 65 5% 4 5 1 22 5%
Leadership 9 16 4 29 2% 2 3 0 10 2%
Defense 19 35 9 63 4% 4 5 1 21 4%
Religion 2 4 1 8 1% 1 1 0 3 1%
Miscellaneous 2 3 1 4 0% 0 1 0 2 0%

Total 429 800 201 1430 100% 91 120 24 483 100%
Percentage(%) 30% 56% 14% 75% – 29% 59% 12% 25% –

Table 7: Polarity-Specific Aspects Categories Distribution in Train-Test Split
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Task Gold-Standard Bronze-Standard Silver-StandardEpoch Acc. macro-F1 Acc. macro-F1 Acc. macro-F1
10 0.660 0.681 0.437 0.417 0.449 0.439
50 0.711 0.722 0.505 0.526 0.580 0.526
100 0.732 0.733 0.528 0.506 0.596 0.545

Aspect Category
Detection (ACD)

300 0.717 0.723 0.562 0.525 0.590 0.549
10 0.669 0.802 0.531 0.456 0.524 0.536
50 0.687 0.877 0.566 0.487 0.531 0.590
100 0.706 0.877 0.571 0.493 0.556 0.571

Aspect Category
Sentiment (ACS)

300 0.706 0.877 0.575 0.494 0.524 0.590
10 0.575 0.296 0.561 0.243 0.582 0.258
50 0.577 0.304 0.577 0.304 0.583 0.281
100 0.578 0.318 0.581 0.313 0.589 0.302

Aspect Sentiment
Classification

(ASC)
300 0.583 0.321 0.583 0.318 0.591 0.318

Table 8: LSTM Average Results for five-runs on ABSA Tasks

161



Efficient Continual Learning for Small Language Models with a
Discrete Key-Value Bottleneck

Andor Diera
Ulm University

andor.diera@uni-ulm.de

Lukas Galke
University of Southern Denmark

galke@imada.sdu.dk

Fabian Karl
Ulm University

fabian.karl@uni-ulm.de

Ansgar Scherp
Ulm University

ansgar.scherp@uni-ulm.de

Abstract

Continual learning remains a challenge across
various natural language processing (NLP)
tasks, as models updated with new training data
often risk catastrophic forgetting of previously
acquired knowledge. We introduce a discrete
key-value bottleneck (DKVB) for encoder-only
language models, enabling efficient continual
learning through localized updates. Inspired
by a discrete key-value bottleneck in vision,
we consider new and NLP-specific challenges.
We compare different bottleneck architectures
for NLP and introduce a new, task-independent
initialization technique for the discrete keys.
We evaluate our DKVB for NLP in four con-
tinual learning scenarios and show that it al-
leviates catastrophic forgetting. Our experi-
ments demonstrate that the proposed approach
achieves competitive performance compared to
popular continual learning methods while incur-
ring lower computational costs. Furthermore,
we show that DKVB remains effective even
in challenging single-head continual learning
scenarios where no task ID is provided.1

1 Introduction

Large language models are receiving increasing
attention from the public due to their impressive
zero-shot and few-shot abilities in a wide range of
tasks (Brown et al., 2020). Yet, for easier tasks
where there is enough training data for supervised
fine-tuning, e. g., text classification, using smaller
encoder-only language models is still preferable
due to their often superior performance and lower
computational requirements (Yuan et al., 2023; Yu
et al., 2023; Qorib et al., 2024; Li et al., 2025).
Compared to large general-purpose models, fine-
tuned networks lack general portability to new
conditions and have limited generalization beyond
their training distribution (Luo et al., 2023). For
many target applications in natural language pro-
cessing (NLP), training and test data can have a

1Source code available at: github.com/drndr/dkvb_nlp

difference in the underlying distribution (Hupkes
et al., 2023), and in the case of continual learning,
the input distribution can change over time (Wang
et al., 2024). To mitigate these challenges, differ-
ent changes to model architectures and training
regimens have been proposed (Biesialska et al.,
2020; Ke and Liu, 2022; Wang et al., 2024). While
many of these methods improve continual learn-
ing, they often require task-specific modules and
computationally demanding extensions to the base
model (Ke et al., 2021; Buzzega et al., 2020; Mo-
meni et al., 2025).

In this work, we propose an adaptation of the
Discrete Key-Value Bottleneck (DKVB) architec-
ture (Träuble et al., 2023) to the field of NLP. Dis-
cretization techniques can improve generalization
in neural networks without introducing new task-
specific parameters, regularization functions, or
memory buffers (Liu et al., 2021, 2023; Träuble
et al., 2023). More specifically, the DKVB architec-
ture has shown strong performance in low-resource,
class incremental learning scenarios for computer
vision. This is due to local, context-dependent
updates on learnable discrete key-value pairs that
prevent catastrophic forgetting in the models.

To address the challenges of adapting DKVB
to NLP, we begin by analyzing how different vari-
ants of the discrete key-value bottleneck interact
with pre-trained encoder-only language models in
standard learning scenarios. In doing so, we tackle
key challenges such as the high dimensionality of
text representations, the choice of pooling strate-
gies, and the design of an effective decoder head.
Subsequently, we take the best-performing DKVB
configurations and evaluate their performance in
continual learning scenarios. Finally, we show that
given a dictionary of discrete keys optimized on a
general-purpose corpus, DKVB achieves similar
effectiveness compared to leading continual learn-
ing approaches while requiring less training time.
The main contributions of our paper are:
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• We analyze different optimization techniques
and architectures of a DKVB in NLP using
BERT, RoBERTa, and DistillBERT.

• We compare our DKVB for NLP to baseline
methods in continual learning scenarios, i. e.,
domain incremental, class incremental, and
task-type incremental learning.

• We demonstrate that the DKVB alleviates
catastrophic forgetting and is more efficient
than most continual learning methods.

2 Related Work

2.1 Continual Learning
Sequentially learning multiple tasks remains a sig-
nificant challenge in the field of deep learning.
Standard neural networks trained on a new task
tend to forget most of the knowledge tied to tasks
they have previously learned, leading to the phe-
nomenon commonly labeled as catastrophic for-
getting (McCloskey and Cohen, 1989; Van de Ven
and Tolias, 2019). On the other hand, leveraging
knowledge learned from old tasks to improve per-
formance on new tasks, known as knowledge trans-
fer, is a highly sought-after capability in NLP (Ke
and Liu, 2022). Since re-training a model from
scratch is often expensive, various methods for con-
tinual learning have been proposed to handle these
challenges. Existing approaches in continual learn-
ing can be categorized into five distinct families:
regularization-based, optimization-based, replay-
based, architecture-based, and instruction-based,
with the latter being specific to large language mod-
els (Biesialska et al., 2020; Ke and Liu, 2022; Wang
et al., 2024; Shi et al., 2024). A detailed description
of these approaches can be found in Appendix A.

2.2 Discrete Representation Learning
Employing discrete variables in deep learning is
challenging, as indicated by the prevalence of con-
tinuous latent variables in most research methods,
even when the underlying modality inherently in-
volves discrete elements (e. g., text data). Van
Den Oord et al. (2017) were the first to show the
viability of large-scale discrete neural representa-
tion learning through the use of vector quantization.
Their Vector Quantized-Variational Autoencoder
(VQ-VAE) model utilizes a discrete latent space
and thus avoids the “posterior collapse” problem
common in many VAE models when the decoder
ignores the latent space of the encoder and relies

solely on the autoregressive properties of the input
samples (Goyal et al., 2017). Subsequently, their
methodologies have been widely employed in var-
ious applications, including audio (Borsos et al.,
2023), videos (Yan et al., 2021), and anomaly de-
tection (Marimont and Tarroni, 2021). More re-
cently, discretization has been utilized for machine
unlearning (Shah et al., 2023) and to improve disen-
tangled representation learning (Noh et al., 2023)
and robustness (Liu et al., 2021, 2023; Träuble
et al., 2023). Discretization methods with bottle-
necks have been shown to improve generalization
in reinforcement learning (Liu et al., 2021, 2023),
visual reasoning (Liu et al., 2023), and vision-based
continual learning (Träuble et al., 2023).

3 A Discrete Key-Value Bottleneck for
Encoder-only Language Models

The DKVB architecture as described in Träuble
et al. (2023) is fundamentally model and task-
agnostic, but so far has been only studied in the
field of computer vision. The use of DKVB in lan-
guage models poses new challenges, including the
(i) sequential nature of the input data, the (ii) high
dimensionality of the encoded representations, and
the (iii) difference in commonly used pooling tech-
niques between vision and language models. Be-
low, we describe DKVB’s base architecture, the key
initialization process, and our proposed architec-
tural adaptations and pre-experiments for finding
the most suitable architectural variant.

3.1 Base Architecture and Key Initialization

The DKVB architecture follows three steps: encode
input, process via a discrete bottleneck, and decode.
Figure 1 show an overview of the architecture.

Encoder
zα

Discrete
Keys

Values

Match Closest
 Keys and Fetch Value

Encode
Input

Mean Pool or
Concetanate

Decode
OutputSegment

Frozen
Components

Trainable
Components

C = 4 C = 4

dkey = 2 dvalue = 2

dz = 8

Non-parametric
 Decoder

Softmax

Decoder
dβ

Parametric
Decoder

Figure 1: The base Discrete Key-Value Bottleneck.
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In the first step, an encoder model projects input
vector x into a lower dimensional vector z ∈ Rmz .
This is followed by pooling (if needed) and parti-
tioning z into C separate heads of dimension dkey.
Each head possesses a unique discrete key-value
codebook of size K, where the keys are initialized
before training and are mapped to randomly ini-
tialized trainable value codes. In the second step,
each head is first quantized by fetching the closest
key (based on L2 distance) from the corresponding
head’s codebook. Subsequently, the corresponding
value code of dimension dvalue is retrieved for each
head. Note the size of the bottleneck with respect
to trainable parameter scales with the number of
heads and codebook size. In the last step, the values
are passed to a decoder to produce the final output.
The decoder can be either parametric (with train-
able weights) or non-parametric (by applying the
softmax function to the mean pooled value codes).

The discrete keys of the bottleneck are initial-
ized before training. Due to the 1-1 mapping be-
tween the keys and value codes, there is no gradient
back-propagation between the values and keys. To
ensure that the keys are broadly distributed in the
feature space and have good representational power
for given downstream tasks, they are first randomly
initialized and then modified by using the encoded
input samples as the basis for applying exponential
moving average (EMA) updates (Van Den Oord
et al., 2017). Alternatively, the keys can be initial-
ized on input data different from the one in training,
albeit with some decrease in downstream task per-
formance (Träuble et al., 2023). After initialization,
the keys are frozen and are not influenced by later
changes in the input distribution shifts.

3.2 Architecture Adaptations for NLP

We introduce an adaptation of the DKVB architec-
ture for the specific challenges in natural language
processing. As argued above, these challenges are
related to the high dimensionality of the data, pool-
ing techniques, and decoding. We conduct pre-
experiments with different architectures to find the
most suitable bottleneck architecture variants and
consider the following NLP-specific challenges:

Dimensionality While natural language has an
inherently discrete symbolic representation, text
embeddings encode these discrete symbols into a
continuous latent space (Muennighoff et al., 2023).
This results in a high dimensional output z ∈ Rt×h,
where t is the token dimension (i.e., the number

of tokens in the fixed length input sequence) and
h is the hidden dimension. Previous experiments
with DKVB were conducted on low dimensional
image data that has been pooled before forwarding
output z ∈ Rh to the bottleneck (Träuble et al.,
2023). To address this difference, we design model
variants with pooling applied before or after the
bottleneck. Similarly, we experiment with creating
the heads by partitioning hidden dimension h and
token dimension t separately.

Pooling Type Most modern convolutional net-
works in computer vision utilize max pooling as
pooling operation (He et al., 2015). Max pooling
retains the most important features in images but
is less commonly used in NLP due to the loss of
sequential information. The two most commonly
used pooling techniques in NLP are mean pool-
ing and pooling based on a special token (CLS).
In mean pooling, the contextualized token embed-
dings are averaged out, while the CLS pooling uti-
lizes a special token optimized to represent the
whole sequence (Devlin et al., 2018). We include
both variants in our architecture search.

Decoding Decoders with adjustable weights of-
fer more expressiveness than non-parametric de-
coders but are more sensitive to changes in the
training conditions (Ostapenko et al., 2022). For
simple tasks where linear mapping is sufficient, us-
ing just a softmax function as a non-parametric
decoder might be appropriate. However, for many
NLP tasks, it is crucial to capture complex pat-
terns in the encoded representations (Wang et al.,
2018). We include both approaches in our exper-
iments. For the parametric decoder, we concate-
nate the value codes and feed them into a simple
linear layer preceded by a dropout layer. In the
non-parametric version, we apply mean pooling
on the values and apply a softmax function on the
pooled representation.

3.3 Analyzing DKVB Variants for NLP

We analyze different variants of the DKVB archi-
tecture in encoder-only language models. For the
pre-experiments, we use two popular text classifi-
cation datasets. The R8 dataset, which is a subset
of the R21578 news dataset (Lewis, 1997) with 8
classes, and the Twenty Newsgroup (20ng) (Lang,
1995) which contains documents categorized into
20 newsgroups. We apply the standard train-test
split for both datasets, as used in (Galke and Scherp,
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Table 1: Accuracy and standard deviation (in subscript) of the different DKVB architecture variants on the R8 and
20ng datasets in a non-continual, standard learning setup, averaged over 5 runs.

Dataset: R8 Dataset: 20ng

Decoder Segmentation Pooling Before Pooling After Pooling Before Pooling After
CLS Mean CLS Mean CLS Mean CLS Mean

Parametric
hidden 69.871.07 91.541.19 88.551.05 96.040.26 19.262.42 53.621.00 48.350.69 77.830.89

token - - 88.061.00 95.201.21 - - 44.650.86 69.330.96

Non Parametric
hidden 66.610.29 92.180.36 88.530.22 94.240.39 21.091.31 55.930.75 52.030.24 73.510.20

token - - 64.390.20 73.700.20 - - 10.950.18 15.261.28

BERT (frozen) w/o DKVB 95.940.18 72.110.49

BERT w/o DKVB 98.000.34 84.060.53

2022). We first use a frozen BERT model as the pre-
trained encoder for DKVB and perform a hyper-
parameter search on the number of epochs, batch
size, and learning rates.

We report the performance of the best configura-
tions. For learning rates, we found it is beneficial
to have a high learning rate for the values layer.
Additionally, in the case of the parametric decoder
setup, a lower learning rate is applied to the decoder.
We use a key dimension of 12 and the number of
key-value pairs of 4, 096 for the discrete bottleneck
parameters as in (Träuble et al., 2023). Key ini-
tialization is done before training for three epochs
with an EMA decay of 0.2. Alongside the differ-
ent variants for the DKVB, we list the results of a
fine-tuned BERT and a frozen BERT with a fine-
tuned linear classifier on top for reference. This we
consider as the upper bounds.

The test performance of the different architec-
ture configurations can be seen in Table 1. The
gap between the best-performing DKVB architec-
ture and the fully fine-tuned BERT model is 2%
on R8 and 7% on 20ng. The frozen BERT model
achieved the same performance on R8 but attained
5% lower accuracy on 20ng compared to the best-
performing DKVB variant. Overall the best per-
formance was obtained by using the parametric
decoder, applying mean pooling after the bottle-
neck, and using the hidden dimension as the base of
the segmentation. To investigate the performance
on other encoder-only language models, we ex-
perimented with RoBERTa (Liu et al., 2019) and
DistilBERT (Sanh et al., 2019), and found the op-
timal bottleneck architecture to be the same (see
Appendix C).

4 Continual Learning Settings

The goal of continual learning (CL) is to sequen-
tially learn a function f : Xk → Yk for all tasks

k in sequence K. Each task k has a training set
Mk = {(xi, yi, di, t)}Nk

i=1, where xi ∈ Xk is a
training sample, yi ⊆ Yk is a set of class labels,
di ⊆ Dk is the corresponding domain set (e. g.,
legal documents, movie reviews, news articles) of
the sample, t ∈ Tk is the task-type of the training
set (e. g., sentiment analysis, topical classification,
natural language inference etc), and Nk is the num-
ber of samples in task k. To evaluate the DKVB
architecture, we define three different incremental
learning setups based on these components.

In the Domain Incremental Learning (DIL)
setting, the task type and class labels are assumed
to be consistent across all tasks. The domain of the
input changes between tasks, with each task having
a set of non-overlapping domains Dk ∩ Dk′ =
∅. A common DIL task-type in NLP is sentiment
classification, where all tasks have the same class
labels (i. e., positive, negative, neutral), but include
samples from different source domains.

In the Class Incremental Learning (CIL) set-
ting, each task has a set of non-overlapping classes
Yk ∩ Yk′ = ∅. During testing, any previously
learned class may be presented. CIL is gener-
ally considered the most challenging incremen-
tal learning scenario (Ke and Liu, 2022; Träu-
ble et al., 2023). Apart from catastrophic forget-
ting and knowledge transfer, this setting includes
the added complication of inter-task class separa-
tion (Kim et al., 2022). Inter-task class separation
requires learning decision boundaries between the
new task’s classes and the classes from previous
tasks without access to data from those previous
tasks.

The main challenge in the Task-type Incremen-
tal Learning (TIL) setting lies in the varying task-
types. While it is possible that the tasks also have
non-overlapping input domains and class labels in
these settings, what differentiates TIL from other
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incremental learning scenarios are the disjoint task-
types in each task tk ̸= tk′ . This task-type is not
identical to the type of objective function used in
training (i. e., classification loss or regression loss);
rather, it defines the downstream task of the model,
such as topical classification, sentiment analysis,
or measuring semantic similarity. The scenario
of using one model to learn different task-types
has also been heavily researched in the field of
multi-task learning (Crawshaw, 2020). The domi-
nant approach in TIL is using a multi-head config-
uration with a separate head (or output layer) for
each task. Since this decreases the probability of
catastrophic forgetting, the main challenge in TIL
is bi-directional knowledge transfer (Ke and Liu,
2022).

5 Experimental Setup

In our continual learning experiments, we compare
the performance of DKVB to other CL methods
in the three settings described above, namely TIL,
DIL, and CIL. In addition, we adapt the challenging
single-head CIL setup from Trauble et al. (Träuble
et al., 2023) to topical text classification. We take
the best-performing bottleneck architectures from
the pre-experiments and apply the same bottleneck
parameters and hyperparameters. We use accuracy
as the primary evaluation metric in all our exper-
iments and present the average performance and
standard deviation over five runs. These runs in-
volve random initialization and randomized task
sequence order. Additionally, we report the average
per epoch runtime of each method. Details about
the implementation, hyperparameters, and bottle-
neck parameters can be found in the Appendix B.

Datasets For the main experiments, we use three
datasets, two of which have also been used in Ke
et al. (2021). We use the Document Sentiment
Classification (DSC) dataset in the DIL setting. It
consists of 10 subsets of product reviews with a
positive or negative sentiment label. Each subset
constitutes a separate task with 4, 000 training, 500
validation, and 500 test samples. Since the tasks
are similar and only differ in the product domain,
this dataset is used to evaluate knowledge trans-
fer. In the CIL setup, we use the earlier described
20ng dataset (Lang, 1995). Similarly to Ke et al.
(2021), we create a sequence of 10 tasks consisting
of two classes each. This setup is mainly used to
test the models’ abilities to overcome catastrophic
forgetting. For the TIL setup, we create a sequence

of tasks by combining four tasks from the GLUE
benchmark (Wang et al., 2018). This dataset, which
we call 4GLUE, includes four different task-types:
The RTE dataset is used for testing natural lan-
guage inference, the MRPC is used for measuring
semantic textual similarity, the SST-2 is a popular
dataset for sentiment analysis, and the QQP dataset
which is used for natural language inference and
question answering.

For the single-head CIL experiments, we use
two different versions of the R21578 news dataset
(Lewis, 1997), R8 (includes 8 classes) and R52
(with 52 classes). Due to the R21578 dataset’s
highly skewed class frequency distribution, we sim-
ulate a low-resource training scenario and include
only 100 samples from each class in both datasets.
On R8, we divide the dataset into 8 increments,
with one class for each increment. On R52, we cre-
ate 26 increments, each with two random classes.

Procedure We follow the CL evaluation proce-
dure of De Lange et al. (2021). A model is trained
sequentially on all tasks and is evaluated by aver-
aging the test performance of each task recorded
after the final training increment. This results in
each task in the sequence being a binary classifi-
cation problem. In the multi-head configurations
(for CIL and TIL), we use a separate decoder for
each task and provide the task ID during training
and evaluation. To further investigate the continual
learning capabilities of the DKVB, we implement
the single-head CIL setup of Träuble et al. (2023).
Compared to the multi-head CIL task, this setup
is considered to be more challenging and lacks
explicit task boundaries. For its evaluation, the
models are tested on the whole test data after each
increment, including previously unseen classes.

Baselines We use the best-performing methods
reported in Ke et al. (2021), selecting one from each
CL approach (cf. Section 2.1). From regularization-
based methods, we choose EWC (Serra et al.,
2018), a common baseline with strong performance
in many CL studies. DER++ (Buzzega et al., 2020)
belongs to the replay-based methods and uses dis-
tilled knowledge from past experiences to guide the
incremental training process. OWM (Zeng et al.,
2019) is an optimization-based approach that con-
strains the gradient updates to a direction orthogo-
nal to the input space of previously trained tasks.
Lastly, CTR (Ke et al., 2021) is an architecture-
based approach that utilizes capsule networks to
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Table 2: Average Accuracy and Macro F1 scores of the tasks in the three continual learning scenarios, using the
average and standard deviation (in subscript) of 5 runs with randomized sequence orders.

CL Method Model DIL (DSC) CIL (20NG) TIL (4GLUE)
Acc F1 Acc F1 Acc F1

NCL BERT 88.500.63 87.830.64 53.950.49 38.940.53 62.120.58 58.290.60

NCL BERT (frozen) 87.422.23 86.582.17 96.351.03 96.311.22 71.900.11 69.100.12

NCL Adapter-BERT 88.712.20 88.102.24 65.619.34 58.6211.63 68.740.30 63.860.53

DER++ BERT (frozen) 84.301.54 82.851.94 59.689.23 47.6213.74 70.643.27 68.683.89

EWC BERT (frozen) 86.214.89 85.534.98 96.800.20 96.800.20 66.549.74 58.2614.84

OWM BERT (frozen) 86.062.63 85.282.66 88.800.28 88.160.30 67.542.11 61.902.57

CTR Adapter-BERT 88.730.35 87.980.37 95.530.14 95.520.16 72.710.19 66.420.78

DKVB-NP Incremental BERT (frozen) 80.992.07 79.581.91 59.671.59 54.581.66 58.122.89 50.141.90

DKVB-NP Oracle BERT (frozen) 83.931.11 81.981.74 97.060.22 95.840.95 69.650.34 68.920.38

DKVB-NP Generic BERT (frozen) 82.120.20 80.970.09 96.300.07 96.270.10 68.790.51 65.370.03

DKVB-P Incremental BERT (frozen) 74.094.88 68.015.10 57.812.00 52.892.77 58.773.23 51.021.81

DKVB-P Oracle BERT (frozen) 81.180.61 80.470.52 95.220.44 95.090.25 58.651.43 51.811.53

DKVB-P Generic BERT (frozen) 71.711.30 57.750.95 92.760.88 92.730.89 61.400.57 54.760.42

prevent catastrophic forgetting and facilitate knowl-
edge transfer. We also include three baselines with-
out any additional forgetting or knowledge transfer
handling, noted as naive continual learning (NCL).

For DKVB we take the best-performing architec-
tures from Section 3.3, and include both the para-
metric (DKVB-P) and non-parametric (DKVB-
NP) variants. We experiment with three different
strategies for key initialization. In the first two
strategies, we use the training data for initializing
the keys: in the incremental setup, the keys are
optimized in a continual fashion before each task
using only the training data of the given increment
(denoted as Incremental), while in the full initial-
ization setup, the keys are initialized once before
training, using the full training input distribution
(denoted as Oracle). In the third setup, we use
a cross-domain corpus different from the training
data to create general-purpose keys (denoted as
Generic). For this, we use a small version of the
English Wikipedia dump2, which is commonly in-
cluded in pre-training datasets. In all three setups,
we use an EMA decay of 0.2. For the Incremen-
tal and Oracle setups, the key initialization is set
to three epochs, while for the Generic we use one
epoch.

All CL methods (except CTR) are applied to a
frozen BERT model and have a single-head con-
figuration without any task-ID information for the
DIL scenario and a multi-head configuration with
task-ID provision on the CIL and TIL scenarios.
CTR is based on an Adapter-BERT (Houlsby et al.,
2019) backbone and requires a multi-head setup

2https://huggingface.co/datasets/wikipedia

and task-ID information for its dynamic architec-
ture in all scenarios. For the single-head CIL ex-
periments, we include the naive baselines and the
replay-based DER++ method. The rest of the CL
baseline methods either require explicit task bound-
aries for optimal performance (OWM, EWC) or
only work in a multi-head configuration (CTR).

6 Results

Main Experiments The results of the main ex-
periments are shown in Table 2. In the DIL setting
the difference in accuracy between the baseline
methods is low, with CTR having the highest score
of 88.73%. The performance of the DKVB vari-
ants in this scenario is below the baselines. In the
CIL setting, there is a substantial variation between
model performance, with half of the CL methods
achieving over 90% accuracy, while BERT NCL,
DER++, and the incremental DKVB variants have
an accuracy score below 60%. The best result
on the CIL dataset was achieved with the non-
parametric DKVB Oracle (97.06%) followed by
EWC (96.80%) and BERT frozen NCL (96.35%).
In the TIL scenario, the highest accuracy scores
were achieved with BERT frozen NCL (71.90%)
and CTR (72.71%). Within the DKVB variants the
best performance was consistently seen with the
non-parametric Oracle variant, closely followed by
the non-parametric Generic variant. On the CIL
and TIL scenarios both of these methods outper-
formed most of the baselines. Additional mea-
sures of the backward transfer performances can
be found in Appendix Section C.
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Runtime We measure the average epoch run-
times for each model to compare the computa-
tional costs of the different methods. The results
can be found in Table 3. Among the evaluated
methods, DKVB achieves runtime closest to NCL
with a frozen BERT, where training is limited
to optimizing a parametric decoder. While the
regularization-based EWC and the optimization-
based OWM methods also achieve a runtime com-
parable to the NCL frozen BERT model, adding
replay in DER++ and dynamic architecture in CTR
substantially increases runtime. The key initializa-
tion process scales with the number of samples, but
the overall computational cost of DKVB remains
lower than most continual learning methods since
initialization is done once before training and in-
volves just a forward pass. The average runtime of
key initialization is shown in Table 4

Table 3: Per-epoch training runtimes (in seconds), aver-
aged over a single run. Standard deviations are shown
as subscripts.

CL Method Model DIL (DSC) CIL (20NG) TIL (4GLUE)

NCL BERT 20.63.0 8.90.0 482.3659.4

NCL BERT (frozen) 4.40.6 1.90.0 105.5144.2

NCL Adapter-BERT 24.13.4 10.40.0 566.2772.7

DER++ BERT (frozen) 26.20.9 7.42.5 249.7361.2

EWC BERT (frozen) 8.00.08 2.30.2 129.0176.6

OWM BERT (frozen) 6.70.3 2.00.1 108.9148.6

CTR Adapter-BERT 487.10.4 195.20.1 3011.70.0

DKVB-NP BERT (frozen) 4.670.6 2.000.0 109.35149.2

DKVB-P BERT (frozen) 4.880.7 2.070.0 114.38156.5

Table 4: Per-epoch key initialization runtimes (in sec-
onds) and corresponding sample sizes. Standard devia-
tions are shown as subscripts.

Key Initialization DIL (DSC) CIL (20NG) TIL (4GLUE)

Incremental
4.70.6 1.90.0 111.6152.5

(n=4 000) (n=1 600) (n=87 470)

Oracle
46.90.5 19.50.1 535.221.9

(n=40 000) (n=16 000) (n=349 881)

Generic
469.02.1 469.02.1 469.02.1

(n=205 328) (n=205 328) (n=205 328)

Single-head Class Incremental Learning The
single-head class incremental learning results are
shown in Figure 2. The highest accuracy scores are
81.17% on R8 and 47.78% on R52. Both scores
were achieved with the non-parametric DKVB vari-
ant using the Generic and Oracle key initialization,
respectively. On both datasets, the non-DKVB
models, which included the BERT frozen NCL
and DER++, displayed sharp drops in performance
between increments, indicating the occurrence of

catastrophic forgetting and overfitting on the cur-
rent training increment. DER++ showcased better
performance than the naive baseline but still under-
performed the Oracle and Generic variants, with a
final accuracy score of 16.70% on R8 and 35.75%
on R52. The detailed results with additional mod-
els (BERT NCL, EWC) can be found in Appendix
Section C.

Figure 2: Progressive test accuracy scores in the single-
head class increment learning setup, averaged over 5
runs with fixed sequence order

7 Discussion

Key Insights Our experiments show that fine-
tuning encoder-only language models with an op-
timal discrete key-value bottleneck architecture
achieves comparable results to partial fine-tuning
in standard learning scenarios, but greatly benefits
CL, both in terms of performance and efficiency.
The best key initialization is obtained by unsuper-
vised access to the full input feature distribution,
but utilizing a general-purpose corpus for key ini-
tialization is also a viable option for NLP tasks.
Below, we discuss these key insights.

Architectural Variants We found that employ-
ing pooling before the bottleneck has a substantial
negative effect on the model performance (see Sec-
tion 3.3). This suggests that in contrast to lower
dimensional vision tasks (Träuble et al., 2023), it
is necessary to retain the full dimensionality of the
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text encodings. Similarly, CLS pooling is inferior
compared to mean pooling across all setups. Seg-
menting on the token dimension only worked in
the case of parametric decoding, indicating that the
DKVB module’s output yields better representa-
tional power if the segmentation happens on the
hidden dimension. An additional linear layer after
the DKVB module, acting as a parametric decoder,
can compensate for encodings with weaker rep-
resentational power. However, a non-parametric
decoder produces comparable results in most con-
figurations.

Continual Learning In the CL experiments re-
ported in Section 5, the non-parametric DKVB
variants achieved comparable results to other CL
methods and maintained runtimes on par with the
NCL frozen BERT variant, but only when using
pre-initialized keys.

When using incremental key initialization, per-
formance was consistently subpar, indicating that
DKVB requires access to a general-purpose corpus
or the full input distribution to achieve competi-
tive performance. While having access to the full
data distribution may be unrealistic in practice, our
experiments show that this is not needed in NLP.
Rather, when initializing the keys using a general-
purpose corpus, we obtain results that are close to
the Oracle setup.

The largest performance drop between the
DKVB variants and other CL methods was seen
in the DIL setting. This suggests that DKVB’s
strength in preventing catastrophic forgetting
through distinct key-value bindings becomes its
weakness in DIL, as this compartmentalization re-
stricts the model’s ability to transfer knowledge
across different domains. Notably, NCL meth-
ods achieve similar results as the CL methods in
this DIL setup, indicating that pre-trained language
models without a bottleneck are already well-suited
for domain incremental learning.

In the CIL and TIL tasks, only the frozen BERT
NCL variant showcased performance comparable
to that of the CL methods. The strong performance
of frozen BERT in these experiments suggests that
if task-ID is available during testing, a simple multi-
head configuration with a frozen encoder is often
sufficient. Experiments in the single-head CIL
setup have shown to be more challenging. As the
models are tested on the full test set after each in-
crement, ideally, they should exhibit a progressive
increase in accuracy. But when no task-ID is pro-

vided and decoding is done with a single head, most
models overfit and suffer catastrophic forgetting
between increments, with DKVB being the only
model to demonstrate improved CL capability in
this scenario. This suggests that DKVB’s unique ar-
chitecture effectively maintains knowledge across
tasks without needing task-specific heads.

8 Conclusion

The discrete key-value bottleneck offers an efficient
approach to continual learning. It enables context-
dependent updates in the model without explicit
parameter isolation or dynamically expanding the
architecture. Considering the special challenges
of continual learning with text embeddings, we
analyzed twelve architectural variants of the bottle-
neck. The best variants apply mean pooling after
the bottleneck and utilize the hidden dimension
of the encoded input representation to create the
bottleneck heads.

We conducted a comprehensive evaluation
across different continual learning settings in
NLP, i. e., domain-incremental learning, class-
incremental learning, and task-type incremental
learning, and showed that with proper key initial-
ization, the discrete key-value bottleneck offers
consistent improvement in most settings and is
comparable to dedicated continual learning meth-
ods from the literature. Moreover, we showed that
it can be used even in the most challenging single-
head continual learning scenarios when no task-ID
is provided.

9 Limitations

Our study focuses solely on encoder-only language
models. While this raises questions about whether
our results could generalize to other model archi-
tectures, our choice was motivated by their prefer-
ence for supervised fine-tuning scenarios where the
balance between performance and computational
efficiency is crucial. Our experiments were also
limited to fine-tuning for classification-based down-
stream tasks. Consequently, it remains to be inves-
tigated whether our results extend to other NLP
tasks, such as semantic search, entity extraction, or
machine translation.
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Supplementary Materials

A Extended Related Work

Regularization-based methods This family of
methods involves incorporating explicit regulariza-
tion terms to maintain a balance between the old
and new tasks. This is usually done by adding
penalty or regularization to the loss function to
prevent large changes to parameters deemed impor-
tant for old tasks (Wang et al., 2024). A popular
method in this family is Elastic Weight Consider-
ation (EWC), which calculates the importance of
parameters with the Fisher information matrix, and
applies smaller updates to weights deemed critical
for earlier tasks (Kirkpatrick et al., 2017).

Replay-based methods These methods either re-
tain a subset of training examples from previous
tasks in memory such as A-GEM (Chaudhry et al.,
2018), or learn to generate pseudo samples from
previous tasks, like in DGR (Shin et al., 2017).
These samples are then incorporated into the train-
ing regimen of new tasks. While this can allevi-
ate catasthropical forgetting, the size of a memory
buffer is limited, which can potentially affect gen-
eralizability (Wang et al., 2024).

Optimization-based methods Explicitly manip-
ulating the optimization process is another way
to tackle the challenges of continual learning.
Gradient-projection methods ensure that gradient
updates happen exclusively in the orthogonal di-
rection to the gradients of an old tasks, thereby
preventing any impact on weights important for old
tasks (Zeng et al., 2019; Guo et al., 2022). Meta
learning strategies and methods focusing on obtain-
ing flat minima in the loss landscape can be also
utilized in continual learning (Javed and White,
2019; Mirzadeh et al., 2020).

Architecture-based methods Methods in this
family can be generally divided into parameter
isolation and, dynamic architecture approaches, de-
pending on whether the model architecture is fixed
or not (Wang et al., 2024). Models such as Sup-
Sup (Wortsman et al., 2020) and HAT (Serra et al.,
2018) optimize a binary mask to selectively choose
dedicated parameters for each task and fall under
the parameter isolation category. Other methods
dynamically expand the model with new parame-
ters to increase capacity for learning new tasks (Ke
et al., 2021; Hung et al., 2019).

Instruction-based methods This family is
unique to the field of NLP. These methods are
based on task-specific instructions given to encoder-
decoder or decoder only language models when a
new task is encountered. While some methods in
this family show promising knowledge transfer ca-
pabilities (Scialom et al., 2022; Yin et al., 2022;
Razdaibiedina et al., 2023), without explicit fine-
tuning they are mostly limited by the knowledge
acquired in the pre-training phase.

B Extended Experimental Setup

Implementation For all model backbones in our
experiments, we use the BERT-base model from
Huggingface3 and use cross-entropy loss as our ob-
jective function. We base our discrete-key-value
bottleneck implementation on the vector-quantize-
pytorch4 package. In the pre-experiments, we trun-
cate each input sample to 256 tokens. For the main
continual learning experiments, we rely on the Py-
Continual5 framework and reuse their implementa-
tions and hyperparameters on the baseline methods.
To remain comparable to other studies using the
PyContinual framework, we kept the default pre-
processing steps, used a maximum token length
of 128, and applied the default convolutional de-
coder of the baseline models. For the single-head
class incremental learning experiments we use a
fixed randomized sequence order when creating the
increments, and used a token length of 256. The
source code for our experiments alongside the mod-
els can be found at github.com/drndr/dkvb_nlp.

Optimization As part of our pre-experiments,
we also conducted a hyperparameter search and
a sensitivity analysis on the bottleneck parame-
ters. Outside of the selected hyperparameters and
bottleneck parameters, all other configurations re-
mained fixed during the search. Our experiments
use the BERT-base architecture with a hidden size
of 768. For the optimizer, we chose AdamW with
a weight decay of 0.01. The dropout rate for the
parametric decoder was set to 0.1. For the refer-
ence fully fine-tuned BERT numbers we reused
the hyperparameters reported in (Galke and Scherp,
2022), for the frozen BERT variant we relied on the
parametric DKVB variant hyperparameters with
mean pooling. During fine-tuning, we carefully

3https://huggingface.co/bert-base-uncased
4https://github.com/lucidrains/vector-quantize-pytorch
5https://github.com/ZixuanKe/PyContinual
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optimized the models on both datasets using grid-
search-based manual tuning. A search space for
the selected hyperparameters was defined, specifi-
cally we chose the batch size from {8, 16, 32}, the
number of epochs from {5, 10}, the learning rate
for the values layer from {1e-1, 1e-2, 1e-3}, and
the decoder learning rate from {1e-3, 1e-4, 1e-5}.
The best performing (based on the validation loss)
configurations for each architecture variant can be
seen in Table 5. The hyperparameters were reused
for the continual learning main experiments.

In the single-head class incremental learning ex-
periments we conducted an additional manual hy-
perparameter search for the DKVB variants and
found a batch size of 16 with a global learning rate
of 1e− 2 to be the best performing. For EWC we
set the lambda parameter to 5,000. In the DER++
model we used a memory buffer size of 256 and
set the sampling reate in each increment to 16.

B.1 Bottleneck Parameters
In our experiments, we rely on the optimal bottle-
neck parameter analysis of (Träuble et al., 2023).
Additionally, we also conduct a small sensitivity
study for the discrete key dimension and number of
key-value pairs on the R8 dataset. For this, we
use the DKVB-NP model variant from the pre-
experiments and keep everything fixed, changing
only these two bottleneck parameters. For the base
hyperparameters, we reuse the best-performing
configurations.

Key dimension The number of dimensions of
the discrete keys strongly influences the utility of
the bottleneck. This can be explained as follows.
Keys that have too few dimensions increase the
chance of unintended key sharing between inputs
from different distributions, while discrete keys
with too high dimensionality can lead to insufficient
coverage of the embedding space. Similarly to
(Träuble et al., 2023) we found the optimal key
dimension to be between 8 to 12. The results of
this analysis are depicted in Figure 3.

Number of key-value pairs The number of key-
value pairs determines the size of the discretized
representational space. In accordance with the
analysis of (Träuble et al., 2023), we found that
increasing the number of key-value pairs leads to
a performance increase. Eventually further incre-
ments no longer yield substantial improvements in
performance. Note that increasing this parameter
also leads to increased model size and increases the

(a)

(b)

Figure 3: Assessing the sensitivity of bottleneck param-
eters in regards of test accuracy: (a) Dimensionality of
discrete key (b) Number of key-value pairs

computational costs of key initialization as well.
The results of this analysis are depicted in Figure
3.

C Extended Results

Architectural Variants Results obtained using
the RoBERTa (Table 6) and DistilBERT (Table 7)
models demonstrate comparable performance pat-
terns to those observed with BERT. Interestingly,
DistilBERT produced slightly better accuracy on
most architecture variants compared to the other
two models. However the highest performance
was consistently seen with mean pooling after the
bottleneck on all three models. DistilBERT’s im-
proved performance can likely be attributed to dif-
ferences in its tokenization and pooling implemen-
tation compared to other models.

Continual Learning Experiments In the field
of continual learning additional metrics are often
used to measure the performance over incremen-
tal learning. Two often used metrics are Forward
Transfer (FWT) and Backward Transfer (BWT)
(Lopez-Paz and Ranzato, 2017). BWT refers to
how learning a new task affects performance on a
previously learned task. It can be positive, when
learning a new task improves performance on the
earlier task, or negative, when it worsens it. Severe
negative backward transfer is often called catas-
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Table 5: Best hyperparameter configuration for each architecture variant based on validation loss

(A) Dataset: R8 (B) Dataset: 20ng
Model Segmentation Pooling #Epoch Batch size Values LR Decoder LR #Epoch Batch size Values LR Decoder LR

DKVB-P hidden Before CLS 5 32 1e-2 1e-4 10 16 1e-1 1e-3
DKVB-P hidden Before Mean 5 32 1e-1 1e-4 10 16 1e-2 1e-4
DKVB-P hidden After CLS 10 16 1e-2 1e-4 5 16 1e-2 1e-4
DKVB-P hidden After Mean 10 16 1e-2 1e-3 5 16 1e-2 1e-3
DKVB-P token After CLS 10 16 1e-2 1e-3 10 16 1e-2 1e-3
DKVB-P token After Mean 10 16 1e-2 1e-3 10 16 1e-2 1e-3
DKVB-NP hidden Before CLS 5 32 1e-1 - 5 32 1e-1 -
DKVB-NP hidden Before Mean 5 32 1e-1 - 10 32 1e-1 -
DKVB-NP hidden After CLS 10 16 1e-1 - 5 16 1e-1 -
DKVB-NP hidden After Mean 10 32 1e-1 - 10 16 1e-1 -
DKVB-NP token After CLS 10 32 1e-1 - 10 32 1e-2 -
DKVB-NP token After Mean 10 32 1e-1 - 10 32 1e-2 -

Table 6: Accuracy and standard deviation (in subscript) of the different DKVB architecture variants with RoBERTa
on the R8 and 20ng datasets in a non-continual, standard learning setup, averaged over 5 runs.

Dataset: R8 Dataset: 20ng

Decoder Segmentation Pooling Before Pooling After Pooling Before Pooling After
CLS Mean CLS Mean CLS Mean CLS Mean

Parametric hidden 49.480.05 91.360.40 91.730.81 94.250.26 51.050.43 56.630.39 52.181.11 75.080.21
token - - 90.021.05 94.050.31 - - 19.861.03 27.300.92

Non Parametric hidden 49.450.02 92.050.29 74.531.74 93.040.20 56.830.35 60.420.35 53.101.37 70.330.78
token - - 58.740.92 66.330.74 - - 9.890.66 12.511.67

RoBERTa (frozen) w/o DKVB 94.290.17 69.420.30
RoBERTa w/o DKVB 97.540.51 83.360.30

Table 7: Accuracy and standard deviation (in subscript) of the different DKVB architecture variants with DistilBERT
on the R8 and 20ng datasets in a non-continual, standard learning setup, averaged over 5 runs.

Dataset: R8 Dataset: 20ng

Decoder Segmentation Pooling Before Pooling After Pooling Before Pooling After
CLS Mean CLS Mean CLS Mean CLS Mean

Parametric hidden 90.220.30 92.170.25 90.460.44 96.090.21 56.260.53 60.240.20 60.260.31 79.790.49
token - - 89.240.93 94.780.86 - - 45.451.13 68.060.90

Non Parametric hidden 89.790.24 92.020.38 90.920.22 95.090.27 60.730.48 59.980.30 61.430.50 75.110.44
token - - 66.370.49 72.650.24 - - 12.040.51 18.701.03

DistilBERT (frozen) w/o DKVB 94.620.16 68.560.38
DistilBERT w/o DKVB 97.830.24 83.840.23

trophic forgetting. FWT describes how learning a
new task influences performance on a future task.
Since pre-trained language models already posses
high transfer learning capabilities (Brown et al.,
2020), its difficult to isolate the effect of learning
specific task on future performance. Therefore we
focus on BWT which is formally defined as:

BWT =
1

T − 1

T−1∑

i=1

(RT,i −Ri,i) (1)

where R ∈ RT×T is the results matrix of an
incremental learning scenario with T tasks, where
each entry Ri,j being the test accuracy on task j
after training on task i (Lopez-Paz and Ranzato,
2017).We report the BWT numbers on the three
continual learning scenarios in Table 8.
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Table 8: Average Backward Transfer (BWT) scores on the three continual learning scenarios

CL Method Model DIL CIL TIL
(DSC) (20NG) (4GLUE)

NCL BERT 0.29 −29.77 −20.00
NCL BERT (frozen) −0.10 −0.38 −6.70
NCL Adapter-BERT 0.39 −20.01 −16.05
DER++ BERT (frozen) −0.58 −27.11 −7.05
EWC BERT (frozen) 0.06 -0.27 −10.84
OWM BERT (frozen) 0.26 −15.44 −8.23
CTR Adapter-BERT 0.49 −0.50 -6.19

DKVB-NP Incremental BERT (frozen) −3.06 −27.73 −21.30
DKVB-NP Oracle BERT (frozen) -0.88 -0.12 -7.22
DKVB-NP Generic BERT (frozen) −1.17 −0.29 −7.97
DKVB-P Incremental BERT (frozen) −4.88 −29.05 −20.99
DKVB-P Oracle BERT (frozen) −1.02 −0.41 −20.56
DKVB-P Generic BERT (frozen) −6.24 −4.94 −16.00

Table 9: Mean accuracy scores of single-head class incremental learning experiments on R8, averaged over 5 runs
with fixed sequence order

Increment # Test
Samples

BERT BERT-frozen BERT-frozen
DER++

BERT-frozen
EWC

DKVB-NP
Incremental

DKVB-NP
Oracle

DKVB-NP
Wiki

1. 1596 31.79 31.79 31.79 31.79 31.79 31.79 31.79
2. 253 5.52 5.52 8.60 31.79 5.57 31.80 31.79
3. 2840 49.47 49.47 46.47 12.65 49.70 67.70 43.19
4. 41 0.45 0.45 4.99 49.61 27.40 76.98 75.83
5. 190 3.70 3.70 14.57 49.56 41.02 77.57 77.56
6. 206 3.97 3.97 23.11 3.70 44.86 79.26 79.76
7. 108 1.64 1.64 14.89 3,74 43.85 79.72 80.61
8. 251 3.42 3.42 16.71 2.64 29.83 80.86 81.90

Table 10: Mean accuracy scores of single-head class incremental learning experiments on R52, averaged over 5
runs with fixed sequence order

Increment # Test
Samples

BERT BERT-frozen BERT-frozen
DER++

BERT-frozen
EWC

DKVB-NP
Incremental

DKVB-NP
Oracle

DKVB-NP
Wiki

1. 45 0.70 0.50 0.56 0.50 0.73 0.54 0.60
2. 1600 26.20 27.10 26.07 0.50 27.10 27.10 0.92
3. 52 0.46 0.23 14.99 0.85 0.54 27.29 24.71
4. 29 0.35 0.35 9.60 3.69 0.46 29.51 27.30
5. 321 2.92 2.95 4.08 2.57 3.58 25.60 27.41
6. 37 0.35 0.07 18.76 0.35 0.42 27.22 27.63
7. 17 0.35 0.42 7.73 0.35 0.35 28.85 27.55
8. 44 0.54 0.46 4.53 0.35 0.70 27.57 27.67
9. 28 0.50 0.35 13.13 0.42 0.46 27.10 28.10
10. 110 1.40 1.40 12.73 0.35 1.40 25.58 28.56
11. 3046 42.17 42.17 44.18 0.35 44.82 42.17 28.87
12. 16 0.97 0.35 19.78 0.70 0.42 43.71 29.17
13. 10 0.15 0.23 25.31 0.97 0.35 44.85 29.48
14. 193 3.15 3.15 21.58 0.42 3.15 52.64 30.30
15. 213 3.38 3.38 23.62 3.38 2.95 42.52 31.80
16. 154 1.09 1.09 6.43 3.38 1.55 42.83 35.83
17. 145 1.40 1.40 26.11 1.47 1.83 45.40 36.12
18. 32 0.50 0.50 23.19 0.50 0.50 45.52 17.95
19. 203 3.15 3.15 31.43 1.83 3.30 45.71 11.10
20. 227 3.15 3.15 25.42 3.15 3.62 38.94 10.34
21. 2948 42.17 42.17 45.67 3.15 42.25 44.74 40.07
22. 255 4.71 4.71 47.63 42.25 4.71 48.84 41.96
23. 59 0.58 0.38 23.27 42.17 0.77 47.15 42.23
24. 48 0.58 0.58 22.85 0.58 0.62 37.96 42.48
25. 59 0.58 0.58 42.04 0.58 0.70 38.55 43.11
26. 243 3.38 3.38 35.75 0.58 3.62 47.78 45.04
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Abstract

In this study, we examine the impact of do-
main adaptation and question-answer pooling
on text-based aphasia prediction with standard
and medically specialised BERT models for
a German corpus. Modelling tasks comprise
aphasia type classification as well as multitask
regression of communicative, semantic, and
syntactic skills. We found that domain adap-
tation before finetuning as well as question-
answer pooling increased performance for the
standard but not for the specialised models on
all classification and regression tasks.

1 Introduction

Aphasia is a language impairment due to brain dam-
age, after a stroke, traumatic head injury, brain
tumours, or progressive neurological conditions.
Depending on the brain regions affected, aphasia
is featured differently. The most common types of
aphasia are: global, amnesic (anomic), Wernicke’s
and Broca’s aphasia (Caplan, 2003; Ardila, 2010).
In Broca’s aphasia, patients typically exhibit phone-
mic substitutions and have a non-fluent speech pat-
tern. Wernicke’s aphasia is characterised by an
effortless but nonsensical speech. Global aphasia
combines aspects of both Broca’s and Wernicke’s
aphasia. Amnesic aphasia is primarily character-
ized by word retrieval and naming problems. Apha-
sia subtype classification is not straightforward and
it is common that various aphasia types co-exist
(Fridriksson et al., 2018).

Effective evidence-based therapy consists of
high-intensity Speech-Language Therapy (SLT)
which has been shown to improve linguistic capa-
bilities (Peitz et al., 2024). However, this needs to
be based on detailed diagnostics using appropriate
tests. In German-speaking countries, the most com-
mon test used for aphasia diagnosis and monitoring
is the standardised Aachen Aphasia Test (AAT)
(Huber et al., 2013; Huber, 1983). This compre-
hensive test is designed to assess various aspects of

language function, including comprehension, ex-
pression, repetition, and naming skills. It also pro-
vides information of probabilistic aphasia subtype
and severity (Kohlschein et al., 2018). It consists of
an examination of spontaneous language and five
subtests. A 10-minute semi-structured interview,
recorded during therapy, is rated in six domains:
communicative behaviour, articulation/prosody, au-
tomatised language, semantics, phonology and syn-
tax (Kohlschein et al., 2017). However, AAT is
time-consuming and its result depends highly on
the rater (Kohlschein et al., 2018), which usually
is a highly trained speech and language therapist.
An automatic aphasia diagnosis based on the AAT
could help reduce waiting periods for patients and
clinicians’ burden as well as provide personalised
remote rehabilitation strategies.

Prior work employing Machine Learning (ML)
methods has explored aphasia and its subtype
classification using connected speech, derived ei-
ther from manual transcripts or Automatic Speech
Recognition (ASR) systems (Fromm et al., 2022).
These studies have focused on feature-based su-
pervised methods, including traditional discourse
features (e.g., syntactic complexity, proportion of
nouns, verbs, adjectives) or embeddings by end-
to-end approaches using large pre-trained models.
Zusag et al. reported an F1 score of 0.84 for de-
tecting amnesic aphasia, 0.77 for identifying Broca
aphasia; and 0.78 for Wernicke aphasia using a Sup-
port Vector Classifier (SVC) and linguistic features
(Zusag et al., 2023). Dunfield et al. employed sen-
tence representation similarity features to capture
symptoms of fluent aphasia and found a correlation
of 0.61 with the Western Aphasia Battery-Revised
Aphasia Quotient (Dunfield and Neumann, 2020).
These features include question-answer similarity,
closest question-answer pair identification, and bi-
nary sentence pair classification. The latter was
obtained using BERT to predict the likelihood of
a given sentence pair being related (Dunfield and
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Neumann, 2020). Cong et al. leveraged Large
Language Model (LLM)-surprisals to predict apha-
sia, its subtypes, and the level of severity. They
reported an F1 score of 0.92 for predicting aphasia
from healthy controls and 0.79 F1 score for identi-
fying aphasia subtypes (Cong et al., 2024b). In an-
other work, Cong et al. further employed surprisal
values of LLMs, including GPT-2, Llama2, and
BERT, alongside utterance length, to predict apha-
sia and its subtypes. Their results demonstrated an
F1-score of 0.61 for detecting aphasia and 0.86 for
classifying its subtypes in Chinese. For English,
they reported an F1-score of 0.79 for identifying
aphasia and 0.54 for distinguishing its subtypes
(Cong et al., 2024a).

The contributions of our work of automatised
aphasia assessment are as follows: (1) Aphasia
transcripts are atypical on the lexical, syntactic,
and semantic level. Such transcripts are usually
not contained in the training material of pre-trained
models, which might lower their general applicabil-
ity on such clinical data. We are going to address
this potential shortcoming by domain adaptation as
described in section 3.2. (2) Relevant information
is expected not to be contained only in the patients’
answers in isolation but also within the context of
the underlying question. We are going to address
this contextualization by embedding pooling alter-
natives as presented in section 3.3.

2 Data

The German dataset was collected within the au-
toAAT BMBF project. It contains spontaneous
speech samples, manual transcripts, and their as-
sociated clinical scores from the AAT. Transcripts
were anonymised by removing all personal infor-
mation. This dataset is built on the work presented
in (Kohlschein et al., 2018). Many patients pro-
vided more than one recording due to repeated
treatment cycles.The scores comprise the aphasia
type classification and linguistic skills assessment.
Aphasia type is categorised into the four classes
Amnesic, Broca, Global, and Wernicke; since the
project focus is to automatise aphasia diagnosis
for tailored SLT, the dataset does not contain a
control group. Other types of aphasia, such as pri-
mary progressive aphasia or unclassifiable, have
been excluded of the analysis due to data sparsity.
Linguistic skills are assessed separately in various
impairment levels and on an expert-annotated six
point scale (with 0 being the most severe and 5

meaning no impairment). This study focuses on
three linguistic impairment levels: communicative
behaviour (understanding and responding to ques-
tions), semantic structure (word finding difficulties
and semantic paraphasias), and syntactic structure
(sentence completeness and complexity).

The dataset comprises 331 participants, 92 fe-
male, 239 male, with a mean age of 53± 13 years.
The major aphasia types are represented by the
following numbers: 105 Global, 70 Broca, 32 Wer-
nicke, and 34 Amnesic. The rest of the participants
correspond to the excluded classes. Due to data
protection regulations, the dataset cannot be shared.
The dataset was split into speaker-disjunct training,
development (10%), and test (20%) sets stratified
on the aphasia type of each speaker by means of
splitutils (Reichel, 2024). A random seed of 42
was applied to ensure reproducibility. Texts were
cleaned by removing transcriber comments and
special annotation symbols. The linguistics skills
scales ranging from 0 to 5 were re-scaled to the
range [0, 1].

3 Methods

3.1 Modelling variants

For both tasks, aphasia type classification and lin-
guistic skills regression, we started from two dif-
ferent base models: the general-purpose model
dbmdzbert-base-german-uncased (Devlin et al.,
2019) (referred to as standard encoder in the fol-
lowing), and GerMedBERT/medbert-512 (Bressem
et al., 2023), which was pre-trained on medical
documents for applications in the clinical domain,
henceforth referred to as specialised encoder.

For each of these encoders, we further created
a variant domain-adapted to our specific aphasia
dataset as described in section 3.2. Each of these
four variants we combined with three different pool-
ing architectures as described in section 3.3. We
finetuned each of these 12 model variants on the
two clinical tasks with 5 different random seeds,
which we describe in section 3.4.

3.2 Domain adaptation

For domain adaptation, we followed the recipe of
(Lendvai et al., 2023) applying vocabulary exten-
sion and Masked Language Modelling (MLM). We
applied a 90/10 speaker disjunct and aphasia-label
stratified split of the training partition into MLM
training and development partition. Based on the
MLM training partition we extended the tokeniz-
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ers’ vocabularies with the lexical content of the
transcripts by adding up to 300 most frequent, yet
unknown words with a minimum length of five
characters. Subsequently, each base model was
finetuned on the MLM task with a standard Bert-
ForMaskedLM head. Finetuning was done in 20
epochs with the AdamW optimizer, a learning rate
of 2e− 5, a perplexity loss, and a batch size of 16.
We kept the best model in terms of the lowest loss
for the development set.

3.3 Pooling
We applied three types of pooling of the last hidden
states of the encoder:

a: answer-only; we extract the embeddings only
for the patient’s answer and apply mean pooling of
these embeddings;

qa-c: answer contextualised by question; we
concatenate question and answer with a [SEP] to-
ken as for text entailment tasks (Putra et al., 2024),
extract the embeddings for this text pair, and apply
mean pooling on the answer part of this pair only,
which is forwarded to the classification head;

qa-cc: answer contextualised by question plus
question-answer coherence; as for qa-c we concate-
nate question and answer. Then, we concatenate
the initial CLS token embedding with the mean em-
bedding of the answer. This concatenated pooling
we forward to the classification head.

Schematically, the pooling variants can be ex-
pressed as follows (the underlined constituents go
into the pooling):

a: [CLS] answer
qa-c: [CLS] question [SEP] answer

qa-cc: [CLS] question [SEP] answer
We expect qa-cc to capture not only answer con-

textualisation but also question-answer coherence
due to the ‘semantics’ of the CLS token. Since this
token had been pre-trained on the next sentence
prediction task, it is expected to represent the infor-
mation the pre-[SEP] text part contains about the
post-[SEP] text part, which can be considered as an
aspect of text coherence.

In total, we get 12 model variants defined by all
combinations of encoder type (standard, special-
ized), domain adaptation (yes, no) and pooling
(a, qa-c, qa-cc). The finetuning of these models
on the two downstream tasks is described in the
subsequent section 3.4.

3.4 Finetuning
Architecture: To each encoder, we add a two-

layer head with a non-linear (tanh) layer and a
linear output projection. For classification, this
output projection has 4 outputs, one per aphasia
type. For multitask regression, it has 3 outputs, one
for communicative, semantic, and syntactic skills,
respectively.

Hyperparameters: Each model was finetuned
in 8 epochs with the AdamW optimizer, a learn-
ing rate of 3e − 5 and an effective batch size of
32. For classification, we used the weighted cross
entropy loss and unweighted average recall (UAR)
as metrics to be maximised on the development
set. For regression, we used a Concordance Cor-
relation Coefficient (CCC) loss and CCC metrics
for the development set. We kept the models per-
forming best on the development set for further
evaluation on the test partition. Finetuning and
evaluation was repeated five times with different
random seeds (1, 9, 20, 21, 42, generated with
numpy.random.default_rng()).

4 Results

Figures 1 and 2 show the results in terms of UAR
and mean CCC for aphasia type classification and
linguistic skills regression, respectively. As an
overall tendency for the standard encoder, we ob-
serve that domain adaptation as well as question-
answer contextualisation slightly improve the per-
formances for classification as well as for regres-
sion, but not so for the specialised encoder.

The best aphasia type classification result, a
UAR of 0.653 averaged over all random seeds, was
obtained with the standard encoder, and the qa-cc
pooling variant accounting for contextualisation
and coherence. For linguistic skills multitask re-
gression, again, the standard encoder this time with
the qa-c pooling variant for contextualisation only
performed best, yielding a mean CCC of 0.755
averaged over all random seeds. Split into the lin-
guistic dimensions it achieved a CCC of 0.738 for
communicative, 0.695 for semantics, and 0.831 for
syntactic skills prediction.

5 Discussion and Conclusion

We identified two challenges for finetuning pre-
trained transformer models with aphasia data: First,
this text data is rather atypical and usually not part
of pre-training datasets. This missing link was ad-
dressed by domain adaptation. Second, patients’
answers are not only to be seen in isolation but
also within context with the corresponding ques-
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Figure 1: Aphasia type classification results: Un-
weighted average recall (UAR) values for all encoder
and pooling variant combinations (see section 3). Error
bars indicate 95% confidence intervals.
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Figure 2: Communication, semantics, and syntactic
skills multitask regression results: arithmetic mean Con-
cordance correlation coefficient (CCC) values over the
three regression dimensions for all encoder and pooling
variant combinations (see section 3). Error bars indicate
95% confidence intervals.

tion. This contextualisation and coherence assess-
ment was addressed by introducing different kinds
of question-answer poolings.

For the standard encoder, domain adaptation as
well as question-answer pooling turned out to be
beneficial for both aphasia type classification as
well as linguistic skills regression. Both strategies,
by a low margin but consistently, lead to increased
performance. As to pooling, for aphasia type clas-
sification, joint contextualisation and coherence
assessment worked best, for regression contextuali-
sation only lead to the highest performance.

The specialised encoder overall yielded lower
performances compared to the standard encoder,
which on first sight might appear counter-intuitive.

However, the specialised model was not necessar-
ily expected to work better for patient data clas-
sification in the first place, since the pre-training
material consists exclusively of expert texts from
scientific publications and dictionaries, as reported
in (Bressem et al., 2023). These documents usually
do not include a large amount of patient transcripts,
but rather few illustrative examples only. Therefore,
this specialised model is well suited for tasks such
as clinical expert text classification, but not nec-
essarily for patient transcript classification. One
major reason for the overall lower performance
of the expert model might be that the specialised
pre-training material contains much less variability
than the standard encoder’s pre-training data, so
that it is less capable to extrapolate to that kind
of data. Likely due to this shortcoming, the spe-
cialised model neither could profit from domain
adaptation nor question-answer pooling.

For question-answer pooling, longer error bars
were observed for qa-cc as opposed to qa-c in Fig-
ures 1 and 2. This indicates that joint contextu-
alisation and coherence assessment is less stable
across random seed variations than contextualisa-
tion alone, so that the latter seems to be preferable
in terms of model robustness.

To conclude and to give an outlook, our results
show that for the given data, aphasia modelling
works best with domain-adapted standard BERT
models with contextualised mean pooling of the
embeddings of patients’ utterances. These results
were obtained on narrow manual transcripts that
preserve linguistic peculiarities relevant for aphasia
assessment. For a fully automated aphasia assess-
ment, such transcripts would need to be generated
by ASR models, that keep track of clinically rele-
vant utterance characteristics such as disfluencies;
see, e. g., (Zusag et al., 2023; Mihajlik et al., 2024;
Gohider and Basir, 2024) for such ASR methods.
Our next steps thus will include combining auto-
mated narrow transcription with our aphasia mod-
elling approach.
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Data was analysed transparently, avoiding bias and
ensuring accuracy.
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Abstract

Aspect-based sentiment analysis enhances sen-
timent detection by associating it with spe-
cific aspects, offering deeper insights than tra-
ditional sentiment analysis. This study intro-
duces a manually annotated dataset of 10,814
multilingual customer reviews covering brick-
and-mortar retail stores, labeled with eight as-
pect categories and their sentiment. Using this
dataset, the performance of GPT-4 and LLaMA-
3 in aspect based sentiment analysis is evalu-
ated to establish a baseline for the newly in-
troduced data. The results show both models
achieving over 85% accuracy, while GPT-4 out-
performs LLaMA-3 overall with regard to all
relevant metrics.

1 Introduction

Sentiment analysis, i.e. the automatic identifica-
tion of the sentiment expressed in, e.g., a text, is
a widely used technique in research, business, pol-
itics, and many other domains (Wankhade et al.,
2022). While traditional sentiment analysis meth-
ods focus mainly on detecting sentiment at the
sentence or document level, aspect-based senti-
ment analysis is a more fine-grained approach
through which particular aspects expressed in a
text are identified with their corresponding senti-
ment (Zhang et al., 2022). For a movie review, e.g.,
in this way not just the overall sentiment expressed
by the review is identified but also, for example,
whether the reviewer liked or disliked the score or
camera work. Such more fine-grained insights are
particularly valuable to businesses as they provide
better insights into the needs of customers.

While datasets for traditional sentiment anal-
ysis are widely available (see e.g. Tan et al.
(2023); Kenyon-Dean et al. (2018); Wagh and
Punde (2018), and Saif et al. (2013) for an overview
of popular datasets), in part because they can be
gathered in an automated fashion from services
that use a combination of a score (e.g. in the form

of stars) alongside with a textual review, the num-
ber of datasets available for aspect-based sentiment
analysis is much more restricted (see e.g. Nazir
et al. (2022) and Hua et al. (2024)). Additionally,
most of the existing datasets either contain a small
number of aspects per item or all aspects in one
item have the same polarity (Jiang et al., 2019).

In this paper, we introduce a new, manually an-
notated, dataset for aspect-based sentiment analy-
sis, that consists of 10,814 reviews for brick-and-
mortar retail stores, scraped from Google Maps.
The reviews cover different countries and lan-
guages and have been annotated with eight dif-
ferent aspect categories (see Table 3) resulting in a
total of 16,994 labels. The dataset is available on
GitHub1. A detailed datasheet (Gebru et al., 2021)
for the corpus can be found in Appendix B.

In addition, we present a Large Language Model
(LLM)-based baseline for the newly introduced
dataset comparing the performance of Meta’s
LLaMa-3 and OpenAI’s GPT-4. The results show
that while both models perform well with an accu-
racy of more than 85%, GPT-4 consistently outper-
forms LLaMa-3 across aspects and metrics.

2 Related Work

Compared to “traditional” sentiment analysis,
aspects-based sentiment analysis presents a more
complex challenge, encompassing two distinct
stages: identifying all aspects described, and sub-
sequently determining the sentiment towards each
aspect.

2.1 LLMs for Aspect-Based Sentiment
Analysis

As for most NLP applications, recent literature
about aspect-based sentiment analysis has mainly
focused on the performance of LLMs. Recent

1https://github.com/Responsible-NLP/
ABSA-Retail-Corpus
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Table 1: Sample of scraped data

Country City Published At Text Stars
Belgium Maasmechelen 18-03-2023 Najbolja i najkvalitetnija roba 5
France Serris 29-12-2019 Great prices 5
Italy Marcianise 21-11-2023 Ho scoperto questo negozio grazie... 5
Belgium Mechelen 30-11-2017 Mooie propere zaak maar verkoper... 3

studies that compared the performance of LLMs
against smaller language models (SLMs), like
BERT, across a spectrum of sentiment analysis
tasks, including conventional sentiment classifica-
tion and aspect-based analysis, found that LLMs
exhibit proficiency in simpler tasks, such as senti-
ment classification, but encounter difficulties in
tasks requiring nuanced understanding or struc-
tured sentiment information (Zhang et al., 2024;
Macháliková, 2023; Han and Moghaddam, 2023).

In few-shot learning scenarios, however, where
annotation resources are limited, LLMs have
shown superior performance (Zhang et al., 2024).
According to Magdaleno et al. (2024), LLMs also
outperform smaller models in such tasks as pre-
dicting ratings of businesses based on online re-
views, and leveraging aspect-based sentiment anal-
ysis techniques. Moreover, LLMs have introduced
innovative methodologies for context-aware anal-
ysis, as shown by Jeong and Lee (2024) in the
context of hotel complaint reviews.

Comparative analyses between GPT-3.5, BERT,
RoBERTa, and LLaMA report superior perfor-
mance of GPT-3.5, specifically in predicting prod-
uct review ratings post fine-tuning (Roumeliotis
et al., 2024).

Krugmann and Hartmann (2024) report that us-
ing a zero-shot nature, LLMs can not only compete
with but in some cases also surpass traditional trans-
fer learning methods in terms of sentiment classi-
fication accuracy. Additionally, studies emphasize
the competitive performance of GPT-3.5 model in
discerning nuanced sentiments like irony within
social media tweets, achieved through prompt engi-
neering without explicit training (Carneros-Prado
et al., 2023) Moreover, effective prompting engi-
neering and fine-tuning are identified as crucial
factors for achieving enhanced outputs and cost ef-
ficiency, further accentuating the potential of LLMs
in customer satisfaction analysis and industry prac-
tices (Roumeliotis et al., 2024).

Comparative studies between LLMs and lexicon-
based methods, show that LLMs clearly outperform

such methods, while being particularly good in an-
notating sentiment analysis data and achieving over
94% accuracy in long-form sentiment reviews from
Twitter social media users and Amazon customers,
owing to its prowess in handling emojis, sarcasm,
and contextual nuances (Belal et al., 2023). No-
tably, the literature suggests that GPT’s integration
into business customer sentiment analysis reveals
its potential to significantly enhance understanding
of customer sentiments, offering valuable insights
for decision-making processes by comprehending
both general sentiments and nuanced factors within
customer texts (Sudirjo et al., 2023).

2.2 Datasets for Aspect-Based Sentiment
Analysis

Table 2 shows a list of existing datasets for aspect-
based sentiment analysis. While a number of
datasets exists, the vast majority of them only cov-
ers the English language. Multilingual data sets,
such as the one introduced in this paper, are par-
ticularly rare. With more than 10,000 annotated
instances, the dataset introduced in this article is
also one of the largest data sets for aspect-based
sentiment analysis that is currently available.

3 Corpus

The data collection for the corpus relied on Google
Maps reviews due to their accessibility and rich-
ness. While other publicly available datasets, such
as those from product reviews or social media plat-
forms, exist, many lack the level of granularity nec-
essary for aspect-based sentiment analysis. These
datasets typically emphasize general sentiment or
aggregate ratings, which limits their suitability for
examining specific aspects of customer feedback.
Google Maps represent a robust platform where
customers can leave reviews about a specific store
or location. With its vast user base and widespread
popularity, Google Maps is one of the most promi-
nent platforms for user-generated reviews.

To efficiently scrape the reviews from Google
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Table 2: Existing datasets for aspect-based sentiment analysis

Dataset Domain Lang. Size Sources
SemEval 2014 Service and Product Reviews English 7,686 Pontiki et al. (2014)
SemEval 2015 Service and Product Reviews English 5,596 Pontiki et al. (2015)
SemEval 2016 Service and Product Reviews 8 6,243 Pontiki et al. (2016)
Pars-ABSA Service Reviews Persian 5,602 Shangipour ataei et al. (2022)
Foursqaure Service Reviews English 585 Brun and Nikoulina (2018)
ACOS Service and Product Reviews English 6,362 Cai et al. (2021)
SentiHood Neighbourhood Q&A English 5,215 Saeidi et al. (2016)
MAMS Service Reviews English 13,854 Jiang et al. (2019)
Our dataset Service Reviews 45 10,814

Maps, the service Apify2 was utilized. Privacy and
personal data were primary concerns during the
data collection process. Despite Google Maps re-
views being publicly accessible, it was important
to be cautious to ensure compliance with privacy
standards. Apify’s functionality enabled the selec-
tion of only the essential columns, omitting per-
sonal identifiers such as the name/nickname of the
reviewer. Consequently, the collected data only in-
cluded the review text, star rating, timestamp, and
the location of the store (country and city). A small
sample of such can be seen in Table 1.

3.1 Data Cleaning and Augmentation

A total of 24,361 reviews were collected in that
way. Many reviews contained only a star rating
without any textual review, these entries were ex-
cluded from the dataset, resulting in a final dataset
of 10,814 reviews. Since the dataset contains re-
views in a variety of languages, an additional col-
umn was added to encode the language of each
review. The Google Translate API, accessed via
the Python library googletrans, was utilized to
detect the language of the reviews. The languages
are encoded in ISO-639 format. The dataset also
contains entries with unidentified languages and
entries that contain only symbols or emojis. Addi-
tionally, the publication time, which was in textual
format in the raw data, was converted to ISO-8601
format.

3.2 Data Annotation

The most important decision that had to be made
before the data annotation is the definition of as-
pect categories. Aspect categories are higher-level
concepts that pool different aspect terms to allow

2https://apify.com/compass/
google-maps-reviews-scraper

for more structured insights (Hua et al., 2024). The
selection of the aspect categories was based on ex-
isting literature (particularly Kang et al. (2022); Ra-
maswami and Varghese (2003); Fakhira and Siman-
juntak (2023)) and interviews with domain experts,
to ensure that the chosen categories are relevant
from both a scientific and a practitioner perspective.
The eight aspect categories that have been derived
from this process are shown in Table 3. They cover
a broad range of customer experiences and provide
valuable insights into different facets of the reviews
and the businesses behind them. Each of these cat-
egories, if identified in a review, was assigned a
sentiment label (negative, positive, or neutral).

The dataset was manually labeled by the au-
thors. Manual labeling, though time-consuming, is
critical for ensuring high-quality data annotations.
Given the labor-intensive nature of this task, a cus-
tom labeling tool was developed to facilitate the
process. Similar approaches have been employed in
other studies. For instance, the SemEval-2014 task
4 involved creating annotation guidelines and tools
for manual labeling to build benchmark datasets
(Pontiki et al., 2014). Do et al. (2020) surveyed
various tools and methods developed to assist in
aspect-level sentiment annotation, while Li et al.
(2012) presented a tool designed to create high-
quality training data through manual annotation.

Figure 1 shows the tool that was developed to
annotate the dataset. It allowed the authors to re-
view the text, select the relevant aspect, and assign
the corresponding sentiment. The tool features a
user-friendly interface with functionalities such as
language detection and translation to English, sen-
timent selection, and annotation saving.

10% of the data was annotated by two annotators
to conduct an inter-annotator agreement study. Us-
ing Krippendorff’s Alpha, the inter-annotator agree-
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Table 3: Chosen aspect categories and their description

Aspect Explanation
Product Encompasses clothing collection,

item quality, variety, display, and se-
lection.

Service Includes staff, assistance, crew, em-
ployee attitude, handling, and hospi-
tality.

Brand Pertains to overall brand perception.
Price Relates to the cost of products and

services, including promotions and
discounts.

Store Covers specific shop location, atmo-
sphere, and environment.

Online Concerns the online ordering experi-
ence.

Return Includes the experience of returning
an item for both physical or online
procurement.

General Overall experience of the customer
without a specific aspect mention.

ment is α = 0.71, a value that is comparable to
other ABSA datasets and in general indicates a reli-
able annotation. An in-depth analysis revealed only
two instances in which the annotators chose the
same aspect but different polarities. In both cases
it was not a direct contradiction, as in a positive
and a negative label at the same time, but one label
was neutral. An analysis on aspect-level shows that
more specific aspects like price and service show
higher agreement, while more general categories
like store and “general” show lower agreement. A
reoccurring pattern is that often, annotators agree
on most aspects, but one annotator adds a single
additional aspect (like general), thereby decreasing
agreement.

3.3 Data Analysis

Out of the 10,814 reviews in the dataset, 4,838 (or
44.7%) contain more than one aspect. On aver-
age, each review contains 1.6 aspects. Figure 2
shows how often each aspect category occurs in
the dataset. The most frequently occurring aspect
category is service, which is mentioned in 6,065 re-
views. The least mentioned category, online, only
occurred in 51 reviews, which is not surprising,
given that the reviews were specifically collected
for physical store locations.

The majority of the aspects mentioned in the

Figure 1: Labeling tool

dataset are positively connoted, as shown in Figure
3. Only for the aspect category return, the majority
of the reviews expresses a negative sentiment. The
most balanced aspect category is online, in which
55% of all mentioned aspects are positive, 8% neu-
tral, and 37% negative. Neutral aspects are rarely
mentioned across all categories. The highest share
of neutral aspects can be found for the category
general, with a little over 8%.

The reviews in the dataset have an average length
of 121 characters, ranging from just one character
(mostly emojis) to 3,735 characters. They cover
stores from nine different European countries (Ger-
many, France, Netherlands, Italy, Spain, Austria,
Belgium, Portugal, and Switzerland; in descending
frequency of occurrence) and are written in 45 dif-
ferent languages (see Figure 4 for a distribution of
the languages).

4 Experimental Set-Up

To establish a baseline in aspect-based sentiment
analysis for the newly introduced dataset, we con-
ducted an experiment comparing the performance
of the open weights model LLaMa-3 (Dubey et al.,
2024) and the proprietary GPT-4 model (Achiam
et al., 2023).

LLaMa-3 (Meta-Llama-3-70B-Instruct) was
integrated through the HuggingFace library. To
enhance performance and efficiency, quantization
techniques were applied, reducing the model’s
weight precision via BitsAndBytesConfig, which
optimized computational resources, particularly for
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local deployment on GPU clusters.
GPT-4 was used through Azure’s OpenAI Ser-

vice. The implementation leveraged LangChain
and its PromptTemplate component.

For both models, we used prompt engineering
(Brown et al., 2020; Radford et al., 2019; Gao et al.,
2021; Lu et al., 2021), and both system and user
prompts, to facilitate the aspect-based sentiment
analysis. System prompts are designed to define
the role of the language model and establish op-
erational guidelines to ensure consistency in re-
sponses. For both GPT-4 and LLaMA-3, the sys-
tem prompt instructed the model to perform aspect-
based sentiment analysis for a specific company.
This approach is known as intent classification. The
system prompt was implemented differently for
each model, reflecting their respective frameworks.
GPT-4 used LangChain’s SystemMessage object
to deliver the system instructions, while LLaMA-3
structured the system message as part of its chat
template.

Despite syntactic differences, both implementa-
tions enforce a structured response format by defin-
ing system behavior upfront. LLaMA-3 specifies
message roles such as "system" and "user" within
its message list (see Listing 1), while GPT-4 uti-
lizes LangChain’s langchain_core.messages frame-
work to differentiate between system and human
messages (see Listing 2). These system prompts
establish a consistent operational framework, ensur-
ing the model generates precise and task-specific
sentiment analysis responses.

User prompts provide the actual reviews and de-
fine the task parameters, guiding the model in iden-
tifying relevant aspects and classifying sentiments.
The construction of these prompts is essential for
ensuring accurate analysis, as they help the model
distinguish between various aspects of a review
and interpret sentiments effectively. To enhance
performance, the prompts can incorporate struc-
tured instructions, few-shot examples, delimiters,
and attention mechanisms.

One effective prompt engineering strategy is task
decomposition, where a complex task is divided
into smaller, more manageable steps. For instance:

"First, identify the aspects in the
provided review from the given list,
and then find the customer sentiment
(positive, neutral, or negative) for each
of the aspects. ..."

Another key technique is few-shot prompting,

where examples of correct outputs are included in
the prompt to guide the model’s response.

" ... You can follow the examples below:

Review: The product quality is great but
the customer service is terrible. Aspect:
product Sentiment: positive Aspect: ser-
vice Sentiment: negative

Review: I love the location of the store.
The collection and selection look great,
however, the prices are too high. Aspect:
store Sentiment: positive Aspect: prod-
uct Sentiment: positive Aspect: prices
Sentiment: negative

Review: All top, everything as I ex-
pected, recommend. Aspect: general
Sentiment: positive ... "

Finally, attention mechanisms can be influenced
by placing key instructions at the beginning and
end of the prompt. For example:

"First, identify the aspects in the pro-
vided review from the given list, and
then find the customer sentiment (posi-
tive, neutral, or negative) for each aspect.

Make sure to take into account the dif-
ference in language, cultural aspects, sar-
casm, emojis, and other linguistic behav-
iors when interpreting and assessing the
reviews. ...

... Remember to strictly focus only on
the aspects from the list and reply only
with the answer in the following JSON
format:

["aspect1": "sentiment", ... "aspectN":
"sentiment"]"

By placing important contextual elements at the
beginning and specifying output format at the end,
the model is guided to prioritize crucial information
while maintaining structured responses. The final
prompts used in the experiment can be found in
Appendix A.

5 Results

Table 4 shows the evaluation of the aspect-based
sentiment analysis experiment. Overall, GPT-4 out-
performed LLaMA-3 in every single metric, with
the widest gap in precision and the narrowest gap
in recall. Given the imbalance between positive
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Table 4: Precision, Recall, F1 Score, and Accuracy of the aspect-based sentiment analysis per model and aspect

GPT-4 LLaMA-3
Aspect Prec. Recall F1 Accur. Prec. Recall F1 Accur.
Store 73.00% 73.61% 73.31% 71.23% 59.02% 80.13% 67.97% 75.53%
Service 93.88% 98.00% 95.89% 95.31% 93.43% 96.44% 94.91% 94.05%
Product 65.34% 92.98% 76.75% 88.39% 58.12% 93.70% 71.74% 87.82%
Return 55.13% 77.48% 64.42% 76.11% 62.89% 54.46% 58.37% 53.98%
Brand 57.92% 70.65% 63.66% 65.66% 39.81% 84.92% 54.21% 80.43%
Price 82.71% 85.86% 84.26% 79.23% 79.04% 80.84% 79.93% 73.09%
Online 29.10% 82.98% 43.09% 76.47% 30.09% 72.34% 42.50% 66.67%
General 49.75% 78.09% 60.78% 73.92% 43.96% 65.13% 52.49% 62.13%
Micro avg. 74.48% 87.58% 80.50% 83.80% 66.84% 86.88% 75.55% 82.57%
Macro avg. 63.35% 82.46% 70.27% 78.29% 58.30% 78.49% 65.27% 74.21%

and negative reviews, the difference in accuracy of
both models is only about 1.2 percentage points, de-
spite the larger difference in precision. Only for the
aspect categories “store” and “brand”, LLaMa-3
outperformed GPT-4 in respect to accuracy.

In high-frequency aspects such as “service” and
“product”, both models showed strong performance,
with GPT-4 recording accuracies of 95.31% and
88.39%, respectively, compared to LLaMA-3’s
93.05% and 87.82%. Notably, LLaMA-3 demon-
strated improvements in the “product” category,
narrowing the gap with GPT-4. These results in-
dicate that both models reliably handle frequently
mentioned aspects, although GPT-4 retains a slight
edge in overall robustness.

When addressing lower-frequency or more nu-
anced aspects such as “return”, “brand”, and “on-
line”, both models continued to face challenges, al-
beit with notable differences. GPT-4 demonstrated
better performance in the “return” category, achiev-
ing an accuracy of 76.11% compared to LLaMA-
3’s 53.98%. Similarly, in “online”, GPT-4 outper-
formed LLaMA-3, recording accuracies of 76.47%
versus 66.67%. These findings underscore GPT-
4’s greater capability to handle complex sentiment
categories, though significant gaps remain. Both
models struggled with the “online” aspect in terms
of precision, with GPT-4 achieving 29.10% and
LLaMA-3 slightly higher at 30.09%. These metrics
highlight a broader limitation in capturing context-
dependent nuances in less straightforward senti-
ment categories. In order for an aspect-based sen-
timent to be classified as correct, both the aspect
and the sentiment expressed with it have to be ex-
tracted correctly. Notably, a large share of errors
already occurs during the identification of aspects

(see Table 5). The number of aspects that have
been identified correctly but the sentiment was mis-
classified is relatively small.

6 Error Analysis

A deeper analysis of the errors made by both mod-
els revealed that LLaMA-3 exhibited a tendency
to incorrectly identify aspects that are not present
in the text based on mentioned keywords. For in-
stance, in reviews such as “Great store for its amaz-
ing service and help from the assistants”, LLaMA-3
frequently identified “store” as an aspect, whereas
the correct interpretation according to the aspect
categories defined in Table 3 would be “service”.
This over-sensitivity to mentions of keywords is
also visible in Table 4, where the precision for
the aspect store is particularly low for LLaMA-3.
Yet, given the prevalence of the aspect across the
dataset, this over-sensitivity might also partially ex-
plain why this is one of just two aspect categories
in which LLaMA-3 achieved a higher recall and
accuracy than GPT-4.

Both models encountered difficulties in consis-
tently handling aspects from the categories “gen-
eral” and “brand”. Reviews with broad or ambigu-
ous sentiments about a brand in general, such as
"Brand for Bosses," or "I love BOSS" for the cloth-
ing brand “BOSS” posed a significant challenge
for both models. These reviews often led to incon-
sistent labeling, with models sometimes assigning
both “brand” and “general” aspects or failing to
distinguish between them altogether. Given the am-
biguity of such statements, even human annotators
would likely struggle to reach consensus, making
this a particularly challenging area for automated
analysis and labeling.
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Table 5: Aspect identification accuracy

Aspect GPT-4 LLaMA-3
Store 74.47% 81.26%
Service 98.05% 96.57%
Product 93.33% 94.10%
Return 77.88% 54.87%
Brand 72.73% 85.71%
Price 86.95% 82.69%
Online 84.31% 74.51%
General 79.27% 66.74%
Micro avg. 88.12% 87.57%
Macro avg. 83.37% 79.44%

LLaMA-3 showed a tendency to classify reviews
under the apsect category “brand” more frequently
than GPT-4, which contributed to its lower accu-
racy for the aspect category “general”, scoring
66.74% comparing to 79.27% for GPT-4. Simul-
taneously, LLaMa-3 outperformed GPT-4 in the
aspect category “brand”, being one of only two
aspect categories where it outperformed GPT-4
model. This behavior, while indicative of an at-
tempt to capture a broader range of sentiment, often
led to increased misclassification rates when the
sentiment was intended to be more general. The
higher labeling frequency for “brand” by LLaMA-
3 also aligns with its overall lower precision and F1
scores in this aspect, reflecting a trade-off between
recall and precision.

7 Conclusion

This paper introduced a new multilingual corpus
for aspect-based sentiment analysis that is based
on more than 10,000 reviews of brick-and-mortar
stores and was manually labeled with eight aspect
categories, namely product, service, brand, price,
store, online, return, and general (see Table 3).

Additionaly, an experiment was conducted to
establish a baseline for LLM-based aspect-based
sentiment analysis on the newly introduced cor-
pus by comparing the performance of GPT-4 and
LLaMA-3. The results indicate that both models
proficiently identify elements and attitudes in cus-
tomer reviews, with GPT-4 continuously surpass-
ing LLaMA-3 in precision, recall, and accuracy. Al-
though both models achieved accuracy exceeding
85%, they performed insufficiently for the “store”
and “brand” aspects, indicating areas for enhance-
ment. From an application perspective, in addition
to the performance, it is also worth considering the

potential costs of different approaches and models.
At the time of conducting the experiments, GPT-4
was queried through the Azure OpenAI API at a
total cost of $240.60 for the complete dataset, or an
average cost of $0.022 per review. With the price
for one million input tokens being around $2.50
and the price for one million output tokens being
around $10.00. LLaMA-3, on the other hand, can-
not just be self hosted, but also used through cloud
providers like groq who charge in the realm of
$0.59 / $0.79 per one million input / output tokens,
providing significantly cheaper options.

Ethics

By using public reviews and ensuring during both
collection and annotation of the data that no identi-
fiable information is contained in the reviews, we
tried to ensure that our work has no direct adverse
effects to anyone. Nevertheless, given the nature
of the task, companies could use an approach like
the one outlined in this work to try to automatically
assess job performance of workers in physical store
locations (e.g. by focusing on the aspect category
service). However, we believe that in practice, the
danger for such applications is relatively low given
that most reviews (and none in our dataset) name
specific employees or provide other information
that could be used for the identification of individ-
ual employees like exact data and time of an inter-
action. While the environmental impact of LLMs
is mostly discussed with regard to their training
and fine-tuning, ever larger models also have an in-
creasingly significant environmental impact during
inference, which also holds true for this work.

Limitations

This study faced limitations inherent to the rapidly
evolving field of LLM research. The introduction
of newer models may render some aspects of this
study’s model selection less timely, although its
fundamental methodologies remain relevant. Com-
putational limitations also restricted fine-tuning and
advanced quick engineering for LLaMA-3, poten-
tially affecting its performance. Furthermore, the
hand annotated dataset, albeit comprehensive, in-
troduced subjectivity in aspect and sentiment clas-
sification, with ambiguous phrases and linguistic
variances presenting hurdles to consistency. Lastly,
the predefined aspect categories may not generalize
across all use cases, making prompt design sensi-
tive to initial definitions.
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A Prompts

Listing 1: LLaMA-3 system prompt
messages = [ {"role": "system", "content

": """You are a helpful assistant
that performs aspect based sentiment
analysis for Hugo Boss! Do not

communicate back , just provide the
answer in the requested format """},
{"role": "user", "content": text}, ]

prompt = output.tokenizer.
apply_chat_template( messages ,
tokenize=False ,
add_generation_prompt=True )

Listing 2: GPT-4 system prompt
system_prompt = """You are a helpful

assistant that performs aspect based
sentiment analysis for Hugo Boss!

Do not communicate back , just
provide the answer in the requested
format."""

prompt_value = StringPromptValue(text=
chat_prompt_with_values)

output = llm.invoke ([ SystemMessage(
content=system_prompt), HumanMessage
(content=prompt_value.text), ])

Listing 3: LLaMA-3 user prompt
text = f"""First , identify the aspects

in the provided review from the
given list , and then find the
customer sentiment (positive ,
neutral , or negative) for each of
the aspect.

Make sure to take into account the
difference in the language , cultural
aspects , sarcasm , emojis , and other
linguistic behaviours when

interpreting and assessing the
reviews.

Aspects: [Product (collection , item ,
quality , variety , display , selection
), Service (staff , assistance , crew ,
employee , attitude , handling ,

hospitality), Brand , Price , Store (
shop , location , atmosphere), Online
(order), Purchase , Return , General (
overall shopping experience)]

You can follow the examples below:

Review: The product quality is great but
the customer service is terrible.

Aspect: product
Sentiment: positive
Aspect: service
Sentiment: negative

Review: I love the location of the store
. The collection and selection looks
great , however the prices are too

high.

Aspect: store
Sentiment: positive
Aspect: product
Sentiment: positive
Aspect: prices
Sentiment: negative

Review: All top , everything as I
expected , recommend.

Aspect: general
Sentiment: positive

Now proceed with the following review:
```{review}```

Remember to strictly focus only on the
aspects from the list and reply only
with the answer in the following

JSON format:
[{{" aspect1 ": "sentiment "}},
...
{{" aspectN ": "sentiment "}}]
"""

Listing 4: GPT-4 user prompt
First , identify the aspects in the

provided review from the given list ,
and then find the customer

sentiment (positive , neutral ot
negative) for each of the aspect.

Aspects: [Product (collection , item ,
quality , variety , display), Service
(staff , assistance , crew , employee ,
attitude , handling , hospitality),
Brand , Price , Store (shop , location ,
atmosphere), Online (order), Return

, General (overall shopping
experience)]

You can follow the examples below:
review: "The␣product␣quality␣is␣great␣

but␣the␣customer␣service␣is␣terrible
."

analysis: "[{{"product":␣"positive",␣"
service":␣"negative"}}]"

review: "I␣love␣the␣location␣of␣the␣
store.␣The␣collection␣looks␣great ,␣
however␣the␣prices␣are␣too␣high.",

analysis: "[{{"store":␣"positive",␣"
product":␣"positive",␣"price":␣"
negative"}}]"

review: "All␣top ,␣everything␣as␣I␣
expected ,␣recommend.",

analysis: "[{{"general":␣"positive"}}]"

Make sure to take in account the
difference in the language , cultural
aspects , sarcasm , emojis and other

linguistic behaviours when
interpreting and assessing the
reviews. Remember to strictly reply
only with the answer in the
following JSON format:

[{{"aspect1": "sentiment"}},
...
{{"aspectN": "sentiment"}}]
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B Datasheet

B.1 Motivation for Dataset Creation

Why was the dataset created? (e.g., were there
specific tasks in mind, or a specific gap that needed
to be filled?)

The dataset was created to enable aspect-based
sentiment analysis on customer reviews using
Large Language Models (LLMs).

What (other) tasks could the dataset be used
for? Are there obvious tasks for which it should
not be used?

The dataset could also be used for traditional
sentiment analysis given it also contains star ratings
for each review.

Has the dataset been used for any tasks al-
ready? If so, where are the results so others can
compare (e.g., links to published papers)?

This paper is the first to use the dataset.
Who funded the creation of the dataset? If

there is an associated grant, provide the grant num-
ber.

The data collection was supported by the con-
sulting firm Metyis (https://metyis.com/).

B.2 Dataset Composition

What are the instances? (that is, examples; e.g.,
documents, images, people, countries) Are there
multiple types of instances? (e.g., movies, users,
ratings; people, interactions between them; nodes,
edges)

Each instance consists of a customer review for a
brick-and-mortar store, scarped from Google maps.

Are relationships between instances made ex-
plicit in the data (e.g., social network links, user/-
movie ratings, etc.)?

No.
How many instances of each type are there?
The dataset consists of 10,814 reviews.
What data does each instance consist of?

“Raw” data (e.g., unprocessed text or images)? Fea-
tures/attributes? Is there a label/target associated
with instances? If the instances are related to peo-
ple, are subpopulations identified (e.g., by age, gen-
der, etc.) and what is their distribution?

In addition to the country and city of the store
that is reviewed, the date the review was published
at, its text, and the star rating are part of each in-
stance. The language of the review is automatically
annotated, while aspects and their sentiments have
been manually annotated.

Is everything included or does the data rely
on external resources? (e.g., websites, tweets,
datasets) If external resources, a) are there guaran-
tees that they will exist, and remain constant, over
time; b) is there an official archival version. Are
there licenses, fees or rights associated with any of
the data?

Everything is included in the dataset.
Are there recommended data splits or eval-

uation measures? (e.g., training, development,
testing; accuracy/AUC)

Since the dataset is designed for zero-shot clas-
sification, there is no recommended split. Given
the imbalanced distribution of positive and negative
sentiments, we recommend and evaluation measure
that takes this into account, like F1-score.

What experiments were initially run on this
dataset? Have a summary of those results and, if
available, provide the link to a paper with more
information here.

The dataset was initially used for the evaluation
of the aspect-based sentiment analysis capabilities
of LLMs.

B.3 Data Collection Process
How was the data collected? (e.g., hardware ap-
paratus/sensor, manual human curation, software
program, software interface/API; how were these
constructs/measures/methods validated?)

The data was collected using
Apify (https://apify.com/compass/
google-maps-reviews-scraper).

Who was involved in the data collection pro-
cess? (e.g., students, crowdworkers) How were
they compensated? (e.g., how much were crowd-
workers paid?)

The data was collected by fully-qualified lawyers
during their usual work-time. All participants
worked for organizations that pay according to the
collective labor agreement for public service work-
ers in German states.

Over what time-frame was the data collected?
Does the collection time-frame match the creation
time-frame?

The data was collected in 2024. The reviews
were written between 2012 and 2024.

How was the data associated with each in-
stance acquired? Was the data directly observ-
able (e.g., raw text, movie ratings), reported by
subjects (e.g., survey responses), or indirectly in-
ferred/derived from other data (e.g., part of speech
tags; model-based guesses for age or language)? If
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the latter two, were they validated/verified and if
so how?

The reviews themselves and their metadata was
directly observable, the language of the reviews
was automatically derived using the Google Trans-
late API, the aspects and their sentiments were
manually annotated by the authors.

Does the dataset contain all possible in-
stances? Or is it, for instance, a sample (not neces-
sarily random) from a larger set of instances?

No, the dataset does not claim completeness in
any sense.

If the dataset is a sample, then what is the
population? What was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling
probabilities)? Is the sample representative of the
larger set (e.g., geographic coverage)? If not, why
not (e.g., to cover a more diverse range of in-
stances)? How does this affect possible uses?

The dataset spans multiple European countries
and a time-frame of over a decade.

Is there information missing from the dataset
and why? (this does not include intentionally
dropped instances; it might include, e.g., redacted
text, withheld documents) Is this data missing be-
cause it was unavailable?

Reviews that only consists of a star rating but do
not provide any text have been excluded.

B.4 Dataset Distribution
How is the dataset distributed? (e.g., website,
API, etc.; does the data have a DOI; is it archived
redundantly?)

It is archived on GitHub (https://github.
com/Responsible-NLP/ABSA-Retail-Corpus).

When will the dataset be released/first dis-
tributed? (Is there a canonical paper/reference for
this dataset?)

Publication of the paper.
What license (if any) is it distributed under?

Are there any copyrights on the data?
The annotations are licensed under CC-BY-SA

4.0.
Are there any fees or access/export restric-

tions?
No.

B.5 Dataset Maintenance
Who is supporting/hosting/maintaining the
dataset? How does one contact the owner/curator/-
manager of the dataset (e.g. email address, or other
contact info)?

See the GitHub repository.
Will the dataset be updated? How often and by

whom? How will updates/revisions be documented
and communicated (e.g., mailing list, GitHub)? Is
there an erratum?

There are no plans to update the dataset unless
important mistakes become clear.

If the dataset becomes obsolete how will this
be communicated?

On the GitHub page.
Is there a repository to link to any/all paper-

s/systems that use this dataset?
Yes.
If others want to extend/augment/build on

this dataset, is there a mechanism for them to
do so? If so, is there a process for tracking/assess-
ing the quality of those contributions. What is the
process for communicating/distributing these con-
tributions to users?

We would suggest to create a fork on GitHub.

B.6 Legal & Ethical Considerations
If the dataset relates to people (e.g., their at-
tributes) or was generated by people, were
they informed about the data collection? (e.g.,
datasets that collect writing, photos, interactions,
transactions, etc.)

There is no information about individuals in the
data or was recorded during the annotation of the
data.

If it relates to other ethically protected sub-
jects, have appropriate obligations been met?
(e.g., medical data might include information col-
lected from animals)

N.a.
If it relates to people, were there any ethical

review applications/reviews/approvals? (e.g. In-
stitutional Review Board applications)

N.a.
If it relates to people, were they told what the

dataset would be used for and did they consent?
What community norms exist for data collected
from human communications? If consent was
obtained, how? Were the people provided with any
mechanism to revoke their consent in the future or
for certain uses?

N.a.
If it relates to people, could this dataset expose

people to harm or legal action? (e.g., financial
social or otherwise) What was done to mitigate or
reduce the potential for harm?

N.a.
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If it relates to people, does it unfairly advan-
tage or disadvantage a particular social group?
In what ways? How was this mitigated?

N.a.
If it relates to people, were they provided with

privacy guarantees? If so, what guarantees and
how are these ensured?

N.a.
Does the dataset comply with the EU General

Data Protection Regulation (GDPR)? Does it
comply with any other standards, such as the US
Equal Employment Opportunity Act?

Yes, since only publicly available information
was collected, the dataset complies with the GDPR
and similar regulations.

Does the dataset contain information that
might be considered sensitive or confidential?
(e.g., personally identifying information)

No.
Does the dataset contain information that

might be considered inappropriate or offensive?
No.
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Abstract

The widespread success of large language mod-
els (LLMs) has prompted increasing interest
in their evaluation across diverse linguistic set-
tings, yet systematic assessments for Arabic
remain underexplored. This survey presents
a structured taxonomy of benchmarks specif-
ically designed to evaluate LLMs on Arabic
text. It critically reviews existing benchmarks,
highlighting their coverage across multiple do-
mains, including general single-task and multi-
task scenarios, knowledge and reasoning tasks,
and domain-specific applications. Finally, it
identifies key methodological limitations and
proposes future research directions to facilitate
the development of more robust, inclusive, and
culturally aligned evaluation frameworks for
LLMs.

1 Introduction

Large Language Models (LLMs) have become a
cornerstone of modern natural language process-
ing (NLP), demonstrating remarkable performance
across a wide spectrum of tasks such as machine
translation (MT), sentiment analysis, dialogue gen-
eration, and reasoning (Yang et al., 2025). Their
broad generalization capabilities have positioned
them as foundational tools in diverse domains, rang-
ing from healthcare and law to education and cre-
ative writing (Bommasani et al., 2021). However,
their widespread deployment necessitates rigorous
evaluation frameworks to ensure reliability, fair-
ness, and robust performance in complex reason-
ing, factual consistency, and linguistic competence,
particularly in low-resource languages like Arabic.

Although Arabic is among the most widely spo-
ken languages globally, it is significantly under-
represented in the training data of many multi-
lingual large language models (MLLMs), where
English typically accounts for over 90% of the
corpus and Arabic often constitutes less than 1%
(Xu et al., 2025; Qian et al., 2024). Consequently,

many Arabic-centric or multilingual models strug-
gle to maintain consistent performance across di-
alects, linguistic styles, and culturally grounded
tasks (Magdy et al., 2025; Alwajih et al., 2025). To
address this gap, an increasing number of bench-
marks have been proposed to evaluate LLMs on
Arabic tasks. These benchmarks span a variety of
domains and evaluation objectives, including gen-
eral multi-task performance, commonsense and fac-
tual reasoning, domain-specific applications (e.g.,
legal and healthcare), and fine-grained single-task
assessments. Despite this growing body of work,
there is no unified or comprehensive framework
that consolidates these efforts to guide comparative
evaluation or diagnostic analysis.

This paper addresses these challenges by of-
fering a structured survey focused exclusively on
benchmarks used to evaluate LLMs on Arabic text.
It systematically reviews existing benchmarks and
organizes them into a unified taxonomy based on
task type and domain focus. The paper also iden-
tifies common methodological gaps and proposes
directions for future research. This survey serves as
a foundational resource for researchers and practi-
tioners seeking to understand the current landscape,
design more inclusive benchmarks, or select appro-
priate evaluation frameworks for their models.

2 Related Work

Several recent surveys have synthesized progress in
LLM development and evaluation, yet none have
specifically focused on existing benchmarks for
evaluating LLMs on Arabic text.

One of the most relevant works is by Mashaabi
et al. (2025). This survey provides an overview
of Arabic LLMs across different architectures
(encoder-only, decoder-only, encoder-decoder), lin-
guistic forms (Modern Standard Arabic (MSA),
Classical Arabic, Dialectal Arabic), and pretrain-
ing datasets. It also evaluates the openness of these
models and their performance across downstream
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NLP tasks. However, the work does not systemati-
cally survey evaluation benchmarks used to assess
these models. Benchmarks are only briefly men-
tioned in the context of task-based performance. In
related efforts, benchmarks focusing specifically
on Arabic word embeddings and contextualized
embeddings have been proposed, including those
by Yagi et al. (2023) and Elnagar et al. (2023), pro-
viding comprehensive evaluation frameworks for
these foundational models. Furthermore, studies
examining Arabic punctuation and its linguistic
characteristics have offered insights into its rule-
governed nature (Yagi et al., 2024).

Similarly, Rhel and Roussinov (2025) offer a
general overview of Arabic LLMs. While the pa-
per reflects on limitations in Arabic resources and
the application of LLMs to Arabic NLP tasks, its
focus is not on benchmarking. Instead, it summa-
rizes the adoption of LLMs in Arabic contexts and
briefly lists common datasets, without detailed anal-
ysis or categorization of benchmarks used across
tasks. On a related note, cross-lingual models inte-
grating Arabic language with images have recently
been developed, such as the AraCLIP framework
by Al-Barham et al. (2025), which explores novel
approaches to Arabic vision-language understand-
ing.

Outside the Arabic context, Laskar et al. (2024)
presented a systematic review of LLM evalua-
tion pipelines, identifying challenges such as re-
producibility, dataset contamination, and fairness
across benchmarks. Their work offers a robust
foundation for understanding the complexities of
LLM evaluation but focuses primarily on English
and multilingual settings. Likewise, Lai et al.
(2023) analyzed the multilingual performance of
ChatGPT across 37 languages, including Arabic,
through zero-shot evaluations on tasks like sum-
marization and Part of Speech (POS) tagging.
While their work evaluated Arabic among other
languages, it did not aim to survey benchmarks nor
did it focus on Arabic text.

To the best of our knowledge, this paper is the
first to focus specifically on the evaluation bench-
marks used to assess LLMs on Arabic text, rather
than surveying Arabic LLMs themselves. While
prior surveys have examined Arabic language mod-
els in terms of architecture, datasets, and applica-
tion domains, none have systematically analyzed
the benchmarks that underpin their evaluation. This
distinction allows our work to fill a critical gap by

offering a structured overview of the evaluation
landscape and identifying methodological short-
comings in current benchmarking practices.

3 Methodology

A total of 26 relevant studies were included in this
survey paper. All studies were published between
2022 and 2025. The search window spanned 2020
to 2025, and the methodology followed a system-
atic approach structured into three main phases.

3.1 Literature search
To identify relevant research, a comprehensive lit-
erature search was conducted across multiple scien-
tific databases, including Google Scholar, Elsevier,
and IEEE Xplore. The search queries used com-
binations of keywords such as "Large Language
Models", "Benchmark", "Evaluation", and "Arabic
Text". This process yielded a total of 42 records.

3.2 Inclusion and exclusion criteria
The retrieved records were screened for eligibility
using predefined criteria. Studies were included if
they evaluated LLMs on Arabic text, regardless of
whether other languages were involved, provided
Arabic evaluation was a core component. Studies
that focused exclusively on non-textual modalities
(e.g., images, audio, video) or did not contain Ara-
bic content were excluded.

Duplicates were identified and removed (n = 2),
resulting in 40 records screened. Of these, 4 were
excluded during initial screening due to irrelevance,
and 10 more were excluded after full-text assess-
ment. No records were missing or unretrievable. In
total, 26 unique studies met the inclusion criteria
and were included in the final review. A visual
summary of this process is shown in Figure 1.

3.3 Taxonomy
The selected studies were organized using a struc-
tured taxonomy designed to categorize LLM eval-
uations on Arabic text. Each study was assigned
to a distinct subcategory under one of four main
categories, based on its primary objective and eval-
uation scope. The taxonomy comprises:

• General Multi-Task Evaluation Benchmarks

• Knowledge and Reasoning Benchmarks

• Domain-Specific Benchmarks

• Focused Single-Task Evaluations
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Figure 1: Flow-chart for study inclusion

Subcategories reflect the evaluation scope, task
specificity, and domain orientation of each study, as
illustrated in Figure 2 and detailed in the following
sections.

While our taxonomy was initially designed
around the specific context of LLM evaluations on
Arabic text, its fundamental structure is language-
agnostic and can be generalized across diverse lin-
guistic contexts, potentially serving as a broader
blueprint for evaluating LLMs.

4 Taxonomy for Evaluating LLMs on
Arabic Text

This section presents the taxonomy used to clas-
sify benchmarks for evaluating LLMs on Arabic
text. The taxonomy is divided into four major cate-
gories: (1) General Multi-Task Evaluation Bench-
marks, (2) Knowledge and Reasoning Benchmarks,
(3) Domain-Specific Benchmarks, and (4) Focused
Single-Task Evaluations. Each category captures
distinct evaluation objectives, methodological de-
signs, and linguistic considerations.

Detailed characteristics of each benchmark are
summarized in Appendix A.

4.1 General Multi-Task Evaluation
Benchmarks

General multi-task evaluation benchmarks are de-
signed to assess LLMs on a broad range of NLP
tasks that combine natural language understanding
(NLU) and generation (NLG). Within this category,
we distinguish between two subcategories: Multi-
Task Mixed NLU/NLG Benchmarks and NLG-

Focused Multi-Task Benchmarks.

The first subcategory, Multi-Task Mixed
NLU/NLG Benchmarks, includes benchmarks that
evaluate LLMs across diverse general-domain
tasks. One example is the AraT5/ARGEN bench-
mark (Elmadany et al., 2022), which adopts a text-
to-text format to uniformly structure input and out-
put for eight tasks, including sentiment analysis,
classification, Named Entity Recognition (NER),
extractive QA, summarization, and paraphrasing.
The benchmark tests models like AraT5, mT5,
and mBART in zero- and few-shot settings, us-
ing task-appropriate metrics such as F1, BLEU,
and ROUGE. Despite its extensive task coverage,
the benchmark is primarily based on MSA, with
minimal attention to dialectal Arabic. This limits
its applicability in real-world scenarios involving
linguistic variation.

Another benchmark in this subcategory is GP-
TAraEval (Khondaker et al., 2023), which assesses
ChatGPT-3.5 and GPT-4 across 44 tasks drawn
from 60 datasets, encompassing classification, para-
phrase detection, QA, and NER. The benchmark
operates exclusively in zero-shot mode to reflect
typical usage of proprietary LLMs. While GPT-4
demonstrates superior performance over its pre-
decessor, the study’s focus on only two models
introduces bias and excludes insights from Arabic-
centric or fine-tuned models.

LAraBench (Abdelali et al., 2023) expands
multi-task evaluation by including speech-related
tasks, such as automatic speech recognition (ASR)
and text-to-speech (TTS), in addition to standard
NLP tasks. It covers 33 tasks across 61 datasets and
evaluates models including GPT-4, Jais, and Whis-
per. The benchmark shows that even the strongest
LLMs face difficulties with syntactic and sequence
tagging tasks. These issues are partly due to the
lack of Arabic-specific pretraining and inconsistent
output formatting. The models also perform poorly
across different Arabic language varieties, which
can be attributed to the lack of dialectal data.

The second subcategory, NLG-Focused Multi-
Task Benchmarks, centers specifically on genera-
tive language capabilities. The Dolphin benchmark
(Elmadany et al., 2023) exemplifies this by focus-
ing exclusively on Arabic NLG tasks, including
summarization, storytelling, dialogue, and data-to-
text generation. Comprising 200,000 completions
across 20,000 prompts, Dolphin evaluates LLMs
like GPT-4, Falcon, and ChatGPT using both hu-
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Figure 2: Taxonomy for Evaluating LLMs on Arabic Text

man judgments (e.g., grammaticality, coherence)
and automatic metrics (e.g., BLEU, ROUGE-L,
COMET). While Dolphin provides a rich resource
for assessing generative fluency and factuality, a
limitation of considering only NLG is that it over-
looks other critical language understanding capabil-
ities, such as reasoning, retrieval, and classification.

Benchmarks under the general multi-task cate-
gory offer foundational insights into the capabilities
of LLMs in Arabic across diverse tasks. However,
limitations such as restricted dialectal coverage,
model scope, and narrow task focus indicate a need
for more comprehensive, balanced, and culturally
representative evaluation frameworks.

4.2 Knowledge and Reasoning Benchmarks

Knowledge and reasoning benchmarks aim to as-
sess the depth of logical inference and factual un-
derstanding of LLMs beyond basic comprehension.
These are typically structured as multi-choice ques-
tions (MCQs) or explanatory tasks designed to sim-
ulate complex, real-world problem-solving situa-
tions.

A primary subcategory is Massive Multitask QA
Benchmarks, which assess a model’s breadth of
knowledge across subjects. For example, Ara-
bicMMLU (Koto et al., 2024) covers 14,575 MCQs
across 40 tasks, drawing from real-world school ex-
ams in various Arabic-speaking regions. Similarly,
AlGhafa (Almazrouei et al., 2023) includes 7,226
MCQs across 45 tasks, categorized into reasoning,
knowledge, reading comprehension, and math. An-
other example is AraSTEM (Mustapha et al., 2024),

which focuses on STEM subjects with over 11,000
questions ranging from primary school to college-
level. Finally, the Qiyas Benchmark (Al-Khalifa
and Al-Khalifa, 2024) evaluates models using ques-
tions from the Saudi General Aptitude Test, cover-
ing both verbal and mathematical reasoning. These
benchmarks offer broad task coverage, but their
formats rely entirely on MCQs, which simplify
the task structure and may inflate performance by
enabling guessing (Koto et al., 2024; Almazrouei
et al., 2023; Mustapha et al., 2024; Al-Khalifa and
Al-Khalifa, 2024). Such format constraints can
limit a model’s opportunity to demonstrate deeper
reasoning or generative capabilities. Additionally,
evaluating only a narrow set of models restricts
the ability to offer a comprehensive view of per-
formance across the broader LLM landscape (Al-
Khalifa and Al-Khalifa, 2024), including emerging
or open-source models. Most benchmarks are also
confined to MSA, excluding dialects, informal text,
or culturally specific content (Koto et al., 2024;
Mustapha et al., 2024; Al-Khalifa and Al-Khalifa,
2024).

The second subcategory, Commonsense Reason-
ing Benchmarks, evaluates a model’s intuitive un-
derstanding of everyday scenarios. ArabicSense
(Lamsiyah et al., 2025) is a newly proposed bench-
mark that assesses commonsense validation, ex-
planation selection, and generative explanation.
The dataset is synthetically generated and covers a
range of reasoning skills. However, it remains lim-
ited in scope, focusing only on three task types and
lacking the diversity of real-world language use.
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Additionally, its synthetic nature may introduce bi-
ases or overfitting tendencies not representative of
actual human-authored content.

4.3 Domain-Specific Benchmarks

Domain-specific benchmarks are designed to evalu-
ate LLMs on tasks rooted in real-world applications
and specialized knowledge areas. Unlike general-
purpose benchmarks, which assess broad linguistic
competence, these benchmarks target specific do-
mains, such as law, health, cultural reasoning, and
safety, to assess how well models handle context-
sensitive, factual, and domain-relevant language
use. This subsection is organized into four sub-
categories of domain-specific benchmarks: legal,
cultural and dialectal competence, health, and trust-
worthiness and safety.

In the legal domain, the ArabLegalEval bench-
mark (Hijazi et al., 2024) provides a multi-task
framework designed to evaluate Arabic LLMs’
legal reasoning capabilities. It includes over
15,000 instances covering MCQs, open-ended QA,
and carefully translated items from the English-
language LegalBench dataset. These tasks primar-
ily draw from Saudi legal sources, such as regula-
tions on consumer contracts and privacy policies.
While ArabLegalEval provides a rigorous and di-
verse evaluation setting, its heavy reliance on Saudi
legal texts may limit its applicability across broader
Arabic legal systems.

Cultural and dialectal competence has emerged
as a critical dimension in evaluating LLMs on
Arabic text due to the region’s linguistic diver-
sity. AraDiCE (Mousi et al., 2025) benchmarks
dialectal and cultural understanding across Egyp-
tian, Gulf, Levantine, and MSA. It spans dialect
identification, misinformation detection, and cul-
tural reasoning. However, it primarily relies on
synthetic data generated via machine translation
with post-editing, which may introduce unnatu-
ral phrasing.In addition, the omission of key di-
alects such as Maghrebi limits its regional coverage.
The Palm benchmark (Alwajih et al., 2025) offers
17,411 annotated instruction–response pairs cover-
ing ten dialects across 20 culturally salient domains.
Despite its breadth, Palm exhibits skewed country-
level representation. Similarly, the SaudiCulture
benchmark (Ayash et al., 2025) evaluates LLMs on
region-specific cultural questions within Saudi Ara-
bia, capturing intranational differences across five
regions. Nonetheless, its geographic scope limits

generalizability to broader Arab cultural contexts.
Jawaher benchmark (Magdy et al., 2025) targets
proverb translation and explanation in 20 dialects,
exposing the limitations of current LLMs in han-
dling idiomatic, figurative, and culturally grounded
expressions. However, its evaluation is affected
by the use of English-only prompts, which limits
the assessment of models’ native Arabic compre-
hension. Lastly, the culturally aligned benchmark
(Nacar et al., 2025) critiques the Western bias of
traditional evaluation frameworks and introduces
ILMAAM, a curated leaderboard tailored to Arabic
sociocultural contexts. It improves cultural appro-
priateness.

In the health domain, the Health Claims bench-
mark (obaid Alharbi et al., 2025) evaluates GPT-4’s
ability to classify and verify health-related claims
across Saudi, Egyptian, Lebanese, and Moroccan
dialects. The study utilizes 329 expert-verified
claims from AraFacts and ArCOV19-Rumors, gen-
erating 6,520 dialect-specific queries with varying
presupposition levels. It applies a novel Cultural
Sensitivity Score to measure context-aware accu-
racy. The benchmark is limited by its evaluation
of only a single model (GPT-4), which restricts
its comparative utility, and by its narrow dialectal
coverage that excludes other widely spoken Arabic
varieties.

The domain of trustworthiness and safety is ad-
dressed by AraTrust (Alghamdi et al., 2025), which
includes 522 multiple-choice questions evaluat-
ing LLMs on ethics, legality, offensiveness, and
privacy. It introduces evaluations across several
prompting settings, including chain-of-thought rea-
soning. However, the benchmark’s exclusive use
of multiple-choice formats restricts deeper assess-
ment of models’ ethical reasoning in open-ended
contexts.

4.4 Focused Single-Task Evaluations

Benchmarks in this category are designed to eval-
uate LLMs on narrowly defined tasks that test
specific competencies in Arabic. Unlike multi-
task benchmarks, these evaluations isolate a sin-
gle task, such as sentiment classification, machine
translation, or hallucination detection, allowing
for more fine-grained assessment of model perfor-
mance. This category comprises three major sub-
categories of tasks: classification and understand-
ing, generation and transformation, and factuality
and hallucination detection.
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Classification and Understanding Tasks target
the ability of LLMs to label and disambiguate text
based on semantic, syntactic, or pragmatic cues. In
the domain of sentiment classification, Al-Thubaity
et al. (2023) evaluated GPT-3.5, GPT-4, and PaLM
2 (Bard AI) using the Saudi Dialect Twitter Cor-
pus, covering a small-scale dataset of 2,690 tweets
labeled as positive, negative, or neutral. The bench-
mark revealed close performance between GPT-4
and fine-tuned BERT baselines, yet it is restricted
to a single dialect (Saudi). A benchmark for Cross-
Lingual NER was proposed by Al-Duwais et al.
(2024) to test six multilingual LLMs using seven
datasets across domains like news and social media.
The benchmark revealed strong performance by
encoder-based models such as XLM-R and mBERT.
Abdel-Salam (2024) introduced a benchmark for
Word Sense and Location Mention Disambigua-
tion using SALMA and IDRISI-D datasets. While
demonstrating LLM competence in controlled zero-
shot setups, the benchmark omits dialectal varia-
tions and depends heavily on short contexts and
English translations for retrieval.

Generation and Transformation Tasks evaluate
how well models perform structured text trans-
formation, such as translation or correction. A
machine translation benchmark was proposed by
Kadaoui et al. (2023) using 1,000 dialectal Arabic
sentences across ten varieties from the MADAR
corpus. While the benchmark spans several di-
alects, it includes only two LLMs, ChatGPT and
Bard. Kwon et al. (2023) benchmarked LLMs on
Arabic grammatical error correction (AGEC) us-
ing QALB datasets, evaluating performance with
prompting strategies such as zero-shot, few-shot,
and instruction tuning. The benchmark highlights
LLM underperformance on semantic errors and
lacks dialectal diversity. Another example in this
group is the punctuation restoration benchmark
(Al Wazrah et al., 2025), which uses a curated
dataset of 10,046 paragraphs to test seven LLMs
and a fine-tuned AraBERT. GPT4-o performed best
overall. The benchmark suffers from skewed punc-
tuation distributions.

Factuality and hallucination evaluation tasks as-
sess LLMs’ ability to distinguish between true
and false claims or to avoid generating fabricated
content. Gupta et al. (2025) developed a fact-
checking benchmark using 771 claims from the
X-Fact dataset, focusing on binary classification
with English reasoning strategies applied to Arabic

input. The dataset is heavily skewed toward false
claims and excludes recent advanced models like
GPT-4, which limits longitudinal comparisons. In
the area of hallucination detection, the Halwasa
benchmark (Mubarak et al., 2024) evaluates Ara-
bic hallucinations using 10,000 synthetic factual
sentences generated by LLMs. The dataset was
created using 1,000 randomly selected words from
the SAMER Arabic readability lexicon. For each
word, both GPT-3.5 and GPT-4 were prompted to
generate ten factual Arabic sentences. After filter-
ing out duplicates and invalid outputs, five unique
sentences were retained per model, resulting in
5,000 sentences from each and a total of 10,000
sentences. Each sentence was manually annotated
by trained human annotators across four dimen-
sions: (1) whether it makes a verifiable factual
claim, (2) whether the claim is factually correct,
(3) whether the sentence follows proper Arabic
grammar, and (4) the reference sources used for
factual verification. A key limitation of this bench-
mark is its exclusive focus on just two models,
GPT-3.5 and GPT-4, which restricts its compar-
ative scope across a broader range of Arabic or
multilingual LLMs. Similarly, HalluVerse25 (Ab-
daljalil et al., 2025) is a multilingual hallucination
detection benchmark that includes 828 Arabic sen-
tence pairs focused on biographical content. While
it supports cross-lingual comparison, the bench-
mark inherits potential biases from Wikidata and
the use of GPT-generated data, constraining its gen-
eralizability beyond the biographical domain.

5 Critical Analysis of Existing Arabic
LLM Evaluations

Despite significant advancements in evaluating
LLMs for Arabic text, existing benchmarks reveal
several critical challenges. Specifically, there is a
pronounced absence of separate intrinsic and extrin-
sic evaluations. Currently, benchmarks frequently
blend these tasks into general multi-task evalua-
tions, making it difficult to comprehensively assess
specific competencies such as linguistic understand-
ing, factual reasoning, and cultural awareness. This
methodological conflation fails to provide a clear
diagnostic of a model’s performance, particularly
in distinguishing whether success is driven by deep
comprehension or surface-level task handling.

Another considerable limitation lies in the lim-
ited scope of model evaluations. Most benchmarks
evaluate only a narrow set of LLMs, predominantly
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focusing on well-known models such as GPT vari-
ants, neglecting emerging or specialized Arabic-
centric models. Consequently, this narrow selec-
tion restricts the ability to address crucial compar-
ative questions, such as identifying which models
excel in specific tasks. Moreover, the scarcity of
comparative analyses across a broader spectrum of
models limits insights into model scalability and
adaptability in diverse Arabic linguistic environ-
ments.

Additionally, the prevalent reliance exclusively
on MCQs in many benchmarks represents another
critical limitation. Solely using MCQs inherently
simplifies evaluation tasks, potentially inflating
model performance by allowing for guessing and
limiting the ability to assess more sophisticated
generative or explanatory capabilities.

In parallel with these methodological consider-
ations, it is equally important to situate Arabic
within the broader multilingual evaluation land-
scape. While this survey focuses on Arabic bench-
marks for evaluating LLMs, understanding how
Arabic is represented across cross-lingual bench-
marks provides valuable context. Several cross-
lingual benchmarks, such as XTREME (Hu et al.,
2020), XGLUE (Liang et al., 2020), Blend (Myung
et al., 2024), and (Chollampatt et al., 2025), in-
clude Arabic alongside other languages, often as a
representative of Semitic or low-resource linguis-
tic groups. However, these benchmarks typically
offer limited task coverage for Arabic and rarely
account for the linguistic diversity within the lan-
guage, such as dialectal variation or cultural speci-
ficity. In contrast, Arabic-specific benchmarks pro-
vide more fine-grained evaluations tailored to the
complexities of Arabic, including dialect identifica-
tion, cultural reasoning, and script variants. More-
over, while cross-lingual benchmarks are valuable
for assessing generalization and transfer learning,
they often rely on translated or parallel data that
may not reflect authentic language use. Arabic-
centric benchmarks, by contrast, frequently involve
native-authored content and culturally grounded
tasks, offering a more accurate assessment of LLM
performance on Arabic.

In addition to broadening evaluation contexts,
this survey primarily focuses on benchmarking cov-
erage and evaluation frameworks, we acknowledge
the importance of analyzing bias in LLMs more
explicitly. Several Arabic benchmarks, such as Ara-
Trust and Palm, begin to address dimensions of bias

related to ethics, offensiveness, and regional rep-
resentation. However, most existing datasets lack
systematic annotations for sensitive attributes like
gender, dialect, or sociopolitical context, making
it difficult to assess fairness across subpopulations.
Furthermore, benchmarks that rely on machine-
translated or synthetic data may introduce unin-
tended cultural or linguistic biases.

6 Conclusion and Future Directions

This survey has provided a comprehensive
overview of existing benchmarks for evaluating
LLMs on Arabic text, highlighting both significant
progress and critical gaps. While current bench-
marks offer valuable insights across various linguis-
tic tasks and domains, they often conflate intrinsic
and extrinsic evaluations, focus narrowly on a lim-
ited set of popular models, and rely heavily on sim-
plified formats such as multiple-choice questions.
Moreover, the underrepresentation of Arabic di-
alects and cultural nuances limits the applicability
of these evaluations to the diverse Arabic language
landscape. Bias and fairness considerations remain
insufficiently addressed in most datasets, posing
challenges for equitable model assessment.

To advance the field, future research should
explicitly differentiate intrinsic language-specific
evaluations (e.g., syntactic parsing, semantic under-
standing, morphological analysis) from extrinsic
task-based assessments focused on real-world ap-
plications such as healthcare, law, and education.
Expanding the range of evaluated models to in-
clude emerging, open-source, and Arabic-centric
LLMs will enhance comparative analyses and fos-
ter innovation tailored to Arabic’s unique linguistic
characteristics.

Future benchmarks must incorporate diverse, re-
alistic datasets reflecting dialectal variety and cul-
tural context to improve real-world relevance. The
growing importance of prompt engineering calls for
systematic exploration of prompt formulations in
both Arabic and English to optimize model perfor-
mance and reliability. Additionally, incorporating
bias-sensitive design principles and targeted fair-
ness metrics is essential to ensure equitable evalu-
ation across dialects, regions, and sociolinguistic
groups.

Overall, addressing these methodological and
practical gaps will deepen understanding of how
LLMs perform on Arabic text and guide the de-
velopment of more robust, culturally aware, and
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effective language technologies.

Limitations

This survey is limited by its exclusive focus on
publicly documented academic benchmarks, omit-
ting proprietary or industrial evaluations that may
provide additional perspectives.
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A Overview of Arabic LLM Benchmarks

Table 1: Overview of Arabic LLM Benchmarks

Benchmark Year LLMs Evaluated Task(s) Dataset(s) Description

AraT5 (Elmadany et al.,
2022)

2022 AraT5 (Small, Base, Large, XL),
mT5, mBART, AraGPT2, MAR-
BERT

8 tasks: Text Classification, Sen-
timent Analysis, Named Entity
Recognition (NER), Extractive
Question Answering (QA), Para-
phrasing, Summarization, Head-
line Generation, Text Simplifica-
tion

Data collected from 8 diverse Arabic sources
including Arabic Wikipedia, OSCAR, OPUS,
Tashkeela, SLSA, and others; resulting in a
corpus of 200M sentences (50GB); prepro-
cessed into a text-to-text format.

Beyond English (Kwon
et al., 2023)

2023 GPT-4, ChatGPT-3.5 Turbo,
LLaMA-7B, Vicuna-13B,
Bactrian-Xbloom-7B, Bactrian-
Xllama-7B

Grammatical Error Correction
(GEC)

QALB-2014 (L1), QALB-2015 (L1 & L2)

Dolphin (Elmadany et al.,
2023)

2023 Falcon-40B-Instruct, Falcon-
180B-Chat, GPT-3.5-Turbo,
GPT-4, ChatGPT

10 NLG tasks: dialogue genera-
tion, question answering, data-to-
text, storytelling, summarization,
translation, paraphrasing, defini-
tion generation, classification, cor-
rection/refinement (includes code-
switching and Arabizi)

20K Arabic prompts with 200K completions,
covering diverse topics and language forms,
including Modern Standard Arabic, dialects,
code-switched inputs, and Arabizi; prompts
created by native speakers and aligned with
high-quality completions

Evaluating ChatGPT
and Bard AI on Arabic
Sentiment Analysis (Al-
Thubaity et al., 2023)

2023 GPT-3.5, GPT-4, Bard AI (PaLM
2)

Sentiment Analysis (Classifica-
tion & Generation)

Saudi Dialect Twitter Corpus (SDTC): 2,690
used (558 positive, 1,632 negative, 500 neu-
tral)

Evaluation of Bard
and ChatGPT on
MT (Kadaoui et al., 2023)

2023 ChatGPT (GPT-3.5-turbo), Bard Machine Translation 1,000 sentences from 10 Arabic dialects (100
per dialect) from the MADAR corpus, with
corresponding MSA and English translations

GPTAraEval (Khondaker
et al., 2023)

2023 ChatGPT-3.5, ChatGPT-4 Text classification, natural lan-
guage inference (NLI), ques-
tion answering (QA), paraphrase
identification, sentiment analy-
sis, named entity recognition
(NER), topic classification, hate
speech detection, offensive lan-
guage detection, dialect identifica-
tion, translation, coreference res-
olution, headline generation, text
summarization

60 Arabic datasets covering Modern Standard
Arabic and multiple Arabic dialects; varying
in domain, size, and complexity; formatted
for zero-shot prompt-based evaluation

AlGhafa (Almazrouei
et al., 2023)

2023 AraT5, CAMeLBERT, mBERT,
mGPT, GPT-3.5-turbo, AraGPT2-
Mega, Noor-10B, Jais-13B,
lGhafa-1B/3B/7B/14B

45 tasks across 4 categories:
knowledge, reasoning, reading
comprehension, math & coding

7,226 multiple-choice questions from diverse
Arabic sources across linguistic and domain
topics

A Benchmark Evalu-
ation of Multilingual
LLMs for Arabic Cross-
Lingual NER (Al-Duwais
et al., 2024)

2024 mBERT, XLM-R, BERTIN,
ByT5, BLOOM, mT0

NER 7 Arabic NER datasets: ANERcorp, AQMAR,
CAMeL, WikiFANE, Winerz, Arman, Arap-
Tweet; domains: news, Wikipedia, social me-
dia

ArabicMMLU (Koto
et al., 2024)

2024 GPT-3.5, GPT-4, BLOOMZ,
mT0, LLaMA2, Falcon, XGLM,
AraT5, AraGPT2, AceGPT, Jais
(total 35 models)

Knowledge tasks 14,575 Arabic multiple-choice questions from
school exams in 8 Arabic-speaking countries;

ArabLegalEval (Hijazi
et al., 2024)

2024 GPT-4, GPT-4o, GPT-3.5, Claude-
3 Opus, Command R, Command
R Plus, Llama3 (8B & 70B), Aya-
101, Jais

MCQs, Open-ended QA,
LegalBench QA (Consumer
Contracts, Contracts, Privacy
QA/Entailment)

10,583 Arabic MCQs (from MoJ & BoE), 492
Najiz FAQs, 15,804 translated LegalBench
samples, ArabicMMLU subset for legal rea-
soning benchmarking.

ARADICE (Mousi et al.,
2025)

2025 Jais-13B, AceGPT-13B, Llama-
3-8B, Mistral-7B, Fanar-8.7B,
Qwen2.5-7B, Gemma2-9B, Aya-
8B

Dialect Identification, Dialect
Generation, Machine Translation,
Commonsense Reasoning, World
Knowledge, Reading Comprehen-
sion, Misinformation Detection,
Cultural Understanding

45K+ post-edited examples across QADI,
ADI, ADD, MADAR, ArabicMMLU, PIQA,
OBQA, Winogrande, BoolQ, Belebele, Truth-
fulQA, and AraDiCE-Culture

AraSTEM (Mustapha
et al., 2024)

2024 AraT5, AraGPT2, MT0
(Small, Base, Large),
XGLM (1.7B–7.5B), Bloomz
(560M–7B1), AceGPT (7B, 13B),
LLaMA (2 & 3.1), Falcon (7B,
40B), Jais (13B, 30B)

Zero-shot multiple-choice answer-
ing

11,637 Arabic MCQs in STEM (math, bi-
ology, physics, IT, chemistry, pharmacy,
medicine, dentistry); levels: primary, sec-
ondary, college; sourced via scraping, manual
extraction, OCR from PDFs; annotated with
source traceability

AraTrust (Alghamdi
et al., 2025)

2025 GPT-3.5 Turbo, GPT-4, AceGPT
7B, AceGPT 13B, Jais 13B

Trustworthiness evaluation 522 multiple-choice questions across 8 cate-
gories (Truthfulness, Ethics, Physical Health,
Mental Health, Unfairness, Illegal Activities,
Privacy, Offensive Language) and 34 subcate-
gories, all human-written

Halwasa (Mubarak et al.,
2024)

2024 GPT-3.5, GPT-4 Factual sentence generation to
evaluate models’ hallucinations

10K Arabic sentences (5K/model) generated
using 1,000 random words from the SAMER
corpus, annotated for factuality, correctness,
linguistic errors, and references

LAraBench (Abdelali
et al., 2023)

2023 GPT-3.5-turbo, GPT-4,
BLOOMZ, Jais-13b-chat,
Whisper, USM

33 tasks across NLP and Speech 61 publicly available datasets; 296K samples;
46h speech; 30 TTS sentences; covers MSA
and dialects, across genres like news, tweets,
telephony

206



Table 1 – continued from previous page

Benchmark Year LLMs Evaluated Tasks Dataset(s) Description

Arabic Word/Location
Sense Disambigua-
tion (Abdel-Salam, 2024)

2024 LLama3, LLama3-Instruct,
WizardLM-2, AceGPT-7B,
OpenChat

Word Sense Disambiguation
(WSD), Location Mention Disam-
biguation (LMD)

WSD: SALMA corpus (100 train, 1,340 test);
LMD: IDRISI-D (2,170 train, 333 val, 791
test)

The Qiyas Bench-
mark (Al-Khalifa and
Al-Khalifa, 2024)

2024 ChatGPT-3.5-turbo, ChatGPT-4,
Gemini-pro (partial)

Mathematical reasoning and Lan-
guage understanding

2,407 multiple-choice questions derived from
Saudi Arabia’s Qiyas GAT. Includes math, ge-
ometry, algebra, statistics, and five types of
verbal tasks

Jawaher (Magdy et al.,
2025)

2025 Llama-3.1-8B-Instruct, Llama-
3.2-3B-Instruct, Gemma-2-9B-it,
GPT-4o, Gemini 1.5 Pro, Claude
3.5 Sonnet, Cohere Command R+

Translation, Explanation 10,037 Arabic proverbs from 20 dialects with
idiomatic/literal English translations, Arabic
and English explanations.

ArabicSense (Lamsiyah
et al., 2025)

2025 Gemma, LLaMA-3, Mistral-7b Commonsense Validation,
Multiple-Choice Explanation,
Generative Explanation

3954 train, 848 val, 848 test samples per task
from Arabic Wikipedia, generated using GPT-
4

Arabic Fact-
Checking (Gupta et al.,
2025)

2025 Llama 3 8B, Llama 3 70B, GPT-
3.5-turbo, Gemini 1.0 Pro

Arabic fact-checking (binary clas-
sification: true/false)

771 Arabic claims from X-Fact dataset (fil-
tered for ’true’ or ’false’ only; 730 false, 41
true)

Health-Related Claims
Across Arabic Di-
alects (obaid Alharbi
et al., 2025)

2025 GPT-4 Health claim verification across
dialects

329 claims (191 from AraFacts + 138 from
ArCOV19-Rumors), categorized as true, false,
mixed

Evaluation of LLMs on
Arabic Punctuation Pre-
diction (Al Wazrah et al.,
2025)

2025 GPT4-o, Gemini 1.5, JAIS-13B,
AceGPT-13B, SILMA-9B,
ALLaM-1, CommandR+,
AraBERT

Arabic punctuation prediction 10,046 annotated Arabic paragraphs from 25
books, manually cleaned and tokenized, cover-
ing six punctuation marks; split into training,
validation, and test sets

HalluVerse25 (Abdaljalil
et al., 2025)

2025 GPT-4o, GPT-4o-mini, phi-4,
PaLM 2, Mistral-7b, Qwen-2.5
(7b, 72b), LLaMA-3.3, Gemini,
Gemma

Hallucination Detection 3116 factual + hallucinated pairs (biography-
based) in English, Arabic, Turkish

Palm (Alwajih et al.,
2025)

2025 GPT-4o, Claude-3.5-Sonnet,
Command R+ (104B), Qwen2.5-
72B, Qwen2.5-7B, Qwen2.5-3B,
Qwen2.5-1.5B, JAIS-13B,
AceGPT-v2-32B, AceGPT-
v2-8B, LLaMA-3.1-70B,
LLaMA-3.1-8B, LLaMA-3.2-3B,
LLaMA-3.2-1B, Gemma-2-27B,
Gemma-2-9B, Gemma-2-2B,
Phi-3.5-mini (18 models)

To benchmark LLMs’ capabil-
ities in culturally-aware and
dialect-specific instruction follow-
ing across the Arab world. It
evaluates LLMs’ ability to under-
stand and generate culturally rel-
evant, linguistically appropriate
responses in Arabic dialects and
MSA.

17,411 human-authored Arabic instruc-
tion–response pairs (MSA and 10 dialects)
across 22 Arab countries and 20 cultural
domains; includes train, public test, and
private test splits

SaudiCulture (Ayash
et al., 2025)

2025 GPT-4, Llama 3.3, FANAR, Jais,
AceGPT

Cultural understanding, QA
(open-ended, single-answer, and
multi-answer formats)

SaudiCulture: 441 questions across 5 Saudi re-
gions + general, covering 8 cultural domains
(food, clothing, celebrations, etc.) in open-
ended, single-answer, and multi-answer for-
mats

Towards Inclusive Ara-
bic LLMs (Nacar et al.,
2025)

2025 Qwen2.5-72B-Instruct,
CohereForAI/aya-expanse-
32b, Qwen2.5-32B-Instruct,
Google/Gemma-2, SILMA-9B,
FreedomIntelligence/AceGPT,
JAIS-family, LLaMA models

Multitask Language Understand-
ing

Refined Arabic MMLU benchmark with over
14,000 questions, including 2,466 culturally
sensitive questions and 766 culturally en-
riched additions (e.g., Islamic Religion, Is-
lamic Ethics, Old Arab History).
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Abstract
Over the past three decades, research in Arti-
ficial Intelligence (AI) has steadily grown and
advanced. The recent surge in generative AI
tools, such as ChatGPT, has reignited inter-
est also among research fields that otherwise
seemingly turned their focus elsewhere. More
specifically, the field of Education has seen a
remarkable surge in research on AI (AIEd), ex-
amining its impact on various types of learning.
While these investigations offer valuable ex-
ploratory insights, many lack systematic anal-
ysis. Moreover, they overlook the potential
overlap and commonalities with other research
domains. This study addresses this gap by uti-
lizing the OpenAlex database to identify and
analyze not only AI-related publications since
2000. Through part-of-speech tagging and se-
mantic network analysis, and focusing on the
AIEd as our anchor, we map content relation-
ships across the literature to reveal thematic
structures and potential synergies across re-
search fields. The findings offer an exploratory
overview of the evolving research landscape,
the position of AIEd therein, and suggest direc-
tions for future inquiry.

1 Introduction

There has been a growing interest in AIEd research
over the past three decades, with a focus on three
key areas: predictions, personalization, and assess-
ment. In the area of prediction, AI tools play a piv-
otal role in learning analytics by analyzing learner
profiles to predict academic achievement, dropout
risks, retention rates, and even admission decisions.
Numerous studies leverage these insights to en-
able institutions to intervene proactively, support
at-risk students, and make data-driven decisions to
enhance educational outcomes (Batool et al., 2023;
Fahd et al., 2022). Tools such as Course Signals,
Coursera, and learning management systems ex-
emplify the use of predictive analytics, applying
AI to monitor students’ learning process and en-
hance their academic success. For personalization,

AI analyzes student data to create tailored learn-
ing pathways that address individual needs and
optimize outcomes. Intelligent tutoring systems,
such as Carnegie Learning’s Cognitive Tutor, offer
personalized guidance and feedback, while adap-
tive learning platforms like Khan Academy and
Duolingo adjust content dynamically based on stu-
dent progress. These tools not only foster deeper
engagement but also empower students to achieve
their academic goals at their own pace (Lin et al.,
2023). In assessment, AI tools have been used to
automate grading and assessment tasks, allowing
educators to focus on providing meaningful, tar-
geted feedback. Tools like Turnitin’s automated
essay scoring system efficiently evaluate written
work, saving instructor’s time for personalized feed-
back to students (Kostka and Toncelli, 2023). To-
gether, the AI tools applied in these three key areas
primarily fall under reactive and limited memory
AI. However, the rapid advancement of generative
AI (GAI) tools has opened up new possibilities.
Starting in 2022, there has been a surge in AIEd
research, with a focus on GAI tools like ChatGPT
and their transformative impact on teaching and
learning.

2 Rationale of the Study

Researchers are exploring how GAI tools can be ap-
plied in various research fields, including computer
science (Kar et al., 2023; Parker, 2025), health sci-
ences (Moulaei et al., 2024; Sai et al., 2024a), engi-
neering (Sai et al., 2024b; Vu et al., 2024), as well
as business and economics (Orchard and Tasiem-
ski, 2023; Yu and Qi, 2024). More specifically, and
from the perspective of AIEd, research is largely
dealing with highlighting its potential to reshape
traditional educational practices.

This study builds on the considerations laid out
in the previous section and investigates the posi-
tion of AIEd in the broader academic discourse
about AI. More specifically, we employ part-of-
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speech tagging and semantic network analyses to
analyze publications on AI identified in the Ope-
nAlex database. This type of approach has been
suggested to map research fields in a wider context
(McAllister et al., 2022) and highlight the poten-
tial for synergies and spillovers (Hou et al., 2022).
The goal is to unveil underlying structures that can
be used as a point of departure for further inves-
tigations of common terminology, content topics,
and interrelations between research fields. Conse-
quently, in the context of this exploratory study, our
research questions are:

RQ1) What does the general academic land-
scape look like on the overarching re-
search topic of AI?

RQ2) To what extent can we identify content
overlaps between research fields?

RQ3) Where does AIEd interconnect with
other research fields?

Next, we provide an overview of our data collec-
tion procedures and two types of analysis to guide
the reader.

3 Methods

3.1 Data Collection

Article metadata was extracted from OpenAlex,
the first open-source, large-scale, and multilingual
bibliometric database (Priem et al., 2022). Based
mainly on data extracted from the discontinued
Microsoft Academic Graph as well as from other
bibliometric and bibliographic databases and repos-
itories, OpenAlex has been shown to offer superior
document, journal, and language coverage than ex-
isting proprietary databases (Alperin et al., 2024;
Culbert et al., 2025; Jiao et al., 2023; Thelwall
and Jiang, 2025). As a result, a growing num-
ber of research projects are using this database
to conduct various types of bibliometric-based re-
search, focusing on topics such as article retrac-
tions (Hauschke and Nazarovets, 2025; Ortega and
Delgado-Quirós, 2024; Yiru et al., 2025), science
mapping (Haunschild and Bornmann, 2024), open
access publishing (Simard et al., 2025), data reuse
(Krause and Mongeon, 2023), as well as quality
of geographic, disciplinary, or linguistic coverage
(Maddi et al., 2025; Céspedes et al., 2025).

Of particular interest and relevance here is the
recently implemented article-based topic classifi-
cation of articles indexed in the database (Barrett,
2024). Based on proven multilevel coarsening and

refinement article classification procedure devel-
oped and used at CWTS (Eck and Waltman, 2024;
Waltman and Van Eck, 2012), these topic categories
are increasingly used by geographically and disci-
plinary diverse scientific communities for various
research purposes (Arroyo-Machado and Costas,
2023; Cebrián et al., 2025; Couto and Baltazar,
2025; de Carvalho Segundo et al., 2024)

Our search terms were deliberately broad to cast
a wide net in the search. Search terms included a
mix of “artificial intelligence” and specific terms
that are generally mentioned in literature reviews
on the topic across different disciplines, including
“risk”, “challenges”, “opportunities”, “education”,
and “impact”. While a “casting the net wide” ap-
proach also has potential drawbacks, we believe
that this technique provides a valuable approach
to possibly discover commonalities between disci-
plines (Authors, 2019). The search was conducted
on the 7th of May, 2025, and was limited to publi-
cations ranging from the 1st of January 2000 until
the 31st of December 2024. The 43,598 results
were downloaded into a dataframe in the statistical
software package R. We then filtered for publica-
tions that also included an abstract, resulting in a
consolidated dataset of 27,202, which were then
analyzed using the R libraries igraph, quanteda, tm,
and udpipe.

3.2 Part-of-Speech Tagging
The main idea of part-of-speech tagging is to as-
sign each word of a text to its proper syntactic
tag in the context of its appearance (Chiche and
Yitagesu, 2022). This is also referred to as gram-
matical tagging (Khan et al., 2019) and ensures
grammatical relevance. Here, we used POS on the
titles and abstracts of the collected publications.
More specifically, we focused on nouns, verbs and
adjectives. Furthermore, based on the POS results,
we then determined n-grams to capture meaningful
co-occurrence patterns (Bai et al., 2021; Ojo et al.,
2021). This complementary approach allowed us
to identify key concepts and their contextual rela-
tionships from both titles and abstracts.

3.3 Semantic Network Analysis
Semantic network analysis (SemNA)is a technique
used to identify and visualize relationships between
key concepts based on their co-occurrence within
textual data (Castelblanco et al., 2021; Segev,
2022). In the context of this study, key concepts
were determined by the classification procedure
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employed by OpenAlex. We specifically focused
on the category of “subfield”, as it allowed us to
take a more granular approach to looking at the
data. The textual data was taken from the preceding
POS analyses and determined n-grams. Here, we
applied SemNA to both titles and abstracts of the
collected publications. Titles offered a high-level
overview of thematic structures, while abstracts
allowed for a deeper exploration of concept rela-
tionships. The resulting networks then provide a
more nuanced understanding of the topical land-
scape and its underlying structures.

4 Results

4.1 Descriptive Analysis
Tables 1 and 2 provide a glimpse at the underlying
data for the categories fields and subfields.

Table 1: Top Research Fields (based on N publications
in our data set)

Field N
Computer Science 16687
Medicine 7819
Social Sciences 5753
Engineering 3226
Business, Management & Accounting 2525

Table 2: Top Research Subfields (based on N publica-
tions in our data set)

Subfield N
Artificial Intelligence 8463
Health Informatics 4293
Computer Science Applications 3449
Safety Research 3011
Information Systems 2422
Management Information Systems 1351
Radiology, Nuclear Medicine &
Imaging 1250
Management Science &
Operations Research 948
Education 823

4.2 POS, n-grams & SemNA
Starting with the investigation of titles, and focus-
ing on the subfields indicated in Table 2, we deter-
mined the semantic network visualized in Figure
1.

Here, we see that there is considerable con-
tent overlap between the different research sub-

Figure 1: Semantic Network for Subfields (Titles)

Figure 2: Semantic Network for AIEd (Titles)

fields. More specifically, irrespective of the under-
lying discipline, scholars were largely concerned
with “explainable AI”, “risk management”, “chal-
lenges”, and “case studies”. Focusing on AIEd,
Figure 2 underlines these findings, while clearly
showing that the perspective on these topics has
been from an educational perspective, e.g. con-
centrating on the context of higher education and
generative tools. The later suggests an inerest and
discourse about how

We then turned to the abstracts, in order to en-
gage into a deeper exploration of concept relation-
ship. Figure 3 provides the overall view, while
Figure 4 highlights AIEd again. Here, we found
that the core of the semantic network is largely
driven by the subfields of “artificial intelligence”,
“information systems”, “management science”, and
“industrial and manufacturing engineering”. An-
other closer look at AIEd (Figure 4) then revealed
that scholars seem particularly interested in AI
for “language education”, “student engagement”,
and “prompt engineering”. Moreover, a sizeable
amount of publications were also concerned with
“compliance” and “risk management”.
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Figure 3: Semantic Network for Subfields (Abstracts)

Figure 4: Semantic Network for AIEd (Abstracts)

5 Discussion

This study set out to map AIEd in the broader aca-
demic discourse about AI and identify possible
synergies and spillovers across research fields. Our
results indicate that while AIEd has certainly expe-
rienced a surge in publications, other traditionally
more technical and computational domains remain
at the core of the research field at this point in time
(RQ1). However, using POS, n-grams and semantic
networks, we have also been able to show consid-
erable interconnections between the different fields
(RQ2). This supports the general trend of more in-
terdisciplinary research and the specific request to
address the topic of AI from different, interrelated
perspectives (Følstad et al., 2021; Newman, 2024).
Finally, concentrating on AIEd, we have been able
to identify promising “low-hanging fruits” of con-
tent overlaps with different research fields that can
provide mutual benefit for AIEd and related fields
(RQ3). More specifically, while AIEd can benefit
from groundwork and various applications on the
topic of e.g. “prompt engineering”, other fields
could use AIEd as a type of proving ground to
test and validate the findings from their own fields.
While this study provides valuable insights into
where AIEd is located in the larger context of re-
search on AI, it is also subject to some limitations

that should be considered when interpreting the re-
sults and designing future studies on the topic. First,
we built our literature search on topics and concepts
informed by discourses within the research field of
education. Future research, also based on or find-
ings should consider casting the web even wider, in
order to potentially collect a more holistic sample
of the underlying academic discourse. Second, the
focus of our work has been on titles and abstracts,
rather than full papers. While this is a good point of
departure, it bases the analyses on limited amount
of text. Next possible steps could include the analy-
ses of entire publications, to provide an even more
nuanced view, providing even better chances to
identify possible overlaps and synergies.
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Abstract
Large language model performance has ad-
vanced rapidly in recent years, driven by tech-
nical improvements in areas like model archi-
tecture, scaling, and reinforcement learning.
However, much of our understanding of these
models remains rooted in static evaluations cal-
culated post-training. While informative, these
snapshots offer limited insight into how models
learn, adapt, and transform internally during
training, overlooking dynamic processes and
representational shifts that occur throughout
fine-tuning, potentially concealing important
aspects of model behavior. We aim to con-
tribute to ongoing efforts to open the ‘black
box’ of language models by analyzing tempo-
ral information dynamics during fine-tuning.
Our findings suggest that tracking these internal
dynamics demonstrates both training-regime-
specific and task-specific differences in learn-
ing and may eventually contribute to applica-
tions such as change point detection or adaptive
training strategies. Ultimately, this work moves
toward a more nuanced, mathematical formula-
tion of what learning does to a model, highlight-
ing the constant flux of representational change
that underlies seemingly stable performance
improvements.

1 Introduction

The rapid development and widespread deployment
of large language models (LLMs) have amplified
interest in understanding how these models func-
tion internally. In pursuit of improved model per-
formance and generalization, the development of
pre-trained LLMs has led to models that are increas-
ingly becoming larger and more complex (Simon,
2021; Brown et al., 2020). Such complexity, often
driven by millions or even billions of parameters,
enables these models to capture and learn intricate
patterns within the training data, allowing them to
achieve state-of-the-art results across a wide array
of tasks (Devlin et al., 2019; Wang et al., 2018;
Rozière et al., 2024; Wang et al., 2020).

However, this power comes at a significant cost:
it obscures the internal mechanisms by which mod-
els arrive at their predictions, rendering the path
from input to output difficult to interpret and ex-
plain. As these models are increasingly adopted
in sensitive and high-stakes domains, the need for
transparency into their internal processes becomes
not just desirable, but essential (Hassija et al., 2024;
Embarak, 2023; Chen et al., 2025). To better un-
derstand what these models are actually learning
— and how their internal states evolve during train-
ing— we must look beyond static evaluations and
examine the learning process itself. Standard eval-
uation metrics such as accuracy, perplexity, or F1-
score provide only static snapshots of model behav-
ior. These metrics reflect what a model achieves
but offer little insight into how it learns.

In this paper, we propose analyzing the temporal
dynamics of learning in language models within an
information-theoretic framework (MacKay, 2002),
conceptualizing a model’s internal state as a dy-
namic information system (?). Rather than focus-
ing solely on final performance, we track how inter-
nal representations evolve during fine-tuning. This
allows us to characterize learning as a continuous
sequence of representational shifts, offering a more
granular and process-oriented perspective on model
behavior.

Our proposed framework builds on a growing
body of research that has used information theory
to study the evolution of complex, dynamic sys-
tems. In particular, several studies have modeled
cultural and linguistic phenomena by analyzing
the balance between how much new information is
being introduced and that information’s longevity
within the system (Barron et al., 2018; Nielbo
et al., 2021a,b; Vrangbæk and Nielbo, 2021; Wev-
ers et al., 2021; Krisensen-McLachlan et al., 2024).
These studies used windowed relative entropy to
quantify the novelty of a system - the extent to
which a given time period diverges from preced-
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ing time periods - and the resonance of a system,
which captures how information persists over time.

We extend this framework to the context of deep
learning by treating the internal states of a lan-
guage model as a dynamic information system. We
investigate the evolution of internal information
structure in models from the English BERT family
(Devlin et al., 2019) as they are fine-tuned across
various classification tasks. Through a series of
controlled experiments, we continuously extract in-
ternal representations from different BERT models
throughout the fine-tuning process. We adopt an
exploratory approach, examining whether tracking
the dynamics of internal representations over time
can reveal novel insights into the mechanisms of
learning within these models.

We argue that this approach offers a rich per-
spective on what it means for a model to learn
and opens the door to future applications, such
as tracking learning trajectories, identifying shifts
in representational focus, or detecting meaning-
ful change points during training. Ultimately, we
aim to bridge the gap between surface-level perfor-
mance and deeper representational change, provid-
ing insight into the temporal structure of learning
itself.

1.1 Related Work

Prior research has explored how fine-tuning affects
the internal structure of transformer-based mod-
els such as BERT. A common approach involves
probing internal layers to identify which aspects of
the model change during adaptation to downstream
tasks (Phang et al., 2021; Hao et al., 2020; Mer-
chant et al., 2020; Zhou and Srikumar, 2022; Voita
and Titov, 2020; Liu et al., 2019; Tenney et al.,
2018; Voita and Titov, 2020). Hao et al. (2020)
employ divergence-based measures to track shifts
in attention patterns and find that fine-tuning pri-
marily alters the attention modes of higher layers.
This is consistent with observations from Merchant
et al. (2020) who use probing classifiers and ab-
lation experiments to show that representational
change during fine-tuning is concentrated in upper
layers. Furthermore, they find variations in this
effect across fine-tuning tasks. For example, tasks
such as dependency parsing produce deeper repre-
sentational shifts than tasks like natural language
inference or reading comprehension.

Further analyses have investigated the spatial
structure of learned representations (Coenen et al.

(2019); Hernandez and Andreas (2021). Com-
paring the spatial structure of class-level embed-
dings before and after fine-tuning, Zhou and Sriku-
mar (2022) observe that class representations are
pushed further apart in the embedding space after
fine-tuning, even in cases where the classes were al-
ready linearly separable. Extending the findings of
Merchant et al. (2020), they also report that while
higher layers change more than lower ones, these
changes preserve structural similarity with the pre-
trained model, suggesting that fine-tuning reshapes
but does not fully overwrite earlier representations.

While these studies offer valuable insight into
how models change across fine-tuning, they are
typically limited to static comparisons between pre-
trained and post-trained states. In contrast, our
work adopts a dynamic perspective, examining
internal representations at every step during the
fine-tuning process. Moreover, rather than ana-
lyzing intermediate encoder layers, we focus on
prediction-layer outputs, treating class-level out-
put vectors as a dynamic system whose evolution
reflects learning in real time. This allows us to
capture transient changes and transitions that static
snapshots may miss, offering a more granular view
of representational dynamics during training.

2 Methods

We base our analysis on information signals ex-
tracted from 24 experiments: four pre-trained large
language models fine-tuned on three classification
tasks under two conditions. Details of this process
are laid out in the following sections.1

2.1 Model architectures

We fine-tune four different pre-trained BERT-style
models, namely BERT (Devlin et al., 2019), dis-
tilBERT (Sanh et al., 2020), roBERTa (Zhuang
et al., 2021), and multilingual BERT (mBERT)
(Devlin et al., 2019). The models are all core mod-
els that have been trained across many language-
understanding tasks. Each model is based primarily
on the BERT architecture, although they each dis-
play variations across different parameters such as
size or training regime, allowing for a range of pos-
sible comparisons across models. An overview of
the key differences across model types can be found
in Appendix A.2. The pre-trained model weights of

1The code-base for the project can be found at
https://github.com/frillecode/BERT-infodynamics
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all four models were retrieved from HuggingFace.2

2.2 Classification tasks
We fine-tune the above-mentioned pre-trained mod-
els across three different language classification
tasks from the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018).
GLUE comprises a collection of resources for eval-
uating the performance of natural language under-
standing systems across a wide range of linguistic
tasks. GLUE consists of nine different language un-
derstanding tasks, each built on established English-
language text datasets, that are widely accepted
as standard benchmarks for assessing how well
models can understand and process natural lan-
guage (Devlin et al., 2019; Radford et al., 2019).
In the present study, a subset of three tasks from
the GLUE benchmark is used, namely:

• MNLI: The Multi-Genre Natural Language
Inference Corpus (Williams et al., 2018).

• MRPC: The Microsoft Research Paraphrase
Corpus (Dolan and Brockett, 2005).

• SST-2: Stanford Sentiment Treebank (Socher
et al., 2013).

The choice of using a subset of tasks is motivated
by the following reasons. Firstly, the GLUE bench-
mark is typically used to assess how well mod-
els generalize across tasks and text genres, often
with the ultimate goal of driving the development
of robust natural language understanding systems
(Wang et al., 2018). In contrast, this study seeks
to explore the underlying processes of the models
as they learn rather than assessing their final per-
formance. Secondly, the experiments in this study
make for 24 different fine-tuning processes and sub-
sequent analyses, with the windowed relative en-
tropy calculation adding substantial computational
load. Thirdly, the choice of these tasks ensures that
the study encompasses both binary and multi-class
classification problems, as well as different dataset
sizes. Furthermore, the tasks cover a wide range of
linguistic phenomena as they represent each of the
three general categories of the benchmark (Wang
et al., 2018). As such, the tasks provide a sufficient
variety of linguistic challenges to, within the scope

2https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/google-bert/bert-base-

multilingual-uncased

Hyperparameter Values
Batch size 16, 32
Learning rate 2e−5, 3e−5, 5e−5

N epochs 2, 3, 4

Table 1: Search space for hyperparameter optimization.

of this study, explore how models process and learn
throughout different natural language understand-
ing tasks.

2.3 Training procedures

The fine-tuning process of each model on each
task is carried out under two conditions differing
in parts of the training setup.

In the fixed condition, the hyperparameters of
the training process are kept fixed across all experi-
ments to allow for a more direct comparison. The
models are trained for 5000 steps using a batch size
of 64. All other hyperparameters are kept at default
values.

In the optimized condition, hyperparameter op-
timization is incorporated in the training process
to explore the effects of optimizing the models’
learning process to the task. We perform a simple
grid search over pre-defined values for batch size,
learning rate, and number of epochs. We use the
search space recommended in the original BERT
paper (Devlin et al., 2019), as seen in Table 1. For
each experiment, we run a total of 10 trials. Based
on this, we define the best configuration for each
experiment. These can be found in the Appendix
A.1. All other hyperparameters are kept at default
values.

In both conditions, a standard pipeline for fine-
tuning machine-learning models was employed
using the HuggingFace Transformers library (v.
4.42.4) (Wolf et al., 2020), and the datasets for
the different GLUE tasks were retrieved using the
Datasets class. All models are fine-tuned using
a Cross-Entropy loss function, and the standard
training and validation splits are retrieved automat-
ically upon accessing the datasets from GLUE. All
analysis is performed using Python (v. 3.12.3).

2.4 Feature extraction

During the fine-tuning process for each of the ex-
periments, we save the logits at every training step
by extracting the output of the last layer of the
neural network. By passing the logits through the
softmax function, they are converted to vectors rep-
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Figure 1: Overview of pipeline for extracting information signals from logits. Fictional example for a classification
task with 3 classes and a window size of w = 2. (a) illustrates the matrix with probability scores based on which
the information signals will be extracted. (b) illustrates a novelty signal, with the blue area representing the window
size within which it is calculated and the light red area representing the documents that are removed. (c) illustrates a
transience signal, with the green area representing the window size within which it is calculated and the red area
representing the documents that are removed.

resenting a probability distribution across labels.
As the fine-tuning process continues over training
steps, the resulting matrix becomes a temporally
sorted series of probability distributions represent-
ing the model’s predictions. Since these matrices
(one for each experiment) capture how the models’
predictions evolve over time, this can be used as a
proxy reflecting the learning process as the models
update their internal representations in response
to the data. These probability distribution matri-
ces hence serve as the input from which to extract
information signals, as described in the following
section. A visual representation of the process of
extracting the information signals from the logits
can be seen in Figure 1.

2.5 Information dynamics

Based on the temporally sorted probability scores
for each of the experiments, we employ methods
from information theory to extract information sig-

nals (novelty, resonance, transience). Using win-
dowed relative entropy, we can measure the simi-
larity (or ’surprise’) between the information pat-
terns in a series of probability distributions (Cover
and Thomas, 2006). Novelty serves as a measure
of how surprising the probability distribution pat-
terns in a document are given past documents, tran-
sience measures the extent to which those patterns
persist in future documents, and resonance mea-
sures the degree to which patterns in future docu-
ments conform to the novelty.

Information signals are extracted for each doc-
ument using a window size of 160 (w=160). A
document in this context refers to a document from
the training data (i.e. an input sentence) of the
given GLUE task that the model sees during fine-
tuning. As such, a window size of 160 means that
the information signals are extracted by comparing
the model’s representation of the current input sen-
tence to the previous 160 input sentences and the
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following 160 input sentences.
For the implementation of relative entropy,

Jensen-Shannon divergence was used:

JSD(s(j) | s(k)) = 1

2
D(s(j) |M)+

1

2
D(s(k) |M)

(1)
where M = 1

2(s
(j) + s(k)) and D is the Kullback-

Leibler divergence (Cover and Thomas, 2006):

D(s(j) | s(k)) =
K∑

i=1

s
(j)
i × log2

s
(j)
i

s
(k)
i

(2)

Novelty (N ) is defined as a document s(j)’s
reliable difference from past documents
s(j−1), s(j−2), . . . , s(j−w) in window w:

Nw(j) =
1

w

w∑

d=1

JSD(s(j) | s(j−d)) (3)

Resonance (R) is defined as the degree to which fu-
ture documents s(j+1), s(j+2), . . .,s(j+w) conform
to the Novelty of document s(j):

Rw(j) = Nw(j)− Tw(j) (4)

where T is the Transcience of s(j):

Tw(j) =
1

w

w∑

d=1

JSD(s(j) | s(j+d)) (5)

Given the definitions outlined above, we can see
that these information theoretic measures neatly
translate into easily interpretable descriptions of the
learning process over time. Novelty in our setup
describes by how much the predictions of a given
model at a particular training step differ from those
which have come immediately before, indicating
a substantial shift in model behavior. Resonance,
on the other hand, considers to what extent this
novelty persists in the system during subsequent
training steps. This further allows the characteri-
zation of individual (per-experiment-level) signals
as information dynamics profiles based on internal
representation change. These information patterns
can then be analyzed to see how the dynamics of
the internals of a language model system evolve
over time (i.e. during fine-tuning).

2.6 Signal processing
Due to the granularity of the experiments, the gen-
erated information signals are very long (as deter-
mined by batch size multiplied by number of train-
ing steps). As such, some processing must be done
to analyze and interpret the signals meaningfully.

First, the first 160 and last 160 (i.e., the window
size) documents are removed from the novelty and
resonance signals. Second, following existing re-
search into information dynamics (Nielbo et al.,
2021a; Wevers et al., 2021; Nielbo et al., 2021b),
non-linear adaptive filtering is performed to extract
global trends in the novelty and resonance signals.
In broad terms, the algorithm identifies a globally
smooth trend signal by ’stitching’ together locally
best-fitting polynomials in overlapping partitions
of the time series, allowing identification of broad
trends while preserving local variations within the
data. Following Riley et al. (2012), we define the
span value (size of the partitions) by visually in-
specting the results across a range of values to iden-
tify the best fit to extract the globally smooth trend
across the different signals. In this study, this is
done by comparing the smoothed signal produced
by adaptive filters with varying span values to a
moving average (see Appendix C.1 for an exam-
ple). Based on this procedure, the span value for
the partitions is set to 92.

3 Results

Figure 2 depicts the smoothed, normalized novelty
and resonance signals for the 12 experiments in
the fixed group (2a) and the optimized group (2b).
Across both groups, the resonance signals show
more frequent and periodic oscillations compared
to the novelty signals. The trajectories of both nov-
elty and resonance signals in the fixed group show
a higher degree of similarity across experiments
compared to those of the optimized group.

In the fixed group (Figure 2a), both novelty and
resonance signals appear smoother and more coher-
ent with slower oscillations, and we observe visible
patterns that correlate across the different experi-
ments. The novelty signals show closely aligned
trajectories during the initial training phase, but
begin to diverge after seeing approximately 20% of
the documents. The divergence is apparent in the
magnitude of the fluctuations, with some models
having more or less pronounced variance. How-
ever, the overall direction of the changes - either
increasing or decreasing - remains largely consis-
tent across experiments. Though more variable
from the outset, the resonance signals show simi-
lar patterns of divergence over time; they exhibit
somewhat aligned trajectories in the initial training
phase, but the magnitude of the oscillations grows
more unsynchronized as the training progresses.
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(a)

(b)

Figure 2: Normalized, smoothed novelty and resonance signals for experiments in (a) the fixed group and (b) the
optimized group. The signals are visualized over fine-tuning time with the percentage of training documents seen by
the model on the x-axis.

The situation is markedly different in the op-
timized group (Figure 2b), where the signals are
more chaotic and noisy overall, with more rapid
fluctuations and less apparent structure. Both nov-
elty and resonance signals show high variability
from the beginning of training and remain unsyn-
chronized throughout. We observe less alignment
across experiments, with more rapid fluctuations
and no clear common direction of changes between
experiments.

Figure 3 displays the novelty and resonance sig-
nals of the fixed group grouped by fine-tuning task.
We can observe clear task-specific patterns in the
trajectories of the signals, with high within-task
alignment, especially for the MRPC task (Figure

3b). The same is not evident for the optimized
group, nor do we find visible shared patterns in
either group when grouping signals by model type
(see Appendix B.1).

4 Discussion

Our findings reveal variations in information dy-
namics during the learning process across all exper-
iments, suggesting that BERT models process and
handle new information in distinct ways as they
learn. Most notably, we observe a high degree of
similarity in the signals from experiments in the
fixed group. Despite divergences in magnitude, the
overall directions of the changes in novelty and
resonance remain largely consistent across exper-
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(a)

(b)

(c)

Figure 3: Normalized, smoothed novelty (blue) and
resonance (green) signals for experiments in the fixed
group grouped by task. The highlighted lines depict the
signals from fine-tuning on the (a) MNLI, (b) MRPC,
and (c) SST-2 task, respectively. The transparent lines
show the remaining signals, i.e., signals from those tasks
not highlighted in each plot.

iments, suggesting somewhat stable information
structure and shared underlying trends in the evo-
lution of those signals over time. This contrasts
with the optimized group, where the signals show
more variability and noise across experiments, im-
plying less consistency in information dynamics
in that group. Contrary to previous methodologi-
cally related research in other data domains (e.g.
Nielbo et al. (2021b) and Vrangbæk and Nielbo
(2021)), this study does not find clear temporal
change points in the information signals that cor-
respond to key events, such as shifts in learning
curves (see Appendix B.2).

The consistency we observe in the novelty sig-
nals in the fixed group suggests that, across model
types, new information is being integrated in a sta-
ble and comparable way. The resonance curves
show similar trends across models and tasks, in-
dicating that when new information is introduced,

its influence tends to persist consistently across
experiments. This illustrates a shared structure of
learning dynamics, where the models steadily adapt
to incoming training data in a similar manner. In
contrast, while generally achieving better classifi-
cation task performance (see Appendix B.2), the
optimized group exhibits less consistent informa-
tion integration. Frequent and high fluctuations in
novelty signals in this group suggest that the mod-
els are encountering more abrupt changes in their
internal representations, likely due to different op-
timal hyperparameters (e.g. learning rate or batch
size). Resonance signals are also less uniform,
implying that the influence of novel information
on future representations is less predictable and
more specific to the given experiment. These obser-
vations suggest that hyperparameter optimization
introduces variability in how models process and
retain information, possibly due to faster conver-
gence, more aggressive adaptation, and divergent
learning regimes across runs. However, it remains
unclear whether these fluctuations reflect meaning-
ful learning phenomena — such as adaptive ca-
pacity or sensitivity to task complexity — or are
artifacts introduced by tuning. Distinguishing be-
tween the two remains a challenge and motivates
future work involving finer-grained ablation stud-
ies and statistical analysis. Overall, these findings
indicate that stability in training procedure (i.e.,
fixed hyperparameters) leads to more uniform in-
formation dynamics, while optimization increases
variability in novelty and resonance, even if it may
improve downstream task performance.

These results are aligned with prior work in-
vestigating fine-tuning dynamics in BERT models.
For instance, as previously introduced, Hao et al.
(2020) use divergence-based methods to assess
shifts in attention patterns and find that fine-tuning
affects the higher layers of BERT more substan-
tially than lower layers. Their findings suggest that
learning-induced changes tend to concentrate in
specific architectural regions of the model and vary
by downstream task — a conclusion that aligns
with our observation that models under fixed train-
ing conditions exhibit consistent internal changes
with observable task-specific patterns, while those
under optimized regimes display greater variance.
Given these earlier findings, the present study’s
focus on the prediction layer is a natural starting
point for capturing salient representational changes
during fine-tuning. However, while this level offers
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tractable insight into the model’s learning behavior,
it may not fully capture the dynamics occurring in
earlier layers. Extending the analysis to intermedi-
ate representations could provide a more nuanced
understanding of how internal structures evolve
across the network.

While the results may already conform with
expert intuition about how models are learning
over time, the explicitly information-theoretic ap-
proach can provide a new vocabulary and concep-
tual framework for explaining how and why certain
learning dynamics occur during fine-tuning on dif-
ferent tasks.

For example, Figure 3 illustrates the informa-
tion signals with fixed hyperparameters grouped by
classification task. For all three tasks, there is an
initial spike in novelty around 10% into training,
indicating that significant, consecutive represen-
tational changes are occurring at this stage. This
may reflect initial learning in the early stages of
fine-tuning where the models make more sporadic
or uninformed predictions, thus increasing novelty.
Subsequently, novelty decreases, suggesting that
the changes become more permanent, perhaps as
the models have learned useful patterns from the
training data. This is notably followed by a se-
ries of oscillations that manifest themselves consis-
tently within each task, perhaps reflecting episodic
shifts in representations as the models adjust to
task-specific data.

The resonance signals show similarly pro-
nounced regularity with structured, repeating reso-
nance peaks, especially for the MRPC task (Figure
3b). This periodicity might emerge from uniform
training dynamics across runs with fixed training
regimes; the same types of examples tend to re-
tain influence throughout training. The prominent
resonance fluctuations in the MRPC task may cor-
respond with overfitting tendencies observed in the
learning curves of models fine-tuned on this task
(see Appendix B.2). This suggests that certain train-
ing examples in MRPC repeatedly shape model be-
haviour, potentially leading to memorization rather
than generalization.

These discussions highlight how the perspec-
tive introduced here offers not only exploratory or
descriptive insights but also opens up for practi-
cal applications, such as change point detection.
This may allow us to identify critical transitions in
learning, e.g. sudden shifts in model behavior, con-
vergence phases, or the onset of overfitting, poten-

tially offering a more nuanced view of the training
progress. While qualitative patterns suggest links
between signal fluctuations and learning phenom-
ena (e.g., spikes in novelty during early training),
we do not currently quantify these relationships.
The scope of this study is primarily descriptive and
comparative; we focus on establishing the plausi-
bility and interpretability of the proposed signals
across training conditions. Future work could build
on this foundation by investigating formal change
point detection techniques or correlating signal dy-
namics with shifts in validation loss (Appendix
B.2) to strengthen causal interpretations. We leave
these directions for future research.

5 Conclusion

This paper presented a novel method demonstrating
how information-theoretic signals can offer insights
into the dynamics of how language models pro-
cess and integrate information during fine-tuning.
While traditional evaluation metrics provide static
snapshots of model performance, our findings un-
derscore the value of examining temporal learn-
ing dynamics to uncover how internal representa-
tions evolve over time. Across fixed training set-
tings, models exhibit synchronous and structured
changes, while optimized training regimes intro-
duce greater variability, thus revealing how differ-
ent learning conditions shape information flow.

For the purpose of this study, we focused only on
BERT-style models, but the methods proposed here
can be extended to other architectures. both the
information-theoretic framework and the format
of the GLUE benchmark can be model-agnostic,
meaning that this analysis could feasibly be ex-
tended to different architectures, training regimes,
and tasks. By quantifying how models react to and
retain new information, this moves beyond perfor-
mance outcomes to illuminate how models learn,
not just how well. It captures the learning process
as a sequence of representational shifts, offering a
mathematical perspective on learning as continuous
adaptation rather than discrete updates. Our work
contributes a new layer of transparency to model
behavior, bridging performance metrics with inter-
nal state changes, and advancing our understanding
of learning as an unfolding, temporal process.
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Limitations

Signal processing and window size
The generated information signals are inherently
dependent on the chosen window size, as this de-
fines the context for measuring ‘surprise’. In this
study, the choice of window size was intended to
balance the trade-off between capturing sufficient
context from the surrounding documents while
maintaining computational feasibility. Though
meaningfully defining an optimal window size for
a problem as such remains a complex challenge,
a sensitivity analysis (see Appendix C.2) showed
that varying the window size within a small range
had minimal impact on results. Still, all tested
sizes were relatively short compared to the full sig-
nal. Future work could explore larger windows
to examine long-term trends, though comparing
distributions over broader spans may introduce lim-
itations due to memory constraints in the current
information-theoretic measures. Additionally, as
previously discussed, the choice of adaptive filter
span value was guided by visual inspection due to
the lack of a standardized quantitative criterion for
adaptive filter tuning. Though a range of values
were tested for each experiment (Appendix C.1),
its effects on signal smoothing could be explored
more systematically in future work.

Model and task diversity
The classification tasks were carefully selected to
span a variety of differing scenarios. However,
extending this work to include more complex clas-
sification problems, such as with imbalanced data
or a wide number of classes, could offer addi-
tional insights. Likewise, our current work has
been confined to English language tasks. While we
found minimal differences between multilingual
and monolingual BERT models, further investiga-
tion could clarify how language diversity shapes
information dynamics. Similarly, while the models
examined in this study have notable differences in
architecture and training regimes, they all share the
same BERT-style model at their core. Comparing
information dynamics across more diverse model
types could reveal alternative learning patterns and
deepen our understanding of how different architec-
tures integrate and retain information. While our
model and task selection ensure a manageable com-
parison scope, extending this framework to other
architectures (e.g., T5, GPT) and task types (e.g.,
generation, multilingual classification) would help

assess the generalizability of information signals
across broader learning paradigms.

Ethics Statement

This study aimed to aid in opening the ‘black box’
of LLMs and enhance transparency by exploring
the information dynamics in their internal repre-
sentations. It takes an exploratory and analytical
approach in nature and does not involve model
deployment, private user data, or human subjects.
The dataset used is publicly available and widely
used in the research community. While our work
contributes to model transparency research, it does
not provide definitive explanations of model deci-
sions. We caution against potential misuse, such
as over-interpreting signals or applying our frame-
work to justify opaque model behavior without
sufficient validation. Finally, we must consider the
environmental impact of our work, with 24 fine-
tuning experiments and subsequent generation of
information signals.
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Appendices

A Additional methods

A.1 Hyperparameters for the optimized group

Before fine-tuning for experiments in the optimized
group, we performed hyperparameter tuning, as de-
scribed in the paper. The resulting hyperparameter
configurations can be found in Table 2. Hyper-
parameters not specified in the table were kept at
default values.

Model Task N epochs LR Batch size
BERT MNLI 3 3e−5 16
BERT MRPC 2 5e−5 32
BERT SST-2 2 2e−5 16
distilBERT MNLI 4 5e−5 32
distilBERT MRPC 3 3e−5 16
distilBERT SST-2 2 5e−5 64
roBERTa MNLI 4 2e−5 32
roBERTa MRPC 4 2e−5 64
roBERTa MRPC 4 5e−5 64
mBERT MNLI 4 5e−5 32
mBERT MRPC 3 5e−5 64
mBERT SST-2 3 2e−5 64

Table 2: Hyperparameter configurations for each exper-
iment in the optimized group. LR is the learning rate.

A.2 Model architectures and pre-training
details

In Table 3, we highlight some of the main differ-
ences between the four models in terms of architec-
ture and pre-training details.

Model N layers N parameters N languages
BERT 12 110M 1
distilBERT 6 66M 1
roBERTa 12 125M 1
mBERT 12 110M 102

Table 3: Overview of architecture and training details
for pre-trained versions of BERT, distilBERT, roBERTa,
and mBERT.

B Additonal results

B.1 Grouped signals
To explore patterns in the extracted information
signals, different groupings of the signals were
visualized. As discussed in the paper, the analysis
revealed task-specific patterns in the information
signals from the experiments in the fixed group.
In Figure 4, the information signals from the

optimized group are shown grouped by task.
All subfigures display all the same signals;
however, each subfigure highlights the novelty and
resonance signals for a respective task, while the
remaining signals are depicted in transparent lines
for comparison.

(a)

(b)

(c)

Figure 4: Normalized, smoothed novelty (blue) and res-
onance (green) signals for experiments in the optimized
group grouped by task. The highlighted lines depict the
signals from fine-tuning on the (a) MNLI, (b) MRPC,
and (c) SST-2 task, respectively. The transparent lines
show the remaining signals, i.e., signals from those tasks
not highlighted in each plot.

Similarly, the information signals from the exper-
iments were grouped by model type to investigate
potential patterns. This is depicted in Figure 5, with
each row of subfigures highlighting the signals of
the four different models, respectively. The left
column shows experiments from the fixed group,
and the right column shows experiments from the
optimized group.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Normalized, smoothed novelty (blue) and resonance (green) signals grouped by model. The left column
shows the fixed group and the right column shows the optimized group. Each row corresponds to a model: (a–b)
BERT, (c–d) distilBERT, (e–f) roBERTa, and (g–h) mBERT. Highlighted lines show signals for each model-task
combination; transparent lines show the rest.

B.2 Learning curves

In Figure 6, the learning curves for the various ex-
periments are presented, illustrating the models’
performances on the classification tasks during the
fine-tuning process. Each subfigure represents an
experiment, displaying the learning curves for each
of the models fine-tuned on a task. The purple line
represents validation accuracy, the red line repre-
sents validation loss, and the yellow line represents
training loss. Note that differing training durations
in the optimized group led to uneven checkpoint
sampling across experiments. As a consequence,
some plots — such as those for roBERTa — are
missing or incomplete (e.g., if training terminated
before enough checkpoints were saved).

C Sensitivity analyses

C.1 Defining the adaptive filter span
As discussed in Section 2.6, we follow the pro-
posed method for defining the span value for the
adaptive filter (Riley et al., 2012); namely, visual
inspection of the fit of the smoothed signal pro-
duced by varying span values. Figure 7 displays an
example of this.

C.2 Defining the window size
As mentioned in the Limitations, a sensitivity anal-
ysis was also performed to investigate the effect
of varying the window size in which to calculate
the information signals. An example of this can be
seen in Figure 8.
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(a)

(b)

Figure 6: Learning curves for experiments in (a) the fixed group and (b) the optimized group. The red line represents
the validation loss, the yellow line represents the training loss, and the purple line represents the validation accuracy.
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(a)

(b)

(c)

Figure 7: Example of the effect of different span values for the adaptive filter. The signal depicted here is the
novelty signal from BERT fine-tuned on the MRPC task with fixed hyperparameters. The grey line depicts the
original, unsmoothed novelty signal. The light blue line depicts the novelty signal’s moving average (w=10000).
The dark blue line depicts the smoothed signal from the adaptive filter using span values of (a) 32, (b) 56, and (c)
128, respectively. All signals are normalized.

Figure 8: Example of the effect of varying the window size for which to calculate novelty, transience, and resonance
in. The signal depicted is the normalized, smoothed novelty signal from distilBERT fine-tuned on the MNLI task
with fixed hyperparameters. The different lines represent different window sizes (80, 160, 320)
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Abstract

Functional software testing is essential to en-
sure that software meets user expectations. Our
ambition is to enable business experts who have
extensive domain knowledge but limited soft-
ware engineering competences, to realize the
functional software tests, through formulating
test case descriptions in natural language. To
meet this challenge, we propose a framework
called GUIDE (Guided User-driven Interactive
Description Enhancement), which leverages
language models to improve functional soft-
ware test descriptions written in natural lan-
guage. Our framework implements an inter-
mediate step based on a structured language
(Gherkin1) that is a language widely used for
software tests. We translate test descriptions
written by the business expert to this language
using language models. We automatically eval-
uate the quality of the description based on the
generated Gherkin. When this quality is in-
sufficient, GUIDE initiates an interactive and
personalized assistance process, delivering tar-
geted advice to help business experts enhance
and improve their test case descriptions. We
evaluated our approach through a case study
based on test cases for a human resources man-
agement related software, written in French.
We recorded a 26% decrease in the average
number of descriptions required per test objec-
tive to reach the desired quality level thanks to
the advice generated.

1 Introduction

Software testing plays a crucial role in the qual-
ity and longevity of IT applications. However, a
persistent divide between developers and end-users
often complicates this essential task. While devel-
opers master the code and technical specifics, the
business expert is the one who know the functional

1https://cucumber.io/docs/gherkin/reference/

requirements. Nevertheless, they do not always
have the tools or the language to express their ex-
pectations that is precisely understandable by the
developers. This dissonance can compromise test
reliability and software quality.

The advent of language models, capable of gen-
erating code from natural language instructions, is
a promising solution for test production (Tufano
et al., 2021; Xie et al., 2023). However, this ap-
proach is still mainly accessible to people with
solid programming expertise, thus excluding many
business experts. The latter also encounter diffi-
culties in interacting with language models: they
often give up too early when faced with a lack
of understanding of the model, or formulate erro-
neous expectations based on dynamics specific to
human interaction (Zamfrescu-Pereira et al., 2023).
Moreover, each individual writes natural language
text differently, even when the objective is identi-
cal (Weigelt et al., 2020). In parallel, some recent
benchmarks (Jimenez et al., 2024) now include
expert-verified and human-annotated versions of
problem descriptions, acknowledging that instruc-
tions written by non-expert users are often insuffi-
cient to fully capture the functional intent behind a
request.

In light of these challenges, it becomes essen-
tial to explore novel approaches that qualify user
input and provide actionable guidance to improve
it before giving it to a code generation pipeline.
To this end, we propose a novel framework that
we call GUIDE (Guided User-driven Interactive
Description Enhancement), that aims to guide busi-
ness experts in improving the quality of functional
software test descriptions. The main objective of
GUIDE is to enhance the clarity and precision of
natural language test descriptions. More specifi-
cally, these descriptions are produced by a business
expert without any specific rules being imposed,
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Figure 1: Overview of the GUIDE framework. In blue
are the parts that the user is asked to perform, and in
black those that are automated. Firstly, the user pro-
duces a description of a functional test, which is then
translated into the Gherkin language using a language
model. The quality of the test description is then as-
sessed using this code. If the quality is judged to be
insufficient, advice is generated based on the test de-
scription and the Gherkin code, enabling the user to
modify the description himself.

and seek to explain how the system works accord-
ing to a particular functionality. Our approach is
based on three key components (Figure 1): (1) a
quality criterion leveraging the automatic transla-
tion of descriptions into an intermediate representa-
tion language (Gherkin), (2) a classification system
to evaluate the semantic similarity between the de-
scription and its translation, and (3) an interactive
advice generation mechanism to guide users in re-
fining their descriptions. A complete example of
such a test description, its translation into Gherkin
and their similarity according to our scale can be
found in Table 1.

To evaluate the effectiveness and relevance of
GUIDE, we seek to address the following research
questions:

• RQ1 : To what extends automatic translation
of a test description into an intermediate lan-
guage can constitute an appropriate quality
criterion?

• RQ2 : Can a small language model manage to
understand the semantic similarities between
a test description and its translation into an
intermediate language?

• RQ3 : Does an interactive process using au-
tomatic advice generation can help a user im-
prove the quality of his description?

Thanks to the participation of 60 people, spread

over three labelling campaigns and two production
campaigns, we have been able to evaluate the ef-
fectiveness of GUIDE. The results show that 70%
of the advice generated is considered relevant by
users. In addition, we observed a measurable im-
provement in their ability to comply with the qual-
ity criteria, with a 26% reduction in the average
number of descriptions needed per test objective to
achieve the required level of quality.

The rest of the paper is organized as follows. We
start by discussing the related works in Section 2.
In Section 3, we introduce the three key compo-
nents of our GUIDE framework in detail. Then,
we discuss the practical implementation of GUIDE
in a real-world experiment, where business experts
interact with software under test conditions, that
we describe in Section 4. We conclude the paper in
Section 5.

2 Related Work

We review contributions related to large language
models for code generation, techniques for refining
ambiguous or incomplete user input, and methods
for assessing the quality of natural language de-
scriptions through text classification. We conclude
by positioning our approach, GUIDE, in relation to
these works.

2.1 LLM-based Code Generation

Large language models (LLMs) have emerged as a
powerful tool for various code-related tasks, includ-
ing program synthesis (Austin et al., 2021), bug fix-
ing (Zubair et al., 2024) or program testing (Xiong
et al., 2023). Through extensive pre-training, they
recognize patterns, comprehend context, and gen-
erate coherent and contextually relevant code snip-
pets.

In software testing, the use of natural language
as an entry point remains limited. Approaches such
as AthenaTest (Tufano et al., 2021) or A3Test (Ala-
garsamy et al., 2024) rely mainly on source code to
generate tests, while ChatUniTest (Xie et al., 2023)
uses a prompt composed mainly of code fragment.

2.2 Refining user input

The task of asking users to reformulate or mod-
ify their output is receiving increasing attention
in the fields of information retrieval and dialogue
systems. For example, Wang and Li (2021) pro-
pose a method based on question templates to help
users clarify their requests. They use a genera-
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Table 1: An example of a functional test description written by a non AI expert, translated into Gherkin code by an
LLM and its similarity given by a human annotator using our similarity scale (Appendix A) (Example from our use
case. The original description was written in French and can be found in the first row of Table 6)

Description Gherkin Similarity
Label

Click on ‘OPEN’. Check that the file
selection window opens. Select a file
with the ‘.csv’ extension and check that
the search appears in the software.

Given the software is open
When I click on "OPEN"
Then the file selection window opens
And I select a file with the extension
".csv"
And the search appears in the software

VERSIM

tion model based on a Transformer. Eberhart and
McMillan (2022) propose a new method that uses
a task extraction algorithm to identify aspects of
the query and follows a rule-based procedure to
generate questions.

In code generation, dealing with ambiguous user
requirements has received more attention. Some
pipeline such as QualityFlow (Hu et al., 2025) have
integrated the evaluation of the quality of natu-
ral language requests and offers self-improvement
mechanisms to reformulate instructions without the
aid of the user. Other methods such as ClarifyGPT
(Mu et al., 2023) or CodeClarQA (Li et al., 2022)
questions the user to clarify ambiguities. In the
case of ClarifyGPT, the ambiguity of a requirement
is detected when several generations of code pro-
duced from the same instruction lead to different
behaviours for the same input. As for CodeClarQA,
it always asks questions, but has no system for as-
sessing this ambiguity.

2.3 Text classification

To address the issue of ambiguous or incomplete
test descriptions, recent research has focused on
automated classification of textual quality. Tra-
ditional methods rely on logical rule-based sys-
tems that detect key phrases or syntactic patterns
indicative of test completeness (Ormandjieva et al.,
2007). Although effective in well-structured sce-
narios, these systems lack the flexibility to handle
the linguistic diversity present in natural language
inputs. Another method involves supervised learn-
ing based on standard metrics, representing the cri-
teria that an expert takes into consideration when
assessing the quality of requirements (Parra et al.,
2015).

2.4 GUIDE positioning

We have seen that in current approaches to code
generation, consideration of the quality of user in-
put often comes after a long and costly process,
once the initial generation has already been car-
ried out. In contrast, GUIDE seeks to intervene
upstream, validating the quality of the request as
soon as it is created, to ensure that all the elements
required for correct generation are present.

In addition, when ambiguity is detected, some
approaches ask questions, sometimes of a technical
nature, to fill in the missing information. GUIDE
adopts a different strategy: it allows the user to
modify the description directly, making implicit
information explicit. This process is based on the
generation of targeted advice, offered to the user
in a non-binding way. In this way, the user retains
control of their production, while being guided to
improve it progressively.

3 The framework GUIDE

In this section, we will present our framework. In
order to do so, we start by discussing quality crite-
rion that we have chosen to discard the description.
Then, we will look at the method used to assess
automatically the quality of a test description using
its translation into Gherkin code. Finally, we will
present the method used to guide the user in the
process of improving his production.

3.1 Quality criterion

Our approach is based on the use of a quality cri-
terion to filter test descriptions according to their
relevance. Our aim is to develop a method that re-
tains only those test descriptions that contain all the
elements necessary for a language model to both
generate and verify the corresponding test. Thus,
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the quality criterion aims to evaluate the ability of
the language model to restore all the information
contained inside the description.

Thus, to assess the language model’s ability to
understand the description, we use it in a simple
task: information reorganisation. Specifically, we
ask the language model to structure the information
present in the test description. To do so, we use
a intermediate language that meets this require-
ment perfectly: Gherkin. Gherkin is a human-
understandable specification language used in the
development method known as BDD (Behavior-
Driven Development).

We will therefore base our quality criterion on
the similarity level between the test description
and its translation into Gherkin code by a language
model. More specifically, it is based on a similarity
scale detailed in Appendix A, which is composed
of five labels:

• Similar : COMPSIM, VERSIM

• Different : SOMSIM, VERDIFF, COMPDIFF

By aggregating these labels into two distinct
groups, we define our quality criterion: a descrip-
tion is considered of good quality if it obtains a sim-
ilarity label of COMPSIM or VERSIM. Event though
our quality criterion does not take advantage of
all the nuance offered by the five similarity labels,
we have choose to retain this scale. This addi-
tional granularity proves invaluable during manual
labelling campaign, as it enables human annotators
to better express their perception of the similarity.
This finer distinction encourages a more precise
and nuanced assessment.

3.2 Supervised Learning Quality Assessment

Two main approaches can be used to classify a text
according to a given label: logical methods, based
on rules or feature extraction, and approaches based
on language models. However, in our case, the test
descriptions present a high degree of lexical and
structural heterogeneity, in addition to a dense tech-
nical content. These characteristics make logical
methods ineffective, as they are too rigid and not
very adaptable to the variability of the data.

We therefore opted to use language models,
which are better able to capture the subtleties of nat-
ural language, even in a technical context. Given
that our Framework is likely to handle sensitive or
confidential data, we have deliberately restricted

our choice to compact models that can be run lo-
cally, without depending on remote services.

3.3 Interactive Improvement Process

GUIDE not only qualifies the description written
by the user, but also provides guidance when it is
not of good quality. This guidance is intended to
suggest possible changes that the user could make.
We have chosen to use this form because we want
the user to have a choice of modification throughout
the procedure.

To produce it, we will use the description and its
associated Gherkin code and give it, using a pre-
defined prompt, to a language model. In order not
to introduce our own bias into this generation of
advice, and the evaluation of the prompts used to
generate them, we have decided to use an automatic
optimisation methods to find the best prompt, in
particular Beam Search (Pryzant et al., 2023). This
method is based on a starting prompt, a scoring
metric and a method for generating several varia-
tions of a prompt to explore the space of available
prompts.

The basic prompt is structured in three main
parts: two dedicated slots for inserting the test de-
scription and its translation into Gherkin; another
slot used to insert context of the software under test
to maximise the relevance of the advice generated;
an explicit sentence tells the language model the
expected objective as well as the constraints to be
respected (clarity, consistency and respect for the
context).

For the mutation prompt, we ask the language
model to produce three variations of a prompt,
while retaining the meaning and the three slots re-
served for description, Gherkin and context. These
variations aim to explore different formulations
while maintaining the structure of the task. An ex-
ample of a basic prompt and a mutation prompt can
be found at Appendix C.

The score metric is based on a realistic approach,
aimed to simulate the behaviour of a user using the
advice generated by a prompt. Using a dataset of
test descriptions classified as of bad quality, and the
prompt submitted for evaluation, we will produce
advice for each of them. This advice, combined
with the initial description and the context of the
software under test, is then provided to a language
model which simulates a user by producing a new
version of the description, incorporating the sug-
gested recommendations. This new descriptions,

232



together with its translation into Gherkin, is sub-
mitted to the classifier for quality evaluation. We
calculate the prompt score by measuring the per-
centage of descriptions that, after modifications,
pass the quality criterion.

4 Software Testing by business expert :
Case study

In order to evaluate GUIDE in a real-life appli-
cation, we chose to involve users, not necessarily
with a background in IT, in the task of writing test
descriptions. To this end, we set up three comple-
mentary campaigns as illustrated in Figure 2:

• A labelling campaign which has the objective
to evaluate the relevance of Gherkin produc-
tions automatically generated by a language
model.

• A production campaign which aims to observe
how users behave when writing descriptions,
measuring in particular their ability to produce
content in line with our quality criterion.

• An advice campaign that seeks to assess user
satisfaction with the use of advice produced
by our method.

For the sake of simplicity, we decided to ask for
the descriptions to be produced in French for all the
campaigns. This allowed us to have more people
available to take part in the campaigns.

4.1 Software under test

The software to be tested is called “Esco Explorer”.
It is a tool for displaying a graph in the form of an
Acyclic Guided Graph (AGG) based on the occupa-
tions/skills given by the Esco ontology (Appendix
B). Esco is a European classification of skills, com-
petencies, qualifications and professions. The sys-
tem identifies and categorizes skills, competences,
qualifications and occupations relevant to the EU
labor market, education and training, in 25 Euro-
pean languages. The system provides occupational
profiles showing the relationships between occu-
pations, skills, competences and qualifications; it
functions like a dictionary.

During software development, a test plan con-
sisting of 68 tests divided into 9 categories was
produced. We used this same test breakdown for
the rest of this section, enabling us to indicate a
category and a precise test goal to the user, to help

them write their description. An example of a cate-
gory and its associated test purpose is: Category –
Node Information, with the Test purpose – Display
an optional job for a skill.

4.2 Campaigns

Labelling Campaign
Prior to the various experiments, five users were

asked to write one natural language description
per test purpose, resulting in five complete test
plans. Based on these plans, we generated a manual
labeling campaign aimed at assessing the quality
of the descriptions via their correspondence with
an automatically generated Gherkin code.

In concrete terms, each annotator was assigned
a test plan, in which he or she had to select a de-
scription, consult the corresponding Gherkin code,
generated by a language model, and then evaluate
the similarity between the two elements. This eval-
uation was carried out using our similarity scale.
Production Campaign

During a second campaign, users will have to
write test description for each test purpose them-
selves. For each test purpose, users will have to
produce a test description then label the similar-
ity between the description and its translation in
Gherkin. If their description doesn’t respect our
quality criterion, they will have to modify their
description and redo the labeling process.

In order to avoid blocking users when faced with
cases they consider too complex, we have left open
the possibility of changing the test to be described
even when the quality criterion has not been met.
However, to guarantee a minimum of reformula-
tion effort, each user was required to propose at
least two attempts to improve his initial description
before having the possibility to abandon and do a
new test.
Advice Campaign

Using the same protocol as the production cam-
paign, this time we decided to add the tips gener-
ated from the prompt designed in Section 3.3. More
specifically, when the user indicates that their de-
scription is not of sufficient quality, we offer them
the advice generated from their description and the
Gherkin. The user can then take these tips into
account, or not use them if they don’t find them
interesting. This is indicated by two labels.
Gherkin Generation

In the interests of data governance and in order to
guarantee local execution without dependency on
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Figure 2: Overview of the different campaigns. The
blue color represents the labelling campaign, where
users assess the similarity between a previously written
description and its Gherkin translation. The orange
indicates the production campaign, in which users write
a description based on a given test purpose, evaluate
its quality, and revise it if necessary. Finally, the green
corresponds to the advice campaign, where users receive
guidance generated from their initial description and its
Gherkin translation to help them improve their text.

external services, we opted to use the Mistral V0.3-
7b language model (Jiang et al., 2023), quantised
in 4 bits. The prompt used to generate Gherkin
was manually optimised using a set of descriptions
considered to be of good quality.

4.3 GUIDE Implementation

4.3.1 Quality Classifier
In order to evaluate several possible classifiers
based on language models, we have chosen to
use CamemBERT v2 (Antoun et al., 2024) and
SomlLM2-135M (Allal et al., 2025) as a basis.
CamemBERT v2 is a robust and high-performance
reference for automatic language processing tasks
in French. SmolLM2-135M is a more recent,
lightweight model, that is recognised for its good
general capabilities despite its small size. This
choice makes it possible to combine confidentiality,
linguistic performance and operational efficiency.

Since SmolLM2 is trained exclusively on En-
glish data, we explored its viability by automati-
cally translating our dataset into English using the
opus-mt-fr-en (Tiedemann et al., 2023; Tiedemann
and Thottingal, 2020) model. This model allows
efficient conversion of descriptions and Gherkins
written in French into English, ensuring consistent
basis for training.

To train our classification models, we used the

data collected from two campaigns described in
Section 4.2: the labelling campaign and the produc-
tion campaign. This resulted in a dataset of 1522
test description / Gherkin code pairs. Each pair
was transformed into a single classifier input using
explicit keywords (Description:, Gherkin:) and a
[SEP] separator token.

Based on our quality criterion, we converted the
original similarity labels into binary quality labels:
885 instances were labeled as SIMILAR (indicat-
ing sufficient quality), and 637 as DIFFERENT. The
dataset was split into a 70/30 ratio for training and
validation. All models were trained with 3 epochs
and a batch size of 8.

To complement this training set, we also
constructed a separate test set of 68 descrip-
tion/Gherkin pairs. These descriptions were writ-
ten by a single user not involved in the previous
datasets, and each pair was annotated five times.
The final label for each instance was computed as
an average label, using the method described in
Section 4.4.1.

Table 2: Performance of classification models in training
and evaluation

Model Training
Accuracy

Evaluation
Accuracy

Test
Accuracy

CBERT-Mix 81.78 74.55 60.29
Smol-FR 98.97 73.52 70.59
Smol-EN 98.97 72.23 58.82

The training results for the different models can
be found inside Table 2. The models based on
SmolLM2 show better accuracy during training,
but this superiority is not reflected on the evaluation
set, where the performance is similar to that of
the models based on CamemBERT. Furthermore,
translating the data into English did not bring any
significant improvement in terms of accuracy.

Of the models evaluated, only one managed to
maintain good accuracy over the test set: Smol-FR.
The other two models showed a significant drop in
performance, indicating a more limited ability to
generalise. As a result, we have chosen Smol-FR
for the rest of our experiments.

4.3.2 Advice Prompt
Using this classifier, we were able to launch the
BeamSearch algorithm to produce the prompt used
to generate the advice. We retrieved the first para-
graph of Section 4.1 to be used as the context of
the application under test inside the advice prompt.
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As for the description dataset required for the score
metric, we selected the descriptions from the pro-
duction campaign (presented in the in Section 4.2),
which were identified as being of insufficient qual-
ity by the classifier as well as the user who pro-
duced the description.

In total, our method evaluated 45 prompts each
of which was evaluated with 218 data items. The
selected prompt (found in Listing 3) received a
score of 0.79.

4.4 Data Analysis

In this section, we will analyse the data from the
three campaigns presented above. We will seek to
answer the various research questions we had, as
well as assessing the usefulness of GUIDE.

4.4.1 Gherkin Generation ability

Mean Label
A total of 21 people took part in the labelling

campaign. Of the five test plans proposed, three
were annotated by five people, while the other two
were annotated by three people. Since several an-
notators evaluated the same pairs of data (test de-
scription and Gherkin code generated by an LLM),
it is necessary to assign a consensus similarity label
of each piece of data. To achieve this, we adopt a
majority voting approach.

Using the decomposition of the five similarity
label according to our quality criterion, we will
look at the group with the most labels. Inside this
majority group, if one label stand out with a clear
majority, it is selected. Otherwise, we proceed to
average the labels to select the most representative.
Model capability

Looking at the distribution of average labels ob-
tained for each test plan (Table 3), we can see that
some users, with no prior knowledge of the Gherkin
language or the quality criterion used, manage to
produce descriptions that directly satisfy this crite-
rion. However, this success is not homogeneous:
other test plans present initial descriptions whose
quality is insufficient according to our quality crite-
rion.

Despite these disparities, one encouraging point
stands out: no test plan is completely misunder-
stood by the language model. This illustrates the
robust ability of the selected model (MistralV0.3-
7b) to interpret even descriptions from non-expert
authors, and to produce usable Gherkin transla-
tions.

Table 3: Distribution of the similarity label depending
of the Test plan.

Test
Plan COMPSIM VERSIM SOMSIM VERDIFF COMPDIFF

1 12 11 15 11 19
2 43 16 5 3 1
3 4 18 22 19 5
4 7 28 15 12 6
5 26 37 2 3 —

That said, a qualitative analysis of the comments
left by annotators allows us to distinguish two main
sources of error in Gherkin generation: problems
of structure, linked to poor syntactic or logical or-
ganization of the generated code, and problems
of ambiguity, due to an incomplete or poorly for-
mulated initial description. This ambiguity is due
to the annotator, who did not necessarily under-
stand the test description correctly, as he pointed
out in his commentary. It is therefore a semantic
ambiguity, linked to imprecise wording or wording
that is open to several interpretations in the ini-
tial description. Table 4 shows, for each test plan,
the proportion of descriptions identified as having
these two types of problem.

Table 4: Distribution of Structure and Ambiguity Errors
in Low-Quality Descriptions per Test Plan (as Labeled
by Annotators)

Test Plan Structure (%) Ambiguity (%)

1 90.2 58.6
2 76.3 88.9
3 89.2 73.0
4 90.7 65.8
5 55.2 51.8

We find that, in the majority of cases, failures to
meet our quality criterion stem first and foremost
from problems with the model’s structuring of the
Gherkin, with rates exceeding 90% in some shots.
However, these structural errors are often exacer-
bated by poorly constructed initial descriptions, as
shown by the high rate of ambiguity problems -
reaching 88.9% in plan 9. This twofold observa-
tion highlights both the current limitations of the
language model in correctly handling Gherkin’s
syntactic constraints, and the need to support users
in improving the clarity and completeness of their
descriptions.
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4.4.2 User behaviour
Based on the results presented in Table 8, we ob-
serve that all users needed to revise their descrip-
tions at least once, and in many cases several times,
before reaching a level that matched our defined
quality criterion. This reinforces the idea that gener-
ating a high-quality test description is not straight-
forward, especially for non-expert users.

However, the low number of abandons suggests
that the effort required to improve a description
is not perceived as excessive. In particular, only
36 abandons were recorded out of 680 attempts,
indicating that most users were willing to iterate to
reach the expected quality level.

Each user had to produce descriptions for 9 dif-
ferent test categories, in a fixed order that was
identical for everyone. This enabled us to observe
a potential progression. However, no clear trend
emerged. We find this to be the case even when we
split each categories into two equal halves (Table
7). No systematic improvement dynamic can be
observed. So we don’t need to take into account a
history for each user in our GUIDE framework.

4.4.3 Advice capability
In total, 125 advice have been generated, with an
overall satisfaction rate of 70%. This result indi-
cated that the majority of users were positive about
the usefulness of the advice provided.

The analysis also shows a reduction in the aver-
age number of descriptions per test: this drops from
1.75 (observed during the initial production cam-
paign) to 1.29 during this campaign (Table 9). This
reduction suggests that the advice makes it easier
to achieve the quality criteria, thereby reducing the
number of iterations required.

In addition, result in Table 5 reveal a marked dif-
ference between advice that is considered relevant
and advice considered uninteresting. More specif-
ically, advice perceived as useful is significantly
more associated with improvements in the qual-
ity of the description. This trend suggests that the
perceived quality of the advice has a direct influ-
ence on the user’s ability to refine their description,
thereby reinforcing the effectiveness of GUIDE’s
interactive process.

5 Conclusion

This work introduced GUIDE (Guided User-driven
Interactive Description Enhancement), a frame-
work that improves the quality of test descriptions

Table 5: Improvement of the similarity label depending
on whether the advice has been deemed relevant by the
user.

Improvement Interesting Not Interesting

Upgrade 51 11
Constant 34 24
Downgrade 2 3

written by business experts through an interactive
process. By leveraging Gherkin as an intermediate
representation, GUIDE effectively assesses descrip-
tion quality and provides personalized advice for
refinement, enabling non-technical users to pro-
duce clearer and more complete test scenarios.

Our experiments show that small language mod-
els like CamemBERT and SmolLM2 successfully
identify semantic similarities between natural lan-
guage descriptions and their Gherkin translations
while maintaining data privacy through local pro-
cessing. Additionally, the interactive advice mech-
anism reduces the number of attempts required to
meet quality standards by 26%, highlighting its
effectiveness in user-driven improvements.

While GUIDE has shown promise in improv-
ing the quality of business-driven test descriptions,
several avenues for improvement remain open. No-
tably, we observed issues related to the structuring
of Gherkin translations during the evaluation pro-
cess. Despite its structured format, Gherkin gener-
ated by the translation step sometimes suffers from
syntactic inconsistencies or incorrect formatting,
which can hinder the subsequent classification and
assessment. To address this limitation, it could be
possible to use syntax-aware models that validate
Gherkin structure during generation, or to apply
post-processing corrections to ensure compliance
with Gherkin’s strict syntax.

Limitations

One of the core design choices of GUIDE is the
use of small language models (CamemBERT and
SmolLM2) to ensure local execution and respect
for data privacy. While this choice enables on-
premises deployment and reduces dependency on
external cloud services, it also introduces a lim-
itation in terms of generalization. Unlike larger
pre-trained models (e.g., GPT-4, PaLM), smaller
models require more task-specific fine-tuning to
perform adequately. This additional training phase
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can cause GUIDE to become more domain-specific,
potentially limiting its effectiveness when exposed
to new application contexts or unseen business-
specific terminologies.

Moreover, GUIDE relies heavily on Gherkin as
an intermediate representation to assess the qual-
ity of test descriptions. While Gherkin is well-
structured and human-readable, it enforces a rigid
format that may not capture more complex test-
ing logic or non-linear interactions described by
business experts.
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A Similarity Scale

• Completely Similar (COMPSIM): it is the same
test and the same procedure expressed a little
differently.

• Very Similar (VERSIM): it is the same test,
but the operating procedures are different (one
may be more detailed than the other, but that
does not mean that the test described is dif-
ferent).it is the same test, but the operating
procedures are slightly different.

• Somewhat Similar (SOMSIM): it is probably
the same test (but I am not sure) and/or there
are many differences in the operating methods
used.

• Very Different (VERDIFF): it may be the same
test and/or the operating procedures expressed
have too many differences (but elements in
common).

• Completely Different (COMPDIFF): it is not
the same test and/or the operating procedures
are completely different (no common ele-
ments).

B Esco Explorer

Figure 3: Screenshot of the software Esco Explorer

C Prompt for the Beam Search

All the prompts presented in this appendix were
originally written in French.

Listing 1: The prompt used as the basis for the Beam
Search.
The user wrote a test description , and an automatic
analysis identified the elements that were missing
or needed to be improved.
Based on the following information:
- Test description provided:
"%s"

- Gherkin:
"%s"

- Software context:
"%s"

Generate clear , actionable suggestions to help the
user improve their description. Your recommendations
must be precise and adapted to the elements

detected as insufficient or missing. Respond only to
suggestions and nothing else.

Listing 2: The prompt used to make the mutation during
the Beam Search.
Generates three variations of the following
instruction , while retaining its semantic meaning.
Each variation must respect the following
constraints:

The message must remain clear and understandable.
The three %s markers must be retained , the first for
the description , the second for the Gherkin and the
third for the software.

The variations must reformulate the instruction
without changing its content.
Separate each variation with "---".

Reference instruction:
"%s"

Listing 3: The prompt considered to be the best during
the Beam Search.
The user has drawn up a test description , and an
automatic analysis has highlighted elements to be
enhanced or corrected.

Based on the following information:
- Test description provided:
"%s"

- Gherkin:
"%s

- Software context:
"%s

Make concrete , achievable suggestions to help the
user improve his description. Your recommendations
must be explicit and adapted to the elements deemed
to be missing or insufficient. Answer only the
suggestions and nothing else.
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D Data

Table 6: Examples illustrating the disparity of functional test descriptions produced by different users. These
descriptions, taken from the production campaign, all aim to express the same test objective: ‘File - Open a CSV
file’. The similarity label was assigned by the user who wrote the description

Description Gherkin Similarity
Label

Cliquer sur "OPEN". Vérifier que la
fenêtre de choix des fichiers s’ouvre.
Sélectionner un fichier avec l’extension
".csv" et vérifier que la recherche
apparaît dans le logiciel.

Given le logiciel est ouvert
When je clique sur "OPEN"
Then la fenêtre de choix des fichiers
s’ouvre
And je sélectionne un fichier avec
l’extension ".csv"
And la recherche apparaît dans le
logiciel

VERSIM

Dans ESCO Explorer, appuyer sur le
bouton "OPEN" tout en haut à gauche.
Une fois fait, chercher dans la liste un
fichier avec comme type de fichier
"Fichier CSV Microsoft Excel". Double
cliquer sur le nom du fichier pour
l’ouvrir. Si le fichier s’ouvre dans
ESCO, on peut dire que le test est
validé.

Given l’utilisateur est sur l’application
ESCO.
When l’utilisateur sélectionne un fichier
CSV via le bouton "OPEN".
Then le fichier CSV choisi devrait
s’ouvrir dans ESCO.

COMPSIM

Cliquer sur le bouton ‘OPEN’ de la
barre de menu d’EscoExplorer. Cliquer
ensuite sur le fichier nommé
‘cobolview.csv’ dans la fenetre qui s’est
ouverte puis cliquer sur le bouton
‘ouvrir’. Le test est réussi si et
seulement si le mot ‘COBOL’ apparaît
dans la fenetre de recherche
d’EscoExplorer.

Given EscoExplorer a été lancé
And le langage sélectionné est ’English’
When cliquer sur le bouton ’OPEN’
And ouvrir le fichier ’cobolview.csv’
Then ’COBOL’ apparait dans la fenetre
de recherche

SOMSIM
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E Campaign Analysis

Table 7: Average number of productions per test category, dividing the test categories into two halves.

Test Category 1 2 3 4 5 6 7 8 9

First Half 2.97 1.5 2.6 1.45 1.8 1.52 1.62 1.63 1.5
Second Half 2.02 1.6 1.72 1.9 1.47 1.63 1.5 1.62 1.43

Table 8: User Behavior During the Production Campaign (Number of attempts to meet quality criterion)

User ID Avg. Attempts 1 Attempt 2 Attempts 3 Attempts 3+ Attempts Abandonment

0 1.71 42 12 7 4 3
1 1.15 59 8 1 – –
2 3.07 18 18 12 20 –
3 1.91 32 19 12 5 –
4 2.31 21 11 10 1 25
5 1.79 35 18 8 5 2
6 1.29 53 12 2 1 –
7 1.38 51 13 2 2 –
8 1.44 45 16 6 – 1
9 1.41 46 12 5 – 5

Total 1.75 402 139 65 38 36

Table 9: User Behavior During the Advice Campaign (Number of attempts to meet quality criterion)

User ID Avg. Attempts 1 Attempt 2 Attempts 3 Attempts 3+ Attempts Abandonment

10 1.21 60 6 – 2 –
11 1.06 64 4 – – 1
12 1.19 59 6 2 1 1
13 1.16 58 9 1 – –
14 1.15 59 8 1 – –
15 1.15 49 11 4 4 3
16 1.18 60 4 4 – –
17 1.85 36 8 22 2 18

Total 1.29 445 46 34 9 23
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Abstract

Morphology is a crucial factor for multilingual
language modeling as it poses direct challenges
for tokenization. Here, we seek to understand
how tokenization influences the morphological
knowledge encoded in multilingual language
models. Specifically, we capture the impact of
tokenization by contrasting a minimal pair of
multilingual language models: mT5 and ByT5.
The two models share the same architecture,
training objective, and training data and only
differ in their tokenization strategies: subword
tokenization vs. character-level tokenization.
Probing the morphological knowledge encoded
in these models on four tasks and 17 languages,
our analyses show that the models learn the
morphological systems of some languages bet-
ter than others and that morphological informa-
tion is encoded in the middle and late layers.
Finally, we show that languages with more ir-
regularities benefit more from having a higher
share of the pre-training data.

1 Introduction

Tokenization, the process of segmenting a text into
individual units, plays a special role in language
modeling as it is disconnected from the otherwise
end-to-end training procedure (Xue et al., 2021,
2022; Sennrich et al., 2016). Languages differ in
their morphological structure (Goldman and Tsar-
faty, 2022; Dryer and Haspelmath, 2013; Evans
and Levinson, 2009; Ackerman and Malouf, 2013)
and it has been shown that morphologically more
complex languages are harder to acquire by hu-
mans (DeKeyser, 2005; Raviv et al., 2021; Kempe
and Brooks, 2008) and deep neural network mod-
els (Galke et al., 2024; Park et al., 2021; Mielke
et al., 2019; Cotterell et al., 2018). Here, we seek
to understand to what extent different tokenization
strategies influence the ability of multilingual lan-
guage models to capture morphological knowledge
in different languages (See Figure 1).

Ideally, a language model would be equally pro-
ficient in a variety of languages (Lample and Con-
neau, 2019; Conneau et al., 2020; Ruder et al.,
2019). Understanding the influence of tokeniza-
tion is crucial in the context of multilingual lan-
guage modeling (Xue et al., 2021, 2022; Warstadt
et al., 2020), as it is challenging to find a set of
tokens that is equally good for modeling all the
languages in the world. Beyond the proportions
of languages in the training data, it is important to
take into account the morphological structure of the
different languages (Anh et al., 2024; Galke et al.,
2024; Cotterell et al., 2018). Importantly this needs
to be already considered when selecting the data
for learning the tokenizer – even before language
model pre-training – as this influences what sub-
word structures end up as the tokens to be processed
by the language model. The issue of tokenization
and, in related matter, how to mix different lan-
guages, are particularly relevant in the current era
of large language models (Touvron et al., 2023;
Brown et al., 2020; Bubeck et al., 2023; Wei et al.,
2022), when aiming for similar performance on a
diverse range of languages (Le Scao et al., 2023).

With models such as ByT5 (Xue et al., 2022),
a character-level language model based on the
T5 architecture (Raffel et al., 2020), it has been
shown that tokenizer-free language models yield
commensurate downstream performance with their
tokenizer-based counterparts (Xue et al., 2022; Ed-
man et al., 2024), such as mT5 (Xue et al., 2021),
another T5-based model that trained on the ex-
act same data as ByT5. Specifically, in machine
translation, Edman et al. (2024) have found that
character-level ByT5 yields similar performance as
mT5 when allowing more training to recover word-
level structures. Yet, the interplay of morphology
and tokenization is so far poorly understood.

Here, we seek to dissect the root of these findings
through analyzing the effect of the tokenization
strategy (character-level vs. subword-level) on the
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Figure 1: Overview of our experimental procedure

morphological knowledge encoded in contextual-
ized representations of multilingual language mod-
els. Specifically, we contrast ByT5 as a character-
level multilingual language model and mT5 as a
subword-level multilingual language model, with
both models sharing the same architecture and
being trained on the same data. We use well-
established structural probing techniques to cap-
ture the amount of linguistic information encoded
in the contextualized word representations of the
language models (Rogers et al., 2021; Manning
et al., 2020; Belinkov et al., 2020; Tenney et al.,
2019). Focusing on morphology, we probe the con-
textualized representations of ByT5 and mT5 for
morphological knowledge on 17 languages from a
large-scale multilingual dataset (Acs et al., 2023).
In addition, we use the non-contextualized fastText
model (Bojanowski et al., 2017) as a control to
understand to what extent the context is important
for multilingual language models reflecting mor-
phosyntactic structures in their representations. We
further explore to what extent the captured mor-
phological knowledge depends on the share that
the languages have in the pre-training data, various
linguistic factors, such as the type of task (num-
ber, tense, case, gender), and the language’s degree
of morphological complexity, as quantified by the
degree of irregularity (Wu et al., 2019) and type-to-
token ratio (TTR) (Bentz et al., 2015).

By systematically contrasting tokenizer-free
ByT5 and subword-tokenized mT5, two pre-trained
multilingual language models based on the T5 ar-
chitecture, and trained on the same data, we find:

• Multilingual language models learn the mor-
phological systems of some languages better
than others.

• Morphological knowledge representation im-
proves over transformer layers.

• Both subword- and byte-level models display
approximate the same level morphological
knowledge encoded in the activations after
a small number of transformer layers.

• A language’s degree of irregularity plays a
substantial role for capturing morphological
knowledge, suggesting that more irregular lan-
guages would benefit from a higher proportion
of training data.

2 Background and Related Work

Morphology Morphology concerns how mean-
ingful word units can be combined to express
a range of grammatical information (Bloomfield,
1933). Languages differ greatly in their morpho-
logical systems and degrees of morphological com-
plexity (Dryer and Haspelmath, 2013; Lupyan and
Dale, 2010; Bloomfield, 1933). It has been shown
that morphologically more complex languages are
harder to acquire by humans (DeKeyser, 2005; Ra-
viv et al., 2021; Kempe and Brooks, 2008) and
deep neural networks (Galke et al., 2024; Cotterell
et al., 2018). Some studies specifically investigate
the link between morphological complexity and the
challenges in language modeling (Cotterell et al.,
2018; Mielke et al., 2019; Park et al., 2021; Galke
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et al., 2024; Anh et al., 2024). However, the find-
ings have been mixed. As most of these studies
focus more on the overall learnability (Park et al.,
2021; Gerz et al., 2018), there may be confounds
other than morphological complexity, which we
isolate here with a fine-grained analysis.

Linguistic Probing Linguistic probing can be
categorized into behavioral probing and structural
probing (Madsen et al., 2022). Behavioral prob-
ing aims to understand how a language model be-
haves in a specific or new setting (Hupkes et al.,
2023). Structural probing instead seeks to localize
where linguistic abilities are encoded (Rogers et al.,
2021). It was suggested that morphological knowl-
edge is mainly encoded at the lower layers (Peters
et al., 2018; Belinkov et al., 2020). However, most
studies focus on analyzing monolingual language
models, such as BERT (Devlin et al., 2019), or neu-
ral machine translation systems trained on pairs of
languages (Acs et al., 2023; Belinkov et al., 2020;
Bisazza and Tump, 2018; Edmiston, 2020), while
studies on multilingual language models are rare.

Tokenization Tokenization is a crucial step in
language modeling, especially for multilingual lan-
guage models. The dominant tokenization methods
for language models are based on the Byte-Pair En-
coding (BPE) algorithm (Sennrich et al., 2016), and
rely on the data mix to ensure coverage of different
languages (Le Scao et al., 2023). Starting with sin-
gle characters, BPE iteratively merges tokens based
on co-occurrence statistics, allowing for both sub-
word and multi-word tokens. Comparing BPE with
other subword tokenizers, Ali et al. (2024) found
that the preference for tokenization methods dif-
fers across languages. While BPE works better for
Germanic languages, such as German and English,
Unigram (Kudo, 2018) is more well-suited for Ro-
mance languages, such as Spanish. The importance
of tokenization in multilingual language modeling
is evident (Hofmann et al., 2021; Toporkov and
Agerri, 2024), as many studies propose new to-
kenization algorithms to make language models
capture the morphological structure of the different
languages (Goldman and Tsarfaty, 2022).

Character-level Language Models A line of re-
search investigates character-level language models
to circumvent the issues of multi-lingual tokeniza-
tion (Fleshman and Van Durme, 2023; Clark et al.,
2022; Xue et al., 2022; Gao et al., 2020; Chung
et al., 2016; Lee et al., 2017; Kim et al., 2016). In

machine translation, Lee et al. (2017) found that
character-level tokenizers perform as well as or bet-
ter than models based on sub-word tokenization.
They highlighted that character-level tokenization
offers better translation quality in multilingual and
low-resource settings because of the shared vocab-
ulary. Edman et al. (2024) argued that character-
level models are better at learning information that
operates at a low level of granularity, such as mor-
phology. Comparing translation capability between
multilingual language models with standard tok-
enization (mT5) and character-level model (ByT5),
they found that ByT5 outperforms mT5 in several
aspects. First, ByT5 produces higher-quality trans-
lations than mT5, even in the case of low-resource
languages. ByT5 is also better in handling rare and
similar words. In addition, low-resource languages
may benefit from shared vocabulary, namely the
set of characters (Gao et al., 2020). However, it has
also been suggested that the effect varies across lan-
guages (Ali et al., 2024), which in-turn motivates
the present study.

Summary Overall, earlier work on probing the
morphological knowledge of language models is
mainly conducted on machine translation and re-
current neural networks (Belinkov et al., 2020; Vy-
lomova et al., 2017). More recently, the focus
has been extended to Transformer-based language
models (Acs et al., 2023; Edmiston, 2020; Wu and
Dredze, 2020), yet the majority of studies investi-
gated BERT and its variants (Rogers et al., 2021).
Previous studies provide mixed findings about the
morphological knowledge of language models and
only very few multilingual studies. Here, we com-
plement the literature by analyzing how captured
morphological knowledge is influenced by the to-
kenization strategy, the languages’ proportions in
the model’s training data, the language’s morpho-
logical complexity, and the task type.

3 Models and Data

We compare two pre-trained language models:
mT5 and ByT5. The two models share the same
architecture and are trained on the same data with
the same training objective (masked span predic-
tion). The key difference between mT5 and ByT5
is their tokenization strategy: mT5 uses a standard
subword tokenization strategy, whereas ByT5 op-
erates on character level. Thus, we can investigate
the effect of tokenization.

244



mT5 The mT5 model (Xue et al., 2021) is a multi-
lingual version of T5, an encoder-decoder language
model (Raffel et al., 2020). It is trained on the mC4
corpus (Xue et al., 2021), which consists of text in
101 languages compiled from the Common Crawl
web scrape. Like T5, mT5 employs a masked span
prediction training objective and the SentencePiece
tokenizer (Kudo and Richardson, 2018), a variant
of the BPE tokenizer by Sennrich et al. (2016). The
vocabulary comprises approximately 250,000 sub-
words, covering 104 languages (Xue et al., 2021)
while sharing (sub-)words between languages.

ByT5 ByT5 (Xue et al., 2022) is a tokenizer-free
variant of mT5, inheriting most of the properties of
mT5, using the same T5 model architecture, and
the same masked span prediction training objective.
The only crucial difference between them is the to-
kenization method: While mT5 uses a standard to-
kenizer, ByT5 operates on single-character tokens,
or more precise: UTF-8 encoded bytes. Another
difference is that ByT5’s encoder stack consists of
three times more layers than the decoder to process
a larger number of bytes. For the masked span
prediction objective, ByT5 uses a span of 20 bytes.
The similarity in architecture and sizes of mT5 and
ByT5 enables our comparison of how the tokeniza-
tion strategy impacts the morphological knowledge
encoded in the learned representations.

Dataset We use the multilingual morphological
probing dataset by Acs et al. (2023). The dataset
consists of 247 probing tasks, available in 42 lan-
guages and 10 language families. It is built upon
the Universal Dependencies tree bank and covers
both frequent and infrequent words. In each lan-
guage, each task includes a training set of 2000
examples, a development test of 200 examples, and
a test set of 200 examples. We selected 16 out of all
42 languages which had at least two tasks available.
However, we also included Arabic despite having
only one task available to better cover the Semitic
language family. In total, our considered dataset
consists of 17 languages and 43 morphological
probing tasks, covering number, case, gender, and
tense – focusing on nominal and verbal inflection.

4 Methodology

Feature Extraction For training, we extracted
the contextualized embeddings of the words in the
training set for each task in each language and
each model. Both mT5 and ByT5 are available

in different sizes. We chose to test the mT5-base
model. We froze the weights and extracted the hid-
den states for the entire sentence before extracting
the word embedding corresponding to the target.
Since we also aim to look at how much morpho-
logical knowledge is learned at each layer, we ex-
tracted the word embedding at each hidden layer of
the network, including the input embedding layer.
Each word representation is associated with a label,
which corresponds to the respective morphological
feature from the task. We trained separate probes
for each language and each task in each layer of
the model.

Probing Classifiers Previous studies often use
two architectures for probing classifiers, namely
linear classifiers (Hupkes et al., 2018; Belinkov
et al., 2020) and multilayer perceptrons (MLPs)
(Lin et al., 2019; Conneau et al., 2018; Adi et al.,
2017; Ettinger et al., 2018; Zhang and Bowman,
2018). Both types of probes have received convinc-
ing arguments. Linear probes capture information
that is linearly separable in the representations (Liu
et al., 2019; Belinkov et al., 2020), whereas MLP
probes can additionally capture nonlinear patterns
in the representations (Hewitt and Liang, 2019).
Studies show that linear classifiers and MLPs pro-
duce similar accuracy (Conneau et al., 2018; Be-
linkov et al., 2017a; Qian et al., 2016). We have
considered both types of probes for this study (see
Appendix C). For the main results, we employ MLP
probes.

Subword Pooling In both mT5 and ByT5, words
are segmented into either subword units or char-
acters. As such, when passing through the hidden
layers, each subword or character has its own em-
bedding. There are several methods to then approx-
imate the embedding for an entire word: The first
method is to take the weighted average of the em-
beddings of all components. The second way is to
consider the embedding of the last subword or char-
acter as the representation for the entire word. Both
methods have limitations. Averaging the token em-
beddings may cancel out some information, while
the last embedding may not contain all the informa-
tion about the entire word. Belinkov et al. (2020)
compared both methods and found that using the
embeddings of the last token produced higher ac-
curacy scores. We have considered both options
(see Appendix D) and can confirm that last-token
pooling leads to higher probing accuracy. For the
main results, we employ last-token pooling.
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Evaluation and Control We aim to probe the
morphological knowledge of a range of typologi-
cally diverse languages. While the dataset of Acs
et al. (2023) supports 42 languages, in some lan-
guages, there is a large gap between the number
of tasks in each language. While Russian has 12
tasks, Polish and Armenian have only one task. To
ensure a fair comparison of the learned morpho-
logical representations, we selected languages with
at least two tasks along with Arabic to cover the
Semitic language family. We focused exclusively
on the morphological properties of words, exclud-
ing agreement tasks. In total, we ran 43 morpholog-
ical probing tasks for 17 languages. Appendix E
provides the details of the morphological properties
of the 17 considered languages, their morphologi-
cal complexity scores, and their proportion in the
ByT5/mT5 training data. Appendix F provides a
detailed description of the types of probing tasks,
covering number, case, gender, and tense.

As non-contextualized control, we employ fast-
Text word embeddings (Bojanowski et al., 2017)
which are available in 157 languages. We probed
fastText embeddings using the exact same proce-
dure and evaluation metric. We obtained the static
word embeddings without any pooling. Contrast-
ing the contextualized representations of mT5 and
ByT5 with fastText allows us to quantify to what
extend the contextualized models make use the sen-
tence context to tackle the morphological tasks.

5 Results

Overall Probing Accuracy We first looked at
the overall probing performance of mT5, ByT5,
and fastText as well as the differences between
the two Transformer-based models compared to
the fastText baseline. For all analyses except for
the layer-wise analysis, we used the probing accu-
racy of the last hidden layer. To obtain the overall
performance of mT5 and ByT5, we averaged over
all languages and tasks, resulting in a single ac-
curacy score for each model (see Table 1). Full
results for each task and language are provided in
Appendix G.

On the surface, it appears that mT5 and ByT5
have comparable performance and both models out-
performed fastText. ByT5 slightly surpassed mT5,
yet this difference is very small. This finding is
different from that of Belinkov et al. (2017a), who
found that character-level tokenizers are better than
subword tokenizers in representing morphology.

Model Mean Probing Accuracy

mT5-base 82.57
ByT5-base 82.86
fastText (baseline) 77.52

Table 1: Probing accuracy of mT5, ByT5 and fastText,
averaged over languages and tasks

Table 2 shows the difference between accu-
racy scores of mT5 and ByT5, grouped by lan-
guage. It can be seen that accuracy scores are not
equal across both languages and tasks. Compar-
ing mT5 and ByT5, it seems that they perform on
par with each other in most languages. However,
mT5 scores higher in Turkish and ByT5 achieves
much higher on Hindi tasks. The difference be-
tween contextualized language models and non-
contextualized fastText also tells to what extent
contextual information affects morphological abil-
ities. From the results, we observed that for most
languages, mT5 and ByT5 achieved considerably
higher probing accuracy than the baseline. The
largest difference is observed in the case of Basque
(> 50%). This implies that contextual word em-
beddings capture morphological knowledge better
than static embeddings for these languages. In con-
trast, the results are lower than the non-contextual
baseline in French and Russian. Contextual infor-
mation seems to make accessing morphological
information more difficult in these two languages.

Considering the differences between both lan-
guage models and the fastText baseline, as shown
in Table 2, it can be seen that they generally out-
performed the baseline yet perform substantially
worse than baseline in French and Russian. Aver-
aging over tasks, ByT5 yields the highest probing
accuracy in 7 languages, while mT5 yields the high-
est probing accuracy on 6 tasks out of 17 languages.

Table 3 shows the probing accuracy scores for
each language, averaged over tasks. It appears
that there are some differences in accuracy across
languages, with the hardest language being Rus-
sian for mT5 and Arabic for ByT5. The accuracy
scores of some languages are higher than the oth-
ers. Unsurprisingly, the models perform best on
the English language, followed by Hebrew, Por-
tuguese, and Romanian. The models learn the mor-
phological systems of German, French, Estonian,
and Latvian moderately well. Arabic and Russian
achieved lowest accuracy scores. However, Arabic
results should be interpreted with caution as there
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Language Family Model

mT5 ByT5 fastText

English Germanic 98.00 98.50 97.75
Dutch Germanic 93.50 92.75 82.25
German Germanic 68.46 72.40 68.87

French Romance 71.93 77.53 92.95
Spanish Romance 93.83 94.00 71.16
Portuguese Romance 95.00 96.25 88.16
Romanian Romance 94.75 95.25 92.25

Hebrew Semitic 97.50 98.00 92.49
Arabic Semitic 66.17 49.25 37.81

Russian Slavic 61.26 57.43 79.20
Czech Slavic 88.79 87.79 78.81

Hindi Indic 67.83 87.50 58.02
Urdu Indic 88.50 84.50 74.33

Turkish Turkic 94.78 83.69 78.28

Latvian Baltic 77.14 72.01 73.76

Estonian Uralic 91.08 90.03 82.94

Basque Basque 91.69 91.91 52.60

Table 2: Probing accuracy of mT5, ByT5, and fastText
by languages, language families, averaged over tasks.
The best score per language is marked in bold font.

Task mT5 ByT5 fastText

Number 93.75 93.56 88.15
Tense 80.30 72.44 80.89
Gender 76.85 85.16 77.61
Case 71.53 69.16 55.49

Table 3: Probing accuracy of mT5, ByT5, and fastText,
averaged over languages and tasks

is only one task available (i.e., case).

Layer-wise Analysis Figure 2 illustrates the dif-
ference in probing accuracy between languages
and between tasks for mT5 and ByT5. It can be
seen that there are some degrees of variation be-
tween layers. In languages that show high overall
performance, namely English, Dutch, Portuguese,
Spanish, Basque, and Hebrew, probing accuracy
shows very little improvement over layers. In other
languages, accuracy increases, reaches its peak at
the middle and slightly decreases at late layers in
other languages. This finding is partly consistent
with Acs et al. (2023), Edmiston (2020), and Hewitt
et al. (2021), who also reported best performance
in the middle to late layers. However, we further
show that this is not true for all languages. There
are cases where morphological knowledge is suc-
cessfully learned in the early layer and carried on
throughout the network. Our results contrast with

Belinkov et al. (2020) and Peters et al. (2018), who
found that morphological information is best en-
coded in the first layer of the model, and then has
the tendency to decrease over time.

Comparing mT5 and ByT5, there are a few no-
ticeable differences. In the plots for ByT5, accu-
racy scores of each language and each task im-
proves considerably after the embedding layer.
This trend is less visible in mT5, although per-
formance does improve over layers. Morphology
is better learned in the embedding layer of mT5
than that of ByT5. This may imply that character-
level language models need more layers to capture
morphological patterns of languages.

Effect of Task Type To investigate whether mor-
phological features are learned differently by mT5
and ByT5, we averaged the scores for each task
across all languages, resulting in a single score for
each task (see Table 3). The results strongly sug-
gest that each morphological feature is encoded
differently. Interestingly, mT5 and ByT5 show dif-
ferent patterns. Both models perform equally well
at number and worst at case. However, tense is
learned better than gender by mT5 while the op-
posite is true for ByT5. Comparing both language
models with the baseline, they surpass the baseline
in all tasks except for tense, where ByT5 performs
considerably worse than fastText.

Case seems to be the hardest task for both mod-
els. Besides the case task often having more pos-
sible classes than other features, case is also more
context-dependent than other features. Case mark-
ing is used to indicate the syntactic function of
the word in the sentence. As such, one word may
have different cases in different contexts and thus
is inflected distinctively. Gender is also relatively
difficult, especially for mT5. However, looking at
individual languages (see Table 2), the mean score
of mT5 is affected by Hindi and Latvian, whose
scores are exceptionally lower than the baseline
(less than 25%). Except for those two languages,
mT5 and ByT5 perform equally well.

Morphological Complexity and Training Data
We explore the effects of two types of morpholog-
ical complexity, namely TTR (Bentz et al., 2015)
and the degree of irregularity (Wu et al., 2019) on
probing accuracy. Complexity values per language
can be found in Appendix E. We hypothesize that
probing accuracy is influenced by the proportion of
the respective language in the training data, which
then also modulates the effect of a language’s mor-
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Figure 2: Probing accuracy of ByT5 (left) and mT5 (right) across layers grouped by languages and tasks. Each line
represents a language (top) or a task (bottom). Each data point is the accuracy scores at each layer of each language.

phological complexity. To understand the effect
of these factors and their interaction, we fitted a
generalized mixed effect logistic regression model
predicting accuracy from the two morphological
complexity measures and the proportion of training
data. There are 200 data points for each task in
each language. The analysis was conducted with
the R-package lme4. All variables were scaled
and centered. Random intercepts were added for
language and task.

Our results show significant positive effects of
training data size and irregularity on probing ac-
curacy, as well as their interaction. In more detail,
there is a strong effect of the amount of training
data and a language’s degree of irregularity on prob-
ing accuracy (training data: β = 2.11, SE = .55, p
< .001, irregularity: β = 2.83, SE = .42, p < .001).
The effects of training data and irregularity were
highly correlated (0.831). In addition, there is an
interaction effect between the language’s irregular-
ity and its training data in the model (β = 2.03, SE
= .31, p < .001). The effect of training data size
on probing accuracy is stronger when there is more
irregularity in the language. This means that high
irregularity in the morphological systems amplifies
the impact of training data on the morphological
abilities of language models. Detailed results of
the statistical models can be found in Appendix H.

6 Discussion

Languages’ morphology is learned differently
Our probing results in mT5 and ByT5 show that
the morphological knowledge of some languages is
better represented than the others. Some languages
(e.g., English, Dutch) achieved nearly perfect accu-
racy in probing tasks (higher than 90%). However,
both mT5 and ByT5 performed worse at German,
French, Russian, and Arabic tasks. These results
to some extent contradict Edmiston (2020), who
found comparable performance in all languages.
Acs et al. (2023) also did not observe performance
differences across languages, but only between
part-of-speech and morphological features.

Differences across tasks We observed that some
tasks are more difficult for the language models:
Number is the easiest task whereas case is the hard-
est one. This difference can be partly attributed to
the higher number of possible categories but also to
the context-dependent nature of case. This is sup-
ported by the non-contextualized baseline results
for case, which are substantially lower than both
mT5 and ByT5. These findings are in agreement
with earlier findings by Bisazza and Tump (2018)
and Edmiston (2020). Why tense and also case
features are particularly challenging to find in the
representations of character-based language mod-
els is an interesting question for future research.
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Character-level models are on par with sub-
word level models in representing morphology
We found that both models yield highly similar
average performance on the probing tasks. Re-
markably, despite being tokenized at the byte level,
ByT5 is able to reconstruct morphological knowl-
edge already in the first transformer block, arriving
at a similar level as mT5. Belinkov et al. (2020)
and Vylomova et al. (2017) tested machine transla-
tion systems and found character-level tokenizers
to surpass BPE in learning morphology. However,
through investigating large-scale language models,
we found no advantage of character-level tokenizer
in encoding morphology. Instead, we found that
the preferable model differs between individual lan-
guages, e.g., subword tokenization works better for
Turkish, whereas character-level tokenization bene-
fits Hindi morphology. fastText performed nearly
as well as mT5 and ByT5. We attribute this to the
word-level nature of morphological features. More-
over, we used separated fastText models for each
language, instead of generic multilingual ones.

Morphology is best represented in middle to
late layers Our findings show that morphologi-
cal knowledge generally improves over layers in
both language models. There are languages which
have high performance across layers. Yet, ByT5
shows greater improvement after the embedding
layer than mT5. We also observed that morpholog-
ical information is best encoded in the middle to
late layers of the models in some languages. This
finding supports Acs et al. (2023), Hewitt et al.
(2021), and Edmiston (2020). Our findings differ
from Belinkov et al. (2017b); Tenney et al. (2019);
Peters et al. (2018), who found that morphology is
a low-level feature and is encoded along with word
identity in the first layer of the network.

Morphological irregularity amplifies the ef-
fect of training data Considering the relationship
between morphological knowledge encoded in lan-
guage models and the languages’ morphological
complexity, our analysis reveals effects of mor-
phological irregularity and training data sizes on
the performance of probing classifiers, in a way
that the effect of irregularity is mediated by train-
ing data. When a language is highly irregular, a
larger share of the training data is beneficial to
fully capture its morphological system. Previous
studies on the effect of training data sizes show
that its effect is not present at the representation
level yet at the downstream level (Warstadt et al.,
2020; Zhang and Bowman, 2018). We have shown

here that the importance of the relative training
data size in multilingual language modeling can
be already found when probing for morphological
knowledge. Considering the interplay with mor-
phological complexity, Mielke et al. (2019) and
Gerz et al. (2018) correlated modeling difficulty
with morphological counting complexity (Sagot,
2013), vocabulary sizes of languages, and depen-
dency length – and found vocabulary size to be
the most important factor. Our study complements
those findings by establishing that the degree of
irregularity plays a substantial role for what mor-
phological properties are captured by a language
model – and that this factor amplifies the effect of
the language’s share of the pre-training data.

It may seem unexpected that a higher degree
of irregularity has a positive effect on probing ac-
curacy. However, a possible explanation is that
irregular forms are better memorized because they
appear more often in the training data, given the
correlation of irregularity with frequency (Wu et al.,
2019). This could also be linked to the word pre-
dictability advantage of Zipfian distributions that
has been shown to aid word segmentation in hu-
mans (Lavi-Rotbain and Arnon, 2022) – which we
deem an interesting direction for future work.

Limitations and ethical considerations can be
found in Appendices A and B, respectively.

7 Conclusion

We have analyzed the effects of tokenization, train-
ing data proportions, and linguistic factors on mor-
phological knowledge encoded in the parameters of
pre-trained multilingual language models. Through
analyzing 17 languages and 4 morphological tasks,
we have shown that the morphological knowledge
encoded in multilingual language models differs
across languages, despite the global average scores
being similar. Beyond differences across languages,
we also found differences across tasks, showing
that tense and case are particularly hard to find
in the representations of character-based language
models. To further understand what exactly in-
fluences those difference, we have analyzed the
effect of morphological complexity in relation to
the language’s proportion in the language model’s
pre-training data. We found that the degree of ir-
regularity plays a significant role and amplifies the
effect of training data, suggesting that more irregu-
lar languages benefit from a having a higher share
in the data mix used for pre-training.
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A Limitations

Several limitations should be taken into account:
First, our experiments do not take orthographic
transparency into account, as all models and com-
plexity measures are based on written language.
Second, we ran each experiment only once due
to the high volume of experiments. Third, while
we aimed to cover as many typologically different
languages as possible, the dataset we use supports
mostly Indo-European languages, such that 12 out
of our 17 considered languages are Indo-European.
Moreover, the current study only focuses on inflec-
tional morphology due to the lack of datasets for
probing derivational morphology. Lastly, p-values
should be treated with care when the sample size
(here: 17,200) is large (Søgaard et al., 2014).

B Ethical Considerations

We emphasize that morphological complexity of
languages bears no implication on their quality –
having more complexity does not make one lan-
guage better than another (see Raviv et al., 2022).

C Effect of Probing Architecture

Previous studies on probing linguistic features have
had a debate over which type of probe is suffi-
cient to extract the relevant knowledge, but insuffi-
cient to learn the knowledge itself (Belinkov, 2022).
Here, we also compare the accuracy scores of MLP
probes and linear probes for mT5 and ByT5, as
shown in Table 4.

Model Probing Architecture

MLP Linear

mT5-base 82.57 80.37
ByT5-base 82.86 80.61

Table 4: Probing accuracy of mT5 and ByT5 when using
MLP and linear classifiers, averaged over languages and
tasks

We observed no considerable differences in accu-
racy scores across types of probes. For both types
of probes, the mean accuracy scores are all around
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80%. This pattern is most inline with Acs et al.
(2023), suggesting that linear classifiers are as ef-
fective as non-linear ones in extracting morpholog-
ical knowledge of multilingual LLMs. Moreover,
the observation that linear probes perform equally
well as MLPs implies that morphology is a rela-
tively simple feature that can be learned early and
straightforwardly by the models.

D Effect of Pooling Methods

We compare the probing accuracy when using these
two pooling methods, namely the average and last
method. Table 5 shows the results of when using
these two methods for mT5 and ByT5.

Model Subword Pooling Method

last average

mT5-base 82.57 75.28
ByT5-base 82.86 76.40

Table 5: Probing accuracy of mT5 and ByT5 when
using different subword pooling methods. The results
were averaged over languages and tasks and the reported
probes are MLPs

Comparing the accuracy scores of the two pool-
ing methods, it can be seen that the last method
achieved considerably higher accuracy scores than
the average method. The difference is approxi-
mately 6-7 points. This also holds for both mod-
els. It seems that the representational informa-
tion and/or the morphological content of a word is
mostly encoded in its last token. Previous compar-
isons have also reported similar results (Acs et al.,
2023; Ács et al., 2021; Belinkov et al., 2020).

E Details of the Considered Languages

E.1 Morphological Properties

Table 6 shows the morphological properties of the
considered languages.

E.2 Proportion of mT5/ByT5’s training data
and morphological complexity of the
language

Table 7 shows the language’s proportion of training
data and their morphological complexity scores:
TTR and Irregularity.

Language Tr. Data TTR Irregularity

English 5.67% -0.460 -5.94
German 3.05% -0.010 -6.28
Dutch 1.98% -0.390 -6.68
French 2.89% -0.340 -4.16
Romanian 1.58% -0.420 -3.40
Spanish 3.09% 0.001 -8.81
Portuguese 2.36% 0.038 -9.11
Turkish 1.93% 1.550 -5.96
Czech 1.72% 0.430 -5.63
Russian 3.71% 0.870 -7.74
Hebrew 1.06% 2.020 -1.78
Arabic 1.66% 1.630 -0.06
Hindi 1.21% -0.300 -2.10
Estonian 0.89% 1.760 -2.79
Latvian 0.87% 0.770 -7.90
Urdu 0.61% -0.450 9.20
Basque 0.57% 1.310 19.86

Table 7: Percentages of training data of mT5 and Byt5
from Xue et al. (2021), irregularity scores from Wu
et al. (2019), and TTR scores from Bentz et al. (2015)
for each investigated language. For irregularity, higher
scores mean being more morphologically irregular. In
contrast, higher TTRs mean higher complexity.

F Considered Probing Tasks

Here, we provides an overview the morphological
properties that we investigate in the study, namely
number, tense, case, and gender, and how they may
vary between languages. (Acs et al., 2023)

Number In many languages, especially inflected
languages, nouns are marked as either singular or
plural (Bloomfield, 1933). An exception is Lat-
vian, which includes singular, plural, and partitive
nouns. Plurality is usually expressed by adding
certain endings to the nouns, and sometimes in-
clude changing their vowels. These endings are
determined in different ways across languages. For
instance, in some Indo-European languages such
as Spanish, the plural form of nouns is affected by
their gender. In this task, the LLMs have to predict
whether the target word is a plural or singular noun.

Tense Most languages mark tenses (Bloomfield,
1933). In some languages, tenses are indicated
by inflecting verbs. In other languages, for exam-
ple, Estonian, adjectives can also express tense.
In certain languages, tense can interact with other
morphological features, namely mood and aspect.
Inflection patterns for tense are usually dependent
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on the ending, conjugation pattern of the verbs, and
whether they are regular or irregular. In Spanish
and French, it is also dependent on the subject pro-
nouns. In Hindi, verbs indicating tense must agree
with gender and number of the subject.

Case A case system is a grammatical category
used in many languages to mark the relationship
between a noun or pronoun and other words in
a sentence. Case marking is typically indicated
through inflection. The number of cases varies
across languages. Cases are often marked with
inflection. In some languages, case often affects
how articles, pronouns, and adjectives should be
inflected. Previous probing studies show that case
is often one of the most challenging morphological
categories to be learned by language models (Ed-
miston, 2020; Bisazza and Tump, 2018; Acs et al.,
2023).

Gender Most Indo-European languages mark
genders in nouns and often require agreement with
in other part-of-speech in the sentence, such as
verbs and adjectives Bloomfield (1933). Gender
systems exhibit substantial diversity in their num-
ber of genders, assignment rules. Some languages
(e.g., Basque) do not have a gender system. Ro-
mance languages have a binary gender system. On
the other hand, Germanic and Slavic languages
often have more than two genders. For example,
Dutch nouns are either common or neuter while
German nouns can be masculine, feminine, or
neuter. Spanish masculine nouns end in "-o" while
feminine nouns end in "a". There is also a certain
degree of irregularity.

G Extended Results

Table 8 shows the full breakdown of probing accu-
racy per task and per language.

H Detailed Results of the Statistical
Analysis

We provide the formulation and results of the
statistical models. We define our model as the
combination of two interaction terms between
irregularity and TD and between TTR and TD.
The syntax is as follows. The results can be found
in Table 9.
accuracy ∼ irregularity*TD + TTR*TD +

(1|language) + (1|task)

Fixed Effects

Variable Estimate SE t-value p-value

(Intercept) 2.71845 0.61012 4.456 <.001 ***
Training data (TD) 2.11411 0.55564 3.805 <.001 ***
Irregularity (I) 2.83197 0.42242 6.704 <.001 ***
TTR (T) -0.62728 0.57127 -1.098 0.272179
TD*I 2.03621 0.31730 6.417 <.001 ***
TD*T -0.62728 0.57127 -1.098 0.272179

Random Effect

Group Name Variance Std.Dev.

language (Intercept) 3.0920 1.7584
task (Intercept) 0.3571 0.5976

Table 9: Results of linear mixed effect regression with prob-
ing accuracy of mT5 as outcome variable and language and
task as random effects. Fixed effects are irregularity (I) and
TTR (T), training data (TD) and their two-way interactions.
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Language Genus Family POS Number Tense Case Gender

English Germanic Indo-European N 2 – – –
English Germanic Indo-European V – 2 – –

German Germanic Indo-European N 2 – 4 3
German Germanic Indo-European V – 2 – –

Dutch Germanic Indo-European N 2 – – 2

French Romance Indo-European N 2 – – 2
French Romance Indo-European V – 4 – –

Spanish Romance Indo-European N 2 – – 2
Spanish Romance Indo-European V – 4 – –

Portuguese Romance Indo-European N 2 – – 2

Romanian Romance Indo-European N 2 – – 2

Turkish Turkic Altaic N 2 – 7 –

Russian Slavic Indo-European N 2 – 6 3
Russian Slavic Indo-European V – 3 – –

Czech Slavic Indo-European N 2 – – 3

Hebrew Semitic Afro-Asiatic N 2 – – 2

Hindi Indic Indo-European N 2 – 2 2

Urdu Indic Indo-European N 2 – 2 –
Urdu Indic Indo-European V 2 – – –

Basque Basque Basque N 2 – 11 –

Estonian Finnic Uralic N 2 – 18 –
Estonian Finnic Uralic V – – – –

Latvian Baltic Indo-European N 3 – 5 3
Latvian Baltic Indo-European V – 3 – –

Arabic Semitic Afro-Asiatic N – – 2 –

Table 6: List of studied languages, their genera and families, along with the number of possible classes within the
studied dataset per morphological properties of 17 investigated languages (N = noun; V = verb)
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No. Language Task mT5 ByT5 fastText

1 Arabic case 66.17 49.25 37.81

2 Basque case 91.39 92.55 17.22
3 Basque number 92.00 89.42 87.99

4 Czech gender 81.09 78.87 72.13
5 Czech number 96.50 90.05 85.50

6 Dutch gender 90.00 88.39 72.50
7 Dutch number 97.00 98.24 92.00

8 English number 97.50 98.55 98.50
9 English tense 98.50 98.53 97.00

10 Estonian case 88.10 86.84 62.85
11 Estonian number 91.50 92.47 89.49
12 Estonian tense 90.50 93.84 96.49

13 French gender 95.00 90.39 92.00
14 French number 99.50 98.24 95.49
15 French tense 21.29 46.30 91.08

16 German case 65.00 40.42 28.00
17 German gender 29.85 74.42 76.00
18 German number 92.00 89.00 84.50
19 German tense 87.00 85.95 87.00

20 Hebrew gender 95.50 95.05 89.49
21 Hebrew number 99.50 98.82 95.49

22 Hindi case 13.00 81.58 63.49
23 Hindi gender 95.50 90.74 49.00
24 Hindi number 95.00 90.95 61.57

25 Latvian case 89.50 98.74 84.50
26 Latvian gender 68.00 32.61 64.49

27 Latvian number 68.50 70.39 63.49
28 Latvian tense 82.59 84.50 82.58

29 Portuguese gender 95.00 93.66 97.00
30 Portuguese number 95.00 97.55 97.50

31 Romanian gender 93.50 93.68 91.00
32 Romanian number 97.00 95.84 93.50

33 Russian case 48.04 36.02 82.55
34 Russian gender 8.46 82.98 50.74
35 Russian number 96.00 93.39 91.50
36 Russian tense 92.54 9.59 92.03

37 Spanish gender 93.50 94.66 97.00
38 Spanish number 99.00 97.84 97.50
39 Spanish tense 89.00 86.47 31.00

40 Turkish case 95.57 72.88 61.57
41 Turkish number 94.00 89.32 94.99

42 Urdu case 87.00 77.37 61.50
43 Urdu number 90.00 90.87 81.49

Table 8: Accuracy scores of each task in each language from mT5, ByT5, and fastText257



Dora explores Clinically Relevant Information in EHRs using NER
Martin Sundahl Laursen

Department of Clinical Biochemistry
Odense University Hospital

martin.sundahl.laursen@rsyd.dk

Lina Elkjær Pedersen
Department of Clinical Biochemistry

Odense University Hospital

Josefine Bak H Adelhelm
Department of Clinical Biochemistry

Odense University Hospital

Rasmus Bank Lynggaard
Department of Clinical Biochemistry

Odense University Hospital

Pernille Just Vinholt
Department of Clinical Biochemistry, Odense University Hospital
Department of Clinical Research, University of Southern Denmark

Abstract
Retrieving relevant information from un-
structured electronic health records is time-
consuming and prone to error, reducing time
available for direct patient care. We present
Dora, a Danish clinical named entity recogni-
tion model that builds on prior work by Laursen
et al. (2023a). Dora identifies six types of clini-
cal entities to support medical information re-
trieval: diseases, symptoms/findings, diagnos-
tics, treatments, anatomies, and results. The
model achieves an exact boundary macro F1
score of 0.922 and overlap boundary score of
0.945. A prospective clinical utility evaluation
shows that Dora reliably extracts relevant infor-
mation for physicians. A bias analysis indicates
slightly reduced performance on psychiatric
notes, with minimal overall differences.

1 Introduction

Health care professionals, particularly medical doc-
tors (MDs), need to retrieve information from elec-
tronic health records (EHRs) regarding diagnoses,
symptoms, medications, treatments, etc. This pro-
cess is time-consuming, carries the risk of overlook-
ing important information, and ultimately reduces
the time available for direct patient care (Laursen
et al., 2023b). Furthermore, the health care data is
in an unstructured format in the EHR. The EHR sys-
tem may include a basic “find on page” function,
which allows users to search for specific words
or phrases within the visible text. However, this
method is vulnerable to inaccuracies such as mis-
spellings, abbreviations, and typographical errors.

Previous work has shown that natural language
processing methods, particularly Named Entity
Recognition (NER) models, can effectively iden-
tify clinical entities in EHR text (Jiang et al., 2011;
Alsentzer et al., 2019).

Notable results in English clinical NER are
Stanza (Qi et al., 2020; Zhang et al., 2021) with
micro F1 0.881 and BioBERT (Lee et al., 2020)
with micro F1 0.867 on identifying problems, tests,
and treatments in the i2b2 dataset (Uzuner et al.,
2011). In Scandinavian clinical NER, Laursen et al.
(2023a) achieved an entity-level macro F1 of 0.601
for exact boundary matching and 0.682 for over-
lap boundaries when identifying diseases, symp-
toms (including abnormal findings), diagnostics,
treatments, anatomies, and results in Danish EHR
text. In Swedish, RoBERTa Large by AI Sweden
achieved a token-level micro F1 of 0.779 when
compared to eight other encoder models on identi-
fying diagnoses, findings, body parts, and drugs in
the Stockholm EPR Clinical Entity Corpus (Vakili
et al., 2025; Skeppstedt et al., 2014).

Few medical machine learning studies, however,
extend beyond reporting internal test set perfor-
mance and do not assess real-world clinical impact
and utility (Kelly et al., 2019; Ghassemi et al., 2020;
Rajpurkar et al., 2022).

In this paper, we extend the Danish Clinical NER
model by Laursen et al. (2023a), retraining it on an
expanded and re-annotated dataset with updates to
the annotation scheme, preprocessing, postprocess-
ing, and model training.

We present a new Danish clinical NER model,
Dora, that presents substantial improvements in
model performance. We demonstrate the clinical
utility in a prospective real-world evaluation and
evaluate bias.

2 Methods

In this section, we first describe the data sources
for the model’s development and evaluation co-
hort. We then outline the model’s development
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and present the different evaluations conducted to
assess the model.

2.1 Data Sources

We used data from two different EHR systems
of Odense University Hospital in the Region of
Southern Denmark for development and evaluation.
The COSMIC cohort consisted of EHRs from the
COSMIC system (Cambio, CGI, Denmark) from
November 2015 to September 2020. The EPJ co-
hort consisted of all EHRs from the EPJ SYD (Sys-
tematic, Denmark) system from February 2022 to
November 2023.

2.2 Model Development

The development of the first iteration of the NER
model was previously described by Laursen et al.
(2023a). Here, we focus on refinements made to
the annotation scheme, dataset, system architecture,
and model development.

2.2.1 Annotation
We built on the clinical event annotation scheme
proposed by Laursen et al. (2023a), with one key
revision to improve usability for healthcare profes-
sionals: the Symptom entity, which used to include
symptoms and pathological findings, now includes
symptoms and all clinical findings—either normal
or pathological.

The dataset from Laursen et al. (2023a) was re-
annotated by a MD to reflect the revised scheme
and iteratively extended with paragraphs from the
COSMIC and EPJ cohorts using active learning
and a locally developed annotation tool. Targeted
data augmentation was applied to address specific
errors.

2.2.2 Dataset
Our dataset contained 158,839 total entities, almost
triple the size of the original dataset, split into train-
ing, validation and test sets. Splits were stratified
to maintain a balanced distribution across entity
labels, see Table 1.

2.2.3 System Architecture
We adapted the Princeton University Relation Ex-
traction system (PURE) (Zhong and Chen, 2021),
using code with minor modifications from Laursen
et al. (2023a).

PURE classifies entities from constructed span-
embeddings, which is the concatenation of the con-
textual embeddings of the start and end tokens,

along with a learned span-width embedding (Zhong
and Chen, 2021). For full architectural details,
we refer to the original work. Our modifications
applied to the implementation by Laursen et al.
(2023a) include:

• Preprocessing: Lowercasing, removing
non-printable/control characters, converting
HTML entities to Unicode, and mapping un-
common accented or special characters to
standard equivalents.

• Postprocessing: After prediction, overlap-
ping spans with the same label are merged.
When overlaps have different labels, a voting
mechanism selects the most likely label.

2.2.4 Development
We followed Laursen et al. (2023a) in extracting
contextual embeddings using a Danish clinical
ELECTRA encoder (Pedersen et al., 2022; Clark
et al., 2020). Spans ranged from 1–10 tokens. Each
of the start, end, and width components had size
256.

We trained using AdamW (Loshchilov and Hut-
ter, 2019) (weight decay 0.001, batch size 32), early
stopping (patience 6), and learning rate scheduling
(patience 3, factor 0.2). No class weighting was
applied.

Optimal learning rates (search space in parenthe-
sis) were 5e-5 (5e-6–7.5e-5) for the encoder and
5e-4 (5e-5–7.5e-4) for the classifier. The optimal
span classifier configuration was one (0–2) 1024-
unit (256–1024; plateaued at 1024) hidden layer
with ReLU activation and 0.3 dropout.

Model selection was based on the span-level
macro F1 score on the validation set, excluding the
negative class. We report the best model’s entity-
level recall, precision, and F1 score on the test set,
using exact and overlapping boundary matching
(Chinchor and Sundheim, 1993). We report a con-
fusion matrix based on overlap matching, which
better reflects clinical utility due to the often am-
biguous boundaries of clinical entities.

2.3 Clinical Evaluation
The aim of the clinical evaluation was to assess the
model’s clinical utility and potential bias on an eval-
uation cohort stratified by gender (male/female),
age group (child/adult/senior), and 15 diagnoses.
To ensure diverse diagnoses, two MDs selected
five diagnoses within each medical area; medi-
cal, psychiatry, surgical, from The Danish Med-
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Train (% of row total) Validation (% of row total) Test (% of row total) TOTAL (% of column total)
Paragraphs 18,001 (80%) 2,206 (10%) 2,258 (10%) 22,465 (100%)

Clinical events
Disease 7,198 (81%) 821 (9%) 887 (10%) 8,906 (6%)
Symptom 37,692 (80%) 4,467 (10%) 4,808 (10%) 46,967 (30%)
Treatment 22,218 (80%) 2,806 (10%) 2,774 (10%) 27,798 (18%)
Diagnostic 21,631 (80%) 2,782 (10%) 2,654 (10%) 27,067 (17%)
Anatomy 25,444 (80%) 3,104 (10%) 3,234 (10%) 31,782 (20%)
Result 13,024 (80%) 1,714 (11%) 1,581 (10%) 16,319 (10%)

TOTAL 127,207 (80%) 15,694 (10%) 15,938 (10%) 158,839 (100%)

Table 1: Distribution of clinical event types in the training, validation, and test sets.

ical Classification System (SKS) (Danish Health
Data Authority, n.d.), which is based on the Inter-
national Classification of Diseases 10th revision
(ICD-10) (World Health Organization, 2016). Di-
agnoses spanning all genders and age groups and
with a high likelihood of mentions of varied clinical
entities like symptoms, diagnostics, and treatments
were chosen:

• Medical: asthma, diabetic ketoacidosis (type
1), epilepsy, pneumonia, rheumatoid arthritis

• Psychiatry: autism, depression, eating dis-
order, generalised anxiety disorder, suicide
attempt/self-harm

• Surgical: appendicitis, hernia, ileus, epis-
taxis, tibia fracture

We then randomly sampled EHRs from the EPJ co-
hort that included either a ICD-10 code or a textual
mention of one of these 15 diagnoses.

2.3.1 Clinical Utility Evaluation
To evaluate the model’s clinical utility, a MD man-
ually reviewed its output on the evaluation cohort.
For each EHR, the model’s extracted entities were
shown in a spreadsheet containing one row per en-
tity with its label and context window. The full
EHR text was provided for reference. EHRs were
included iteratively, seeking a stratified sample of
three different EHRs for each combination of diag-
nosis, gender, and age (n=270).

The MD assessed whether the model output in-
cluded at least one mention of: 1) the disease entity
for the target diagnosis, 2) symptoms, 3) diagnostic
tool, and 4) treatment relevant for that diagnosis. If
the diagnosis was missing from predictions, the full
EHR was reviewed to confirm its presence. If the
diagnosis was absent, the EHR was not included.
When any expected entity was missing, the full

EHR was checked to determine if the model had
failed to extract it.

257 samples were included. The cohort con-
sisted of 132 females and 125 males, including 85
children, 86 adults, and 86 seniors. Two groups
were entirely absent: female children with depres-
sion and senior males with eating disorder.

We calculated the detection rate per entity label.
The 15 diagnoses and expected clinical findings

for each entity are presented in Appendix B.

2.3.2 Bias analysis
We conducted a structured bias analysis across gen-
der, age group, and medical area.

From the evaluation cohort, we sampled three
random patient EHRs (>5 notes available) per com-
bination (n=270). Each patient was represented
by four random notes (>49 characters per note to
avoid minimal or templated content) (n=1,080).

Model predictions were corrected by a MD to
establish ground truth. Entity-level F1 scores were
calculated per patient, with micro and macro aver-
ages across labels (Chinchor and Sundheim, 1993).
We report summary statistics for entity counts by
medical area.

To ensure robust metrics given the short text span
per patient, we applied conservative rules when
averaging to handle missing entities:

• No ground truths, some predictions: recall
excluded; precision and F1 set to 0.

• Some ground truths, no predictions: preci-
sion excluded; recall and F1 set to 0.

• No ground truths or predictions: all metrics
excluded.

We further bootstrapped with 9,999 resamples per
individual variable (i.e., each gender, age group,
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and medical area) to produce 95% confidence in-
tervals (CIs) by entity label and micro and macro
average, using these to assess systematic model
bias (Steyerberg et al., 2001).

3 Results

This section presents the results of the evaluation
of the model performance, clinical utility, and po-
tential biases.

3.1 Test Set Performance

The model achieved F1 scores above 0.90 across
all entity types and evaluations. Macro F1 was
0.922 with exact boundary matching and 0.945
with overlap. Ignoring labels, the detection macro
F1 with overlap reached 0.962. Detailed results are
shown in Table 2.

TEST SET
Exact boundary Overlap boundary

F1 Prec Recall F1 Prec Recall
Disease 0.914 0.921 0.906 0.936 0.939 0.932
Symptom 0.902 0.917 0.888 0.930 0.943 0.918
Treatment 0.926 0.932 0.920 0.953 0.957 0.949
Diagnostic 0.941 0.943 0.938 0.957 0.958 0.956
Anatomy 0.940 0.950 0.930 0.968 0.974 0.962
Result 0.907 0.910 0.905 0.930 0.931 0.929

Micro avg 0.922 0.930 0.913 0.946 0.953 0.940
Macro avg 0.922 0.929 0.915 0.945 0.950 0.941
Detection 0.932 0.941 0.924 0.962 0.969 0.956

Table 2: Model performance metrics on the test set. Prec
= precision; Avg = average; Detection = Matching the
text span regardless of the assigned label.

Figure 1 shows the confusion matrix for overlap-
ping boundary matching. 3.0% of model detections
were spurious, while 4.4% of ground truth spans
were not detected. Of all spurious classifications,
36.8% were symptoms. The model missed 6.2% of
symptoms and 5.6% of results.

3.2 Clinical Utility Evaluation

The model identified the diagnosis and at least
one relevant symptom in all 257 patients (100%
detection). Relevant treatments were detected in
99.2% of patients, missing only two cases: epilepsy
(“at se an”—wait and see) and hernia (“reponere”—
reposition/reduction). Diagnostic procedures were
identified in 99.6% of cases, with one autism case
missing “ADOS” and “WISC” assessment tools.

Figure 1: Confusion matrix for the model on the test set
with overlapping boundary matching. O = Non-entity
spans.

3.3 Bias Evaluation

Appendix Table A1 shows mean, median and range
of entity counts by medical area. Psychiatric notes
mention more symptoms on average (36) than med-
ical (23) and surgical notes (20), with a wider range
(0–237 vs. 0–90 and 0–86, respectively). They
include fewer anatomies (7 vs. 11 and 12, respec-
tively) and results (6 vs. 14 and 11, respectively).

Figure 2 shows the bootstrapped 95% CIs for
macro and micro averaged F1 scores for compar-
ison inside groups. The CI for children is non-
overlapping and lower than for seniors but overlap
with adults. The psychiatry CI is non-overlapping
and lower than the medical and surgical CIs. The
observed differences in means for the non-overlaps
are at or below 0.017. All other CIs overlap.

Figure 3 shows the bootstrapped 95% CIs for F1
scores for each entity by group. The CIs for diag-
nostic, anatomy, and result entities overlap inside
all groups. In contrast, for disease and symptom
entities, the CIs for psychiatry are non-overlapping
and lower than those for medical and surgical. For
treatment entities, the psychiatry CI is lower than
medical but overlap with surgical. The observed
differences in means for the non-overlaps are at or
below 0.033.

Mean F1 scores for all group levels range from
0.958 to 1.000, with full details on CIs reported in
Appendix Table A2 and A3.
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Figure 2: Bootstrapped 95% confidence intervals (CIs) for macro (left) and micro (right) averaged F1 scores by
group. Note that comparison is only possible between the levels of each group, not between groups.

4 Discussion

We saw a substantial improvement in model perfor-
mance, with exact boundary macro F1 increasing
from 0.601 in the original work to 0.922, and over-
lap boundary F1 from 0.682 to 0.945. Likely causes
include more consistent annotation by a single MD
rather than six in the original work (Laursen et al.,
2023a), a tripled dataset size, improved postpro-
cessing with span merging and voting, and an up-
dated annotation scheme that includes both symp-
toms, and normal and pathological findings under
the Symptom category—reflecting their often simi-
lar context in clinical text and simplifying the clas-
sification task.

The excellent performance of the prospective
utility evaluation of the model shows how it can be
used to retrieve all relevant information for physi-
cians managing patients of all ages and genders
for the diagnoses included in the evaluation. Given
the heterogeneous clinical presentations of the 15
diagnoses evaluated, these results suggest promis-
ing potential for broader implementation across all
ICD-10 diagnoses.

The findings from our bias study indicate a small
but consistent reduction in model performance on
psychiatric notes, with minimal effects observed
in other groups. While statistical significance was
not formally assessed, these differences likely stem
from the distinct structure and content of psychi-
atric notes. Based on clinical experience, psy-
chiatric notes tend to be longer. They also men-

tion more symptoms and contain fewer references
to anatomy, results, and diagnostic tests (see Ap-
pendix Table A1). These factors suggest that the
model could benefit from additional psychiatric
notes in training data, although the current perfor-
mance differences remain very small.

5 Conclusion

We present Dora, a Danish clinical NER model that
identifies key clinical entities: diseases, symptoms
(including normal and pathological findings), diag-
nostics, treatments, anatomies, and results. Dora
achieves substantial improvements over the orig-
inal model, with a macro F1 score of 0.922 for
exact boundary matching and 0.945 for overlap-
ping boundaries. Prospective utility evaluation
demonstrates excellent performance in extracting
relevant information for physicians. Our bias study
reveals a small but consistent performance reduc-
tion on psychiatric notes, with minimal variation
in other groups, though overall differences remain
very small.

Limitations

While the bias analysis offers valuable insights, sev-
eral limitations remain; firstly, using four notes per
patient may not fully represent the medical condi-
tion in case of complex or chronic illnesses. To
address this, we applied conservative metrics and
bootstrapping in order to improve robustness. Sec-
ondly, ground truth labels for the bias study were

262



Figure 3: Bootstrapped 95% confidence intervals (CIs) for F1 scores for each entity by group. Note that comparison
is only possible between the levels of each group, not between groups.
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created by correcting model predictions, which,
while efficient, may have influenced the annota-
tions. Finally, notes were randomly sampled from a
1.5-year period during which the patient was given
the relevant diagnosis. This approach ensures a
diverse range of note types per medical area, im-
proving generalisability. It may, however, intro-
duce noise as some notes risk not being strongly
representative of their originating medical area.

We cannot rule out that some individual sen-
tences from the evaluation cohort may also appear
in the training data. However, since evaluation
was performed on full EHRs, the presence of sin-
gle duplicate sentences, which are common due to
standard phrasing in EHRs, is unlikely to impact
results.

Ethics Statement

This study was conducted using clinical data ac-
cessed with appropriate institutional permissions.
All data usage complied with relevant ethical guide-
lines and data protection regulations, and was ap-
proved by the data providers.

The dataset and model are not publicly avail-
able due to sensitive content. Please contact us for
sharing options.
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A Bias Evaluation: Detailed Results

Mean Median Range

Disease
medical 4.66 3 (0 - 27)
psychiatry 5.82 3 (0 - 41)
surgical 3.57 3 (0 - 18)

Symptom
medical 22.57 18 (0 - 90)
psychiatry 35.98 19 (0 - 237)
surgical 19.77 17 (0 - 86)

Treatment
medical 12.96 10 (0 - 45)
psychiatry 13.04 10 (0 - 87)
surgical 15.24 12 (0 - 50)

Diagnostic
medical 21.16 19 (1 - 78)
psychiatry 12.10 8 (0 - 83)
surgical 16.52 15 (0 - 50)

Anatomy
medical 11.02 7.5 (0 - 46)
psychiatry 6.96 3 (0 - 47)
surgical 12.06 9 (0 - 71)

Result
medical 13.72 12 (0 - 58)
psychiatry 6.02 3 (0 - 31)
surgical 11.04 8 (0 - 39)

Table A1: Mean, median and range of entity counts by medical area for the bias evaluation.
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Macro F1 Micro F1

Gender
female 0.991 (0.986 - 0.995) 0.991 (0.987 - 0.994)
male 0.989 (0.982 - 0.995) 0.994 (0.992 - 0.996)

Age group
child 0.985 (0.977 - 0.993) 0.988 (0.983 - 0.993)
adult 0.989 (0.981 - 0.996) 0.992 (0.989 - 0.995)
senior 0.996 (0.994 - 0.997) 0.996 (0.994 - 0.997)

Medical area
medical 0.995 (0.993 - 0.997) 0.995 (0.994 - 0.997)
psychiatry 0.979 (0.968 - 0.989) 0.985 (0.980 - 0.990)
surgical 0.996 (0.994 - 0.998) 0.996 (0.994 - 0.998)

Table A2: Bootstrapped macro and micro F1 scores with 95% confidence intervals reported by group levels for the
bias evaluation.

Disease Symptom Treatment

Gender
female 0.994 (0.990 - 0.998) 0.989 (0.984 - 0.993) 0.996 (0.993 - 0.998)
male 0.981 (0.964 - 0.998) 0.993 (0.990 - 0.995) 0.995 (0.991 - 0.998)

Age group
child 0.969 (0.942 - 0.996) 0.986 (0.980 - 0.992) 0.993 (0.988 - 0.998)
adult 0.997 (0.993 - 1.000) 0.991 (0.987 - 0.995) 0.996 (0.992 - 0.999)
senior 0.996 (0.993 - 0.999) 0.994 (0.991 - 0.997) 0.996 (0.993 - 0.999)

Medical area
medical 0.999 (0.997 - 1.000) 0.994 (0.990 - 0.998) 1.000 (0.999 - 1.000)
psychiatry 0.966 (0.938 - 0.993) 0.982 (0.976 - 0.988) 0.989 (0.983 - 0.995)
surgical 0.997 (0.994 - 1.000) 0.995 (0.992 - 0.997) 0.996 (0.993 - 0.999)

Diagnostic Anatomy Result

Gender
female 0.992 (0.985 - 0.998) 0.984 (0.969 - 0.999) 0.987 (0.978 - 0.996)
male 0.995 (0.992 - 0.998) 0.982 (0.965 - 0.999) 0.977 (0.960 - 0.994)

Age group
child 0.988 (0.978 - 0.997) 0.995 (0.991 - 0.999) 0.967 (0.939 - 0.994)
adult 0.996 (0.992 - 0.999) 0.964 (0.929 - 0.998) 0.991 (0.985 - 0.997)
senior 0.997 (0.994 - 0.999) 0.998 (0.996 - 1.000) 0.989 (0.979 - 0.999)

Medical area
medical 0.996 (0.992 - 0.999) 0.993 (0.985 - 1.000) 0.985 (0.975 - 0.994)
psychiatry 0.989 (0.980 - 0.997) 0.958 (0.917 - 0.998) 0.966 (0.935 - 0.997)
surgical 0.995 (0.989 - 1.000) 0.997 (0.994 - 1.000) 0.994 (0.988 - 0.999)

Table A3: Bootstrapped F1 scores and 95% confidence intervals by entity type and group levels.
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B Clinical Utility Evaluation: Expected Findings

MEDICAL

Disease Symptom Diagnostic Treatment

Epilepsia [DG40] Seizures Blood samples Antiseizure medicine
Impaired consciousness Imaging
Tongue bite Electro-
Urination encephalogram
Amnesia

Asthma [DJ45] Dyspnoea Pulse Oximetry Bronchodilator
Cough Imaging Oxygen

Blood samples Steroid
a-puncture
pH
Pulmonary function test

Diabetic ketoacidosis Polyuria/polydipsia Blood samples Insulin
type 1 [DE101] Respiratory changes a-puncture Fluid therapy

Nausea/vomiting Glucose
Foetor ex ore Urine sample
Abdominal pain
Weakness/fatigue
Impaired consciousness

Rheumatoid arthritis Pain Blood samples Anti-inflammatory
[DM05, DM08] Swelling Imaging drugs

Redness Immunomodulatory
Heat of joint(s) drugs
Fever Analgesics
Fatigue
Other systemic symptoms

Pneumonia [DJ189] Dyspnoea Pulse Oximetry Bronchodilator
Cough Imaging Oxygen
Fever Blood samples Steroid

a-puncture Antibiotics
pH Fluid therapy

Table B1: Expected clinical findings in the health record for each medical diagnosis by entity type.
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PSYCHIATRIC

Disease Symptom Diagnostic Treatment

Generalized anxiety Anxiety Psychiatric assessment Psychotherapy
[DF411] Headache Antidepressants

Restlessness CNS depressants
Pain
Tension
Fear
Sleep disturbances
Autonomic hyperactivity
Tension

Depression [DF33] Poor concentration MDI or Hamilton scale Antidepressants
Feelings of excessive Psychiatric assessment Psychotherapy
guilt or low self-worth Sleep medication
Hopelessness
Thoughts about dying
or suicide
Disrupted sleep
Changes in appetite
or weight
Feeling very tired
or low in energy

Autism [DF840] Deficits within: Psychiatric assessment Psychotherapy
Communication, Sleep medication
interaction,
and behaviour

Suicide attempt Intentional cause of Psychiatric assessment Psychotherapy
/self-injury injury on oneself Antipsychotics
[DZ915A] CNS depressants

Eating disorder [DF50] Disturbance in one’s Psychiatric assessment Psychotherapy
eating behaviors that BMI Enteral/parenteral
affect the person’s nutrition therapy
physical or mental health

Table B2: Expected clinical findings in the health record for each psychiatric diagnosis by entity type.
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SURGICAL

Disease Symptom Diagnostic Treatment

Appendicitis Pain Abdominal examination Surgery/appendectomy
[DK35, DK37, DK379] Fever Blood samples Antibiotics

Nausea/vomiting Imaging Analgesics

Epistaxis Bleeding from nose Blood samples Compressive therapy
[DR040C, DR040A, DR040B] nose or mouth Rhino endoscopy Ablation

Imaging Haemostatics
Transfusion
Fluid therapy

Fracture of tibia Pain Examination Analgesics
[DS821, DS823] Swelling Imaging Fixation

Loss of function Surgery
Displacement Antibiotics

Hernia [DK409] Pain Abdominal examination Surgery
Protrusion Imaging Antibiotics
Fever Blood samples Analgesics
Nausea/vomiting

Ilieus [DK567] Pain Abdominal examination Surgery
Fever Imaging Antibiotics
Nausea/vomiting Blood samples Analgesics

Table B3: Expected clinical findings in the health record for each surgical diagnosis by entity type.
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Abstract

Automatic Speech Recognition (ASR) sys-
tems remain error-prone in challenging acous-
tic conditions, leading to spelling mistakes
that degrade downstream applications. Despite
the surge in the number of studies on post-
refinement methods, existing Spelling Correc-
tion (SC) approaches often rely solely on tex-
tual cues or phonetic features, limiting their
ability to provide speech-aware corrections. In
this work, we introduce a Cross-Modal Contex-
tualized Spelling Correction framework (CMC-
SC) that jointly incorporates contextualized
acoustic and textual information. Unlike prior
methods that use phonetics solely for candi-
date selection, our solution leverages contextu-
alized speech tokens in the generation of correc-
tions, improving accuracy and context aware-
ness. CMC-SC features a detection module to
identify errors, a cross-modal correction mod-
ule to generate fixes using acoustic and textual
tokens, and a soft fusion step to refine correc-
tions while retaining context. The proposed
method improves error rates compared to base-
lines and, with only 140M trainable parameters,
offers an efficient solution for ASR spelling cor-
rection.

1 Introduction

Automatic Speech Recognition (ASR) systems
have become increasingly important in recent years,
enabling a wide range of applications, from virtual
assistants to transcription services. The field has
seen significant growth, driven by advancements
in deep learning and natural language processing.
However, despite these advances, ASR systems
still face challenges, particularly in diverse acous-
tic environments and with speakers of different
accents Errattahi et al. (2018). Retraining ASR

∗ Corresponding author: s_amini@sharif.edu
Code available at:
https://github.com/mohammadr8za/CMC-SC.git

models with domain-specific data can often miti-
gate these issues to some extent, but in many cases,
the ASR model is not accessible for direct modifica-
tion, functioning as a black box. In such scenarios,
post-refinement techniques can be effectively em-
ployed to improve transcription quality.

Various ASR refinement techniques have been
explored, especially since the advent of Trans-
formers Vaswani et al. (2017). Broadly speaking,
ASR refinement can be categorized into three main
classes: fusion, re-scoring, and correction.

Fusion methods aim to improve ASR first-pass
decoding by integrating external linguistic informa-
tion at each decoding step. These techniques typi-
cally augment the ASR decoder’s internal language
model with external Language Models (LMs),
whether a simple n-gram Kannan et al. (2018), a
neural LM Kim et al. (2021), or a Large Language
Model (LLM) Hori et al. (2025).

The Re-Scoring paradigm, by contrast, is a
second-pass scheme that assumes the 1-best ASR
hypothesis may not properly represent the infor-
mation from the decoding step. This paradigm
generates an N -best list of hypotheses and uses an
external model (e.g., an n-gram or neural language
model) to re-rank those candidates, selecting a lin-
guistically superior candidate Shin et al. (2019);
Gandhe and Rastrow (2020).

Correction approaches tackle the problem by re-
vising a given ASR transcript to produce a new,
improved sequence. Some correction techniques
employ a second-pass decoding strategy, where a
second decoder (or encoder-decoder) reconsiders
acoustic features or the initial hypothesis. This
decoding step can utilize an n-gram Bassil and Se-
maan (2012), a neural LM Zhang et al. (2019), or
an LLM Udagawa et al. (2024), whether adopt-
ing both modalities Orihashi et al. (2021); Xia
et al. (2017) or text-only correction Hrinchuk et al.
(2020); Jia et al. (2025). In recent research, re-
searchers have used Retrieval Augmented Gen-
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Figure 1: The Overall Diagram of the Proposed CMC-SC.

eration (RAG) with an external corpus for tran-
script correction Robatian et al. (2025); Gong et al.
(2025).

Another notable approach to ASR error correc-
tion is the use of encoder transformers, primarily
BERT Devlin et al. (2019). These models leverage
their contextual understanding to replace erroneous
tokens. However, using pre-trained BERT alone is
suboptimal for ASR correction Zhang et al. (2020)
due to (1) reliance on textual cues, which risks in-
correct substitutions, and (2) a domain mismatch
between its clean pre-training data and noisy ASR
outputs. To address this, FASPell Hong et al. (2019)
employs a Confidence-Similarity Decoder (CSD)
to filter BERT’s candidates by phonetic and or-
thographic similarity. Similarly, SpellGCN Cheng
et al. (2020) enhances BERT with a Graph Con-
volutional Network (GCN) to model phonological
and symbolic relations. Other methods incorpo-
rate detection modules. For instance, a method
Zhang et al. (2020) detects and softly masks prob-
able errors based on confidence scores, feeding
them into a correction model and summing out-
puts with original embeddings. Another approach
Zhang et al. (2021) fuses token and phonetic em-
beddings post-detection for phonetic-aware correc-
tion. Additionally, a dynamic error scaling method
Fan et al. (2023) integrates words and pinyin for se-
mantically and phonetically aware character-level
correction.

However, encoder-based methods addressing
these challenges often rely on phonetic informa-
tion derived from text, which can be misleading.
Our method addresses this issue by:

1. Extracting contextualized acoustic informa-
tion directly from speech using WavLM
Chen et al. (2022), unlike Fan et al. (2023)
and Zhang et al. (2021), which rely on

transcription-based information.

2. Joint processing of contextualized acoustic
and textual tokens through a Cross-Modal
BERT (CM-BERT) unlike Hong et al. (2019);
Cheng et al. (2020), which rely on phonetic
information in a secondary branch.

3. Using a soft fusion technique to combine
CM-BERT outputs with original token embed-
dings, preserving transcription information,
unlike the direct summing approach used in
Zhang et al. (2021).

Finally, our approach improves upon existing
baselines by a large margin, demonstrating its ef-
fectiveness in improving ASR quality.

2 Method

This section presents the methodology for enhanc-
ing ASR transcriptions using a cross-modal frame-
work that integrates textual and acoustic data. The
approach comprises two main components: a de-
tection module to identify erroneous tokens and
a cross-modal correction module to rectify these
errors using a soft-fusion framework. The structure
of the proposed CMC-SC is illustrated in Figure 1,
and subsequent subsections detail each component.

2.1 Data Pre-Processing
We perform the following data preprocessing steps
to enable end-to-end (E2E) training of our proposed
model:

1. We run paired speech-text examples through
a black-box ASR to obtain its transcriptions.

2. For each utterance, we align the ASR tran-
scription with the corresponding ground-truth
using Levenshtein alignment (edit distance).
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From this, we create a per-token binary se-
quence where ‘1’ indicates an erroneous token
and ‘0’ indicates a correctly recognized token.

Consequently, our dataset comprises samples in
the form of (utterance, erroneous text, labels, target
text). The (erroneous text, labels) pairs are used
to train the Detection module, while the (utterance,
erroneous text, target text) pairs are used to train
the Correction module.

2.2 Detection and Masking
The detection module, the first stage of our spelling
correction pipeline, aims to identify erroneous to-
kens in ASR transcriptions to enable targeted cor-
rections and prevent over-correction, which is a
common issue in E2E methods Imai et al. (2025).
It integrates a frozen and pre-trained BERT model
(denoted T-BERT) to extract contextual token em-
beddings, combines these embeddings with ini-
tial token embeddings via a residual connection,
and feeds them to a two-layer BiLSTM classifi-
cation head. The residual connection is crucial,
as it allows the model to consider content other
than context, addressing potential misclassifica-
tions from incorrect tokens affecting the frozen
BERT’s embeddings. Then, a linear layer outputs
logits for each token, indicating whether it is erro-
neous. This module is trained using Binary Cross-
Entropy (BCE) loss with logits and per-token bi-
nary labels:

BCED =
1

T

T∑

i=1

log
(
1 + e−(2yi−1)zi

)
.

where zi is the logit for token i, and yi ∈ {0, 1}
indicates if the token is erroneous.

At inference time, we compute the sigmoid of
each logit and compare it to a predefined thresh-
old; tokens with likelihood above this threshold are
deemed erroneous and replaced with the [MASK]
token. This masking strategy ensures that CM-
BERT’s context is derived from the most probable
correct tokens, preventing incorrect tokens from
negatively affecting the contextual representation.

2.3 Soft Fusion and Cross-Modal Correction
The cross-modal correction module refines ASR
transcriptions by integrating textual and acoustic
data to produce accurate, speech-aware, and contex-
tually appropriate corrections. Using both modali-
ties, it improves transcription quality using a cross-
modal and joint attention approach.

The correction module receives a sequence of
token embeddings from the detection phase, where
tokens identified as incorrect are replaced with the
[MASK] token, denoted as Em. It also extracts con-
textualized speech features from raw audio using
a pre-trained WavLM network. These speech fea-
tures are then projected to match the dimensionality
of the CM-BERT, resulting in ES .

The masked text embeddings Em and the pro-
jected speech embeddings ES are concatenated to
form the input Ein = [Em;ES ]. This concate-
nated input is then processed by the CM-BERT,
a transformer-based model that outputs contextu-
alized, speech-aware representations by enabling
cross-modal interactions between text and speech
through its attention mechanisms.

To prevent over-correction and preserve correct
tokens, the Soft-Fusion (SF) strategy blends each
token’s original embedding E(i) with its corre-
sponding cross-modal contextual embedding E

(i)
c ,

based on a confidence score αi from the detection
phase that indicates the likelihood that token i is
incorrect. Specifically, under the SF strategy, the
output embedding for each token i is computed as:

E(i)
o = (1− αi) ·E(i) + αi ·E(i)

c

As a result, tokens with a low αi (indicating they
are likely correct) retain more of their original
embedding, while tokens with a high αi (indicat-
ing they are likely incorrect) incorporate more of
the speech-informed representation. This adap-
tive interpolation ensures precise corrections where
needed while preserving accurate text.

Finally, the softly-fused embeddings are classi-
fied into tokens using a softmax layer, guided by
the Cross Entropy (CE) loss with logits and token
IDs. The CE loss is given by:

CEC = − 1

T

T∑

t=1

log

(
exp(zt,yt)∑V
k=1 exp(zt,k)

)

where T is the sequence length, V is the vocabulary
size, zt,k is the logit for token k at position t, and
yt is the true token ID.

3 Experiments and Results

In this section, we detail the experiments conducted
to assess the proposed model and present the results
in comparison to several baseline models, which
were re-implemented to ensure a fair evaluation.
Additionally, we assess the performance of each
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Comparative
Study

Model
Parameters Detection Correction Error Rate

Total Trainable P R F1 P R F1 Word Character

Whisper-Tiny (Baseline) Radford et al. (2023) 39M - - - - - - - 24.5 17.2

Whisper-Small Radford et al. (2023) 244M - - - - - - - 13.7 6.1

Whisper-Medium Radford et al. (2023) 769M - - - - - - - 11.7 4.2
PT-BERT+BiLSTM (Multi-Task Training) 140M 30M 85.96 85.90 85.88 81.74 83.94 81.82 18.2 17.5

FT-BERT+BiLSTM (Multi-Task Training) 140M 140M 85.84 85.95 85.79 82.08 85.77 82.18 17.9 17.1

Soft-Masked BERT Zhang et al. (2020) 250M 250M 86.14 86.23 86.12 87.85 87.23 87.18 13.2 9.8

CMC (Ours) 300M 140M 87.32 87.52 87.30 91.31 91.35 91.27 9.2 5.6

Ablation
Study

CMC – WavLM 210M 140M 87.18 87.24 87.15 88.91 88.74 88.64 12.1 9.6

CMC – SF 300M 140M 87.17 87.18 87.15 89.03 89.12 89.01 10.7 7.5

Table 1: Comparative and Ablation Studies (all refinement methods are applied to Whisper-Tiny)

module within the model through an ablation study,
systematically removing each module to evaluate
its impact on the overall performance.

To evaluate our model, we introduce baseline
models. We use three ASR models (Whisper-Tiny,
Whisper-Small, Whisper-Medium) to assess the
importance of post-refinement and Cross-Modal
attention against adopting larger ASR systems. We
also trained two spelling correction baselines, Pre-
Trained (PT) and Fine-Tuned (FT) BERT, follow-
ing Zhang et al. (2020); Cheng et al. (2020); Fan
et al. (2023), to highlight our model’s contribu-
tion. Plus, we re-implemented Soft-Masked BERT
Zhang et al. (2020) as another benchmark.

We perform an ablation study to quantify each
module’s contribution to the CMC-SC model. First,
we remove the speech tokens (i.e., contextualized
acoustic information) and retrain under identical
conditions, noting that CM-BERT is originally pre-
trained on text, so its performance may still reflect
textual bias rather than a true absence of cross-
modal data. This ablation also underscores the
significance of the residual connection in the de-
tection module, which is the primary distinction of
this module in the ablation and compared to the PT-
BERT. Next, we remove the Soft-Fusion module,
which retains information from the original tran-
scription, and train it again. Table 1 presents these
results, demonstrating that each module positively
impacts the overall performance of CMC-SC.

All experiments ran on an NVIDIA RTX 3090
GPU for 30 epochs using the AdamW optimizer.
The best model uses a batch size of 32, a learn-
ing rate of 1× 10−5 with a linear scheduler, both
T-BERT and CM-BERT have a maximum context
length of 128 tokens, and the threshold in the mask-
ing module is set empirically to 0.5. To align
speech tokens with BERT embeddings, we project

Transcriptions
1) the cut start on the fence
2) she begged home smiling all the way
knowing that she had won

Detection Predictions
1) [1, 1, 1, 0, 0, 0]
2) [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Detection Labels
1) [0, 1, 1, 0, 0, 0]
2) [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Refined
1) the cat sat on the fence
2) she biked home smiling all the way
knowing that she had won

Ground Truths
1) the cat sat on the fence
2) she biked home smiling all the way
knowing that she had won

Table 2: Examples of CMC-SC on the Common Voice
test set.

them into 50 tokens of dimension 768. We have em-
ployed the Mozilla Common Voice dataset Ardila
et al. (2019) (original train/dev/test splits) and re-
port results on its test set.

Finally, as shown in Table 1, our proposed
method improves the baselines by a large margin,
demonstrating substantial potential to improve the
spelling correction task. Notably, our model has
only 140M trainable parameters and outperforms
the pre-trained Whisper-medium with 769M param-
eters, making it a lightweight yet effective solution.
The examples of CMC-SC are provided in Table 2.

4 Conclusion

In this paper, we have introduced Cross-Modal
Contextualized Spelling Correction (CMC-SC), a
novel framework designed to enhance ASR tran-
scription accuracy by correcting spelling errors.
CMC-SC integrates a detection module using a
frozen BERT model and BiLSTM to identify er-
rors by capturing contextual and sequential pat-
terns, and a correction module that blends text em-
beddings with acoustic features from a pretrained
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WavLM. This approach ensures precise, context-
aware corrections while preserving accurate tokens
via a soft fusion framework. Experiments show
CMC-SC reduces error rates with only 140 mil-
lion trainable parameters, balancing performance
and computational efficiency. Future work includes
supporting additional languages and integrating ad-
vanced pretrained cross-modal networks for deeper
linguistic and acoustic insights.

Limitations

Despite the resulting advancements, ASR models
remain error-prone in challenging environments.
In clean settings, errors are primarily substitutions
or spelling mistakes, for which spelling correction
methods are computationally efficient. However,
the proposed method may be less effective for er-
rors involving insertions and deletions. Addition-
ally, trained on general data, the model may require
re-training for domain-specific applications, such
as medical terminology.
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Abstract

Low-resource languages face significant chal-
lenges due to the lack of sufficient linguis-
tic data, resources, and tools for tasks such
as supervised learning, annotation, and clas-
sification. This shortage hinders the develop-
ment of accurate models and datasets, mak-
ing it difficult to perform critical NLP tasks
like sentiment analysis or hate speech detec-
tion. To bridge this gap, Large Language Mod-
els (LLMs) present an opportunity for poten-
tial annotators, capable of generating datasets
and resources for these underrepresented lan-
guages. In this paper, we focus on Marathi, a
low-resource language, and evaluate the perfor-
mance of both closed-source and open-source
LLMs as annotators, while also comparing
these results with fine-tuned BERT models. We
assess models such as GPT-4o and Gemini 1.0
Pro, Gemma 2 (2B and 9B), and Llama 3.1
(8B and 405B) on classification tasks includ-
ing sentiment analysis, news classification, and
hate speech detection. Our findings reveal that
while LLMs excel in annotation tasks for high-
resource languages like English, they still fall
short when applied to Marathi. Even advanced
models like GPT-4o and Llama 3.1 405B under-
perform compared to fine-tuned BERT-based
baselines, with GPT-4o and Llama 3.1 405B
trailing fine-tuned BERT by accuracy margins
of 10.2% and 14.1%, respectively. This high-
lights the limitations of LLMs as annotators for
low-resource languages.

1 Introduction

Even with advancements in NLP, the curation of an-
notations for supervised tasks like sentiment analy-
sis, text classification, and inference has been the
primary responsibility of human linguistic experts
(Tan et al., 2024). Data annotations play an inte-
gral part in both building and evaluating a model.
Hence, the quality and reliability of data lie at
the core of the performance and usefulness of the
model being built.

The process of curating good-quality data an-
notations is expensive in terms of time and cost,
specifically when it comes to compiling data an-
notations for low-resource languages. The aim of
this study is to explore whether Large Language
Models (LLMs) can be effectively leveraged to
create supervised data resources for low-resource
languages, with Marathi as the focus in this case.

Recent generative models like ChatGPT have
shown competitive quality in data annotations for
simpler tasks like sentiment analysis while human
expert annotations proved to be better for intri-
cate tasks Nasution and Onan (2024). ChatGPT
was evaluated by Zhu et al. (2023) to check its
capability of reproducing human-generated labels
for social computing tasks. In these experiments,
ChatGPT obtained an average accuracy of 0.60
with 0.64 being the highest accuracy for the senti-
ment analysis task. In addition to these, the works
of Kuzman et al. (2023); Gao et al. (2023) have
previously evaluated ChatGPT’s performance with
that of human experts. Experiments performed
by Mohta et al. (2023) demonstrated that Vicuna
13b performed reasonably well for numerous an-
notation tasks compared to other models that were
tested like Vicuna 7b, Llama (13b, 7b) and Instruct-
BLIP(13b, 7b). However, it is important to note
that most of these experiments target the English
language.

India is a multilingual nation with various re-
gional languages and most of these languages fall
under the low-resource (LR) category. Low re-
source languages are languages such as Marathi
and Hindi that lack annotated training datasets and
have very few task-specific resources compared
to high resource languages such as Spanish and
English.

This paper presents a case study on the perfor-
mance of Large Language Models (LLMs) in an-
notating the low-resource language Marathi. We
conduct a comprehensive comparative analysis of
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various closed-source and open-source LLMs, re-
vealing that many LLMs still fall significantly short
of the baseline performance achieved by BERT-
based models and are not yet capable of replacing
human annotators.

Specifically, we evaluated models such as GPT-
4o, Gemini 1.0 Pro, Gemma 2 (2B and 9B), Llama
3.1 (8B and 405B) across multiple tasks, includ-
ing 3-class sentiment analysis, 2-class, and 4-class
hate speech detection, as well as news classifica-
tion based on headlines, long paragraphs, and full
documents.

The key contributions of this research work are
as follows:

• We have conducted a first-of-its-kind detailed
comparative study between fine-tuned BERT
models and large language models (LLMs), by
evaluating their potential to be used as annotators
for a low-resource language, Marathi.

• We observe that the average results of the Few-
shot prompting technique outperform the average
result of the Zero-shot prompting technique in
all the models tested.

• We have provided valuable insights into the ef-
fectiveness of both open- and closed-source large
language models (LLMs), including GPT-4o,
Llama 3.1 405B, Llama 3.1 8B, Gemma 2 9B,
Gemma 2 2B, and Gemini 1.0 Pro, on tasks such
as Marathi Sentiment Analysis, Hate Speech De-
tection, and News Categorization. Our results
strongly demonstrate that LLMs are still not fully
reliable for annotation tasks in Indic languages.

• Model ranking, based on accuracy metrics, is
GPT-4o > Llama-3.1-405B > Gemini 1.0 Pro >
Gemma 2 9B > Llama 3.1 8B > Gemma-2-2B.

The paper is structured as follows: Section 2
provides a concise review of prior research on data
annotation and the use of LLMs. In Section 3,
we detail the datasets used and the Section 4 de-
scribes models employed in our evaluation. Section
5 describes the experimental setup and the APIs
leveraged to evaluate the LLMs. Section 6 presents
the results, along with a comparative analysis of
various LLMs and BERT-based models, highlight-
ing the key findings of our research. Finally, in
Section 7, we conclude our discussion.

2 Literature Review

Many low-resource languages, including Marathi,
lack well-annotated datasets, making it difficult
to train effective models for tasks like sentiment
analysis and classification Al-Wesabi et al. (2023).
The absence of sufficient data often leads to poor
performance in tasks that require labeled corpora
R et al. (2023).

Low-resource languages also present unique lin-
guistic challenges not well-represented in high-
resource models Krasadakis et al. (2024), high-
lighting the need for specialized approaches. With
the rise of LLMs, these models have been explored
as a solution to mitigate the scarcity of annotated
data in low-resource languages.

Several works demonstrate the use of LLMs
as annotators for low-resource language tasks.
Pavlovic and Poesio (2024) reviewed LLMs like
GPT-4 and noted performance drops when handling
non-English languages. In Kholodna et al. (2024),
the authors explored the integration of large lan-
guage models (LLMs), specifically GPT-4 Turbo,
into an active learning framework designed for
low-resource language tasks. Their work demon-
strates the use of few-shot learning to generate
useful annotations, significantly enhancing perfor-
mance on low-resource tasks. Additionally, they
implemented the GPT-4 Turbo model as a classifier
within the training loop, leading to a substantial
reduction in annotation costs, which were 42.45
times lower compared to traditional methods. How-
ever, the general performance of LLMs remains
limited, especially for languages with fewer re-
sources Hedderich et al. (2020).

The studies of Ding et al. (2022) and Mohta
et al. (2023) further evaluated LLM performance
on multilingual datasets, with results indicating
that models like GPT-3 and open-source LLMs
struggle with non-English data. Srivastava et al.
(2022) showed that increasing model size does not
consistently enhance performance for low-resource
languages, unlike high-resource languages like En-
glish.

Bias is another concern with LLMs. Bavaresco
et al. (2024) introduced JUDGE-BENCH to eval-
uate LLM biases, noting that training data heav-
ily influences model outputs, which can be prob-
lematic in annotating complex or sensitive tasks
in low-resource languages. While LLMs used
for high-resource languages (HRL) are giving
promising results, that is not the case for low-
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resource languages. Nasution and Onan (2024)
explored ChatGPT-4’s performance in annotation
tasks across languages like Turkish and Indonesian,
offering insights into LLM applicability for Low
Resource Language(LRL), a relevant consideration
for our focus on Marathi.

3 Dataset

In this research, we focus on three major task cate-
gories using relevant Marathi datasets:

1) MahaSent (Kulkarni et al., 2021; Pingle et al.,
2023) – classifies sentiment of Marathi tweets into
three classes of positive, negative, or neutral cate-
gories.

2) MahaHate (Patil et al., 2022) – measures the
level of abusive and hostile content in Marathi text.
This dataset includes two supervised tasks: Ma-
haHate 2-Class, which categorizes content as ei-
ther HATE or NOT, and MahaHate 4-Class, which
provides finer distinctions with categories: Hate
(HATE), Offensive (OFFN), Profane (PRFN), and
Not (NOT).

3) MahaNews (Mittal et al., 2023; Mirashi
et al., 2024) – classifies headlines and articles
from Marathi news. It comprises three supervised
datasets: Short Headlines Classification (SHC),
Long Document Classification (LDC), and Long
Paragraph Classification (LPC), each categoriz-
ing news content into 12 classes: Auto, Bhakti,
Crime, Education, Fashion, Health, International,
Manoranjan, Politics, Sports, Tech, and Travel.
The distribution of all the mentioned datasets is
provided in Table 2

4 Methodolgy

We investigated the distinctions between LLM-
generated and human-generated annotations for
the Indic language, Marathi, using a comparative
methodology, and analyzed the results with fine-
tuned BERT-based models for detailed insights.

4.1 LLMs

In our annotation experiments, we evaluated the
performance of LLMs for the Marathi language
using two prompting techniques: zero-shot and
few-shot learning. We tested both open-source
models (Llama 3.1 8B, Llama 3.1 405B, Gemma 2
2B, and Gemma 2 9B) and closed-source models
(Gemini 1.0 Pro, GPT-4o), and compared their re-
sults with BERT-based models. The performance

of each LLM under both prompting strategies is
summarized in Table 1.

4.2 BERT Based Models

We used fine-tuned BERT-based models to com-
pare performance with LLMs, where MahaSent-
MD MahaHate-BERT, MahaNews-SHC-BERT,
MahaNews-LPC-BERT, and MahaNews-LDC-
BERT are fine-tuned versions of MahaBERT, while
MahaHate-multi-RoBERTa has MahaRoBERTa as
the base model. Each of these models was fine-
tuned on the corresponding datasets, and their re-
spective performances are summarized in Table 1.

5 Experimental Setup

Our main objective is to assess the LLMs on three
different tasks and related datasets to ascertain
whether LLMs could take the place of, or at least
support, human annotation efforts. We employed
both few-shot and zero-shot prompting techniques,
with LLM-generated annotations evaluated against
the ground truth labels. For all datasets, the test
split was used. The open-source models (Llama
3.1 8B, Gemma 2 2B, and Gemma 2 9B) exhib-
ited slower response times and required signifi-
cant computational resources to generate predic-
tions. However, by utilizing NVIDIA NIM APIs,
we were able to accelerate predictions from these
models, improving both speed and precision. For
the closed-source Gemini 1.0 Pro model, we used
the Gemini API, while GPT-4o predictions were
generated manually via ChatGPT’s default settings
to annotate the samples. In our research, we could
only use a subset of samples from each dataset due
to the restrictive usage regulations and cost limits
of the mentioned APIs. To maintain consistency
and fairness in the performance comparison, all re-
sults from both LLM-based and BERT-based mod-
els were evaluated on a uniform subset. Specifi-
cally, we evaluated 490 samples from the MahaSent
and MahaHate datasets, while for MahaNews, we
selected 40 samples from each of the 12 classes,
amounting to a total of 480 samples.

6 Result

This section provides a detailed overview of the
experiments conducted for the annotation of three
distinct tasks, utilizing six large language models
(LLMs) and six BERT-based models (BERT model
fine-tuned on target task). Table 1 summarizes the
performance metrics of the fine-tuned BERT-based
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Dataset Tech Llama 3.1 8B Gemma 2 2B Gemma 2 9B Gemini 1.0 Pro Llama 3.1 405B GPT-4o Fine Tuned BERT

MahaSent ZS 0.76 0.71 0.69 0.78 0.77 0.79 0.80
FS 0.79 0.76 0.78 0.76 0.81 0.82

MahaHate-2C ZS 0.64 0.71 0.78 0.74 0.77 0.80 0.91
FS 0.78 0.72 0.82 0.72 0.82 0.82

MahaHate-4C ZS 0.40 0.39 0.43 0.43 0.49 0.58 0.73
FS 0.48 0.41 0.46 0.45 0.52 0.60

MahaNews-SHC ZS 0.60 0.54 0.68 0.68 0.75 0.78 0.85
FS 0.66 0.54 0.68 0.70 0.74 0.78

MahaNews-LPC ZS 0.66 0.55 0.71 0.72 0.76 0.77 0.89
FS 0.67 0.50 0.72 0.74 0.76 0.75

MahaNews-LDC ZS 0.69 0.62 0.78 0.74 0.76 0.81 0.96
FS 0.69 0.62 0.80 0.75 0.78 0.81

Average ZS 0.625 0.587 0.678 0.682 0.716 0.755 0.857
FS 0.678 0.592 0.710 0.687 0.738 0.763

Table 1: Model Comparison across different tasks. Tech: Different Prompting Techniques Used; ZS: Zero Shot; FS:
Few Shot; 2C: 2-Class; 4C: 4-Class; SHC: Short Headlines Classification; LDC: Long Document Classification;
LPC: Long Paragraph Classification; BERT: Refer Section 4.2 for details about BERT models.

Split MahaSent MahaHate 2-C MahaHate 4-C SHC LDC LPC

Train 12114 30000 21500 22014 22014 42870

Valid 1500 3750 2000 2750 2750 5366

Test 2500 3750 1500 2761 2761 5357

Table 2: Dataset Distribution

models, offering a comparative analysis against the
performance of each LLM under both few-shot and
zero-shot prompting scenarios. The table facili-
tates a comprehensive evaluation by highlighting
key outcomes, enabling a thorough understanding
of how each model performs across the different
annotation tasks and prompting methods.

6.1 Key Findings

Our extensive experiments revealed crucial in-
sights, showing that Large Language Models
(LLMs) are not yet fully equipped to serve as reli-
able annotators for the Marathi language. The dis-
parity between LLM-based and human-generated
annotations remains substantial. Even for straight-
forward tasks like news classification, LLM perfor-
mance was suboptimal. For more complex tasks,
such as the 4-class MahaHate classification, their
performance was notably disappointing, as evi-
denced in Table 1.

Among the LLMs evaluated, GPT-4o achieved
the best results compared to others, including
Llama 3.1 8B, Gemma 2 (2B and 9B), and Gemini
1.0 pro. However, both open-source and closed-
source LLMs exhibited notable limitations in pro-
viding accurate and reliable annotations. Our re-
sults also demonstrate that closed LLMs like GPT-
4o and Gemini 1.0 Pro outperform open LLMs
namely Llama and Gemma 2B and 9B but they still

underperform when compared to finetuned BERT
for almost all datasets.

Our evaluation ranks the models as GPT-4o >
Llama 3.1 405B > Gemini 1.0 Pro > Gemma 2 9B
> Llama 3.1 8B > Gemma 2 2B, highlighting that
open source Llama 3.1 405B outperforms Gemini
1.0 Pro and is second only to GPT-4o.

Compared to zero-shot prompting, few-shot
prompting produced more accurate results because
it gave examples of the desired input-output be-
havior, helping the model to understand the task’s
context and expectations better. We observe an ab-
solute increase in the average accuracy of few-shot
prompting by 5.3%, 0.5%, 3.2%, 0.5%, 2.2%, and
0.8% compared to zero-shot prompting for mod-
els Llama 3.1 8B, Gemma 2 2B, Gemma 2 9B,
Gemini 1.0 Pro, Llama 3.1 405B, and GPT-4o, re-
spectively. While few-shot prompting techniques
yielded better accuracy than zero-shot approaches,
they still fell short of the performance delivered by
BERT-based models.

The average accuracy gap between open-source
and closed-source models is 6.7%, while the differ-
ence between closed-source models and fine-tuned
BERT-based models is 13.9%, highlighting the lack
of effective LLMs for low-resource languages.

BERT-based fine-tuned models on target task
outperformed LLMs in the classification tasks for
Marathi language because finetuning enabled better
knowledge extraction and alignment with the task’s
requirements. On the other hand, LLMs, despite
being trained on vast amounts of general data, lack
performance on low resource languages and task-
specific optimization, which limits their ability to
extract the most relevant features for a specific task.
This suggests that, despite the increasing popular-

280



ity of LLMs, BERT-based models continue to be
highly relevant, particularly for Indic languages.

We also note that the difference in the results
of BERT-based models and the LLMs is compara-
tively less for easy tasks like the Sentiment Analy-
sis Task, i.e. in the MahaSent dataset. At the same
time, the gap is significantly higher for complex
tasks like the Hate Classification and News Classi-
fication tasks in favor of BERT-based models.

7 Conclusion

Our study demonstrates that while LLMs like GPT,
Gemini, Gemma, and Llama show potential, they
currently fall short of being reliable annotators for
low-resource languages like Marathi, particularly
for complex tasks. BERT-based models continue
to outperform LLMs in these contexts. Moreover,
these findings can be generalized to other Indic
languages as well, such as Marathi, due to their
morphological richness. These results indicate
that further advancements are required in LLMs
to make them viable alternatives to human annota-
tions. This research highlights the need for devel-
oping more robust models tailored to the specific
details of low-resource languages. This includes
the creation of higher-quality, task-specific datasets
for low-resource languages, ensuring better repre-
sentation and reducing biases. Enhanced datasets
combined with domain-specific knowledge can sig-
nificantly improve annotation accuracy.
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Abstract

Depression commonly co-occurs with neurode-
generative disorders like Multiple Sclerosis
(MS), yet the potential of speech-based Ar-
tificial Intelligence for detecting depression
in such contexts remains unexplored. This
study examines the transferability of speech-
based depression detection methods to people
with MS (pwMS) through cross-corpus and
cross-lingual analysis using English data from
the general population and German data from
pwMS. Our approach implements supervised
machine learning models using: 1) conven-
tional speech and language features commonly
used in the field, 2) emotional dimensions
derived from a Speech Emotion Recognition
(SER) model, and 3) exploratory speech feature
analysis. Despite limited data, our models de-
tect depressive mood in pwMS with moderate
generalisability, achieving a 66% Unweighted
Average Recall (UAR) on a binary task. Feature
selection further improved performance, boost-
ing UAR to 74%. Our findings also highlight
the relevant role emotional changes have as an
indicator of depressive mood in both the gen-
eral population and within PwMS. This study
provides an initial exploration into generalising
speech-based depression detection, even in the
presence of co-occurring conditions, such as
neurodegenerative diseases.

1 Introduction

Depression is the most common psychiatric mood
disorder (World Health Organization, 2023). Its
prevalence is around 5% worldwide (World Health
Organization, 2023). Despite its prevalence, de-
pression often goes untreated (Johnson et al., 2022)
due to factors such as socioeconomic barriers and a
shortage of healthcare professionals (Evans-Lacko
et al., 2018).

Speech-based Artificial Intelligence (AI) meth-
ods offer a promising approach for fast and non-
invasive screening of neurological and mental
health during routine examinations (Milling et al.,

2022; Hecker et al., 2022), leveraging speech
changes like reduced pitch, slower speaking rate,
and articulation errors, which are common in in-
dividuals with depression (Cummins et al., 2015).
These methods are accessible, scalable, and could
enhance help-seeking behaviour and on-going mon-
itoring (Johnson et al., 2022).

Prior work has utilised Machine Learning (ML)
methods to detect depression using acoustic and
linguistic features (Kappen et al., 2023). Mallol-
Ragolta et al. (2019) trained a Recurrent Neu-
ral Network (RNN) on linguistic features for bi-
nary classification on the Distress Analysis Inter-
view Corpus from the Wizard-of-Oz interviews
(DAIC-WoZ) dataset, achieving an F1 score of
63%. Zhang et al. (2024) used wav2vec 2.0 for
feature extraction and a Long Short-Term Memory
(LSTM) network for binary classification using the
DAIC-WoZ dataset, which yielded a 79% F1 score.

Similar work has also been conducted in other
languages, such as for the German language,
Menne et al. (2024) reported a balanced accu-
racy 88% for predicting depressive disorder against
healthy controls using acoustic information, and
for Italian language, in which Tao et al. (2023) re-
ported an F1 score of 85% on the binary task of
identifying depression using speech information
from a reading task.

Automatic Speech Emotion Recognition (SER)
research has also been effective in depression de-
tection (Wang et al., 2020), for instance, Wang
et al. (2021) developed a SER model on the
DAIC-WoZ dataset for binary classification, report-
ing a 60% F1 score.

Depression is a common co-morbidity among
people with neurodegenerative diseases, such as
Multiple Sclerosis (MS), Parkinson’s Disease (PD),
and Alzheimer’s Disease (AD), among others
(Brenes, 2007), worsening both the Quality of
Life (QoL) and disease prognosis (Hussain et al.,
2020). In MS, for example, the lifetime risk of
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depression is estimated around 50% (Arnett et al.,
2008). The overlapping symptomatology of the
two conditions can lead to misdiagnosis, with ei-
ther one of them frequently overlooked (Hussain
et al., 2020). While prior research highlights the
potential of speech-based AI methods for depres-
sion detection (Cummins et al., 2015), further work
is needed to assess their transferability in patients
with neurodegenerative diseases like MS.

However, MS, due to its impact on the central
nervous system, frequently leads to speech impair-
ment, primarily dysarthria (Noffs et al., 2018). As
a result, MS speech typically presents irregular
articulatory breakdowns, distorted vowels, pitch
breaks, harsh voice quality, and slow speaking rate
(Noffs et al., 2018). This raises the question of
whether speech-based depression detection can dis-
tinguish depressive symptoms in people with a co-
existing speech impairment, such as dysarthria, due
to a neurodegenerative disease, such as MS. We
hypothesise that these methods would struggle to
generalise and distinguish depressive symptoms in
people with MS (pwMS), since some of the MS
speech characteristics are similar to those found in
people with depression.

This contribution aims to address this challenge
by assessing the performance of common speech-
based methods for depressive mood detection in
pwMS. To do so, we conduct a cross-corpus and
cross-lingual analysis using a well-known English-
language corpus with depressive mood assess-
ments, along with a German-language dataset of
people with low MS disability, who also under-
went depressive mood assessments. Our research
questions are:

1. Do ML methods for depressive mood detec-
tion generalise to depressive mood detection
in pwMS?

2. Given that SER models have shown promise
in detecting emotional changes (Wang et al.,
2021), which output from a fine-tuned SER
model is more effective for depression detec-
tion: the model’s final results (the classifica-
tion or regression head output from a SER
model) corresponding to the emotional dimen-
sions –arousal, valence, and dominance– or
the model’s contextualised representations?

3. Can exploratory feature selection analysis im-
prove generalisability of depression detection
in pwMS?

This contribution is structured as follows. Sec-
tion 2 introduces the datasets, features, and meth-
ods employed. Sections 3, 4, 5 present the results,
limitations, and discussions. Finally, section 6
draws conclusions from the analysis.

2 Materials and Methods

2.1 Dataset

We employ two datasets: 1) The DAIC-WoZ de-
pression dataset in English presented in (Gratch
et al., 2014), and 2) a Swiss German dataset for
pwMS collected under the scope of the COMMIT-
MENT trial (Gonzalez-Machorro et al., 2023). The
trial protocol was approved by national regulatory
authorities and local ethic committee (BASEC-ID
number 2021-02423) and registered on clinical-
trials.gov (NCT05561621). The DAIC-WoZ is a
collection of semi-structured interviews containing
speech samples of 189 participants (Gratch et al.,
2014). It provides predefined speaker-independent
training, development, and testing sets, and is seg-
mented at the turn level (Valstar et al., 2016). The
dataset includes scores from the Patient Health
Questionnaire-8 (PHQ-8) self-assessed depression
questionnaire.

The COMMITMENT (Prediction of Non-motor
Symptoms in Fully Ambulatory MS Patients Us-
ing Vocal Biomarkers) dataset consists of 50 fully
ambulatory pwMS and 20 control participants. Par-
ticipants with MS have low levels of disability, with
a median Expanded Disability Status Scale (EDSS)
score of 1.0–indicating minimal impairment– and
a min/max EDSS score of 0.0/3.0, which indicates
no disability to moderate disability but still walking
unaided. For this paper, we only use the MS co-
hort. Details on the speech recordings are described
in (Gonzalez-Machorro et al., 2023). Depressive
mood scores for each participant are available using
the Beck Depression Inventory-II (BDI-II) ques-
tionnaire. The dataset contains multiple speech
tasks. However, in this paper, we utilise two spon-
taneous speech tasks from each patient: (1) de-
scribing the weather on the day of recording and
(2) recalling a neutral memory prompted by the
word “grass”. These tasks are chosen because they
elicit spontaneous speech and resemble the inter-
view style of the DAIC-WoZ dataset. Data was col-
lected using the AISoundLab web platform, which
is a web app, in which each patient could navigate
through a voice recording session under the super-
vision of a study nurse (Gonzalez-Machorro et al.,
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2023). All participants provided informed con-
sent prior to participation, and all data was pseudo-
anonymised to protect patient privacy. The ethics
consent unfortunately does not permit the publica-
tion of the recorded data.

In this paper, participants from the two datasets
are categorised as having depression or no de-
pression based on clinically validated threshold
scores from two depression questionaries (BDI-II
and PHQ-8). For the PHQ-8, participants with a
score of 10 or higher are classified as having depres-
sion (Kroenke et al., 2001; Dhingra et al., 2011);
and for the BDI-II participants with a score higher
than 19 were defined as having depression (Beck
et al., 1961). It is important to keep in mind that
these scores serve as indicators of depressive symp-
toms rather than definitive clinical diagnoses of
depression.

Audio files are downsampled to 16 kHz. Diari-
sation for the DAIC-WoZ data is performed using
the turn-level segments provided for each speaker.
A Voice Activity Recognition (VAD) algorithm1 is
applied to segment audio files from both datasets,
which due to license restrictions, is not open-source.
For consistency with previous work, we employ
the same VAD parameter values as in (Gonzalez-
Machorro et al., 2023). Transcripts are automati-
cally obtained for each VAD segment using Whis-
per version 2 (Radford et al., 2023) with the base
model for English and German language. For the
DAIC-WoZ dataset, we merge the original training
and development sets while the original testing set
is left intact. The motivation is that due to the small
dataset, we opt to use a Cross-Validation (CV) strat-
egy for a more robust evaluation. The COMMIT-
MENT dataset, as its purpose is purely for evaluat-
ing cross-corpus and cross-lingual generalisation,
is not partitioned and it is used as an additional
testing set.

Table 1 describes the metadata for both datasets
across the different dataset partitions. Missing val-
ues for the questionnaires are dropped before pro-
cessing. Models trained solely on the COMMIT-
MENT dataset would likely over-fit due to insuf-
ficient participants with depressive symptoms to
learn acoustic and linguistic markers of depression.
Given the imbalance of the two classes, random
oversampling with replacement for the two classes
and a random seed of 42 is applied. To do so, we
employ the package imbalanced-learn (Lemaître

1provided by audEERING GmbH

Table 1: Metadata for the two datasets employed in this
study and the train-test split.

Subset Dataset Total
Partici-
pants

Sex
(F/M)

Depression /
No Depres-
sion

Train DAIC-WoZ 135 59 / 76 42 / 93

Test DAIC-WoZ 44 22 / 22 13 / 31
COMMITMENT 50 37 / 13 4 / 46

et al., 2017).

2.2 Feature extraction

We extract six commonly used acoustic and lin-
guistic feature sets, and normalise them per dataset
using the Robust Scaler, which is robust against out-
liers. All features are extracted at a VAD segment-
level.

1. The Wav2Vec2 contextualised representations
of length 1024 correspond to the mean pooling
of the encoder output. These representations
are extracted using a publicly available fine-
tuned Wav2Vec2 model for 3-dimensional
SER task (Wagner et al., 2023).

2. SER-dimensions –arousal, valence, and
dominance– are obtained using the same
Wav2Vec2 SER model (Wagner et al., 2023).
These features represent the final outputs of
the model returned by the 2-layer multitask
regression head (Wagner et al., 2023). By
extracting both types of information –the con-
textualised representations and the emotion
dimensions– from the Wav2Vec2 SER model,
we aim to investigate which one is more effec-
tive for depression detection.

3. Praat features (Feinberg, 2022) are extracted
using Nkululeko (Burkhardt et al., 2022) and
correspond to 39 features, such as voice qual-
ity, shimmer, jitter, and duration. This type of
features has shown significance for depression
detection (Cummins et al., 2015).

4. extended Geneva minimalistic acoustic param-
eter set (eGeMAPS) (Eyben et al., 2016) is ex-
tracted using the Speech & Music Interpreta-
tion by Large-space Extraction (openSMILE)
feature extraction tool (Eyben et al., 2010).
It contains 22 acoustic features related to
prosody, voice quality, and articulation. Pre-
vious work has reported promising results in
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depression detection (Cummins et al., 2015).
We employ the 88 functionals and summary
statistics from these features.

5. The psycholinguistic feature set consists
of 51 linguistic features that represent the syn-
tactic complexity, the proportion of sentiment
tokens, and the proportion of nouns, verbs,
negations, adjectives, among others.

6. RoBERTa embeddings are extracted using a
multilingual model –XLM Large RoBERTa
(Conneau et al., 2020) –. These embeddings
correspond to the [CLS] pooling output ap-
plied to the last hidden states of the model.
Each segment is defined with a maximum
length of 512 tokens and represented by a size
of 768.

2.3 Methods
We define the following three modelling scenarios
to investigate whether ML methods for depressive
mood detection generalise in the presence of MS:

A) Baseline Performance: Each feature set and
model type is trained and evaluated on the
DAIC-WoZ training and testing sets. This
task establishes a baseline for model perfor-
mance in depression detection.

B) Generalisability Evaluation: Each feature
set and model type is evaluated on the
DAIC-WoZ testing set –to ensure consistent
performance on the general population– and
the COMMITMENT dataset. The aim is
to assess how well models trained on data
from the general population (DAIC-WoZ)
generalise to the pwMS data.

C) Feature Selection Modelling: Following
an exploratory feature analysis on the
DAIC-WoZ training set, the resulting sig-
nificant features are used for training and
evaluation. This task aims to improve model
performance by selecting relevant features
for depression detection. Two scenarios are
investigated:

C_A) Models are trained and evaluated on
the DAIC-WoZ training and testing sets
using selected features. In other words,
it is Task A with selected features. This
task assesses whether feature selection
improves performance within the general
population.

C_B) Models are trained on the DAIC-WoZ
training set using selected features and
evaluated on both the DAIC-WoZ test-
ing set and the COMMITMENT dataset.
This scenario, equivalent to Task B with
selected features, explores whether fea-
ture selection improves generalisability
to pwMS data.

Exploratory feature analysis. To investigate
which features are significant to distinguish be-
tween speakers with and without depression in
the training set, we use the Mann-Whitney U test
(p < 0.05) because it is non-parametric and does
not require the assumption of a normal distribution.
This makes it suitable for our data, where not all
features follow a normal distribution. Additionally,
it is more conservative than other statistical tests,
reducing the risk of Type I errors. To quantify the
effect size, we use Cohen-R (Cohen, 1988). Rel-
evant features are found by selecting among the
significant ones those with an r ≥ .30. Corrections
for Type 1 errors are not performed due to the large
size of the feature sets, so that the aim of this anal-
ysis is restricted to explore acoustic and linguistic
feature trends.

Modelling. We implement supervised ML clas-
sification for implementing the three modelling
tasks. For reproducibility, we seed the pseudo-
random number generation. The models used
are Support Vector Machine (SVM), Random For-
est (RF), and eXtreme Gradient Boosting (XGB).
These supervised learning algorithms were selected
due to their consistently strong performance across
a wide range of classification tasks (Fernández-
Delgado et al., 2014). Each model is trained using
Grid search 5-fold speaker-independent CV on the
training set.

The hyper-parameter values optimised for the
Grid Search for each model are as follows: for
SVM, C ∈ [10−4, 10−3, 10−2, 10−1, 1, 10], the
kernel options include linear and rbf, and
the gamma parameter is chosen from scale
and auto. For XGB, the number of estima-
tors ∈ [200, 300, 450, 500], the learning rate ∈
[0.001, 0.01, 0.1, 0.2], the maximum tree depth ∈
[4, 5, 6], the column subsample ratio ∈ [1, 0.3, 0.5],
and the subsample ratio ∈ [0.8, 1]. Lastly,
for the RF model, the number of estimators ∈
[50, 100, 300, 500, 800, 1000], the criterion is ei-
ther gini or entropy, the minimum number of
samples required to split an internal node is∈ [2, 3],
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and bootstrap sampling is either True or False.
The optimal hyper-parameters identified through

this process are then used to train the model on
the entire training set. Class weights are calcu-
lated from the training set and are incorporated to
address the class imbalance in the data.

Evaluation. We calculate speaker-level Un-
weighted Average Recall (UAR), F1-score, preci-
sion, and recall. Receiver Operating Characteristic
(ROC) curves and the Area Under the Curve (AUC)
scores were also calculated at a speaker-level. Due
to space limitations, only the ROC curves for the
best-performing tasks are presented. We also com-
pute the 95% Confidence Interval (CI) for the UAR.
The CIs were calculated using 1000 bootstrapping
iterations 2.

3 Results

3.1 Exploratory feature analysis
The Mann-Whitney U test is applied to each fea-
ture in the training set of the DAIC-WoZ dataset.
Due to interpretability limitations, the Wav2Vec2
and the RoBERTa representations are excluded
from the analysis. The number of significant
(p < 0.05) features with a sufficiently high ef-
fect size (r ≥ 0.30) identified per feature set
are: 1) SER-dimensions: 1 feature–valence–
; 2) Praat features: 33 out of 39 features; 3)
eGeMAPS: 64 out of 88 functionals; 4) Psycholin-
guistic feature set: 18 out of 51 features. These
selected features are used in the modelling task
C_A and C_B to assess whether feature selection
improves modelling performance. Figure 1 shows
the valence distributions for the binary depression
class (“no_depression” and “depression”), which
is the only significant features found for the SER-
dimensions.

3.2 Modelling Results
Table 2 shows UAR and its CIs, F1-score, precision,
and recall for depression (Dep.) and no depression
(No Dep.) classes, across the best-performing mod-
els and all feature sets. As we are tackling a bi-
nary classification problem, the chance-level UAR
is 50%. The best result for Task A (Baseline Per-
formance) with acoustic features is achieved using
SVM and SER-dimensions (UAR: 73%), while the
best result with linguistic features is achieved using
SVM and RoBERTa embeddings (UAR: 56%). For

2https://github.com/luferrer/
ConfidenceIntervals
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Figure 1: Feature distributions for the binary depression
class depression class and valence dimension from SER
in the DAIC-WoZ training set. This feature presents a r
of 0.66 and p < 0.001.

Task B (Generalisability Evaluation), Wav2Vec2
embeddings and Psycholinguistic features achieved
the best performances (UAR: 66% and 62%, re-
spectively). SER-dimensions in Task B show
a performance drop. For Tasks C_A and C_B
(Feature Selection Modelling on Tasks A and B),
XGB with SER-dimensions obtained the highest
UARs of 79% and 74%, respectively. Since SER-
dimensions shows consistently good performance
in all tasks, Figure 2 shows the ROC curves and
AUC values for all tasks.

4 Discussion

In this paper, we explore three research questions:
1) Do ML methods for depressive mood detection
generalise to depressive mood detection in pwMS?
Results in Table 2 indicate that for Task B (General-
isability Evaluation), acoustic-based features show
reasonable generalisability to distinguish depres-
sion in pwMS, with only a modest performance
decline compared to results from Task A (Baseline
Performance).

In the case of the Wav2Vec2 features, a drop in
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Table 2: Speaker-level test results. A: Baseline Performance. B: Generalisability Evaluation. C_A: Feature Selection
on Task A. C_B: Feature Selection on Task B. The best-performing combinations for acoustic-based models are
marked in bold and *; and linguistic models as bold†. Dep. corresponds to the depression class and No Dep.
correspond to no depression

.
Task Feature Model UAR[%] F1[%] Precision[%] Recall[%]

Dep. No Dep. Dep. No Dep.

A

Wav2Vec2 XGB 66(49-81) 65 81 47 71 62
SER-dimensions SVM 73(57-84)* 67* 48 90 85 61
Praat XGB 49(42-62) 45 70 25 90 8
eGeMAPS XGB 54(46-69) 53 72 50 94 15

Psycholinguistic SVM 46(32-63) 46 68 25 61 31
RoBERTa SVM 56(48-71)† 54† 67 73 15 97

B

Wav2Vec2 SVM 66(54-80)* 67* 50 88 41 91
SER-dimensions SVM 64(50-76) 57 28 89 65 64
Praat SVM 47(33-60) 39 16 79 53 40
eGeMAPS XGB 56(49-69) 57 43 84 18 95

Psycholinguistic SVM 62(48-74)† 54† 26 88 65 60
RoBERTa SVM 55(49-67) 54 50 83 12 97

C_A

SER-dimensions XGB 79(70-87)* 70* 50 100 100 58
Praat SVM 51(36-68) 51 31 71 31 71
eGeMAPS XGB 58(48-74) 58 60 74 23 94

Psycholinguistic SVM 48(33-66) 48 69 28 58 38

C_B

SER-dimensions XGB 74(60-84)* 65* 37 93 76 71
Praat SVM 46(32-59) 38 16 79 53 39
eGeMAPS XGB 57(46-70) 56 29 84 29 84

Psycholinguistic SVM 54(42-68) 51 22 84 41 68
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Figure 2: ROC curve and AUC value at a speaker-
level for the best-performing models using the SER-
dimenions as feature set across all tasks. Task A: Base-
line Performance. B: Generalisability Evaluation. C_A:
Feature Selection on Task A. C_B: Feature Selection on
Task B.

performance for the two tasks is not found, which
suggests that these features are transferable to other
languages and groups with other co-morbidities
such as MS. Interestingly, in the case of the
eGeMAPS features, a minimal increase in perfor-
mance is observed in Task B, which also suggests
a generalisability capacity.

For Tasks C_A and C_B (Feature Selection
Modelling), similar patterns are observed as in
Tasks A and B, with SER-dimensions consistently
outperforming other feature sets and demonstrat-
ing strong transferability in detecting depression
among pwMS. This is further illustrated in Fig-
ure 2, which highlights the effectiveness of SER-
dimensions in the context of MS.

The top-performing results for Tasks A (using
SER-dimensions) and B (using Wav2Vec2 features)
demonstrate greater precision in predicting the ab-
sence of depression (90% for “No Dep.” in Task
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A; 88% for “No Dep.” in Task B) compared to
predicting depression. This finding indicates that
identifying depression using speech presents sim-
ilar challenges in both same-language and cross-
lingual contexts, as well as in the general popula-
tion and among groups with co-morbidities, such
as MS.

Interestingly, RF models did not outperform
XGB or SVM in any task or feature set; conse-
quently, they are excluded from Table 2. This
was already reported by (Fernández-Delgado et al.,
2014), where XGB has been shown to outperform
RF in many cases.

2) Given that SER models have shown promise
in detecting emotional changes, which output from
a fine-tuned SER model is more effective for de-
pression detection: the model’s final predictions
corresponding to the emotional dimensions or the
model’s contextualised representations? As shown
in Table 2, the SER-dimensions and Wav2Vec2
representations achieve the highest UAR for Task
A and Task B, respectively. SER-dimensions also
outperform all other feature sets in Task C reach-
ing the highest performance. Likely due to the
high dimensionality of the Wav2Vec2 embeddings,
SER-dimensions show overall better results by a
small margin. However, the performance of SER-
dimensions and Wav2Vec2 features heavily relies
on the performance of the underlying SER model
(Wagner et al., 2023), which was finetuned using
the MSP-Podcast dataset (English language) (Lot-
fian and Busso, 2019). It is, therefore, unclear
the cross-lingual generalisability of these features
when training data would include languages other
than English.

3) Can feature selection improve generalisabil-
ity of depression detection in pwMS? Results
for acoustic-feature-based models, with the excep-
tion of the Praat features, suggest that indeed, fea-
ture selection can improve the performance of de-
pression detection. The feature analysis for SER-
dimensions reveals that only valence among the
three dimensions is significantly predictive, high-
lighting its important role as an indicator of de-
pression in both the general population and pwMS.
This finding is illustrated in Figure 2, which shows
that individuals without depressive symptoms tend
to use higher positive valence in spontaneous in-
terviews compared to those with depressive symp-
toms. This aligns with prior research, such as (Trifu
et al., 2024), which found that individuals with de-

pression display lower positive valence than those
without. This pattern may be attributed to a core
symptom of depression: emotional dysfunction
characterised by a predominant negative emotional
state (Yang et al., 2023).

5 Limitations

In the case of text-based models, RoBERTa embed-
dings achieve above-chance performance in both
Task A and Task B while psycholinguistic-feature-
based models exhibit an unexpected trend: their
performance on Task B surpassed that of Task A,
C_A, and C_B. The suboptimal performances of
text-based models may be due to the use of VAD
segments for feature extraction, which ensured a
consistent preprocessing pipeline across acoustic
and text features, enabling direct comparisons be-
tween model types in detecting depression. While
VAD segments effectively captured acoustic cues,
contributing to strong performances, their short du-
ration may have been less optimal for text-based
features, such as word class proportions, which ben-
efit from longer discourse contexts. The language-
specific nature of these features also might have
contributed to their struggle to generalise to the
German-speaking MS population. Future work
should explore longer segments to optimise text-
based models, building on this study’s foundation.

A limitation of this contribution arises from the
use of different languages, recording conditions,
and depression assessments. Although we try to
tackle this by feature normalisation and the restric-
tion to spontaneous speech, further research should
explore the impact of language, depression assess-
ments, and recording variations on the generalis-
ability of speech-based depression detection. In
this paper, we cannot definitively differentiate the
extent to which the drop in model performance
when evaluated on the MS population is influenced
by language differences, recording conditions or
the presence of MS itself.

Moreover, since both MS and depression are
heterogenous conditions (Gaitán and Correale,
2019), implementing personalised approaches
when screening for depression in pwMS is a crucial
next step. Future work should also explore different
stages of MS –this study focused on low-disability
patients– and account for other co-morbidities in
MS, like fatigue and cognitive decline, which may
also influence speech. Also, the MS cohort was re-
ceiving pharmacological treatment, including com-
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mon antidepressants for those MS patients diag-
nosed with depression, that could influence mood
and, consequently, speech patterns. Although the
general population diagnosed with depression from
the DAIC-WoZ dataset may also have been under-
going pharmacological treatments, this information
is not available in the dataset, preventing analysis
of this potential confounding factor.

To further evaluate the transferability of speech-
based depression detection, it is important to ex-
amine other common diseases where depression is
a common co-morbidity and speech is impacted,
such as PD or AD. A lack of depression scores
in speech datasets for these disorders is a major
limitation in this regard. Finally, acoustic and lin-
guistic features alone cannot fully capture the mul-
tifaceted nature of depression. These ML methods
are intended to augment established screening ap-
proaches. Incorporating other bio-signals, such
as physiological data, could not only enhance per-
formance but also provide a more comprehensive
understanding of the disorder.

6 Conclusion

In this cross-corpus and cross-lingual study, we ex-
plore the efficacy of speech-based depressive mood
detection in the presence of MS and across English
and German languages. Our findings highlight the
significance of emotional dimensions –arousal, va-
lence, and dominance– in identifying depressive
symptoms, not only in the general population but
also within pwMS. Additionally, acoustic feature
sets like eGeMAPS also demonstrate potential for
generalisability in this context. However, further
research is needed to establish robust conclusions.
This study, despite its limitations, represents a step
forward towards the integration and generalisabil-
ity of speech-based depression detection methods.
Non-invasive speech-based AI systems for depres-
sion detection hold the potential to improve the
QoL for individuals with this disorder, even in the
presence of other illnesses.
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Abstract

The rapid emergence of Generative AI (GenAI)
is transforming labor market expectations and
prompting a re-evaluation of skill priorities in
higher education. This study investigates how
academic skill demands have evolved over the
past decade by analyzing job postings from a
major Danish university (2013–2023) using nat-
ural language processing (NLP) and statistical
modeling. Leveraging the ESCO taxonomy,
we extract and classify skills into digital, re-
search, and transversal categories. Our findings
reveal a recent shift in hiring strategy towards
fewer but more skill-intensive roles, a declin-
ing emphasis on digital skills, and a rise in
research-oriented skills. Additionally, we ob-
serve significant disciplinary variation, with
Engineering emphasizing digital skills, while
Social Sciences prioritizing research compe-
tences. In the Humanities, emerging skills in-
creasingly reflect demands in societal engage-
ment and digital literacy. These results offer
data-driven insights into the alignment of cur-
ricula with evolving labor market demands in
the GenAI era.

1 Introduction

The rapid rise of Generative Artificial Intelligence
(GenAI), exemplified by the launch of ChatGPT
in late 2022, has profoundly impacted educational
landscapes and the global labor market (Adiguzel
et al., 2023; Johnson et al., 2021). As AI tools
increasingly assist – or even automate – complex
intellectual tasks, educators around the world are
grappling with fundamental questions: What skills
should we teach to help students thrive in an AI-
driven world? Much of the current educational
research has focused on supply-side adaption. A
growing body of research has underscored the im-
portance of cultivating AI literacy across disci-
plines (Ng et al., 2021), highlighting skills such as
prompt engineering (Walter, 2024), computational
thinking (Weng et al., 2024; Dohn et al., 2022),

critical thinking(Muthmainnah et al., 2022). While
these contributions are vital, one crucial question
remains underexplored. What does the labor mar-
ket expect from future graduates in the age of AI?
This study addresses the question from the perspec-
tive of employer demand. We examined academic
job postings from a major Danish university be-
tween 2013 and 2023 using natural language pro-
cessing (NLP) and statistical modeling. By tracing
how skill requirements have evolved over time and
across disciplines, our aim is to provide evidence-
based guidance on the skills that academic institu-
tions may need to prioritize to prepare students for
the GenAI era.

2 Literature Review

Globalization and digitization are reshaping labor
markets, with AI emerging as a key driver for work-
force transformation (Johnson et al., 2021). Ac-
cording to European Center for the Development
of Vocational Training (Cedefop, 2023), nearly half
of European adult workers encountered new digital
technologies in their workplaces during 2020-2021,
with 35% needing to upskill. The World Economic
Forum (2025) similarly projects that 39% of core
skills will change by 2030, driven by advances in
automation, AI integration, and digital transforma-
tion.

In this evolving landscape, demand is rising for
both technical skills – such as AI and big data, and
digital literacy – and transversal skills including
resilience, flexibility, and leadership. Research in
labor economics reinforces this dual emphasis in
the AI-driven labor market. On the technical side,
skills in machine learning, natural language pro-
cessing, computer vision, big data analytics, and
programming are widely recognized as essential for
AI development and application (Alekseeva et al.,
2021; Johnson et al., 2021). Equally important,
employers are also increasingly valuing transversal
skills such as adaptability, resilience, and creativity
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(Babashahi et al., 2024; Asylbekova et al., 2023).
These human-centric skills are considered more re-
sistant to automation and are critical for navigating
dynamic, AI-infused work environments (Poláková
et al., 2023; Belchior-Rocha et al., 2022).

Despite these findings, a recurring concern in
the literature is the growing mismatch between
skill supply and demand (Basson et al., 2023;
Singh Dubey et al., 2022; Pater et al., 2022). Em-
ployers across sectors face significant challenges in
recruiting employees with the right combination of
technical and transversal skills to harness the full
potential of AI (Sidhu et al., 2024). In addition,
most existing studies focus primarily on the private
sector of information and communication technol-
ogy (ICT) and rely heavily on data from the US
labor market (Babashahi et al., 2024; Johnson et al.,
2021), limiting their relevance to other sectors and
national contexts.

This study addresses these gaps by shifting focus
to the public sector - specifically academic employ-
ment in Denmark, a highly digitalized country with
robust labor market data. Academic job markets
are of particular interest because they encompass
a wide range of disciplines, from engineering and
health sciences to the humanities and social sci-
ences. Moreover, they serve a dual function: both
responding to labor market demands and influenc-
ing future skill supply through hiring decisions,
curriculum development, and research priorities.

3 Research Aim and Questions

This study aims to examine how skill demands in
academic employment have evolved over the past
decade in response to technological change. We
analyze academic job advertisements from a major
Danish university between 2013 to 2023. Using the
European Skills, Competences, Qualifications and
Occupations (ESCO) taxonomy, we extract specific
skills mentioned in each job ad and classify them
into three broad skill types:

• Digital skills – Technical and computational
competences, such as programming, data anal-
ysis, and proficiency with digital tools;

• Research skills – Analytical, investigative,
and discipline-specific competencies central
to academic inquiry;

• Transversal skills – Interpersonal and cogni-
tive skills such as communication, teamwork,
adaptability, and problem-solving.

By tracking changes in both individual skills
and skill types over time and across academic dis-
ciplines, the study offers empirical insights into
how skill demands in academia have evolved. It
also offers data-driven guidance to align curricula
with emerging labor market needs. The study was
guided by the following research questions:

1. How have the volume of academic job ads and
the average number of skill requirements per
ad changed over time? What is the relation-
ship between these two trends?

2. How have demands for digital, research, and
transversal skills evolved over the past decade
in academic hiring?

3. Are there significant differences in mean skill
demands across faculties and over time, both
within and across the three skill types?

4. Which specific skills are growing and declin-
ing in demand over time, both across all fac-
ulties and within the humanities in particular?

4 Methodology

4.1 NLP: Skill Extraction and Classification

We developed an end-to-end pipeline to extract
and classify skills from unstructured job advertise-
ments based on ESCO taxonomy. The pipeline
involved six stages: (1) data collection and pre-
processing, (2) taxonomy alignment and encoder
selection, (3) retrieval-augmented supervision with
a large language model (LLM), (4) multi-objective
fine-tuning of a sentence encoder, (5) normalized
skill distribution at the job-ad level, and (6) evalua-
tion. An overview is shown in Figure 1.

The pipeline began with web scraping of over
3 million Danish job ads from Jobindex, Den-
mark’s largest job portal. We processed the data to
isolate skill-relevant content through HTML pars-
ing, regular expressions, and sentence segmenta-
tion. For each sentence, we generated semantic
embeddings using the multilingual sentence en-
coder paraphrase-multilingual-mpnet-base-v2. We
then retrieved the 25 most similar ESCO skills
based on cosine similarity. These candidate skills
were embedded into structured prompts used to
query GPT-4o mini, which determined whether the
sentence expresses a skill requirement and, if so,
which ESCO skills are relevant. This retrieval-
augmented prompting procedure resulted in more
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than 536,767 labeled sentences, covering 76.7%
of ESCO’s 13,896 skills. Our approach represents
a novel contribution to the NLP community by
combining dense sentence embeddings, retrieval-
based skill alignment, and LLM-based labeling in a
semi-supervised pipeline for domain-specific skill
extraction.

To improve sentence representations for skill
recognition, we fine-tuned the sentence encoder
using a multi-objective loss function: (1) a binary
classification task to predict whether a sentence
contains a skill, and (2) a ranking loss to align sen-
tence embeddings with relevant ESCO skill embed-
dings. Fine-tuning incorporated stratified sampling,
layer-wise learning rate decay, and early stopping
based on ranking performance metrics.

Finally, each job ad was represented with a nor-
malized probability distribution over ESCO skills.
This probabilistic representation captured the rel-
ative importance of multiple skills within each ad
while accounting for differences in length and ver-
bosity. Full technical details of the pipeline’s de-
velopment and implementation are available in the
associated methodological paper (Authors, 2025) .

4.2 Data application: Academic Job Postings
in Denmark

We applied the pipeline to academic job advertise-
ments from a major Danish university from 2013
to 2023. For each job ad, the pipeline extracted a
list of relevant ESCO skills, each assigned a proba-
bility score that reflects its importance within the
job ad.

To contextualize skill demand, we further en-
riched the dataset by identifying both faculty affili-
ation and position type. Faculty information was
extracted by scanning the job descriptions for pre-
defined keywords (e.g., “faculty of humanities”,
“humanistiske fakultet”). Through a keyword-
matching function, each job was assigned to one of
the five faculties or labeled as unknown if no match
was detected. A similar rule-based approach was
used to determine position types (e.g., “assistant
professor”, “postdoc”, “PhD”) based on keyword
detection.

Based on ESCO’s taxonomy, we then assigned
each extracted skill to one of three predefined skill
types: digital, research, or transversal. Skills
falling outside these categories were labeled as
other. This structured classification enabled us
to conduct statistical analyses of skill demand evo-

lution over time, and across faculty and academic
position.

4.3 Statistical Analysis

To address RQ3, we used a linear mixed-effects
model (LMM) to assess how average skill demands
per ad have changed over time across faculties and
skill types. LMMs are well-suited for hierarchical
data, as they accommodate both fixed and random
effects and allow for repeated observations within
groups (Gelman and Hill, 2021). The dependent
variable was the mean number of skills per job ad.
Fixed effects included year, faculty, and skill type,
along with their two-way interactions (i.e., year
× faculty, year × skill type, faculty × skill type).
Random intercepts were specified for each faculty
× skill type combination. Model estimation used
restricted maximum likelihood (REML) and Sat-
terthwaite’s approximation for degrees of freedom.

To address RQ4 on identifying growing and de-
clining skills, we analyzed longitudinal trends in
the relative frequency of skill mentions. For each
year from 2013 to 2023, we calculated the propor-
tion of job ads mentioning each skill. We then used
ordinary least squares (OLS) linear regression to
estimate the slope of change over time. A posi-
tive slope indicates increasing demand (growing
skill), while a negative slope signals decreasing
demand (declining skill). This trend analysis ap-
proach aligns with established practices in time-
series modeling (Montgomery et al., 2021).

5 Results

5.1 RQ1: Job volume and skill intensity over
time

Figure 2 illustrates notable fluctuations in job vol-
ume and average number of skills per job ad
from 2013 to 2023. Between 2016 to 2020, num-
ber of job postings increased steadily, peaking in
2019. Meanwhile, the average skill demand per ad
dropped sharply in 2016 and gradually rose again
through 2019. This pattern suggests that, during
periods of strong hiring demand, employers may
have relaxed skill requirements to attract a broader
application pool.

In 2021, job postings declined sharply, largely
due to the COVID-19 pandemic. However, the av-
erage number of skills per ad remained stable and
even slightly increased, indicating a shift toward
fewer but more skill-intensive job positions. From
2022, job volume began to slowly recover, while av-
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erage skill requirements per ad rose sharply, reach-
ing their peak in 2023. This divergent pattern im-
plies a transition toward more selective and skill-
intensive hiring practices.

5.2 RQ2: Evolution of skill type
Figure 3 presents trends in the average number of
skills per ad, categorized by ESCO’s three skill
types: digital, research, and transversal. Between
2013 to 2019, digital skills were the most fre-
quently mentioned skill type in job ads, peaking in
2019. However, their prominence declined sharply
thereafter. Meanwhile, research skills remained
relatively stable until 2020, then increased steadily
and surpassed digital skills by 2022. Transversal
skills remained consistently low throughout the pe-
riod, with only a modest increase after 2021. These
trends suggest a shift in hiring priorities from digi-
tal proficiency toward research-oriented expertise.

5.3 RQ3: Differences by faculty and skill type
over time

LLM results revealed significant variation in skill
demands by faculty and skill type, with important
interaction effects over time. While the main effect
of year was not statistically significant (p=0.53),
interactions between year and faculty (p=0.49), and
between year and skill type (p=0.22) were also not
statistically significant, suggesting limited evidence
that temporal trends differ across disciplines or skill
types.

Across the full-time span (2013–2023), digi-
tal skills were the most emphasized (M = 3.02),
followed by research skills (M = 2.28), and then
transversal skills (M = 0.25). All pairwise differ-
ences between skill types were statistically signifi-
cant (p < .001, Bonferroni-adjusted). The faculty ×
skill type interaction was also highly significant (p
< .001), showing distinct disciplinary profiles: En-
gineering emphasized digital skills most strongly,
while Social Sciences prioritized research skills.
The Humanities and Natural Sciences exhibited rel-
atively balanced, but lower overall skill intensities.
Detailed trends are shown in Figure 4.

5.4 RQ4: Growing and declining skills
To identify long-term trends in specific skill de-
mands, we ranked all extracted skills by the slope
of their linear trend from 2013 to 2023. The top
10 skills with the most positive and most negative
slopes were classified as growing and declining
skills, respectively. This analysis was conducted

for both the full dataset and a subset focused on
humanities faculty (Figure 5 and Figure 6).

In the humanities, emerging skills included “ap-
ply knowledge of social sciences and humanities,”
“web analytics,” and “media studies”—all of which
reflect a growing demand for interdisciplinary, data-
informed, and applied research competencies. Con-
versely, declining skills included more traditional
academic and administrative tasks, such as “assist
students with their enrolment” and “contribute to
specialised publications”. These patterns suggest
a reconfiguration of academic roles toward greater
societal engagement and digital literacy.

6 Discussion

This study examined how skill requirements in
academic job postings have evolved over the past
decade in response to technological change. The
findings offer several key insights relevant to cur-
riculum development and institutional strategy.

The analysis of job volume and skill intensity
reveals a shift in hiring strategy. While the num-
ber of academic positions has declined since the
pandemic, the average number of skills required
per job has increased, particularly after 2022. This
suggests a move toward more selective recruitment,
with greater emphasis on multi-skilled candidates.

Trends in skill types indicate a significant change
in hiring priorities. Digital skills, once dominated,
have declined in emphasis since 2020, while re-
search skills becoming more prominent. This shift
may reflect an institutional assumption that basic
digital literacy is now a baseline expectation, with
greater value placed on disciplinary depth and re-
search capability.

Faculty-level analysis highlights the need for
discipline-specific strategies. Engineering contin-
ues to prioritize digital skills, while Social Sciences
emphasize research competencies. The Humani-
ties and Natural Sciences show lower overall skill
intensities, with more balanced distributions. At
the same time, the identification of growing and
declining skills provides concrete evidence of how
academic expectations are shifting.

While this study draws on job postings from only
one major Danish university, such postings serve
as a clear demand-side signal that can guide cur-
riculum review. They make explicit the competen-
cies institutions prioritize in recruitment—whether
discipline-specific research expertise, technical
skills, or transversal abilities. These signals can
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support curriculum decision-making in several
ways: (1) highlighting skills that are in demand
but underrepresented in existing courses; (2) iden-
tifying emerging competencies that could be incor-
porated into electives or interdisciplinary modules;
and (3) providing evidence to inform program eval-
uation, accreditation, and strategic planning.

These findings also underscore the importance of
systematically tracking emerging skills—especially
in the current AI-driven era, where technological
capabilities and work practices evolve at unprece-
dented speed. University curricula, constrained
by structural factors such as accreditation cycles,
lengthy program approval processes, and institu-
tional governance, often lag behind the pace at
which AI-related competencies emerge. Longi-
tudinal analysis of skill trends, such as that pre-
sented here, can serve as a strategic foresight tool:
rather than prompting reactive changes to every
short-term fluctuation, it can help identify persis-
tent, multi-year patterns that signal more durable
shifts in competence demand. By distinguishing
between fleeting spikes and sustained trends, in-
stitutions can prioritize curriculum updates that
are both timely and resilient, equipping students
with adaptive, interdisciplinary, and AI-literate skill
sets—preparing them not only to navigate but to ac-
tively contribute to the rapidly evolving landscape
of the GenAI era.

Taken together, these results contribute to the on-
going debate around what skills higher education
should prioritize in the GenAI era. By offering a
demand-side, data-driven view of how academic
skill requirements have evolved, this study provides
actionable insights for aligning university curricula
with labor market expectations and making educa-
tional systems more adaptive, interdisciplinary, and
future-oriented.

References
Tufan Adiguzel, Mehmet Haldun Kaya, and Fatih Kür-

sat Cansu. 2023. Revolutionizing education with
ai: Exploring the transformative potential of chatgpt.
Contemporary Educational Technology, 15(3).

Liudmila Alekseeva, José Azar, Mireia Giné, Sampsa
Samila, and Bledi Taska. 2021. The demand for
ai skills in the labor market. Labour economics,
71:102002.

MP Asylbekova, TN Otarova, and DC Yelkin. 2023.
The importance of transversal skills in higher educa-
tion curricula and in the labor market. Bulletin of LN

Gumilyov Eurasian National University. Pedagogy.
Psychology. Sociology series., 142(1):178–193.

Leili Babashahi, Carlos Eduardo Barbosa, Yuri Lima,
Alan Lyra, Herbert Salazar, Matheus Argôlo, Marcos
Antonio de Almeida, and Jano Moreira de Souza.
2024. Ai in the workplace: A systematic review of
skill transformation in the industry. Administrative
Sciences, 14(6):127.

Margaret Basson, Tanya Du Plessis, and Roelien Brink.
2023. Visual representation of the mismatch between
industry skills demand and higher education skills
supply. International Journal of Work-Integrated
Learning, 24(1):117.

Helena Belchior-Rocha, Inês Casquilho-Martins, and
Eduardo Simões. 2022. Transversal competencies for
employability: from higher education to the labour
market. Education Sciences, 12(4):255.

Cedefop. 2023. Setting europe on course for a human
digital transition. Accessed June 4, 2025.

Nina Bonderup Dohn, Yasmin Kafai, Anders Mørch,
and Marco Ragni. 2022. Survey: Artificial intel-
ligence, computational thinking and learning. KI-
Künstliche Intelligenz, 36(1):5–16.

A Gelman and J Hill. 2021. Data analysis using regres-
sion and multilevel/hierarchical models. 23rd print-
ing. Analytical Methods for Social Research.

Marina Johnson, Rashmi Jain, Peggy Brennan-Tonetta,
Ethne Swartz, Deborah Silver, Jessica Paolini,
Stanislav Mamonov, and Chelsey Hill. 2021. Im-
pact of big data and artificial intelligence on industry:
developing a workforce roadmap for a data driven
economy. Global Journal of Flexible Systems Man-
agement, 22(3):197–217.

Douglas C Montgomery, Elizabeth A Peck, and G Geof-
frey Vining. 2021. Introduction to linear regression
analysis. John Wiley & Sons.

Muthmainnah, Prodhan Mahbub Ibna Seraj, and
Ibrahim Oteir. 2022. Playing with ai to investigate
human-computer interaction technology and improv-
ing critical thinking skills to pursue 21st century age.
Education Research International, 2022(1):6468995.

Davy Tsz Kit Ng, Jac Ka Lok Leung, Samuel Kai Wah
Chu, and Maggie Shen Qiao. 2021. Conceptualizing
ai literacy: An exploratory review. Computers and
Education: Artificial Intelligence, 2:100041.

Robert Pater, Herman Cherniaiev, and Marcin Kozak.
2022. A dream job? skill demand and skill mismatch
in ict. Journal of Education and Work, 35(6-7):641–
665.

Michaela Poláková, Juliet Horváthová Suleimanová, Pe-
ter Madzík, Lukáš Copuš, Ivana Molnárová, and Jana
Polednová. 2023. Soft skills and their importance in
the labour market under the conditions of industry
5.0. Heliyon, 9(8).

297



Gursahildeep Singh Sidhu, Md Abu Sayem, Nazifa
Taslima, Ahmed Selim Anwar, Fariba Chowdhury,
and Manataka Rowshon. 2024. Ai and workforce
development: A comparative analysis of skill gaps
and training needs in emerging economies. Interna-
tional journal of business and management sciences,
4(08):12–28.

Richa Singh Dubey, Justin Paul, and Vijayshri Tewari.
2022. The soft skills gap: a bottleneck in the tal-
ent supply in emerging economies. The Interna-
tional Journal of Human Resource Management,
33(13):2630–2661.

Yoshija Walter. 2024. Embracing the future of artificial
intelligence in the classroom: the relevance of ai lit-
eracy, prompt engineering, and critical thinking in
modern education. International Journal of Educa-
tional Technology in Higher Education, 21(1):15.

Jakob Mørup Wang and Zhiru Sun. 2025. LLM-
supervised multilingual skill extraction and classi-
fication from job ads. In LNCS, volume 15837, pages
94–104. Springer Nature.

Xiaojing Weng, Huiyan Ye, Yun Dai, and Oi-lam Ng.
2024. Integrating artificial intelligence and computa-
tional thinking in educational contexts: A systematic
review of instructional design and student learning
outcomes. Journal of Educational Computing Re-
search, 62(6):1640–1670.

World Economic Forum. 2025. The future of jobs report
2025: Digest. Accessed June 4, 2025.

298



A Appendix

</>
Encoder

LLM ESCO
TAXONOMY

retrieve top-25
skills

augment

supervise
fine-tuning

embed

extract

is skill?

which skill?

classify

sigmoid
(head)

softmax
(cosine)

weighted 
aggregated 
normalized 
per-ad skill 
distribution

500k+ sentences
sampled from 3M+ job ads

Figure 1: Overview of Our Pipeline Utilizing the Sentence Encoder Twice

2014 2016 2018 2020 2022
Year

18

19

20

21

22

Av
er

ag
e 

Sk
ills

 p
er

 Jo
b 

Ad

80

90

100

110

120

130

Nu
m

be
r o

f J
ob

 A
ds

Skill Count vs. Job Ad Volume Over Years

Figure 2: Job Volume vs. Skill Demand Over Time

299



2014 2016 2018 2020 2022
Year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n 
sk

ill 
co

un
t p

er
 jo

b

Average number of skills per job over time by skill type
skill_type

Digital
Transversal
Research

Figure 3: Average Job Demands Across Faculty by Skill Type Over Time

0

1

2

3

4

5

6

M
ea

n 
Sk

ill 
Co

un
t P

er
 Jo

b

Engineering Faculty Health Sciences Faculty

2014 2016 2018 2020 2022
Year

Humanities Faculty

2014 2016 2018 2020 2022
Year

0

1

2

3

4

5

6

M
ea

n 
Sk

ill 
Co

un
t P

er
 Jo

b

Social Sciences Faculty

2014 2016 2018 2020 2022
Year

Natural Sciences Faculty

Skill Type Trends Over Time by Faculty

Skill Type
Digital
Transversal
Research

Figure 4: Skill Type Trend by Faculty Over Time

300



0.005 0.004 0.003 0.002 0.001 0.000 0.001 0.002
Trend Slope

assist students with their enrolment

instruct in sport

teach in academic or vocational contexts

plan sports instruction programme

reach out to diverse youth

apply pre-teaching methods

contribute to specialised publications

calculate value of gems

gemology

study website behaviour patterns

Top 10 Growing and Declining Skills for Academic Position acorss Faculties

Declining Skills
Growing Skills serve on academic committee

computer science

use shorthand

understand spoken English

conduct scholarly research

develop professional network with researchers and scientists

write English

assess candidates

apply for research funding

understand spoken Danish

Figure 5: Growing and Declining Skills Across Faculty Over Time

0.005 0.000 0.005 0.010 0.015
Trend Slope

reach out to diverse youth

plan sports instruction programme

authoring software

teach further education

conduct research across disciplines

analyse curriculum

apply pre-teaching methods

teach in academic or vocational contexts

assist students with their enrolment

contribute to specialised publications

Top 10 Growing and Declining Skills for Academic Position in Humanities

Declining Skills
Growing Skills gemology

develop professional network with researchers and scientists

pedagogy

history of literature

perform media outlets research

literary criticism

supervise doctoral students

media studies

web analytics

apply knowledge of social sciences and humanities

Figure 6: Growing and Declining Skills in Humanities Over Time

301



Improving French Synthetic Speech Quality via SSML Prosody Control

Nassima Ould Ouali1, Awais Hussain Sani2, Ruben Bueno1†,
Jonah Dauvet1,3†, Tim Luka Horstmann1,2†, Eric Moulines1

1École Polytechnique, France, 2Hi! PARIS Research Center, France,
3McGill University, Canada

{nassima.ould-ouali, ruben.bueno, eric.moulines}@polytechnique.edu

{awais.sani, tim.horstmann}@ip-paris.fr, jonah.dauvet@mail.mcgill.ca

Abstract

Despite recent advances, synthetic voices of-
ten lack expressiveness due to limited prosody
control in commercial text-to-speech (TTS)
systems. We introduce the first end-to-end
pipeline that inserts Speech Synthesis Markup
Language (SSML) tags into French text to con-
trol pitch, speaking rate, volume and pause du-
ration. We employ a cascaded architecture with
two QLoRA-fine-tuned Qwen 2.5-7B models:
one predicts phrase-break positions and the
other performs regression on prosodic targets,
generating commercial TTS-compatible SSML
markup. Evaluated on a 14-hour French pod-
cast corpus, our method achieves 99.2% F1

for break placement and reduces mean ab-
solute error on pitch, rate, and volume by
25–40% compared with prompting-only large
language models (LLMs) and a BiLSTM base-
line. In perceptual evaluation involving 18 par-
ticipants across over 9 hours of synthesized
audio, SSML-enhanced speech generated by
our pipeline significantly improves naturalness,
with the mean opinion score increasing from
3.20 to 3.87 (p < 0.005). Additionally, 15 of
18 listeners preferred our enhanced synthesis.
These results demonstrate substantial progress
in bridging the expressiveness gap between syn-
thetic and natural French speech. Our code
is publicly available at https://github.com/
hi-paris/Prosody-Control-French-TTS.

1 Introduction

Recent Text-to-Speech (TTS) advances have im-
proved speech intelligibility; yet, achieving nat-
ural and expressive prosody remains challeng-
ing. Commercial TTS solutions prioritize clarity
over prosodic variation, resulting in a monotonous
speech output. This limitation particularly affects
French due to its complex prosodic features.

Speech Synthesis Markup Language (SSML)
provides a standardized way to control prosodic

†Equal contribution; authors listed in alphabetical order.

features such as pitch, speaking rate, and volume.
Unlike neural models, SSML allows post-hoc ad-
justments and is compatible with commercial TTS
engines. Yet, automating SSML generation is dif-
ficult: manual markup does not scale, and cur-
rent LLM-based methods often produce incomplete
tags, invalid syntax, or imprecise prosodic control.

We propose an automated SSML pipeline for
French, combining structured prosody extraction
with a novel cascaded LLM approach for simulta-
neous tag prediction and prosodic parameter regres-
sion. Key contributions include:

• End-to-end SSML annotation pipeline that
aligns speech to text, segments input into
prosodic syntagms, and extracts prosodic co-
efficients normalized relative to a commercial
TTS baseline.

• Rigorous benchmarking comparing state-of-
the-art (SOTA) approaches (fine-tuned BERT,
BiLSTM) with contemporary LLMs across
varied prompting strategies and metrics.

• Cascaded LLM architecture using two fine-
tuned Qwen 2.5-7B models: one for SSML
structure/boundaries and another for prosodic
prediction, ensuring valid markup and accu-
rate parameter control.

2 Related Work

Enhancing neural TTS prosody through automatic
markup is an active research domain categorized
into: (i) learning paradigm (supervised vs. unsu-
pervised approaches) and (ii) prosodic objective
(prominence, phrasing, style).

Supervised Prosody Learning
Word-level prominence modeling emphasizes
salient words using prosodic cues like pitch
and duration. Stephenson et al. (2022) fine-tune
BERT (Devlin et al., 2019) to predict three-level
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prominence tags from wavelet-based labels, achiev-
ing F1 = 0.588 and enabling controllable synthesis
in FastSpeech 2. Similarly, Zhong et al. (2023) inte-
grate emphasis features into FastSpeech 2, improv-
ing expressiveness (+0.49 Mean Opinion Score
(MOS)) and naturalness (+0.67 MOS).

Prosodic emphasis prediction controls auto-
mated stress placement patterns. Shechtman
et al. (2021) employ a hybrid model with acoustic
and syntactic features, and Seshadri et al. (2021)
propose a hierarchical latent model. Liu et al.
(2024) combine graph-based contextual encoding
with FastSpeech 2 for enhanced rendering. More
recently, Chen et al. (2025) present DrawSpeech, a
user-sketched prosodic contour control.

Phrasing segments speech into natural
prosodic units with appropriate pauses.
Transformer-based models now outperform
recurrent neural networks (RNNs) for break
prediction: Futamata et al. (2021) integrate BERT
embeddings with linguistic features, improving
phrase break prediction (F1 +3.2 points, MOS =
4.39). Vadapalli (2025) show that fine-tuned BERT
outperforms RNN baselines, reaching F1 = 0.92
and achieving 58.5% listener preference for
BERT-guided punctuation in narrative TTS.

LLMs enable automated emotional and stylis-
tic annotations at scale. Yoon et al. (2022) prompt
GPT-3 to assign sentence-level emotion labels
that guide expressive TTS, achieving MOS 3.92
(naturalness) and 3.94 (expressiveness), match-
ing human-annotated systems. Complementarily,
Burkhardt et al. (2023) show that even simple, rule-
based SSML adaptations can shape emotional per-
ception, with Unweighted Average Recall scores
of 0.76 for arousal and 0.43 for valence.

Narrative prosody modeling adjusts pitch,
speaking rate, and volume to enhance expres-
sive storytelling. Pethe et al. (2025) use MPNet
embeddings and BiLSTMs to predict phrase-level
prosody from text. Their SSML-integrated predic-
tions improved alignment with human narration in
22–23 out of 24 audiobooks, yielding +50% lis-
tener preference over commercial baselines.

Unsupervised Prosody Learning
Discrete prosody representations eliminate de-
pendency on manual annotations by learning
prosodic patterns directly from speech data. Ko-
rotkova et al. (2024) utilize a vector-quantized vari-
ational autoencoder with Wav2Vec2 and RoBERTa
encodings, deriving ten interpretable prosodic tags

that enhance TTS expressiveness across multiple
languages, confirmed by MOS tests (p < 0.001).
In contrast, Karlapati et al. (2021) learn continuous
64-dimensional prosody embeddings: a VAE en-
codes mel-spectrograms, and a RoBERTa + syntax-
GNN regresses these from text. At inference,
the 64-dimensional prosodic code conditions a
Tacotron2 decoder, yielding 13.2% comparative
MOS gain (3.30→3.74, p < 0.005) on LJSpeech
with F0 correlation of r = 0.68. Discrete tags of-
fer interpretability; continuous embeddings better
capture fine-grained intonation. Both improve TTS
expressiveness without hand-crafted annotations.

Limitations of Prior Work: However, existing
research exhibits critical gaps. Current methods
lack a comprehensive end-to-end framework for
converting raw speech into standardized SSML-
compliant prosodic markup. Most rely on partial
manual annotations, address isolated prosodic con-
trol aspects, or produce markup incompatible with
commercial TTS systems. Furthermore, the ma-
jority of existing work focuses on English, leav-
ing other complex languages like French under-
explored. Additionally, current LLM-based ap-
proaches suffer from systematic limitations, un-
dergenerating necessary tags, producing syntacti-
cally invalid SSML structures, and lacking precise
control over numerical prosodic parameters, which
prevents deployment in practical TTS systems.

We address these limitations with two main con-
tributions: (i) we introduce the first reproducible,
comprehensive French pipeline that automatically
extracts fine-grained prosodic annotations and con-
verts them into standards-compliant SSML, and
(ii) we develop a novel cascaded LLM architecture
that generates syntactically correct prosodic tags
with precise numerical control at inference time,
resulting in substantially enhanced naturalness and
expressiveness in synthetic speech.

3 Dataset Creation and SSML
Annotation Pipeline

We construct a comprehensive dataset annotated
with prosodic features from French speech. Our
methodology involves aligning spoken audio with
transcripts, extracting four key prosodic features
— pitch, volume, speaking rate, and break du-
ration — and converting them into standardized
SSML for enhanced synthetic speech generation.
Figure 1 presents our preprocessing pipeline. Fur-
ther dataset statistics are provided in Appendix A.
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Figure 1: Overview of the SSML annotation pipeline. Natural speech is aligned, segmented, and compared to a
synthetic baseline to extract prosodic features for SSML markup. Green elements indicate later model training data.

Audio Collection and Preprocessing: We pro-
cess 14 hours of diverse French audio content
sourced from ETX Majelan1, a high-quality pod-
cast platform with interviews and discussions. Our
dataset includes speech from 14 distinct speakers
(42% female). The original recordings contain
background music, jingles, and sound effects, com-
plicating prosodic analysis. Hence, we isolate clean
speech using Demucs (Défossez, 2021), a SOTA
audio source separation model, down-sample to 16
kHz, and peak-normalize the audio. Using pydub2,
we segment the cleaned audio via silence detection
with a −35 dBFS threshold and 300 ms gaps. The
resulting audio segments serve as our fundamental
processing units for subsequent prosodic analysis.

Text-Audio Alignment: Accurate alignment be-
tween audio and transcribed text is crucial for
prosody extraction, but particularly challenging
in French due to phonetic phenomena such as li-
aisons, elisions, and prosodic contractions. To ad-
dress this, we employ the Whisper Timestamped
package3 with the Whisper (Radford et al., 2022)
medium model and Auditok Voice Activity Detec-
tion (VAD) 4, which filters out silent segments that
would otherwise distort prosodic measurements.

To evaluate this setup, we benchmarked it
against larger Whisper models, Montreal Forced
Aligner (MFA) by McAuliffe et al. (2017), and
NVIDIA NeMo (Kuchaiev et al., 2019). Bench-
marking used our dataset and FLEURS benchmark
(Conneau et al., 2022) as a state-of-the-art refer-
ence.. While larger models yielded marginal gains,
they introduced instability such as significant hal-
lucinations during silence – a known issue in Whis-
per (Barański et al., 2025) – as well as higher
computational cost. Our chosen configuration

1https://etxmajelan.com/
2https://github.com/jiaaro/pydub
3https://github.com/linto-ai/

whisper-timestamped
4https://github.com/amsehili/auditok

achieved a 5.95% WER using Whisper-medium
with an average Alignment Recall Rate (ARR) of
96.3% over 15-second windows against the manual
TextGrid annotations created with Praat (Boersma
and Van Heuven, 2001) (see Table 1). This yielded
an optimal accuracy-efficiency trade-off.

Baseline Voice for Prosodic Comparison: For
prosodic reference, we synthesize each transcript
using Microsoft Azure Neural TTS with the
French voice Henri (Microsoft Azure, 2024). Henri
was selected for its clarity, broad phonetic cov-
erage, and consistent yet neutral prosodic char-
acteristics, making it optimal for computing rel-
ative prosodic adjustments. The resulting synthetic
speech provides a stable baseline against which nat-
ural prosodic features are measured and compared,
as detailed in subsequent sections.

Syntagm Segmentation: Each segment under-
goes further subdivision into syntagms: prosodic
units with natural pause boundaries. Following
Roll et al. (2023), we detect them through acous-
tic pauses and punctuation. We first derive a
word/pause sequence from the TextGrid, where
pauses following function words are discarded with
a POS filter to remove Whisper artifacts. Next, any
silence that follows ., ?, or ! is clamped to at least
500 ms, and a 500 ms pause is injected whenever
Whisper failed to signal the end of a sentence. The
resulting timestamped syntagms provide stable, lin-
guistically meaningful units for prosodic analysis.

Prosodic Feature Extraction and SSML Tag
Construction: Each syntagm is annotated with
four prosodic features: median pitch (fundamental
frequency f0), segment-level volume (Loudness
Units Full Scale (LUFS)), speaking rate (words
per second), and inter-syntagmatic break dura-
tion. All features are computed for both natural
and synthetic baseline voices to derive relative delta
values for SSML encoding. To account for intra-
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Table 1: Metric evaluation of four whisper models, MFA, and NeMo on our dataset (Section 3) and FLEURS.

Whisper Model Variants Alignment Models

Metric Medium Large v2 Large v3 Turbo Large v3 MFA ‡ NeMo Large ‡
Parameters 769 M 1550 M 1540 M 809 M – 120 M
WER† 5.95% / 10.70% 4.60% / 6.27% 3.92% / 5.80% 3.52% / 5.71% – –
WER† +VAD 5.68% / 8.72% 5.07% / 6.16% 3.86% / 5.65% 6.16% / 5.83% – –
ARR∗ 96.3% 97.1% 96.2% 97.8% 99.7% 50.7%
Start MAE∗ (ms) 264 191 207 152 115 4529
Duration MAE∗ (ms) 91 77 102 76 95 218

†WER computed with the HuggingFace evaluate library.
∗ ARR and MAE are computed on 15 second segments, against the gold manually annotated Text Grids of 1 hour of speech from our dataset.
‡MFA and NeMo alignments use gold transcripts, thus rendering the WER 0 by default.

and inter-speaker variability, we normalize each
syntagm’s pitch, volume, and rate relative to a base-
line computed as the median over a sliding window
of w = 10 audio segments (or, when w covers all
segments, the global median). The computation of
each feature is detailed as follows:

Pitch median fundamental frequency f (i)0 is con-
verted to a semitone offset si = 12 log2

(
f
(i)
0 /f̄0

)
,

clipped to
[
−0.7P, P

]
to allow larger upward than

downward shifts, and re-scaled to percentage pitch
change pi =

(
2si/12 − 1

)
×100.

Using LUFS for volume, the baseline–synthetic
difference ∆Li = L̄ − L(i)

syn is mapped to a gain
vi =

(
10∆Li/20 − 1

)
×100, then clipped to ±V

(we use V = 10%).
Speaking rate is estimated as words per second.

Let ni be the word count and dnat, dsyn the net
speaking durations (pauses removed). The rate
delta is ri =

ni/dnat−ni/dsyn
ni/dsyn

×100. Slow-downs are
amplified for long syntagms (> 1 s) while speed-
ups are reduced, and the final value is clamped to
±R with a tighter +0.5R ceiling for accelerations.

To improve prosodic smoothness, we apply expo-
nential smoothing to pitch and rate with α = 0.2:

x̃0 = x0, x̃i = αxi + (1− α)x̃i−1.

Sudden jumps are clamped to ∆ = 8% per syn-
tagm. Volume is not smoothed.

Break durations are taken from the inter-
syntagm silence gaps and inserted as raw dura-
tions (e.g., <break time="200ms">). The final
SSML markup is assembled by inserting appropri-
ate <prosody> and <break> tags into the text.5

5At inference, we found that wrapping
each <prosody> tag with <mstts:silence
type="leading-exact/trailing-exact" value="0"/>
improves output by suppressing unwanted Azure TTS pauses.

4 Methodology

We test whether text alone encodes sufficient cues
for prosody by training two baselines: (i) a BERT-
base model fine-tuned for token-level pause predic-
tion (Vadapalli, 2025), and (ii) a BiLSTM (Pethe
et al., 2025) which predicts SSML tags with pitch,
speaking rate and volume adjustments.

4.1 Fine-tuning BERT for Pause Prediction

Following Vadapalli (2025), we fine-tune an un-
cased BERT-base model for token-level pause pre-
diction. A binary classification head determines
whether each sub-word is followed by a break tag.
We adopt the same hyperparameters as the original
work on our dataset: batch size 64, learning rate
10−5, and gradient clipping at 10. For evaluation,
we report both F1 score and perplexity. While F1 is
used in Vadapalli (2025), perplexity is introduced
here as an additional metric to enable broader com-
parisons in later sections.

We additionally introduce bootstrapping, a tech-
nique not used in the original paper, to evaluate
the small model’s variance in performance. We
bootstrap on 10 distinct sets with the same configu-
ration as the original training set, which allows us
to obtain a distribution of performance scores for
robust estimation of the uncertainty of performance.
Given the reduced size of the dataset, we expect
overall performance to degrade slightly. Hence, we
focus on stability, measured via standard deviation.

4.2 BiLSTM-Based Sequence Modeling

We implement a BiLSTM baseline following Pethe
et al. (2025), explicitly modeling prosody predic-
tion as a sequence regression task to predict three
SSML parameters: pitch, volume, and speaking
rate. This approach leverages local context through
sequential processing of prosodic units.
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Each syntagm receives encoding into a 768-
dimensional representation using the pretrained
sentence encoder all-mpnet-base-v26. We con-
struct overlapping input sequences of varying
lengths L ∈ {1, 2, 3, 4}, extending beyond the orig-
inal study’s sequence lengths of 2 and 3 to assess
optimal context window size. targeting z-scored
prosody vectors (pitch, volume, rate) of central
segments, normalized on training statistics.

The architecture includes LayerNorm prepro-
cessing, bidirectional LSTM (40 units per direc-
tion), dense layer (20 units, tanh activation), and
linear projection for predicting the 3-dimensional
prosody vector. Training uses MSE loss between
predicted and target z-scored vectors. We addi-
tionally compute raw RMSE and MAE metrics for
interpretability and literature comparison.

4.3 Zero-shot and Few-shot Evaluation

To assess SOTA LLMs for SSML markup gener-
ation, we benchmarked various open-source mod-
els in both zero-shot and few-shot settings. We
evaluated Mistral (7B), Qwen 2.5 (7B), Llama 3
(8B), Granite 3.3 (8B), Qwen 3 (8B), DeepSeek-R1
(32B), and Qwen 3 (32B) via the Ollama frame-
work7. Models were prompted at the segment level
(≈ eight tags per segment on average) with French
text, and tasked with generating fully annotated
SSML for 100 randomly chosen segments. Few-
shot prompts included 10 reference examples.

4.4 Cascaded Fine-tuning Approach

As we show in Section 5.3, LLM-based approaches
under-generate <break> and <prosody> tags, re-
sulting in SSML that is structurally incomplete and
limited in expressive control. To address this, we
introduce a cascaded strategy that separates struc-
tural and numerical prediction. The first model,
QwenA, predicts where prosodic boundaries occur;
the second, QwenB, supplies the corresponding nu-
merical attributes.

QwenA (Stage 1): Break Prediction
We fine-tune a Qwen 2.5-7B model (QLoRA with
4-bit quantization, rank 8, α = 16) to insert
<break> tags at linguistically appropriate junctures.
QwenA processes up to 200-word French para-
graphs (within a 1024-token limit), retaining punc-
tuation, quotations, and parenthetical clauses so

6https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

7https://ollama.com/

that the model must reason over long-range de-
pendencies rather than relying on sentence-level
heuristics. These features reflect real-world TTS
applications, where systems rarely receive inputs
entirely devoid of punctuation or other natural or-
thographic cues. Furthermore, this approach aligns
with the baseline methodology used in Vadapalli
(2025). A deterministic post-processor then con-
verts each <break> into an empty <prosody> ele-
ment, yielding a syntactically valid SSML skeleton
to pass into the next stage.

QwenB (Stage 2): Prosodic Regression

QwenB builds on the skeleton emitted by QwenA
and replaces each empty <prosody> placeholder
with fully specified numeric attributes (pitch, rate,
volume, and break duration). Starting again from
Qwen 2.5-7B, we inject a second QLoRA adapter
with 4-bit quantization (rank 8, α = 16) into the
value and feed-forward projections so that only
those low-rank updates are trainable. Loss is com-
puted on the numeric tokens, so categorical text
incurs zero penalty and the adapter’s capacity is
devoted entirely to modeling prosodic distribu-
tions. Targets are standardized to unit variance
during optimization and rescaled at inference, a
choice that stabilizes gradients and accelerates con-
vergence.

5 Results and Analysis

5.1 Perceptual Evaluation (AB Test)

To assess our SSML annotation pipeline’s effective-
ness in enhancing synthetic speech (Section 3), we
conducted AB testing with 18 participants. Each
participant evaluated 30 one-minute audio pairs,
where the baseline was the raw, unaltered voice of
Microsoft Azure Neural TTS (Henri), without any
prosody modifications, compared to the prosody-
enhanced version. These pairs were presented ran-
domly, with 60 segments evaluated per participant.

The SSML-enhanced audio achieved a MOS of
3.87 (5-point scale), outperforming the baseline
(3.20) and yielding a 20% improvement in per-
ceived quality. Additionally, 15 of 18 participants
preferred the enhanced version in over half of the
cases, with 7 preferring it in more than 75% of
comparisons. These results support the effective-
ness of our SSML-based prosody enhancement for
improving synthetic speech quality.
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Bonjour</prosody> <break time="_ms"/>
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 rate="_%", pitch="_%",volume="_%">
je m'appelle Bertrand Perier</prosody>

Full SSML:
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Figure 2: Cascaded LLM approach for automated text-to-SSML generation: QwenA predicts tag placement, QwenB
injects prosodic values. This disentangled design enables accurate and efficient prosody control for synthetic speech.

5.2 Baseline Model Performance

BERT Break Prediction Results: We evaluated
the performance of the fine-tuned BERT model
from Vadapalli (2025) on F1 (%) and perplexity
(best = 1), and attained results very close to the
original paper, which reports a 92.10% F1 score for
break prediction. Our model achieves a F1 score
of 92.06%, along with a perplexity of 1.123 (not
reported in Vadapalli (2025) but useful for further
evaluation). Our stability assessment on 10 boot-
strapped datasets yielded an average F1 of 47.52%
± 4.65% (Confidence Interval (CI) = 9.8%) and
perplexity of 1.274± 0.005 (CI = 0.4%), indicating
high stability in token prediction but moderate vari-
ability in classification performance. We present
the results from the original training data in Table 4.

BiLSTM Prosody Prediction Results: We eval-
uated our BiLSTM model following Pethe et al.
(2025). Table 2 presents the MSE values for nor-
malized z-score prosody features. Our approach
achieves SOTA results comparable to those re-
ported in the original paper. For a more compre-
hensive analysis, we also report the raw RMSE and
MAE (%) for each prosodic parameter.

Unlike Pethe et al. (2025), our analysis revealed
that a sequence window length (L = 2) yielded
superior performance across prosodic attributes.
Specifically, L = 2 demonstrated lower error rates
for two of the three prosodic attributes, while
pitch prediction achieved optimal performance
with L = 1. Notably, the MAE for volume with
L = 2 was more than 0.04 percentage points lower
than all other tested lengths, and 0.04–0.09 per-
centage points superior to alternative sequence con-
figurations. Our best results align with those of
Pethe et al. (2025): z-scored MSE of 0.8734 for

Table 2: BiLSTM-based prosodic attribute prediction
across sequence window lengths (L). Best overall per-
formance is achieved at L = 2, with lowest MAE for
volume and rate, and near-best scores for pitch.

L Metric Type Pitch Volume Rate

1
Z-score MSE (↓) 0.8752 0.9141 0.7733
% RMSE (↓) 2.0659 7.8597 1.2771
% MAE (↓) 1.6709 6.4768 0.8878

2
Z-score MSE (↓) 0.8983 0.8949 0.7572
% RMSE (↓) 2.0930 7.7767 1.2637
% MAE (↓) 1.6883 6.0405 0.8462

3
Z-score MSE (↓) 0.9936 0.9917 0.8593
% RMSE (↓) 2.2012 8.1864 1.3462
% MAE (↓) 1.7732 6.5100 0.9257

4
Z-score MSE (↓) 0.9950 0.9992 0.8263
% RMSE (↓) 2.2028 8.2172 1.3201
% MAE (↓) 1.7568 6.5990 0.9312

pitch, 0.7631 for volume, and 1.0610 for speaking
rate. We attribute minor performance differences to
dataset variations and establish the L = 2 model as
our primary baseline for subsequent comparisons
with our proposed cascaded architecture.

5.3 Zero-shot and Few-shot Prompting
Evaluation

We first focused on evaluating break tag prediction,
a proxy for assessing structural correctness and
syntagm segmentation. Figure 3 shows the aver-
age number of predicted <break> and <prosody>
tags per segment compared to gold annotations.
All models consistently under-generate tags, indi-
cating systematic issues maintaining SSML struc-
ture. Few-shot prompting led to unexpected pat-
terns: fewer predicted break tags but increased
<prosody> tags, suggesting attention shifts or
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Table 3: SSML generation performance across models and prompting strategies, evaluated by cosine
similarity of predicted vs. gold SSML embeddings, and MAE/RMSE for pitch, volume, rate, and
break durations. Qwen2.5 (7B) offers the best trade-off between accuracy and efficiency.

Model SSML
Sim. ↑

Pitch (%)
MAE/RMSE ↓

Volume (%)
MAE/RMSE ↓

Rate (%)
MAE/RMSE ↓

Break Time (ms)
MAE/RMSE ↓

Qwen3 (32B) (ZS) 0.91 1.42/1.83 7.65/8.48 1.52/2.00 170.23/232.41
Qwen2.5 (7B) (ZS) 0.90 2.07/2.43 7.23/8.05 1.54/1.93 361.88/393.04
Qwen3 (32B) (FS) 0.90 1.08/1.41 5.80/7.33 0.97/1.31 159.58/215.50
Qwen3 (8B) (FS) 0.90 1.77/2.83 6.96/16.85 1.23/1.69 147.24/242.98
Qwen2.5 (7B) (FS) 0.89 1.26/1.50 4.32/6.77 1.01/1.24 118.85/179.68
Mistral (7B) (ZS) 0.88 1.85/2.25 24.19/43.96 18.30/41.24 207.28/258.76
Mistral (7B) (FS) 0.87 1.75/2.16 5.38/8.33 1.14/1.42 205.03/384.17
Granite3.3 (8B) (FS) 0.87 1.45/1.86 4.95/7.12 0.95/1.30 196.93/265.07
Llama3 (8B) (ZS) 0.84 1.44/1.82 7.30/8.08 2.26/10.17 285.17/318.19
Qwen3 (8B) (ZS) 0.82 1.99/2.70 7.43/8.41 1.69/2.06 274.27/334.20
Deepseek-R1 (32B) (ZS) 0.81 1.64/2.11 15.50/30.41 18.79/41.14 274.66/320.62
Granite3.3 (8B) (ZS) 0.76 3.70/4.55 13.86/29.11 33.25/55.85 320.77/413.91
Deepseek-R1 (32B) (FS) 0.76 1.43/2.04 7.12/8.23 3.69/12.94 244.85/302.87
Llama3 (8B) (FS) 0.34 1.26/1.62 7.24/8.23 1.53/1.88 416.13/445.99

↑: higher is better, ↓: lower is better. ZS: Zero-Shot, FS: Few-Shot.
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(b) Prosody tag usage comparison (DS = DeepSeek)

Figure 3: Structural comparison of SSML tag predic-
tions across models. All models under-generate both
break and prosody tags relative to the gold standard.

stylistic overfitting to prompt exemplars. Notably,
Llama 3 and DeepSeek-R1 (32B) show large dis-
crepancies between zero- and few-shot modes, with
Llama 3’s prosody tagging almost collapsing in the
few-shot case.

Beyond structural accuracy, we evaluated numer-
ical performance through cosine similarity between
predicted and reference SSML structures, embed-
ded using the all-MiniLM-L6-v2 8 model, RMSE,
and MAE for break durations and prosodic coeffi-

8https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

cients, averaged per segment. Table 3 summarizes
the results. Qwen 2.5-7B achieves the best over-
all balance: in the few-shot setting, it delivers the
lowest MAE for break (118.85 ms) and volume
(4.32%), and second-highest structural similarity
in zero-shot (0.9). Qwen 3 (32B) slightly surpasses
it on similarity (0.908), but at a cost of 4.5 times
higher memory usage and slower inference, mak-
ing it less suitable for fine-tuning and deployment.

Our findings suggest that while few-shot prompt-
ing can improve prosody tag usage and numerical
accuracy, model behavior is highly architecture-
dependent. Furthermore, the consistent underpro-
duction of tags across models highlights the need
for more robust SSML-structure awareness.

5.4 Cascaded LLM Evaluation
Our evaluation of the cascaded QwenA and QwenB
models demonstrates substantial performance im-
provements over existing SOTA approaches, as de-
tailed in Table 4:

Table 4: Break tag prediction: F1 and perplexity for our
cascaded model (QwenA) vs. fine-tuned BERT. QwenA
achieves near-perfect accuracy and fluency.

Model F1 (%) Perplexity (→ 1)

Cascade (QwenA) 99.24 1.00
Finetuned BERT 92.06 1.12

For QwenA, which utilizes next-token prediction
on a linearized SSML target, the model achieved a
test perplexity of 1.001 and a tag-level F1 score
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Table 5: RMSE (↓) and MAE (↓) for our cascaded
model vs. benchmarks. It achieves the lowest error
scores across nearly all prosody attributes.

Model Metric Pitch Volume Rate Break Time

Cascade
(Ours)

RMSE 1.22 1.67 1.50 166.51
MAE 0.97 1.09 1.10 132.89

BiLSTM†
(L = 2)

RMSE 2.09 7.77 1.26 –
MAE 1.68 6.04 0.84 –

SOTA
Few-Shot*

RMSE 1.41 7.33 1.31 215.50
MAE 1.08 5.80 0.97 159.58

SOTA
Zero-Shot*

RMSE 1.83 8.48 2.00 232.41
MAE 1.42 7.65 1.52 170.23

†: Results based on Pethe et al. (2025); see Section 4.2
∗: Qwen-3 (32B) selected via cosine similarity (Tab. 3)
Units: Pitch, Volume, Rate (%); Break Time (ms)

of 99.24%, surpassing the fine-tuned BERT’s base-
line of 1.123 perplexity and 92.06% F1 score.
Moreover, this approach also outperforms the LLM
tag prediction benchmarks, which consistently
under-generate break and prosody tags, as illus-
trated in Figures 3a and 3b. This near-perfect tag
insertion accuracy validates the improved perfor-
mance of our cascaded approach compared to avail-
able models for SSML tag prediction.

QwenB demonstrates significant advancements
in prosody parameter prediction, achieving an
MAE of 0.97% for pitch, 1.09% for volume,
1.10% for rate, and 132.9ms for break timing
(Table 5). Furthermore, this strong performance
is achieved while maintaining an efficient end-to-
end latency of approximately 190 ms for a 150-
word paragraph. This demonstrates the model’s
enhanced SSML parameter prediction and its abil-
ity to process larger text segments, outperform-
ing baseline approaches. This performance also
suggests that evaluations of pipeline audio (Sec-
tion 5.1) are highly generalizable to the cascaded
model’s audio quality due to their close similarity.

5.5 Summary and Analysis of Results

Table 5 provides a comparative overview of objec-
tive performance across all evaluated approaches,
revealing three key observations:

1. Cascaded QwenA + QwenB sets new SOTA
performance. The system achieves single-
digit MAE for all prosodic coefficients and
reduces break-timing error by 25% vs. the
best few-shot LLM baseline.

2. BiLSTM architectures remain competitive
for speaking rate prediction. Though out-
performed elsewhere, its 0.84% MAE on rate
shows lightweight sequential models still cap-
ture localized prosodic patterns effectively.

3. Prompt-only LLMs systematically under-
generate tags. Both zero- and few-shot set-
tings underperform supervised baselines on
break timing prediction (MAE > 150 ms) and
structural metrics (Figure 3), reinforcing the
necessity for explicit structural supervision in
SSML generation tasks.

These findings confirm that disentangling struc-
tural prediction (QwenA) from numerical regres-
sion (QwenB) yields optimal performance across
both dimensions: syntactically valid SSML markup
with fine-grained prosodic control, while preserv-
ing inference efficiency suitable for real-time TTS
applications. The subjective evaluation results in
Section 5.1 corroborate these objective improve-
ments, demonstrating that enhanced technical per-
formance translates into substantial perceptual
gains—a 20% MOS improvement and consistent
listener preference for enhanced synthesis.

6 Conclusion and Future Directions

Using a fine-tuned cascaded Qwen 2.5-7B ar-
chitecture, we separate structural tag insertion
from prosodic parameter prediction, achieving
near-perfect break placement (99.2% F1, per-
plexity 1.001) and reducing prosodic MAE be-
low 1.1 points – representing 25–40% better than
prompting-only LLMs and BiLSTM baselines.

Perceptual evaluation shows that SSML from
our pipeline increases MOS from 3.20 to 3.87, with
consistent listener preference. This marks a signif-
icant step toward closing the expressiveness gap
between synthetic and natural French speech while
preserving compatibility with commercial TTS.

Future research includes unifying our cascaded
approach into a single end-to-end model for joint
prosodic prediction, incorporating multimodal au-
dio embeddings to capture subtle speech character-
istics beyond text-derived features, and extending
this methodology to additional languages to assess
cross-linguistic generalizability and robustness.
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7 Limitations

While our proposed system shows significant im-
provements, several limitations warrant discussion.
Our experiments focus exclusively on French using
a proprietary 14-hour corpus. While our pipeline
is language-agnostic, performance may vary for
languages with different prosodic characteristics.
The dataset size remains modest compared to typi-
cal TTS training corpora, as English prosody mod-
eling often leverages hundreds of hours of anno-
tated speech, indicating that scaling our French
dataset could yield additional performance gains.
Additionally, our improvements rely on TTS en-
gines supporting fine-grained SSML tags, meaning
legacy or non-compliant systems may not achieve
similar gains and may require custom adjustments
for engine-specific behaviors.

Our prosodic deltas are computed with respect
to a single baseline synthetic voice (Azure fr-
FR-HenriNeural) and evaluated with the same
voice, which limits out-of-domain generalization.
While SSML prosody tags are standardized, their
acoustic realization is implementation- and voice-
dependent; engines may clamp or substitute values,
and different voices can map the same percentage
to different F0/rate changes. Consequently, nu-
meric SSML settings may require voice-specific
recalibration (e.g., a short script that sweeps
pitch/rate/volume and measures resulting semitone,
syllables/s, and dB changes) before transfer to other
voices or engines.

From a computational perspective, fine-tuning
Qwen 2.5-7B requires substantial GPU memory
(≈ 15 GB peak) despite 4-bit quantization, ne-
cessitating model compression or distillation for
smaller deployments. Conversely, greater computa-
tional resources could enable more extensive fine-
tuning and potentially improve performance. Our
approach also assumes that punctuation and syntac-
tic cues correlate well with natural prosodic bound-
aries, an assumption that may break down in highly
informal or unpunctuated text such as social media
transcripts, leading to suboptimal break placement.

8 Ethics Statement

Our work uses commercially licensed French pod-
cast audio, ensuring no personal or sensitive data
are exposed. We acknowledge potential biases
from using a limited speaker set and encourage
broader demographic validation. While improved
prosody can enhance synthetic voices, it also risks

misuse in deceptive audio generation; we therefore
recommend watermarking or verification mecha-
nisms. Code and anonymized alignment scripts
are publicly shared to promote reproducibility and
transparency.
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Mateusz Barański, Jan Jasiński, Julitta Bartolewska,

Stanisław Kacprzak, Marcin Witkowski, and Konrad
Kowalczyk. 2025. Investigation of Whisper ASR
Hallucinations Induced by Non-Speech Audio. In
ICASSP 2025 - 2025 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. ArXiv:2501.11378 [cs].

Paul Boersma and Vincent Van Heuven. 2001. Speak
and unspeak with praat. Glot Int, 5:341–347.

Felix Burkhardt, Uwe Reichel, Florian Eyben, and
Björn Schuller. 2023. Going retro: Astonishingly
simple yet effective rule-based prosody modelling
for speech synthesis simulating emotion dimensions.
arXiv preprint arXiv:2307.02132.

Estelle Campione and Jean Véronis. 2002. A large-scale
multilingual study of silent pause duration. In Speech
Prosody 2002, pages 199–202. ISCA.

Weidong Chen, Shan Yang, Guangzhi Li, and Xixin
Wu. 2025. Drawspeech: Expressive speech synthesis
using prosodic sketches as control conditions. arXiv
preprint arXiv:2501.04256.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2022. Fleurs: Few-shot
learning evaluation of universal representations of
speech.

Alexandre Défossez. 2021. Hybrid spectrogram and
waveform source separation. In Proceedings of the
ISMIR 2021 Workshop on Music Source Separation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. ArXiv:1810.04805 [cs].

310



Kosuke Futamata, Byeongseon Park, Ryuichi Ya-
mamoto, and Kentaro Tachibana. 2021. Phrase break
prediction with bidirectional encoder representations
in japanese text-to-speech synthesis. arXiv preprint
arXiv:2104.12395.

Sri Karlapati, Ammar Abbas, Zack Hodari, Alexis
Moinet, Arnaud Joly, Penny Karanasou, and Thomas
Drugman. 2021. Prosodic representation learning
and contextual sampling for neural text-to-speech.
In ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6573–6577. IEEE.

Yuliya Korotkova, Ilya Kalinovskiy, and Tatiana Vakhru-
sheva. 2024. Word-level text markup for prosody
control in speech synthesis. In Proc. Interspeech
2024, pages 2280–2284.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kri-
man, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook,
Patrice Castonguay, Mariya Popova, Jocelyn Huang,
and Jonathan M. Cohen. 2019. NeMo: a toolkit
for building AI applications using Neural Modules.
ArXiv:1909.09577 [cs].

Rui Liu, Zhenqi Jia, Jie Yang, Yifan Hu, and Haizhou
Li. 2024. Emphasis rendering for conversational
text-to-speech with multi-modal multi-scale context
modeling. arXiv preprint arXiv:2410.09524.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal Forced Aligner: Trainable Text-Speech
Alignment Using Kaldi. In Interspeech 2017, pages
498–502. ISCA.

Microsoft Azure. 2024. Speech synthesis markup lan-
guage (ssml) documentation.

Naomi Peck and Laura Becker. 2024. Syntactic paus-
ing? Re-examining the associations. Linguistics
Vanguard, 10(1):223–237. Publisher: De Gruyter
Mouton.

Charuta Pethe, Bach Pham, Felix D Childress, Yunting
Yin, and Steven Skiena. 2025. Prosody analysis of
audiobooks.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv preprint arXiv:2212.04356.

Nathan Roll, Calbert Graham, and Simon Todd. 2023.
PSST! prosodic speech segmentation with transform-
ers. In Proceedings of the 27th Conference on Com-
putational Natural Language Learning (CoNLL),
pages 476–487, Singapore. Association for Compu-
tational Linguistics.

Shreyas Seshadri, Tuomo Raitio, Dan Castellani, and
Jiangchuan Li. 2021. Emphasis control for parallel
neural tts. arXiv preprint arXiv:2110.03012.

Slava Shechtman, Raul Fernandez, and David Haws.
2021. Supervised and unsupervised approaches
for controlling narrow lexical focus in sequence-to-
sequence speech synthesis. In 2021 IEEE Spoken
Language Technology Workshop (SLT), pages 431–
437.

Brooke Stephenson, Laurent Besacier, Laurent Girin,
and Thomas Hueber. 2022. BERT, can HE pre-
dict contrastive focus? Predicting and controlling
prominence in neural TTS using a language model.
ArXiv:2207.01718 [cs].

Anandaswarup Vadapalli. 2025. An investigation of
phrase break prediction in an end-to-end tts system.
SN Computer Science, 6(2):1–11.

Hyun-Wook Yoon, Ohsung Kwon, Hoyeon Lee, Ryuichi
Yamamoto, Eunwoo Song, Jae-Min Kim, and Min-
Jae Hwang. 2022. Language model-based emotion
prediction methods for emotional speech synthesis
systems. arXiv preprint arXiv:2206.15067.

Yi Zhong, Chen Zhang, Xule Liu, Chenxi Sun, Weishan
Deng, Haifeng Hu, and Zhongqian Sun. 2023. Ee-tts:
Emphatic expressive tts with linguistic information.
arXiv preprint arXiv:2305.12107.

311



A Dataset Statistics

The dataset constructed through our end-to-end
SSML annotation pipeline (Section 3) comprises
14 speakers (42% female), encompassing 122,303
words across 711,603 characters. Our annota-
tion process generated 17,695 <prosody> tags and
18,746 <break> tags, providing comprehensive
prosodic markup for the corpus (Table 6).

Table 6: Corpus statistics for the annotated French
speech dataset

Metric Value

Speakers 14
Total characters 711,603
Total words 122,303
Prosody tags 17,695
Break tags 18,746

The prosodic parameter distributions reveal lin-
guistically meaningful patterns (Figure 4). Pitch
adjustments cluster around +1% with 50% of val-
ues within ±2%, reflecting the subtle phrase-final
rises characteristic of French declarative intonation.
Rate modifications center at -1%, indicating slight
deceleration relative to the neutral Azure baseline,
consistent with the deliberate pacing typical of pod-
cast narration. Volume adjustments concentrate at
-10% with an upper bound at +2%, reflecting our
systematic reduction strategy relative to the syn-
thetic baseline to achieve more natural amplitude
levels.
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Figure 4: Distribution of prosodic parameters in the
annotated dataset. Left: Pitch, rate, and volume ad-
justments (percentage) relative to synthetic baseline.
Right: Break durations (milliseconds) derived from nat-
ural inter-phrasal pauses.

Break duration analysis reveals a median pause
of approximately 400 ms with an interquartile
range of 250–500 ms, aligning with established

phonetic studies on French prosodic phrase bound-
aries (Peck and Becker, 2024; Campione and Véro-
nis, 2002).

B Comparative Analysis of Prosodic
Features

B.1 Pitch Characteristics

Figure 5 demonstrates the temporal evolution of
fundamental frequency in natural versus synthe-
sized speech. Natural speech exhibits a broader
pitch range with complex, fluid intonational pat-
terns reflecting the dynamic modulation inherent
in human vocal production. Conversely, synthe-
sized speech operates within a constrained, gener-
ally lower fundamental frequency range, displaying
more abrupt transitions and reduced prosodic vari-
ability.
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Figure 5: Temporal pitch contours, comparing natural
and synthesized speech across representative utterances

Cross-speaker analysis (Figure 6) reveals sub-
stantial inter-speaker pitch variability in natural
speech, while synthesized versions cluster within a
significantly narrower frequency range. This com-
pression of the pitch space in synthetic speech rep-
resents a fundamental limitation in current TTS
systems’ ability to capture individual vocal charac-
teristics.

B.2 Volume Dynamics

Amplitude modulation patterns (Figure 7) reveal
marked differences between natural and synthetic
speech production. Natural speech demonstrates
substantial dynamic range with frequent amplitude
variations, characteristic of expressive human dis-
course and reflecting the speaker’s communicative
intent. Synthesized speech exhibits limited volume
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ral speech (y-axis) versus synthesized speech (x-axis).
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tal frequency.

variation, maintaining relatively consistent ampli-
tude levels that contribute to reduced prosodic ex-
pressiveness.
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Figure 7: Volume variation patterns over time for natural
versus synthesized speech

Speaker-level volume analysis (Figure 8) con-
firms the systematic amplitude differences between
natural and synthetic speech across all speakers in
our corpus.

C Evaluation Metrics

Our evaluation employs standard, well-established
metrics from the speech processing and natural
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Figure 8: Speaker-wise mean volume comparison be-
tween natural and synthesized speech

language processing domains:

Perplexity = exp
(
CrossEntropy(p, q)

)
, (1)

F1 = 2 · Precision× Recall
Precision + Recall

, (2)

WER =
S +D + I

N
, (3)

MAE =
1

n

n∑

i=1

|Pi −Ai|, (4)

RMSE =

√√√√ 1

n

n∑

i=1

(Pi −Ai)2, (5)

ARR =

∣∣{words aligned within τ }
∣∣

N
. (6)

Here, p and q denote the true and predicted dis-
tributions (perplexity). In WER, S, D, and I are
substitutions, deletions, and insertions, andN is the
number of reference words. In MAE and RMSE,
n is the number of predictions, with Pi and Ai the
predicted and actual values for instance i. For ARR
(Alignment Recall Rate), τ is the temporal toler-
ance for correct alignment (e.g., ±50 ms). Unless
otherwise specified, we report a macro-averaged
ARR: the ratio is computed in each 15-second win-
dow and then averaged over all windows.

D SSML Annotation Example

Figure 9 illustrates a representative example of our
automated SSML annotation, demonstrating the
integration of prosodic tags with natural text to

313



enable fine-grained control over synthetic speech
parameters.

Figure 9: Example of text annotated with SSML
prosodic tags generated by our pipeline
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Abstract
Sentential relation extraction (RE) is an impor-
tant task in natural language processing (NLP).
In this paper we propose to do sentential RE
with dynamic routing in capsules. We first show
that the proposed approach outperform state
of the art on common sentential relation ex-
traction datasets Tacred, Tacredrev, Retacred,
and Conll04. We then investigate potential
reasons for its good performance on the men-
tioned datasets, and yet low performance on
another similar, yet larger sentential RE dataset,
Wikidata. As such, we identify noise in Wiki-
data labels as one of the reasons that can hin-
der performance. Additionally, we show as-
sociativity of better performance with better
re-representation, a term from neuroscience re-
ferred to change of representation in human
brain to improve the match at comparison time.
As example, in the given analogous terms
King:Queen::Man:Woman, at comparison time,
and as a result of re-representation, the simi-
larity between related head terms (King,Man),
and tail terms (Queen,Woman) increases. As
such, our observation show that our proposed
model can do re-representation better than the
vanilla model compared with. To that end, be-
side noise in the labels of the distantly super-
vised RE datasets, we propose re-representation
as a challenge in sentential RE 1.

1 Introduction

Sentential relation extraction is about inferring the
relation between two entities in a given sentence.
Various sentential relation extraction datasets are
constructed with distant supervision. Accordingly,
it is assumed that if two entities are related in a
knowledge base such as Wikidata, they are also
related according to the sentence that contain them.
As such, datasets often not only provide sentences
with corresponding entities, but also additional de-
tails such as description, aliases, and types of enti-
ties. Accordingly, to improve performance, various

1https://github.com/bahramiramazan/re-representation

Figure 1: The need for re-representation in sentential
relation extraction (Text from Wikipedia). At com-
parison time, the similarity between related terms in-
creases. Note the entity types as manual label for re-
representation. Note also the proportional word analogy
constructed from the given example here, "Alan Turing":
1912 :: "C.F.GauSS":1777

works introduce complicated models that account
for extra additional details. To that end, the results
of incorporating additional details are not coher-
ent. As example, while in some studies entity type
has shown to improve performance (Bastos et al.,
2021), in some others however, it has shown to de-
grade performance(Vashishth et al., 2018). As such,
weather there are still room for improvement or if
low performance are due to noise and error in the
labels, is an open research question. In this paper,
we aim to offer a deeper understanding of the task
that can help in defining a better goal and objective
for methods that incorporate the additional details
into the sentential context using complex models.
To do so, we propose an intuitive model that out
perform state of the art on most dataset, and then
investigate the reason for its better performance.
To propose our approach, we build on works from
neuroscience. To that end, inference such as sen-
tential relation extraction in which a relation from
one context, is mapped to a relation in another con-
text is referred to as analogical reasoning (Gentner,
1983). In analogies, such as proportional word
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analogies of the form King:Queen::Man:Woman,
’King’ is related to ’Queen’ as ’Man’ is related to
’Woman’, even though pairs (King,Man) or heads
and (Queen,Woman) or tails are different. Sim-
ilarly in sentential relation extraction, given that
according to sentences Si, for i ∈ {1, 2, ..., N};
the head entity, ehi and tail entity, eti are simi-
larly related, we have analogous terms of the form
ehi : eti :: ehj : etj . To that end, studies in neuro-
science suggest that, comparison as the foundation
of any analogical reasoning, changes the representa-
tion of objects being compared (Gentner and Kurtz,
2006; Lorenza Saitta, 2013). As example in (Sil-
liman and Kurtz, 2019) empirical evidence of re-
representation, according to which people changes
the representation of entities in order to improve
the match at comparison time is documented. In
other words, given that analogies are about par-
tial similarity in different contexts (Hummel and
Doumas, 2023), to map a relation from one con-
text to a relation in another context, it is therefore
needed to discard some information in both con-
texts (Lorenza Saitta, 2013) Figure 1. Accordingly,
we found dynamic routing in Capsules network
suitable for the task. Capsules were introduced
first by (Hinton et al., 2011), and dynamic routing
in capsules by (Sabour et al., 2017). They can be
thought of neurons that output different features of
processed entity. We test the proposed algorithm
on relation extraction datasets Wikidata (Sorokin
and Gurevych, 2017), Tacred (Zhang et al., 2017),
Tacredrev (Alt et al., 2020), Retacred (Stoica et al.,
2021), and Conll04 (Roth and Yih, 2004; Markus
and Adrian, 2020). Our observations are summa-
rized as follows:

• Our proposed approach improve state of the
art scores on sentential relations extraction
datasets Tacred, Tacredrev, Retacred, and
Conll04.

• We estimate a significant error rate in labels of
Wikidata, the dataset on which various studies
try to improve model performance by incorpo-
rating the additional details through complex
models.

• We show empirical evidence of re-
representation and its associativity with
better sentential RE performance in neural
network.

2 Related Works

The use of extra additional details about entities
such as entity type, aliases and description, and the
way they are incorporated into the sentential con-
text is one of the main theme of related works. As
such, beside studies that addresses noise in the RE
datasets, the other works deal with extra additional
details and how to best incorporate them in the con-
text. To that end, (Riedel et al., 2010) show that the
vanilla distant supervised method used for gener-
ating sentential RE datasets, result in noisy labels,
and proposes an improved version of the vanilla
method, reducing error rate by 30%. Addition-
ally, in studies related to variants of the common
sentential RE dataset Tacred (Zhang et al., 2017),
Tacredrev (Alt et al., 2020), and Retacred (Stoica
et al., 2021); it is shown that after relabeling the
noisy examples in Tacred, models improve perfor-
mance by 8.0% (Tacredrev) and 14.3% (Retacred)
of F1 score. Moreover, state of art performance
for Tacred, and its variants, is proposed by (Zhou
and Chen, 2022; Park and Kim, 2021). They show
that incorporating abstract label of entities( entity
types) improve model performance. Furthermore,
(Sorokin and Gurevych, 2017) introduces Wiki-
data, a much larger dataset for sentential relation
extraction based on the knowledge base wikidata
(Table 1). To that end, to improve performance
by enriching sentential context, in addition to en-
tity type, (Nadgeri et al., 2021; Bastos et al., 2021)
consider integrating other side information such
as entity description, and aliases, through complex
models such as graph neural network. Moreover,
in (Vashishth et al., 2018), the use of entity types
and relation alias information for improving perfor-
mance is discussed.

3 Problem Formulation

We formulate the sentential RE based on the funda-
mental assumption that it is a type of analogical rea-
soning. To the end, in relation extraction datasets,
according to sentences Si, and Sj we can construct
proportional word analogies of the form ehi : eti ::
ehj : etj , as we have King:Queen::Man:Woman.
As such, a claim based on the studies from neu-
roscience is that our ideal proposed model shall
do re-representation(Silliman and Kurtz, 2019).
More commonly, given Xh

i : Xt
i :: Y h

j : Y t
j , re-

representation can be viewed equivalent to a trans-
formation F such that according to some similarity
measures ψ, when Xh

i is related to Xt
i , as Y h

j is
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Figure 2: Credit assignment in dynamic routing (Heinsen, 2022). The output here has 2 dimensions only, one for
positivity, and the other for negativity. As example, given some sequence of vectors of depth h (25 here), sequence
number n (number of tokens in the respective sentence), and dimension d (1024 here), and some configuration for
the expected output (here depth=1, d=2, n=1), the dynamic routing algorithm works as credit assignment system.
As such, projections of every feature in the input has limited credits at their disposal, and assigns it to the features in
the output. Summing credits over all hidden states for positive feature, result in a value that is greater when the
example is positive, and smaller otherwise(Example sentences are taken from Retacred).

related to Y t
j (positive examples) , we have :

ψ(F(Xh
i ), F(Y

h
j )) ≃ 1

ψ(F(Xt
i ), F(Y

t
j )) ≃ 1

and when Xh
i is not related to Xt

i , as Y h
j is related

to Y t
j (negative examples), we have:

ψ(F(Xh
i ), F(Y

h
j )) ≃ −1

ψ(F(Xt
i ), F(Y

t
j )) ≃ −1

As such, the similarity function ψ returns 1 when
terms come from positive examples and -1 other-
wise. One common example for ψ is cosine similar-
ity between two given vectors. It is to note that, as
in sentential RE, the sentences containing entities
express the relation between entities, it is there-
fore needed that any change of representation be
conditioned on the contextual sentence. As such,
formally the task can be presented as the minimiza-
tion problem below:

min
t∈[s,o]

{ψ(F (Xt
i | Si), F (Xt

j | Sj)) + (−1)p}Ni,j=1

Here N stands for the number of instances in
the dataset, p=1 when both entities come from the
same relation, or from positive examples, and p=0
when entities come form negative examples. Addi-
tionally, Xt

i stands for the embeddings of an entity
or word, and Si is the embeddings for the contex-
tual sentence. Moreover, s stands for subject or
head entity, and o for object or tail entity.

4 Proposed Method

Our proposed model assumes an embedding model
Ω, and a transformation F for obtaining the re-
representations from the embeddings. Before giv-
ing a detailed description of our proposed method,
we characterize it as follows.

1 Given some Xi, as tokens representing sen-
tences, our transformation F obtains a single
vector x1d(out) of some dimension d for the joint
representation of sentence containing entities
ehi , and eti, which are related to some relation
R = ri.

2 Instead of working with an explicit similarity
function such as cosine similarity, our model
is trained to maximize the following condi-
tional probability:

Pθ

(
R = ri | F

(
Ω(Xi)

))

With θ being the model parameters.

3 We show that maximizing the above condi-
tional probability as we propose in this sec-
tion will encourage explicit similarity, as was
explained in Section 3.

Given that entities and sentences are sequence of
vectors, our transformation F can be such, given
a sequence of vectors, it outputs a single vector
x1d(out). To that end, our proposed method for F is
dynamic routing in capsules. Capsules were intro-
duced first by (Hinton et al., 2011), and dynamic
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Figure 3: Over all architecture of our proposed model. We use different heads to classify the relation. On top is the
Decoder, the head that translate from the sentence to entities post-fixed with relation id. Below it, are heads that
implement routing as described in the paper (Heinsen, 2022). In that, H1( gray module in the middle) will identify
positivity and negativity of examples. Under it is H3, the head that find the representation of the relation or sentence
with entities marked as is shown in text on top of the diagram. Above H1 is H2, the head that calculate the joint
representation of concerned entities. To the left is the pre-trained large language model(LLM), the backbone from
which we obtain embeddings.

routing in capsules by (Sabour et al., 2017). In cap-
sules network, neurons are grouped into capsules,
each capsule representing some particular aspect or
feature of the processed entity. Additionally, with
dynamic routing, flow of data from a capsule in a
layer to a capsule in the next layer depends not only
on the weight matrix, but also on coefficients that
itself depends on the data, also referred to as rout-
ing coefficients. The dynamic routing in capsules
network is also called voting by agreement, as a
capsule’s vote is greater for capsules with which it
agrees (Heinsen, 2022).

The dynamic routing algorithm used in this work
(Heinsen, 2022), instead of voting by agreement,
describe itself as credit assignment system Figure
2.

With that being said, to obtain the embed-
dings of the given sequence of words or sen-
tence, we use some pre-trained model Ω such as
bert_base_uncased (Devlin et al., 2019) or roberta-
large (Zhuang et al., 2021):

Xhd
n(inp) = Ω(X)

With X being the tokenized sequence of words for

a sentence, and n(inp) being the number of tokens
in our input sequence, d being the embedding di-
mension, and h representing the number of hidden
states in the pre-trained model.

To generate an output x1d(out) as representa-
tion for the given sentence, the generated multi-
dimensional matrix Xhd

n(inp) is feed into the se-
quence routing algorithm (Heinsen, 2022). We
call the routing module as the routing head. As
such, the routing head used, is configured to con-
vert a sequence of vectors of depth h, number of
sequence n, representing a sentence, term or entity
into a single vector of some dimension d. Addi-
tionally, for experiment, we also create some of the
routing heads to do some specific predefined tasks,
and evaluate if adding them to the main routing
head can be of help. To that end, our main routing
head is used for obtaining the representation of the
sentence with some marking for the concerned en-
tities as is shown in top of the Figure 3. Moreover,
as in most datasets, a significant portions of the
data are negative, we create an special routing head
with two features, one representing positivity ( the
relation between concerned entities is among our
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Dataset Tacred Tacredrev Retacred Conll04 wikidata

No of Relations 41 41 40 5 353
No of Abstract Entities 23 23 23 4 13533
Train Size 68,124 68,124 58465 1283 372,059
Eval Size 22,631 22,631 19,584 - -
Test Size 15,509 15,509 13,418 422 360,334
Negative Size 79.5% 79.5% 79.5% - 29%

Table 1: Statistics of datasets used in this work.

relation set) and another one representing negativ-
ity of examples. The working of the mentioned
routing head is depicted in the Figure 2. A detailed
description of routing heads and the baseline De-
coder is depicted in the Figure 3. In practice, we
experiment and compare performance of a single
routing head, and all routing heads combined with
the Decoder, referred here as collection of experts.
Each head is characterized as follows:

1. H1: Obtains the representation for positivity
or negativity. The output for this head has 2
dimension only, one representing positivity
and another negativity Figure 2.

2. H2: This head learns the joint representation
of head and tail entities.

3. H3: Is used to obtain the representation for the
sentence containing concerned entities. H3 is
the main routing head.

4. Decoder: We use a transformer based decoder
for the baseline model, as is shown in the
Figure 3. As in the example in the mentioned
Figure, the decoder uses the last hidden state
for the sentence as memory, and entities post-
fixed by the corresponding relation id as the
target.

4.1 Optimization

Given the organization of our data into head and tail
entities, ehi and eti, and the corresponding sentences
Si for i ∈ N , and relation r ∈ R, with R being the
relation set, and the embedding model Ω, and the
transformation F based on dynamic routing, and
an instance of data as follows:

D = {(ehi , eti, Si, ri)}Ni=1

where ri ∈ R and i ∈ {1, 2, 3, . . . , N}

Where N is the dataset size. The transformation
F based on dynamic routing, learns a representa-
tion xdi , with some dimension d, such that the loss
below is minimized:

L(θ) = −
N∑

i=1

logPθ

(
R = ri | F

(
Ω(Xi)

))

Here Xi being the tokens for the sentence Si, and
F is the routing head. In practice, by concatenat-
ing the outputs produced by different heads, we
experiment if combining heads, also referred to as
collection of experts Figure 3 may be of any help.
Additionally, if Decoder is among selected heads,
its loss will be added to the classifiers loss as in the
Figure 3.

5 Experiments

5.1 Datasets
We test our model on several sentential relation ex-
traction datasets. Specifically we test the proposed
model on wikidata (Sorokin and Gurevych, 2017),
Tacred (Zhang et al., 2017), Tacredrev (Alt et al.,
2020), Retacred (Stoica et al., 2021), and Conll04
(Roth and Yih, 2004; Markus and Adrian, 2020).
In all datasets, except Conll04, negative example
make a significant portion of the examples. To
that end, there are several factors to note about the
datasets.

1. The ratio of positive and negative examples:
Conll04 has no negative record, while wiki-
data has 22/29% of example as negative, and
all Tacred variants have 79.5% of example as
negative.

2. Number of entity types or manual abstract
label of entities: All Tacred variants has 23
abstract labels for entities as and according
to name entity recognition types in stanford
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NER system (Zhang et al., 2017). Conll04 has
only 4 different types of entities, and Wikidata
has the highest number of abstract labels for
entities 13,533.

3. Number of relations: From number of rela-
tion points of view, wikidata has 353 relation
types, which is the largest among all datasets
considered, while Conll04 has only 5 types of
relations.

5.2 Different Configuration of the Sentence

The assumption for our proposed model is that,
in order to do re-representation, dynamic routing
can do feature selection . As such, we study our
proposed model with different settings or config-
uration of the sentence. Accordingly, a given sen-
tence can provide different level of details about
the entities and their relations. As example, the sen-
tence "<Mask> was getting married to <Mask>.",
wherein the two concerned entities are masked, pro-
vide less details as when entities are not masked.
Similarly, when entities are replaced by entity type,
the level of details are less than the original sen-
tence. This is important as in order to do re-
representation, models need to do abstraction, and
discard some unnecessary details. As such, manual
abstract label of entities or entity types can perhaps
make the job of RE models on some datasets easier.
To that end, the following sentence configurations
are used with markings as is shown in the Figure 3:

• Abstract: We replace surface form of the en-
tity with entity type (abstract label of the en-
tity). example: Germany or France is replaced
by entity type Country.

• Mask: We replace surface form of the entity
with the placeholder, ’MASK’, in the sen-
tence.

• Entities: We use only surface form of the en-
tity as is.

• Mix: The entity type, or abstract label for
entity and its surface form is used together
with some marking. Example: "x was getting
married to y." is transformed into : " [e11] +
person * x [e12] was getting married to [e21]
# person & y [e22]."

Config Model Retacred Conll04

Mix
H3 92.2(80.1) 100.0(100.0)
Decoder 49.3(21.0) 78.6(79.8)

Entities
H3 89.7(58.5) 84.1(84.7)
Decoder 50.4(31.5) 42.1(41.8)

MASK
H3 81.7(54.2) 80.1(79.3)
Decoder – –

Abstract
H3 75.2(48.5) 82.2(80.3)
Decoder 29.1(13.0) 61.8(63.7)

Table 2: Comparative performance of the routing head
H3, and transformer based Decoder on different configu-
ration of sentence or information granularity. Recorded
scores inside parenthesis are F1 Macro, and F1 Micro
otherwise. The backbone model is roberta-large.

5.3 Experiment One: Comparative
Performance on Different Information
Granularity

We investigate performance achievable with our
proposed model, and the transformer based De-
coder on each sentence configuration described
above. As each configuration of the sentence pro-
vide different level of details about entities and
their relation, we refer to different sentence con-
figuration as different information granularity. Ac-
cordingly, the relation between two entities in a
sentence can be mostly predicted in all sentence
configuration considered here; However, the best
result by the proposed model is when the entity
type is added to contextual sentence. For Decoder
however, the best result changes across datasets
considered Table 2. As such, on Retacred, De-
coder’s best score is when entity type is not added
to the sentence( configuration "Entities"). However
on Conll04, it is the other way around. Moreover,
on Retraced, Decoder have relatively low scores,
while on Conll04, our Decoder’s score( 78.6 F1
Micro) is above state of the art ( with state of the
art being 76.5, Tables 5, and Table 2).

5.4 Experiment Two: Entity Types as Manual
Label for Re-Representation

Given that entity types increase the similarity as
is expected for re-representation (a depicted ex-
ample can be seen in the Figure 1), we can view
entity types as manual label for re-representation.
To that end, we extract entities from the respec-
tive sentences, and train the proposed model on
the extracted entities and entity types. This help
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us study entities and entity types in isolation. In
doing so, we consider all sentence configurations
(except Mask) as explained in the Section 5.2. As
such, for Conll04, our proposed model exhibit
same performance with configuration Abstract and
configuration Mix Table 4. As such, we can con-
clude that, on some datasets, the manual label for
re-representations or entity types (configuration
Abstract), result in best performance. A possible
explanation would be: when the entity types or
manual label of re-representation can predict the
relation, or given a relation the entity types for
head and tail entities can be predicted, such as in
Conll04, entity types alone (config Abstract) result
in peak performance and less complexity Table 4.

5.5 Experiment Three: Performance on
Varying Number of Entity Types

Does increasing the number of relation and entity
types, or increased complexity for re-representation
effect performance? To that end, we already ob-
served the relatively good performance by Decoder
on Conll04, the dataset with 4 entity types and 5
relations only Table 2. As such, we also evaluated
the Decoder and the proposed model H3, on the
smaller subset of Retacred, person-person, having
only 6 relations and 1 entity type only. Additionally,
after training on the full dataset, we recorded the
performance on the same subset, person-person*.
Accordingly, Decoder’s performance is better when
number of relation and entity types are smaller Ta-
ble 3, as was noted for Conll04. As such, the ex-
periment support the notion that transformer based
Decoder changes performance across dataset pre-
sumably due to larger number of entity types, and
relations. Unlike the Decoder, the proposed model
exhibit relatively high performance across datasets,
with different number of relation, and entity types.

Dataset Subset H3 Decoder

Full 92.2(80.1) 49.3(21.0)
Person-Person 93.0(82.2) 72.6(60.4)
Person-Person* 89.7(78.3) 51.6(38.2)

Table 3: Performance on varying number of relation and
entity types (config mix).Values inside the parenthesis
are F1 Macro, and F1 micro otherwise. Person-Person
is the subset of Retacred having head and tail entity
types as person only. It is the largest subset of Retacred
categorized by head-tail entity types. Full is the entire
dataset. Person-Person* is performance on the same
subset, but by the model trained on the full Retacred.

Metrics Retacred Conll04

Mix 71.7 100.0
Entities 71.3 48.1
Abstract 62.0 100.0

Table 4: RE using entities extracted from the sentence,
and with routing head H2. The backbone model here is
roberta-large. The reported values are F1 micro.

5.6 Experiment Four: Comparison with State
of the Art

To compare with state of the art, we trained our
proposed model on the mentioned datasets, and
documented the result. The result is shown in the
Table 5. Our observations show that our proposed
model outperforms state of the art on 4 datasets. To
that end, our routing head H3, with roberta-large as
the backbone, keeps a relatively high performance
on all datasets. It outperform state of the art on all
dataset, except Wikidata. In the the Section 6.2 we
show that noise is the main reason for the low per-
formance on Wikidata. Moreover, despite the extra
complexity that use of all heads, or expert heads,
adds to our main model, we noticed little improve-
ment. We therefore did not evaluate the expert head
on Wikidata. Lastly, for our proposed model H3,
the difference with bert-base-uncased (Devlin et al.,
2019) and roberta-large (Zhuang et al., 2021) as
the backbone is noticeable.

6 Observations

6.1 Re-Representation in Neural Network
As suggested initially, treating sentential RE as
analogy, requires some form of re-representation
to improve the match. To check if neural-network
also does re-representation, using a subset from
Retacred test set, we create positive and negative
analogous entities of the form ehi : eti :: ehj : etj
, for all i, j ∈ {1, 2, .., N} such that the corre-
sponding sentence Si and Sj expresses the same
relation between the corresponding entities in pos-
itive examples and different relation in negative
examples. In doing so, we obtain the embedding
for a given entity in the sentence, by feeding the
sentence into the backbone model, and then slice
the entity from the sentence embedding. We then
calculate the cosine similarity, and pairwise eu-
clidean distance between respective head, and tail
entities in both positive and negative examples. We
calculate the mentioned values across hidden states
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(a) As can be seen, before training, the similarity between head and tail terms in positive (Heads +, Tails +) and negative (Heads
-, Tails -) examples are barely distinguishable. However, after training, the model based on dynamic routing, does a good job of
making head/tail terms more similar in positive examples, and dissimilar in negative examples.

(b) The distinction between positive and negative examples are barely distinguishable before training both for head terms
(Heads +, and Heads -) and also for tail terms(Tails +, Tails -). However, after training, and that also specially for the model
based on dynamic routing (*_route +, *_route -) the increase in the distance between head/tail terms in positive examples, are
far less intense than in negative examples.

Figure 4: X-axis represent different hidden layers of the pre-trained LLM. Y-axis represent categories for which
representation’s similarity or distance was calculated. + represent positive analogous examples, and - represent
negative analogous examples respectively. Heads and Tails are the related head and tail terms in proportional
analogy. As example in king:queen::man:woman , (king, man) are head, whereas (queen, woman) are tail. We report
the result of calculations obtained on representation after training with routing heads H3(Heads/Tails_route +/-) ,
and transformer based Decoder (Heads/Tails_decoder -/+). We also report the same before training (Heads/Tails
+/-).
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Model Tacred Tacredrev Retacred Conll04 Wikidata

Entity Marker (2022) 74.6 83.2 91.1 - -
Curriculum Learning(2021) 75.2 - 91.4 - -
REBEL (2021) - – 90.4 76.5 -
KGpool (2021) - - - - 88.6
RAG4RE (2024) 86.6 88.3 73.3 - -

Ours bert H3 84.8 (47.8) 85.3 (49.7) 89.4 (74.0) 99.7(99.8) 84.5 (32.0)
Ours bert H1,H2,H3,Decoder 87.4 (48.3) 88.7(50.9) 88.7 (68.5) 100.(100.) –
Ours Roberta H3 87.1 (61.1) 88.8 (64.2) 92.2(80.1) 100. (100.) 85.6 (32.9)

Table 5: Our method’s performance compared with state of the art. Best score is bold, state of the art is blue. Values
inside the parenthesis are F1 Macro, and F1 micro otherwise. The configuration of sentence is Mix, and backbone is
as indicated. We do not test all heads(H1,H2,H3,Decoder) for Wikidata as we found H3’s performance to be already
good on Wikidata’s noisy labels.

of pre-trained backbone model, both after train-
ing with each training heads H3 and Decoder, and
also before training, and then create a heat map
as is shown in the Figure 4a. Accordingly, "Head
+" , and "Head -" represent the cosine similarity
between heads in positive and negative examples
before training. As can be seen, the similarity is
not much different between positive and negative
examples. However, for the proposed model, after
training, the similarity decreases significantly in
negative examples, making the difference between
positive and negative examples clearly noticeable
( specially in final layers of the backbone model).
Similarly, the pairwise euclidean distance between
positive and negative examples, shown in Figure
4b, after training are clearly distinguishable for
the proposed model(Heads_route +, Head_route -)
than it is for the vanilla Decoder (Heads_decoder
+, Head_decoder -).

6.2 Noise in Wikidata’s Labels

The tow Tacred variants (Tacredrev, Retacred) are
very good attempts to improve data quality and re-
duce error rate in the Tacred. Each of these datasets
improve model performance with 8.0% and 14.3%
F1 score over the original Tacred respectively. In
comparison to Tacred, wikidata has much larger
and diverse types of relations. Its quality however
has not gone a similar study. Instead, a significant
attention has been given in improving model per-
formance by incorporating extra additional details
through complex models. As our model’s perfor-
mance is below state of the art on Wikidata, we
were intrigued to have a look at examples in which
our model disagree with labels from the dataset.

Not surprisingly though, we found out that a signif-
icant portion of errors are due to confusion in the
dataset labels. As example, for instances which our
model disagree with the dataset label, the labels
seem random. More such examples, and statistics
in Appendix B.2. We categorize all examples that
our model disagree with labels from dataset in the
appendix B.2, Table 6 , Table 7, and Table 8.

7 Limitations

Over all the dynamic routing proposed by (Heinsen,
2022) is efficient and scalable as is explained in
the original paper. However using all routing heads
as collection of experts increases the complexity n
folds, where n is the number of routing heads in the
model. However, the good news is that, perhaps a
single H3 head can do a better job as is shown in
the Table 5.

8 Conclusion and Future Research
Directions

In this paper we improve sentential relation ex-
traction performance on several benchmarks. Ad-
ditionally we identify noise as one of the main
cause for low performance on largest sentential RE
benchmark Wikidata. Furthermore, we propose
re-representation as one of the challenges of sen-
tential RE models. Lastly, we show that sentential
RE dataset may not be as much sentence dependent
as expected B.1. For future research direction, we
are planing to study word analogies of the form
a:b::c:d, jointly with sentential RE datasets. Specif-
ically, it would be interesting to see how much im-
provement can training sentential RE benchmarks
bring to word analogy benchmarks.
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A Training and reproducibility

For all routing heads we use the code from (Hein-
sen, 2022). Additionally, we use tokenizers from
https://huggingface.co for bert-base-uncased, and
roberta-large respectively. Our backbone models
are too from https://huggingface.co. Furthermore,
for routing head H3, we train it on datasets Tacred,
Retacred, and Tacredrev with batch size 64, learn-
ing rate 10−5 , and on the dataset Wikidata with
batch size 128, and similar learning rate as for Ta-
cred and its variants. For collection of experts we
use an smaller batch size of 24. For optimizer with
use Adam from torch.optim. Moreover, we find hid-
den state of routing heads to have great influence
on performance. To that end, for H3, w used hid-
den_d=256, and out_dimension=512. Moreover,
we trained the proposed model for Tacred and its
variants for 6 epochs, while we trained only for 1
epoch on Wikidata.

Another point to note is: In case of wikidata,
when entities did not have an entity type ( or in-
stance of as in the dataset), we checked the Wiki-
data knowledge base to retrieve parent class as en-
tity type3 . Furthermore, when entities had several
values as "instance of" or parent class, again we
query Wikidata to check if they have a common
parent class, and used the parent class as the entity
type, if not, the most common class was uses for
entity type. Lastly, unless explicitly mentioned,
all experiments are done with Roberta-Large as
backbone.

B Observation

B.1 Are Sentential RE Datasets Truly
Sentential?

To answer if relation between the entities, can be
inferred without reading the sentence, and only
be looking into entities, we trained and evaluated
the proposed model on entities with configuration
as was discussed for the sentence. The result for
different configurations are recorded in the Table 4.
Accordingly, most relation can be inferred without
reading the concerned sentences.

B.2 Noise in Wikidata’s Labels

On examples which our model disagree with the
dataset Wikidata, we found a pattern. Specifically,
given a pair (p0-p*), where p0 is label(’no relation’)
provided by the dataset, and p*(some relation other

3https://query.wikidata.org

than "no relation") predicted label, there is usually
another category of predictions as (p*-p0). In both
groups of examples, the probability that p * is true
is similar, regardless of the label provided by the
dataset. The group pairs, such as p0-p17 and p17-
p0; show confusion caused as a result of incorrect
labels. Some examples in Table 6.

For ease of understanding, we list Wikidata rela-
tion codes used in the table with corresponding la-
bels as: • P131(located in the administrative territo-
rial entity) • P17(country) • P47(shares border with)
• P118(league) • P571(inception) • P47(shares bor-
der with) • P361(part of ) • P463(member of)

Label-Prediction
probability of
P* being True count

P0-P17 80.6 4090
P0-P131 90.0 4037
P0-P47 60.0 3518
P0-P118 70.0 2155
P0-P571 50.0 1718
P0-All 70.0 29021

P47-P0 60.0 12184
P131-P0 80.0 4775
P17-P0 70.0 4312
P361-P0 60.0 2152
P463-P0 70.0 1546
All-P0 60.0 40155

label!=prediction - 106534

Table 6: Top categories(sorted) on which model’s pre-
dictions does not match with the label from benchmark.
* represent a relation other than ’no relation’. The proba-
bility here is calculated by sampling 10 random example
from each category, and then manually checking if p*
holds.
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Label-Prediction Sample

P0-P17
P0:No relation
P17:country

Los Dominicos is a metro station on
Line 1 of the Santiago Metro in San-
tiago , Chile, and is also the eastern
terminal of this line .

P0-P131
P0:No relation
P131: Located in the
administrative territorial entity

Boechout is a railway station in Boe-
chout , Antwerp , Belgium .

P0-P47
P0:No relation
P47:Shares border with

There are now approximately twenty
restaurants in operation in Georgia ,
and about nine more in North Carolina
, South Carolina , Florida , and Ten-
nessee.

Table 7: Random sample from P0− P ∗, where p∗ is any relation from relation set other than no relation, and p0 is
no relation

Label-Prediction Sample

P6-P138
P6:head of government
P138:named after

She later served in the Blair ministry
under Prime Minister Tony Blair in a
number of roles , becoming Britains
first female Foreign Secretary in 2006
.

P264-P136
P264:record label
P136:Genre

CD1 is the unofficial name of an unti-
tled album by English industrial music
band Throbbing Gristle , released in

1986 through record label Mute .

P1416-P102
P1416:affiliation
P102:member of political party

Other famous Solidarity activists such
as [e11] Anna Walentynowicz Soli-
darity activists such as Anna Walen-
tynowicz , Zbigniew Romaszewski and
Antoni Macierewicz have visited the
Basilica as well .

Table 8: Random sample from p∗ − p∗, where p∗ is any relation from relation set other than no relation. Consider
the first row in which both label and prediction is correct.
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Abstract

Automatic Speech Recognition (ASR) sys-
tems rely on large-scale, high-quality train-
ing datasets. However, low-resource lan-
guages, such as Ewe, remain underrepre-
sented in the development of these sys-
tems. This study presents the development
of a large-scale open-source speech dataset
for Ewe, a Niger-Congo language spoken
across Ghana, Togo, and Benin. Us-
ing supervised crowdsourcing, participants
recorded descriptions of preselected cultur-
ally relevant images using a customized
Android app. We collected 203,336 vali-
dated speech samples (1130 hours) from
1937 speakers, along with 107 hours of tran-
scribed audio. To demonstrate the utility
of the dataset for ASR, we fine-tuned Whis-
per base models, which were originally
trained on Shona and Yoruba. The evalua-
tion results suggest that both base models
adapted well to Ewe and achieved a word
error rate of 37%, an orthographic error
rate of 45%, and a character error rate of
12%. A qualitative error analysis identified
challenges including orthographic incon-
sistencies, morphological complexity, pho-
netic confusion, and dialectical variations.
Thus, highlighting the need for dialect-
sensitive and morphologically aware ASR
modeling. The open-source release of this
dataset provides a critical resource for ad-
vancing ASR research and linguistic preser-
vation efforts for underrepresented African
languages. Future work will explore self-
supervised learning techniques to further
improve performance using the unlabeled
Ewe speech corpus.

1 Introduction

Africa’s linguistic diversity poses major chal-
lenges for automatic speech recognition (ASR)

because of the limited availability of high-
quality open-source speech and text data for
low-resource languages (LRLs). This is fur-
ther exacerbated by the fact that over 1500
languages are endangered and may be lost by
the end of the century (Bromham et al., 2022).
Thus, prioritizing endangered languages via
ASR development is crucial to preserving lin-
guistic heritage, ensuring inclusivity (Chizzoni
and Vietti, 2024), and preventing the loss
of valuable cultural and historical knowledge
(Jimerson et al., 2018).

Although natural language processing
(NLP) has made significant progress par-
ticularly, ASR modeling in high-resource
languages such as English, Mandarin, and
Spanish, only a small fraction of the world’s
languages are supported by these technologies
(Peterson et al., 2021). This is evident in
the limited availability of annotated datasets,
computational tools, and research funding
for LRLs. Interestingly, this is not different
in Ghana, which is a multilingual country
with over 80 languages, yet all are LRLs.
Existing multilingual speech datasets such
as the Common Voice project (Ardila et al.,
2020), African Speech Dataset (Olatunji et al.,
2023), and GlobalPhone (Schultz, 2002) do
not include the Ewe language.

Ewe is a Niger-Congo language spoken by
approximately eight million people in Ghana
and neighboring countries, Togo and Benin
and neighboring countries. Yet it lacks the
diverse corpora needed to develop ASR mod-
els and speech technologies. Although some
studies (Antwi-Boasiako and Agyekum, 2022;
Dei, 2024) have attempted to document and
preserve some Ghanaian languages including
Ewe, these initiatives are constrained by cost,
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lack of expertise, and technological support.
These languages are also limited by standard-
ized spelling conventions, dialectal variations,
unspecified orthographies, and potential code-
switching. For instance, Ewe has different di-
alectal variants across different regions, pri-
marily in terms of orthography and pronun-
ciation. These variations stem from the fact
that Ewe is spoken across multiple countries;
Ghana (including different regions), Togo, and
Benin, and each of these countries or regions
have its own sociolinguistic influences. While
its core grammatical structure remains consis-
tent, dialectal differences manifest in phonet-
ics, vocabulary, and spelling conventions (Sam
and Agbloe, 2024). Additionally, digitization
efforts are limited by the lack of a standardized
Ewe digital keyboard that can be installed on
computers. This complicates digitization and
makes data collection and transcription more
challenging. Other previous attempts to dig-
italize Ewe are limited to context such as re-
ligious texts (Resnik et al., 1999), which may
introduce domain-specific biases during ASR
model training.

2 Related Work

Current methods of speech data collection
including sentence reading and uncontrolled
crowdsourcing are expensive, time-consuming,
and logistically complex. This makes large-
scale dataset development in low-resource en-
vironments (LREs) challenging. Although ex-
isting speech data collection approaches have
been demonstrated to be effective in some ju-
risdictions (Ragano et al., 2020; Panayotov
et al., 2015) they may not be appropriate
for collecting Ewe. For instance, the sen-
tence reading approach utilized by studies
(Ibrahim et al., 2022; Georgescu et al., 2020;
Gutkin et al., 2020) may be ineffective for
languages with limited standardized orthogra-
phies. Moreover, many indigenous speakers
of Ewe may lack the functional literacy re-
quired to accurately read sentences written in
Ewe. Given the linguistic complexity of Ewe,
crafting sentence prompts that capture the full
range of natural speech and spontaneous utter-
ances would require considerable effort.

While (Callison-Burch and Dredze, 2010)
utilized Amazon’s Mechanical Turk for un-

controlled crowdsourcing speech data collec-
tion, this method may not be feasible in re-
gions with limited digital literacy and inter-
net access. Also, uncontrolled crowdsourcing
(Ardila et al., 2020) often results in inconsis-
tent recording conditions, varying audio qual-
ity, and a lack of standardized quality checks,
which affects the reliability and usability of
the resulting dataset. This necessitates the de-
sign of a more structured and contextually ap-
propriate approach for collecting Ewe speech
data. 

Accordingly, this study seeks to use a scal-
able and cost-effective approach to collect, cu-
rate, and evaluate a large speech dataset for
Ewe. Specifically, it aims to collect at least
1000 hours of spontaneous speech data and
100 hours of transcribed text in Ewe language.
The dataset will be evaluated by training an
ASR model in Ewe. This study is expected
to make several key contributions to theory
and practice. Firstly, it will address the crit-
ical data scarcity challenge by providing an
open-source, large-scale, high-quality speech
dataset for Ewe. This is expected to signif-
icantly expand available linguistic resources
for ASR development. Also, by employing a
scalable and cost-effective data collection ap-
proach, this study offers a replicable frame-
work that can be adapted for other LRLs. This
study will contribute to the development of
ASR technology by leveraging existing ASR
models such as Whisper Small to finetune and
evaluate an ASR model for Ewe. Ultimately,
this study seeks to advance linguistic preser-
vation efforts, enhance digital inclusivity, and
set a foundation for future advancements in
speech technology for Niger-Congo languages.

3 Methods and Materials

3.1 Ewe Speech Data Collection
Pipeline

Ewe is linguistically complex. Hence, although
it has a simple grammatical structure that
makes it easy to decompose polysyllabic words
into monosyllabic roots, it is characterized by
unique phonological, morphological, and syn-
tactic features. It is a tonal language with
three main tones (high, mid, and low), that
are used to distinguish the meaning of words.
Hence, a phonetic structure may have dif-
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ferent meanings depending on the tone used
(e.g., ”to” means ”mountain” in one tone and
”ear” in another). This makes it a challenge
for speech recognition when compared to non-
tonal languages such as English. Ewe also has
a complex morphophonemic process (vowel
harmony and nasalization) which affects the
pronunciation of words depending on their syn-
tactic environment. It is characterized by sig-
nificant dialectal variations, where there are
differences in pronunciation, vocabulary, and
grammar based on regions (Sam and Agbloe,
2024). These variations make the development
of a standardized speech recognition system a
challenge. Nonetheless, the development of an
Ewe dataset would augment ASR research and
provide opportunities to develop technologies
for over eight million speakers to support edu-
cation, healthcare, and government services.

Existing speech data collection approaches
are not well-suited for a LRL such as Ewe.
Thus, a more structured and contextually ap-
propriate approach for collecting Ewe speech
data is necessary. To determine the most effi-
cient approach, a focus group discussion with
both functionally and non-functionally literate
participants was conducted. The discussion re-
vealed that since this study seeks to ensure a
diverse representation of the Ewe language, as
well as capture all possible complexities and
scenarios of the language, then sentence read-
ing would be impractical. This is because most
of the study participants would be unable to
read Ewe. Thus, image descriptions were con-
sidered the most suitable approach for collect-
ing speech data in Ewe. This approach will
facilitate the collection of a diverse range of
spoken words in the form of sentences and also
address the challenges of performing sentence
segmentation of audio data manually (Ulinian-
syah et al., 2016).

Over 8000 images were initially extracted
from online sources including Pinterest and
Google images. Out of which a subset of
1000 images cutting across 50 categories (such
as Sanitation, Tourism, Weather, Technology,
Automobile, Security, TransportatioRobbien,
Architecture, Fashion, Food, Trading, Hos-
pitality, Lifestyle, Health/Medicine, Agricul-
ture, through Entertainment, Arts/crafts, Sci-
ence, Mining, Education, Governance, Leisure,

Home/Housing, Religion, Engineering, Acci-
dents, Sports, Culture, Family, and Nature)
were selected during the focus group discus-
sion. Selected images were required to be
easily describable in at least three different
ways between 15 seconds and 30 seconds.
In addition, images were screened to ensure
they were devoid of any nudity or profan-
ity. Context specificity was another consid-
eration. This was to ensure that the selected
images were culturally and linguistically rele-
vant for the native speakers of Ewe. The im-
ages were uploaded onto an Android mobile
app (UGSpeechData) that was developed to
collect the data. The images alongside the
URLs were integrated into the app’s image
database. The app was designed to operate
on-device and with/without the Internet. Fig-
ure 1 shows the data pipeline from image se-
lection to data finalization.

3.2 Study Participants and Speech
Data Collection

Almost 2000 volunteers from diverse Ewe-
speaking regions were recruited using conve-
nience sampling and snowballing. Participants
signed up and were trained to use the app
to record image descriptions following a set
of predefined rules. They signed the consent
form and provided relevant demographics, in-
cluding their age, gender, and recording envi-
ronment. In addition, the app retrieved the
device’s name and the recording timestamp.
Subsequently, all this data was stored in a file
linked with the audio files.

Participants were required to describe the
selected 1000 images in Ewe. Each image was
limited to a single recording by a specific par-
ticipant, and the app would only allow record-
ing to start when there was little or no back-
ground noise. Participants could save, replay,
and delete their recordings. However, the app
was designed to only permit an audio file to be
saved if it was between 15 and 30 seconds; if
there was less than a three-second pause dur-
ing the description; and if there were no exces-
sive speech mannerisms/fillers in the descrip-
tion.

Furthermore, to ensure that the recruited
participants could speak Ewe fluently, they
were initially assigned 10 images and were re-
quired to record descriptions of the 10 images
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Figure 1: Data Collection Pipeline Using Image Prompts

Figure 2: Distribution of audio clip duration in the
dataset

to check for adherence to the rules of recording,
language fluency, and audio quality. Restric-
tions to continue recording audio descriptions
of the remaining 990 images were removed by
the authors if at least 8 out of the 10 descrip-
tions were validated and accepted. An audio
file was valid and accepted if: the image de-
scription was in Ewe, there was no conflict-
ing background sound in the recording, the
audio was naturally audible, the description
matched the displayed image and did not con-
tain excessive use of English words, or filler
words. Participants with less than 8 accepted
recorded audio files were blocked and compen-

sated but could no longer participate in the
study. Out of the 2000 participants who were
initially recruited, 1905 including 1076 males
and 816 females passed the pre-selection phase.
Their ages ranged between 18 and 74 years old
with a majority between 18 and 45. See Ta-
ble 1 for a summary of the participant’s demo-
graphics and the number of audio files. A total
of 203,391 audio samples, equivalent to 1,198
hours were recorded. Although participants
were required to provide audio descriptions of
1000 images, they were at liberty to stop the
recordings at any point. The audio durations
range from 15 to 30 seconds, with most clips
concentrated between 15s and 20s, and a grad-
ual decline in the number of longer clips from
21s to 30s. Figure 2 shows the distribution of
audio duration in seconds.

3.3 Audio Validation and
Transcription

Following the collection of speech samples,
thirty participants who recorded were reas-
signed to validate the audio based on the
predefined rules. They were further trained
on the stringent validation rules specified ear-
lier (see Section 2.1). Out of the 203,391
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Gender No. of recorders No. of audio files recorded
Male 1076 121,116
Female 816 81,684
Other 13 591
Total 1905 203,391

Age range No. of recorders No. of audio files recorded
18–25 751 56,361
26–35 606 84,544
36–45 287 32,676
46–55 149 17,175
56–65 71 9,796
66–75 30 2,613
Unspecified 11 226

Table 1: Distribution of participants’ demographics across audio recordings.

(1198 hours) collected speech samples, 203,336
(1130 hours) speech samples passed the qual-
ity checks and formed the Ewe speech dataset.
Furthermore, twenty linguists were trained to
transcribe the validated speech samples using
a structured workflow. We sought to tran-
scribe at least 100 hours out of the 1130 hours
of validated speech samples. A maximum of
240 audio files were randomly assigned to a
transcriber every 48 hours. Each file was
transcribed by two linguists and in situations
where there are conflicts in the transcription,
the audio will be passed on to a third linguist
for conflict resolution. To facilitate transcrip-
tion, a custom Ewe keyboard was developed
to incorporate diacritics and special charac-
ters essential to the language. The keyboard
utilizes the standard QWERTY keyboard lay-
out and incorporates all special characters to
support the Ewe orthography (i.e., including
diacritics and tonal marks). The Ewe alpha-
bet consists of 30 characters including the 26
letters of the English alphabet, excluding c, j,
and q which were replaced by ɔ, ɣ, and ƒ re-
spectively. In addition to the standard alpha-
bet, the Ewe keyboard includes these special
characters: ɖ, ŋ, ɛ, ɔ, ɣ, ʋ.

4 The Ewe Speech Dataset and
Automatic Speech Recognition
Experiment

The generated dataset consists of 203,336
(1,130 hours) validated audio speech samples,
along with 19,152 (106.4 hours) of transcribed

audio containing 31,756 unique words. Each
audio file is between 15 and 30 seconds long.

Audio speech samples were received from
participants in two regions of Ghana: Greater
Accra and the Volta Region. Within the
Volta Region, data was collected from eight
towns, namely Anloga, Keta, Peki, Akatsi, Ho,
Juapong, Kpando, and Sogakope. The record-
ings were done in different environments, but
the majority were done outdoors. Specifi-
cally, 118,193 recordings were done outdoors,
74,169 were done indoors, 2,465 were done in
offices, 66 were done in studios, 144 in buses,
and 6,755 in unspecified environments. The
dataset is open-source and available at GitHub
and Science Databank (Wiafe et al., 2025).
See Table 2 for a summary of the Ewe dataset.
Next, using the transcribed audio recordings,
we test the suitability of the generated speech
corpus for automatic speech recognition and
also conduct a qualitative error analysis of the
predicted transcriptions.

graphicx

4.1 Data Preparation, Fine-tuning and
Evaluation

The initial dataset used for modeling com-
prised 106.4 hours of transcribed audio, en-
compassing 19,152 audio files. To ensure data
quality and to eliminate potentially invalid en-
tries, audio files that exceeded 30 seconds in
duration and transcriptions containing fewer
than 10 characters were excluded. Follow-
ing this refinement, the final dataset consisted
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Gender
Total no

of audio files
Equivalent

in hours Outdoors Indoors Other Office Car Studio Bus

Total no. of audio files by environment
Male 121 116 673.98 68 300 46 162 3 438 1 850 931 412 23
Female 81 684 453.80 49 851 27 513 3 317 615 17 250 121
Other 536 2.98 42 494 0 0 0 0 0
Totals 203 336 1 130.76 118 193 74 169 6 755 2 465 948 662 144
Summary of Transcribed Files

Gender
Total no

of audio files
Equivalent

in hours Outdoor Indoor Other Office Car Studio Bus

Male 10 870 60.39 4 372 5 729 398 210 140 21 0
Female 8 282 46.01 4 929 3 107 114 80 0 52 0
Totals 19 152 106.4 9 301 8 836 512 290 140 73 0

Table 2: Summary of the dataset (validated and transcribed)

of 19,149 audio files with a sampling rate of
16kHz. The dataset was partitioned into train-
ing sets (13,382 files, 70%), test sets (3,847
files, 20%), development sets (1,535 files, 8%),
and validation sets (385 files, 2%). In terms of
speaker distribution, the training set included
163 unique speakers, while the test, develop-
ment, and validation sets contained 137, 130,
and 109 unique speakers, respectively.

We selected the Whisper Yoruba and Shona
base models (Radford et al., 2022) as base
models due to the linguistic similarities be-
tween Yoruba and Ewe. Both languages share
a similar writing system, are tonal with three
tone levels, and exhibit some lexical overlap.
For example, ”mouth” is enu in Yoruba and
enu/nu in Ewe, and ”father” is baba in Yoruba
and papa in Ewe. We fine-tuned both base
models on the prepared dataset using Google
Colab with NVIDIA A100 GPUs.

4.2 Training setup
The model was fine-tuned with the following
hyperparameters: a batch size per-device of
16, gradient accumulation steps of 1, and a
learning rate of 1e-5. We used the AdamW op-
timizer and applied a constant_with_warmup
learning rate scheduler with 50 warm-up steps.
Mixed precision training (fp16) and gradient
checkpoint were enabled to reduce memory us-
age. The training process consisted of 2400
steps, and we evaluated the model’s perfor-
mance every 400 steps using the Word Error
Rate (WER), arthographic error rate (OER),
and character error rate (CER) as the pri-

mary metrics. These are widely used metrics
for evaluating ASR performance (Fatehi et al.,
2025; Mensah et al., 2025). Table 3 summa-
rizes the results of the training loss, valida-
tion loss, OER, CER, and WER achieved at
each evaluation checkpoint for the Shona and
Yoruba base model. It was observed that both
models exhibited similar performance trends
across metrics. While training loss consis-
tently decreased throughout, validation loss
began to plateau after approximately 1600
steps. The lowest error rates across all met-
rics were recorded at 2000 training steps, with
the Yoruba base model achieving an OER of
44.98%, WER of 37.12%, and CER of 12.43%,
and the Shona base model achieving an OER
of 45.11%, WER of 37.17%, and CER of
12.50%. Beyond this point, error rates showed
slight increases, suggesting possible overfitting.
Consequently, the 2000-step checkpoint was
selected as the best-performing model for Ewe
ASR. These results suggest that both base
models adapt well to Ewe, with the Yoruba
base model slightly outperforming the Shona
model on all error metrics. Table 4 shows sam-
ple transcriptions predicted by the final model
and the corresponding original text using the
validation set. Irrespective of the relatively
high error rates, the model was observed to
make intelligible transcriptions.

4.3 Qualitative Error Analysis on the
Predicted Transcriptions

Although it may be argued that the WER of
37% is high, (Chizzoni and Vietti, 2024) posit
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Step Training
Loss

Validation
Loss

OER
(Shona/Yoruba)

WER
(Shona/Yoruba)

CER
(Shona/Yoruba)

400 0.50 0.58 52.37/51.88 44.57/44.15 15.05/14.89
800 0.48 0.52 48.49/48.65 40.52/40.66 13.69/13.75

1200 0.38 0.49 47.10/46.80 38.72/38.46 13.22/13.03
1600 0.36 0.48 46.08/45.92 37.86/37.71 12.83/12.70
2000 0.31 0.48 45.11/44.98 37.17/37.12 12.50/12.43
2400 0.31 0.47 45.56/45.43 37.58/37.48 12.86/12.97

Table 3: Model performance for the Shona and Yoruba base model

that the CER is a better evaluation metric
in instances where the base model was not
trained on the LRL data in question. Regard-
less, a qualitative error analysis was conducted
to understand factors contributing to the rela-
tively high error rates (see Table 3). Although
the model generally produced intelligible tran-
scriptions, several recurring challenges were
identified across orthographic, linguistic, and
acoustic dimensions.

1) Orthographic inconsistencies

a) Non-standard spelling of English
loanwords. Because most loan-
words lack fixed Ewe spellings, tran-
scribers wrote them phonetically. Ex-
ample: “machine’’ appeared as masini
or mashini.

b) Dialectal vs. formal spellings.
Mixing of Southern-Ewe forms with
the formal standard produced mis-
matches. Example: model: yi nye
(Southern) vs. reference: si nye (for-
mal).

2) Morphological challenges — the model
sometimes mis-segmented Ewe’s agglutina-
tive morphemes.

a) Reference: ...enye nugometsi kpak-
ple agbalē gbadza aɖe...
Prediction: ...enye nugo me tsi kpak-
ple agbalē gbadza aɖe...
Error: nugometsi → nugo me tsi

b) Reference: Devia ɖewo tsi atsitre…
Prediction: Devia ɖewo tsatsitre…
Error: tsi atsitre → tsatsitre

c) Reference: exɔtudzikpɔla aɖe le wo
gbɔ

Prediction: exɔ tu dzikpɔla aɖe le
wo gbɔ
Error: exɔtudzikpɔla → exɔ tu
dzikpɔla

3) Phonetic confusions — substitutions be-
tween phonetically similar consonants, es-
pecially affricates vs. stops.

a) /dz/ ↔ /z/
Reference: Dzo bi teƒe sia
Prediction: Zo bi teƒe sia
Error: Dzo → Zo

b) /dz/ ↔ /d/
Reference: Nufiala dzidzim be ya fia
nu
Prediction: Nufiala didim be ya fia
nu
Error: dzidzim → didim

4) Dialectal pronunciation variation Ewe
exhibits major dialectal differences. The
model often defaulted to Southern-Ewe pro-
nunciations, causing mismatches when the
reference used another variety. Example:
Reference: Yevuwo wonye (standard
Ewe)
Prediction: Yewuwo wonyo (Ewe‐Dome
dialect)
Error: wonye → wonyo

5) Mistranscription with inser-
tion/substitution Rare but notable
cases where acoustically ambiguous seg-
ments led to entirely different words:
Example:
Reference: Buno aɖɛ le suku
Prediction: Nubuno aɖɛ le suku
Error: Buno → Nubuno
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Original Text Predicted Text

Ŋutsu etɔ̄wo le mashinidɔwɔƒe le dɔ wɔm, wo
dometɔ eve tɔ ɖe gakpo gā lɔbɔ aɖe yi le dzi
ŋu le ŋku lem ɖe eŋu. Ɖeka tɔ ɖe adzɔge le
wo kpɔm. Wodo awu amadede si nye orange
eye woɖɔ dɔwokukuwo hā.
Three men are at work in a machine shop, two
of them are standing on a big, long steel stick
that is above and staring at it. One stood at
a distance watching them. They wore orange
outfits and helmets.

Ŋutsu etɔ̃wo le machinidɔwɔƒe le dɔ wɔm. Wo
dometɔ eve tɔ ɖe gakpo gã lɔbɔ aɖe yi le dzi ŋu
le ŋku lém ɖe eŋu. Ɖeka tɔ ɖe adzɔge le wo
kpɔm. Wodo awu amadede yi nye ɔɖɔɛndzi
eye woɖɔ dɔwɔ kukuwo hã.
Three men are at work in a machine shop, two
of them are standing on a big, long steel stick
that is above and staring at it. One stood at
a distance watching them. They wore orange
outfits and helmets.
WER=39%, CER=11%, Cosine Similar-
ity=95%

Woɖo kplɔ̄ atɔ̄ ɖe xɔ me. Amewo nɔ kplɔ̄ ŋu
hamehame. Ame bubu aɖewo nɔ wo ŋgɔ eye
wonɔ nu ƒom na wo. Ame siwo le kplɔ ŋu la
ɖo to hele amea ƒe nu ƒom sem.
They set up five tables in a room. There were
all kinds of people around the table. There
were others in front of them and talking to
them. The people at the table were quiet and
listening the talk.

Woɖo kplɔ atɔ̄ ɖe xɔ me. Amewo nɔ kplɔ ŋu
hamehame. Ame bubu aɖe nɔ wo ŋgɔ eye
wonɔ nu ƒom na wo. Ame siwo le kplɔ ŋu
la ɖo to hele amea ƒe nu ƒom sem.
They set up five tables in a room. There were
all kinds of people around the table. There
were others in front of them and talking to
them. The people at the table were quiet and
listening the talk.
WER=18%, CER=4.5%, Cosine Similar-
ity=98%

Table 4: Sample of ground truth vs. predicted transcriptions

5 Discussion

The performance of the fine-tuned Whisper
Yoruba model on the Ewe dataset, achieving
a word WER of 37% and CER of 12% is con-
sistent with expectations for low-resource en-
vironments (LREs). Previous studies (Fatehi
et al., 2025), have shown that automatic
speech recognition (ASR) is dependent on the
volume and quality of training data. The
Common Voice project (Ardila et al., 2020)
demonstrated that while community-driven
data collection efforts help address issues of
limited labeled speech date, achieving low er-
ror rates remains challenging without signif-
icant resources for transcription standardiza-
tion and quality control. In high-resource envi-
ronments (HREs), models achieve significantly
lower error rates of less than 10% because they
are trained on tens of thousands of hours of
annotated speech (Baevski et al., 2020). How-
ever, in LREs such as the Ewe language, even
with 106 hours of transcribed data and dili-

gent data collection efforts, the model’s per-
formance may have been constrained by the
relatively small labeled data, dialectal varia-
tion, and orthographic inconsistencies. Be-
sacier et al. (2014) argue that irrespective
of advanced modeling techniques, there is an
elevated risk of error rates, particularly for
tonal and morphologically rich languages that
lack large, domain-specific corpora. Dialec-
tal variation and phonetic diversity, as ob-
served in this study for Ewe, introduce sub-
stantial complexity. Dialectal shifts across re-
gions (Ghana, Togo, Benin) result in pronun-
ciation and vocabulary differences that pose
challenges for ASR systems trained on limited
samples. Orthographic inconsistency further
exacerbates model error rates, as shown by
(Kim et al., 2025) who highlighted the difficul-
ties of building reliable models for languages
with non-standardized or emerging writing sys-
tems. More specifically, the qualitative er-
ror analysis showed that orthographic incon-
sistencies, particularly with English loanwords
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and dialectal variations, introduced ambigui-
ties that affected transcription accuracy. It
was observed that the morphological complex-
ity of the Ewe language, especially its ag-
glutinative nature, led to frequent segmenta-
tion and merging errors. Additionally, pho-
netic confusion between similar sounds (e.g.,
/dz/ vs. /z/) and dialectal variations in pro-
nunciation may have compounded the ASR
model’s challenges. Despite leveraging trans-
fer learning from a linguistically related lan-
guage (Yoruba), the results show that adapta-
tion alone cannot fully resolve the dialectical
diversity or phonetic complexity intrinsic to
Ewe.

6 Conclusion

This study introduced a large-scale, validated
speech corpus for the Ewe language, compris-
ing 1,130 hours of audio recordings and 106
hours of transcriptions. By employing an in-
novative image-based prompting method and
controlled crowdsourced data collection strat-
egy, this study provides a linguistic resource
for advancing ASR development in LRE. Fine-
tuning experiments with the Whisper Yoruba
model demonstrated the dataset’s utility while
also highlighting persistent challenges posed
by dialectal variation, orthographic inconsis-
tency, and morphological complexity. Find-
ings from this study affirm that transfer learn-
ing from related languages offers practical
advantages but cannot fully substitute for
in-domain, dialectally representative datasets.
This study also suggests the need for mor-
phologically aware and dialect-sensitive mod-
eling approaches to improve ASR accuracy for
languages such as Ewe. Future work should
prioritize leveraging this study’s unlabeled
speech corpus through self-supervised learning
techniques and explore domain-adapted lan-
guage modeling to enhance transcription relia-
bility for critical applications such as health-
care, education, and public service delivery.
By addressing these linguistic and technolog-
ical gaps, this research lays the foundation
for more inclusive speech technologies that
preserve and promote the use of indigenous
African languages. The data splits and trained
model is publicly available on GitHub and
Huggingface.

Limitations
While self-supervised learning approaches,
such as wav2vec 2.0 (Baevski et al., 2020),
have shown promise in reducing the depen-
dence on labeled data by leveraging large
amounts of unlabeled audio, their applica-
tion is not without challenges. Although the
dataset collected in this study comprises 900
hours of unlabeled Ewe speech, the compu-
tational constraints limited the feasibility of
training with wav2vec. Access to large-scale
computing resources remains a significant bot-
tleneck in LRE research. This study argues
that, in LREs, model performance is funda-
mentally constrained by linguistic complex-
ity and computational resources rather than
modeling innovations alone. Addressing these
challenges is essential to advancing equitable
access to speech technologies for underrepre-
sented languages. Future research may build
on these findings by prioritizing the develop-
ment of scalable methodologies and resources
that enable the advancement of ASR technolo-
gies for LRLs, such as Ewe and other Ghana-
ian languages.
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Abstract

Code-mixing presents significant chal-
lenges for Automatic Speech Recognition
(ASR), especially for Indian languages, due
to homophone ambiguity, domain-specific
word identification, and data scarcity. Tra-
ditional ASR models struggle with these
complexities, often failing to differentiate
between phonetically similar words in mul-
tilingual contexts. To address this, we pro-
pose CLEAR, a novel rescoring model that
integrates descriptive prompting and LLM-
based rescoring while analyzing the im-
pact of n-best hypotheses across multiple
beam widths. CLEAR enhances ASR perfor-
mance, achieving S-WER of 26.9, P-WER
of 26.46, and T-WER of 25.04—improving
by 6.9%, 13.47%, and 4.42%, respectively,
over the best baseline TDNN. These find-
ings demonstrate that CLEAR effectively re-
solves homophone ambiguities and refines
transcriptions, leading to a 13.56% S-WER
and 7.77% T-WER reduction over decoder
only fine-tuned Whisper.

1 Introduction
Code-mixing and code-switching are prevalent
linguistic phenomenon in multilingual commu-
nities, where speakers alternate between lan-
guages within a single discourse. The terms
code-switching and code-mixing are often used
interchangeably1; however, they carry distinct
linguistic meanings. Code-switching is inter-
sentential where the language/code switch oc-
curs at the utterance level; while code-mixing
is intrasentential where the switch happens
at the word or phrase level within a sentence
(Thara and Poornachandran, 2018; Setiawan,
2023; Winata et al., 2022).

Developing automatic speech recognition
(ASR) systems for code-switched speech

1We will also use these two terms interchangeably
to refer our input setting in this paper.

Prompt: This transcript is a code-switched text. Mix of devnagri and english words are 
present. Text is related to tutorials on academic or technical subjects.

MHSA

MHCA

SOP Prompt SOT Hi transcribe notimestamps …

MLP

यह मɇने search enginelist नामक 
एक dialog box खलुता है
यह मɇने search indian lists नामक 
एक dialog box खोलता है
यह मɇने search engine list नामक 
एक dialog box खलुता है
यह मɇने search engine list नामक 
एक dialog box खलुता है
ये manage search engine list 
नामक एक dialog box खलुता है

Rescorer
(LLM)

Mel Spectogram

यह मɇने search enginelist नामक 
एक dialog box खलुता है

ये manage search engine list 
नामक एक dialog box खलुता है

(N- Best Hypotheses)

MLP

MHSA

2 X CONV1D 
+ GELU

W
hi

sp
er

 E
nc

od
er

W
hisper D

ecoder

Figure 1: Proposed architecture of CLEAR.

presents unique challenges due to the na-
ture of the language(Çetinoğlu et al., 2016).
Code-switching introduces linguistic complex-
ities such as cross-lingual homophone disam-
biguation (e.g., Bill in English means a re-
ceipt or a piece of paper; however, िबल(Bill)
in Hindi means a hole or a burrow) (Yu et al.,
2024), code-switching point detection (Wang
et al., 2019), and the identification of embed-
ding and matrix languages, which are crucial
for determining the correct syntactic struc-
ture (e.g., Subject-Verb-Object (SVO) in En-
glish vs. Subject-Object-Verb (SOV) in Hindi)
(Iakovenko and Hain, 2024). Accurately mod-
eling these aspects is essential for generating
grammatically coherent transcriptions.

To mitigate these challenges, recent ad-
vancements (Prabhavalkar et al., 2023) in ASR
have been driven by innovations in neural
architectures, training strategies, and robust
learning techniques. Many explorations in end-
to-end ASR leveraged transformer-based en-
coders and self-supervised pretraining to learn
rich representations from raw acoustic sig-
nals (Baevski et al., 2020; Hsu et al., 2021;
Chadha et al., 2022). Whisper (Radford
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et al., 2023) is one of most popular state-of-
the-art multilingual ASR models, trained on
630K hours of data, that can transcribe, trans-
late, and detect speeches across 99 languages.
Peng et al., 2023 incorporated a mixture of
language tags, i.e., <zh><en> for Mandarin-
English code-switched dataset; while Yang
et al., 2024c extended Whisper with a separate
language tag <|en−zh|> to uniquely refer to
Mandarin-English code-mixed sentences.

With the inception of LLMs, recent studies
have leveraged prompting strategies (Liu et al.,
2023b) in Whisper-based architectures. Suh
et al., 2024 explored LLMs to generate con-
textual descriptions, which were then used to
prompt the Whisper for transcription, demon-
strating the potential of LLM-guided ASR.

Although previous methods produced good
results, they required generating different
mixes of language tags or using an LLM to
create prompts for each utterance, we do
not aim to do that also these works have
been experimented on Mandarin-English code-
switchted dataset belongs to different domain
and not on Hindi-English code-switched which
has its own linguistic complexities. Our re-
search builds upon these works but takes a
distinct approach. Unlike prior studies, we
do not introduce new language tags or rely
on LLM-generated prompts. Instead, we pro-
pose CLEAR to demonstrate that descriptive
prompting alone can yield high-quality code-
mixed transcriptions by refining ASR outputs
through LLM-based rescoring. We hypothe-
size that LLM-based rescoring can mitigate
the issue of homophone disambiguation by
scoring the fluent sentences with higher scores.
We obtain n-beams of potential outputs from
Whisper and utilize LLM-based scorer to mea-
sure their linguistic fluency and coherency. We
fine-tune the Whisper decoder while keeping
the encoder in a frozen state. Specifically,
we experiment with leading LLMs – GPT-2,
LLaMA 3.1 (8B), LLaMA 3.2 (1B), DeepSeek
R12, Qwen-2 (7B), Mistral (7B), and GPT-4
(Radford et al., 2019; Dubey et al., 2024; Guo
et al., 2025; Yang et al., 2024a; Jiang et al.,
2023; Achiam et al., 2023) – while varying
beam widths to assess their impact on ASR
performance. We employ MUCS 2021 dataset

2DeepSeek-R1-Distill-Llama-8B

to evaluate CLEAR. Our analysis across six com-
petitive baselines signifies the importance of
CLEAR on code-switched ASR outputs. Our
contributions are summarized below:

• We present CLEAR and contribute novel in-
sights into the role of descriptive prompt-
ing and LLM-based scoring in improving
code-switched ASR systems, paving the
way for more effective transcription mod-
els in multilingual settings.

• We extensively evaluate CLEAR against
6 baseline methods. We present CLEAR
significant improvement evaluated across
evaluation metrics.

Reproducibility: https://github.com/
flamenlp/CLEAR

2 Related Work
Another line of work have explored ap-
proaches to improve language modeling and
context understanding. For instance, Aditya
et al., 2024 investigated attention mecha-
nisms within transformer layers, identifying
attention heads that effectively capture lan-
guage identities and guiding them accord-
ingly. To mitigate multilingual context con-
fusion, Zhang et al., 2022 proposed atten-
tion weight recomputation to better differen-
tiate languages within speech. Further, Liu
et al., 2023a, 2024a introduced language bi-
ases at both the token and frame levels to en-
hance the model’s ability to handle language
switching effectively. Song et al., 2022 pro-
posed a language-specific characteristic assis-
tance (LSCA) method to mitigate the problem
caused by lanugage-specific encoders (LSEs)
since most existing methods did not have lan-
guage constraints; they introduced a language-
specific loss to do that. To disambiguate ho-
mophones Srivastava and Sitaram, 2018 used a
WX-based common pronunciation scheme for
mixed language pairs and unification of homo-
phones during training, resulting in a lower
word error rate for systems built using this
data. Chung et al., 2022 proposed a novel
homophone extension method to integrate hu-
man knowledge of the homophone lexicon into
the beam search decoding process with lan-
guage model re-scoring. Some of the recent
work has also explored Mixture of Experts
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(MoE) architectures for code-switched ASR.
Ye et al., 2024 proposed using separate en-
coders as language experts, while Yang et al.,
2024b introduced a disentanglement loss to
enable lower encoder layers to capture inter-
lingual acoustic information while reducing lin-
guistic confusion in higher layers. Liu et al.,
2024b introduced a language alignment loss
in ASR training to align acoustic features to
pseudo-language labels learned from the de-
coder and also employs LLM via generative er-
ror correction to tackle the problem caused by
complex token alternatives for language mod-
eling in bilingual scenarios.

3 Methodology

In this section, we describe CLEAR model
to enhance transcription of Hindi-English
code-switched speech. Our primary objective
is to use a descriptive prompting strategy
that provides contextual guidance to the
decoder, improving transcription accuracy
without requiring extensive fine-tuning of the
entire model. Additionally, we incorporate
LLMs for rescoring to further refine the final
transcription output.

Proposed Pipeline: Whisper, unlike con-
ventional ASR models, allows for prompting
(Suh et al., 2024) through special tokens
that guide the transcription process. These
tokens include <|sop|> (start-of-previous),
<|sot|> (start-of-transcript), <|en|> or
<|hi|> (language tags), <|transcribe|>
(specifies the task as transcription), and
<|notimestamps|> (to disable word-level
timestamps). In our proposed pipeline, we
strategically place our custom prompt after
the <|sop|> token. This placement provides
contextual information to the decoder while
ensuring compliance with Whisper’s input
constraints, as only 224 tokens3 can be used as
a prompt. We also experiment with different
prompts to check which is working best,
more details will be discussed in section 4.
Our constructed prompt follows the format:

<|sop|><|prompt|><|hi|><|transcribe|><|notimestamps|>

We fine-tune Whisper by integrating our
designed prompt to influence the decoder’s

3https://cookbook.openai.com/examples/
whisper_prompting_guide

behavior.

LLM-Based Scorer: To further refine tran-
scription quality, we introduce a rescoring
mechanism utilizing LLMs. LLMs are trained
on vast multilingual corpora (Gurgurov et al.,
2024), effectively capture semantic structures
and can assist in selecting the most plausible
transcription candidate. Given a beam width
of n, the Whisper decoder generates n tran-
scription hypotheses {x(1), x(2), . . . , x(n)}. The
rescoring process involves computing the sum
of log probability of each hypothesis x(i) based
on the LLMs ouput logits, we call this sum as
score. The log probability of a candidate se-
quence is given by:

logP (x(i)) =
T∑

t=1

logP (xt|x1:t−1, θ)

=
T∑

t=1

log
(

exp(z(xt)
t )

∑
j exp(z(j)t )

)

=
T∑

t=1

(
log
(

exp(z(xt)
t )

)
− log

∑

j

exp(z(j)t )

)

=
T∑

t=1

(
z
(xt)
t − log

∑

j

exp(z(j)t )

)
(1)

where t is current time step, and T is the
total number of steps. The sequence x =
(x1, x2, . . . , xT ) consists of tokens xt, each as-
signed a logit z

(xt)
t by the LLM. The LLMs

parameters are denoted by θ. j is the index in
the output vocabulary.
The best transcription x∗ is then selected as
the one with the highest log probability among
all n hypotheses:

x∗ = arg max
i∈1,2,...,n

log P (x(i)) (2)

We conduct experiments with different LLMs
and beam widths to assess their impact on
transcription quality.

Fine-Tuning: Our fine-tuning process fo-
cuses solely on the decoder while keeping the
encoder frozen. Since Whisper has been pre-
trained on 630K hours of multilingual speech
data, its encoder already possesses a strong
understanding of the acoustic properties of
speech. Freezing the encoder prevents over-
fitting and ensures that the model retains its
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Prompt-1 Prompt-2 Prompt-3
This transcript is a code-
switched text. Mix of dev-
nagri and english words are
present. Text is related to tu-
torials on academic or techni-
cal subjects.

This transcript is a code-
switched text. Mix of Devana-
gari and English words are
present. Text is related to tu-
torials on academic or techni-
cal subjects. Few examples
look like this:
तो electricity bill option पर
click करें
कुछ गलत password दीिजए और en-
ter पे्रस करें

The transcript comprises tele-
phone quality speech data in
Hindi. Transcript is mixed of
Hindi and English words like
this: hi hi hi hi en hi hi hi hi
hi en hi hi hi hi. Transcribe
the speech in this format.

Table 1: Prompts use to fine-tune the CLEAR is listed here. We experiment with many prompts, few of
them are shown in this table.

general ASR capabilities while adapting its de-
coder for improved handling of code-switched
speech. Previous studies (Yang et al., 2023)
have shown that Whisper with a frozen en-
coder can achieve superior performance on
certain ASR tasks. We will also prove that
decoder-only finetuning works in the section 5.
Our methodology, which integrates Whisper’s
ASR capabilities with descriptive prompting
and LLM-based rescoring, presents an effi-
cient approach for improving code-switched
speech recognition without altering language
tags (Yang et al., 2024c).

4 Experiments
Dataset Description: We use the Hindi-
English code-switched dataset4 from the
MUCS Challenge, Interspeech 2021 (Diwan
et al., 2021), derived from spoken tutorials
on technical topics. All audio files are sam-
pled at 16 kHz with 16-bit encoding. The
dataset comprises spontaneous speech from
educational settings, making it particularly
challenging due to variations in speaker
accents, speech disfluencies, and technical
terms. It consists of ~100 hours of data and
splitted into train (89.86 hrs), test (5.18 hrs),
and blind (6.24 hrs) sets. Moreover, the
dataset has code-switching percentage5 of
85.88%, 81.88%, and 95.55% in train, test,
and blind sets, respectively. The dataset also
contains enunciated punctuation (e.g., “<”

4https://www.openslr.org/104/
5code-switched utterances upon total no. of utter-

ances

for “lesser”). Furthermore, the train and test
sets have ~33.9% overlaps; however, blind
test-train sentence overlap is 2.1%. Therefore,
we evaluate CLEAR on blind set only.

Evaluation Metric: For evaluation, we com-
pute three variants of word-error-rate (WER),
i.e., strict-WER (S-WER), punctuation-WER
(P-WER), and transliterated-WER (T-WER).
S-WER is the standard WER metric which
computes the transcription error rate at
the surface level. In comparison, P-WER
accounts for variations in punctuation by
applying a predefined punctuation mapping
before computing WER (replace “greater” by
“>”); thus, ensuring consistency in evaluation.
On the other hand, T-WER assesses errors
in cross-linguistic transcription by replacing
words in the predicted transcriptions with
their corresponding transliterated forms
(replace िडिस्क्रप्शन by description). These
three WER variants provide a comprehensive
assessment of the ASR model, capturing both
standard transcription errors and linguistic
variations of code-mixed languages.

Descriptive Prompt Details: We experi-
ment with different numbers of prompts in dif-
ferent styles to guide the decoder; a few of
them worked and some did not. Some exam-
ples of prompts are listed in Table 1. The
prompts that gives the best performance are
Prompt-1 and Prompt-2 and also in in CLEAR
architecure we have used this Prompt-1, you
can see in the Fig. 1. Prompt-1 is very simple
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Model S-WER P-WER T-WER
TDNN 28.90 – 26.20
E2E Transformer 33.65 – 29.80
PromptingWhisper 42.10 41.72 34.75
Whisper (ZS) 266.5 265.84 263.30
Whisper (FT) 32.16 31.64 28.54
Whisper (FE) 31.12 30.58 27.15

CLEAR 26.9
(↓ 6.9%)

26.46
(↓ 13.47%)

25.04
(↓ 4.42%)

Table 2: Comparative results on MUCS dataset.
ZS = Zero Shot, FT = Full finetuning, and FE =
Finetune by Frozen Encoder

to tell the decoder that text is code-switched
and guiding what code-switching means by
mentioning about type of languages involed
and also telling the decoder that dataset is re-
lated to technical subject and tutorial taught
in academic setting, basically it is giving the
contextual cues about the dataset. Similary
Prompt-2 is doing the same, additionally it is
also giving the examples to make it more clear.
And Prompt-3 even tells the decoder when the
language switch is happening, which will al-
low the decoder to predict the language switch
even better, one of the major problems of code-
switching. But sometimes these Prompt-2, 3
and some more which are not listed here do
not work. One of the problems we find is that
these are longer prompts, which may be longer
for some utterances, and Whisper can under-
stand only 224 tokens as a prompt and any-
thing longer that will be truncated. Therefore,
Prompt-3 mostly will fail due to its dynamic
nature for each utterance, Prompt-2 can work
if it is within the token limits.

Baselines: We compare the performance
of our CLEAR model with following baselines.
DNN-HMM (Diwan et al., 2021) is a neural
network created using the Kaldi toolkit6,
consisting of 8 TDNN (Time-Delay Neural
Network) blocks (Peddinti et al., 2015) with
a dimension of 768. End-to-End (E2E)
Transformer (Diwan et al., 2021) is a hybrid
CTC-Attention model (Watanabe et al., 2017)
with a 12-layer encoder and a 6-layer decoder,
each with 2048 units and 0.1 dropout rate. It
employs a CTC weight of 0.3 and an attention
weight of 0.7, using eight 64-dimensional

6https://kaldi-asr.org/

Scorer Beam S-WER P-WER T-WER

– 1 28.09
(↓ 9.73%)

28.42
(↓ 7.06%)

26.06
(↓ 4.01%)

GPT2 5∗ 26.9 26.46 25.04
10 27.11 26.67 25.47

LLaMA 3.1 (8B) 5 28.26 27.78 25.02
10 28.39 27.91 25.09

LLaMA 3.2 (1B) 5 27.75 27.30 25.69
10 27.86 27.42 26.03

DeepSeek 5 27.60 27.14 25.55
10 28.20 27.74 26.35

Qwen-2 (7B) 5 27.48 27.01 25.40
10 27.89 27.44 26.06

Mistral (7B) 5 27.55 27.11 25.49
10 27.91 27.50 26.09

GPT-4 5 27.85 27.29 24.82

Table 3: Ablation on different beam widths.
Star(∗) signifies the CLEAR model.

attention heads per layer. PromptingWhisper
(Peng et al., 2023) is a Whisper-large model
tested in a zero-shot setup by changing the
language tag. Here, we use <|hi|><|en|> as
the language tag. Additionally, we employ
Whisper in both zero-shot and fine-tuning
settings. For CLEAR we utilize Whisper-small7
(12 self-attention layers in both the encoder
and the decoder) which is capable of process-
ing 30-second audio segments and generates
text autoregressively.

Training Details: We fine-tune CLEAR for 10
epochs using a learning rate of 1e−4. The
training was conducted on an NVIDIA A100
GPU with a batch size of 16. We employ
AdamW as the optimizer with a weight decay
of 0.01 to regulate parameter updates. The
training procedure leverages mixed-precision
training to improve efficiency and reduce mem-
ory consumption while maintaining numerical
stability. During inference, we adopt beam
search decoding (beam-width = n) to improve
transcription accuracy. We also experiment
with temperature scaling to prevent overly con-
fident incorrect predictions.

5 Results and Analysis

Table 2 presents the comparative analysis of
CLEAR against other baselines on the blind set
of the MUCS dataset. Our initial evaluation

7https://huggingface.co/openai/
whisper-small
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of Whisper in a zero-shot (ZS) setting revealed
a drastic degradation in performance, with S-
WER exceeding 260%. This excessively high
WER is primarily caused by repetitive char-
acter sequences and a lack of domain adap-
tation, leading to significant transcription er-
rors. The model struggles with both code-
switching regions and the specific linguistic
patterns of the dataset, underscoring the lim-
itations of the out-of-the-box Whisper-small
model in handling code-mixed speech. To mit-
igate these issues, we fine-tune Whisper in two
settings, first full fine-tuning (FT) and second
fine-tuning by frozing encoder (FE), results
are shown in Table 2. Whisper (FT) shows im-
provement in S-WER (32.16), P-WER (31.64),
and T-WER (28.54) as compared to ZS set-
ting. We further fine-tune Whisper by frozing
encoder (FE) on our dataset, allowing it to
adapt to the linguistic characteristics of code-
switched speech. This results in a substantial
improvement in S-WER (31.12) compared to
ZS setting and this is also an improvement over
Whisper(FT), as the model exhibit a better
understanding of language semantics, reduced
character repetition, and improved handling
of code-switching boundaries. The results of
Whisper(FT) and Whipser(FE) shows that
fine-tuning by the frozing encoder works very
well as compared to full fine-tuning. There-
fore, for our proposed pipeline we will use
Whipser (FE) for all our experiments. Despite
these gains, domain-specific challenges per-
sisted, particularly for low-frequency words,
homophone inconsistency, and unseen terms
that were not well represented in the corpus.

To further enhance transcription accuracy,
we use descriptive prompt-based fine-tuning
approach (Peng et al., 2023), where the Whis-
per decoder was fine-tuned while keeping the
encoder frozen. This strategy led to a 9.73%
reduction in S-WER and a 4.01% reduction in
T-WER (beam n = 1 in Table 3) compared
to Whisper (FE). These results indicate that
prompt-based fine-tuning is an effective adap-
tation strategy for code-switching ASR, signif-
icantly improving performance without requir-
ing architectural modifications to the Whisper
model. Building on this, we employ our scor-
ing mechanism to grade the n-best hypothe-
sis from the fine-tuned Whisper model. CLEAR

reports a reduced score of S-WER (26.9), P-
WER (26.46), and T-WER (25.04) – a sig-
nificant reduction of +6.9%, +13.47% and
+4.42% in S-WER, P-WER, and T-WER, re-
spectively, over the best baseline (i.e TDNN).

As reported in Table 3, we employ mul-
tiple open-source LLMs, such as GPT-2,
LLaMA 3.1 (8B), LLaMA 3.2 (1B), DeepSeek,
Qwen-2 (7B), Mistral (7B), and GPT-4 for
transcription scoring. We systematically
analyzed the impact of beam width on WER,
experimenting with n = 5, 10, 15 and 208.
Our findings indicate that a beam width of
5 consistently yielded the best results across
models. In particular, compared to fine-tune
(FE) Whisper-small, GPT-2 achieved a
13.56% reduction in strict WER and a 7.77%
reduction in transliterated WER; LLaMA 3.1
(8B) yielded a 9.19% reduction in strict WER
and a 7.84% reduction in transliterated WER;
LLaMA 3.2 (1B) yielded a 10.82% reduction
in strict WER and a 5.37% reduction in
transliterated WER; Deepseek yielded a
11.31% reduction in strict WER and a 5.89%
reduction in transliterated WER; Qwen
yielded a 11.69% reduction in strict WER
and a 6.44% reduction in transliterated WER;
Mistral yielded a 11.47% reduction in strict
WER and a 6.11% reduction in transliterated
WER; GPT-4 yielded a 10.50% reduction
in strict WER and a 20.24% reduction in
transliterated WER, It outperforms GPT2 by
0.87% only in T-WER. However, we would
like to highlight that GPT-4 incurred a sig-
nificant 3̃$/100 hypotheses during inference.
This justifies the use of GPT-2 based scorer
in CLEAR as a budget effective solution. Also
rescoring mechanism with GPT-4 was differ-
ent compared to other LLMs because we can’t
extract the logits from GPT-4 therefore we
rank the hypothesis based on their accuracy,
coherency, and fluency on a scale of −10
(very inaccurate) to 10 (perfectly accurate).
Calculating sum of log probabilites of logits
will not work in the case of GPT-4.
These results highlight the effectiveness of
LLM-based rescoring techniques, demonstrat-
ing their ability to refine transcription outputs
and further reduce errors in code-mixed ASR

8We do not report n=15 and n=20 due to inferior
results. We observe performance drops across multiple
scorers with beam>5.
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Model Text Remarks
Se

nt
en

ce
1 GT अब इस method पर आते हैं –

W-(ZS) अब इस मेफ पर आते “method” is missing, and substitution leads to loss of meaning
W-(FE) और formula का स्टेटमेंट दें Extraneous words introduced, altering the intended meaning.
CLEAR–R अब इस method पर आते हैं Matches GT exactly, correct transcription.
CLEAR अब इस method पर आते हैं Matches GT exactly, correct transcription.

Se
nt

en
ce

2 GT get noise profile पर click करें –
W-(ZS) अगर तो तो तो तो तो तो तो तो तो Repeated words result in meaningless output.
W-(FE) cat noise profile पर click करें Incorrect word “cat” instead of “get”, missing domain-specific knowledge.
CLEAR–R get noise profile पर click करें Correctly retains “get” and follows GT structure.
CLEAR get noise profile पर click करें Matches GT exactly, preserving domain-specific knowledge.

Se
nt

en
ce

3 GT अब वापस IDE पर आते हैं –
W-(ZS) अब वापस आईडी पर आते Misrecognition of “IDE” as “आईडी” changes the meaning.
W-(FE) अब वापस ID पर आते हैं Homophones is not correctly identified
CLEAR–R अब वापस IDE पर आते हैं Correctly identifies “IDE” and follows GT.
CLEAR अब वापस IDE पर आते हैं Matches GT exactly, resolving homophone ambiguity

Se
nt

en
ce

4 GT िंच͆ता न करें यिद class diagram view में नहीं खुलता है –
W-(ZS) िजतना न करें ये िदखाएगा जगे वू्य में नहीं खुलता है Unintelligible phrase with extra words.
W-(FE) िंच͆ता न करें यिद, टगग्राम डायग्राम में नहीं खुलता है Incorrectly replaces “class diagram view” with an unrelated term.
CLEAR–R िंच͆ता न करें यिद class tag view में नहीं खुलता है Partially correct, but “class tag view” is incorrect.
CLEAR िंच͆ता न करें यिद class diagram view में नहीं खुलता है CLEAR Matches GT exactly, ensuring correct code-switching.

Se
nt

en
ce

5 GT 1123 put insulin . fasta file के िलए contents ������ �� –
W-(ZS) अप्रोट इंसुिलन ड़ प्रश्टा फाँँईल के िलए, ख़न्टेंस िदखाता है. Misrecognized words distort the sentence meaning.
W-(FE) आउटपुट insulin dot first फाइल के िलए कंटें ट्स िदखाता है Incorrect segmentation of “fasta file” as “dot first file.”
CLEAR –R default insulin dot firster file के िलए कंटें ट्स िदखाता है Better than W-(FE), but still modifies “fasta file.”
CLEAR default installation dot firster file के िलए कंटें ट्स िदखाता है CLEAR Corrects some errors but still alters “fasta file.”

Table 4: Comparison of ASR outputs among competitive models. CLEAR–R: CLEAR without scorer (i.e.,
beam=1 and Whisper fine-tuned with descriptive prompt).

tasks. Overall, our findings establish that a
combination of prompt-based fine-tuning and
LLM-based rescoring substantially enhances
the performance of the code-mixed ASR task.

Complexity of LLMs: While large language
models (LLMs) are often associated with high
computational costs, we carefully designed
CLEAR to avoid these burdens. Rather than
fine-tuning the LLMs, which would require
significant GPU hours and memory, we
utilized them solely for inference to score ASR
hypotheses. This approach is lightweight -
each hypothesis takes only about 0.6 to 0.7
seconds to evaluate — making it both efficient
and practical for real-world post-processing
scenarios. Interestingly, we also observed
significant improvements in transcription
quality even when using relatively smaller
LLMs such as LLaMA-3.2 (1B). This suggests
that even modest-sized language models can
capture contextual nuances well enough to
resolve ambiguities and correct ASR output,
particularly in challenging settings such as
code-mixed speech. This balance between
performance gain and computational overhead

suggests that we can use LLMs as scorers for
post-processing the ASR outputs and makes
our method feasible for broader deployement.

Qualitative and Error Analysis:
To further assess the quality of the generated
transcriptions, we conduct a detailed quali-
tative and error analysis, as shown in Ta-
ble 4. This analysis highlights the advan-
tages of our proposed pipeline over the zero-
shot and fine-tuned models in handling various
linguistic complexities in code-switched ASR.
Our pipeline exhibits significant improvements
in multiple aspects, including word ordering,
domain-specific terminology, homophone dis-
ambiguation, and rescoring-based refinement.

• Word Ordering: One notable enhance-
ment is the model’s ability to predict
words in the correct order. As observed in
Sentence 1, while the zero-shot model pro-
duces an incomplete and incorrect phrase,
and the fine-tuned model introduces ex-
traneous words, both the CLEAR–R and
CLEAR versions successfully reconstruct
the correct sentence structure. This sug-
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gests that our approach effectively learns
the sequential dependencies within code-
mixed speech, leading to more coherent
and grammatically accurate outputs.

• Domain-specific terminology: An-
other key improvement is in handling
domain-specific terminology, as illus-
trated in Sentence 2. The fine-tuned
model incorrectly transcribes “cat” in-
stead of “get”, demonstrating its struggle
with differentiating both similar-sounding
words and domain-specific words. CLEAR–
R approach, however, accurately tran-
scribes “get”, showcasing a better un-
derstanding of contextual cues. This
improvement is crucial in technical and
specialized domains, where precise word
recognition significantly impacts the us-
ability of transcriptions.

• Homophone Disambiguation: In Sen-
tence 3, CLEAR effectively tackles homo-
phone disambiguation, particularly distin-
guishing between “id” and “ide”. The fine-
tuned model fails to capture this distinc-
tion, incorrectly predicting “id” instead of
“ide”, whereas the CLEAR–R and CLEAR ac-
curately recognize the correct term. This
capability is essential in technical envi-
ronments where similar-sounding words
carry distinct meanings, ensuring that
transcripts remain contextually relevant.

• Rescoring Refinements: In sentence 4,
demonstrates the effectiveness of rescor-
ing in refining transcriptions. While the
CLEAR–R output closely aligns with the
ground truth, it incorrectly transcribes
“class tag view” instead of “class diagram
view”. The CLEAR output successfully cor-
rects this error, emphasizing the impact
of our rescoring mechanism in enhancing
transcription accuracy. This step ensures
that even when the initial transcription is
suboptimal, the model can refine its pre-
dictions to achieve greater alignment.

• Pitfall of CLEAR: It is not like our CLEAR
model is giving good performance of every
utterances. In some scenarios it is fail-
ing. As we can see in the sentence 5, it is
not correctly predicting many words. One

reason for this may there are two many
code-switches available, puctuation “.” is
present, and domain specific word is also
present. There may be possibility because
the presence of these challenges causing
the problem to the ASR.

6 Conclusion

This study introduces CLEAR, a novel approach
to enhancing Hindi-English code-mixed ASR
by integrating descriptive prompt-based fine-
tuning and LLM-based rescoring. Our findings
reveal that fine-tuning the Whisper decoder
while freezing the encoder is a highly effective
strategy for code-switching transcription (refer
2nd last row of Table 2), yielding substantial re-
ductions in various word error rates.Extensive
ablation and qualitative analysis establishes
LLM-based rescoring as an efficient refinement
mechanism, effectively disambiguating homo-
phones, and also enhances overall readability
and domain-specific accuracy without requir-
ing explicit language tags or specialized pre-
training. These insights pave the way for more
adaptable and resource-efficient LLM-guided
ASR systems, particularly in low-resource and
multilingual settings.

Limitations

This work has also certain limitations. Due
to GPU memory constraints, we did not ex-
plore the impact of larger batch sizes, which
could potentially influence model performance.
Additionally, there is a lack of a diverse and
high-quality code-mixed dataset for Indian lan-
guages. Our experiments are limited to MUCS
code-switching data. To the best of our knowl-
edge, this is the only publicly available dataset.
We did not evaluate the approach on other
pairs of Indian languages. The limited dataset
diversity hinders the robustness, highlighting
the critical need for high-quality datasets in
this research area. However, we believe that
the overall pipeline of our CLEAR model is
highly adaptable to other language pairs as
well. Another challenge is tackling too many
code-switching points, availability of punctu-
ation, and domain specific words all these
togther if present in a sentence. sometimes
CLEAR fails to handle this. In future we also
plan to handle this limitaion of our model.
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Abstract
In our work, we enhance language model-based
Text-to-Speech (TTS) training from unlabeled
speech data using Direct Preference Optimiza-
tion (DPO). Given the critical challenges re-
lated to the quality and quantity of data re-
quired for high-quality speech generation sys-
tems, it is essential to develop cost-effective ap-
proaches to training such models. We propose
a two-stage fine-tuning approach, which ex-
tends traditional fine-tuning on texts generated
by automatic speech recognition (ASR) models
and incorporates direct preference optimization
(DPO) along with dataset expansion using texts
generated by large language models (LLMs).
Experiments and comparisons conducted on
two different datasets demonstrate that our ap-
proach achieves results comparable to tradi-
tional fine-tuning on human-labeled data. The
code is publicly available on GitHub1.

1 Introduction

In recent years, the quality of speech generation
has significantly improved, largely due to advance-
ments in high-quality audio quantizers such as Hi-
FiCodec (Yang et al., 2023) and VQ-VAE, which
was used in xTTS system (Casanova et al., 2024).
These developments have enabled the use of Trans-
former architectures (Vaswani, 2017), which are
known to perform well with large-scale datasets
but are prone to overfitting on smaller datasets.

As a result, data collection and the quality of
datasets remain critical challenges in the contin-
ued advancement of TTS models. One approach
to increasing data availability involves using ASR
models to automatically annotate raw audio data.
However, this method compromises the quality of
speech generation, as raw audio data is often of
low quality and ASR models introduce recogni-
tion errors. To address these issues, a WV-MOS-
based filtering method (Ogun et al., 2023) has been

1https://github.com/BirdWithDreams/
beyond-labeled-datasets-tts

proposed to improve data set quality by filtering
low-quality samples using WV-MOS models. Ad-
ditionally, it has been demonstrated that raw audio
data quality can be improved using noise-filtering
systems (Ni et al., 2023; Hao et al., 2021), which
boosts TTS model performance but complicates
the preprocessing pipeline.

Fortunately, the Transformer architecture en-
ables the application of techniques from NLP, par-
ticularly training pipelines for large language mod-
els (LLMs). Training LLMs generally consists
of two stages: pretraining and fine-tuning. Dur-
ing pretraining, the model is trained on a large
corpus of low-quality data, and in the fine-tuning
stage, methods such as Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al.,
2022) and instruction tuning are used to improve
the quality of model outputs. Tian et al. (2024)
demonstrated a similar approach and showed that
using the Direct Preference Optimization (DPO)
algorithm is effective for TTS models. In Tian
et al. (2024), preference alignment was guided by
three metrics – WER (Whisper-large model (Rad-
ford et al., 2023)), SPK_SIM (RawNet (Jung et al.,
2024)), and Proxy_MOS (UTMOS (Saeki et al.,
2022)) – to evaluate preferences between sample
pairs and there was shown a great boost on each
metric. Moreover, was shown that improvement
does not depend on the exact metric models. In
another study (Hussain et al., 2025), preference
pairs were constructed using the character error
rate (CER) and cosine similarity (SSIM) metrics,
along with a modified version of the DPO method –
e Reward-aware Preference Optimization (RPO) –
to enable more fine-grained preference calibration.
The study also demonstrated that employing DPO
or RPO for fine-tuning TTS models can lead to
improvements in the overall quality of the resulting
system.

Inspired by the previous findings (Tian et al.,
2024; Hussain et al., 2025), in this work, we
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present a semi-supervised training strategy for a
language model-based text-to-speech (TTS) sys-
tem, aiming to reduce reliance on labeled data
while maintaining high synthesis quality. We ex-
plored six different model training strategies on
two distinct datasets. Additionally, we proposed a
semi-supervised two-stage training strategy: first, a
standard fine-tuning on ASR-labeled data, followed
by DPO fine-tuning on a combination of original
dataset ASR texts and LLM-generated texts.

Our results demonstrate that the proposed train-
ing strategy outperforms traditional fine-tuning on
human-labeled data in two out of the three pri-
mary evaluation metrics. Additionally, we perform
a human evaluation using the Comparative Mean
Opinion Score (CMOS) methodology. The results
indicate that the proposed approach is statistically
comparable to conventional fine-tuning techniques
on human labeled data. Furthermore, we adapted
the popular xTTS framework to support training
using the DPO method.

2 Method

2.1 Semi-supervised training methodology

Since collecting and annotating data for training
a TTS model is a complex and resource-intensive
process, we developed a fully unsupervised training
method. The core idea of our approach consists of
two stages: first, a standard fine-tuning of the base
model on an ASR-labeled dataset, and second, the
creation of a DPO dataset using this model.

Creating the DPO dataset does not require hu-
man involvement. All we need is a model check-
pointM for generation, a set of reference audiosA,
and a set of texts T . The latter initially consisted
of ASR-labeled texts from the original datasets,
which we further expanded with LLM-generated
texts. The generation procedure is detailed in Ap-
pendix A.1. Then, for each (a, t) ⊂ A × T pair,
we generated 10 audio {ya,t,1, ya,t,2, . . . , ya,t,10}
variants using the model M . This set of sam-
ples was ranked within each pair using three pri-
mary evaluation metrics, and the final ranking was
determined using a harmonic mean aggregation,
sorting the generated audio y from best to worst
(yfa,t,1 ≻ yfa,t,2 ≻ . . . ≻ yfa,t,10) and based on this
ranking, win-lose pairs were selected for prefer-
ence alignment. The full procedure of DPO dataset
construction is described in Appendix A.2.

Figure 1: Schematic diagram of our model training
pipeline.

2.2 Optimization Objectives
In our work, we used two approaches for training
models (Figure 1). The first is standard fine-tuning
as it was done in xTTS model (Casanova et al.,
2024) with cross-entropy loss. Given an input text
x (represented as a sequence of tokens), reference
audio r, and target audio y (represented as a se-
quence of audio tokens), the model is trained to
minimize the following loss function (a full deriva-
tion and detailed breakdown of its components is
provided in Appendix B):

LFN (πθ) = Laudio (πθ) + α · Ltext (πθ) (1)

The second approach is Direct Preference Opti-
mization, DPO (Rafailov et al., 2024). A win-lose
pair dataset (r, x, yw, yl) was constructed, where
the sequence yw is preferred over yl. To optimize
the model on such data, we can use the LDPO loss
as it was described in the original paper (Rafailov
et al., 2024).

Instead of using the pure LDPO loss, we incorpo-
rated an additional Ltext term, as it is known that
TTS models perform better when optimized not
only with respect to audio but also with respect to
the given text itself. Finally, our DPO loss takes
the form:

L (πθ;πref) = LaudioDPO (πθ;πref) + Ltext (πθ) (2)

3 Experiment Setup

3.1 Model
We chose xTTSv2 (Casanova et al., 2024) as our
base model. We use it because, firstly, it has an
LM-based architecture, which is critically impor-
tant for DPO fine-tuning. Secondly, it achieves
state-of-the-art zero-shot performance in multiple
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languages, including English. Additionally, it is
highly stable during training, which is crucial for
the reproducibility and reliability of our results.

3.2 Data
In our work, we used two datasets: The LJ
Speech Dataset (Ito and Johnson, 2017) (denoted
as Doriginal

LJ ), representing a classic single-speaker
audiobook-like dataset, and the CSTR VCTK Cor-
pus (Veaux et al., 2017) (denoted as Doriginal

VCTK ) as
a multi-speaker dataset. Since these datasets con-
tain manually annotated transcriptions, whereas we
needed synthetic ones, we generated new transcrip-
tions using Whisper-medium (Radford et al., 2023).
We then split the data into a training set and a hold-
out set in a ratio 80/20 for The LJ Speech Dataset
and 90/10 for CSTR VCTK Corpus, resulting in
the following two datasets: DASR

LJ and DASR
VCTK.

Additionally, we generated 15,000 texts using
Llama 3.2 3b (Dubey et al., 2024). During gen-
eration, we employed a specialized text attribute
combinator (considering factors such as length,
topic, domain, complexity, etc.) to ensure max-
imum diversity in the generated texts (see Fig. 2).
These texts were later used to augment the original
datasets, enhancing their variability and robustness.

3.3 Metrics for DPO dataset
To evaluate the models and construct the DPO
dataset, we used three main metrics: intelligibility
(WER), speaker similarity (SS), and Proxy MOS
(PMOS). The following models were used to cal-
culate these metrics: Whisper-Medium (Radford
et al., 2023) for WER, ECAPA2 Speaker Embed-
ding Extractor (Thienpondt and Demuynck, 2023)
for SS, and UTMOS (Saeki et al., 2022) for PMOS.
Model validation was performed on the holdout
subsets of our Doriginal

LJ and Doriginal
VCTK datasets.

3.4 Experiments
For each dataset group, DLJ and DVCTK, the fol-
lowing fine-tuning experiments were conducted:

1. Fine-tuning (FN) of the base xTTSv2 model
on Doriginal.

2. Fine-tuning (FN) of the base xTTSv2 model
on DASR.

3. DPO fine-tuning of the base xTTSv2 model
on DDPO.

4. DPO fine-tuning of the base xTTSv2 model
on DDPO +DGenerated.

5. DPO fine-tuning of the model from the cor-
responding checkpoint (LJ-ASR or VCTK-
ASR) on DDPO.

6. DPO fine-tuning of the model from the cor-
responding checkpoint (LJ-ASR or VCTK-
ASR) on DDPO +DGenerated.

Let’s call these experiments L1-6 for DLJ group
of datasets and V1-6 forDVCTK group. The valida-
tion results for each setup are presented in Table 1
and 2 for the DLJ and DVCTK dataset groups,
respectively.

Table 1: Model Performance on DLJ dataset group

Model WER ↓ SS ↑ PMOS ↑
Base xTTSv2 0.071± 0.008 0.423± 0.003 3.68± 0.016

L1 (Original) 0.056± 0.014 0.481± 0.003 3.816± 0.013

L2 (ASR) 0.064± 0.010 0.478± 0.003 3.79± 0.013

L3 (DPO) 0.043± 0.003 0.445± 0.003 3.733± 0.012

L4 (DPO) 0.064± 0.011 0.465± 0.002 3.959± 0.010

L5 (DPO) 0.110± 0.012 0.432± 0.003 2.821± 0.011

L6 (DPO) 0.224± 0.035 0.417± 0.003 2.392± 0.012

Table 2: Model Performance on DVCTK dataset group

Model WER ↓ SS ↑ PMOS ↑
Base xTTSv2 0.020± 0.004 0.481± 0.014 3.895± 0.026

V1 (Original) 0.041± 0.007 0.500± 0.014 3.685± 0.029

V2 (ASR) 0.055± 0.009 0.494± 0.014 3.630± 0.030

V3 (DPO) 0.014± 0.003 0.471± 0.015 4.009± 0.022

V4 (DPO) 0.013± 0.003 0.482± 0.016 4.108± 0.019

V5 (DPO) 0.273± 0.037 0.412± 0.014 2.662± 0.047

V6 (DPO) 0.087± 0.013 0.453± 0.014 3.324± 0.043

3.5 Fine-Tuning vs. DPO Fine-Tuning
When comparing these two training methods, the
first noticeable trend is that standard fine-tuning
achieves the best SS metric across both datasets:
0.481 for DLJ (L1) and 0.5 for DVCTK (V1). As
expected, training on ASR-labeled data (L2, V2)
performs worse than training on human-labeled
data (L1, V1). However, DPO training on ASR-
labeled data (L3, V3) either outperforms or at least
matches traditional fine-tuning with a cross-entropy
objective on human-labeled data (L1, V1).

Interestingly, the best results in speech natural-
ness (PMOS metric) are achieved when the dataset
is expanded with LLM-generated data (L4, V4),
even surpassing a PMOS score of 4. Regard-
ing intelligibility (WER metric), the best perfor-
mance in the DVCTK dataset group (WER 0.013)
is also obtained with DPO tuning on the expanded
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dataset (V4), outperforming both classical fine-
tuning on human-labeled data (V1, WER 0.04) and
the xTTSv2 baseline (WER 0.02).

For the DLJ dataset group, the best WER score
is achieved by the L3 model (WER 0.041), out-
performing both L1 (WER 0.053) and the baseline
(WER 0.071). However, the DPO fine-tune on
the expanded dataset (L4) achieves results similar
to traditional fine-tuning on human-labeled data
and worse than DPO tune on unexpanded dataset
(L3). This behavior can be explained by the nature
of the The LJ Speech Dataset (Ito and Johnson,
2017). This dataset consists of audiobook record-
ings where audio is sometimes segmented inaccu-
rately, resulting in partial sentences, such as only
the beginning or end of a sentence like "According
to Secretary Dillon," or "iron and the like
in combination with phosphoric, sulphuric
and other acids.". Expanding the DLJ dataset
with LLM-generated texts, which consist of fully
formed sentences, does not necessarily improve
model performance within the DLJ dataset.

In contrast, the CSTR VCTK Corpus (Veaux
et al., 2017) dataset, which was created by read-
ing newspaper sentences rather than slicing pre-
existing audio, is more aligned with the way LLM-
generated texts are structured. This explains why
in the DVCTK dataset group, fine-tuning on the
expanded dataset (V4) yields better results (WER
0.013, SS 0.481, PMOS 4.108) than fine-tuning on
standard texts (V3) (WER 0.014, SS 0.471, PMOS
4.009).

3.6 Effects of ASR Checkpoint Initialization

Comparing experiments 5-6 with 3-4, we observe
that fine-tuning from the ASR checkpoint consis-
tently yields worse results than fine-tuning from
the base model on the same data. L5 and V5
show much higher WER (0.109 and 0.269, respec-
tively) and lower PMOS (2.821 and 2.665). This
can be explained by the fact that standard fine-
tuning narrows the generation space, whereas DPO
fine-tuning only adjusts the probability distribu-
tion within that space without altering it. In other
words, the "softer" DPO fine-tuning from a check-
point with greater generation variability leads to
better results than fine-tuning from a checkpoint
with lower variability. This holds true even though,
in the latter case, the model was explicitly trained
to reproduce the distribution of a specific dataset.

However, we observe that in both cases (L4,

L6 and V4, V6) adding AI-generated texts im-
proves model performance across almost all met-
rics (except for WER in the L3-4 cases), supporting
our hypothesis that expanding the dataset with AI-
generated texts positively impacts model quality.

3.7 CMOS validation

To further evaluate the proposed approach, we
conducted a CMOS (Comparative Mean Opinion
Score) validation following the methodology de-
tailed in Appendix C.1. CMOS evaluation was
conducted on four experimental pairs: (1 vs. 4),
(2 vs. 4), (1 vs. 6), and (2 vs. 6). The evalua-
tion considers two criteria: speaker similarity (SS),
and a combined metric reflecting both naturalness
and intelligibility (CM). Results are presented in
Table 3.

Table 3: Method Pair Comparison Data

Comparison SS CM

Exp. 1 vs Exp. 4 −0.12 −0.06
Exp. 1 vs Exp. 6 0.88 0.21
Exp. 2 vs Exp. 4 −0.21 −0.17
Exp. 2 vs Exp. 6 0.75 0.14

Positive values in Table 3 indicate that the first
experiment in the pair is preferred over the second,
while negative values indicate the opposite.

In the comparison between Exp. 1 and Exp. 4,
the SS metric marginally favors Exp. 4 (−0.12),
while the combined metric indicates near equiva-
lence (−0.06). Similarly, for the Exp. 2 vs. Exp. 4
comparison, both metrics slightly favor Exp. 4,
with −0.21 for SS and −0.17 for CM.

More substantial differences are observed with
Exp. 6. In both (1 vs. 6) and (2 vs. 6) compar-
isons, the metrics are positive (e.g., 0.88 and 0.75
for SS and combined in 1 vs. 6), indicating that the
classical tuning baselines were preferred. These
results support our conclusions based on automatic
validation metrics (WER, SS, PMOS). Addition-
ally, we performed a statistical significance anal-
ysis of the results, detailed in Appendix C.2. We
also provide a detailed subgroup CMOS analysis
in Appendix C.3. Overall, the CMOS evaluation
indicates that the proposed method, particularly
in Exp. 4, achieves quality comparable to conven-
tional fine-tuning using human-labeled data.
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4 Conclusion

We have developed a two-stage training strategy
for TTS models based on DPO fine-tuning. We
proposed a fully unsupervised training pipeline for
TTS models and demonstrated that it can achieve
results comparable to traditional supervised fine-
tuning on human-labeled data. This approach sig-
nificantly reduces costs, as manual annotation re-
quires substantial resources and time. Therefore,
our method is more efficient without sacrificing
model quality.

Additionally, we showed that expanding original
datasets with LLM-generated texts substantially
improves the naturalness (PMOS) of generated au-
dio while having a mixed impact on intelligibility
(WER), which requires further investigation across
different data types and datasets.

5 Limitations

Given the limitations of our work, we used the
high-quality xTTSv2 model as our baseline. For
future research, it would be valuable to train sev-
eral models from scratch – one on ASR-labeled
data and one on human-labeled data and compare
how DPO fine-tuning affects their quality. Another
interesting direction is to compare our method of
constructing win-lose pairs for DPO with human-
based pair selection.

Our pipeline involves components that may in-
troduce or amplify societal biases:

1. ASR-Induced Bias: we rely on an Automatic
Speech Recognition (ASR) model (Whisper-
medium) to generate transcripts for unlabeled
audio. It is well-documented that ASR sys-
tems can have higher error rates for speakers
with non-native accents, certain dialects, or
speech impediments. Such transcription er-
rors may degrade the quality of synthesized
speech for already underrepresented groups,
potentially reinforcing existing biases in the
system.

2. LLM-Induced Bias: The use of a Large Lan-
guage Model (Llama 3) to generate supple-
mentary text for training introduces the risk
of inheriting its intrinsic biases. While we
employed an attribute combinator to encour-
age text diversity (Appendix A.1), the gen-
erated content may still reflect dominant cul-
tural viewpoints or stereotypes present in the
LLM’s training data.

Future work should involve auditing the model’s
performance across more diverse demographic
groups and developing methods to mitigate any
identified biases.

6 Ethical concerns

The development of advanced Text-to-Speech
(TTS) technologies, such as the one presented in
this paper, carries significant societal implications
that warrant careful consideration. We are com-
mitted to the responsible advancement of AI and
outline the primary ethical concerns related to our
work below.

The most significant risk associated with high-
fidelity TTS is the potential for misuse in creating
synthetic audio, often referred to as "deepfakes."

• Using unauthorized voice synthesis to imper-
sonate someone for fraudulent purposes, such
as deceiving individuals or bypassing voice
authentication systems.

• Disinformation and propaganda involve fabri-
cating audio evidence to spread misinforma-
tion, defame individuals, or manipulate public
opinion.

• Generating non-consensual audio content to
harass or bully.

While our research aims to advance machine
learning methodology, we recognize this dual-use
nature. We advocate for the development and adop-
tion of robust safeguards, such as audio watermark-
ing techniques and detection models for synthetic
speech, which should accompany any deployment
of this technology in real-world applications.
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A Experiment Details

A.1 Generation of LLM texts
To enhance the diversity of LLM-generated texts,
we used a specialized attribute combinator to con-
struct prompts for the LLM. Fig. 2 shows what
attributes, sub-attributes and constraints were used
to create high variability of generated texts.

All of this enables the creation of a highly di-
verse vocabulary, addressing one of the key chal-
lenges in TTS model training – bias between over-
represented and underrepresented words. At the
same time, using LLM-generated texts helps to fill
in gaps in the vocabulary and allows for fine control
over text types and formats. This can be particu-
larly useful when fine-tuning a model for a highly
specialized domain with limited original data.

A.2 Creating DPO datasets
In the first stage, the LJ-ASR and VCTK-ASR
models were trained using standard fine-tuning on
ASR-generated texts from the base xTTSv2 model.
Then, using the latest checkpoints of these mod-
els, the datasets DDPO

LJ , DGenerated
LJ , DDPO

VCTK, and
DGenerated

VCTK were constructed.
Method for Constructing DGenerated

LJ : a selec-
tion of audio samples was taken from the origi-
nal dataset Doriginal

LJ , and AI-generated texts were
evenly distributed among them. For each (au-
dio, text) pair, 10 samples (ya,t,1, ya,t,2, . . . , ya,t,10)
were generated using the LJ-ASR model, and evalu-
ation metrics were computed for each sample using
our evaluation models. Notice, that each y is not
a generated audio, but a sequence of audio codes
produced by LM head (see Casanova et al. (2024)).

Next, these samples were ranked from
best to worst according to each metric(
ywera,t,1 ≻ ywera,t,2 ≻ . . . ≻ ywera,t,10

)
. Based on

their ranking, a normalized score between 0 and 1
was assigned to each sample.

metric_rank = place/10

To determine the final ranking, we calculated
harmonic mean of our metrics’ ranks:

f_rank =
3

1
wer_rank + 1

ss_rank + 1
mos_rank

.

Then, based on its values, the preferred (yw)
and less preferred (yl) samples were selected. We
choose them as the second sample from each

edge, mean yw = yf_ranka,t,2 and yl = yf_ranka,t,9 . The
most extreme samples, the absolute best (yf_rank1 )
and worst (yf_rank10 ), were excluded to ensure that
the preference optimization for the model was
not overly obvious. Following this process, the
DGenerated

LJ dataset was constructed: (a, t, yw, yl),
where a is reference audio sample, t - reference
text, yw - preferred sequence of audio codes and yl
- non-preferred sequence of audio codes.

Method for Constructing DGenerated
VCTK : Since

Doriginal
VCTK contains 108 unique speakers and 13,000

unique texts—where different speakers may read
the same text—the dataset includes a total of
44,000 (speaker, text) pairs. Each speaker has be-
tween 200 and 500 recordings. We decided to con-
struct the DPO version of this dataset in a similar
manner. Our 15,000 LLM-generated texts were
evenly distributed among all speakers, with repe-
titions, ensuring that each speaker had an average
of 500 unique texts. The subsequent sample gen-
eration, ranking, and win-lose pair selection fol-
lowed the same approach as for DGenerated

LJ , with
the VCTK-ASR model used during sample genera-
tion.

Construction of DDPO
LJ and DDPO

VCTK: The
datasets DDPO

LJ and DDPO
VCTK were constructed sim-

ilarly to DGenerated
LJ and DGenerated

VCTK , with the key
difference that the texts were taken from the origi-
nal Doriginal

LJ and Doriginal
VCTK datasets.

B Objectives definitions

Classical cross-entropy (CE) loss on text and audio
tokens:

LFN (πθ) = Laudio (πθ) + α · Ltext (πθ)
= −E(x,r,y)∼D log πθ (y | x, r)
− α · E(x,r,y)∼D log πθ

(
xt | xt−1, r

)

(3)

DPO loss from the original paper (Rafailov et al.,
2024):

LDPO (πθ;πref) =

= −E
[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]

(4)

where πθ is the model that is being optimized
and πref is the original model.

Final objective for second stage of proposed
method:

355



Figure 2: Combinator’s attributes diagram

L (πθ;πref) = Laudio
DPO (πθ;πref) + Ltext (πθ)

= −E
[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]

−αE log πθ

(
xt | xt−1, r

)

(5)

C CMOS validation details

C.1 Validation methodology

To facilitate the CMOS validation process, an au-
tomated service was developed to efficiently and
conveniently collect user feedback. This service op-
erates in a fully automated mode and presents eval-
uation tasks in a user-friendly format. The selection
of speakers and texts for CMOS validation was in-
tentionally made diverse: from the VCTK dataset,
two speakers (one male and one female) were cho-
sen for each of five distinct accents—American,
British, Indian, Irish, and Scottish—resulting in a
total of ten speakers, with an additional speaker
selected from the LJ-Speech dataset. For each
speaker, four different texts were selected from the
validation subsets of the original datasets (Doriginal

LJ

and Doriginal
VCTK ), and synthetic audio was generated

for these texts using the corresponding TTS model.
The survey methodology is as follows: for

each participant, the service randomly selects three

speakers from the ten available in Doriginal
VCTK and

adds one speaker from Doriginal
LJ . The participant

is then presented with 32 evaluation items: four
method pairs × four speakers × four comparisons
per speaker. Each evaluation item is structured as
follows: "Please assess which of the two audio sam-
ples better corresponds to the reference recording
according to a specific criterion, using a scale from
−3 to 3, where 3 indicates that the first sample
is significantly better, 0 means both are approx-
imately equal, and −3 indicates that the second
sample is significantly better."

C.2 Statistical significance analysis

To assess the reliability of the CMOS evaluation,
we conducted a statistical significance test by eval-
uating the null hypothesis that the mean CMOS
score is zero. A p-value above the significance
threshold (0.05) indicates that the compared mod-
els are statistically equivalent, whereas a value be-
low the threshold suggests a significant preference
for one model over the other. The outcomes of this
analysis for the SS and CM metrics are presented
in Table 4 and Table 5, respectively.

The statistical analysis of the CMOS metrics (Ta-
ble 4 and Table 5) reveals that Experiment 6, which
implements the proposed method, significantly un-
derperforms in speaker similarity compared to tra-
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Table 4: Statistical significance of the SS metric

1–4 1–6 2–4 2–6

Mean −0.12 0.88 −0.21 0.75
t-test p-val 0.4 0.001 0.22 0.007
Wilcoxon p-val 0.5 0.001 0.25 0.015
Sample size 83 80 76 73

Table 5: Statistical significance of the CM metric

1–4 1–6 2–4 2–6

Mean −0.06 0.21 −0.17 0.14
t-test p-val 0.74 0.34 0.39 0.52
Wilcoxon p-val 0.74 0.34 0.35 0.49
Sample size 83 80 76 73

ditional approaches. In particular, Experiments 1
and 2 show strong and statistically significant ad-
vantages over Experiment 6 in the SS metric, with
p-values well below 0.001. In contrast, compar-
isons involving Experiment 4 do not exhibit signifi-
cant differences, indicating that this configuration
achieves perceptual speaker similarity comparable
to traditional fine-tuning.

For the Combined Metric (CM), none of the com-
parisons across experimental conditions yield statis-
tically significant differences (all p > 0.3), suggest-
ing that all methods perform similarly in terms of
overall speech naturalness and text accuracy. These
findings indicate that the proposed method, espe-
cially in Experiment 4, maintains competitive per-
ceptual quality, while Experiment 6 demonstrates
limited effectiveness in preserving vocal identity.

C.3 CMOS on specific groups

To further investigate the behavior of the proposed
models across different speaker characteristics, we
conducted a stratified CMOS analysis by accent
and gender. As described in Appendix C.1, we ex-
amined the same four experimental method pairs:
(1 vs. 4), (2 vs. 4), (1 vs. 6), and (2 vs. 6). For each
pair, two criteria were evaluated: speaker similar-
ity (SS) and a composite metric capturing clarity,
naturalness, and intelligibility (CM). Results are
presented in Table 6 and Table 7.

Overall, positive values in Tables 6 and 7 indi-
cate a preference for the first method in each com-
parison, while negative values indicate preference
for the second.

The proposed Method 4 (DPO training with gen-
erated data) demonstrates advantages in percep-
tual quality (CM) across several accents, with mod-
erate gains in speaker similarity (SS). Compared

Table 6: CMOS Results by Accent

Method
Pair

Accent SS CM N

1–4 American −0.545 0.818 11
English −0.235 −0.706 17
Indian 0.300 0.500 10
Irish −0.533 −0.400 15
Scottish 0.444 −0.111 9
lj 0.048 −0.095 21

1–6 American 1.300 0.800 5
English 1.400 −1.200 5
Indian 0.933 0.333 15
Irish 1.231 0.000 13
Scottish 0.400 −0.050 20
lj 1.000 0.647 17

2–4 American 0.833 −0.333 6
English −0.600 0.000 10
Indian −0.263 −0.526 19
Irish −0.333 0.000 12
Scottish 0.545 0.364 11
lj −0.667 −0.278 18

2–6 American 1.417 0.417 12
English 0.909 0.091 11
Indian −0.071 −0.214 14
Irish 0.667 0.111 9
Scottish 0.444 0.222 9
lj 1.056 0.222 18

to the baseline trained on human-annotated data
(Method 1), Method 4 achieves better CM scores
for the LJ speaker (−0.095), English (−0.706),
and Irish (−0.400), and also shows improved SS
for English (−0.235) and Irish (−0.533), suggest-
ing enhanced or preserved speaker identity. Rel-
ative to the ASR-supervised baseline (Method 2),
Method 4 again receives more favorable CM values
for American-accented speech (−0.333) and Scot-
tish (−0.364), along with strong SS improvements
for English (−0.600) and the LJ speaker (−0.667),
highlighting its robustness on several accent groups.
However, performance on some accents, such as
Indian and American in the 1–4 comparison, re-
mains challenging. By contrast, Method 6 (DPO
with generated data initialized from a pretrained
checkpoint) mostly underperforms relative to both
baseline methods across individual accent groups,
showing less consistent gains in either CM or SS.
It is also important to note the variability in group
sizes (N ), with some accent groups containing rel-
atively few samples. This limits the statistical ro-
bustness of per-accent conclusions and calls for
caution when interpreting fine-grained differences.

Gender-based analysis further supports the effec-
tiveness of the proposed Method 4, particularly
for female speakers. Compared to the human-
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Table 7: CMOS Results by Gender

Method
Pair

Gender SS CM N

1–4 F −0.292 −0.250 24
M −0.105 0.079 38
lj (F) 0.048 −0.095 21

1–6 F 0.656 0.031 32
M 1.032 0.161 31
lj (F) 1.000 0.647 17

2–4 F −0.379 −0.069 29
M 0.241 −0.207 29
lj (F) −0.667 −0.278 18

2–6 F 0.300 0.150 30
M 0.857 0.086 35
lj (F) 1.056 0.222 18

annotated baseline (Method 1), Method 4 achieves
better CM scores for female speakers (−0.250) and
the LJ speaker (−0.095), while also improving SS
for females (−0.292), indicating that the proposed
approach is preferred in terms of both perceptual
quality and speaker similarity. For male speakers,
results are more mixed: while SS is slightly better
(−0.105), the CM score (0.079) indicates a mild
preference for the baseline. In comparison to the
ASR-supervised baseline (Method 2), Method 4
again shows lower CM for female (−0.069) and
male (−0.207) speakers, and achieves a strong im-
provement for the LJ speaker (−0.278), with con-
sistent SS gains for females (−0.379) and the LJ
speaker (−0.667), reinforcing the robustness of
Method 4 for female voices. In contrast, Method
6 performs worse than both baselines across all
gender groups. CM scores are consistently positive
when compared to both Method 1 and Method 2,
indicating that listeners preferred the baseline sys-
tems in terms of clarity, naturalness, and intelligibil-
ity. SS values also show degradation, with all com-
parisons yielding positive scores, suggesting less
accurate speaker identity preservation. As with the
accent-based analysis, these observations should
be interpreted with caution due to relatively small
group sizes (N ), especially for the LJ speaker.

To complement the CMOS evaluation, we con-
ducted statistical significance testing on the speaker
similarity (SS) and clarity/naturalness (CM) scores
within each subgroup. For every experimental
method pair and demographic subgroup (by gen-
der and accent), we applied one-sample t-tests and
Wilcoxon signed-rank tests against a null hypoth-
esis of zero (i.e., no perceived difference between
systems). The resulting p-values are presented in

Table 8 (gender) and Table 9 (accent).

The statistical significance analysis supports the
earlier observations (Table 4 and Table 5). For
Method 4, p-values across most gender groups are
above the 0.05 threshold in both SS and CM com-
parisons against baseline Methods 1 and 2, indicat-
ing no statistically significant difference and sug-
gesting that the proposed method performs com-
parably to the baselines. In contrast, Method 6
consistently shows statistically significant differ-
ences in SS when compared to both baselines (e.g.,
p < 0.05 for both males and females), pointing to
a degradation in speaker similarity. For CM, how-
ever, most comparisons yield p-values above 0.05,
implying that the perceptual quality of Method 6
is not significantly different from the baselines de-
spite the SS drop.

For accent-based comparisons, the majority of p-
values also exceed 0.05, which may reflect a lack of
statistical power due to small sample sizes within
individual accent groups. Nevertheless, a few ac-
cents (e.g., Irish and American in 1–6 and 2–6
pairs) show marginal or significant effects, particu-
larly in SS, indicating that accent-specific behavior
may warrant closer examination in future studies
with larger cohorts.

These findings underscore the importance of
subgroup-level analysis in evaluating TTS systems.
Listener demographics—such as gender and ac-
cent—can influence judgments of speaker similar-
ity and perceptual quality, and adequate subgroup
representation is crucial to draw robust, generaliz-
able conclusions.

Table 8: Statistical Significance of CMOS Scores by
Gender

Method
Pair

Gender SS
t-p

SS
w-p

CM
t-p

CM
w-p

1–4 M 0.612 0.618 0.761 0.766
F 0.307 0.349 0.434 0.532
lj (F) 0.867 0.769 0.820 0.744

1–6 M 0.0001 0.0006 0.643 0.603
F 0.0001 0.0006 0.662 0.606
lj (F) 0.063 0.078 0.287 0.223

2–4 M 0.452 0.504 0.546 0.552
F 0.163 0.189 0.828 0.729
lj (F) 0.014 0.023 0.508 0.520

2–6 M 0.0001 0.0006 0.782 0.776
F 0.410 0.392 0.679 0.622
lj (F) 0.015 0.023 0.664 0.668
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Table 9: Statistical Significance of CMOS Scores by
Accent

Method
Pair

Accent SS
t-p

SS
w-p

CM
t-p

CM
w-p

1–4 Scottish 0.498 0.531 0.834 1.000
Indian 0.343 0.531 0.363 0.424
Irish 0.072 0.072 0.361 0.404
lj 0.867 0.769 0.820 0.744
American 0.216 0.030 0.156 0.055
English 0.431 0.463 0.055 0.054

1–6 Scottish 0.237 0.227 0.878 0.975
Indian 0.025 0.034 0.559 0.523
Irish 0.009 0.004 1.000 1.000
lj 0.063 0.078 0.287 0.223
American 0.004 0.008 0.236 0.254
English 0.478 0.750 0.109 0.188

2–4 Scottish 0.327 0.336 0.420 0.539
Indian 0.426 0.365 0.213 0.169
Irish 0.529 0.624 1.000 1.000
lj 0.014 0.023 0.508 0.520
American 0.259 0.375 0.679 0.750
English 0.193 0.219 1.000 1.000

2–6 Scottish 0.447 0.516 0.708 0.844
Indian 0.856 0.917 0.609 0.667
Irish 0.169 0.250 0.824 1.000
lj 0.015 0.023 0.664 0.668
American 0.002 0.008 0.499 0.550
English 0.074 0.110 0.884 0.902

Figure 3: DPO training loss

D Additional Experimental Results

D.1 DPO optimzation
Figure 3 illustrates the average training loss across
several model variants using DPO. Most models
demonstrate a smooth and consistent decrease in
loss, indicating stable convergence behavior. While
some variance exists across configurations, there
are no signs of divergence or abrupt fluctuations.
Overall, these results suggest that training with
DPO is stable under the tested conditions.
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Abstract

The ability of Large Language Models (LLMs)
to solve complex tasks has made them crucial
in the development of AI-based applications.
However, the high computational requirements
to fine-tune these LLMs on downstream
tasks pose significant challenges, particularly
when resources are limited. In response to
this challenge, we introduce L1RA, a novel
technique aimed at dynamically distributing the
rank of low-rank adapters during fine-tuning
using LORA. Given a rank budget (i.e., total
sum of adapters rank), L1RA leverages L1

regularisation to prune redundant ranks and
redistribute them across adapters, thereby op-
timising resource utilisation. Through a series
of comprehensive experiments, we empirically
demonstrate that L1RA maintains comparable
or even reduced computational overhead com-
pared to other LORA variants, including the
vanilla approach, while achieving same or better
performances. Moreover, the post-training anal-
ysis of rank distribution unveiled insights into
the specific model components requiring the
most adaptation to align with the task objective:
the feed-forward layers and the attention output
projection. These results highlight the efficacy
of L1RA in not only enhancing the efficiency
of LLM fine-tuning, but also in providing
valuable diagnostic information for model
refinement and customisation. In conclusion,
L1RA stands as a promising technique for
advancing the performance and interpretability
of LLM adaptation, particularly in scenarios
where computational resources are constrained.

1 Introduction

Large Language Models (LLMs) have revolu-
tionised Natural Language Processing (NLP) and
Artificial Intelligence (AI) (Zhao et al., 2023),
enabling sophisticated applications. LLM’s
language understanding and generation capabilities
make them suitable for an impressive number of
applications (Raffel et al., 2020; Brown et al., 2020;

Sanh et al., 2022). Moreover, their adoption as core
for chatbots (Scotti et al., 2024) have made them
essential for the final consumers of this technology.
However, to excel in these specific tasks, even
conversation, LLMs often require fine-tuning, a
process essential for tailoring their vast pre-trained
knowledge to new specific contexts and domains.
This adaptation ensures optimal performance and
task alignment, making fine-tuning a critical step
in deploying LLMs effectively.

The fine-tuning process, however, presents chal-
lenges, particularly concerning computational re-
sources. Adaptation to specific domains, such as
chatbot dialogue or instruction-following tasks, de-
mands substantial computational power, which may
be impractical or unfeasible in resource-constrained
environments. Recent advancements in efficient
fine-tuning techniques, including Low-Rank Adap-
tation (LORA) (Hu et al., 2022), prefix tuning (Li
and Liang, 2021) and the gradient-free meth-
ods like Memory-efficient Zeroth-order Optimiser
(MEZO) (Malladi et al., 2023), offer promising so-
lutions. These techniques leverage strategies like
low-rank parameterisation to reduce computational
overhead, making fine-tuning more accessible.

In this paper, we introduce L1-regularised
Rank Assignment (L1RA): a technique aimed at
enhancing the efficiency and effectiveness of LLM
fine-tuning. L1RA extends LORA by introducing
L1 regularisation to enforce rank sparsity and
dynamic rank allocation during training to get
the best from the available resources. Assuming
a given rank budget (i.e., total sum of LORA
adapter ranks), L1RA prunes redundant ranks
and reallocates them across adapters during the
fine-tuning process. We pair L1RA with our tool
Memory GPU Estimation of LLM Allocation for
Training Optimisation (MEMORY-GELATO) to
be sure to match available resources constraints.
Through a series of experiments, ranging from
small-scale analyses to comprehensive comparisons
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with other fine-tuning techniques, we evaluate
the performance of L1RA. The results highlight
how L1RA can offer better comparable results to
alternative LORA variants reallocating ranks with
negligible difference in resources consumption and
better results even with respect to regular LORA.

We divide the rest of the paper into the following
sections. In Section 2, we present the related works
on efficient LLM fine-tuning. In Section 3, we
explain the reasons behind our work. In Sections 4
and 5, we describe, respectively, the L1RA
fine-tuning algorithm and the MEMORY-GELATO
tool. In Section 6, we outline the experiments to
evaluate our model and in Section 7 we present the
obtained results. In Section 8 we comment on the
results we obtained. Finally, in Section 9, we sum
up our work and suggest possible future extensions.

2 Related works

Efficient fine-tuning techniques have garnered
increasing attention lately, due to the computational
demands associated with adapting LLMs to specific
tasks. The proposed techniques evolved signifi-
cantly during the last few years. Initial approaches
like Transformer Adapters (Houlsby et al., 2019;
Bapna and Firat, 2019) introduced additional
parameters in the form of a pair of linear projections
with a bottleneck in the middle, increasing network
depth and latency, thereby hindering scalability. In
response, LORA-based solutions (Hu et al., 2022)
have emerged as a promising alternative. LORA
addresses the limitations of adapters by introducing
low-rank parameterisation, effectively reducing
the number of parameters needed for adaptation.
This technique has gained widespread adoption for
its ability to achieve efficient fine-tuning without
compromising performance. Alternative techniques
like MEZO (Malladi et al., 2023) target the training
algorithm rather than the network structure,
focusing on fine-tuning through forward passes
only, eliminating the need for backpropagation and
the subsequent overhead. Other approaches like
prefix-tuning (Li and Liang, 2021) learn only the
embeddings of a continuos prompt that can be used
as a prefix to the input to condition the LLM output
towards the desired task. Among these techniques,
LORA stands out as the most adopted due to its
effectiveness in balancing computational efficiency,
performance and ease of use.

As premised, LORA operates by introducing
pairs of low-rank matrices A ∈ Rdin×r and B ∈
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<latexit sha1_base64="PrTOfMr5BIXco4yczi2NGE17ZCM=">AAACQHicbVA9TxtBEN3DfMUEYqCkWWEhORKy7hAhKS3RpEIgxYBkG2tuGZuB3b3T7lwkdLpfkF9DS7r8i/wDOkRLlTvHBQZe9fTejN7Mi1NNnsPwbzBXm19YXFr+UF/5uLr2qbG+ceqTzCnsqkQn7jwGj5osdplY43nqEEys8Sy+Oaz8s5/oPCX2B9+mODAwtjQiBVxKw8YODHPavS5k35ORfQN8pUDnR0Ur3K20sYGLvc/DRjNshxPItySakqaY4ni4HtT6l4nKDFpWGrzvRWHKgxwck9JY1PuZxxTUDYyxV1ILBv0gn/xTyJ3MAycyRSdJy4mILzdyMN7fmricrA72r71KfM/rZTz6NsjJphmjVVUQk8ZJkFeOyqJQXpJDZqguR0lWKnDAjI4kKFWKWdncTKAlhSMHauapPDZFvawtel3SW3K6144O2l9O9pud1rTAZbEltkVLROKr6Ijv4lh0hRK/xJ24F7+DP8FD8Bg8/R+dC6Y7m2IGwfM//82uVw==</latexit>

ai,j ⇠ N (0, �2)

<latexit sha1_base64="sXuQG8ZErriyEHD5o11AOzcp0dQ=">AAACJHicbVDLTgJBEJwVH4gv0KOXicSEgyG7xtfFhMSLR0zkkQAhvUODI7Ozm5leE7LhM7zqza/xZjx48VtckIOAdapUdae6y4+UtOS6X85KZnVtfSO7mdva3tndyxf26zaMjcCaCFVomj5YVFJjjSQpbEYGIfAVNvzhzcRvPKGxMtT3NIqwE8BAy74UQKnU8ruJPHkc82vudvNFt+xOwZeJNyNFNkO1W3Ay7V4o4gA1CQXWtjw3ok4ChqRQOM61Y4sRiCEMsJVSDQHaTjK9ecyPYwsU8ggNl4pPRfy7kUBg7Sjw08kA6MEuehPxP68VU/+qk0gdxYRaTIJIKpwGWWFkWgbynjRIBJPLkUvNBRggQiM5CJGKcdrOXKCWAvsGxNxTiR+Mc2lt3mJJy6R+WvYuyud3Z8VKaVZglh2yI1ZiHrtkFXbLqqzGBAvZM3thr86b8+58OJ+/oyvObOeAzcH5/gGcZKOl</latexit>

bi,j = 0

LoRA Adapter

Figure 1: LORA adapters: pre-trained weights are
frozen while the two adapter matrices are updated during
the fine-tuning.

Rr×dout into the network architecture (see Figure 1);
the product ∆W∈Rdin×dout of these two matrices
encodes the weights difference induced by fine-
tuning for a specific weight matrix W∈Rdin×dout of
the pre-trained model, as explained by Equation (1).
During fine-tuning, these adapter matrices are
updated while the original LLM parameters are kept
frozen. By leveraging low-rank parameterisation,
LORA effectively reduces the computational over-
head associated with fine-tuning while preserving
the expressive power of the LLM. Moreover, this
approach has demonstrated empirically significant
improvements in efficiency without sacrificing
performance across various downstream tasks.

h=x·(W+∆W)=x·W+x·(A·B) (1)

While LORA offers notable benefits, several vari-
ants have been proposed to address specific limita-
tions or further enhance its capabilities. Examples of
these alternative solutions are those aimed at stabilis-
ing the training process, like LORA+ (Hayou et al.,
2024), which introduces a matrix-specific scaling
parameter on the learning rate to improve perfor-
mances and convergence time, and Rank-Stabilised
LORA (RSLORA) (Kalajdzievski, 2023), which
uses a rank correcting factor to prevent gradient
collapse. Other variants, like Quantised LORA
(QLORA) (Dettmers et al., 2023), aim at further re-
ducing computational complexity by heavily quan-
tising the base model weights (for reduced memory
requirements and increased inference speed) while
operating on floating-point representation of the
trainable weights (for numeric precision and, thus,
training stability), thereby improving the overall ef-
ficiency. In this paper we focus on techniques for
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adaptive rank allocation. In fact, LORA adapters de-
pend on the rank hyper-parameter, which can be se-
lected dynamically for each pair of adapter matrices.
In this sense, some solutions have been proposed to
tackle the issue of rank selection in order to (i) get rid
of unused parameters and (ii) find the best possible
rank allocation allowed by the available memory.

One of the first solutions for dynamic rank alloca-
tion was presented with ADALORA (Zhang et al.,
2023), which enforces a Singular Value Decomposi-
tion-inspired (SVD-inspired) decomposition of the
adapter weights through additional regularisation
terms in the loss. Further refinements of this
technique came with Sparse LORA (SORA) (Ding
et al., 2023), which uses an intermediate gating
mechanism with L1 regularisation and proximal
gradient descent to iteratively reduce the used ranks,
and, Vector-based Random matrix Adaptation
(VERA) (Kopiczko et al., 2023), which reduces
the trainable LORA parameters through shared
random weights matrices and works on rank
allocation updating only layer-specific parameter
vectors. In parallel, Dynamic rank selection LORA
(DYLORA) (Valipour et al., 2023), proposed a
solution exploring a range of possible ranks during
training to find the optimal ones for each matrix.

3 Motivations

LORA adapters represent a valuable step towards
end-user fine-tuning of LLMs, making this
technology more accessible and customisable. The
existence of techniques like ADALORA, SORA or
DYLORA allowing for dynamic rank and pruning
(i.e., removing the i-th column in A and the i-th
row in B) are the results of advances towards better
exploitation of computational resources. Hereafter,
we highlight some points of improvement for
ADALORA and SORA (the main solutions for
dynamic rank allocation), in terms of computational
resources exploitation, that are motivating our work.

ADALORA proposes a SVD-inspired formula-
tion of the adapter:

∆W=U·Σ·V⊤=U·diag(σ)·V⊤ (2)

where U ∈ R(din×r), V ∈ R(dout×r), σ ∈ R+
0
r.

Then, it enforces an additional regularisation term
LSVD(∆W) to the loss to imposing orthonormality
on the adapter matrices.

∆W=∥U⊤ ·U−I∥22+∥V⊤ ·V−I∥22 (3)

Despite this constraint allows to interpret the
values of σ as the eigenvalues and, thus, prune
all elements corresponding to null eigenvalues in
increases the memory and time requirements of the
training process with respect to a normal LORA.

SORA builds on top of ADALORA, discarding
the SVD constraint and substituting the vector of
eigenvalues with a gating vector g∈Rr and enforc-
ing sparsity adding to the loss a L1 regularisation
penalty on g. This simple, yet effective solution,
encourages to prune all elements corresponding
to a 0 valued element in the gate, as they will be
ignored in the computation of the output (exactly
as the elements corresponding to a null eigenvalue).
The complete formulation of SORA includes the
proximal gradient update using a thresholding
function that ensures training stability. This addi-
tion is already part of the optimiser we use in our
experiments (see Appendix B for further details).

Pre-trained weights

<latexit sha1_base64="kXjvrZBc2W6nk3TuMa7Ovmq9eXA=">AAACOHicbVC7TsNAEDwnPEJ4BSgR0okIiSqyEa8yEg1lQCQgJSFaXzZw4ny27tYIZLnia2ih40/o6BAtX4CdpCCErWZndjW740dKWnLdd6dQnJmdmy8tlBeXlldWK2vrLRvGRmBThCo0Vz5YVFJjkyQpvIoMQuArvPTvTnL98h6NlaG+oMcIuwHcaDmQAiijepWtTgB06w+Sh5R3pOaj1k/O0+ukn/YqVbfmDotPA28Mqmxcjd6aU+z0QxEHqEkosLbtuRF1EzAkhcK03IktRiDu4AbbGdQQoO0mwz9SvhNboJBHaLhUfEji740EAmsfAz+bzM+0f7Wc/E9rxzQ47iZSRzGhFrkRSYVDIyuMzAJC3pcGiSC/HHmWhAADRGgkByEyMs4SmzDUUuDAgJh4KvGDtJzF5v0NaRq09mreYe3gbL9a3x0HWGKbbJvtMo8dsTo7ZQ3WZII9sWf2wl6dN+fD+XS+RqMFZ7yzwSbK+f4BIk+spA==</latexit>

x 2 Rd

<latexit sha1_base64="Sh4wgODaTcHjHSJza9GifXoOqXU=">AAACH3icbVDLTgJBEJwVH4gv0KOXicTEE9klvo4kXjxiIo8ECOkdGhyZnd3M9JqQDf/gVW9+jTfjlb9xFzkIWKdKVXequ/xISUuuO3M2cptb2zv53cLe/sHhUbF03LRhbAQ2RKhC0/bBopIaGyRJYTsyCIGvsOWP7zK/9YLGylA/0iTCXgAjLYdSAKVSsxtGKrb9YtmtuHPwdeItSJktUO+XnFx3EIo4QE1CgbUdz42ol4AhKRROC93YYgRiDCPspFRDgLaXzM+d8vPYAoU8QsOl4nMR/24kEFg7Cfx0MgB6sqteJv7ndWIa3vYSqaOYUIssiKTCeZAVRqY9IB9Ig0SQXY5cai7AABEayUGIVIzTYpYCtRQ4NCCWnkr8YFpIa/NWS1onzWrFu65cPVyWa9VFgXl2ys7YBfPYDauxe1ZnDSbYM3tlb+zd+XA+nS/n+3d0w1nsnLAlOLMfaauipw==</latexit>�

Pre-trained weights

<latexit sha1_base64="Sh4wgODaTcHjHSJza9GifXoOqXU=">AAACH3icbVDLTgJBEJwVH4gv0KOXicTEE9klvo4kXjxiIo8ECOkdGhyZnd3M9JqQDf/gVW9+jTfjlb9xFzkIWKdKVXequ/xISUuuO3M2cptb2zv53cLe/sHhUbF03LRhbAQ2RKhC0/bBopIaGyRJYTsyCIGvsOWP7zK/9YLGylA/0iTCXgAjLYdSAKVSsxtGKrb9YtmtuHPwdeItSJktUO+XnFx3EIo4QE1CgbUdz42ol4AhKRROC93YYgRiDCPspFRDgLaXzM+d8vPYAoU8QsOl4nMR/24kEFg7Cfx0MgB6sqteJv7ndWIa3vYSqaOYUIssiKTCeZAVRqY9IB9Ig0SQXY5cai7AABEayUGIVIzTYpYCtRQ4NCCWnkr8YFpIa/NWS1onzWrFu65cPVyWa9VFgXl2ys7YBfPYDauxe1ZnDSbYM3tlb+zd+XA+nS/n+3d0w1nsnLAlOLMfaauipw==</latexit>�

Fixed 
LoRA Adapter

<latexit sha1_base64="15PJKLB2FTFSJPiOeMnF8HkFi7I=">AAACOHicbVC7TsNAEDwTHiG8ApQI6USERBXZiFeJREMZEIFISYjWl0045Xy27tZIkeWKr6GFjj+ho0O0fAF2koIQtpqd2dXsjh8pacl13525wvzC4lJxubSyura+Ud7curVhbATWRahC0/DBopIa6yRJYSMyCIGv8M4fXOT63SMaK0N9Q8MI2wH0texJAZRRnfJuKwB68HvJMOUtqfm49ZPr9D7ppp1yxa26o+KzwJuACptUrbPpFFrdUMQBahIKrG16bkTtBAxJoTAttWKLEYgB9LGZQQ0B2nYy+iPl+7EFCnmEhkvFRyT+3kggsHYY+Nlkfqb9q+Xkf1ozpt5ZO5E6igm1yI1IKhwZWWFkFhDyrjRIBPnlyLMkBBggQiM5CJGRcZbYlKGWAnsGxNRTiR+kpSw2729Is+D2sOqdVI+vjirnB5MAi2yH7bED5rFTds4uWY3VmWBP7Jm9sFfnzflwPp2v8eicM9nZZlPlfP8AJBmspQ==</latexit>

y 2 Rd

<latexit sha1_base64="dkx0Nrr+llJ4uWqgtvt81jOkWxM="></latexit>

W1 2 Rd⇥d

<latexit sha1_base64="ZG/u0UFPNIutZ1l7yHFzhCMVDeo="></latexit>

W2 2 Rd⇥d

<latexit sha1_base64="ooDKCGQP72HeNB+AVhvw9tBEQfg="></latexit>

A2 2 Rd⇥r

<latexit sha1_base64="JbHgPym6y87nBRuUeAKTjMyJsfc=">AAACQ3icbVC7TsNAEDzzJrwClDQnIqRUkY14lSAayoAIIMUhWl82cOJ8tu7WSMjyL/A1tNDxEXwDHaJF4pykIMBUo5ldze5EqZKWfP/Nm5icmp6ZnZuvLCwuLa9UV9cubJIZgS2RqMRcRWBRSY0tkqTwKjUIcaTwMro7Lv3LezRWJvqcHlLsxHCjZV8KICd1q/UwBrqN+vlR0Q14KDUfClF+VlznPR6SjNFyU3SrNb/hD8D/kmBEamyEZnfVmwx7ichi1CQUWNsO/JQ6ORiSQmFRCTOLKYg7uMG2oxpcUCcfvFTwrcwCJTxFw6XiAxF/buQQW/sQR26yvNf+9krxP6+dUf+gk0udZoRalEEkFQ6CrDDSdYW8Jw0SQXk5cleJAANEaCQHIZyYufLGArUU2Dcgxp7Ko7iouNqC3yX9JRfbjWCvsXu6UzusjwqcYxtsk9VZwPbZITthTdZigj2yJ/bMXrxX79378D6HoxPeaGedjcH7+gZPsLCb</latexit>

A1 2 Rd⇥r

<latexit sha1_base64="QuTYsk3MGUF5/XTm82LIJL03Wdw="></latexit>

B1 2 Rr⇥d

<latexit sha1_base64="cNqEMiOtWL285A5jwBDou/O6K2s="></latexit>

B2 2 Rr⇥d

Performance-optimal 
LoRA Adapter

<latexit sha1_base64="byjXZQgRNKGbPHMIdK/kEavF0XA="></latexit>

B1 2 Rr0⇥d

<latexit sha1_base64="6YPhW/rQ90MjV16sNKLyqHf2V54="></latexit>

A1 2 Rd⇥r0

Fixed 
LoRA Adapter

Performance-optimal 
LoRA Adapter

<latexit sha1_base64="s7qpgk7F5PTmXU2zFhBjRDQocrw="></latexit>

B2 2 Rr00⇥d

<latexit sha1_base64="7lGkmBNO0EWNelJXIhCmL0kZGvI="></latexit>

A2 2 Rr00⇥d

Figure 2: Motivating example: r′ and r′′ are such that
r′+r′′=2r, so that the total amount of adapters memory
is the same with and without optimal allocation.

All the proposed solutions for dynamic rank
assignment correctly work to reduce the rank used
in the adapter matrices. However, these LORA vari-
ants are limited in the sense that they do not allow for
spare (unused) ranks re-assignment and they rather
wait for the end of training to prune the matrices.
They instead propose starting directly from higher
ranks, usually 3r/2, which increase the overall mem-
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ory requirement with respect to a base LORA oper-
ating with the same resources and rank r. Consider
the toy example in Figure 2, where we have the com-
parison between the matrices of LORA with fixed
rank allocation and the matrices with performance-
optimal rank allocation. In this case we would have
a rank budget of 2r that, in the performance-optimal
allocation, is divided between r′, in the first adapter,
and r′′, in the second adapter, that r′+r′′=2r and
r′>r>r′′. In this configuration, with adapters like
ADALORA or SORA, we would need to start at
least from a rank budget of 2r′ > 2r to reach the
performance optimal allocation, which is above
the available budget of 2r. Moreover, it may be
the case where, since we are talking of constrained
resources, the model with all the adapters starting
from rank r′ would not fit in memory.

Besides the theoretical aspects of staying
within the rank budget, we also have a “physical”
constraint given by the amount of available GPU
memory. To tackle this problem we developed
the MEMORY-GELATO tool, which comes as a
complement to L1RA. Though accurate estimates
of the memory usage we can identify the starting
rank without exceeding the available resources.
Similarly to other solutions, L1RA can drop the
ranks in excess, but differently from the other takes
care of re-allocating at runtime those ranks, all of
this staying within the given budget.

In this section we described exactly the problems
we tackle with our work: how to get the best
performances given a fixed rank or memory budget?
In other words, our contribution is an algorithm
that dynamically re-allocates rank amongst adapter
matrices in order to maximise performance given a
fixed maximum memory budget available, comple-
mented with a tool for memory budget estimation.

4 L1RA

<latexit sha1_base64="dBQV/emg1OSJu5TAtaj/OLH8CI4="></latexit>

W 2 Rd⇥d

Pre-trained weights

<latexit sha1_base64="kXjvrZBc2W6nk3TuMa7Ovmq9eXA=">AAACOHicbVC7TsNAEDwnPEJ4BSgR0okIiSqyEa8yEg1lQCQgJSFaXzZw4ny27tYIZLnia2ih40/o6BAtX4CdpCCErWZndjW740dKWnLdd6dQnJmdmy8tlBeXlldWK2vrLRvGRmBThCo0Vz5YVFJjkyQpvIoMQuArvPTvTnL98h6NlaG+oMcIuwHcaDmQAiijepWtTgB06w+Sh5R3pOaj1k/O0+ukn/YqVbfmDotPA28Mqmxcjd6aU+z0QxEHqEkosLbtuRF1EzAkhcK03IktRiDu4AbbGdQQoO0mwz9SvhNboJBHaLhUfEji740EAmsfAz+bzM+0f7Wc/E9rxzQ47iZSRzGhFrkRSYVDIyuMzAJC3pcGiSC/HHmWhAADRGgkByEyMs4SmzDUUuDAgJh4KvGDtJzF5v0NaRq09mreYe3gbL9a3x0HWGKbbJvtMo8dsTo7ZQ3WZII9sWf2wl6dN+fD+XS+RqMFZ7yzwSbK+f4BIk+spA==</latexit>

x 2 Rd

<latexit sha1_base64="Wmme9fybMvjT6ZTwecoS9EytfQE=">AAACOHicbVC7TsNAEDzzDOGVQImQTkRIqSIb8SqRaCgDIiFSEqL1ZQMnzmfrbo0UWa74Glro+BM6OkTLF2AnKUhgq9mZXc3u+JGSllz33ZmbX1hcWi6sFFfX1jc2S+Wtpg1jI7AhQhWalg8WldTYIEkKW5FBCHyFN/7Dea7fPKKxMtTXNIywG8CdlgMpgDKqV9rtBED3/iC5T3lHaj5u/eQqvU36aa9UcWvuqPhf4E1AhU2q3is7851+KOIANQkF1rY9N6JuAoakUJgWO7HFCMQD3GE7gxoCtN1k9EfK92MLFPIIDZeKj0j8vZFAYO0w8LPJ/Ew7q+Xkf1o7psFpN5E6igm1yI1IKhwZWWFkFhDyvjRIBPnlyLMkBBggQiM5CJGRcZbYlKGWAgcGxNRTiR+kxSw2bzakv6B5UPOOa0eXh5Wz6iTAAtthe6zKPHbCztgFq7MGE+yJPbMX9uq8OR/Op/M1Hp1zJjvbbKqc7x8Fr6yU</latexit>

h 2 Rd

<latexit sha1_base64="Sh4wgODaTcHjHSJza9GifXoOqXU=">AAACH3icbVDLTgJBEJwVH4gv0KOXicTEE9klvo4kXjxiIo8ECOkdGhyZnd3M9JqQDf/gVW9+jTfjlb9xFzkIWKdKVXequ/xISUuuO3M2cptb2zv53cLe/sHhUbF03LRhbAQ2RKhC0/bBopIaGyRJYTsyCIGvsOWP7zK/9YLGylA/0iTCXgAjLYdSAKVSsxtGKrb9YtmtuHPwdeItSJktUO+XnFx3EIo4QE1CgbUdz42ol4AhKRROC93YYgRiDCPspFRDgLaXzM+d8vPYAoU8QsOl4nMR/24kEFg7Cfx0MgB6sqteJv7ndWIa3vYSqaOYUIssiKTCeZAVRqY9IB9Ig0SQXY5cai7AABEayUGIVIzTYpYCtRQ4NCCWnkr8YFpIa/NWS1onzWrFu65cPVyWa9VFgXl2ys7YBfPYDauxe1ZnDSbYM3tlb+zd+XA+nS/n+3d0w1nsnLAlOLMfaauipw==</latexit>�

<latexit sha1_base64="Od2PBxAJsvgiq6h3slwg5fC+YzI="></latexit>

A 2 Rd⇥r

<latexit sha1_base64="vk3DQ+1yBWPXXxYgTYqE6QFtkOk="></latexit>

B 2 Rr⇥d

<latexit sha1_base64="pUStjK6Tzx5durakG7cAZUf/Sak=">AAACOHicbVC7TsNAEDwTHiG8EigR0okIKVVkI14lEg1lQASQkhCtLxs4cT5bd2skZLnia2ih40/o6BAtX4DtpCCBrWZndjW740dKWnLdd2emNDs3v1BerCwtr6yuVWvrlzaMjcC2CFVorn2wqKTGNklSeB0ZhMBXeOXfn+T61QMaK0N9QY8R9gK41XIoBVBG9atb3QDozh8mIuVdqfmo9ZPz9CYxab9ad5tuUfwv8MagzsbV6tecUncQijhATUKBtR3PjaiXgCEpFKaVbmwxAnEPt9jJoIYAbS8p/kj5TmyBQh6h4VLxgsTfGwkE1j4GfjaZn2mntZz8T+vENDzqJVJHMaEWuRFJhYWRFUZmASEfSINEkF+OPEtCgAEiNJKDEBkZZ4lNGGopcGhATDyV+EFayWLzpkP6Cy53m95Bc/9sr37cGAdYZptsmzWYxw7ZMTtlLdZmgj2xZ/bCXp0358P5dL5GozPOeGeDTZTz/QMUv6yd</latexit>

c 2 Rr

<latexit sha1_base64="PrTOfMr5BIXco4yczi2NGE17ZCM="></latexit>

ai,j ⇠ N (0, �2)

<latexit sha1_base64="sXuQG8ZErriyEHD5o11AOzcp0dQ=">AAACJHicbVDLTgJBEJwVH4gv0KOXicSEgyG7xtfFhMSLR0zkkQAhvUODI7Ozm5leE7LhM7zqza/xZjx48VtckIOAdapUdae6y4+UtOS6X85KZnVtfSO7mdva3tndyxf26zaMjcCaCFVomj5YVFJjjSQpbEYGIfAVNvzhzcRvPKGxMtT3NIqwE8BAy74UQKnU8ruJPHkc82vudvNFt+xOwZeJNyNFNkO1W3Ay7V4o4gA1CQXWtjw3ok4ChqRQOM61Y4sRiCEMsJVSDQHaTjK9ecyPYwsU8ggNl4pPRfy7kUBg7Sjw08kA6MEuehPxP68VU/+qk0gdxYRaTIJIKpwGWWFkWgbynjRIBJPLkUvNBRggQiM5CJGKcdrOXKCWAvsGxNxTiR+Mc2lt3mJJy6R+WvYuyud3Z8VKaVZglh2yI1ZiHrtkFXbLqqzGBAvZM3thr86b8+58OJ+/oyvObOeAzcH5/gGcZKOl</latexit>

bi,j = 0

<latexit sha1_base64="m9PJKwgLQ4C4Ozf7GMDLASpAIJE=">AAACIHicbVDLTgJBEJwVH4gv0KOXicSEE9k1vi4mJF48YiKPBAjpHRqcMDu7mek1IRs+wqve/BpvxqN+jcvKQcA6Vaq6U93lR0pact0vZy23vrG5ld8u7Ozu7R8US4dNG8ZGYEOEKjRtHywqqbFBkhS2I4MQ+Apb/vh25ree0FgZ6geaRNgLYKTlUAqgVGqJvuQ33OsXy27VzcBXiTcnZTZHvV9yct1BKOIANQkF1nY8N6JeAoakUDgtdGOLEYgxjLCTUg0B2l6S3Tvlp7EFCnmEhkvFMxH/biQQWDsJ/HQyAHq0y95M/M/rxDS87iVSRzGhFrMgkgqzICuMTItAPpAGiWB2OXKpuQADRGgkByFSMU6bWQjUUuDQgFh4KvGDaSGtzVsuaZU0z6reZfXi/rxcq8wLzLNjdsIqzGNXrMbuWJ01mGBj9sxe2Kvz5rw7H87n7+iaM985Ygtwvn8AVPyh8Q==</latexit>

ci = 1

L1RA Adapter

Figure 3: L1RA adapters

L1RA adapters, depicted in Figure 3, extend
the LORA framework by introducing rank pruning
and reallocation mechanisms within a fixed rank
or memory budget. The goal of L1RA is to identify
the performance-optimal rank configuration in
computational constrained settings where memory
–and time– may be limited. This dynamic rank ad-
justment ensures that the model efficiently utilises
the available resources, enhancing performance
without exceeding the same constraints a vanilla
LORA adapter would have.

Mathematically, given an input vector x∈Rdin ,
we compute the output h∈Rdout of a L1RA adapter
as described in Equation (4). Where W∈Rdin×dout

is the original matrix of pre-trained weights,
∆W ∈ Rdin×dout is the adapter matrix of weights
decomposed in A∈Rdin×r, c∈Rr and B∈Rr×dout ,
and the diag(·) function outputs a diagonal matrix
with the elements of the input vector as values on the
diagonal. The rank r depends on the specific adapter
and is selected through optimisation during training.

h=x·(W+∆W)=x·W+x·(A·diag(c)·B)
(4)

The c vector we introduced, similar to the gating
system of SORA, is a technical device to ease the
enforcing of the sparsity constraint. We could have
obtained the same effect of imposing sparsity on
c (resulting from the regularisation term λ∥c∥1), by
applying the sameL1 constraint to the columns of
the input projection matrix A of a regular LORA
adapter. Doing so would have resulted, however, in
much slower redistribution of rank, since an entire
column of A would need to have converged to zero
before it could be removed and reassigned to a
different matrix, whereas a single component of the
c vector falling to zero is sufficient for reassignment.
Thus, while the c vector does introduce a small
number of additional parameters, it results in faster
and more direct rank-sparsification, while not
affecting the overall transformation of the adapter.

We report the training process of a model using
L1RA adapters in the pseudocode detailed in
Algorithm 1 and we detail the rank pruning and
re-allocation process in Figure 4. The overall
training is similar to that of a model using LORA
adapters. The loss function is changed to include
the L1 regularisation term (controlled by the λ
hyperparameter) on the elements of the c vector.
Similarly to SORA, by enforcing sparsity on the c
vector through this regularisation, we achieve rank
pruning. In fact, whenever an element of c is shrunk

363



Algorithm 1 L1RA pseudocode
Require:

• ϑ ▷ Model parameters
• D ▷ Data
• r∈N+ ▷ Initial adapters rank

∆ϑ←{} ▷ Adapter parameters
for W∈ϑ do ▷ Initialise adapters of all layers

A←A∈Rd×r∼N (0,σ2)
B←0∈{0}r×d

c←1∈{1}r
∆ϑ←∆ϑ∪{(A,B,c)}

end for
for i∈ [0,nepochs)⊆N do ▷ Iterate over epochs

for X∈D do ▷ Iterate over training samples
L(∆ϑ) ← − ln P (X;ϑ,∆ϑ) + λ ·∑

(A,B,c)∈∆ϑ∥c∥1 ▷ Get loss
∆ϑ←∆ϑ−η ·∇∆ϑ ·L(∆ϑ) ▷

Update adapter weights
ρ←0 ▷ Initialise spare ranks
∆ϑu← [] ▷ Initialise list of unpruned adapters
for (A,B,c)∈∆ϑ do ▷ Iterate over adapters

if ∃c∈c|c=0 then ▷ Check for a rank decrease
ρ←ρ+

∑
c∈cI(c=0) ▷ Count spare ranks

(A,B,c)←fprune(A,B,c) ▷Apply pruning
else ▷ Else if not pruned

finsert(∆ϑu,(A,B,c)) ▷
Save adapter for reallocation

end if
end for
while ρ>0 do ▷ While there are spare ranks

for (A,B,c)∈∆ϑu do ▷
Iterate over unpruned adapters

if ρ>0 then ▷ if there are spare ranks
(A,B,c)←freallocate(A,B,c) ▷

Re-allocate a rank
c←c/∑c∈cc ▷ Normalise c vector
ρ←ρ−1 ▷ Update spare ranks

end if
end for

end while
end for

end for
return ∆ϑ

to 0 the corresponding column in A and row in B
–the other matrices of the adapter– can be dropped
(this is the role of the fprune(·) function).

All the spare ranks generated by this pruning
process can be re-allocated to the other, unpruned,
adapters. Whenever spare ranks are available, the
algorithm cycles over the unpruned adapters sorted
by decreasing order of the minimum value in the
c vector, so that

(Ai,Bi,ci)>(Aj ,Bj ,cj)⇐⇒min ci>min cj
(5)

and re-assigns a rank to each adapter until spare
ranks are no longer available. In other words, each
available additional rank is always redistributed
to the particular adapter which is most in need of
the rank increase, because its current rank-budget
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(a) When a null component in the c vector of an adapter
is detected, the corresponding elements of the adapter are
removed using the fprune(·) function, generating a spare rank
that will be reallocate.
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B

(b) When a spare rank is available and a needs to be reallocated,
the elements on the target adapter are extended by the
freallocate(·) function (values are initialised as in a regular
initialisation).

Figure 4: L1RA pruning and reallocation (lighter
colours are for lower absolute values, white is 0).

is in full use, with the various components of the
c vector furthest from zero.

The ordering of unpruned adapters is performed
in Algorithm 1 by the finsert(·) function when
saving them in ∆ϑu. After the rank re-allocation
step, the training procedure reprises. This sorting
step is inspired by SVD: assuming that in high-
dimensional space the matrices A and B can be
treated as orthogonal and the c vector mimics the
diagonal of the singular value matrix.

Compared to other dynamic rank adapters like
ADALORA, SORA and DYLORA, L1RA offers
significant advantages. If we consider a model using
vanilla LORA adapters with a given rank r, since
all these other techniques do not account for spare
ranks re-allocation, they would require starting
from a higher rank initialisation to have the adapters
requiring a rank r′>r reach that value, implicitly
requiring more memory than the original LORA
would have used. In contrast, L1RA basically main-
tains almost the same memory usage by reallocating
ranks within the fixed budget (as we detail better in
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Section 8, it cannot always be the same due to some
weight matrices having din or dout different from
others). Additionally, ADALORA increases the re-
quirements on time and memory by imposing SVD
behavior to the elements of the adapter through addi-
tional terms in the loss function. L1RA’s approach
avoids these additional constraints, ensuring com-
putational efficiency while achieving performance-
optimal rank configuration and maintaining
memory limits. This makes L1RA a better choice
for resource-constrained environments, offering a
balanced solution for dynamic rank adaptation.

5 MEMORY-GELATO

The MEMORY-GELATO tool is crucial to reach
full memory exploitation. In fact, it provides an
accurate estimate of the memory required to train
a model We identified the following contribution
to memory estimates:

• Model parameters, which include the weights
of all layers and the adapters and is influenced
by the numeric precision and quantisation;

• Steady state memory, that is all memory
reserved to keep track of the intermediate
states generated by passing data through the
model, the gradients and the optimiser state;

• Activation, that is the additional memory
used to memorise the activations for gradient
checkpointing (reducing the memory footprint
of gradients);

• Loss, which includes the output logits and
the memory used to compute the negative
log-likelihood;

• Other contributions, which includes all the
additional elements increasing memory, like
operations at the end of the forward pass and
the beginning of the backward pass.

To assess the goodness of MEMORY-GELATO
estimates, we compared the predicted and real
values of memory peak usage for different models,
different maximum sequence lengths and different
batch sizes. In Figure 5, we can see the difference
between the estimates and the real values; while, in
Table 1, we report quantitative metrics on estimates
goodness. Overall, the error in estimated peak
memory usage differs from the real one of a few
hundreds MBs, including the overestimate we
introduced for safety.

Table 1: MEMORY-GELATO performance in predicting
peak memory usage (MAE: Mean Absolute Error, ρ:
Spearman correlation coefficient, r Pearson correlation
coefficient).

Model MAE [MB] ρ r

MISTRAL 7B V0.3 203.05 1.0000 0.9998
LLAMA2 7B 109.80 1.0000 0.9999

LLAMA 3.1 8B 159.01 1.0000 0.9999
PHI-3 MINI 4K 146.03 1.0000 0.9998

6 Evaluation

To evaluate L1RA against other adapter approaches,
we applied it to fine-tune a LLM in a realistic
use case: assistant fine-tuning. Moreover, to
demonstrate empirically the practical advantages
of L1RA against other approaches we used
MEMORY-GELATO to configure the experiment
to maximise memory utilisation. We detail the
experimental settings in Appendix B.

We experimented fine-tuning to different LLMs
(namely MISTRAL 7B V0.3 (Jiang et al., 2023)
and LLAMA 3.1 8B (Dubey et al., 2024), both
quantised at 4 bits precision) to make sure that
L1RA is agnostic of the LLM. We selected the
OPENORCA data set (Mukherjee et al., 2023)1 for
this assistant fine-tuning.

In this experiment, we compared the test
performance and resource consumption of L1RA
against LORA, ADALORA. We compared against
two versions of ADALORA: one targeting the same
average rank as LORA and L1RA starting from an
higher rank (1.5 times that of LORA as suggested
in the ADALORA documentation), and another
version starting from the same rank of LORA and
L1RA and targeting a smaller rank (so that the
initial one was 1.5 times that of LORA, again, as
suggested in the ADALORA documentation). This
fine-tuning task was chosen to demonstrate the prac-
tical application of L1RA in efficient fine-tuning of
LLMs, particularly in scenarios where fine-tuning
on consumer-level GPUs is challenging (e.g., when
we reach the limit of usable memory).

Throughout the experiment, we kept track of
ranks evolution to analyse the final distribution
at the end of training. It this way we can get a
better understanding of which components within
the Transformer architecture need a more precise

1Data set card: https://huggingface.co/datasets/
Open-Orca/OpenOrca
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Figure 5: Comparison of peak memory usage estimates from MEMORY-GELATO against actual peak memory
usage during training with LORA adapters.

adaptation (identified as those with a higher adapter
rank) and shed lights on the internal mechanisms
of the Transformer architecture.

7 Results
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(a) LLAMA 3.1 8B.
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(b) MISTRAL 7B V0.3.

Figure 6: Matrix-wise evolution of layer-wise average
L1RA adapters rank during training.

We report the main results of the experiments in
Table 2, while the relative values, to ease the compar-
ison, are in Table 3. L1RA achieves the lowest ab-
solute perplexity (PPL) score, improving over both
LORA and ADALORA. Moreover, L1RA achieves
also the closest training time to that of LORA,
with less than 1% difference from LORA. Memory
consumption, on the other hand, seems to be similar
among the three approaches (most differences from
LORA are below 2%) with ADALORA performing
better than L1RA (and even LORA in one
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Figure 7: Matrix-wise distribution of layer-wise average
L1RA adapters rank at the end of training (error bars
show standard deviation).
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Figure 8: Layer-wise evolution of matrix-wise average
L1RA adapters rank at the end of training.

configuration). The number of adapter (trainable)
parameters shows how ADALORA not applying an
actual pruning the matrices and requiring an higher
starting rank to target the same average ranks of
LORA and L1RA increases significantly the num-
ber of parameters (50%) without an improvement
on the PPL. On the other side, L1RA exchanging
freely parameters between matrices of different
sizes causes an increase in the number of parameters
as training continues; however, the increase is
smaller than that of ADALORA and achieves better
PPL than both LORA and ADALORA. We discuss
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Table 2: Results and resources consuption of chatbot assistant fine-tuning on the OPENORCA data set (Rank: is
the initial adapters rank –for ADALORA we have the initial rank and target average–, PPL: perplexity –lower is
better, bold values are the best result for each model–, Time: total time for training, validation and testing; Memory:
peak VRAM usage during training; No. of adapter parameters: trainable adapter parameters at the end of training).

Model Approach Rank PPL ↓ Training time [s] ↓ Memory [GB]1↓ No. of adapter parameters [M] ↓
Start of training End of training

LLAMA 3 8B

LORA 16 3.32 30994.89 13.84 41.94 41.94
ADALORA 24→16 3.632 32980.28 14.00 62.92 62.92
ADALORA 16→12 3.572 32964.14 13.76 41.95 41.95

L1RA 16 3.25 31246.40 14.23 41.95 45.16

MISTRAL 7B V0.3

LORA 16 2.93 37891.88 13.58 41.94 41.94
ADALORA 24→16 3.162 40234.87 13.82 62.92 62.92
ADALORA 16→12 3.162 40215.02 13.59 41.95 41.95

L1RA 16 2.91 37968.91 13.94 41.95 50.06

1 Values measured using PYTORCH utility for measuring GPU device memory usage: https://pytorch.org/docs/stable/genera
ted/torch.cuda.max_memory_allocated.html.

2 Values are slightly altered because PPL was computed from the loss of the model which included also the regularisation term, separate
computations showed that ADALORA PPL was higher than that of LORA and L1RA.

Table 3: Relative results and resources consumption from Table 2 normalised to the LORA fine-tuning.

Model Approach Rank ∆ PPL [%] ↓ ∆ Training time [%] ↓ ∆ Memory [%] ↓ ∆ No. of adapter parameters [%]1↓

LLAMA 3 8B
ADALORA 24→16 9.34 6.41 1.16 50.02
ADALORA 16→12 7.53 6.35 −0.58 0.02

L1RA 16 −2.11 0.81 2.82 7.68

MISTRAL

7B V0.3

ADALORA 24→16 7.85 6.18 1.77 50.02
ADALORA 16→12 7.85 6.13 0.07 0.02

L1RA 16 −0.68 0.20 2.65 19.36

1 Values computed on end-of-training parameters.
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(a) LLAMA 3.1 8B start of training.
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(b) MISTRAL 7B V0.3 start of training.
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(c) LLAMA 3.1 8B halfway through training.
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(d) MISTRAL 7B V0.3 halfway through training.
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(e) LLAMA 3.1 8B end of training.
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(f) MISTRAL 7B V0.3 end of training.

Figure 9: Layer-wise and Matrix-wise evolution of L1RA adapters rank during training.

better about memory consumption and number of
adapter parameters in Section 8.

In Figure 6 we can the average evolution of the

ranks organised per matrix of the Transformer
architecture. As we can see, LLAMA and MISTRAL

have the same trends: matrices coming from the
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Feed-Forward Neural Network (FFNN) layer of
the Transformer architecture (up-projection Wup,
gate Wgate, and down-projection Wdown) are
more “rank hungry” than those of the multi-head
self-attention layers (key Wk, value Wv, query
Wq, and output Wo). At the end of training, the
difference is clear across all layers, as shown by the
averaged rank counts in Figure 7. From Figure 8
we can see another common trend between the two
models: ranks are higher in the layers closer to the
output of the neural network.

Finally, to report on the individual ranks of each
matrix in the Transformer stack, we can see in Fig-
ure 9 ranks distributions at the beginning, halfway
through and at the end of training. The darker
area emerging at the bottom corresponds to the the
matrices of the FFNN. We can see how the “rank
mass” is higher in these layers especially toward the
top of the Transformer network (bottom-right side
on the plot) and how it is lower for the multi-head
self-attention layer matrices at the bottom of the
Transformer network. Moreover, we can wee
how with LLAMA this trend is emerging slower:
the matrix showing rank distribution at the end is
closer to that of MISTRAL halfway through training.
Given the higher PPL, we can assume that LLAMA

could have been trained for more iterations.

8 Discussion

Values of memory consumption does not comply
with our expectations, especially if compared taking
into account the rank distributions and the number
of trainable parameters. Considering the average
ranks and the total number of parameters, we
expected to see ADALORA starting from the higher
rank having the highest memory consumption and
ADALORA starting from the same rank as LORA
still consume more memory due to the additional
operations to compute the regularisation term, while
the memory is even lower in the case of LLAMA.
We suspect this is due to some internal optimisation
or offloading of the trainer in the HUGGINGFACE’s
TRANSFORMERS library we used (Wolf et al.,
2020). Despite we were not able to locate the source
of this difference, we conducted a small experiments
on the same data using the same handmade training
loop with all adapters and we measured an overall
higher memory consumption that was more in line
with the number of parameters and the compared
techniques. In the next iteration of L1RA we plan
to drop the trainer to have more reliable estimates.

To comment on the difference in number of
parameters between L1RA and LORA, we can see
that despite L1RA not exceeding the rank budget,
the amount of parameters (and used memory) is
slightly higher than LORA. This is a result of
allocating the spare ranks to other adapters working
on matrices of different sizes. In particular, as we
saw from Figure 7, many ranks are allocated to the
feed-forward layers, which have a higher (4×) inner
projection dimensionality. Despite this situation,
L1RA still achieves a lower resources utilisation
when compared to ADALORA.

Finally, to comment on the trends observed in
Figures 6 to 9, we can say that trends hint how the
FFNN layers at the top of the Transformer stack
are contributing more to the task being solved. The
high-level features processed in that part of the
Transformer network need more precise refinement
thus the higher rank. Similarly, we believe that
exploiting different information from other tokens
in the context is not as important as extracting more
refined patterns with the non-linear transformations
of the FFNN to have the LLM behave as a chatbot
assistant, thus the higher ranks in FFNN layers.
This observation agrees with intuition that the
higher layers of the network should contribute the
most to adapting the network to a specific domain,
and that the output and FFNN layers are crucial
for storing domain-specific information (as noted
by (Geva et al., 2021; Biderman et al., 2023)) that
likely needs to be updated by the adapters.

9 Conclusion

In this paper, we introduced L1RA, a novel
technique for efficient LLM fine-tuning. By
effectively exploiting the dynamic rank assignment
given by L1 regularisation and re-assigning the
spare ranks within the available budget, L1RA
represents a significant advancement in efficient
fine-tuning, offering a promising solution for
resource-constrained environments. We completed
L1RA with MEMORY-GELATO our tool for GPU
memory estimation we can exploit to determine
the memory –and thus rank– budget. At this
moment we foresee two possible, complementary,
directions in the further development of L1RA:
we are interested in studying the rank distribution
across different models and at a different scales or
number of parameter and data-set sizes and we are
interested in better understanding the convergence
of the proposed method.
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Limitations

In this paper, we mainly focused on the development
of L1RA for efficient fine-tuning and its evaluation
on realistic use cases, rather than exhaustive exper-
iments. The first limitation is in the choice of the
LLM: as for now, we evaluated the results using only
MISTRAL 7B V0.3 and LLAMA 3 8B. A proper
evaluation would require exploring other openly ac-
cessible models of the same and different sizes that
would fit on a consumer-level GPU. The second limi-
tation is the choice of the evaluation data set: we con-
sidered only the task of instruction fine-tuning since
it is a common use case and since it covers many
tasks an LLM is required to solve, however a more
extensive evaluation exploring different tasks would
improve the understanding of L1RA’s capabilities.
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The authors do not foresee any considerable risks
associated with the work presented in this paper.
In principle, the L1RA algorithm is intended to
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authors made the source code publicly available to
ensure the reproducibility of the experiments. Refer
to Appendix A for further details.
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A Source Code Availability

We share the source code associated with this paper
for full reproducibility and transparency. All the
source material to replicate the experiments is
available on GitHub:

• L1RA: https://github.com/raul-singh
/L1RA/tree/dev-exp;

• MEMORY-GELATO: https://github.com
/raul-singh/memory-gelato.

B Evaluation setup

In this section, we provide the hyperparamers we
used for in experimental evaluations to ensure full
reproducibility. We report the hyperparameters we
used with the OPENORCA data set in Table 4. In
the table, we use the following notation:

• r is the initial rank of L1RA, LORA and
ADALORA adapters;

• α is the scaling of L1RA, LORA and
ADALORA;

• pdropout is the dropout probability of L1RA,
LORA and ADALORA;

• η is the learning rate;

• λ is the regularisation coefficient or L1RA or
ADALORA;

One important detail of our experiments is the
choice of the optimiser, we implemented a variant
of AdamW (Loshchilov and Hutter, 2019) (which is
the most common optimiser for LLMs), to support
decoupled regularisation for both L1 and L2

regularisations. We refer to this variant as AdamE,
where the “E” refers to ElasticNet: the combinedL1

andL2 regulariser2. The addition is the decoupled
L1 regularisation that avoids the update of the lasso
constraint being scaled by the adaptive learning
rate and momentum hyperparameters. This scaling
affects negatively the shrinking of the parameters,
showing it down.

Since we apply learning rate warm-up and cosine
scheduling to shrink η to zero, we find useful keep a
separate constant learning rate for the parameters in
the c vectors. To avoid introducing unnecessary hy-
peraparameters we use the same η of the rest of the
parameters, but whithout warm-up and scheduling.

2AdamE implementation https://github.com/vince
nzo-scotti/bitsandbytes/tree/dev-adame

Table 4: OPENORCA hyperparameters.

Model Hyperparameter Value

LLAMA

3.1 8B

Max. sequence length 1024 tokens
r 16
α 16

pdropout 10−1

Compute d-type bfloat16
Attn. implementation Flash attn. 2 (Dao, 2024)

Optimiser AdamE (paged, 32 bit)
η 10−4

η schedule cosine
η warm-up ratio 5%
Max grad. norm 1

Epochs 1
Batch size 4

Accum. steps 4

λL1RA 10−3

ηc (L1RA) 10−2

Rank update period (L1RA) 5% training steps
λADALORA 10−3

tinit (ADALORA) 5% training steps
∆t (ADALORA) 5% training steps

MISTRAL

7B V0.3

Max. sequence length 1024 tokens
r 16
α 16

pdropout 10−1

Compute d-type bfloat16
Attn. implementation Flash attn. 2 (Dao, 2024)

Optimiser AdamE (paged, 32 bit)
η 10−4

η schedule cosine
η warm-up ratio 5%
Max grad. norm 1

Epochs 1
Batch size 4

Accum. steps 4

λL1RA 10−3

ηc (L1RA) 10−2

Rank update period (L1RA) 5% training steps
λADALORA 10−3

tinit (ADALORA) 5% training steps
∆t (ADALORA) 5% training steps

We conducted all experiments on the same
machine with the following hardware configuration:

• CPU: Intel Core i9-13900K;

• RAM: 64 GB;

• GPU: NVIDIA GeForce RTX 4090.

We used as much shared parameters across the
three approaches we compare (L1RA, LORA and
ADALORA) as possible to have a fair comparison.

373



Evaluating ASR in a Clinical Context : What Whisper Misses

Haeeul Hwang1,2, Eric Jordan1, Deok-Hee Kim-Dufor3, Christophe Lemey3, Motasem Alrahabi1

1Sorbonne Université, 2Université de Paris Cité, 3CHRU de Brest,
Correspondence: motasem.alrahabi@sorbonne-universite.fr

Abstract
Automatic Speech Recognition (ASR) powered
by AI is rapidly advancing and finding applica-
tions across a wide range of domains. However,
its application within domain specific contexts
still represents a challenge, with the specific
issues varying from one context to another.

In this paper, we examine the application of
OpenAI’s Whisper ASR system in the context
of psychiatric interviews. First, through analy-
sis of error rates in the automatic transcriptions
then through analysis of the most common er-
rors present in the transcriptions we found that
Whisper achieved a Word Error Rate of 0.25
but failed to transcribe filler words most of-
ten associated with patient’s hesitations during
speech. We find that systems such as Whisper
show great promise for applications in clini-
cal contexts . However, due to the importance
of filler words and other filled pauses from a
clinical perspective, its application should be
accompanied with fine-tuning and verification
by specialists to ensure the best outcomes.

1 Introduction

Despite improvements in ASR models, the latest
models fail to achieve the same impressive out of
the box results when applied to specific domains.
This can result in increased errors for minority
groups or those with speech disfluencies (Koenecke
et al., 2020, 2024) or poor performance on lan-
guages that are under-represented within the train-
ing data of the aforementioned models (San et al.,
2024).

Among these domains healthcare is a highly sen-
sitive area where the accuracy of speech recogni-
tion is critical. In psychiatric consultations, subtle
nuances in language can carry important clinical
implications, and even small transcription errors
may influence diagnosis, treatment, or documen-
tation quality (Liebenthal et al., 2023). In these
cases evaluating the models’ true performance re-
mains a challenge, since widely used evaluation

metrics, such as Word Error Rate (WER) and Char-
acter Error Rate (CER) quantify surface-level in-
consistencies between the recognized text and the
reference transcript. However, these metrics do not
account for semantic integrity, context relevance,
or the clinical impact of recognition errors (Miner
et al., 2020).

To address these challenges, this study analy-
ses ASR outputs from psychiatric consultations.
Specifically, we measure error rates across 3 differ-
ent clinical groups and investigate the most com-
mon errors of the ASR models.

Our contributions are as follows:
1. We present a dataset of real-world psychi-

atric consultation transcripts and their ASR outputs
(described further below).

2. We conduct an analysis of the recognition
errors, with a focus on words that were omitted or
deleted in the ASR-generated transcripts.

1.1 Prior work
The application of ASR in a clinical context re-
mains underdeveloped, notably due to recognition
errors that undermine reliability. Within the setting
of psychotherapy consultations, Miner et al. (2020)
introduced a three-pronged framework for assess-
ing ASR, emphasizing that conventional metrics
such as WER alone do not capture clinically rel-
evant nuances. Their study compared human and
ASR-generated transcriptions of therapy sessions,
evaluating performance from three perspectives:
general linguistic accuracy (WER and semantic
distance), recognition of depression-related vocab-
ulary, and accuracy on passages with harm-related
language (e.g., self-harm or violence).

While the general performance analysis showed
an average WER of 25% performance on harm-
related speech was significantly lower with a 34%
WER, indicating poor reliability in safety-critical
scenarios. This underscores how ASR systems
can provide transcriptions that are mostly accurate,
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however they may miss finer details that are impor-
tant for diagnosis. The authors conclude that these
systems required further development before being
ready for individual level safety surveillance.

Further work in the clinical domain has inves-
tigated the effectiveness of ASR systems for tran-
scribing recordings of patients with Alzheimer’s
disease (Soroski et al., 2022; Akinrintoyo et al.,
2025). Overall these studies showed promising re-
sults, with the transcripts produced being usable for
distinguishing between patient and control groups
(Soroski et al., 2022). However, the models’ ten-
dency to exclude filler words (e.g. umm, uhh) was
noted, although this deficit could be made up for
by fine-tuning Whisper on the patients’ data (Akin-
rintoyo et al., 2025).

Additionally, some works have considered the
use of ASR systems within the context of psy-
chological experiments (Pfeifer et al., 2024; Zi-
man et al., 2018) finding error rates as low as 2.5
%, however these results only applied to studies
with exclusively healthy participants (Pfeifer et al.,
2024). Nonetheless, these works show the promise
that these models can hold for application in psy-
chological research.

2 Methodology

2.1 Dataset

Patient
Group

Female Male Total

AR 22 19 41
NAR 5 5 11
FEP 3 4 7

Total 30 28 59

Table 1: Patient group counts by sex, including unknown
and totals

Group Mean Std Median Min Max

Agg 49 14 48 15 90
NAR 47 10 47 27 62
AR 50 14 48 16 90
FEP 48 18 53 15 74

Table 2: Overall and Group-Specific Recording Dura-
tions (in Minutes)

To assess ASR performance in psychiatric consul-
tations, we compiled a dataset comprising audio

recordings of 59 (30 female, 28 male, 1 undis-
closed) patients at ultra-high risk for psychosis
(UHR) with a psychiatrist. All participants were
native speakers of French. The interview was a
semi-structured conversation with predetermined
questions on each patient’s problems such as their
background, family, social relationships, socio-
professional insertion, emotional interactions, com-
plaints about symptoms, and other issues brought
up by the patient.

The average recording duration was 49 min-
utes (see Table 2). Two trained assistants tran-
scribed the entire utterances verbatim, including
filled pauses, mispronunciations, and neologisms,
following clear guidelines. An experienced linguist
then reviewed the transcripts to correct spelling
errors – such as homophones and accents – with-
out altering the verbatim content. The participants
were grouped into three clinical categories accord-
ing to the Comprehensive Assessment of At-Risk
Mental States (CAARMS) (Yung et al., 2005) : AR
(At Risk for psychosis, 41 patients), NAR (Not
At Risk, 11 patients), and FEP (First-Episode Psy-
chosis, 7 patients), see Table 1.

2.2 Data Preprocessing

2.2.1 Audio Processing
Prior to auto-transcription, all audio files – origi-
nally in formats such as WMA, M4A, MP4, and
WAV – were converted to a uniform WAV format
to ensure compatibility and consistency. The pro-
cessed files were then transcribed using two ASR
models: OpenAI’s Whisper medium and Whisper
turbo (Radford et al., 2023).

To improve evaluation accuracy, the start of each
recording was trimmed to align the starting time-
points across files. Subsequently, a series of pre-
processing steps were applied to both manual and
ASR-generated transcripts before calculating error
rates.

2.2.2 Text Processing
1. Special character removal : We first re-

moved non-verbal annotations and special
characters (e.g., #, [, ]) that were used to dis-
tinguish between patient and clinician speech
and to mark the proper names in the manual
transcripts. This cleaned version of the ref-
erence transcripts was then used to compute
baseline WER and CER scores.

2. Normalization : We applied the Whisper nor-
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Figure 1: Comparison of WER Metrics Across Patient Groups for Whisper Medium and Whisper Turbo

Processing Stage Aggregate NAR AR FEP Kruskal–
Wallis
p-value

WER 0.38 0.40 0.37 0.39 0.4889
WER_normalized 0.25 0.27 0.24 0.27 0.5981
WER_filtered 0.17 0.19 0.17 0.19 0.7969

Table 3: Mean WER Across Patient Groups With Kruskal–Wallis Test Results for Different Preprocessing Stages

malizer to both the reference and hypothesis
transcripts in order to standardize formatting.
This process involved removing punctuation,
converting all text to lowercase, and normal-
izing common variants in transcription. The
resulting metrics, calculated on these normal-
ized texts, are reported as WER_normalized
and CER_normalized.

3. Stop word filtering : Using the French lan-
guage model from the SpaCy library, we re-
moved stop words from both versions of the
transcripts to emphasize semantically mean-
ingful content.

4. Single-letter token removal : We excluded
tokens consisting of a single character (e.g.,
“c” from c’est, “d” from d’accord), as these
are often misrecognized and lack standalone
semantic value.

5. Filled pauses and filler word removal : Af-
ter analyzing omissions in the ASR-generated
transcripts, we found that filled pauses and
filler words were the most frequently omit-
ted across all clinical groups (AR, NAR, and
FEP). Based on this, we identified and re-
moved 11 common words – such as euh,
bah, humm, oui, ok and non – which consis-
tently appeared missing in the ASR outputs.
This enabled the calculation of refined metrics

(WER_filtered, CER_filtered) that better cap-
ture recognition quality in a clinical context.

For quantitative analysis between ASR-
generated and manual transcripts, we used the
jiwer library to compute standard evaluation
metrics, including WER and CER. Beyond
providing overall error rates, jiwer also facilitated
the automatic extraction and categorization of
specific error types such as substitutions, deletions,
and insertions. This enabled a more fine-grained
analysis of both the frequency and the nature of
recognition errors across different models.

3 Results and Discussions

3.1 Model-Level WER Comparison

Figure 1 shows the distribution of WER scores for
both Whisper models (medium and turbo), aggre-
gated across all patients and preprocessing stages.
Overall, the Whisper turbo model consistently out-
performed the Whisper medium model across all
metrics.

The most notable performance improvement oc-
curred after removing filled pauses (e.g., euh, bah,
humm), with WER decreasing by approximately
6–8 percentage points for both models. This high-
lights the strong influence of spontaneous speech
markers on surface-level error rates in psychiatric
dialogues.
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3.2 Patient Group Comparison

Figure 2: Aggregate Distributions of WER by Patient
Type

Figure 2 presents the WER distributions for each
patient group: FEP, AR, and NAR. The differences
between patient groups were more pronounced than
those between models. Specifically, the FEP group
exhibited the highest WERs throughout all pre-
processing stages, indicating greater transcription
difficulty.

3.3 Effect of Preprocessing

Initially, raw transcripts contained non-verbal an-
notations, special characters, and clinically irrele-
vant elements such as filled pauses and filler words,
which can artificially inflate error rates if not ac-
counted for. By systematically removing these
components, we obtained a cleaner reference set
that better reflected the meaningful content of the
speech.

3.4 Statistical Analysis of Group Differences

To assess whether the differences in WER across
clinical groups were statistically significant, we
conducted a Kruskal–Wallis H test for each version
of the metric: raw WER, WER_normalized, and
WER_filtered. The results are summarized in Table
??.

None of the comparisons reached statistical sig-
nificance, with p-values of 0.4889 (WER), 0.5981
(WER_normalized), and 0.7969 (WER_filtered),
respectively. These results indicate that while me-
dian WER values differed slightly between the
groups, the intra-group variability remained high,
preventing clear group-level differentiation.

In particular, the wide spread of WER scores
within the FEP group (as seen in Figure 2) suggests
that individual differences – such as speech dis-
fluency, cognitive state, and acoustic environment

– may play a stronger role than diagnostic group
alone in shaping ASR performance.

As outlined above, our initial WER scores fell
short of those presented in (Miner et al., 2020).
This difference was largely explained by the pres-
ence of filler words within the reference transcripts
that were ignored by Whisper. While these words
can seem superfluous from a linguistic perspective,
they can be deemed important from a clinical per-
spective. The frequency, manner and timing of
these filled pauses can give an important insight
into the mental state of a given patient. With this in
mind, we plan to investigate fine-tuning transcrip-
tion models to produce outputs that more closely
resemble verbatim transcriptions, as discussed in
(Akinrintoyo et al., 2025). Additionally, we aim
to examine alternative evaluation metrics that may
better capture clinically relevant transcription fi-
delity.

4 Conclusion

This study shows that the medium and turbo Whis-
per models perform well when applied in the con-
text of clinical consultations in French, achieving
an aggregate WER of 0.25 after applying Whisper
normalisation (no statistical significance between
patient groups was observed).

These results show that these models can be in-
tegrated into the interview process. Although the
error rate would suggest that some human super-
vision and correction is still required, these auto-
mated transcriptions can provide a starting point
that could significantly reduce the work load when
transcribing interviews.

However, particular attention should still be paid
to certain types of errors made by the ASR models.
For example, we found 8 percentage points of the
total error came from omitted filler words used dur-
ing verbal pauses. These words can be essential to
clinicians when diagnosing patients, and so these
omissions are of the utmost importance. With this
in mind, further work should follow the example of
(Akinrintoyo et al., 2025) and investigate the pos-
sible fine tuning of ASR models to improve their
accuracy vis-à-vis those linguistic details which
are relevant to clinicians’ diagnoses. This work
provides valuable insight into ASR performance
in a linguistic context such as French, as, to our
knowledge, few studies have evaluated systems like
Whisper in non-English clinical settings.
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Limitations

As outlined in Section 2.1 above, the dataset used
for this experiment has a limited sample size and is
not balanced in terms of the CAARMS groups. Ta-
ble 1 shows that the number of AR patients is twice
that of the other two groups combined. However,
this distribution is typical of the clinical population,
with a majority of patients falling into the at-risk
category. The data presented here constitute a sub-
set of our dataset for which both the recordings
and transcriptions have been finalized. We are con-
tinuing to expand the dataset, with the aim of this
experiment being to investigate the use of ASR to
accelerate the transcription process.

Additionally, our analysis of transcription errors
was conducted at the level of the entire transcrip-
tion. This meant that no distinction was made
between the patients’ speech and the therapists’
speech. Further work will aim to speaker turns
to get a more accurate representation of perfor-
mance. Finally, silent pauses were not analyzed in
this study. In clinical interviews, the duration and
timing of silences—alongside filled pauses—can
provide meaningful cues about cognitive or emo-
tional states. Incorporating silence duration into
future ASR evaluations could offer a more com-
prehensive understanding of patient behavior and
support finer-grained clinical insights.
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Abstract

Despite recent advances in speech technology,
several languages remain underrepresented.
This linguistic disparity exacerbates the exist-
ing technological divide, resulting in limited ac-
cess to speech-driven technologies. A key fac-
tor contributing to this challenge is the scarcity
of datasets necessary to develop diverse speech
recognition systems for low-sourced languages
such as Amazigh and Moroccan Arabic. While
the Amazigh language is emblematic of cul-
tural identity and is deeply embedded in history,
Darija remains the dialect spoken by the major-
ity in Morocco. In this work, we introduce the
first Tachelhiyt-Darija speech parallel corpus.
A total of 24 Amazigh and 11 Moroccan Dar-
ija speakers recorded the parallel textual data,
yielding a corpus of 2,772 audio segments. We
also conducted benchmarking and fine-tuning
of the Whisper ASR model. The results under-
scored the need for the development of datasets
for under-resourced languages.

1 Introduction

According to the latest population census in Mo-
rocco (High Commission for Planning, 2024), Mo-
roccan Arabic and Tamazight, both reckoned to
be descendants of the Semitic branch of the Afro-
Asiatic language family, are the most widely spo-
ken languages in the country (Aissati et al., 2011).
In a striking comparison, 92% of Moroccans use
Darija (a term often interchangeably used with Mo-
roccan Arabic), while only 25% of the population
speaks Amazigh. At the sociolinguistic level, Mo-
roccan Arabic and Amazigh are two dialectical
forms spoken in different geographical areas and
both have standardized forms: Modern Moroccan
Arabic and Tamazight (Sadiqi, 2014; Youssi, 1992).

While Modern Standard Arabic (MSA) remains
the country’s first official language primarily uti-
lized in formal speeches, administrative correspon-
dences and documentation, news broadcast, and

education as the medium of instruction, Moroc-
can Arabic and Tamazight have long maintained
the status of the language of daily social interac-
tions and conversations. In contrast to Darija, and
particularly in 2001, Tamazight was recognized
as a national heritage for all Moroccans, with the
highest authority in the country (King Mohammed
VI, 2001) issuing a decree to preserve, promote,
and reinforce the Amazigh language and culture
throughout the establishment of the Royal Institute
of Amazigh Culture (IRCAM - Institut Royal de
la Culture Amazighe). Amazigh was introduced
into primary school curricula in 2003, marking a
shift from its oral tradition to a formalized, codified
language. This transition faced major challenges
(Aissati et al., 2011; Ennaji, 2014), including stan-
dardizing the language across its three main vari-
eties (namely, Tamazight, Tachelhiyt, and Tarifiyt)
and selecting an appropriate script—ultimately, the
Tifinagh script was adopted, evolving from the an-
cient Lybico-Berber alphabet.

The present work introduces the Tachelhiyt-
Darija parallel speech corpus1. The corpus in-
cludes speech transcriptions in addition to speaker
gender and dialect. In addition to describing our
dataset, we developed baseline systems for auto-
matic speech recognition (ASR). To summarize,
our contributions are as follows. First, we intro-
duce Tachelhiyt-Darija, a fully supervised speech
dataset for two underrepresented dialects, labeled
with transcriptions, dialect, and gender. Second,
we evaluate Whisper as the state-of-the-art (SoTA)
multilingual ASR model across the two dialects to
assess its performance in recognizing underrepre-
sented speech.

2 Related work

There is a limited body of research that devel-
ops speech data for underrepresented languages to

1https://huggingface.co/datasets/
NoureddineMOR/tachelhiyt-darija
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serve different purposes such as ASR models, ma-
chine translation, language learning, et cetera. Sev-
eral scholars designed datasets for individual letters
and digits for Amazigh spoken digit recognition
tasks (Abakarim and Abenaou, 2023; Boulal et al.,
2023; Hamidi et al., 2020; Telmem and Ghanou,
2018; El Ghazi et al., 2014; Satori and ElHaoussi,
2014).

On the word and sentence levels, El Ouahabi
et al. (2017) developed a corpus for recognizing
520 spoken Amazigh words from 50 native Tari-
fiyt speakers, while (Oukas et al., 2024) created a
database of Arabic vocal data by Tamazight speak-
ers to train ASR models sensitive to Tamazight-
accented Arabic. These efforts, along with (Daouad
et al., 2023), focus on building word-based cor-
pora to improve speech recognition systems and
human-machine vocal interaction. Additionally,
Mozilla Common Voice (Ardila et al., 2020) also
contributes to this goal, offering a publicly avail-
able dataset with 398 Tamazight audio files for
training and 159 for testing in version 17.0.

A different mode of database creation is attested
in Moroccan Arabic. A variety of Moroccan Ara-
bic databases have been developed, with the Dar-
ija Open Dataset (Outchakoucht and Es-Samaali,
2021) standing out for its 10,000 annotated entries
featuring English translations and detailed linguis-
tic information. Other studies, such as (Zaidani
et al., 2024b) and (Zaidani et al., 2024a), con-
structed corpora through manual transcription and
audio segmentation of YouTube content, while (Ta-
lafha et al., 2024) compiled 48 hours of transcribed
data from North African and other Arabic dialect
speakers—though Amazigh was notably excluded.
Additional contributions include (Samih and Maier,
2016), (Ali et al., 2019), and (Labied et al., 2023),
each aiming to support NLP, ASR, and speech-to-
text translation tasks for Moroccan Arabic.

To our knowledge, there has not been an attempt
to consider recording sentence stimuli in a paral-
lel corpus consisting of two underrepresented lan-
guages, where the goal is to increase accessibility
of the language in terms of the used script. In the
context of the present experiment, we expand the
Amazigh language speech corpus to include longer
sequences instead of isolated words2. However,
some publicly available datasets on Huggingface
provide sentence recordings along with their writ-

2https://huggingface.co/datasets/
Tamazight-NLP/tamawalt-n-imZZyann

ten transcripts in Tifinagh3 and phoentic symbols45.
This study introduces a parallel corpus featuring
two underrepresented languages—Tamazight and
Darija—with vocal recordings transcribed in Ara-
bic script for greater accessibility. Unlike existing
repositories such as HuggingFace, which use Tifi-
nagh or phonetic scripts for Tamazight, this work
contributes a balanced, Arabic-script-based speech
dataset for both languages.

3 Corpus Design

3.1 Parallel data and speech recoding

The process of designing the corpus was convo-
luted given the unavailability of written resources
in Amazigh. Offline and online materials such
as stories and written poetry exist in substantial
amounts. Still, they are scripted in Tifinagh and
require to be translated by a literate reader in the
language. Moreover, visual content in Amazigh
on the YouTube platform is abundant but is devoid
of automatically generated subtitles. The absence
of subtitled episodes with pure backgrounds de-
termined our modus operandi with respect to data
collection. The first stage of compiling the data was
conducted through listing down numerous random
(functional) sentences in Moroccan Arabic. The
sentences were both generated by the authors and
excerpted from the “Moroccan Arabic Textbook”
designed by Peace Corps Morocco 6.

Two native speakers of Tachelhyit (the target
Amazigh variety in the extant study) were, then,
recruited to either literally translate the Moroccan
Darija sentences into Tachelhyit. The rendered
sentences were provided in the Arabic script. At
the end, the data was further broken into sub-lists,
which were sent to the participants who in turn
recorded the stimuli in their first language.

The participants were two groups of Amazigh
and Moroccan Arabic native speakers. The varying
size of the groups, with the Amazigh participants
forming the majority (n=24), reflected the study’s
sampling technique. Both male (n=14, 40%) and
female (n=21, 60%) participants, whose age range
differed across three major groups were included to

3https://huggingface.co/datasets/
Tamazight-NLP/tosd

4https://huggingface.co/datasets/TifinLab/
moroccan_amazigh_asr

5https://huggingface.co/datasets/TifinLab/
tamazight_asr

6https://www.friendsofmorocco.org/Docs/Darija/
Moroccan%20Arabic%20textbook%202011.pdf
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Tachelhiyt Darija
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t_1.wav 	
àðC

	
¯ Èð 	P



@ t_sp14 male d_1.wav ÕºJ
Ê« ÐC�Ë@ d_sp14 male

t_2.wav A¿ 	Pð


@

	
¬A

	
K pñ

�
J
	
¯X@P t_sp14 male d_2.wav @Y

	
« YªK. ú



æ
�
�Ö
	
ß ø



XA
	
« d_sp14 male

t_3.wav ��
K. ñ¢Ë@
	
à

�
I

�
¯ñË t_sp12 female d_3.wav �

HA��
K. ñ¢Ë@
�
IJ


�
¯ñ
�
K d_sp12 female

Table 1: Sample of the Tachelhiyt-Darija speech parallel corpus

diversify the spoken form of our data. The majority
of participants (57.10%) were under 19 years old,
followed by 25.70% aged 20–29, and 17.10% aged
30–40. Table 2 shows the count and percentage
rates for such demographic information as gender
and participants’ native tongue. For the age factor,
the table displays the mean, range and standard
deviation:

Variables Values N % M R SD

Gender Male 14 40
Female 21 60

Native L. Amazigh 24 68
Moroccan 11 31

Age 22 19 6
Education high school 21 60

undergrad. 5 14
postgraduate 9 25

Table 2: Demographic Variables

3.2 Data preparation and segmentation

All participants recorded the data in the wild with-
out any professional equipment, resulting in au-
dio files with different sampling rates, 44.100 and
48.000, for Tachelhiyt and Darija respectively. The
participants were asked to make a five-second
pause between a recorded string and the follow-
ing one. This allowed for optimal splitting of the
data using AudioSegment7 to extract the speech
segments. The resulted data was verified by the
experimenters to make sure the audio files were
segmented properly and were aligned well with the
corresponding transcripts.

Each audio segment was converted to a single
channel 16 kHz 16-bit PCM encoded WAV files
using the FFmpeg library (Tomar, 2006). For each
dialect, there is a comma-separated (CSV) file con-

7https://github.com/jiaaro/pydub

taining two columns with the audio file name as
the first column and the transcript as the second
column. The metadata file includes eight columns;
four for each dialect as shown in Table 1. The
metadata further facilitated the filtering of specific
speakers on the basis of their number and gender.

A total of 2772 speech segments made up
the developed parallel corpus in Tachelhiyt and
Draija.The duration of the Tachelhiyt recordings
is 71.68 minutes, with an average audio segment
length of 3.11 seconds, while the duration of the
Darija recordings is 61.84 minutes, with an average
segment length of 2.68 seconds.

4 Experiments

We evaluated Whisper (Radford et al., 2023) per-
formance using zero-shot and full finetuning evalu-
ation. Our primary goal is to report the importance
of speech datasets by benchmarking one of the
state-of-the-art ASR models.

4.1 Zero-shot evaluation

We evaluated Whisper small (242M) and large-v3
(1.54B) in a zero-shot setting using the test dataset
(i.e., 300 speech samples). Then, we reported Word
Error Rate (WER) and Character Error Rate (CER).

Model Tachelhiyt Darija

wer/cer wer/cer

Baseline (small) 127.09/80.85 89.72/60.47
Baseline (large) 145.54/85.86 76.08/34.44

Table 3: Results of Word Error Rate (WER) and Char-
acter Error Rate (CER) for the baseline models.

Table 3 shows the performance results for the
baseline models on Tachelhiyt and Darija. The
results reveal notable discrepancies across both
languages and model sizes. For Tachelhiyt, the
WER/CER increased from 127.09/80.85 in the
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small model to 145.54/85.86 in the large model, in-
dicating a performance degradation with the larger
model. In contrast, Darija showed improvement
with model scaling: the WER/CER decreased from
89.72/60.47 in the small model to 76.08/34.44 in
the large model. These results suggest that the large
model is more effective for Darija but less suited
for Tachelhiyt. This is possibly due to differences
in linguistic structure, training data distribution, or
model overfitting.

4.2 Full Finetuning

For fine-tuning, we sampled audio data at a sam-
pling rate of 16 kHz. All experiments were con-
ducted on a single-node Google Colab instance
equipped with an A100 GPU. We fine-tuned two
Whisper small models separately for Tachelhiyt
and Darija, using identical hyperparameters for
both models. The fine-tuning process employed
a training batch size of 16 and an evaluation batch
size of 8. We set the learning rate to 1e-5 and
trained for a maximum of 1000 steps, equivalent to
approximately 15 epochs. These hyperparameters
were chosen to accommodate the relatively small
size of the available training data. For decoding,
we used a maximum sequence length of 225 tokens.
No additional post-processing steps were applied to
the decoded outputs. Although we evaluated both
the Whisper small and large-v3 models in a zero-
shot setting, we opted to fine-tune the small model
due to the limited size of the available dataset.

Model Tachelhiyt Darija

wer/cer wer/cer

(small) 7.45/3.25 4.26/1.38

Table 4: Results of Word Error Rate (WER) and Char-
acter Error Rate (CER) for the finetuned models.

As Table 4 shows, the fine-tuned small model
demonstrates a substantial performance improve-
ment over the baseline, achieving significantly
lower error rates across both languages. For Tachel-
hiyt, WER and CER dropped to 7.45 and 3.25,
respectively, while Darija saw even lower error
rates of 4.26 (WER) and 1.38 (CER), indicating
the effectiveness of fine-tuning in enhancing model
accuracy for both language varieties.

The findings have important implications for the
development and use of ASR systems in under-
represented languages. First, the baseline perfor-

mance highlights the challenges that pre-trained
ASR models face when deployed in low-resource
languages such as Tachelhiyt and Darija. The very
high WER and CER across board consistently show
that such models are not inherently able to general-
ize to linguistically diverse contexts without some
form of adaptation. This finding further supports
the need for the creation of datasets and finetuning
to broaden the applicability of ASR technologies
to resource-poor languages, which mitigates the
existing technological gap.

5 Conclusion

To conclude, this study introduces the first sequen-
tial parallel corpus of Tachelhiyt-Darija, compris-
ing 71.68 minutes of Tachelhiyt and 61.84 minutes
of Darija. Based on our review of the literature, this
is the first parallel dataset of North African speech
data from two less represented dialects. It has the
potential to be used in Automatic Speech Recog-
nition (ASR), speech-to-speech translation, and
machine translation, with further applications for
cross-lingual studies between these two languages.
We have also applied and validated the Whisper
ASR model by means of the utilized dataset for
benchmarking and fine-tuning. The findings re-
veal the importance of creating language-specific
datasets for less-documented languages in order to
improve the current state of the art in speech tech-
nologies as well as enhance linguistic accessibility.

Limitations

This study has certain limitations that should be ac-
knowledged. The first limitation is that the quality
and consistency of the audio data may have been
affected by variations in participants’ recording
equipment, eventually leading to noise and possi-
ble background interference. This is ascribed to
the small size and parallel nature of the dataset,
which may have limited the scope of training and
evaluation for the fine-tuned models, consequently
limiting the generalizability of the results. How-
ever, the results are quite insightful. A larger and
more diverse corpus could very well enhance the
performance and robustness of the system.

In this vein, future work will involve the re-
lease of an expanded dataset— another parallel
corpus—aimed at increasing both the quantity and
quality of data for Tamazight three varieties and
Darija, thereby enhancing ASR technology for
these linguistic groups. In addition, future research
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will bring structural and linguistic differences (i.e.,
phonological and morphological components) that
characterize these two languages. This should fur-
ther improve the performance of the ASR system.

Ethics Statement

In developing Tachelhiyt-Darija corpus, we ad-
hered to ethical principles to ensure responsible
and respectful use of data. All speech data used
in this study were collected in strict accordance
with ethical research standards. Participants were
fully informed about the purpose of the study, the
nature of the data being collected, and their right
to withdraw at any time without consequence. No
personally identifiable information was collected,
and all audio recordings were anonymized to pro-
tect participant privacy. The collected data are used
exclusively for academic and research purposes re-
lated to language resource development and are
stored securely to prevent unauthorized access.
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Abstract

This paper examines how outliers, often dis-
missed as noise in topic modeling, can act as
weak signals of emerging topics in dynamic
news corpora. Using vector embeddings from
state-of-the-art language models and a cumu-
lative clustering approach, we track their evo-
lution over time in French and English news
datasets focused on corporate social responsi-
bility and climate change. The results reveal a
consistent pattern: outliers tend to evolve into
coherent topics over time across both models
and languages.

1 Introduction

As information ecosystems become increasingly
dynamic, the early identification of emerging trends
in news media remains a key challenge for natu-
ral language processing. Topic modeling, which
clusters semantically similar documents to uncover
latent themes, plays a central role in this task.
Early approaches, most notably Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), intro-
duced a probabilistic framework to infer latent top-
ics from textual documents (Hoyle et al., 2022).
More recent embedding-based methods, such as
BERTopic (Grootendorst, 2022), represent docu-
ments as dense vector embeddings, enabling more
contextualized representations and yielding more
coherent topics in dynamic corpora such as online
news content (Babalola et al., 2024).

Unlike partition-based clustering methods of-
ten used for clustering vector embeddings, such
as KMeans (Hartigan and Wong, 1979), or proba-
bilistic topic models like LDA, both of which assign
every document to a topic, HDBSCAN (Campello
et al., 2015) is a density-based clustering algorithm
that explicitly labels low-density points as outliers.
These documents, which do not fit into any topi-
cal cluster, are often treated as noise and excluded
from downstream analysis.

Challenging the assumption that outliers are
mere noise, we explore the hypothesis that outliers,
documents not assigned to any cluster, may serve as
early signals of emerging topics. We employ a cu-
mulative clustering approach using BERTopic with
HDBSCAN, tracing how isolated documents evolve
and whether they are gradually integrated into clus-
ters as their narratives gain salience. To aid in-
terpretability, we also analyze lexical and stylistic
features of outliers and their role in cluster integra-
tion.

To conduct our analysis, we use two news cor-
pora. The first, in French, is a manually curated
dataset documenting a corporate social responsibil-
ity dispute which serves as a pilot study. The sec-
ond, in English, focuses on climate change and is
used for replication. Both corpora are topically con-
strained, span continuous time periods, and provide
full-text coverage, allowing to control for topical
and timeline gaps.

Section 2 reviews related work. Section 3 details
the full experimental setting, with a particular focus
on the methodology. Section 4 presents the French
study and results on outlier conversion. Section 5
reports replication results in English. Findings in
both languages are discussed and compared in Sec-
tion 6. Section 7 concludes and outlines future
directions.

2 Related Work

Topic modeling is widely applied across various
domains, including corporate social responsibil-
ity (Lee et al., 2023) and climate change (Ylä-
Anttila et al., 2022), in both traditional and social
media contexts (Laureate et al., 2023). The field’s
methodological evolution, from probabilistic ap-
proaches like LDA (Blei et al., 2003) to embedding-
based methods such as BERTopic (Grootendorst,
2022), has improved semantic coherence. How-
ever, while outliers have been often treated as
noise (Alattar and Shaalan, 2021), their role in sig-
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naling emerging topics remains an underexplored
area of research.

Research in temporal topic analysis has evolved
from early techniques like burst detection (Chen
et al., 2016) and term-frequency-based change
point identification (Yao et al., 2021) to more
recent approaches tracking semantic drift (Jung
et al., 2020) and transformer-based dynamic model-
ing (Karakkaparambil et al., 2024; Boutaleb et al.,
2024). While these methods effectively capture
shifts in established topics, they typically overlook
sparse outliers, documents that may precede and
predict emerging themes before they coalesce into
detectable clusters.

This relates to clustering methodology. While
probabilistic topic models like LDA assign soft clus-
ter memberships, and partition-based algorithms
such as KMeans (Hartigan and Wong, 1979) enforce
hard assignments, both approaches assume that ev-
ery document belongs to a cluster. In contrast,
density-based methods like HDBSCAN (Campello
et al., 2015) and OPTICS (Ankerst et al., 1999)
explicitly identify outliers as low-density points
that do not belong to any cluster. Unlike general
anomaly detection techniques (e.g., Isolation For-
est (Liu et al., 2008), Local Outlier Factor (Bre-
unig et al., 2000)), which detect outliers without
considering the topical coherence of thematically
structured corpora, HDBSCAN’s built-in outlier de-
tection aligns more closely with semantic structure.
This allows to track how semantically isolated doc-
uments may evolve into coherent topic clusters over
time.

This paper examines whether outliers can serve
as early signals of emerging topics. By tracking
their integration into clusters over time via cumu-
lative clustering, we aim to complement existing
work focused on stable topic structures.

3 Experimental Setting

3.1 Hypothesis
While topic modeling and document clustering
have been extensively studied, the role of outliers
in the dynamic formation of topics has not yet been
explored. To address this gap, we propose the fol-
lowing hypothesis:

H: In topic-based cumulative clustering of news
articles, topics emerge or are reinforced in
part through the assimilation of outliers—that
is, documents initially unclustered that later
become part of coherent topic clusters.

This hypothesis assumes that topic formation in
cumulative clustering reflects a gradual process of
semantic integration, in which outliers may act as
early signals of emerging or evolving topics.

3.2 Models

To test H, we use nine open-source embedding
models with diverse transformer architectures and
language capabilities. Model selection was guided
by performance on the Massive Text Embedding
Benchmark (MTEB) (Muennighoff et al., 2022),
as reported on the Hugging Face leaderboard1 as
of September 16, 2024. Table 3 (Appendix A.2)
summarizes the selected models.

3.3 Methodology

The methodology involves four main steps. First,
we project news articles into a semantic space using
language model embeddings. We then apply dimen-
sionality reduction to enable efficient clustering
and address the curse of dimensionality (Köppen,
2000). Subsequently, we perform cumulative clus-
tering over 20 monthly time windows and evaluate
clustering quality to determine the optimal experi-
mental configuration. Based on this setup, we test
H concerning outlier-to-topic conversion and as-
sess its robustness through inter-model agreement.
Finally, we analyze lexical and stylistic features to
interpret differences between converted and non-
converted outliers.

3.3.1 Data Preparation

Each news article is represented using dense vector
embeddings generated from nine pre-trained lan-
guage models. For each document, we compute em-
beddings from three variants: body text, headline,
and full article (both headline and body text). This
projects articles into a high-dimensional semantic
space, where distances reflect semantic similarity.
We apply Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al., 2018) to reduce
the dimensionality of embeddings prior to cluster-
ing. Output dimensions are varied across 2D, 3D,
5D, and 10D. UMAP is chosen over Principal Compo-
nent Analysis (PCA) (Wold, 1987) due to its ability
to preserve both local and global structure, which
is important for identifying fine-grained topic dis-
tinctions and local outliers (Atzberger et al., 2023).

1https://huggingface.co/spaces/mteb/
leaderboard
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3.3.2 Cumulative Clustering

We employ cumulative clustering (iterative topic
modeling over expanding time windows) across
20 monthly intervals. At each step, documents
from the current and all prior months are clustered
jointly using BERTopic with HDBSCAN (McInnes
et al., 2017). This density-based algorithm assigns
documents to clusters or labels them as outliers
via the GLOSH algorithm (Campello et al., 2015),
which identifies low-density regions by comparing
a point’s local density to its neighbors. Documents
labeled -1 are classified as outliers and excluded
from clusters. To test H, we track whether these
outliers transition to inliers (i.e., join a cluster) in
subsequent windows, thereby signaling emergent
topics.

The clustering quality is evaluated using the
silhouette score (Shahapure and Nicholas, 2020),
which measures cluster cohesion and separation.
Scores above 0.7 are considered strong, 0.5–0.7
moderate, and below 0.25 weak. To evaluate clus-
tering over time, we compute the mean and median
silhouette scores across all time windows, and then
aggregate these globally across all models. We
compare the nine selected embedding models, con-
tent variants (headline, body, full article), and UMAP
settings to ensure robustness. Based on these com-
parisons, we select the configuration with the high-
est silhouette score and proceed with our method-
ology to verify our hypothesis.

3.3.3 Outlier-to-Topic Conversion

Under hypothesisH, we evaluate whether outliers
contribute to the formation of new topics or the
reinforcement of existing ones. We compute, for
each model, the proportion of outliers that later
become topic inliers, and assess robustness via the
rescaling method of Icard et al. (2024), which mea-
sures whether H is consistently validated for the
same outliers across models. Specifically, for arti-
cles identified as outliers by all models (at some
point in their time window), we compute the pro-
portion x of models that validate H and rescale
it as a = |2x − 1|. This transformation captures
consensus independently of polarity (as in Cohen’s
kappa): both x = 1 (unanimous validation) and
x = 0 (unanimous rejection) yield maximal agree-
ment a = 1, while x = 0.5 corresponds to minimal
agreement a = 0, since models are evenly split in
this case.

3.3.4 Lexicon and Writing Style Analysis
As an attempt to explain the conversions observed,
we first controlled for potential topical differences
between converted and non-converted outliers us-
ing word-level TfidfVectorizer scores (Qaiser
and Ali, 2018), hereafter referred to as TF-IDF. Let
w be a word and let TFIDFg(w) denote its aver-
age TF-IDF score in group g ∈ {H, notH}, where
H corresponds to outliers that were integrated into
topic clusters (“converted”), and notH to those that
remained isolated (“non-converted”). To capture
the differential lexical salience of word w across
the two groups, we define the delta TF-IDF as:

∆TFIDF(w) = TFIDFH(w)− TFIDFnot H(w) (1)

In addition, we investigated variation beyond lex-
ical content by analyzing stylistic differences be-
tween converted and non-converted outliers using
the stylometric framework introduced by Terreau
et al. (2021), which quantifies eight core stylis-
tic dimensions. These include the relative fre-
quency of function words (e.g., prepositions, con-
junctions, auxiliaries), punctuation marks (e.g., pe-
riods, commas), numbers, and named entities (e.g.,
persons, organizations) per sentence; distributions
of part-of-speech tags (e.g., nouns, verbs, adjec-
tives); and averages of structural features (e.g.,
word length, word frequency, syllables per word).
The framework also incorporates lexical complex-
ity metrics (e.g., Yule’s K (Yule, 2014), Shannon
entropy (Shannon, 1948)) and readability indices
(e.g., Flesch-Kincaid Grade Level (Kincaid et al.,
1975)).

4 Pilot Study

4.1 French Dataset

We constructed a dataset for the pilot study, re-
ferred to as TP, consisting of 102 French news
articles that we manually collected and curated.
The articles document a controversy involving the
major energy company TotalEnergies and the pres-
tigious French Grande École École Polytechnique,
who planned to build a research center on the uni-
versity’s Saclay campus. The project drew both
support, citing its contribution to energy research,
and criticism, focused on academic independence
and environmental impact. The TP dataset covers
the full timeline of media coverage, from Decem-
ber 2018 to August 2024, and includes documents
from official sources, mainstream media, partisan
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outlets, opinion sections, and NGOs. It captures
the entire development of the story, without topical
or temporal gaps.

4.2 Topic-Based Clustering

We applied topic-based clustering to the TP dataset
using the methodology described in subsection 3.3.
Figure 1 presents the cumulative clustering output
generated by the Solon-embeddings-large-0.1 model.
The figure shows a 2D representation derived from
10D UMAP projections of document embeddings
across nine time windows, illustrating topic struc-
ture and outlier transitions over time.

Figure 1: 2D Scatter plot of the cumulative clustering ob-
tained on TP (after UMAP 10D reduction) over nine time
windows, using Solon-embeddings-large-0.1. Outliers
are indicated with black × and topics in blue and green.

Across all nine models and UMAP dimensions,
clustering quality is consistent, with mean and me-
dian silhouette scores above 0.5 (range: -1 to 1).
On average, body-text embeddings yield higher-
quality clusters than headline or full-article rep-
resentations. UMAP with 10 dimensions outper-
forms the 2D, 3D, and 5D settings. Among mod-
els, Solon-embeddings-large-0.1 achieves the high-
est scores, while xlm-roberta-large performs the
worst. Based on these findings, we evaluate Hy-
pothesesH on TP using UMAP-10D and body-text
embeddings.

4.3 Outlier Behavior

To evaluate HypothesisH, we computed, for each
model, the proportion of outliers that later be-
came inliers during cumulative clustering. Figure 2
shows the mean validation score per model.

Table 1: Mean silhouette scores per model for UMAP
10D using the body text of the TP dataset. Bold values
indicate the models achieving the best silhouette score
for each document type. (See full results in A.3.1.)

Model UMAP 10D

Headline Body Full Article

multilingual-e5-large 0.6065 0.5519 0.5689
e5-base-v2 0.5592 0.5350 0.4846
sentence-camembert-base 0.5990 0.5850 0.6167
all-MiniLM-L12-v2 0.5654 0.5846 0.5349
Solon-embeddings-large-0.1 0.5772 0.6694 0.5553
xlm-roberta-large 0.4941 0.4802 0.4424
all-roberta-large-v1 0.5525 0.6258 0.5759
multilingual-mpnet-base-v2 0.5391 0.5923 0.6865
distilbert-base-uncased 0.3670 0.9373 0.8895

Mean 0.5400 0.6180 0.5993
Median 0.5417 0.6183 0.5756

Figure 2: Mean number of outliers per model that vali-
date predictionH on TP by converting into topic inlier
at some time point (specific to each model). Each col-
ored bar represents the mean of each model.

The average validation score of H across
models on TP is high, with a mean of 0.80. As
expected, models trained or fine-tuned on French
perform strongly: Solon-embeddings-large-0.1

achieves perfect validation (1.0), and
sentence-camembert-base scores 0.92. Among
English-language models, e5-base-v2 shows
intermediate performance (0.68), while sev-
eral others yield unexpectedly strong results:
all-MiniLM-L12-v2 (0.74), all-roberta-large-v1

(0.84), and distilbert-base-uncased (1.0). Mul-
tilingual models show mixed performance:
xlm-roberta-large scores moderately (0.65),
whereas paraphrase-multilingual-mpnet-base-v2

(0.82) and multilingual-e5-large (0.78) achieve
high scores. Overall, model-level validation ofH
ranges from moderate to perfect, with a relatively
uniform distribution.

Across models, outlier-to-inlier conversion
rates are highest in early clustering phases
(64.58%–100% in late 2020), followed by a ta-
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pering trend with persistent outliers in later peri-
ods. As detailed in Appendix A.3.2, some mod-
els exhibit stable integration while others decline
over time. Despite these intra-model fluctuations,
the general pattern of early integration supportsH
across temporal windows.

To test whether this holds beyond model varia-
tion, we computed inter-agreement using the rescal-
ing method mentioned in Section 3.3.3. The result
a = 0.7002 shows strong agreement thatH is val-
idated across all models based on converting the
same outliers. This suggests that despite inconsis-
tencies in how individual models integrate outliers
over time, their validation of H remains broadly
aligned. Accordingly, the average model x = 0.80
is a good consensus model regarding the validation
of H. For this reason, we proceed using the av-
erage model representation for our interpretability
analysis.

In the next section, we examine whether writing
style, beyond semantic similarity, helps explain
why some outliers are eventually integrated into
clusters, while others remain isolated.

4.4 Lexicon and Writing Style Analysis

As an attempt to explain the conversion of out-
liers into topics, we controlled for topical align-
ment among outliers to assess their influence on
topic formation (see Subsection 3.3.4). For each
word appearing in outlier documents, we com-
puted the difference in average TF-IDF scores be-
tween those validatingH and those not validating
H. Specifically, we used the lexical salience met-
ric ∆TFIDF(w), as defined in (1), and its inverse.
Among the top 20 words in each class, the mean
difference was 0.0088 for outliers validatingH and
−0.0126 for those not validating H. Both differ-
ences were statistically significant at the 0.05 level
using the Kruskal–Wallis test.

A closer examination of the top 20 terms
most prevalent among outliers validating H re-
veals words associated with institutional support
for the project (e.g., “cabinet”, “total”, “lobby-
ing”, “saclay”) or individuals endorsing it (e.g.,
“brunelle”, “nathalie”). In contrast, the top 20 terms
more prevalent among outliers not validatingH in-
clude words reflecting opposition to the project
(e.g., “recours”, “victoire”), as well as references
to activist groups (e.g., “greenpeace”, “militant”)
and opposing figures (e.g., “julliard”, “jean”). In
both sets, the majority of these words were sta-

tistically distinctive.2 These results suggest that
conversion of outliers into topics is partly influ-
enced by their alignment with dominant themes in
the TP dataset, which is consistent with the role
of semantic similarity in reinforcing or generating
topical structure.

To evaluate our qualitative observation that the
lexicon of outliers not validating H tends to be
more subjectively framed or opinion-laden, we
carried out a quantitative analysis to test this hy-
pothesis. Specifically, we assessed whether lexical
salience defined in (1) correlated with the degree of
subjectivity or neutrality in the documents where
each word occurred. For each word w, we com-
puted the average subjectivity and neutrality scores
across all documents Dw in which it appeared:

Subjectivity(w) =
1

|Dw|
∑

d∈Dw

s(d) (2)

Neutrality(w) =
1

|Dw|
∑

d∈Dw

n(d) (3)

where s(d) and n(d) denote the subjectivity and
neutrality scores of document d, computed using
TextBlob (Loria et al., 2018) and VADER (Hutto
and Gilbert, 2014), respectively.

We then computed Spearman’s correlation be-
tween ∆TFIDF(w) and the subjectivity and neu-
trality scores of the corresponding documents. The
analysis revealed a moderate negative correla-
tion with subjectivity (r = −0.223, p < 0.01)
and a weak positive correlation with neutrality
(r = 0.105, p < 0.01). These patterns indicate
that words more prominent among converted out-
liers tend to appear in more neutral, less subjective
contexts and thus that outliers more likely to be-
come topics are characterized by a lexicon that is
more factual in nature.

To evaluate broader stylistic effects, we applied
the stylometric framework of Terreau et al. (2021)
to measure differences across eight core stylistic
features between converted and non-converted out-
liers: function words, punctuation marks, numbers,
named entities, part-of-speech tags, structural fea-
tures, lexical complexity indexes, and readability
metrics. Figure 3 summarizes the results for both
main categories (Fig. 3a) and significant subfea-
tures (Fig. 3b). We omit a detailed analysis for

2Three words among outliers validating H —“public”,
“direction”, and “palaiseau”—were not statistically significant,
while only one word (“ecole”) lacked significance among
outliers not validatingH.
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(a) Differences in mean frequencies for the eight main features.

(b) Differences in mean frequencies for subfeatures, based on
observed significance in Figure 3a.

Figure 3: Differences for TP in the eight stylistic fea-
tures and subfeatures from Terreau et al. (2021), be-
tween outliers validating H and outliers not validat-
ing H. Statistical significance is measured using the
Kruskal–Wallis test, with ∗ and ∗∗ indicating p values
< 0.05 and < 0.01, respectively.

significant differences in Numbers, as this feature
consists solely of single-digit values (ranging from
0 to 9), making any further breakdown not directly
interpretable.

At the level of the eight main features (see Fig-
ure 3a), statistically significant differences were
observed only for Named Entities (NER), Struc-
tural features, and Numbers. Structural features
and NER were less frequent in outliers validating
H than in those not validating H, whereas Num-
bers were more frequent in outliers validating H.
No significant differences were found for TAG,
Punctuation, Letters, Indexes, or Function Words.

A closer examination of the significant subfea-
tures (Fig. 3b) shows that, for NER, names of per-
sons and organizations appear significantly less
often in outliers validating H. No difference was

found for location markers. For Structural sub-
features, outliers validatingH exhibit shorter sen-
tences and words, fewer syllables per word, and
higher average word frequency. No other structural
subfeatures showed significant variation.

These stylistic differences observed for the aver-
age model may be explained by the fact that more
structural features introduce complexity, and thus
stylistic simplification may support the integration
of outliers into topic clusters. Specifically, shorter
and simpler text, with fewer named entities, may
make it easier for the average model to associate
such outliers with broader topic structures, thus fa-
cilitating the validation ofH. Conversely, a higher
frequency of Numbers, particularly single-digit
ones, may reflect more patterned or categorical lan-
guage that also facilitates topic clustering. No clear
effects were found for TAG, Punctuation, Letters,
Indexes, or the remaining structural subfeatures.

5 Replication Study

5.1 English Dataset

To validate and generalize our findings, we used an
existing larger English dataset of climate change
news articles, climate-news-db.3 This dataset origi-
nally comprised 27,877 news articles from global
media outlets, spanning January 2015 to Novem-
ber 2024. To ensure topical consistency, we cu-
rated a focused subset of 312 articles, referred to
as GHG, by filtering for content explicitly address-
ing Greenhouse Gas Emissions (GHG). Articles
were selected based on the presence of the terms
“Greenhouse Gas” or “Greenhouse Emissions”, and
sampled across 20 monthly time windows between
January 2022 and August 2023. For consistency,
we retained only articles from major U.S.-based
outlets (e.g., The Washington Post, The New York
Times, Fox News, and CNN).

5.2 Topic-Based Clustering

We applied topic-based clustering to the body text
of the GHG articles using 10D UMAP projections.
With the exception of e5-base-v2, Table 2 shows
that all nine models achieved strong silhouette
scores, with both mean and median values at or
above 0.5 (on a scale from –1 to 1). These results
are slightly lower than, but broadly consistent with,
those obtained for the TP dataset under the same
configuration.

3https://www.climate-news-db.com

390



Figure 4: 2D Scatter plot of the UMAP 10D cumulative
clustering obtained on GHG over nine time windows,
using e5-base-v2. Outliers are indicated with black ×,
topics in blue, green and yellow.

Table 2: UMAP 10D silhouette scores obtained on the
GHG dataset for the body text of articles, sorted from
best to worst.

Model Mean Silhouette Score

e5-base-v2 0.5661
multilingual-e5-large 0.5490
all-MiniLM-L12-v2 0.5416
...-multi..-mpnet-base-v2 0.5387
xlm-roberta-large 0.5376
Solon-embeddings-large-0.1 0.5159
sentence-camembert-base 0.5092
all-roberta-large-v1 0.5044
distilbert-base-uncased 0.4998

Mean 0.5291
Median 0.5376

5.3 Outlier Behavior

Figure 5 shows the mean validation score per
model for H on GHG. The results indicate a
high average validation across models, with
a mean score of 0.81. As expected, English-
specialized models: distilbert-base-uncased,
e5-base-v2, and all-MiniLM-L12-v2, achieve perfect
validation (1.0), followed by all-roberta-large-v1

(0.85). Among French-specialized models,
sentence-camembert-base performs more weakly
(0.58), as anticipated, while the perfect score
of Solon-embeddings-large-0.1 (1.0) is less ex-
pected. Multilingual models show mixed
results: paraphrase-multilingual-mpnet-base-v2 and
xlm-roberta-large perform poorly (both 0.41),
while multilingual-e5-large again achieves perfect
validation. The distribution of scores appears
bimodal: five models achieve perfect validation,

while the remaining four show moderate to low
scores. This sharp divide may reflect potential
overfitting among English-specialized models that
integrate all outliers into topics.

Figure 5: Mean number of outliers per model that val-
idate prediction H on GHG by converting into topic
inlier at some time point (specific to each model). Each
colored bar represents the mean for each model.

This consistency in temporal dynamics (see Ap-
pendix A.4.1 for a detailed time-window anal-
ysis) aligns with the high average validation
score of 0.81 (Figure 5). Most models follow
a similar pattern: strong early outlier-to-topic
conversion, reduced integration in mid-phases,
and stabilization with persistent outliers. While
some models, particularly multilingual ones and
sentence-camembert-base, show greater fluctu-
ation, the overall trend supports H. As in the
Pilot experiment, we computed inter-agreement
across models with respect toH, using the rescal-
ing method of Icard et al. (2024). Again, the result
a = 0.6783 strongly supports that models validate
H based on converting the exact same outliers. The
average model x = 0.81 is then a good consensus
model regarding the validation ofH.

5.4 Lexicon and Writing Style Analysis

As part of our interpretability analysis, we sought
to understand why some outliers aligned with top-
ics while others did not. We first examined the top
20 words with the highest ∆TFIDF scores in out-
liers validatingH compared to those not validating
it, and vice versa. As defined in (1), ∆TFIDF(w)
captures the difference in average TFIDF scores for
word w between the two outlier classes. The mean
difference was 0.0031 for (1), and 0.0023 for the
reverse. Neither difference was statistically signif-
icant (Kruskal–Wallis test, p > 0.05), suggesting
that thematic lexical content does not meaningfully
distinguish the two outlier classes in GHG. How-
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Figure 6: Differences for GHG in the eight stylistic
features from Terreau et al. (2021), between outliers
validating H and outliers not validating H. Statistical
significance is measured using the Kruskal–Wallis test,
with ∗ and ∗∗ indicating p values < 0.05 and < 0.01,
respectively.

ever, this finding does not rule out the possibility
that stylistic or other non-topical lexical and lin-
guistic features influence outlier conversion.

To address this gap, we analyzed the differences
in stylistic characteristics between the two outlier
classes, using the framework proposed by Terreau
et al. (2021). The results for GHG are given in Fig-
ure 6 for the eight main features. We do not provide
a detailed analysis of Function words and Letters,
as Letters consist solely of single-character values
(ranging from A to Z), and Function Words gain
significance from their overall distribution rather
than their individual occurrences, making a further
breakdown not directly interpretable.

Among the eight features, significant frequency
differences were found only for Function words
and Letters, which were notably less frequent in
outliers verifyingH compared to outliers not ver-
ifying H. This may be explained by the fact that
function words (e.g., prepositions, conjunctions)
and letters (e.g., A, B, C) lack semantic content,
so their reduction helps the average model recog-
nize topics in outliers and validateH. In contrast,
Indexes, Numbers, NER, Punctuation, TAG, and
Structural features do not appear to have a particu-
lar effect on this recognition.

6 Discussion

We observed consistent outlier-to-topic conversion
across two linguistically distinct datasets, confirm-
ing that the phenomenon generalizes. Validation
ofH is robust across topic domains (social respon-

sibility and climate change), languages (French
and English), and dataset sizes (102 and 312 arti-
cles), with a stable mean score around 0.80. Inter-
model agreement remains high (with a = 0.7002
for French, a = 0.6783 for English), suggesting
that topic-based clustering reliably integrates out-
liers under varied conditions.

In lexical analysis, TF-IDF differences between
converted and non-converted outliers were signifi-
cant in TP but not in GHG. In TP, converted out-
liers were more strongly associated with lower sub-
jectivity and higher lexical neutrality. This reflects
a structural difference: TP focuses on a defined
controversy with a polarized lexicon, while GHG
likely follows a more neutral, report-oriented style,
as it was not curated under controversy criteria.

The stylistic features analysis revealed that writ-
ing style has a significant impact on the conversion
of outliers into topics, though the relevant features
differ by language. In TP, conversion is influenced
by structural features, named entities, and num-
bers; in GHG, by function words and letter distri-
butions. This suggests that embedding models rely
on language-specific stylistic cues when integrating
outliers.

These differences align with model training:
French-trained models perform better on TP,
English-trained ones on GHG, while multilingual
models show mixed results, reflecting their training
data (see Table 3 in Appendix A.4.1 for details).

7 Conclusion

Our findings demonstrate that outlier-to-inlier con-
version is a consistent mechanism in topic emer-
gence within cumulative, density-based clustering
frameworks. The effect is robust across nine lan-
guage models, two typologically distinct languages,
and datasets with varying topical scope. In the
French dataset (TP), focused on a well-defined con-
troversy, average model validation reached 0.80;
in the English dataset (GHG), covering broader
climate discourse, the score was similarly high at
0.81. Inter-model agreement exceeded 0.65 in both
cases, indicating stable clustering dynamics across
architectures and domains.

Future work will distinguish between outliers
that act as precursors to new topics and those that
reinforce existing structures. We aim to quantify
their predictive value and examine their temporal
behavior across phases of topic development.

We also plan to scale our analysis to larger and
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more heterogeneous corpora, particularly in do-
mains where informational risks, such as discursive
conflict and disinformation, are likely to emerge
or escalate. In parallel, we will evaluate alterna-
tive clustering algorithms with integrated outlier
detection (e.g., OPTICS) and broaden our assess-
ment across additional model architectures. These
extensions aim to test the generality and deepen the
explanatory power of our findings.

Limitations

This study was designed as a controlled pilot to
explore the predictive role of outliers in topic emer-
gence under well-defined experimental conditions.
Although the number of raw articles was relatively
limited (102 in French and 312 in English), each
document was processed with nine distinct lan-
guage models, resulting in 918 French and 2,808
English data points. This mitigated the limitations
typically associated with small corpus sizes.

High inter-model agreement (a = 0.7002 for
French and a = 0.6783 for English) and consistent
clustering quality (silhouette scores of 0.61 and
0.52, respectively) further support that the results
are robust within the bounds of this setup.

The decision to prioritize depth over breadth at
the expense of dataset size was deliberate: it en-
abled the construction of a high-quality, manually
curated corpus with full-text availability, tempo-
ral continuity (i.e., no temporal gaps), and source
diversity. This design helped control for confound-
ing factors such as incomplete timelines and un-
even topic coverage, which often affect large-scale
datasets whose compilation processes are not fully
transparent.

While these constraints were necessary to en-
sure experimental clarity and interpretability, they
naturally limit the generalizability of the findings.
Future work will scale the analysis to larger cor-
pus of news articles to test its applicability in more
complex and dynamic information environments.
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A Appendix

A.1 Supplementary Materials

The code and visualizations supporting this
paper are available at: https://github.com/
evangeliazve/outliers-to-topics-icnlsp.
The datasets and experimental results can be
provided upon request. The repository includes
Python scripts for reproducing our experiments,
as well as statistical analyses and visualizations
corresponding to key figures and tables in the
paper. The BERTopic framework is documented
at: https://maartengr.github.io/BERTopic/.
Further details on HDBSCAN can be found in
its official documentation: https://hdbscan.
readthedocs.io/en/latest/, and information
on UMAP dimensionality reduction is available
at: https://umap-learn.readthedocs.io/en/
latest/basic_usage.html. For TF-IDF, we
used the TfidfVectorizer from scikit-learn:
https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.
text.TfidfVectorizer.html. The sentiment
analysis tools employed in this study are
TextBlob (https://textblob.readthedocs.
io/en/dev/index.html) and VADER (https:
//github.com/cjhutto/vaderSentiment)..

A.2 Models

Table 3 presents the nine sentence embedding mod-
els used in our experiments for topic-based clus-
tering, detailing their underlying architectures, em-
bedding dimensionality, language coverage, and
model sizes.

A.3 Pilot Study Appendix

A.3.1 Detailed Silhouette Scores

In this appendix, we provide detailed results from
the pilot study evaluating the effectiveness of dif-
ferent sentence embedding models for topic-based
clustering on the TP dataset. Specifically, Table 4
reports the mean silhouette scores obtained for each
model under varying dimensionality reductions
(2D, 3D, 5D, and 10D using UMAP) and different
text sample types (headline, body, and combined
text). These results offer insights into how model
selection, dimensionality, and text granularity im-
pact clustering quality.

A.3.2 Validation or invalidation ofH per
model over different time windows for
TP

For a more detailed examination of model
variations, both across and within models,
Table 5 presents the validation or invalidation
of H per model over different periods of cu-
mulative clustering. Among French models,
Solon-embeddings-large-0.1 is fully consistent,
achieving complete integration early, while
sentence-camembert-base shows non-monotony,
with conversion dropping from 95.83% to 50% and
some persistent outliers. English models exhibit
pronounced inconsistency: e5-base-v2 weakens
over time (68.75% to 36.67%), all-MiniLM-L12-v2
and all-roberta-large-v1 show fluctuating
progress despite strong early conversion (66.67%
and 85.42%), and distilbert-base-uncased re-
mains fully stable with no outliers through
the whole. Multilingual models vary widely,
with paraphrase-multilingual-mpnet-base-v2

and xlm-roberta-large starting strong (85.42%,
64.58%) but leaving substantial outliers later
(12.74%, 42.15%), while multilingual-e5-large

follows an unstable trajectory, declining from
83.33% to 48.15%.

Across models, a general pattern emerges:
strong early conversion of outliers into topic inliers,
slowing integration in the mid-phase, and eventual
stabilization with persistent outliers in 2023. Early
clustering is largely consistent, with conversion
rates ranging from 64.58% (xlm-roberta-large)
to 100% (Solon-embeddings-large-0.1) in
2020-11. By the mid-phase (2021-07), some
models, like all-MiniLM-L12-v2 (73.91%)
and all-roberta-large-v1 (71.43%), sus-
tain moderate integration, while others,
like e5-base-v2 (42.86%), decline. Late-
stage variations are more pronounced, with
paraphrase-multilingual-mpnet-base-v2
retaining 46.47% of outliers as topic inliers,
while xlm-roberta-large and e5-base-v2
drop to 26.67% and 36.67%, respectively.
sentence-camembert-base, despite an early
peak (95.83%), declines to 50.00%.

A.3.3 Top 10 Distinguishing Terms Based on
TF-IDF Differences Between Outliers
Validating and Not ValidatingH

Table 6 lists the top 10 terms whose TF-IDF scores
most strongly differentiate outliers that validate
hypothesisH from those that do not, highlighting
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Model Architecture Dimensions Language Parameters

Solon-embeddings-large-0.1 RoBERTa 1024
French

560M
sentence-camembert-base CamemBERT 768 111M
all-roberta-large-v1 RoBERTa 1024

English

355M
e5-base-v2 E5 768 109M
distilbert-base-uncased DistilBERT 768 67M
all-MiniLM-L12-v2 MiniLM 384 33.4M
xlm-roberta-large XLM-RoBERTa 1024

Multilingual
561M

multilingual-e5-large E5 1024 560M
paraphrase-multilingual-mpnet-base-v2 MPNet 768 278M

Table 3: Description of the nine sentence embedding models used to conduct the topic-based clustering experiments.

Model UMAP 2D UMAP 3D UMAP 5D UMAP 10D

Headline Body All Headline Body All Headline Body All Headline Body All

multilingual-e5-large 0.6235 0.6002 0.5914 0.6121 0.5480 0.5713 0.6020 0.5481 0.5692 0.6065 0.5519 0.5689
e5-base-v2 0.6133 0.5556 0.4668 0.5718 0.5627 0.4671 0.5580 0.5479 0.5030 0.5592 0.5350 0.4846
sentence-camembert-base 0.6120 0.5616 0.5994 0.6083 0.5791 0.6302 0.5934 0.5877 0.6354 0.5990 0.5850 0.6167
all-MiniLM-L12-v2 0.6039 0.5858 0.5465 0.5570 0.6197 0.5243 0.5702 0.4962 0.5608 0.5654 0.5846 0.5349
Solon-embeddings-large-0.1 0.5573 0.6340 0.6497 0.6056 0.6351 0.6031 0.5660 0.6153 0.5778 0.5772 0.6694 0.5553
xlm-roberta-large 0.5416 0.3729 0.3294 0.4996 0.3812 0.3226 0.5348 0.3694 0.3848 0.4941 0.4802 0.4424
all-roberta-large-v1 0.5294 0.6701 0.5862 0.5427 0.6255 0.6121 0.5536 0.6361 0.6040 0.5525 0.6258 0.5759
..-multilingual-mpnet-base-v2 0.5259 0.6062 0.7324 0.5221 0.5918 0.6429 0.5517 0.5977 0.6754 0.5391 0.5923 0.6865
distilbert-base-uncased 0.4872 0.7907 0.8535 0.5232 0.9233 0.8509 0.4413 0.9575 0.8670 0.3670 0.9373 0.8895

Mean 0.5660 0.5975 0.5945 0.5603 0.6074 0.5816 0.5523 0.5951 0.6008 0.5400 0.6180 0.5993
Median 0.5588 0.6056 0.5929 0.5692 0.5984 0.5718 0.5544 0.6029 0.6040 0.5417 0.6183 0.5756

Table 4: Mean silhouette scores per model, dimensionality and text samples types obtained on dataset TP.

key lexical features associated with each group.

A.4 Replication Study Appendix

A.4.1 Validation or invalidation ofH per
model over different periods for GHG

For a detailed examination of model variations,
Table 7 presents the validation or invalidation
of H for each model over different periods
of cumulative clustering. Among English
models, distilbert-base-uncased, e5-base-v2,
and all-MiniLM-L12-v2 show complete con-
sistency, achieving full integration early.
all-roberta-large-v1 follows a steady trajec-
tory, with conversion decreasing slightly from
93.62% to 88.17%. Among French mod-
els, sentence-camembert-base, a French model,
shows instability, with a conversion fluctuating
from 46.43% to 58.14% before dropping to
43.18%. Solon-embeddings-large-0.1, despite
being a French model, integrates all outliers
early, aligning with its high absolute vali-
dation score. Multilingual models exhibit
mixed behaviors., with multilingual-e5-large

achieving full integration like English models,
while paraphrase-multilingual-mpnet-base-v2

and xlm-roberta-large retain substantial out-
liers (with 40.70% and 43.91%, respectively).
multilingual-mpnet-base-v2 initially increases its
conversion (26.32% to 38.10%) before stabilizing.
xlm-roberta-large exhibits a downward trend, with

conversion dropping from 45.00% to 22.00%.
That said, trends across models reveal a

broadly consistent trajectory: high early conver-
sion of outliers into topic inliers (ranging from
26.32% to 100% in 2022-10), followed by a
mid-phase slowdown with moderate-to-low inte-
gration (10.95%–65.71% in 2023-02), and even-
tual stabilization with persistent outliers in the
final stage (10.25%–43.91%). Most models ad-
here to this pattern, with strong early conver-
sion seen in all-roberta-large-v1 (93.62%) and
e5-base-v2 (100%), followed by a gradual de-
cline in mid-phase integration for models like
sentence-camembert-base (fluctuating from 46.43%
to 58.14%) and multilingual-mpnet-base-v2 (in-
creasing from 26.32% to 38.10%). By the final
stage, outlier retention converges to similar rates
across models, such as sentence-camembert-base sta-
bilizing at 25.64% and xlm-roberta-large retaining
43.91% of outliers.

A.4.2 Top 10 Distinguishing Terms Based on
TF-IDF Differences Between Outliers
Validating and Not ValidatingH

Table 8 lists the top 10 terms whose TF-IDF scores
most strongly differentiate outliers that validate
hypothesisH from those that do not, highlighting
key lexical features associated with each group.
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Model Measures Time

2020-11 (50%) 2021-07 (70%) 2023-09 (90%) Remaining (100%)

Solon-..-large-0.1
Nb Outliers / All Articles at t 48/48 8/69 0/100 0/102
% Becoming Inliers at (t+ n) 100% 100% 0.00 Converted on 2022-01

..-multi..-mpnet-..
Nb Outliers / All Articles at t 48/48 69/69 15/100 13/102
% Becoming Inliers at (t+ n) 85.42% 84.06% 46.47% -

sentence-camembert-..
Nb Outliers / All Articles at t 48/48 33/69 8/100 4/102
% Becoming Inliers at (t+ n) 95.83% 90.91% 50.00% -

multi..-e5-large
Nb Outliers / All Articles at t 48/48 25/69 27/100 25/102
% Becoming Inliers at (t+ n) 83.33% 64.00% 48.15% -

xlm-roberta-large
Nb Outliers / All Articles at t 48/48 39/69 30/100 43/102
% Becoming Inliers at (t+ n) 64.58% 64.10% 26.67% -

all-MiniLM-L12-v2
Nb Outliers / All Articles at t 48/48 69/69 16/100 26/102
% Becoming Inliers at (t+ n) 66.67% 73.91% 12.50% -

all-roberta-large-v1
Nb Outliers / All Articles at t 48/48 21/69 10/100 12/102
% Becoming Inliers at (t+ n) 85.42% 71.43% 30.00% -

distil..-base-uncased
Nb Outliers / All Articles at t 0/48 0/69 0/100 0/102
% Becoming Inliers at (t+ n) 0.00% 0.00% 0.00% Converted on 2020-06

e5-base-v2
Nb Outliers / All Articles at t 48/48 21/69 30/100 41/102
% Becoming Inliers at (t+ n) 68.75% 42.86% 36.67% -

Table 5: Proportion of outliers converting to clusters in TP, for each model and along four time windows.

Word ∆TFIDF(w) ∆Occ(w) Word ∆TFIDF(w) ∆Occ(w)

cabinet 0.0122∗ 93 totalenergies -0.0328∗∗ -28
total 0.0119∗ 2613 recours -0.0185∗∗ -14
brunelle 0.0106∗ 136 greenpeace -0.0173∗∗ -265
nathalie 0.0104∗ 139 victoire -0.0155∗∗ -6
lobbying 0.0103∗∗ 122 ecole -0.0143 -162
public 0.0098 428 julliard -0.0129∗∗ -14
direction 0.0097 563 jean -0.0126∗∗ -20
palaiseau 0.0095 60 décision -0.0124∗∗ -127
saclay 0.0089∗ 740 conseil -0.0116∗∗ -626
quartier 0.0086∗ 40 militant -0.0112∗∗ -47

Table 6: Top 10 absolute values of ∆TFIDF(w) for TP. Words with positive values are more characteristic of
converted outliers (H), and those with negative values are more typical of non-converted outliers (notH). Statistical
significance is based on the Kruskal-Wallis test; ∗ and ∗∗ indicate p-values < 0.05 and < 0.01, respectively.
∆Occ(w) indicates the difference in word occurrence counts between the two groups.
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Model Measures
Time

2022-10 (50%) 2023-02 (70%) 2023-06 (90%) Remaining (100%)

Solon-embeddings-large-0.1

Nb Outliers / All Articles at t 79/79 18/105 96/236 0/312
% Becoming Inliers at (t+ n) 100% 100% 100% Converted on 2023-07

...-multi..-mpnet-base-v2

Nb Outliers / All Articles at t 19/79 21/105 81/236 127/312
% Becoming Inliers at (t+ n) 26.32% 38.10% 33.33% -

sentence-camembert-base

Nb Outliers / All Articles at t 28/79 43/105 88/236 80/312
% Becoming Inliers at (t+ n) 46.43% 58.14% 43.18% -

multi..-e5-large

Nb Outliers / All Articles at t 23/79 26/105 49/236 0/312
% Becoming Inliers at (t+ n) 100% 100% 100% Converted on 2023-07

xlm-roberta-large

Nb Outliers / All Articles at t 20/79 60/105 76/236 137/312
% Becoming Inliers at (t+ n) 45.00% 45.00% 22.00% -

all-MiniLM-L12-v2

Nb Outliers / All Articles at t 79/79 69/105 90/236 0/312
% Becoming Inliers at (t+ n) 100% 100% 100% Converted on 2023-07

all-roberta-large-v1

Nb Outliers / All Articles at t 47/79 40/105 93/236 32/312
% Becoming Inliers at (t+ n) 93.62% 92.50% 88.17% -

distilbert-base-uncased

Nb Outliers / All Articles at t 42/79 33/105 87/236 0/312
% Becoming Inliers at (t+ n) 100% 100% 100% Converted on 2023-07

e5-base-v2

Nb Outliers / All Articles at t 13/79 27/105 58/236 0/312
% Becoming Inliers at (t+ n) 100% 100% 100% Converted on 2023-07

Table 7: Proportion of outliers converting to clusters in GHG, for each model and along four time windows.

Word ∆TFIDF(w) ∆Occ(w) Word ∆TFIDF(w) ∆Occ(w)

climate 0.0067 17851 amazon -0.0034 -98
report 0.0051∗ 2656 pakistan -0.0033 -130
degree 0.0035 2576 china -0.0031 -480
said 0.0035 9134 child -0.0027 -227
bill 0.0033∗ 804 thunberg -0.0024 -63
company 0.0032 2577 reactor -0.0023 -65
would 0.0031 3668 protest -0.0023 -87
republican 0.0030 728 soil -0.0023 -185
energy 0.0030 5651 granholm -0.0023 -51
nice 0.0029 895 art -0.0023 -172

Table 8: Top 10 absolute values of ∆TFIDF(w) for GHG. Words with positive values are more characteristic of
converted outliers (H); words with negative values are more typical of non-converted outliers (notH). Statistical
significance is based on the Kruskal-Wallis test; ∗ indicates p < 0.05. ∆Occ(w) shows the difference in word
frequency between the two groups.
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Abstract

Implicit Emotion Recognition (IER) is a chal-
lenging task in Natural Language Processing
(NLP), as it requires identifying emotions that
are not directly expressed through explicit emo-
tion words but must be inferred from con-
textual, situational, or linguistic cues. With
the rapid progress of Large Language Models
(LLMs), new opportunities have emerged for
tackling such complex language understand-
ing tasks. In this work, we investigate the
effectiveness of two different architectures of
LLMs for IER: masked language models, in-
cluding BERT and RoBERTa, and causal lan-
guage models, represented by ChatGPT. We
fine-tuned BERT and RoBERTa on benchmark
IER datasets, while we evaluated ChatGPT in
a zero-shot setting to assess its ability to gener-
alize without task-specific training. Our experi-
ments on the ISEAR and IEST datasets show
that fine-tuned masked language models per-
form strongly on the IER task. At the same
time, ChatGPT achieves promising results in
zero-shot scenarios, highlighting its potential
for emotion recognition tasks with limited or
no labeled data.

1 Introduction

Text-based Emotion Recognition (ER) is a fun-
damental research area in Natural Language Pro-
cessing (NLP). In recent years, this field has seen
important advancements due to increased human-
computer interaction, as well as the rapid growth of
online social media (Bisogni et al., 2023). ER can
be classified into explicit ER (EER) and implicit
ER (IER), depending on whether explicit emotional
words emerge in the text (Kusal et al., 2021). Differ-
ent from EER, where emotional words (e.g., happy,
angry) occur in the text, in IER, emotions must
be inferred from linguistic cues such as contextual
descriptions, metaphorical expressions, or situa-
tional events without any explicit emotional expres-
sion (Klinger et al., 2018). Implicit emotions often

require deep semantic understanding to interpret
subtle cues, such as sarcasm (Perfect, just what I
needed) (Zhu et al., 2025), ambiguous statements
(e.g., She looked out the window as the train pulled
away, which could imply sadness, longing, or even
relief) (Orizu, 2018), or behavioral context (e.g.,
They all left without me). This makes IER par-
ticularly challenging due to subjectivity, cultural
variability, and strong dependence on context.

Researchers have proposed several ER ap-
proaches, including lexicon-based, machine learn-
ing, and deep learning methods. Most of these
approaches primarily focus on extracting explicit
emotions, whereas recognizing implicit emotions
poses a greater challenge, as it demands sophisti-
cated techniques capable of accurately interpreting
context and deeply understanding nuanced linguis-
tic patterns.

Recent advancements in Large Language Mod-
els (LLMs) have revolutionized NLP by achieving
state-of-the-art performance across a wide range
of tasks, such as question answering (Goar et al.,
2023), machine translation (Hendy et al., 2023),
and sentiment analysis (Ding et al., 2022). These
models have also demonstrated remarkable capabil-
ities in comprehending, interpreting, and recogniz-
ing human emotions (Banimelhem and Amayreh,
2023; Lee et al., 2024). LLMs, trained on large-
scale and extensive corpora, have demonstrated a
deep understanding of linguistic patterns, contex-
tual dependencies, and even some aspects of world
knowledge, enabling them to infer meaning and
emotion from text based on the surrounding context
in ways that were previously unattainable (Hong
et al., 2024; Buscemi and Proverbio, 2024). These
capabilities may be particularly useful for tasks like
IER, where emotions are not explicitly stated but
must be inferred from subtle linguistic cues, situa-
tional context, or background knowledge. Unlike
traditional methods that rely heavily on explicit
emotional keywords or rule-based systems, LLMs
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leverage their transformer-based architecture, con-
textual embeddings, and pretrained knowledge to
analyze the interplay of words and sentences, to
decode emotional tones and comprehend the com-
plexity of emotions.

In this study, we aim to explore the effective-
ness of LLMs, specifically BERT, RoBERTa, and
ChatGPT, in the task of IER. We assess the perfor-
mance of fine-tuned, encoder-based models, includ-
ing BERT and RoBERTa architectures, to evaluate
their suitability and effectiveness for IER. Further-
more, we investigate ChatGPT’s capabilities in a
zero-shot learning setting to determine its ability to
generalize to IER without task-specific fine-tuning.
This approach highlights its potential for applica-
tions where labeled data is limited or unavailable.

This comparison provides insight into the
strengths and weaknesses of these LLMs in cap-
turing implicit emotional cues, contributing to a
deeper understanding of their real-world applica-
bility. The main contributions of this paper are
summarized as follows:

• We conduct a comparative analysis of two
distinct paradigms for IER:

1. Fine-tuned masked language models
(BERT and RoBERTa), and

2. Zero-shot prompting using a causal lan-
guage model, specifically ChatGPT.

• We fine-tune BERT and RoBERTa on labeled
emotion datasets to evaluate their task-specific
performance in recognizing implicit emotions.

• We evaluate the performance of ChatGPT to
generalize to the IER task, in a zero-shot set-
ting without the need for task-specific fine-
tuning or additional training.

• We provide empirical evidence on the effec-
tiveness, limitations, and generalization capa-
bilities of ChatGPT in contrast to traditional
fine-tuned models.

The remainder of this paper is structured as fol-
lows: Section 2 presents a concise review of related
work on IER and recent developments in LLMs.
Section 3 introduces the datasets used in our exper-
iments. Section 4 provides some details about the
experiments’ setup, including the models employed
and the different methodological approaches used.
Section 5 presents and discusses the results of our
experiments. Finally, Section 6 concludes the paper
and outlines potential directions for future research.

2 Related Work

IER has emerged as a complex and less explored
task within the field of NLP. Unlike EER, which
relies on identifying overt emotion words, IER re-
quires understanding contextual and semantic cues
to infer emotional states. This task has been ad-
dressed using various approaches, including rule-
based, classical machine learning, deep learning,
and, more recently, transformer-based approaches
(Alswaidan and Menai, 2020).

Early efforts relied on knowledge-based and
rule-based approaches. For instance, EmotiNet
linked events to emotions through commonsense
knowledge, while cognitive-theory-inspired rules
attempted to capture implicit affective states (Bal-
ahur et al., 2011, 2012; Udochukwu and He, 2015).
Classical algorithms, such as Support Vector Ma-
chines (SVM) and Naive Bayes (NB), were com-
bined with lexical features, syntactic patterns, and
semantic resources to infer implicit emotions (Bal-
ahur et al., 2012; Riahi and Safari, 2016; Khosh-
nam and Baraani-Dastjerdi, 2022). These methods,
although somewhat effective, have had difficulty
with generalization due to the complexity of im-
plicit emotional expressions and the absence of
explicit emotional words.

The emergence of deep learning (DL) has intro-
duced new avenues for recognizing implicit emo-
tions in textual data, leveraging neural architectures
such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) to capture
complex linguistic and contextual patterns. Mod-
els such as LSTM and BiLSTM incorporated with
attention mechanisms demonstrate improved per-
formance by capturing temporal dependencies and
contextual information (Rozental et al., 2018; Bal-
azs et al., 2018; Chronopoulou et al., 2018; Rath-
nayaka et al., 2018; Zhou and Wu, 2018; Witon
et al., 2018; Pecar et al., 2018; Fei et al., 2019). Re-
cently, transformer-based models like BERT (De-
vlin et al., 2018) further enhanced the IER task
by leveraging pre-trained embeddings and self-
attention mechanisms, making them well suited
for understanding implicit cues (Khoshnam et al.,
2022; Qian et al., 2023; Boutouta et al., 2025).

Transformer-based LLMs, such as ChatGPT,
have significantly expanded the possibilities of the
NLP field, demonstrating remarkable performance
across a wide range of tasks. These tasks include
text understanding and generation (Mitrović et al.,
2023; Gao et al., 2024), machine translation (Peng

400



et al., 2023), sentiment analysis (Buscemi and
Proverbio, 2024), and semantic role labeling (Sen-
ator et al., 2025). Their strong generalization capa-
bilities and the ability to capture contextual nuances
enable more accurate emotion identification with-
out requiring additional training (Kadiyala, 2024;
Banimelhem and Amayreh, 2023; Lee et al., 2024;
Hong et al., 2024; Liu et al., 2024). A recent study
by Hong et al. (2024) introduced a method that
addresses the complex and ambiguous nature of
human emotions by using LLMs for ER. The ap-
proach considers multiple emotion labels and the
intricate nature of emotional expressions. Another
work proposed EmoLLMs (Liu et al., 2024), a se-
ries of open-source instruction-following LLMs
fine-tuned for comprehensive affective analysis.
These models are trained on a diverse dataset cov-
ering various classification and regression tasks
related to emotions, enhancing their applicability
in ER tasks. In another study (Wake et al., 2023),
the performance of ChatGPT in the area of emo-
tion detection was assessed on a variety of datasets,
including IEMOCAP and DailyDialog. ChatGPT
was able to classify text with emotional labels in
both zero-shot and fine-tuning settings.

Despite these significant advances in ER, exist-
ing studies have predominantly focused on EER,
with limited attention given to the IER task. To the
best of our knowledge, none of the existing works
have comprehensively addressed the unique chal-
lenges of IER, nor have they fully examined the
potential of LLMs, such as ChatGPT, within this
context.

3 Datasets

Two datasets were used: the WASSA-2018 Implicit
Emotions Shared Task (IEST) dataset (Klinger
et al., 2018) and the International Survey on Emo-
tion Antecedents and Reactions (ISEAR) dataset
(Scherer, 2005). Both datasets are widely used
for ER, but differ significantly in terms of domain,
format, and emotion expression. Table 5 in the
Appendix A presents a brief comparison between
the IEST and ISEAR datasets, while the label dis-
tributions are shown in Fig. 1 and Fig. 2.

3.1 IEST

The IEST dataset1, introduced by Klinger et al.
(2018), was developed for the WASSA-2018 Im-
plicit Emotions Shared Task. It is a large automat-

1https://implicitemotions.wassa2018.com/data/

ically labeled dataset of 191,731 English tweets,
split into 153,600 for training, 9,600 for validation,
and 28,800 for testing. Each tweet is annotated
with one of Ekman’s six basic emotions: anger,
disgust, fear, joy, sadness, or surprise. Given com-
putational constraints, only the testing set of the
IEST dataset was used in this study.

To simulate implicit emotion scenarios, each
tweet in the dataset has had its explicit emotion
word masked and replaced with a placeholder token
[#TARGETWORD#]. This design forces models to
rely only on contextual cues to infer the underlying
emotion, making it particularly suited for research
on emotion understanding in indirect and implicit
expressions. Some examples from the dataset are
provided in Table 6 in the Appendix A.

3.2 ISEAR

The ISEAR dataset2, introduced by Scherer (2005),
is a manually labeled dataset collected as part of a
psychological study aimed at exploring emotional
experiences across cultures. The data were gath-
ered from over 3,000 participants in 26 countries,
all of whom had university-level education and
were fluent in English. Each participant was asked
to describe situations in which they had person-
ally experienced one of seven emotions: joy, fear,
anger, sadness, disgust, shame, and guilt. In to-
tal, the dataset contains approximately 7,666 in-
stances, making it one of the most widely cited
benchmarks for ER in psychology and affective
computing tasks. Examples from the dataset are
provided in Table 7 in Appendix A.

3.3 Data pre-processing

To align the ISEAR dataset with the IER task, we
applied an additional filtering step: we ensured that
none of the selected instances contained explicit
emotion words. This pre-processing step allows
us to reuse the ISEAR as a proxy dataset for IER,
focusing only on instances where emotions must
be inferred from the described context rather than
directly stated. Furthermore, both datasets were
subjected to standard pre-processing steps, includ-
ing the removal of HTML tags, URLs, emojis, and
extra spaces, as well as the correction of inconsis-
tent punctuation.

2https://github.com/sinmaniphel/py_isear_
dataset
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Figure 1: Distribution of emotion labels in the IEST
dataset.

Figure 2: Distribution of emotion labels in the ISEAR
dataset.

4 Experimental Methodology

We investigate two prominent approaches for text
classification in the context of IER: (1) fine-tuning
masked language models, and (2) prompt-based
interaction with causal language LLMs. For the
first approach, we employ BERT and RoBERTa,
both pre-trained transformer encoders that are fine-
tuned on task-specific data. These models have
been widely recognized for their ability to capture
contextual semantics and perform well across a
range of NLP tasks. In this setup, the models are
initialized with pre-trained weights and then fine-
tuned using supervised learning on labeled emotion
data. In contrast, the second approach utilizes Chat-
GPT, a large, decoder-based LLM, accessed via
zero-shot prompting. Rather than fine-tuning the
model, we interact with ChatGPT using carefully
crafted prompts that define the task and specify the
desired output format. This method evaluates Chat-
GPT’s ability to generalize to the IER task without
the need for additional training or fine-tuning.

By comparing these two paradigms, we aim to
assess the trade-offs in performance, flexibility, and
data efficiency when applied to implicit emotion
classification.

4.1 Models
4.1.1 BERT
A state-of-the-art NLP model introduced by Google
in 2018 (Devlin et al., 2018) revolutionized the field
by leveraging a bidirectional transformer architec-
ture, which allows it to capture context from both
the left and right of a word simultaneously. BERT
is pre-trained on large text corpora using two key
objectives: Masked Language Modeling (MLM),
where it predicts randomly masked words within
a sentence, and Next Sentence Prediction (NSP),
where it learns to determine whether one sentence
logically follows another. These pre-training tasks
enable BERT to develop a deep understanding of
both semantic meaning and syntactic structure in
natural language.

4.1.2 RoBERTa
Developed by Facebook AI in 2019 upon the foun-
dational BERT architecture (Liu, 2019). RoBERTa
improves and optimizes BERT’s pre-training pro-
cess by removing the NSP objective, training on
significantly larger datasets, and employing dy-
namic masking during pre-training. These enhance-
ments lead to improved performance on a wide
range of natural language understanding tasks.

4.1.3 ChatGPT
An advanced LLM developed by OpenAI in
November 2022 (OpenAI), based on the Gener-
ative Pre-trained Transformer (GPT) architecture,
a causal variant of the transformer neural network
that has become the industry standard for a wide
range of NLP tasks (Gillioz et al., 2020). Unlike
masked language models, GPT models are trained
in an autoregressive manner to predict the next
token in a sequence, enabling strong generative
and contextual reasoning abilities. ChatGPT was
trained on a vast and diverse corpus, including aca-
demic texts, literary works, and large-scale web
content, which equips it with broad linguistic and
world knowledge. One of its key features is its
ability to generate coherent, contextually relevant,
and human-like responses to user input. Through
interactive prompt-based querying, ChatGPT can
adapt flexibly to new tasks without the need for
additional fine-tuning.

4.2 Evaluation Approaches
4.2.1 Fine-tuning encoder-based models
Fine-tuning involves adapting the pre-trained lan-
guage models to a specific task by training them
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on a smaller, task-specific dataset. This process re-
quires significantly less data compared to training
a model from scratch, thanks to the rich linguis-
tic knowledge already encoded in the pre-trained
model parameters. Regarding encoder-based mod-
els, we explored a range of hyperparameters config-
urations to optimize performance. Specifically, we
experimented with different learning rates (1e-5,
2e-5, and 3e-5), batch sizes (16 and 32), training du-
rations (ranging from 3 to 6 epochs), and maximum
sequence lengths (64, 128, and 512). Additionally,
we compared different model variants, including
base and large versions, to assess their suitability
for the IER task.

Each configuration was evaluated using a 10%
development split of the training data, and the op-
timal setup was selected based on the macro F1-
score. The chosen hyperparameters were validated
across various random seeds to ensure robustness.
Table 1 summarizes both the tested and optimal
hyperparameter configurations.

We used the pre-trained "bert-base-uncased" and
"roberta-base" models from the Huggingface Trans-
formers library. The models consist of 12 trans-
former layers, a hidden size of 768, and 12 atten-
tion heads. For both models, we appended a dense
layer with a softmax activation function for clas-
sification. The models were trained for 4 epochs
using a batch size of 32 and a maximum sequence
length of 128. Training was performed using the
Adam optimizer and categorical cross-entropy loss.
We evaluated these models on held-out test sets
comprising 10% of the IEST and ISEAR datasets.

4.2.2 Prompt Design for Zero-Shot IER
For ChatGPT, we evaluated its zero-shot perfor-
mance on test sets consisting of 600 and 700 in-
stances from the IEST and ISEAR datasets, respec-
tively (100 instances per emotion). As a proprietary
model, ChatGPT was accessed via its chatbot inter-
face using the GPT-4 Turbo version. To eliminate
potential influence from prior context, each input
was submitted in a separate chat session, ensuring
full isolation between predictions.

Carefully designed zero-shot prompts are essen-
tial for enabling LLMs to generalize effectively
across diverse domains (Team et al., 2023). We
prompted ChatGPT with a text sample, a prede-
fined list of emotion labels, task-specific instruc-
tions, and a set of output constraints. The prompts
were iteratively designed and refined to align with
the task’s unique demands, namely, detecting emo-

tional states without the presence of explicit emo-
tion words. Early versions of the prompt included
basic task instructions. However, we observed im-
proved performance when the implicit nature of
the task was explicitly stated, when emotion la-
bel choices were clearly specified, and when the
model’s role was defined. For example, we experi-
mented with formulations such as "the emotion is
implied rather than stated." Additionally, we con-
sistently framed the model as an “expert in implicit
emotion recognition” at the beginning of each in-
teraction to guide its behavior.

After multiple iterations, the final prompt
adopted was:

Role: You are an expert in implicit emotion
recognition.
Prompt: The following sentence contains an
emotion that is expressed implicitly. Based on
context alone, identify the most likely emotion.
Choose only one from: [Emotion List].
Respond with the emotion without any explana-
tion.
Text: [example text]

This final format was selected after testing sev-
eral prompt versions on a development subset of
the IEST and ISEAR datasets, evaluating perfor-
mance manually and through agreement with gold-
standard labels. We observed that prompting clar-
ity, emotion list formatting, and explicit task fram-
ing significantly affected model responses.

4.3 Evaluation Metrics
Classification problem’s performance is evaluated
using a set of metrics. In our case, we use the
accuracy and the macro average precision, recall,
and F1-score. Each metric is defined in accordance
with the following equations: (1), (2), (3), and (4),
respectively. Where TP, TN, FP, and FN represent
the number of True Positives, True Negatives, False
Positives, and False Negatives, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− score = 2 · Precision ∗Recall
Precision+Recall

(4)
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Hyperparameter Tested Values Optimal Value
Learning Rate 1e-5, 2e-5, 3e-5 1e-5
Loss Function Categorical Cross-Entropy Categorical Cross-Entropy
Optimizer Adam Adam
Batch Size 16, 32 32
Epochs 3, 4, 5, 6 4
Max Length 64, 128, 512 128

Table 1: Hyperparameter settings

5 Results and Discussion

Table 2 provides a concise overview of the per-
formance of encoder-based LLMs (BERT and
RoBERTa) and the decoder-based LLM (Chat-
GPT), using different approaches (fine-tuning and
zero-shot prompting) across the IEST and ISEAR
datasets.

5.1 Adaptation and Generalization
ChatGPT achieves the highest accuracy (77.14%)
and F1-score (77.00%) on the ISEAR dataset, out-
performing fine-tuned BERT and RoBERTa on
the same dataset, which achieve an accuracy of
70.36% and 70.84%, respectively. However, on the
IEST dataset, fine-tuned RoBERTa performs best
(66.88% accuracy, 66.67% F1-score), while Chat-
GPT’s performance drops significantly (54.17% ac-
curacy, 54.93% F1-score). These results highlight
a fundamental distinction between generalization
and adaptation in IER. ChatGPT, as a causal lan-
guage model, leverages broad pre-training to gener-
alize well on datasets like ISEAR, where contextual
cues align with its prior knowledge. In contrast,
fine-tuned BERT and RoBERTa models, as masked
language models, demonstrate superior adaptation
to domain-specific constraints in IEST, where emo-
tional keywords are masked, and cues are subtle.
The masked modeling architecture, coupled with
task-specific fine-tuning, equips these models with
the ability to capture fine-grained contextual depen-
dencies tailored to the dataset’s structure, whereas
ChatGPT’s causal generation approach, optimized
for predicting the next token, may be less effective
in such constrained contexts. This performance gap
underscores how model architecture and training
paradigms interact with dataset characteristics to
shape success in IER.

5.2 Performance Variation Across Datasets
As we show in Fig. 3, all models consistently per-
formed better on the ISEAR dataset than on the

IEST dataset. A possible reason for this finding
is the contrast between the two datasets. While
the ISEAR dataset was originally developed for
general ER, we adapted it for the IER task by ex-
cluding any instances containing explicit emotion
words (as noted in Section 3.3). This ensured that
emotional states had to be inferred from contex-
tual and situational cues rather than directly stated.
Nevertheless, ISEAR dataset remains more clear,
formal, consisting of well-structured, self-reported
emotional experiences. These descriptions tend to
be complete, coherent, and grammatically consis-
tent. In contrast, the IEST dataset is derived from
social media (tweets), which are often informal,
fragmented, noisy, and contextually ambiguous. In
addition, tweets may include slang, sarcasm, or cul-
tural references that are not easily interpreted with-
out broader context. This shift in genre presents
additional challenges for IER, as models must not
only infer unstated emotions but also navigate less
structured and noisier linguistic input. We include
representative examples from both datasets and a
comparative table in Appendix A to illustrate these
variations.

5.3 Emotional Implicitness

When considering the implicit emotional expres-
sion in each dataset, the IEST dataset represents
masked emotion as a proxy for implicit emo-
tion, where explicit emotion words were originally
present in the sentence but have been deliberately
removed. This deliberate omission weakens contex-
tual support, forcing models to infer emotions from
incomplete or ambiguous linguistic cues. In con-
trast, ISEAR contains naturally implicit emotions
embedded within coherent, narrative-style descrip-
tions of personal experiences. These richer and
more structured contexts provide clearer situational
signals, which both fine-tuned models and Chat-
GPT exploited to infer emotions more effectively.
This distinction highlights how the availability and
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Approach Model ISEAR IEST
Acc (%) F1 (%) Acc (%) F1 (%)

Fine-tuned BERT 70.36 69.66 62.02 61.52
RoBERTa 70.84 70.34 66.88 66.67

Zero shot ChatGPT 77.14 77.00 54.17 54.93

Table 2: Performance comparison of different models on ISEAR and IEST datasets.

Figure 3: Performance comparison of different models
on ISEAR and IEST datasets.

quality of contextual information directly shape
the difficulty of implicit emotion recognition, with
IEST posing a greater challenge due to its sparse
and less informative cues.

5.4 Performance on Individual Emotions

Table 3 presents the performance of the three mod-
els for each emotion on the ISEAR dataset. As
indicated, ChatGPT demonstrates superior perfor-
mance for the majority of the emotions. Specifi-
cally, it achieves an F1-score of 94% for the emo-
tion ’joy’ and 84% for ’fear,’ significantly outper-
forming the fine-tuned BERT and RoBERTa mod-
els. This demonstrates its strong ability to recog-
nize emotions with clear contextual cues. However,
all models show relatively poor performance on
shame compared to other emotions, with F1-scores
of 47%, 51%, and 59% for BERT, RoBERTa, and
ChatGPT, respectively. The lower scores for shame
reflect the challenge of detecting emotions that are
highly implicit, underscoring the critical role of
contextual clarity in IER.

The results on the IEST dataset are presented in
Table 4, revealing a different trend compared to the
ISEAR dataset. In this case, RoBERTa achieves
the best performance across most emotions, with
F1-scores of 77%, 78%, and 58% for the emotions
’joy’, ’fear’, and ’anger’, respectively. These results
significantly outperform those of the BERT and

ChatGPT models.
We also noticed significant variation when ex-

amining performance based on individual emo-
tion labels. For example, in the zero-shot experi-
ments on the ISEAR dataset, the recognition per-
formance (F1-score) for ‘joy’ was around 94%,
while it was below 60% for ‘shame’. Similarly,
on the IEST dataset, the F1-score for ‘fear’ was
around 66%, while it was below 46% for ‘anger’.
In the fine-tuning approach, we observed that IER
performance varied significantly across datasets,
even for similar emotions. For instance, in the
ISEAR dataset, the recognition performance (F1-
score) for ’joy’ was around 86% and 92% for BERT
and RoBERTa models, respectively, while in the
IEST dataset, the F1-scores for the same emotion
(joy) were only around 70% and 77% for the same
models, respectively. Notably, this tendency is also
observed in the zero-shot condition with ChatGPT.
For example, in the ISEAR dataset, the F1-score for
’anger’ was around 73%, while in the IEST dataset,
it was only around 45% with ChatGPT. This con-
trast in performance demonstrated that IER is a
challenging task, with performance varying sig-
nificantly depending on emotions, datasets, and
models.

6 Conclusions and future works

In this study, we examined the effectiveness of
two different architectures of LLMs for recogniz-
ing implicit emotions: masked language models,
including BERT and RoBERTa, via a series of
fine-tuning experiments, and causal language mod-
els, represented by ChatGPT, using a zero-shot
prompting approach. The models were tested on
two datasets: IEST and ISEAR. Both datasets are
widely used for ER, but they differ significantly
in terms of domain, format, and emotion expres-
sion. Our findings indicate that BERT-based fine-
tuned models, particularly RoBERTa, excel at cap-
turing implicit emotional cues. In contrast, zero-
shot ChatGPT delivers promising results for certain
emotion categories but struggles with more com-
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Model
Joy Fear Anger Sadness Disgust Shame Guilt

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
BERT 0.82 0.91 0.86 0.78 0.78 0.78 0.63 0.57 0.60 0.70 0.83 0.76 0.76 0.76 0.76 0.65 0.37 0.47 0.58 0.72 0.64
RoBERTa 0.93 0.91 0.92 0.65 0.79 0.71 0.61 0.63 0.71 0.72 0.83 0.78 0.71 0.80 0.75 0.63 0.43 0.51 0.69 0.57 0.78
ChatGPT 0.96 0.92 0.94 0.78 0.90 0.84 0.72 0.73 0.73 0.74 0.92 0.82 0.91 0.70 0.79 0.67 0.53 0.59 0.65 0.72 0.68

Table 3: Performance comparison of different models per emotion on ISEAR dataset.

Model
Joy Fear Anger Sad Disgust Surprise

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
BERT 0.66 0.75 0.70 0.64 0.80 0.71 0.57 0.47 0.51 0.60 0.53 0.57 0.67 0.53 0.57 0.57 0.64 0.60
RoBERTa 0.79 0.75 0.77 0.78 0.78 0.78 0.55 0.62 0.58 0.63 0.66 0.65 0.65 0.59 0.62 0.61 0.59 0.60
ChatGPT 0.65 0.61 0.63 0.77 0.57 0.66 0.36 0.62 0.45 0.48 0.53 0.50 0.60 0.52 0.56 0.66 0.40 0.50

Table 4: Performance comparison of different models on emotion classification on IEST dataset.

plex and context-dependent cases, where its perfor-
mance declines noticeably. These results highlight
the strengths of fine-tuned, medium-sized language
models in handling IER tasks, while also underscor-
ing the potential of zero-shot LLMs for emotions
that are simpler or positively valenced. However,
progress in IER remains constrained by the scarcity
of high-quality datasets. Emotions are often con-
veyed indirectly, and building datasets that capture
this nuance without relying on explicit markers is
inherently challenging. Despite its limitations, the
IEST dataset serves as a practical proxy by simu-
lating implicitness through masked emotion words,
offering a controlled evaluation setting.

Future research would benefit from the devel-
opment of more diverse and realistic datasets for
IER, as current resources are limited and often fail
to capture the nuanced and context-dependent na-
ture of implicit expressions. In addition to zero-
shot prompting, we will explore alternative strate-
gies such as few-shot learning and fine-tuning
with LLMs, aiming to combine the adaptability
of prompt-based approaches with the task-specific
precision of supervised learning. Finally, address-
ing the persistent challenge of detecting socially
complex emotions, such as shame, guilt, remains
an important direction for future investigation, as
these emotions often rely on subtle discourse cues
and cultural context.

Limitations

Despite the promising results presented in this
study, some limitations should be considered. First,
the evaluation was restricted to two benchmark
datasets, ISEAR and IEST, which, although widely
used in the field of ER, may not comprehensively
reflect the variability of implicit emotional expres-

sions encountered in real-world scenarios, particu-
larly in social media or multilingual contexts. This
raises concerns regarding the generalization of the
findings. Second, while LLMs exhibit an ability to
capture certain contextual and cultural cues, their
comprehension remains limited in the presence of
more nuanced expressions such as sarcasm, idioms,
or domain-specific references, which are common
in implicit emotional content. Lastly, the lack of
interpretability remains a critical challenge, partic-
ularly with generative models like ChatGPT, which
operate as black boxes. This opacity hinders the
ability to understand or explain model decisions,
posing a barrier to trust and transparency in practi-
cal applications.
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A Appendix

Aspect IEST ISEAR
Type of Emotion Implicit (emotion word masked) Explicit (emotion word present)
Annotation Automatically labeled Manually labeled
Emotion Labels Ekman’s six basic emotions: anger,

disgust, fear, joy, sadness, surprise
anger, disgust, fear, joy, sadness,
shame, guilt

Genre social media (Twitter) Survey responses
Style Informal, noisy, fragmented sen-

tence
formal, structured, complete sen-
tences

Text Length Short (tweets, < 280 characters) Medium (1–3 sentences per in-
stance)

Size 191,731 instances 7,666 instances
Purpose IER ER
Contextual Clues Sparse; relies on social and situa-

tional context
Rich descriptions of emotional expe-
riences

Table 5: Comparison between the IEST and ISEAR datasets.

Emotion Tweet
Anger I get impatient and [#TARGETWORD#] when I’m hungry.
Disgust So many people looked at me just [#TARGETWORD#] when I said that mus-

taches are hot.
Fear So [#TARGETWORD#] that I’m not good enough
Joy you’re gonna be [#TARGETWORD#] when you realize you deserve to be.
Sadness Very [#TARGETWORD#] when he goes on these tirades
Surprise They just jealous, they get [#TARGETWORD#] when she pull up.

Table 6: Example tweets from the IEST dataset, with the emotion word masked as [#TARGETWORD#].

Emotion Example
Joy An encounter with a man whom I love, after a very long separation.
Fear After mischieviously ringing on the chemist’s trade-entrance doorbell and getting caught

by him.
Anger At my Summer job, nobody looked after me in particular and I had to learn all on my

own.
Sadness After I had lived with my boyfriend in a foreign country for half a year, I saw that it was

impossible for me to stay with him (for economic reasons). We separated although I
loved him.

Disgust A mother who shouts at her child for nothing.
Shame During carnaval I danced for a few minutes normally I don’t dance because I am rigid in

my moving around during a dance, I stopped very soon.
Guilt I speak harshly to my parents though they only mean my own good.

Table 7: Example from the ISEAR dataset for each emotion label.
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Abstract
The increasing influence of artificial intelli-
gence (AI), the availability of textual data, and
large language models (LLMs) over the past
decade is evident in the growth of scholarly
work on identifying skills from job advertise-
ments. In this work, we examine the detection
of sentences that express skills as well as the
explainability of model decisions with respect
to their dependence on skill related tokens. We
compare traditional machine learning (ML) ap-
proaches with a pretrained multilingual model
and domain-adapted models for the task of En-
glish skill identification, and we assess the role
of skill tokens in the classification process. We
also investigate the ability of these models to
generalize from English (EN) to Danish (DA)
in both few-shot and zero-shot settings. Our
findings indicate that both models achieve high
performance in sentence classification achiev-
ing an F1-score of 94% for EN and overall
accuracy between 93%–94% for both EN and
DA. The results show that traditional ML meth-
ods can remain relevant under certain circum-
stances reinforcing the importance of realistic
baselines in the context of skill identification.

1 Introduction

With the technological advancements and labor
market disruptions, the importance of identi-
fying skill requirements in job advertisements
rises for both job seekers and educational insti-
tutions (Brasse, 2024). Job advertisements are a
critical source to study skill requirements (Khaouja
et al., 2021; Senger et al., 2024; Zhang et al.,
2022a). The most straightforward method is
sentence-level skill identification (SI), where the
task is to predict whether a sentence contains a skill
or not (Khaouja et al., 2021).

Although SI methods have been studied for the
English language (Tamburri et al., 2020; Khaouja
et al., 2021; Leon et al., 2024a; Rosenberger, 2025),
it is unclear how well this extends to other lan-
guages. We hypothesize, considering that some

hard skills (e.g., Python, Java) are defined the
same across languages, that there is a high gen-
eralizability level of English-based models. We
extend prior research by testing the capabilities
of (domain-adapted) multilingual language mod-
els (Chung et al., 2021; Zhang et al., 2023) on
the task of SI, exploring the cross-lingual gener-
alization of both a simple statistical baseline and
fine-tuned models on English, and analyzing the
factors that influence model decisions when classi-
fying sentences. We seek to answer the following
research questions:

RQ1 How effective are logistic regression, do-
main trained and pre-trained LLMs in clas-
sifying skill-related sentences in job adver-
tisements?

RQ2 To what extent do English-based sentence
classification models perform on Danish
skill identification in zero- and few-shot
settings?

RQ3 What is the contribution of skill tokens in
the classification of skill-related sentences
in job advertisements?

Contributions. In this work, we contribute the
following by answering the RQs by showing that:
(i) both the baseline and multilingual LMs show
high performance on in-language (English) skill
identification and cross-lingual skill identification
for Danish, even with little training data; (ii)
sentence-level SI models’ reliance on skill tokens
are low, highlighting the need to assess context-
dependent trustworthiness and robustness of such
approach in real-world scenarios.

2 Related Work

2.1 Classification-Based Skill Identification
Khaouja et al. (2021) identified four primary skill
extraction techniques: skill counting, topic mod-
eling, embeddings (skill or word-based), and ma-
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Class Train Dev. Test

0 - No skill 6,753 2,634 2,699
1 - Skill 10,421 3,359 3,056

Table 1: Class Distribution. Distribution of skill/no-
skill sentences in the combined English dataset.

chine learning methods. From an ML perspective,
there are two principal methods: Named Entity
Recognition (NER), which classifies and extracts
entities into predefined categories and content-
based text classification (i.e., classifying whether
a sentence contains a skill or not). We adopt the
latter, applying sentence-level binary classification.
Using sentence-level granularity in skill identifica-
tion helps preserve word relationships and context.

Lin et al. (2023) and Rosenberger (2025) high-
lighted the critical role of removing irrelevant in-
formation for achieving high model performance.
Lin et al. (2023) explored synthetic data genera-
tion to enhance data relevance. Rosenberger (2025)
used classification approaches to filter noise from
job ads, significantly improving recommendation
accuracy. Their jobGBERT model achieved high
accuracy (0.96-0.97 F1 score) by truncating irrele-
vant content at the paragraph level. In contrast, our
research addresses sentence-level classification, po-
tentially enhancing model training simplicity and
annotation efficiency. Additionally, while Rosen-
berger (2025) targeted the German language, our
research investigates English and Danish datasets,
exploring cross-lingual transfer and zero- or few-
shot learning scenarios.

Leon et al. (2024b) conducted binary and multi-
label classification using English and multilingual
models on job ads. Facing imbalanced data with
a prevalence of skill-absent sentences, the authors
applied augmentation techniques. The accuracy of
these models ranged from 94%–99%. They noted
limitations in data availability and domain adapta-
tion challenges and emphasized the need for further
exploration of multilingual applicability and model
explainability.

More recently, there has been increasing focus
on computational efficiency in skill extraction from
job advertisements (Sun et al., 2025; Vásquez-
Rodríguez et al., 2024). For example, Vásquez-
Rodríguez et al. (2024) compared various methods
to distinguish their effectiveness and efficiency.

Our study builds upon these works, such as mul-
tilingual capabilities and explainability to improve

Model Class F1 P R Acc.

LR + TF-IDF 0 0.89 0.91 0.87 0.901 0.90 0.89 0.92
RemBERT 0 0.93 0.96 0.90 0.931 0.94 0.92 0.96
ESCOXLM-R 0 0.93 0.95 0.91 0.941 0.94 0.92 0.96

Table 2: English Results. Performance of SI on the
English test set in terms of F1-score, precision (P), recall
(R), and Accuracy (Acc.).

real-time skill extraction and job recommendation
systems. For a more detailed survey of SI, we refer
to Khaouja et al. (2021).

3 Methodology

Skill identification at the sentence level can be for-
mulated as a binary classification task. Given a set
of sentences S = {s1, s2, . . . , sn}, each sentence
si is associated with a binary label yi:

yi =

{
1 if sentence si contains a skill mention,
0 otherwise.

The goal of this task is to train a classification
model f that accurately predicts the label yi given
a sentence si: f(si)→ yi. The objective is to accu-
rately classify each sentence on whether it contains
a skill or not.

3.1 Data

We used three real-world English datasets for train-
ing and evaluation: SkillSpan (Zhang et al., 2022a),
Green (Green et al., 2022), and Sayfullina (Sayful-
lina et al., 2018). Each dataset includes separate
training, development, and test splits. In terms of
dataset size, Green has 9,968, Sayfullina 7,411, and
SkillSpan 11,543 sentences. In SkillSpan, there are
both skill and knowledge annotations and were
merged into one positive class. For Green, only
positive skill annotations are taken.

Sentences were reconstructed from the word-
level tokenized lists and each was labeled as either
containing a skill (1) or not (0). Table 1 shows the
distribution across all English splits. The combined
data was shuffled before training. For Danish, we
used the Kompetencer dataset (Zhang et al., 2022b),
which follows the same format. It includes 778
training, 346 validation, and 262 test sentences.
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Training Class RemBERT ESCOXLM-R
F1 P R Acc. F1 P R Acc.

DA 0 0.89 0.88 0.89 0.82 0.89 0.79 1.00 0.79
1 0.55 0.57 0.54 0.00 0.00 0.00

EN 0 0.95 0.98 0.92 0.92 0.95 0.97 0.92 0.92
1 0.83 0.75 0.93 0.82 0.75 0.91

EN + DA 0 0.95 0.96 0.95 0.93 0.95 0.96 0.95 0.93
1 0.83 0.81 0.85 0.83 0.81 0.85

Table 3: Cross-lingual Results. Cross-lingual performance on the Danish test set, broken down by training data,
model and class

3.2 Models

A random baseline for the English test set yields
around 0.51 accuracy. For a second baseline, we
trained a TF-IDF-based logistic regression model
with unigrams and bigrams (5,000 max features).

To conduct SI with language models, we experi-
mented with three models in this study; namely
RemBERT (Chung et al., 2021), ESCOXLM-
R (Zhang et al., 2023) which is a domain-adapted
XLM-R-based model (Conneau et al., 2020).

3.3 Training and Evaluation

For training the multilingual language models, we
explored a limited range of hyperparameters and fi-
nalized on a learning rate of 1×10−6, batch size of
16, weight decay on 0.01, and ten epochs with pa-
tience of 2. For both the English and few-shot Dan-
ish experiments, we kept these hyperparameters.
We measured performance by F1 score, precision,
recall, and accuracy.

3.4 Explainability

For analysis, we investigate model explainability
and compare model behavior. We use Integrated
Gradients (IG; Sundararajan et al., 2017), imple-
mented with the Captum library (Kokhlikyan et al.,
2020), to analyze true positive (TP) predictions.
The aim is to interpret which input tokens con-
tribute most to skill predictions, improving trans-
parency. IG satisfies two key axioms: Sensitivity,
where a differing feature between inputs with dif-
ferent outputs must receive non-zero attribution;
and Implementation Invariance, where models with
identical outputs for all inputs yield the same attri-
butions.

4 Results and Discussion

4.1 English Results
In Table 2, we show the main results for English
of both the baselines and language models. We
observe that all three models achieve a high F-score
(0.89–0.94) as well as a high accuracy (0.90–0.94).
In particular, from a cost–efficiency perspective,
the baseline took a few minutes to train, whereas
ESCOXLM-r and RemBERT took between 80–140
minutes, with equal performance.

Among the large language models, performance
differences are minor but important, especially
for correctly identifying skill-containing sentences.
Both models perform equally well on the positive
class. ESCOXLM-R achieves slightly higher over-
all accuracy and better recall for the negative class,
while RemBERT shows marginally better precision
on that class. Given the small differences and lim-
ited model tuning, no definitive conclusion can be
drawn about one model being superior.

4.2 Danish Results
For our cross-lingual experiments, we have three
setups

• (DA): Fine-tuning the language models on the
few-hundred Danish instances.

• (EN): Fine-tuning the language models on En-
glish only and then apply it to the Danish test
set.

• (EN + DA): Fine-tuning both models on En-
glish and Danish and apply it to Danish.

In Table 3, we show that DA and EN demon-
strate good performance; precision starts from 0.75
and minimum recall is 0.85 for the positive class.
The ESCOXLM-R model failed to predicted no
skill sentences with DA, whereas the RemBERT
model’s performance without the English language
training is around 0.55 for the positive class.
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Model Precision Recall set F1 setTop-1 Top-2 Top-3 Set

LR + TF-IDF 0.485 0.278 0.255 0.225 0.808 0.303
ESCOXLM-R 0.101 0.172 0.213 0.234 0.576 0.284
RemBERT 0.098 0.170 0.209 0.231 0.576 0.281

Table 4: Explainability. Comparison of the matching True Skill with the tokens contributing positively for the TP

Text True Skills Top Attributed Tokens

javascript reactjs java [javascript, reactjs, java] [javascript, reactjs, java]

- and yaml [yaml] [-, ya]

Strong knowledge of application
data and infrastructure architecture
disciplines

[application, data, and, infrastruc-
ture, architecture]

[•, knowledge, application, data, in-
frastructure, s]

Demonstrated experience of per-
forming DevOps for platforms

[DevOps, for, platforms] [•ted, experience, of, performing,
Dev, for]

You are proficient in Python and En-
glish

[Python, English] [You, profi, in, English]

Table 5: Dataset Sample. Sample data rows.

Performance of the two models are similar in the
other settings (i.e., EN and EN + DA). Interestingly,
for the positive class, we see when the models have
been fine-tuned on English data only (EN) it outper-
forms the DA setting (0.06–0.08 F1 higher), likely
due to more training data being available, indicat-
ing successful cross-lingual transfer.

4.3 Explainability

For analysis, we compare the contribution of actual
skills to class prediction focusing on the TP class.
Table 4 shows that the sets of words driving positive
predictions are very similar across the two models
and that ESCOXLM-R performance is only slightly
higher. In the base model we multiply the TF-IDF
values by the coefficients to measure each word’s
contribution to TP predictions and then compare
that with word attribution in the LMs. Precision
in the base model is higher for the top two tokens
but it declines when we consider the full token
set, ending up below the LMs. The F1-score stays
similar in the base model due to the high recall.

All models have a precision around 0.22–0.23
and a 0.58 recall for the LMs and 0.81 for the base-
line. This suggests that classification does not de-
pend mainly on semantic content or even on the ex-
plicit presence of a skill term in the sentence. These
results align with the observation that ESCOXLM-
R, despite its domain training, performs similarly
to RemBERT and that logistic regression with TF-
IDF narrows most of the gap with the LMs.

5 Conclusion

In this work, show the effectiveness of language
models, including multilingual ones and a basic
supervised ML model with TF-IDF, for the task of
skill identification. All our models achieve around
90%-94% accuracy on English, with ESCOXLM-
r as best-performing, indicating that the task is
straightforward.

The performance of the supervised baseline
model demonstrates that traditional approaches
should still be considered after the introduction
of the advanced architectures and models, and can
be beneficial, for instance in the low resource set-
tings. Furthermore, we show the effectiveness of
multilingual LMs for cross-lingual transfer. We
show that the performance of multilingual LMs is
still high (92%), even though we only train on En-
glish data. As expected, there is overlap between
skills between languages. This could particularly
benefit low resource languages either in zero-shot
setting or with the minimal training data.

In our explainability analysis, we show that the
contribution of the skill tokens do not contribute
that much to the actual correct prediction, warrant-
ing further investigation. We conducted analysis at
the token level without cleaning data from special
characters and stopwords, which poses a limitation
in the evaluation of the explainability, while repre-
senting a realistic inputs (see Table 5). Computing
attribution scores for each word, e.g., by summing
tokens’ attribution scores, may present a more reli-
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able and interpretable definitive measurement.
For future research, we will consider more lan-

guages to investigate whether transfer still holds.
Additionally, we considered all skills as one, but
can also distinguish between hard and soft skills.

Ethics Statement

For the identification of specific occupational skills
in sentences, we do not foresee any ethical issues.
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Abstract
We introduce EuroParlVote, a novel benchmark
for evaluating large language models (LLMs) in
politically sensitive contexts. It links European
Parliament debate speeches to roll-call vote out-
comes and includes rich demographic metadata
for each Member of the European Parliament
(MEP), such as gender, age, country, and polit-
ical group. Using EuroParlVote, we evaluate
state-of-the-art LLMs on two tasks—gender
classification and vote prediction—revealing
consistent patterns of bias. We find that LLMs
frequently misclassify female MEPs as male
and demonstrate reduced accuracy when sim-
ulating votes for female speakers. Politically,
LLMs tend to favor centrist groups while under-
performing on both far-left and far-right ones.
Proprietary models like GPT-4o outperform
open-weight alternatives in terms of both ro-
bustness and fairness. We release the EuroPar-
lVote dataset, code, and demo to support future
research on fairness and accountability in NLP
within political contexts.

1 Introduction

With growing interest in applying natural language
processing (NLP) methods to political discourse,
recent studies have revealed persistent gender bias
in the European Parliament. During parliamentary
debates, certain subgroups — such as women, ju-
nior members, and representatives from smaller
member states — receive disproportionately less
attention and visibility (Walter et al., 2023). Sim-
ilarly, gender bias has been shown to persist in
political news coverage, with systematic disparities
in word choice, sentiment, and framing across ide-
ological lines, even when explicit gender markers
are removed (Davis et al., 2022).

Meanwhile, recent studies have highlighted that
many NLP technologies, including large language
models (LLMs), exhibit measurable political bi-
ases, often leaning towards left-liberal viewpoints
in their responses to political discourse (Rozado,

2024a; Feng et al., 2023b; Santurkar et al., 2024).
However, these findings predominantly focus on
U.S.-centric political contexts, for instance, Potter
et al. (2024) analyzes discourse surrounding the
2024 U.S. presidential election. In contrast, this
paper shifts the focus to the European Parliament,
where we investigate how LLMs interpret and pre-
dict political behavior in a multilingual, multi-party
democratic setting. We are interested in whether
gender and ideological bias patterns observed in
U.S. political contexts similarly manifest in the
European setting.

Our study explores this question by introducing
a novel EU voting dataset that links roll-call votes
with corresponding debate speeches and detailed
demographic information of each Member of Eu-
ropean Parliament (MEP). We benchmark several
LLMs on two tasks: predicting the gender of MEPs
based on their speech, and simulating MEP voting
behavior from debate content.

First, in Section 3, we construct a multilin-
gual benchmark — covering 24 official EU lan-
guages — that links 22K European Parliament
debate speeches to 969 corresponding roll-call
votes. We further enrich the dataset with anno-
tations about MEPs, including gender (male/fe-
male);1 political group (across 8 groups including
nonattached members); age (ranging from 25 to
83); and country (from 27 EU member states and
one former member state, United Kingdom), en-
abling demographically-aware political modeling.

In Section 4, we analyze gender bias in LLMs
(GPT-4o, LLaMA-3.2-3B, Claude-3.5, Gemini-2.5-
Flash, and Mistral-large) within the context of the
European Parliament. Specifically, we conduct two
experiments: first, we ask LLMs to predict the gen-
der of MEPs based solely on their debate speeches;
and second, we provide the debate speeches, top-

1We acknowledge gender is non-binary, but use a male/fe-
male classification here, as it is an accurate representation of
past and present MEPs.
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ics, and the MEP’s gender, and ask the models to
predict their voting behavior.

Our findings reveal a consistent male-biased pat-
tern in LLMs: (1) female MEPs are disproportion-
ately misclassified as male in the gender prediction
task; and (2) when all MEPs are hypothetically
assigned the gender “female”, the voting predic-
tion accuracy drops to its lowest, whereas assign-
ing all MEPs the gender “male” yields the high-
est accuracy; and (3) proprietary LLMs, such as
GPT-4o and Gemini-2.5, inherently exhibit lower
gender misclassification rates compared to open-
weight models like LLaMA-3.2. This highlights
how gender assumptions implicitly embedded in
LLMs can influence both demographic classifica-
tion and downstream political prediction tasks.

We also implemented LoRA-based fine-tuning
(Hu et al., 2021) on open-weight LLMs using an-
notated training examples to evaluate its impact
on gender bias mitigation. However, our results
indicate that LoRA does not reduce gender bias in
either LLaMA-3.2 or Mistral-large. This observa-
tion aligns with findings from Ding et al. (2024),
which report that LoRA does not exhibit a consis-
tent pattern of amplifying or mitigating disparate
impacts across demographic subgroups.

In Section 5, we investigate the political leanings
of LLMs through two experiments. First, given the
debate topic and the speech content, we prompt the
models to simulate a vote as if they were the MEP
delivering the speech. Second, we additionally
provide the models with the MEP’s political group
information and prompt them to vote again.

Our findings indicate that all LLMs exhibit a
left–centrist bias, as evidenced by: (1) higher vot-
ing prediction accuracy for left-leaning and centrist
political groups; but (2) for ideologically extreme
groups, far-right parties are simulated more accu-
rately than far-left ones; ; and (3) similar to gender
bias, open-weight LLMs exhibit more pronounced
political bias compared to proprietary models.

We further evaluate an instruction-tuned setting
in which political group identifiers are included in
the input prompt. This setup improves prediction
accuracy for ideologically extreme groups — par-
ticularly far-left and far-right parties — suggesting
that explicit political context helps mitigate perfor-
mance disparities across ideological lines.

To the best of our knowledge, this is the first
study to systematically benchmark both gender bias
and political leaning in LLMs within the context
of the European Parliament. Our results under-

score the complexity of assessing and mitigating
fairness concerns in LLM methods. We release Eu-
roParlVote2 and code3 to support future research on
fairness, transparency, and robustness in political
NLP.

2 Related Work

2.1 Gender Bias of LLMs

Recent research has highlighted that LLMs often
perpetuate, and sometimes amplify, gender stereo-
types and biases. Kotek et al. (2023) propose a
novel testing paradigm designed to probe for gen-
der bias using linguistic constructions unlikely to
be explicitly present in training data. Their study
finds that LLMs frequently rely on gender stereo-
types in completing tasks and that their justifica-
tions often cite faulty reasoning or make explicit
reference to the stereotypes themselves. This sug-
gests that even state-of-the-art LLMs, despite ad-
vancements enabled by techniques such as rein-
forcement learning with human feedback (RLHF)
(Christiano et al., 2017), still encode and repro-
duce biased social patterns present in their training
data. The authors argue that such biases reflect the
“collective intelligence” of Western society as cap-
tured in large-scale text data, and call for improved
diagnostic tools and mitigation strategies.

Related work has further demonstrated that
LLMs are more likely to associate male identities
with high-status occupations and leadership roles,
while associating female identities with caregiving
or subordinate roles (Davis et al., 2022). These bi-
ases can persist even when overt gendered terms are
removed, indicating that stereotypes are deeply em-
bedded in model representations (Han et al., 2021;
Shen et al., 2022). Other studies have highlighted
that instruction-tuned models may exhibit ampli-
fied gender bias (Dubois et al., 2024; Ferrara, 2023;
Ouyang et al., 2022), and that such bias extends
beyond English, manifesting across multilingual
outputs (Gonen et al., 2022; Barikeri et al., 2021).

Our work builds on these findings by evaluat-
ing how gender bias surfaces in downstream po-
litical tasks. Unlike prior studies that focus on
occupational associations or sentence completions,
we examine whether LLMs disproportionately mis-
classify female Members of European Parliament

2HuggingFace: https://huggingface.co/datasets/
unimelb-nlp/EuroParlVote

3GitHub: https://github.com/jryang317-lang/
EuroParlVote
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(MEPs) during gender prediction, and whether gen-
der assumptions influence voting simulation accu-
racy. By grounding our analysis in real-world po-
litical discourse, we contribute novel insights into
how gender bias manifests in high-stakes demo-
cratic contexts.

2.2 Political Leaning of LLMs
A growing body of research has documented that
LLMs exhibit consistent political leanings, partic-
ularly toward left-of-center or liberal ideologies.
Prior work has employed various political orien-
tation tests, including the Political Compass Test
(PCT), Pew Research surveys, and the Political
Spectrum Quiz, to measure these biases across
models (Potter et al., 2024; Bang et al., 2024;
Rozado, 2024b; Feng et al., 2023a; Santurkar et al.,
2023; Hartmann et al., 2023; Vijay et al., 2024).
These studies largely focus on U.S.-centric con-
texts and have shown that instruction-tuned LLMs
tend to demonstrate stronger left-leaning tenden-
cies than their base models.

For example, Hartmann et al. (2023) and Rozado
(2024b) found that LLMs exhibit stronger liberal
alignment in response to survey-style questions,
even when stripped of politically-charged prompts.
Similarly, Vijay et al. (2024) demonstrated that
LLMs often subtly favor liberal viewpoints, even
when instructed to argue from conservative per-
spectives. Other work has shown that fine-tuning
LLMs on partisan data not only shifts their ideolog-
ical orientation but also degrades their performance
in downstream tasks like misinformation detection
(Feng et al., 2023a).

While most of these studies rely on multiple-
choice surveys or single-turn prompt evaluations,
Potter et al. (2024) and Fisher et al. (2024) explore
how political bias manifests in more interactive
human-LLM dialogues. These works highlight the
persuasive effects of politically-biased LLMs on
user beliefs, particularly in the context of the 2024
U.S. Presidential election.

Our study diverges from this existing literature
in several important ways. First, we shift the ge-
ographic and institutional focus to the European
Union, introducing not only a non-English but also
a multilingual setting that increases the complex-
ity and diversity of the evaluation. Second, rather
than relying on survey-style prompts or ideological
questionnaires, we assess political leaning through
two task-based evaluations: gender prediction and
vote simulation. These tasks more closely mir-

ror potential real-world applications of LLMs in
political analysis and decision-support systems. Fi-
nally, we examine the impact of instruction tuning
with political group identifiers on fairness across
ideological lines, providing insights into potential
mitigation strategies for political bias.

3 Data Collection

Debates in the European Parliament take place dur-
ing plenary sessions, where MEPs deliberate on
legislative proposals, reports, and motions. Roll-
call votes are a formal voting procedure in which
each MEP’s vote — ‘For’, ‘Against’, or ‘Abstain’
— is individually recorded and made publicly avail-
able. These debates typically precede the vote,
offering contextual insights into the positions and
arguments put forward by MEPs.

Building on this structure, we introduce EuroPar-
lVote, a novel dataset constructed by collecting
roll-call voting records spanning seven years from
HowTheyVote.eu (HowTheyVote.eu Team, 2025),
covering more than 1,200 MEPs. Using document
references provided in the voting metadata, we
align these votes with the corresponding debates
(Koehn, 2005; Rabinovich et al., 2017; Vanmassen-
hove and Hardmeier, 2018; Yang et al., 2024, 2023).
To ensure relevance of the data, we retain only
those debate speeches delivered by MEPs who
were present and cast a vote on the associated mo-
tion.

We enrich each MEP entry with demographic
attributes sourced from their respective Wikipedia
pages, including political group affiliation, coun-
try, and date of birth, as well as publicly-listed
social media accounts (Facebook and Twitter). For
gender annotation, we follow a heuristic approach
inspired by prior work (Wagner et al., 2016; Rea-
gle and Rhue, 2011): if the English Wikipedia text
contains male pronouns (e.g., he/him/his), the MEP
is labeled as male; if it contains female pronouns
(e.g., she/her), the label is female. In cases lacking
explicit gender indicators, we manually annotate
gender based on the MEPs’ list pages.4

We exclude instances where the vote was marked
as ‘Abstain’, or where either the debate topic or
speech was missing. The resulting dataset contains
approximately 22K debate speeches linked to 956
unique topics, each paired with MEP-level votes.

We partition the dataset into training, develop-

4https://www.europarl.europa.eu/meps/en/
full-list/all

418



Code Full Name Political Leaning Train Dev Test

GUE/NGL The Left group in the EP — Nordic Green Left Far-Left 1,155 133 138
GREEN_EFA Group of the Greens/European Free Alliance Left 2,089 145 140
SD Group of the Progressive Alliance of Socialists

and Democrats
Center-Left 4,414 235 207

RENEW Renew Europe Group Center / Liberal 2,826 139 154
EPP Group of the European People’s Party (Christian

Democrats)
Center-Right 5,004 294 294

ECR European Conservatives and Reformists Group Right 1,582 222 250
ID Identity and Democracy Group Far-Right 1,064 280 248
NI Unaffiliated Members Mixed / Variable 872 100 117

Table 1: Political group codes, full names, ideological positions, and their counts across train/dev/test splits.

Split FOR AGAINST Male Female

Train 16,713 2,293 55.1% 44.9%
Dev 774 774 59.0% 41.0%
Test 774 774 59.0% 41.0%

Table 2: Vote label counts and gender proportions in the
training, development, and test splits.

ment, and test sets using an approximately 8:1:1
ratio. To preserve real-world distributional charac-
teristics, the training set retains the original class
imbalance. In contrast, both the development and
test sets are balanced across vote labels to support
fair evaluation of prediction performance.

Table 1 provides a breakdown of political group
affiliations and their ideological positions across
splits. Political leanings are determined based on
established expert-coded classifications from Parl-
Gov and CHES datasets (Döring and Manow, 2023;
Polk et al., 2017; Bakker et al., 2015), and validated
through European Parliament political group analy-
ses (Hix et al., 2016). Table 2 summarizes the split
and gender distribution, it demonstrates a nearly
equal gender split across the three sets.

4 Investigating Gender Bias of LLMs

4.1 Gender Classification Task

The first task involves predicting the gender of the
MEPs based on their debate speeches. To accom-
plish this, we employed the following prompt:

Analyze the European Parliament debate speech to determine
whether the speaker is male or female. Please provide: 1.
A gender prediction: "Male" or "Female"; 2. A confidence
score on a scale of 1–5; 3. A rationale for the prediction.

We experiment with several language mod-
els, including proprietary systems such as GPT-
4o (gpt-4o-2024-11-20) (OpenAI, 2024), Gemini-
2.5-Flash (gemini-2.5-flash-preview-04-17) (Team
et al., 2025; Google, 2025), and Claude-3.5 (claude-

3-5-haiku-20241022) (Anthropic, 2024), as well as
open-weight models such as LLaMA-3.2 (LLaMA-
3.2-3B-Instruct) (Grattafiori et al., 2024; Touvron
et al., 2024) and Mistral-large (mistral-large-2411)
(MistralAI, 2023).5

Evaluation was conducted in a zero-shot setting
on the EuroParlVote test set. Performance on the
gender prediction task is reported in terms of Ac-
curacy, F1 scores, and AUC-ROC in Table 3. The
AUC-ROC (Area Under the Receiver Operating
Characteristic Curve) (Hanley and McNeil, 1982)
measures the model’s ability to distinguish between
male and female classes based on prediction confi-
dence, with higher values indicating better discrim-
inatory capacity.

We summarize our main findings as follows:

Gender prediction in political discourse is no-
tably more difficult than in other textual do-
mains. Accuracy across all LLMs ranges from
roughly 60 to 70, which is significantly lower
than the 80+ accuracy typically observed on the
same task in domains such as blogs or news arti-
cles (HaCohen-Kerner, 2022; Mukherjee and Liu,
2010). This gap reflects the challenging nature
of the EuroParlVote dataset, which features high-
register language and rhetorical complexity. As
documented in prior sociolinguistic research (Eck-
ert and McConnell-Ginet, 2013; Wodak and Benke,
1997), explicit gender markers are often absent in
formal political speech, and the frequent use of
irony, sarcasm, and indirect criticism makes gender
inference especially difficult.

Proprietary models outperform open-weight
models in both accuracy and calibration. As
shown in Table 3, open-weight models such as
LLaMA-3.2 and Mistral-large achieve relatively
low accuracy and AUC-ROC scores—LLaMA-3.2,

5Model details are provided in Appendix Table 10.
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Model ACC F1-F F1-M AUC

LLaMA-3.2-3B 60.01 37.16 70.68 55.26
Mixtral-Large 63.60 44.85 72.84 58.50
Claude-3.5 64.25 60.86 67.10 63.20
Gemini-2.5-Flash 65.23 51.63 72.11 55.89
GPT-4o 61.02 59.93 62.05 66.19

Table 3: Gender prediction performance (Accuracy, F1
for Female/Male, AUC-ROC) across models. Lower
F1-F scores highlight gender bias toward female MEPs.

for instance, yields 60.01 accuracy and an AUC-
ROC of 55.26. In contrast, proprietary models like
Claude-3.5, Gemini-2.5 and GPT-4o perform sub-
stantially better, indicating its superior capacity to
separate classes under uncertainty.

Proprietary models are also more fair, particu-
larly in their treatment of female speakers. A
clear disparity is observed in the F1 scores for fe-
male MEPs, where open-weight models demon-
strate a strong male prediction bias. For example,
LLaMA-3.2 achieves only 37.16. in F1-Female.
As shown in the confusion matrix in Figure 4, sur-
prisingly 71.13% of female speakers are labeled
incorrectly as male, compared to just 18.38% mis-
classification for male speakers. In contrast, GPT-
4o shows substantially higher F1-Female scores,
indicating a more balanced performance and re-
duced gender bias.

4.2 Voting Simulation Task

The next step in our gender bias investigation in-
volved evaluating how LLMs predict MEP voting
positions when presented with debate topics and
speeches. Specifically, we tasked the LLMs with
simulating whether an MEP would vote with the
following prompt:

Simulate as a European Parliament MEP. Analyze the debate
topic and speech then state your voting position. Please
provide: 1. Your position ("For" for positive support, or
"Against" for negative rejection) 2. Confidence level on a
scale of 1–5 3. Reasoning for your prediction

To explicitly evaluate the impact of demographic
cues, we optionally appended the hint: You are a
(male|female) MEP at the end of the prompt. This
allows the model to consider gender as an explicit
feature when making predictions.

We conducted experiments across five settings
on LLMs to assess the impact of gender cues: (1)
Without Gender — no gender information pro-
vided; (2) With Gender — the prompt included
the speaker’s actual gender; (3) All Male — all

MEPs were labeled as male, regardless of their
true gender.; (4) All Female — all MEPs were la-
beled as female; and (5) Swapped Gender — Each
MEP’s gender label was reversed (male↔ female).
This setup enables analysis of how gender signals
influence model predictions.

Table 4 summarizes the results across five LLMs.
Overall, we observe that injecting gender informa-
tion leads to nuanced, model-specific effects on per-
formance. For most LLMs, the All Female setting
resulted in the lowest performance across all met-
rics—especially in predicting Against votes, where
F1 scores were notably reduced. Conversely, the
All Male setting often produced the highest or near-
highest results, indicating that male contexts are
more aligned with model expectations or learned
priors.

Consistent with our findings in Section 4.1, pro-
prietary models not only achieved stronger over-
all performance but also demonstrated greater fair-
ness. For instance, GPT-4o exhibited minimal vari-
ation across gender settings, maintaining relatively
high accuracy and AUC-ROC regardless of gender
manipulation. This indicates superior robustness
to demographic perturbations compared to open-
weight and earlier models, which showed more pro-
nounced gender-related performance disparities.

4.3 Baselines
To contextualize the learnability of the vote predic-
tion task, we define three baselines representing
lower, intermediate, and upper bounds of achiev-
able performance:

Random baseline assigns votes uniformly at
random, serving as a minimal lower bound with no
use of contextual or structural information.

Group-majority baseline predicts each MEP’s
vote based on the most common vote within their
political group in the training set. This reflects
group-level voting priors without considering the
content of debates, providing a simple metadata-
based heuristic.

Intra-group agreement predicts each MEP’s
vote based on the majority decision of their po-
litical group for that specific vote in the test set.
For example, if in a given vote 80% of a group’s
members voted “For”, this baseline predicts “For”
for all members of that group for that vote. This
approach assumes perfect knowledge of group be-
havior at test time and therefore acts as a soft upper
bound, given the high average within-group agree-
ment (95.29%) observed in our dataset.
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Model Setting Accuracy F1-For F1-Against AUC-ROC Avg Confidence

Random Lower Bound 50.19 50.35 50.03 50.19 2.50
Group-Majority Baseline 65.28 73.65 48.96 65.25 4.03
Intra-Group Agreement Upper Bound 88.28 89.44 86.84 87.98 4.76

LLaMA-3.2 Without Gender 67.10 74.55 53.85 81.88 4.00
With Gender 66.47 74.26 51.91 80.49 4.00
All Male 67.64 73.04 54.78 81.10 3.99
All Female 63.33 72.07 46.71 79.74 3.99
Swapped Gender 65.73 73.59 51.19 80.28 3.99

Mistral-Large Without Gender 75.42 76.80 73.15 82.30 4.02
With Gender 76.95 78.10 75.12 83.25 4.05
All Male 77.83 78.40 76.30 83.40 4.03
All Female 70.64 72.91 66.87 78.12 3.91
Swapped Gender 73.50 75.10 70.25 80.45 3.94

Claude-3.5 Without Gender 80.61 81.17 80.03 85.50 4.52
With Gender 82.03 82.31 81.74 86.62 4.56
All Male 81.44 81.68 81.19 86.09 4.53
All Female 78.34 80.12 75.31 80.28 4.51
Swapped Gender 82.12 82.30 81.93 87.07 4.53

Gemini-2.5 Without Gender 83.10 84.10 82.05 87.90 4.25
With Gender 82.78 83.65 81.90 87.50 4.28
All Male 82.34 83.40 80.95 87.00 4.26
All Female 81.44 81.46 81.44 86.52 4.23
Swapped Gender 82.56 83.35 81.76 87.45 4.27

GPT-4o Without Gender 84.20 85.00 83.35 88.40 3.88
With Gender 83.85 84.28 83.40 88.20 3.94
All Male 83.72 84.14 83.29 88.49 3.93
All Female 83.66 84.10 83.19 87.95 3.95
Swapped Gender 83.79 84.19 83.37 88.32 3.94

Table 4: Voting prediction performance (%) across gender manipulation settings, showing Accuracy, per-class F1,
AUC-ROC, and average model confidence. Highlighted rows denote settings where the model struggled the most.

LLMs outperform the random and group-
majority baselines, demonstrating that debate con-
tent contains useful predictive signals. However,
their performance remains below the intra-group
agreement baseline, indicating that while LLMs
capture informative linguistic patterns, they do not
fully replicate structured group voting dynamics.

5 Investigating Political Leaning of LLMs

Given its foundation in the political domain, the Eu-
roParlVote dataset naturally assumes that an MEP’s
political affiliation plays a significant role in shap-
ing their voting behavior. To examine how LLMs
respond to this signal, we extend the voting pre-
diction task with two settings: Without Group —
using the baseline prompt described in Section 4.2,
without any mention of political group; and With
Group — appending the hint You are a MEP from
XX political group to the end of the prompt. The
key findings are as follows:

Centrist Groups Are Most Accurately Modeled
Across nearly all models, predictive accuracy peaks
for centrist or liberal groups. groups. As shown

in Table 5, the RENEW group consistently yields
top scores — e.g., GPT-4o achieves 88.49 accu-
racy without group information, and 89.93 with
it. Mistral and Gemini also perform strongly on
RENEW, suggesting its moderate stance is easier
for models to simulate. SD (center-left) also yields
robust performance, while center-right EPP typi-
cally ranks slightly below SD. This trend supports
prior work in U.S.-based political modeling, where
LLMs tend to exhibit a mild left-leaning bias (Pot-
ter et al., 2024; Rozado, 2024a).

Group Context Boosts Underrepresented Politi-
cal Groups As shown in Table 5, explicitly pro-
viding political group identity in the prompt im-
proves model performance across most political
groups, especially those at the ideological extremes.
For instance, LLaMA-3.2 improves on GUE/NGL
(far-left) on ID (far-right). Gemini-2.5 also im-
proves considerably on ID. These improvements
are especially prominent for politically underrep-
resented or extreme groups, where models may
otherwise struggle to simulate nuanced voting be-
havior. The addition of group context acts as a
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Figure 1: Accuracy of five LLMs across different po-
litical groups. The x-axis is sorted by the ideological
spectrum of the political groups from far-left to far-right.

compensatory fairness signal, particularly benefit-
ing challenging ideological regions.

Far-Right Groups Are Simulated More Accu-
rately Than Far-Left Interestingly, the previ-
ously observed claim that LLMs exhibit a mild
left-leaning bias does not hold at the ideological ex-
tremes. As shown in Figure 1 and Table 5, far-right
parties such as ID and ECR consistently achieve
higher prediction accuracy than their far-left coun-
terparts GUE/NGL and GREEN_EFA. For exam-
ple, GPT-4o scores 86.07 on ID and 83.78 on ECR,
compared to 75.19 on GUE/NGL and 66.21 on
GREEN_EFA. This trend holds across other LLMs.
These findings suggest that LLMs simulate right-
aligned ideological extremes more confidently than
left-aligned ones. A possible explanation is that
far-right discourse—often more uniform or rhetor-
ically direct—may be easier for LLMs to model,
whereas far-left speeches may exhibit greater lex-
ical diversity or abstract reasoning, making them
harder to predict from limited input.

6 Discussion

6.1 Qualitative Analysis of High-Confidence
Gender Misclassifications

To better understand the decision patterns of LLMs
in gender classification, we conducted a qualita-
tive analysis of high-confidence errors by GPT-
4o. Specifically, we examined 200 cases where
the model assigned the incorrect gender label with
maximum confidence (confidence level = 4), and
analyzed its accompanying rationale.

Stereotypical Language Cues The model fre-
quently relied on stereotypical associations be-
tween tone and gender. For example, assertive,
formal, or analytical language was often interpreted

as male: The text employs a formal, assertive, and
analytical tone... suggests a male speaker.

Similarly, content emphasizing social or environ-
mental concerns was linked with female identity:
Focus on environmental and social issues... associ-
ated with female politicians.

Political Group Bias The model also appeared
to entangle political ideology with gender assump-
tions. For instance, far-left MEPs (GUE/NGL)
were more likely to be predicted as female due to
themes of equity and justice, while conservative
MEPs (e.g., ECR) were predicted as male based on
critical or structured argumentation—even when
incorrect.

Age Confounds Older MEPs (age > 70) were
disproportionately misclassified. Formal or tra-
ditional speech patterns were often read as male-
coded, leading to misclassification of several older
female MEPs.

6.2 Qualitative Analysis of GPT-4o Voting
Misclassifications

We conducted a similar error analysis for voting
prediction.

Over-Reliance on Keywords The model some-
times defaulted to vote predictions based on topic
mentions. If a speech referenced climate policy or
human rights—topics often associated with FOR

votes—it tended to predict approval, even when the
speech criticized the specific legislative proposal.

Surface Sentiment Over Argumentative Stance
GPT-4o often conflated negative sentiment with
opposition. For example, speeches that included
strong criticisms of implementation or enforcement
were misclassified as AGAINST, despite conclud-
ing in support: The implementation has been dis-
appointing and slow. Nevertheless, we must move
forward together. (Predicted: Against, True: For).
This reflects a pattern where the model weighs emo-
tional tone over policy alignment.

Failure to Detect Sarcasm or Irony In a few
speeches, rhetorical devices or sarcastic phrasing
led to misclassification. For example, when a
speaker said: Of course, the Commission never
makes mistakes. (Predicted: For, True: Against)
The model interpreted literal sentiment and failed
to recognize the ironic critique.
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Model GUE_NGL GREEN_EFA SD RENEW EPP ECR ID

LLaMA-3.2
w/o group 47.40 61.40 88.94 86.33 81.29 53.60 60.00
with group 49.00 63.45 87.66 85.61 80.95 50.45 63.21

Claude 3.5
w/o group 65.86 62.47 73.92 86.34 78.33 75.68 72.04
with group 66.51 65.73 75.26 84.83 80.40 81.17 76.88

Mistral-large
w/o group 70.03 64.56 80.14 82.54 79.20 78.84 78.88
with group 71.00 66.50 81.50 84.00 83.50 82.00 79.32

Gemini 2.5
w/o group 68.42 64.83 76.17 80.58 79.59 76.13 80.36
with group 68.42 71.72 75.32 85.61 82.99 86.94 85.00

GPT-4o
w/o group 75.19 66.21 88.09 88.49 82.99 83.78 86.07
with group 77.44 67.59 87.66 89.93 82.65 86.94 88.57

Table 5: Voting prediction accuracy (%) across political groups for various models. In each row, the highest score is
highlighted in bold. Columns are ordered ideologically (left to right) and color-coded from dark blue (far-left) to
dark red (far-right), with gray used for center/liberal groups.

6.3 Does LoRA Help Mitigate Gender Bias in
LLM-based Gender Classification?

Given the observed gender bias in LLM predictions,
we investigate whether commonly used fine-tuning
techniques, such as supervised fine-tuning (SFT)
and Low-Rank Adaptation (LoRA), can mitigate
this bias in gender classification tasks. To explore
this, we sampled 5,000 examples from the EuroPar-
lVote training set, which exhibited a relatively bal-
anced distribution between male and female MEPs,
as shown in Table 2.

We applied LoRA fine-tuning to LLaMA3.2-
3B and Mistral-Large models, tuning hyperparam-
eters on the development set. The selected hy-
perparameters included a lora_dropout of 0.05,
lora_alpha of 16, a learning rate of 1e-4, and
two training epochs. Evaluation was conducted
on the test set following the protocol described in
Section 4.1.

Table 6 presents the gender prediction per-
formance of the LoRA-finetuned models. For
LLaMA-3.2-3B, LoRA yields a slight improve-
ment in overall accuracy and male F1 score. How-
ever, it results in a substantial decline in the female
F1 score, suggesting a worsening of gender dispar-
ity.

A similar decrease is observed for Mistral-large,
this trend is further visualized in the confusion
matrices shown in Figure 2, where the left panel
corresponds to LLaMA3.2 (LoRA) and the right to
Mixtral-Large (LoRA). Both models demonstrate
strong performance on male MEPs but struggle sig-

nificantly with female MEPs, reinforcing concerns
about gender bias.

These findings align with observations by Ding
et al. (2024), who report that LoRA does not con-
sistently reduce or exacerbate disparities across
demographic subgroups. Our results suggest that
while LoRA may enhance general performance, it
may also amplify existing gender imbalances un-
less explicitly addressed.

LLM Accuracy F1-F F1-M

LLaMA-3.2-3B 60.01 37.16 70.68
LLaMA-3.2-3B (LoRA) 60.70 19.94 74.88
Mixtral-large 63.60 44.85 72.84
Mixtral-large (LoRA) 61.80 32.14 75.28

Table 6: Gender prediction performance (%): Accuracy,
F1 score for Female, and F1 score for Male using origi-
nal and LoRA fine-tuned open-weight LLMs.

Figure 2: Confusion matrices of gender prediction using
LoRA-finetuned models.
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LLM Accuracy F1-F F1-A

LLaMA-3.2-3B (w/o speech) 50.12 66.61 0.87
GPT-4o (w/o speech) 50.39 68.67 3.03

Table 7: Voting prediction performance (Accuracy, F1-
For, F1-Against, all in %) of LLaMA3.2 and simulated
GPT-4o when the input excludes the speech.

6.4 Investigating the Impact of Speech
Context in Voting Simulation

To determine whether LLMs are relying on superfi-
cial or trivial cues, we conducted an ablation exper-
iment by masking out the debate speeches in the
voting simulation task. Instead, we provided only
the debate topic and MEP gender. We evaluated
one open-weight LLM (LLaMA3.2-3B) and one
proprietary model (GPT-4o) under this setup.

Table 7 shows that the accuracy of both mod-
els drops to around 50, close to random guessing.
Moreover, both models exhibit a strong prediction
bias toward the dominant For class, resulting in
extremely poor F1 scores for the Against class.

When compared to the With Gender setting in
Table 5, where LLaMA3.2 and GPT-4o achieved
66.47 and 83.85 accuracy respectively, this drop
highlights the importance of speech context in
LLM-based vote prediction. These results confirm
that LLMs do not simply rely on gender or group
priors but benefit substantially from the semantic
content of the debate speeches.

This finding also suggests that using debate
speech as a primary input provides richer, non-
trivial signals for political decision modeling, re-
inforcing the critical role of context in socially
grounded LLM applications.

6.5 Investigating the Limitation of Machine
Translation on Voting Prediction

Given the multilingual nature of the EuroParlVote
dataset, all results reported in Section 4 and Sec-
tion 5 have used speeches in their original language.
Meanwhile, we were curious whether the origi-
nality of the language affects model performance
in downstream tasks. This question aligns with
concerns raised in prior work on language bias in
multilingual NLP systems (Yang et al., 2024).

To investigate this, we translated the speeches in
the test set using three methods: GPT-4o, T5(Raffel
et al., 2020), and the Google Translate API(Google,
2024). We then used the best-performing model,
GPT-4o, to replicate the voting prediction exper-

iment described in Section 4.2, under the setting
without gender or group metadata.

As shown in Table 8, all translated versions yield
lower accuracy than the original-language speeches.
This result is consistent with expectations, as trans-
lation may introduce noise or omit important con-
textual signals. It also highlights the value and
authenticity of our benchmark, which retains origi-
nal native-language inputs.

Translator Accuracy F1-F F1-A

GPT-4o 78.10 80.12 75.44
T5 75.84 78.65 72.03
Google API 76.35 79.02 72.88
No translation 84.20 85.00 83.35

Table 8: Voting prediction performance (Accuracy, F1-
For, F1-Against, all in %) using translated speeches and
original speeches with GPT-4o as the prediction model.

7 Conclusion

We introduced EuroParlVote, a benchmark dataset
aligning MEP debate speeches with roll-call votes
and demographic metadata, enabling fine-grained
evaluation of LLMs across gender and political
group dimensions in a real-world democratic set-
ting.

Our findings reveal persistent gender and ideo-
logical biases in current LLMs. Proprietary models
such as GPT-4o show greater robustness and fair-
ness, while open-weight models like LLaMA-3.2
benefit from explicit contextual cues (e.g., polit-
ical group identifiers) but still fail in predictable
ways, including over-reliance on sentiment polarity,
misinterpreting hedging or irony, and insufficiently
integrating context or speaker intent. In the futuer
work, incorporating discourse signals such as group
alignment, prior voting records, and procedural vs.
policy distinctions may improve robustness.

We also find that LoRA fine-tuning fails to miti-
gate gender disparities, and that translating multilin-
gual debates reduces performance—underscoring
the importance of native-language inputs. To our
knowledge, this is the first study to jointly examine
gender and political fairness in LLMs in a multilin-
gual parliamentary context. We hope EuroParlVote
fosters research into the socio-political implications
of LLM deployment and encourages the develop-
ment of fairer, more context-aware NLP systems
for political applications.
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Limitations

This study has several limitations. First, due to bud-
get constraints and limited API access, we did not
conduct ablation studies across all trending model
variants or include very large-scale LLMs (e.g.,
LLaMA-3.3-70B). Instead, we selected a diverse
yet manageable set of proprietary and open-weight
models to facilitate consistent, cross-comparative
analysis. Second, our focus was on identifying and
analyzing bias rather than developing or fine-tuning
mitigation techniques, which typically require ad-
ditional training cycles, labeled data, or access to
model internals—challenges that are particularly
acute for proprietary models. Lastly, both the con-
tent of European Parliament debates and the capa-
bilities of LLMs are dynamic and evolving. As
a result, our findings may not fully generalize to
future model versions or accurately reflect shifts in
political discourse and societal context.
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A Appendix

This appendix provides additional details about the EuroParlVote dataset. Figure 3 visualizes the de-
mographic distributions across the training, development, and test splits, highlighting attributes such as
gender, political group, age, country, and vote label. Table 9 presents the full mapping of country codes,
ISO Alpha-2 codes, and the number of examples per country across the three dataset splits. Notably, while
the United Kingdom (GBR) is no longer an EU member, it remains in the dataset due to its historical
participation during the data collection period.

Figure 3: Demographic distributions across the training, evaluation, and test sets in the EuroParlVote dataset. Each
row shows the distribution by gender, political group (left-to-right political leaning order), age, country, and vote
label, respectively.
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Code ISO Alpha-2 Country Name Train Dev Test

AUT AT Austria 562 42 46
BEL BE Belgium 633 49 47
BGR BG Bulgaria 417 22 36
CYP CY Cyprus 204 16 18
CZE CZ Czechia 531 50 45
DEU DE Germany 1123 97 91
DNK DK Denmark 375 31 32
ESP ES Spain 1044 83 88
EST EE Estonia 218 18 21
FIN FI Finland 368 28 33
FRA FR France 1087 89 86
GBR GB United Kingdom 946 84 76
GRC GR Greece 641 46 47
HRV HR Croatia 323 26 24
HUN HU Hungary 428 32 34
IRL IE Ireland 312 21 23
ITA IT Italy 1057 88 81
LTU LT Lithuania 232 20 19
LUX LU Luxembourg 179 12 15
LVA LV Latvia 200 16 18
MLT MT Malta 157 12 13
NLD NL Netherlands 610 44 49
POL PL Poland 730 57 60
PRT PT Portugal 504 41 37
ROU RO Romania 537 42 44
SVK SK Slovakia 294 25 21
SVN SI Slovenia 278 19 21
SWE SE Sweden 493 38 35

Table 9: Mapping of country codes, ISO Alpha-2 codes, country names, and number of examples in Train, Dev, and
Test splits in the EuroParlVote dataset. Note that the United Kingdom (GBR) appears due to legacy participation,
though it is no longer an EU member.
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B LLMs Model Configures

This appendix provides additional information on the LLMs evaluated and their performance characteris-
tics. Table 10 summarizes the LLMs used in our experiments, including release dates, parameter sizes,
and approximate API pricing.

LLM Release Date Parameters API Pricing (USD)

LLaMA-3.2-3B-Instruct (Meta) Sept 2024 3.2B Free for research
Mistral-large-2411 (Mistral) Nov 2024 123B ∼1–3/M tokens via Vertex
GPT-4o (OpenAI) Nov 2024 Not disclosed 2.50/M input, 5–10/M output
Gemini 2.5 Flash (Google) Apr 2025 Not disclosed ∼0.26/M tokens (combined est.)
Claude 3.5 Haiku (Anthropic) Oct 2024 Not disclosed 0.80/M input, 4.00/M output

Table 10: Summary of LLMs used in this work, release dates, parameter sizes, and approximate API pricing.
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C Supplementary Evaluation Details

Figures 4–7 present confusion matrices and confidence distributions for both gender and vote prediction
tasks. These visualizations illustrate model behavior across classes and offer insight into confidence
calibration and classification asymmetries.

Figure 4: LLMs’ Confusion Matrix for gender prediction based on debate speeches.
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Figure 5: Distribution of LLMs confidence scores for gender predictions. The violin plot shows the density and
spread of confidence levels (1 = low, 5 = high) across predicted genders. Inner boxes indicate the interquartile range
and median.

Figure 6: LLMs’ Confusion Matrix for vote prediction based on debate topic and debate speeches.
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Figure 7: Distribution of LLMs confidence scores for vote predictions grouped by ground-truth label (FOR vs.
AGAINST). Wider violins indicate greater density of predictions at that confidence level.
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D Qualitative Prediction Examples

To further illustrate LLM behavior, we provide qualitative examples of vote and gender prediction outputs
for each LLM evaluated. These examples include the ground truth, model predictions, confidence scores,
and the corresponding MEP debate speeches. Each instance is selected to highlight notable patterns—such
as confident misclassifications, group-specific disparities, or reasoning errors—across different models.
The following subsections present examples for LLaMA-3.2, GPT-4o, Gemini 2.5 Flash, Mistral-large,
and Claude 3.5 Haiku.

LLaMA-3.2 Vote Prediction Error Example

Example: An EU strategy to reduce methane emissions (debate)

Ground Truth: AGAINST LLaMA-3.2 Prediction: FOR (Confidence: 4)

MEP Speech

– Signora Presidente, signora Commissaria, onorevoli colleghi, il metano è un gas serra con un
potenziale di riscaldamento globale molto superiore all’anidride carbonica e quindi rappresenta
una minaccia importante per l’ambiente. È quindi positivo che la Commissione abbia adottato
una strategia per la riduzione delle emissioni di metano. Tuttavia, dobbiamo anche assicurarci
che tale strategia non imponga oneri sproporzionati alle piccole e medie imprese agricole, che
rischiano di essere danneggiate da regolamenti troppo stringenti.

LLaMA-3.2 Reasoning

The MEP speech highlights the importance of the EU’s strategy to reduce methane emissions and
acknowledges its environmental relevance. The speaker expresses support for the initiative while
urging caution to avoid overburdening small farmers. The overall tone is constructive, suggesting
alignment with the strategy, leading to a ’FOR’ prediction.

LLaMA-3.2 Gender Prediction Error Example

Example: 2019 Discharge (debate)

Ground Truth: FEMALE LLaMA-3.2 Prediction: MALE (Confidence: 4)

MEP Speech

Now a few words on each of these institutions in my role as rapporteur. For the European
Commission, I welcomed improvements in budget implementation and the increasing use of
performance-based budgeting. However, I also expressed concerns about transparency and
accountability in some external aid projects. It is vital that European taxpayers see a return on
their investment and that funds are used effectively.

LLaMA-3.2 Reasoning

The speaker uses technical language, discusses financial oversight, and presents a structured
critique. The formal tone and lack of gender-specific cues may have led the model to predict the
speaker as male.
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GPT-4o Vote Prediction Error Example

Example: The proposed repeal of the law banning female genital mutilation (debate)

Ground Truth: FOR GPT-4o Prediction: AGAINST (Confidence: 5)

MEP Speech

Wir haben bestehende Konventionen zur Eliminierung von Diskriminierung gegen Frauen – die
Istanbul-Konvention, die Genfer Konvention, die UN-Kinderrechtskonvention – alle verurteilen
weibliche Genitalverstümmelung eindeutig. Trotzdem erleben wir, dass in bestimmten Ländern
über die Abschaffung solcher Gesetze diskutiert wird. Dies ist eine eklatante Verletzung grundle-
gender Menschenrechte und wir als EU-Parlament müssen klar Stellung beziehen. Es ist unsere
Verantwortung, den Schutz von Frauen und Mädchen nicht nur zu fordern, sondern auch aktiv zu
verteidigen. Deshalb unterstütze ich diese Resolution mit voller Überzeugung.

GPT-4o Reasoning

The MEP speech strongly condemns the practice of female genital mutilation (FGM) and em-
phasizes existing international conventions against such practices, highlighting them as outdated
and not in the interest of women. The speaker calls for the Gambian government to retract its
intention to repeal the ban, indicating a clear stance against the repeal. Given the EU’s historical
position on human rights and gender equality, it is highly likely that the European Parliament
would vote against any measure perceived as regressive on these issues. The strong language
used in the speech, coupled with the EU’s commitment to upholding international human rights
standards, suggests a very high probability that the vote will be against the repeal.

GPT-4o Gender Prediction Error Example

Example: Iran, notably the situation of women’s rights defenders and imprisoned EU
dual nationals

Ground Truth: MALE GPT-4o Prediction: FEMALE (Confidence: 4)

MEP Speech

– Mr President, I just wanted to concur with what has been said by many speakers. The situation
of women in Iran is unacceptable, and particularly from the point of view of the European Union,
when I was a member of the Iranian delegation in the last mandate, we worked very hard to keep
the nuclear accord in place, and the European Union stuck its neck out in that regard, but that
must be reciprocated. As has been said, by particularly allowing women the freedom they deserve,
and as one MEP said, men in Iran should not be telling women what to wear. I also concur with
my colleague, Clare Daly, on the obligations of the United States in relation to Iran, and the
nuclear accord. It was they who pulled out of it, and that was done despite the fact that there was
an agreement done with the previous president, President Obama, so that in itself is also a cause
for condemnation.
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GPT-4o Reasoning

The speaker demonstrates a focus on issues related to women’s rights, particularly in Iran, which is
often associated with female speakers in political contexts. The mention of personal involvement
in the Iranian delegation and collaboration with Clare Daly, a known female MEP, further suggests
a female perspective. The tone is collaborative and empathetic, which can sometimes align with
stereotypical female communication styles. However, the linguistic style is neutral and formal,
which slightly reduces absolute certainty.

Gemini 2.5 Vote Prediction Error

Example: Carbon Border Adjustment Mechanism (CBAM)

Ground Truth: AGAINST Gemini 2.5 Prediction: FOR (Confidence: 4)

MEP Speech

– Mr President, firstly, well done to Mohammed, the rapporteur for the carbon border adjustment
mechanism. I thought the Commission’s proposals lacked ambition in terms of its timelines for
phasing out free allowances and in terms of its scope. It also lacked fairness in its treatment of
the least—developed countries. Mohammed has done well to address some of these problems.
Least—developed countries are the least responsible for the climate crisis, yet the worst impacted
by it. The two most widely discussed options to protect producers in these countries from
the effects of the regulation are exemptions from the scope of the regulation and recycling of
revenues generated by the regulation in order to help producers to decarbonise. I did find it
incredible that the Commission’s legislative proposal included neither option. Exemptions on
their own would risk leaving them stranded with carbon—intensive production methods. The use
of CBAM revenues therefore is crucial to allow LDCs to decarbonise their supply chains. The
Commission’s proposal suggests that the idea of just transition should stop at the EU borders,
which is disappointing.

Gemini 2.5 Reasoning

The MEP’s speech, while critical of the Commission’s initial proposal for CBAM regarding
ambition and fairness towards Least Developed Countries (LDCs), explicitly praises the rapporteur
for addressing some of these problems. The MEP advocates for specific improvements (like
recycling revenues for LDC decarbonisation) within the CBAM framework, indicating support
for the mechanism itself provided key concerns are addressed. This suggests the MEP is likely to
vote "For" the proposed legislation, assuming the rapporteur’s efforts or subsequent amendments
have incorporated improvements aligned with their views, particularly on LDC support, as part of
the overall "Fit for 55" package.

Gemini 2.5 Gender Prediction Error Example

Example: European Central Bank – annual report 2020 (debate)

Ground Truth: FEMALE Gemini 2.5 Prediction: MALE (Confidence: 5)
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MEP Speech

Madame la Présidente, nous devons garantir que les politiques de l’Union reflètent les priorités
des citoyens, notamment en ce qui concerne la sécurité, l’économie, et la souveraineté. Nous
avons entendu de nombreuses promesses, mais très peu ont été tenues. Il est temps de rétablir la
confiance par des actions concrètes et non par des slogans creux.

Gemini 2.5 Reasoning

The speaker uses the pronoun ’Nous’ followed by the masculine plural adjective ’heureux’ (’Nous
sommes heureux de constater...’) and the masculine plural pronoun ’tous’ (’Nous constatons
tous...’). In French, when ’Nous’ refers to a group that includes the speaker, the grammatical
agreement of adjectives or certain pronouns typically reflects the speaker’s gender, especially in
formal speech, unless the group is entirely female (in which case the feminine form would be
used). The use of ’heureux’ (masculine plural) and ’tous’ (masculine plural) strongly indicates
that the speaker identifies as male, as a male speaker would use the masculine form regardless
of the group composition, while a female speaker might use the feminine plural ’heureuses’
and ’toutes’ even if the group is mixed, or would use the masculine only if referring strictly to
the group and not implicitly including herself in the gender agreement. The consistent use of
masculine plural forms is a very strong indicator of a male speaker in this context.

Mistral Vote Prediction Error Example

Example: Common agricultural policy - support for strategic plans to be drawn up by
Member States and financed by the EAGF and by the EAFRD (debate)

Ground Truth: FOR Mistral Prediction: AGAINST (Confidence: 4)

MEP Speech

– Monsieur le Président, agriculteurs et citoyens ont des attentes fortes vis-à-vis de la prochaine
politique agricole commune. Je regrette un budget en baisse de 30 milliards d’euros environ par
rapport au programme de 2014-2020, alors que le secteur agricole doit faire face à de nouveaux
défis. Rappelons tout de même que la France va verser dès l’année prochaine 26,8 milliards
d’euros à l’Union européenne – c’est un record nous concernant – et que nous avons besoin de
la PAC. Un débat public est actuellement en cours sur les enjeux de la prochaine PAC, dans
une relative indifférence médiatique. Pourtant, les propositions pourraient être reprises dans le
plan stratégique national qui sera la déclinaison française de la PAC, replaçant ainsi, comme il
se devrait, les États à l’initiative des décisions. Notre modèle agricole doit désormais affronter
le défi écologique de la transition verte, mais sa mise en œuvre est à affiner entre la nouvelle
structure verte de la PAC et les mesures environnementales inscrites dans la stratégie F2F. Les
accords commerciaux de l’Union européenne, et notamment l’accord unique de libre-échange
UE-Mercosur, suscitent des inquiétudes légitimes sur la protection de nos normes de qualité dans
un secteur déjà fortement impacté par la pandémie et la sécheresse. Gageons que la réforme
prévue au premier trimestre 2021 permette de développer les circuits courts et un revenu digne
pour nos agriculteurs.
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Mistral Reasoning

The MEP’s speech highlights significant concerns about budget reductions, environmental chal-
lenges, and risks from international trade agreements. Mistral interpreted these critiques as
opposition to the CAP proposal. However, despite the critical tone, the MEP emphasizes the
necessity of the CAP and expresses hope for reform and support for farmers. These remarks
indicate overall support for the initiative, explaining why the ground truth was ’FOR’ while the
model incorrectly predicted ’AGAINST’.

Mistral Gender Prediction Error Example

Example: Guidelines for the 2024 budget - Section III (debate)

Ground Truth: MALE Mistral Prediction: FEMALE (Confidence: 5)

MEP Speech

I have been involved in the works of the budgetary procedure for a few years, and now I must say
that from the position of the FEMM Committee, it resembles ‘Groundhog Day’. We repeatedly
called for the Citizens, Equality, Rights and Values Programme to include separate gender-related
budget lines, with no success. We called for the Daphne programme resources to increase
the special budget for gender-related issues, but with no success. We continued to call for the
connection between attacks on the rule of law and worrisome backlash against gender equality and
women’s rights in the EU, and attacks on LGBTI+ people will be connected to the budget issues,
without success. And what’s most important, we repeatedly call for gender equality perspective to
be fully integrated into all policy areas, at all stages of the budgetary process. Yet, the European
Court of Auditors found again that gender mainstreaming is the least successfully implemented
overarching policy priority, again and again and again, without success.

Mistral Reasoning

The speech is entirely focused on gender equality, women’s rights, LGBTI+ rights, and budgetary
procedures related to these issues. The reference to speaking “from the position of the FEMM
Committee” (Committee on Women’s Rights and Gender Equality) and the repeated emphasis on
topics traditionally championed by women led the model to infer a female identity. While male
MEPs can certainly champion these causes, the intensity of advocacy and association with the
FEMM agenda resulted in a high-confidence misclassification.

Claude 3.5 Vote Prediction Error Example

Example: 2019–2020 Reports on Turkey (debate)

Ground Truth: AGAINST Claude 3.5 Prediction: FOR (Confidence: 5)
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MEP Speech

– Voorzitter, ik kan mijn ogen niet geloven. Bladzijden lang wordt beschreven hoe Turkije nog
steeds alle afspraken aan zijn militaire laarzen lapt. Er zijn duizenden politiek gevangenen,
onder wie zwangere vrouwen, er wordt gefolterd, mensen verdwijnen, 152 000 rechters, leraren,
journalisten werden ontslagen. De Turken bezetten al een halve eeuw ongestraft een deel van
onze lidstaat Cyprus. Zij chanteren ons met een massale vluchtelingenstroom. En toch, toch
omschrijft men vandaag Turkije, het islamitische Turkije, hier als een strategische partner op
geopolitiek en economisch vlak, die bovendien lid moet blijven van de NAVO. Na het recente
bombarderen van Koerden en Armeniërs zou men denken dat de eurobonzen beseffen dat Turkije
een oorlogsstoker is en niet een partner om een stabiel en veilig klimaat mee te creëren in de
oostelijke Middellandse Zee. Hoe naïef kan men zijn?

Claude 3.5 Reasoning

The MEP’s speech is overwhelmingly critical of Turkey, listing numerous severe human rights
abuses, undemocratic actions, and foreign policy violations. The use of emotive and condemnatory
language suggests strong disapproval. Claude 3.5 interpreted this negativity as support for a
critical report, hence predicting a ’FOR’ vote. However, the actual vote was ’AGAINST’,
potentially reflecting opposition to the EU’s framing or political motives behind the report, not
the content itself.

Claude 3.5 Gender Prediction Error Example

Example: Conclusion of the EU-Viet Nam Free Trade Agreement (debate)

Ground Truth: FEMALE Claude 3.5 Prediction: MALE (Confidence: 4)

MEP Speech

Sans discernement dans l’octroi des préférences généralisées, dont le Viêt Nam bénéficie, elle
aura été tout aussi inepte dans les négociations commerciales. Les échanges avec ce pays devaient
pourtant la placer en position de force. Il n’en est rien. Un exemple cocasse le démontre: alors
que l’Union européenne reconnaît 39 IGP vietnamiennes, le Viêt Nam n’en reconnaîtrait que 36
françaises, dont le champagne – avec une période transitoire de dix ans!
L’accord n’est évidemment pas une bonne nouvelle en matière de droits de l’homme. Outre
la liberté syndicale, en 2012, 1,75 million de Vietnamiens âgés de 5 à 17 ans étaient toujours
concernés par le travail des enfants. Quant à nos industries – notamment le textile, historiquement
implanté dans le Grand Est – elles paieront par une nouvelle saignée cette course au moins-
disant social, les salaires vietnamiens plafonnant à 59 % des salaires chinois, ce qui explique
vraisemblablement l’empressement déployé pour conclure cet accord.

Claude 3.5 Reasoning

The text employs a formal, assertive, and analytical tone, focusing on technical and economic
details such as trade agreements, labor statistics, and industry impacts. This style is often
associated with traditionally male communication patterns in political and economic discourse.
The use of precise figures, structured argumentation, and a critical stance also aligns with
stereotypical male linguistic tendencies in professional contexts. However, as gendered language
patterns are not definitive, the confidence level is set at 4.
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Abstract
The study explores the performance, robust-
ness, and effects of automatic speech recog-
nition systems when speech is missing or in-
terrupted, with a specific focus on Burmese, a
low-resource language. This study addresses
several key research questions: How does miss-
ing or interrupted speech affect the accuracy
of ASR? What is the link between the length
of missing speech and the accuracy of the tran-
scription? How are errors propagating when
speech is masked or interrupted? By fine-
tuning Wav2vec-bert2.0 and MMS-Zeroshot-
300M (Massively Multilingual Speech) on a
regular speech dataset (OpenSLR) of Burmese,
the study answers these questions by evaluating
the models on OpenSLR and 2 other datasets
(FLEURS and Bloom) on common ASR met-
rics like Word Error Rate and Character Error
Rate. The results reveal significant insights
into error propagation, positional error patterns,
and dataset-specific robustness. The study pro-
vides a baseline and methodological insights
for future ASR research in interrupted settings
for low-resource languages. The study’s find-
ings can inform the development of more ro-
bust ASR systems for real-world applications
in low-resource languages.

1 Introduction

While automatic speech recognition (ASR) has
enabled applications ranging from voice assis-
tants (Dubiel et al., 2018; Sim et al., 2019) to auto-
mated transcription services (Jeffries et al., 2024),
its performance often degrades under real-world
conditions involving missing or incomplete speech
segments (Barker et al., 2013; Gemmeke et al.,
2011). Missing speech in these scenarios com-
monly arises from network packet loss during VoIP
or streaming (Dissen et al., 2024; Lee and Kang,
2013; Kumalija and Nakamoto, 2022), recording
interruptions caused by hardware issues or user-
generated noise, and transmission errors from cor-
rupted media. This challenge is particularly acute

for low-resource languages (LRLs), which have not
seen the same focus on robustness as high-resource
languages (Baevski et al., 2020; Rubenstein et al.,
2023; Radford et al., 2022), raising important ques-
tions about ASR reliability in these contexts.

Accordingly, this study focuses on Burmese, a
Tibeto-Burman language spoken by approximately
42.9 million people and notably underrepresented
in ASR research (Wikipedia contributors, 2025b;
Li and Jian, 2024). The linguistic complexity of
Burmese makes it a compelling case for robustness
analysis. As a tonal language with an agglutina-
tive morphology (Wikipedia contributors, 2025a),
meaning is conveyed through subtle changes in
pitch and duration, while grammatical information
is often encoded in extended word forms. Con-
sequently, the limited data available for training
robust models poses a critical challenge, as even
brief gaps in audio can lead to significant loss of
semantic and grammatical information. Enhanc-
ing ASR robustness for Burmese can thus bridge
communication gaps and enable technological in-
clusion for millions of speakers. To investigate
these challenges, this paper aims to:

• Quantify the performance impact of missing
speech on a fine-tuned Burmese ASR model;

• Perform a detailed error analysis to under-
stand the nature and distribution of errors
caused by missing data; and

• Evaluate model robustness across multiple rel-
evant datasets.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work. Section 3
describes our experimental setup, including the
datasets and methodology. Finally, Section 5 con-
cludes the paper and outlines future work.
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2 Related Works

The challenge of handling missing audio in auto-
matic speech recognition (ASR) has long been a
tough problem. In the past, researchers mostly
focused on techniques like robust feature extrac-
tion and model adaptation to reduce the effects of
noise and distortions (Ming and Crookes, 2014).
More recently, the focus has shifted to what’s called
speech inpainting or speech reconstruction, which
involves filling in or estimating missing segments
of audio. These methods range from simple in-
terpolation approaches (Kauppinen et al., 2001) to
more advanced models like Gaussian Mixture Mod-
els (GMMs) (Cooke et al., 2001) and deep learning
techniques using autoencoders or Generative Ad-
versarial Networks (GANs) (Wali et al., 2021).

Another related idea comes from self-supervised
learning, where models are trained to predict
masked parts of the input data. This was first popu-
larized in natural language processing by models
like BERT (Devlin et al., 2019) and later adapted
for speech in models like Wav2vec 2.0 (Baevski
et al., 2020) and HuBERT (Hsu et al., 2021). These
models learn robust representations that help in
handling missing data. Though primarily used
for pre-training, masking is also used as a data
augmentation strategy to make models more ro-
bust (Rebuffi et al., 2021). One recent example is
SpeechPainter (Zalan Borsos and Matthew Sharifi
and Marco Tagliasacchi, 2022), which uses a gen-
erative diffusion model to do high-quality speech
inpainting.

However, most of these efforts have focused on
high-resource languages. In our study, we explore
how masking and gapping two strategies for simu-
lating missing speech, differently affect ASR error
patterns and robustness, specifically for Burmese.

3 Experimental Setup

This section outlines the experimental framework
designed to assess the performance and robustness
of ASR systems for Burmese with missing speech.

3.1 Dataset

To evaluate the impact of missing speech on
Burmese ASR, we utilize publicly available
Burmese speech datasets, representing different do-
mains, recording conditions, and potentially vary-
ing levels of annotation quality. The primary
datasets considered are: (a) OpenSLR Burmese

(SLR80) (Oo et al., 2020): Contains approxi-
mately 4 hours of read speech, used here for fine-
tuning and evaluation. Characteristics often in-
clude relatively clean recordings. (b) Few-shot
Learning Evaluation of Universal Representa-
tions of Speech (FLEURS) (Conneau et al., 2023;
Goyal et al., 2022):An n-way parallel dataset with
12 hours of speech per language, representing a
more diverse source. (c) Bloom Dataset (Leong
et al., 2022): Contains 1 hour of burmese read
speech from book paragraphs. Table 1 presents the
dataset splits we use in our study.

Dataset Split Used No. of Samples

OpenSLR Test + Val 196+206
FLEURS Test 880
BLOOM Test + Val 50+50

Table 1: Dataset and Split Configuration for the Study.

To analyze ASR model robustness to incom-
plete speech, we simulate missing data using
two controlled techniques: masking and gap-
ping. These are applied over specified durations
Dm ∈ {0.25s, 0.5s, 0.75s, 1s}, chosen to reflect
real-world interruption lengths, such as network
packet loss in VoIP systems (e.g., 10–40 packets
of 25ms) (Zhang et al., 2024). Let an original
discrete-time audio signal be Sorig[n], with Norig

samples. The gap/mask duration Dm corresponds
to ND samples. If Norig is not a multiple of ND,
Sorig[n] is zero-padded at the end to form a signal
S[n] of length N , where N is the smallest mul-
tiple of ND such that N ≥ Norig. Subsequent
operations refer to this signal S[n] of length N .

Masking Masking simulates data loss by set-
ting a segment of ND samples to zero ampli-
tude, with the masked signal S′

mask,k[n] retain-
ing the length N . For each signal S[n], N/ND

distinct masked versions are generated. The kth
masked signal is formed by zeroing out samples
in the segment n ∈ [kND, (k + 1)ND − 1], where
k ∈ [0, . . . , (N/ND)− 1]. This is described by:

S′
mask,k[n] =





S[n] for 0 ≤ n < kND

0 for kND ≤ n < (k + 1)ND

S[n] for (k + 1)ND ≤ n < N

This technique is analogous to how lost data pack-
ets replaced by silence are handled and is funda-
mental in applying time-frequency masks in speech
enhancement (Kim, 2021). Alternatively, it is an
element-wise multiplication S′

mask,k = S ⊙Mk,
where Mk[n] is a binary mask.
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Gapping Gapping simulates interruptions by in-
serting a silent segment of ND zero-valued sam-
ples into S[n], thereby extending its total dura-
tion to N + ND samples. For each signal S[n],
(N/ND) + 1 distinct gapped versions are gener-
ated. In the jth gapped signal, S′

gap,j [m], silence is
inserted at a position corresponding to jND in the
timeline of S[n], where j ∈ [0, . . . , N/ND]. The
resulting signal S′

gap,j [m] form ∈ [0, N+ND−1]
is constructed as:
S′
gap,j [m] =




S[m], for 0 ≤ m < jND,

0, for jND ≤ m < jND +ND,

S[m−ND], for jND +ND ≤ m < N +ND

This method alters the signal’s temporal struc-
ture, testing the model’s ability to handle unex-
pected pauses. The key distinction is that masking
overwrites existing audio data while preserving
effective signal duration (N ), whereas gapping in-
serts new silent data, increasing the overall signal
length and specifically challenging resilience to
pauses and temporal shifts.

3.2 Models and Parameters
In this work, we selected Wav2Vec-BERT-2.0
(Chung et al., 2021) and MMS-Zeroshot-300M 1

(Pratap et al., 2024) due to their extensive multilin-
gual pre-training and strong performance on LRLs.
Wav2Vec-BERT-2.0’s prior exposure to Burmese
and MMS-Zeroshot-300M’s training on over 1,000
languages make them suitable for this study. We
fine-tune publicly available checkpoints for our ex-
periments. This study fine-tunes both models on
the OpenSLR dataset for up to 16 epochs using
the AdamW optimizer (learning rate 5e-5, batch
size 8), utilizing pretrained checkpoints available
on Hugging Face (Face, 2025) and utilizing the
Transformers library for the fine-tuning process.
For our experiments, we select the best-performing
fine-tuned checkpoints of both Wav2Vec-BERT-2.0
and MMS-Zeroshot-300M on the OpenSLR vali-
dation set with the best validation WER and use
it for all subsequent experiments. All subsequent
evaluations use the data splits detailed in Table 1.
All the experiments were done on a single NVIDIA
RTX A5000 GPU.

3.3 Evaluation Metrices
We assess ASR performance using the following
metrics to quantify transcription errors and to ana-

1The MMS-Zeroshot-300M model checkpoint was used
for fine-tuning. The name denotes the pre-trained model and
does not imply a zero-shot evaluation methodology in our
experiments.

lyze the impact of missing speech:

• WER (Word Error Rate): Measures word-
level transcription errors.

• CER (Character Error Rate): Measures
character-level transcription errors.

• Error Percentage (Error %): The propor-
tion of samples where the transcription differs
from the clean audio baseline after simulating
missing speech.

• Edit Distance Distribution: Examines how
severe the errors are by analyzing the distribu-
tion of edit distances for each affected sample
compared to the baseline.

• Positional Error Analysis: Looks at where
errors tend to occur, focusing on the first and
last segments around the missing speech re-
gion.

Dur. Masking Gapping

Samples Err. (%) Samples Err. (%)

0.25s 9144 69.14 9546 77.92
0.50s 4458 84.28 4860 77.72
0.75s 2924 88.68 3326 78.35
1s 2134 91.38 2536 74.80

Table 2: Total processed samples and error percentage
(%) for Masking vs. Gapping on the OpenSLR dataset
by duration. (Model Used: Wav2Vec-BERT-2.0)

4 Results and Analysis

Across all three datasets, OpenSLR, Fleurs, and
Bloom, our experiments highlight that the im-
pact of missing speech (via masking and gapping)
is closely tied to baseline dataset characteristics
and duration of gap/mask. Trends across datasets
are captured in Appendix Figures 7, 8 (overall
WER/CER), Figure 1 (OpenSLR edit distance),
Figures 4, 5 (Fleurs), Figures 3, 6 (Bloom), and
Tables 3 and 4.

OpenSLR (Appendix Figures 1, 2, 7): This
relatively clean dataset exhibits clear, progressive
increases in both WER and CER as mask dura-
tion grows. Masking is notably more detrimen-
tal than gapping, with Wav2Vec-BERT-2.0’s CER
rising from 6.79% to 21.02% at 1s (compared to
8.89% for gapping). Edit distance distributions
(Figure 1) confirm more severe character-level er-
rors for longer mask durations. Positional analysis
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(Figure 2) reveals that masking the final segment of
an utterance dramatically increases edit distances
compared to initial-segment masking, underscor-
ing the importance of utterance-end information for
ASR. This can be attributed to the model’s need for
forward and backward context to correctly decode
speech. When the end of an utterance is masked,
the model loses critical cues for disambiguation,
which is especially important for a tonal and ag-
glutinative language like Burmese where meaning
and grammatical information can be conveyed by
subtle changes at the end of words. The absence
of this final information results in a significantly
higher character-level error rate. Error percent-
ages (Table ??) mirror these patterns, especially for
masking (69.14% to 91.38% with duration).

Fleurs (Appendix Figures 4, 5 ): Fleurs is sub-
stantially more challenging, with baseline WERs
already above 179% and CERs over 21% even with-
out missing speech. Masking consistently elevates
CER (Wav2Vec-BERT-2.0: 21.26% to 25.35%),
while WER shows only minor, sometimes neg-
ative shifts likely due to error saturation. Edit
distance distributions (Figure 4) and average edit
distances (Figure 5) confirm more fine-grained
character errors from masking, especially at utter-
ance ends. Gapping causes a severe but consistent
level of degradation across all gap durations, with
WER and CER remaining largely stable ( Wav2Vec-
BERT-2.0 WER ≈184%, CER ≈22%). Error per-
centages (Table 4) remain extremely high (>90%)
across all gap/mask types and durations.

Bloom (Appendix Figures 3, 6): The Bloom
dataset poses the greatest challenge, with baseline
CERs over 66% and WERs exceeding 150%. Nei-
ther masking nor gapping meaningfully alters the
already saturated error rates (CER≈67-68%, WER
≈150-160%). Edit distance distributions and error
percentages (near 100% for all conditions) con-
firm that the models nearly uniformly fail on this
dataset, irrespective of the missing speech scenario.
Overall, our key takeaways include:

• Masking generally introduces more severe
character-level errors (as seen in CER and
edit distance shifts), particularly on cleaner
datasets like OpenSLR and moderately so on
Fleurs. This highlights that real-world ASR
systems deployed in environments with short-
duration or partial occlusions (e.g., coughs,
short microphone dropouts) are likely to see
disproportionately larger transcription errors,

especially on simpler, cleaner audio inputs.

• Gapping causes more stable but consistently
high errors, with less sensitivity to gap/mask
duration. This suggests that silent gaps or
short audio losses (e.g., packet loss in VoIP
or poor connectivity) might degrade perfor-
mance consistently across a range of scenar-
ios, rather than in a duration-dependent man-
ner.

• Dataset Difficulty Dominates: On challeng-
ing datasets (Fleurs, Bloom), extremely high
baseline errors overshadow the incremental ef-
fects of missing speech, leading to error satu-
ration. This indicates that for real-world ASR
robustness, improving baseline model per-
formance (e.g., adapting to domain-specific
vocabularies, reducing dataset-domain mis-
match) is critical, as gap/mask effects become
secondary when baseline transcription itself
is unreliable.

These insights reinforce that efforts to improve
ASR robustness in real-world scenarios must pri-
oritize both baseline domain adaptation and gap or
mask specific resilience, especially for character-
level fidelity and utterance-end information crucial
for downstream tasks.

5 Conclusion

In conclusion, this study reveals significant chal-
lenges in applying any ASR system to LRLs when
encountering simulated missing speech segments.
Our findings indicate a clear degradation in perfor-
mance, measured by WER and CER, as the dura-
tion or ratio of missing data increases. Notably, the
structure of the missing data matters; our results
suggest that masking the audio signal generally
causes more severe degradation than inserting gaps.
Furthermore, the errors induced by these missing
segments are not localized; they often propagate be-
yond the immediate vicinity of the gap or mask, pri-
marily manifesting as deletions and substitutions,
which aligns with observations from edit distance
analysis. Finally, the system’s resilience is not
uniform, varying significantly across the different
datasets tested (OpenSLR, Fleurs, Bloom), under-
scoring the influence of acoustic conditions, speak-
ing styles, and domain specificity on robustness.
These results highlight the need for targeted strate-
gies to improve the robustness of Burmese ASR
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systems against various forms of missing speech
data encountered in real-world scenarios.

Limitations

This study’s limitations include the simulation of
missing speech (zero-masking, gapping), which
may not fully mirror real-world data loss com-
plexities. Findings are also specific to the chosen
pre-trained models (Wav2Vec-BERT-2.0, MMS-
Zeroshot-300M) potentially differing for other
ASR architectures or training methods. Further-
more, the employed Burmese datasets, while valu-
able, may not encompass the language’s complete
dialectal or acoustic diversity, which could affect
the broader generalizability of the observed robust-
ness levels.

Future Works

Future work will focus on three key areas. First, we
will explore advanced speech inpainting and recon-
struction techniques to better mitigate the effects
of missing speech. Second, we plan to investigate
more dynamic and realistic interruption patterns,
such as randomly distributed or non-uniform seg-
ment lengths, to provide a more accurate assess-
ment of ASR robustness. Finally, we will consider
a broader range of Burmese datasets to improve
the generalizability of our findings. We also plan
to evaluate models with shorter durations, such as
0.10s, to capture more nuanced effects on perfor-
mance.
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Figure 1: Edit distance distribution across samples for
OpenSLR dataset. (Model: Wav2Vec-BERT-2.0)
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Figure 2: Average Edit distance for First and Last
segment of mask and gap audio segments. (Model=
Wav2Vec-BERT-2.0, Dataset = OpenSLR) (Baseline =
Prediction without mask/gap)
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Figure 3: Average Edit distances for First segment and
Last Segment. (Model = Wav2Vec-BERT-2.0, dataset =
Bloom)
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Figure 4: Edit Distance distribution of Fleurs dataset.
(Model: Wav2Vec-BERT-2.0)
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Figure 5: Average Edit distances for First segment and
Last Segment. (Model = Wav2Vec-BERT-2.0, dataset =
Fleurs)
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Figure 7: CER Trend for all datasets for different gap and mask duration for both models.

Table 3: Detailed WER (%) and CER (%) Results by Duration for Masking vs. Gapping Across Datasets and
Models. Models were fine-tuned (FT) on OpenSLR.

Masking Gapping

Dataset Model Duration of mask/gap WER (%) CER (%) WER (%) CER (%)

OpenSLR

Wav2Vec-BERT-
2.0 (FT)

0s 37.35 6.79 37.35 6.79
0.25s 40.85 8.60 41.39 9.06
0.50s 44.75 12.70 41.29 9.28
0.75s 47.69 16.82 41.53 9.09
1s 50.46 21.02 41.12 8.89

MMS-Zeroshot-
300M (FT)

0s 56.37 12.03 56.37 12.03
0.25s 59.94 14.50 59.78 14.40
0.50s 61.74 18.33 61.29 17.86
0.75s 63.81 22.26 63.00 21.17
1s 65.58 26.10 64.38 24.31

Fleurs

Wav2Vec-BERT-
2.0 (FT)

0s 181.00 21.26 181.00 21.26
0.25s 182.60 22.13 184.00 22.34
0.50s 180.10 23.18 184.00 22.39
0.75s 177.00 24.24 184.00 22.34
1s 174.40 25.35 184.00 22.29

MMS-Zeroshot-
300M (FT)

0s 179.24 28.49 179.24 28.49
0.25s 178.50 29.51 180.29 29.38
0.50s 175.42 30.48 179.90 29.36
0.75s 172.34 31.50 179.48 29.41
1s 169.05 32.59 178.95 29.50

Bloom

Wav2Vec-BERT-
2.0 (FT)

0s 182.45 66.90 182.45 66.90
0.25s 183.66 66.65 186.10 66.98
0.50s 180.94 66.75 185.32 66.98
0.75s 178.19 67.09 185.22 67.13
1s 175.10 67.47 186.24 67.08

MMS-Zeroshot-
300M (FT)

0s 159.27 67.99 159.27 67.99
0.25s 157.45 67.76 159.27 68.01
0.50s 154.67 67.93 159.21 67.85
0.75s 151.84 68.28 159.01 67.60
1s 148.55 68.66 158.13 67.87
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Figure 8: WER Trend for all datasets for different gap and mask durations for both models.

Table 4: Total Processed Samples and Percentage of Samples with Errors/Prediction Changes Across Datasets,
Models, and Conditions. Models were fine-tuned (FT) on OpenSLR.

Masking Gapping

Dataset Model Duration of mask/gap Total Samples Error (%) Total Samples Error (%)

OpenSLR

Wav2Vec-BERT-
2.0 (FT)

0.25s 9144 69.14 9546 77.92
0.50s 4458 84.28 4860 77.72
0.75s 2924 88.68 3326 78.35
1s 2134 91.38 2536 74.80

MMS-Zeroshot-
300M (FT)

0.25s 9144 79.01 9546 76.79
0.50s 4458 87.01 4860 82.88
0.75s 2924 90.94 3326 84.97
1s 2134 92.83 2536 86.24

Fleurs

Wav2Vec-BERT-
2.0 (FT)

0.25s 54 515 88.93 55 395 94.00
0.50s 27 037 94.02 27 917 94.63
0.75s 17 882 95.76 18 762 95.81
1s 13 293 96.83 14 173 93.69

MMS-Zeroshot-
300M (FT)

0.25s 54 515 82.24 55 395 91.27
0.50s 27 037 88.77 27 917 87.45
0.75s 17 882 91.98 18 762 94.89
1s 13 293 94.21 14 173 92.85

Bloom

Wav2Vec-BERT-
2.0 (FT)

0.25s 3108 99.81 3208 99.75
0.50s 1524 99.93 1625 99.75
0.75s 1008 99.90 1108 99.55
1s 737 100.00 838 99.40

MMS-Zeroshot-
300M (FT)

0.25s 3108 97.52 3208 99.13
0.50s 1524 99.61 1625 98.58
0.75s 1008 99.90 1108 99.46
1s 737 100.00 838 99.52
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Abstract

Vision-and-Language Navigation (VLN) refers
to the task of enabling autonomous robots to
navigate unfamiliar environments by follow-
ing natural language instructions. While re-
cent Large Vision-Language Models (LVLMs)
have shown promise in this task, most cur-
rent VLN systems rely on models specifically
designed and optimized for navigation, leav-
ing the potential of off-the-shelf LVLMs un-
derexplored. Furthermore, while older VLN
approaches used low-level action spaces with
egocentric views and atomic actions (such as
"turn left" or "move forward"), newer models
tend to favor panoramic action spaces with dis-
crete navigable viewpoints. This paper investi-
gates (1) whether off-the-shelf LVLMs (fine-
tuned without architectural modifications or
simulator-based training) can effectively sup-
port VLN tasks and (2) whether such models
can support both low-level and panoramic ac-
tion paradigms. To this end, we fine-tune the
open-source model Qwen2.5-VL-3B-Instruct
on the Room-to-Room (R2R) dataset and evalu-
ate its empirical performance across both low-
level and panoramic action spaces. The best
resulting model achieves a 41% success rate on
the R2R test set, demonstrating that while off-
the-shelf LVLMs can learn to perform Vision-
and-Language Navigation, they still lag behind
models specifically designed for this task.

1 Introduction

Mobile robots deployed in real-world environments
are often tasked with reaching specific locations
described in natural language. For example, a robot
might be instructed to “deliver a package to the of-
fice at the end of the hallway,” without prior knowl-
edge of the environment. In such cases, a human
can provide guidance through route instructions
such as “Walk down the hallway and take the last
door to your left.” To perform its task, the robot
must first interpret the linguistic input provided
by the human user, ground this input in its visual

perception of the environment, and execute the cor-
responding sequence of physical actions to reach
the target location.

This problem is addressed in the field of Vision-
and-Language Navigation (VLN) (Anderson et al.,
2018b), which focuses on developing autonomous
robotic agents that can navigate unseen environ-
ments based on natural language instructions. A
common VLN benchmark and dataset is Room-
to-Room (R2R) (Anderson et al., 2018b), which
contains thousands of trajectory–instruction pairs,
where the task is to follow natural language instruc-
tions to reach a target location. R2R is typically
used in combination with the Matterport3D sim-
ulator (Anderson et al., 2018b), which simulates
indoor environments reconstructed from real-world
3D scans from the Matterport3D dataset (Chang
et al., 2018). The simulator represents these envi-
ronments as navigation graphs, where nodes cor-
respond to navigable locations and edges define
transitions between them.

Early approaches to VLN primarily relied on
RNN-based sequence-to-sequence models to en-
code route instructions and predict actions (An-
derson et al., 2018b; Fried et al., 2018). Later
work shifted toward using pre-trained transformer-
based models (Vaswani et al., 2017), which offered
improved language understanding and generaliza-
tion (Li et al., 2019; Chen et al., 2021, 2022).

More recently, researchers have begun explor-
ing the use of Large Language Models (LLMs)
and Large Vision-Language Models (LVLMs) for
VLN, using both zero-shot prompting (Zhou et al.,
2024; Chen et al., 2024) and trained approaches
(Zheng et al., 2024; Zhou et al., 2025). While zero-
shot methods have shown promise in navigation
tasks, their performance still falls short of VLN-
specialized transformer-based models (Zhou et al.,
2025). Most existing VLN approaches thus seek to
train LLMs and LVLMs directly on VLN datasets.
Although these trained approaches have achieved
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Large Vision-Language Model (Qwen2.5-VL)

History

Go around the right side of the center
unit and stop by the right side doorway
with the dining table and mirror in it.

Route Instruction

Images:

Previous
Actions:

Turn Right Turn Right Turn Right
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Multimodal Prompt

Predicted Action
(e.g Move)

(a) Low-level action space

Large Vision-Language Model (Qwen2.5-VL)

Predicted
Candidate

Multimodal Prompt

History

Head down the hall toward the room with a
leather couch. Turn left at the first archway
and stop at the entrance to the movie theater
room.

Route Instruction Current View

Candidate 1 Candidate 2

Candidate Directions

...

(b) Panoramic action space

Figure 1: Overview of the approach, which is based on fine-tuning a pre-trained LVLM (Qwen2.5-VL) on the R2R
dataset. The model receives as input a multimodal prompt consisting of the route instruction, navigation history, and
current view, and outputs the next navigation action.

strong results, they typically rely on custom models
that require either changes to the underlying neural
architecture or the addition of task-specific compo-
nents, such as simulators employed at training time
(Zheng et al., 2024; Zhou et al., 2025). As a result,
the potential of off-the-shelf LVLMs, fine-tuned
for VLN without architectural changes, remains
largely underexplored.

In addition, the choice of action space – i.e. the
possible outputs that the model is designed to gen-
erate – has been shown to significantly affect per-
formance (Fried et al., 2018). Early RNN-based
approaches typically employed a low-level action
space, where the agent observes the environment
through an egocentric image and selects from a dis-
crete set of atomic actions such as Move Forward,
Turn Left, or Turn Right (Anderson et al.,
2018b; Landi et al., 2019). However, low-level
action spaces have largely been abandoned in re-
cent work in favor of panoramic action spaces (Li
et al., 2019; Chen et al., 2022; Zhou et al., 2024),
where the agent perceives its surroundings through
a 360→ panoramic image and chooses among a set
of navigable candidate directions, each typically
corresponding to an adjacent node in the naviga-
tion graph. This shift has been shown to substan-
tially improve performance over low-level alter-
natives (Fried et al., 2018). While this difference
in performance has been explored in the context
of RNN-based models (Fried et al., 2018; Landi
et al., 2019), it has to our knowledge never been
investigated for LVLM-based approaches. While

panoramic action spaces do seem to improve the
navigation performance, they also assume a greater
prior knowledge about the environment – such
as which directions are navigable – and effec-
tively reduce the task to a visually guided graph
search (Landi et al., 2019; Krantz et al., 2020).
Panoramic action spaces also depend on the avail-
ability of panoramic visual input, which in practice
requires specialized robot-mounted hardware, such
as panoramic or multi-camera rigs.

This paper seeks to address these knowledge
gaps through experiments with a state-of-the-art
LVLM, Qwen2.5-VL (Bai et al., 2025). An
overview of our approach is illustrated in Figure 1.
The two main contributions of this paper are:

• The evaluation of off-the-shelf LVLMs (with-
out architectural changes or simulation-based
training methods) on VLN through experi-
ments on the R2R dataset.

• An analysis of how the choice of action space
(low-level versus panoramic) affects the navi-
gation performance.

The rest of this paper is as follows. We first
review related work on Vision-and-Language Navi-
gation and LVLMs. We then present our approach
in Section 3, focusing on the fine-tuning process
and the definition of possible action spaces. Section
4 then describes the experimental setup and the re-
sults obtained on the R2R dataset. Finally, Section
5 discusses those results and Section 6 concludes
this paper.
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2 Related Work

Large Vision-Language Models in VLN

Motivated by recent progress with LLMs and
LVLMs, several studies have investigated
how those models can be applied for VLN.
NavGPT (Zhou et al., 2024) employs GPT-4 (Ope-
nAI et al., 2024) in a zero-shot setting, relying on a
separate model to convert visual inputs into textual
descriptions. In contrast, MapGPT (Chen et al.,
2024) prompts GPT-4V to perform joint reasoning
over visual inputs and navigation instructions.

NaviLLM (Zheng et al., 2024) uses a frozen Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021)
and models spatial relationships between differ-
ent viewpoints through a trained transformer-based
multi-view fusion component which produces a sin-
gle visual feature for each image. NavGPT-2 (Zhou
et al., 2025) uses a frozen LVLM to produce reason-
ing text from image-instruction pairs and fine-tunes
a separate graph-based policy to predict actions and
model the topological graph on the fly. Both ap-
proaches achieve state-of-the-art performance on
R2R, demonstrating the potential of LLMs and
LVLMs for navigation.

Action Spaces in VLN
Early approaches to VLN employ a low-level ac-
tion space where the agent perceives the world
through an egocentric image at each step and pre-
dicts actions such as Move Forward or Turn Right

(Anderson et al., 2018b; Wang et al., 2018; Fried
et al., 2018). Fried et al., 2018 introduce panoramic
action space for VLN. Instead of receiving an ego-
centric image as input, the model is provided with
a panorama comprised of 36 images at different
angles. The images closest to the center of an
adjacent node are considered as candidate views.
Instead of predicting low-level actions, the agent
selects between which of these views to navigate
to. Using an LSTM (Hochreiter and Schmidhuber,
1997) seq-2-seq model, they observe a 12% perfor-
mance increase on R2R when going from low-level
to panoramic action space.

Although there is little recent work on low-level
action spaces in discrete environments (VLN-DE),
it remains the most common approach for VLN in
continuous environments (VLN-CE) (Krantz et al.,
2020; Zhang et al., 2024) where agents are tasked
with navigating environments not constrained by
a predefined navigation graph. In this work, we
focus on VLN in discrete environments.

Modality alignment in LVLMs
Modern Large Vision-Language Models (LVLMs)
typically comprise three core components: a vision
encoder (e.g., a Vision Transformer (Dosovitskiy
et al., 2021)), a cross-modal projector, and a text
encoder (e.g, an LLM) (Bai et al., 2025). The role
of the cross-modal projector is to align the visual
features produced by the vision encoder with the
latent space of the LLM.

Laurençon et al. (2024) investigate key design
choices in building LVLMs and identify two preva-
lent architectural paradigms for vision-language
alignment. The first is the cross-attention archi-
tectures, in which visual features are injected at
different layers within the LLM, one example of
such a model is Flamingo (Alayrac et al., 2022).
The second is the fully autoregressive architectures
where the output of the vision encoder is projected
into the input space of the LLM and concatenated
with the sequence of text embeddings as a multi-
modal prompt (Zhu et al., 2023; Li et al., 2023).
The model used in this study, Qwen2.5-VL, follows
this fully autoregressive design.

3 Method

3.1 Problem Formulation
We adopt the standard VLN in discrete environ-
ments (VLN-DE) setup (Anderson et al., 2018b;
Fried et al., 2018; Chen et al., 2022), where the
environment is modeled as an undirected graph
G = {V, E}. The nodes V = {vi}K

i=1 repre-
sent K navigable locations while the edges E
constitute navigation paths between them. We
then formulate the problem of following route in-
structions in a graph-based environment as fol-
lows: given a natural language route instruction
W = {w1, w2, . . . , wL}, the agent is tasked with
following the instruction to reach the goal location.
At each time step t, the agent receives a visual ob-
servation Ot, maintains a history context Ht, and
is provided with auxiliary signals such as the cumu-
lative distance traveled dt → R and the current step
number t. The specific formulation of the agent’s
input and output depends on the underlying action
space, as described below.

3.2 Low-level Action Space
In the low-level action space, the agent per-
ceives its environment through an egocentric im-
age Ot at each step. It maintains a historical con-
text Ht = {(O1, a1), (O2, a2), . . . , (Ot↑1, at↑1)}
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where Ot↑1 and at↑1 are the image and action from
the previous step, respectively. Additionally, the
agent is provided with a set of low-level actions
Ut = {u1, u2, . . . , uk} that represent the actions
allowed at step t, given the physical constraints of
the environment (e.g., the agent cannot move for-
ward if directly facing a wall). The agent predicts
the next action at by estimating the probability:

P (at | W, Ot, Ht, dt, t, Ut) (1)

The low-level action space used in this work
consists of four discrete actions:

• Move: moves forward to the node closest to
the center of the current field of view.

• Left, Right: rotate the agent by 30→ in the
respective direction.

• Stop: signals that the agent believes it has
reached the goal.

A limitation of this setup is that navigation is
constrained to a discrete graph of nodes. The Move

action advances the agent to the node most cen-
tered in its current field of view, but this target
is not necessarily aligned with the agent’s head-
ing. As a result, the agent may appear to move
sideways, which can lead to non-intuitive trajecto-
ries. To mitigate this, an automatic reorientation
step, referred to as Automatically Turn Towards

Node, is applied before each Move action. Although
this reorientation is not part of the learnable action
space, both the resulting observation and action are
included in the agent’s history. This adjustment
allows us to evaluate whether explicitly aligning
the agent’s heading with its movement direction
improves navigation performance.

3.3 Panoramic Action Space

With the panoramic action space, the agent per-
ceives the environment through a 360→ panoramic
image Ot at each step, aligned with its current head-
ing. The agent maintains a history of panoramic
views Ht = {O1, . . . , Ot↑1} and selects from a set
of navigable candidate views Ct = {c1, . . . , ck}.
Each candidate ci includes an image, a relative
heading ωi → [↑180→, 180→], and an associated
travel distance εi → R↓0. The task for each step is
to predict the correct candidate direction ct:

P (ct | W, Ot, Ht, dt, t, Ct) (2)

Similarly to low-level actions, the episode con-
cludes when the agent predicts the Stop action.

The panoramic image is centered on the agent’s
current heading, while each candidate view is a
standard perspective image oriented directly toward
a navigable direction. Candidate views are sorted
from left to right based on their relative angle to
the panoramic center, with the leftmost candidate
assigned index 0 and the rightmost index K ↑ 1.

At each step, the model predicts a token corre-
sponding to one of the candidate indices (from 0
to K↑1) or the Stop action. Unlike traditional
panoramic setups (Fried et al., 2018; Zheng et al.,
2024), where candidate views are extracted from
within the panorama itself, this approach treats the
panorama and candidate views as separate inputs.
This design, motivated by memory limitations, re-
duces the number of input images per step. See
Appendix A for an illustrative example.

3.4 Action selection

To select the next action to perform, the model
receives a structured multi-modal prompt that en-
codes the current state, including the instruction,
visual input, and auxiliary information such as step
number and distance traveled. These prompts fol-
low a fixed schema shown in Figure 2. Inference
is performed greedily, selecting the most probable
action at each step without backtracking.

In addition to the dynamic input state, each
prompt includes a static system prompt that ex-
plains the task and describes the individual in-
put fields. The system prompt is fixed and spe-
cific to each action space, and remains unchanged
throughout training and evaluation. The full system
prompts are included in Appendix A

3.5 Fine-tuning

The LVLMs are fine-tuned through behavior
cloning, where the model learns to imitate expert
demonstrations. At each time step t, the model
receives a multimodal prompt xt represents the
current state, and is trained to predict the expert
action at as a token from its own vocabulary. The
training objective minimizes the total negative log-
likelihood of the expert actions over the entire
episode. Gradients are accumulated across all time
steps in an episode, and the weights are updated at
the end of each episode.

Unlike many recent VLN approaches (Chen
et al., 2021; Zhou et al., 2025; Anderson et al.,
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System Prompt (fixed for all steps)
-------------------------------------------------------------------------------------
Route Instruction: {Instruction Text}

Current Step: {Step number}

Cumulative Distance Traveled: {Distance} 

Images from Previous Steps: 
{Image tokens for multiple images}

Actions performed at Previous Steps: 
{List of previous actions}

Current image: 
{Image token for a single image}

Possible actions: 
{List of possible actions}

(a) Low-level action space prompt schema

System Prompt  (fixed for all steps)
--------------------------------------------------------------------------------
Route Instruction: {Instruction Text}

Current Step: {Step number}

Cumulative Distance Traveled: {Distance} meters.

Panorama Images From Previous Steps:
Panorama at step: 1: {Image tokens}
Panorama at step: 2: {image tokens}
...

Current Panorama Image:
{image tokens}

Candidate Directions:
Candidate: {candidate number}:

Relative angle: {angle} degrees to the {direction}
Distance: {distance} meters
view: {candidate image tokens}

...
Candidate: STOP

(b) Panoramic action space prompt schema

Figure 2: Prompt schemata for low-level and panoramic action spaces.

2018b), our approach does not therefore rely on re-
inforcement learning or student forcing, but simply
fine-tunes the LVLM model on the basis of expert
routes. A key advantage of this approach is the fact
that it can be applied without access to a simulator
at training time.

4 Experiments

The proposed approach was evaluated on the Room-
to-Room (R2R) dataset using both offline and on-
line evaluation modes. The offline mode assesses
the model’s ability to follow expert trajectories,
whereas the online mode evaluates its performance
when navigating autonomously within the Matter-
port3D simulation environment.

4.1 Dataset
The Room-to-Room dataset (Anderson et al.,
2018b) contains 21,567 English route instructions
corresponding to 7,189 trajectories across 90 en-
vironments. Each ground truth trajectory is a se-
quence of nodes in a Matterport3D environment.
Each trajectory has 3 corresponding instructions.

The dataset is split into four subsets: train (61
environments), val seen (56 environments overlap-
ping with train), val unseen (11 environments), and
test (18 environments). Performance is evaluated
on the val unseen and test splits. All splits are pre-
processed to convert ground truth trajectories into
sequences of actions. 1

1For the alternative low-level action spaces experiments,
the models were trained on a subset consisting of the first

4.2 Evaluation Metrics

Online, the models are evaluated using standard
VLN metrics (Anderson et al., 2018b). Naviga-
tion Error (NE) is the average walkable distance
between the agent’s final location and the goal loca-
tion in meters. An episode is considered successful
if NE ↓ 3 m and the last predicted action is Stop.
Path Length (PL) is the average path length (in
meters). Oracle Success Rate (OSR) measures
the percentage of episodes in which the agent was
within 3 meters of the goal at any point during the
navigation episode. Success Rate (SR) is the per-
centage of episodes that are successful. Success
Weighted by Path Length (SPL) (Anderson et al.,
2018a) combines SR with path length, penalizing
unnecessarily long paths. Coverage Weighted by
Length Score (CLS) (Jain et al., 2019) measures
how well the agent’s predicted path follows the
route instruction, penalizing paths that deviate from
the ground truth path.

For the offline evaluation, the reported metrics
are Accuracy the proportion of actions correctly
predicted by the model; Macro F1, the unweighted
mean F1 score computed across all action classes;
and Conservative Success Rate (CSR), the per-
centage of episodes in which all actions are identi-
cal (from start to finish) to the actions selected by
the expert. For offline evaluation, we use the third
instruction from each trajectory.

1,955 trajectories in R2R’s train split.
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4.3 Implementation

Model
We experimented with two distinct Large Vision-
Language Models (LVLMs): Qwen2-VL-2B-
Instruct (Wang et al., 2024) and Qwen2.5-VL-3B-
Instruct (Bai et al., 2025). Qwen2.5-VL-3B is the
larger of the two and is pre-trained on 4 trillion
tokens, compared to 1.2 trillion tokens for Qwen2-
VL-2B. As our experiments showed that Qwen2.5
consistently provided superior performance com-
pared to Qwen2 in both offline and online metrics
on the validation dataset, we only provide evalua-
tion results obtained for Qwen2.5.

During fine-tuning, the vision encoder and the
cross-modal projection layer are kept frozen, as
preliminary experiments indicated that tuning only
the LLM led to improved performance.2

Simulator
The Matterport3D simulator (MP3D) is used for
evaluation and for generating the preprocessed
training data. In MP3D, the agent’s field of view is
determined by the image resolution and the vertical
field of view (VFOV). This work uses an image
resolution of 640↔480 for egocentric and candi-
date images. The VFOV is set to 105→ to allow the
agent to perceive a broader visual context. This is
substantially larger than the VFOV used in prior
work, which typically ranges from 60→ (Anderson
et al., 2018b; Fried et al., 2018) to 75→ (Krantz
et al., 2020). Panoramic images are constructed by
stitching together three egocentric views captured
while rotating the agent in place.

Training
All models are fine-tuned with a batch size of 1, a
learning rate of 1e-5, and a weight decay of 0.1. A
linear learning rate scheduler is used with warmup
over the first 10% of training steps. FlashAtten-
tion (Dao et al., 2022) is enabled, and training
is performed in bfloat16 precision. Input images
are resized to half their original size to accommo-
date GPU memory constraints.3 Experiments were
conducted on a single NVIDIA A100 80GB GPU.
Models are fine-tuned for 1 epoch across all in-
structions, corresponding to 3 total passes over the
unique paths (as each path in R2R is associated

2The trained models are publicly available at https://
huggingface.co/Vebbern for reproducibility.

3meaning 320→240 for candidates and egocentric views,
and 960→240 for panoramic views

Model Accuracy↑ Macro F1↑ CSR↑

Val seen:
Qwen2.5-VL-low 0.73 0.74 0.04
Qwen2.5-VL-pano 0.73 0.61 0.16

Val unseen:
Qwen2.5-VL-low 0.73 0.73 0.03
Qwen2.5-VL-pano 0.73 0.62 0.15

Table 1: Offline evaluation results on the seen and un-
seen R2R validation sets.

with three distinct route instructions). 4

4.4 Results

Offline evaluation Table 1 presents the offline
evaluation results after fine-tuning the Qwen2.5
model on the full training set of R2R. In terms of ac-
curacy, the panoramic and low-level models score
similarly. The low-level model has a higher macro
F1 score, which could be explained by the larger
number of actions of panoramic models (up to 12
candidate views). However, the panoramic model
has a significantly higher conservative success rate
(CSR) than the low-level one. Qwen2.5-VL-pano
achieves a CSR of 15% on val unseen, compared
to a mere 3% CSR for Qwen2.5-VL-low.

Online evaluation Table 2 compares our re-
sults with state-of-the-art (SOTA) approaches on
R2R using single-run greedy search (i.e., no pre-
exploration). Results are shown for both panoramic
and low-level action space.

The model fine-tuned for low-level action spaces,
Qwen2.5-VL-low, achieves a success rate (SR) of
26% on the test set, outperforming the original
R2R baseline (Seq2Seq, 21% SR) and Speaker-
Follower (SF) without panoramic action (25% SR
on val unseen). However, it still lags behind the
LSTM-based DCF model of (Landi et al., 2019),
which reached 35% SR, despite being substantially
smaller in size. However, Qwen2.5-VL-low is less
prone to overfitting to training environments, as re-
flected in the smaller SR gap between val seen and
unseen (35% vs. 27%) compared to DCF, which
drops from 58% to 34% on val unseen.

The panoramic model, Qwen2.5-VL-pano,
achieves a 41% SR on the R2R test set. This out-
performs all low-level models as well as panoramic
approaches such as Speaker-Follower (36% on val
unseen) and NavGPT (Zhou et al., 2024) (34% on

4The source code is available at https://github.com/
Vebjorhk/masters-thesis-VLN.
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Val Seen Val Unseen Test (Unseen)
PL NE↓ OSR↑ SR↑ SPL↑ PL NE↓ OSR↑ SR↑ SPL↑ PL NE↓ OSR↑ SR↑ SPL↑

Human - - - - - - - - - - 11.85 1.61 90 86 76

Low-Level
Seq2Seq (2018b) 11.33 6.01 53 39 - 8.39 7.81 28 22 - 8.13 7.85 27 21 -
SF (2018) - 4.28 60 47 - - 5.75 33 25 - - - - - -
RPA(2018) 8.46 5.56 53 43 - 7.22 7.65 32 25 - 9.15 7.53 33 25 -
DCF (2019) - 3.96 73 58 51 - 6.52 43 34 29 9.81 6.55 45 35 31

Panoramic
SF (2018) - 3.36 73 66 - - 6.62 45 36 - - - - - -
PRESS (2019) 10.35 3.09 - 71 67 10.06 4.31 - 59 55 10.52 4.53 63 57 53
VLN ↭ BERT (2021) 11.13 2.90 - 72 68 12.01 3.93 - 63 57 12.35 4.09 - 63 57
HAMT (2021) 11.15 2.51 - 76 72 11.46 2.29 - 66 61 12.27 3.93 - 65 60
DUET (2022) - - - - - 13.94 3.31 - 72 60 14.73 3.65 - 69 59
NavGPT (2024) - - - - - - - - - - 11.45 6.46 42 34 29
NaviLLM (2024) - - - - - - - - - 59 - - - - 60
NavGPT-2 (2025) 14.13 2.84 83 74 63 14.01 2.98 84 74 61 14.74 3.33 80 72 60

Qwen2.5-VL-low 10.27 7.14 41 35 32 10.50 7.84 34 27 24 10.59 7.99 34 26 24
Qwen2.5-VL-pano 9.98 5.69 56 50 47 9.83 6.65 46 38 35 9.96 6.53 50 41 38

Table 2: Comparison of panoramic and low-level models with state-of-the-art performance using single-run greedy
search. CLS is not reported for R2R test set. Models introduced in this work are shown in bold.

Models PL NE↓ OSR↑ SR↑ SPL↑ CLS↑

Val Unseen:
105-VFOV 10.17 7.87 0.34 0.25 0.23 0.45
82-VFOV 9.9 7.87 0.32 0.25 0.23 0.44
No-Adjust 10.72 7.7 0.38 0.29 0.26 0.44

Table 3: Online results on R2R val unseen for alternative
definitions of the low-level action space.

test). However, this model falls short of more re-
cent task-specific panoramic approaches such as
NaviLLM (Zheng et al., 2024) (60% SPL) and
NavGPT-2 (Zhou et al., 2025) (72% SR).

Alternative low-level action spaces We also ex-
plored alternative configurations for the low-level
action space. Specifically, we assessed the im-
pact of (1) disabling the Automatically Turn

Towards Node action, and (2) reducing the ver-
tical field of view (VFOV) from 105→ to a narrower
82→.

Table 3 presents the performance on the val un-
seen split for those two alternatives. The difference
between 82→ and 105→ VFOV is minimal, with only
slight improvements in CLS and OSR scores for
the 105→ configuration. However, removing the ad-
justment action leads to a noticeable performance
gain: the No-Adjust model achieves a SR of 29%,
compared to 25% for the default. This suggests that
explicitly facing the next node before movement is
often unnecessary for effective navigation.

5 Discussion

Fine-tuning off-the-shelf LVLMs for R2R
The results indicate that fine-tuning off-the-shelf
LVLMs such as Qwen2.5-VL on the R2R task fails
to yield strong performance, despite the fact that
such models are significantly larger than older,
VLN-specific architectures such as PRESS (Li
et al., 2019), DUET (Chen et al., 2022), and
HAMT (Chen et al., 2021). It is difficult to pinpoint
the exact source of this performance gap, though
our use of behavior cloning – rather than optimiza-
tion through student forcing and/or reinforcement
learning, as done by e.g. (Chen et al., 2021; Zhou
et al., 2025) – may be a contributing factor.

Compared to NaviLLM (Zheng et al., 2024) and
NavGPT-2 (Zhou et al., 2025), which are the two
approaches most similar to this work, a key differ-
ence becomes apparent. In the Qwen2.5-VL-low
model, each input image is encoded and then fed
directly into the LLM, which is solely responsi-
ble for interpreting the route instruction, modeling
spatial relationships between images, and predict-
ing actions. While Qwen2.5-VL reduces visual
token count through patch merging, it does not
incorporate any explicit mechanisms for model-
ing spatial structure between images before they
are fed to the LLM. In contrast, NaviLLM (Zheng
et al., 2024) includes a transformer-based module
that explicitly captures the spatial relationships be-
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Split

Avg. steps
per path

(low-level)

Avg. steps
per path

(panoramic)

train 12.88 6.00
val seen 12.85 6.07
val unseen 13.40 5.97

Table 4: Average number of steps (actions) for
panoramic and low-level variants of R2R.
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Figure 3: Avg. path length (meters) on R2R val unseen.

tween panoramic images before it is fed as input
to the LLM. NavGPT-2 (Zhou et al., 2025) takes
this further by using a separate graph-based pol-
icy network to model viewpoint connectivity and
predict actions, while delegating route-level rea-
soning to the LLM. These design differences may
help explain at least part of the observed perfor-
mance gap: relying solely on the LLM for spatial
reasoning and control can be challenging – espe-
cially for longer paths – compared to models that
explicitly encode spatial structure. Prior work also
suggests that reducing visual tokens benefits non-
OCR tasks (Laurençon et al., 2024). Both Nav-
iLLM and NavGPT-2 use significantly fewer visual
tokens than Qwen2.5-VL (Bai et al., 2025).

Panoramic vs. low-level action space The
panoramic models consistently outperform low-
level ones, which aligns with previous findings
by Fried et al. (2018), although the performance
gap in our setup is slightly larger (16% vs. 12%
SR) showing that the panoramic approach leads to
better results for LVLMs as well. One plausible ex-
planation for the performance gap is that low-level
action sequences are, on average, twice as long as
those in the panoramic setting (Table 4). As shown
in Figure 3, both model types tend to perform better
on shorter trajectories. This suggests that longer
sequences in the low-level setting increase the diffi-

culty of the task, as they provide more opportunities
for errors to accumulate and make recovery more
challenging. This is further supported by the no-
ticeably higher Conservative Success Rate (CSR)
for panoramic models (Table 1), indicating they
are more likely to keep the agent on the correct
path. In contrast, low-level models are more prone
to errors due to the increased number of decision
points, making it harder to recover once the agent
deviates from the intended path.

The extent to which the additional visual infor-
mation provided by panoramic images contributes
to improved performance remains somewhat un-
clear. Panoramic observations may benefit the
agent by reducing the need for physical reorien-
tation to perceive important landmarks. Low-level
action spaces may also place greater demands on
spatial and temporal reasoning abilities: the agent
must not only ground instructions in the visual con-
text but also anticipate when certain actions should
be executed – such as recognizing that a given ac-
tion may only occur after completing several turns.

6 Conclusion

This work focused on the use of off-the-shelf Large
Vision-Language Models (LVLMs) for Vision-and-
Language Navigation (VLN) tasks. More precisely,
we investigated how such models could be fine-
tuned directly from expert routes, without modify-
ing the model’s underlying architecture or relying
on online approaches that necessitate the use of a
simulator at training time. The performance of this
approach was assessed through experiments on the
R2R dataset and explored using both panoramic
and low-level action spaces.

The best performing model, fine-tuned from
Qwen2.5-VL, achieved a success rate (SR) of 41%
on the R2R dataset. Our results suggest that simply
fine-tuning LVLMs remains insufficient to reach
state-of-the-art performance on navigation tasks.
Furthermore, we find that the performance gap be-
tween low-level and panoramic action spaces per-
sists even with larger and more powerful models,
with a 16% difference in SR on the R2R test set in
favor of the panoramic setup.

A promising topic for future work is the sys-
tematic study of off-the-shelf LVLMs on the R2R
dataset. Evaluating a broader range of models
beyond Qwen2 and Qwen2.5 could help identify
which architectural choices lead to better naviga-
tion performance. Additionally, a more focused
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investigation of the panoramic action space is war-
ranted – particularly through ablation studies that
isolate the effect of including a panoramic view,
and systematically vary the field of view to under-
stand its impact on performance. We also encour-
age future work to further explore the low-level
action space for more recent approaches, includ-
ing adapting it to existing state-of-the-art meth-
ods such as NaviLLM (Zheng et al., 2024) and
NavGPT-2 (Zhou et al., 2025) and comparing the
performance to panoramic action space.

Limitations

We acknowledge several limitations in this work.
Most importantly, the fine-tuning approach is lim-
ited to behavior cloning, and did not include the use
of VLN training techniques such as student forcing
or reinforcement learning, potentially limiting di-
rect comparability with prior work that leverages
these strategies. For evaluation, we set up a web
API to communicate with the machine running the
simulator remotely. However, this introduced an
additional limitation: the need for network calls
made simulator evaluation significantly more time-
consuming. As a result, we restricted evaluation of
alternative setups to only the first third of the route
instructions.

GPU memory limitations restricted training to a
batch size of 1. To further reduce memory usage,
we deviated from the standard panoramic action
format used in many VLN approaches (Fried et al.,
2018; Li et al., 2019; Hong et al., 2021), where
the model receives a set of discrete view images
(typically 36) and selects candidate views from
among them. Instead, we preprocessed the full
panorama as a single image and treated candidate
views as separate, independent inputs. This setup
reduces granularity, introduces visual artifacts, and
limits comparability to prior benchmarks.

Finally, we note that Room-to-Room (R2R)
contains only English-language route instructions,
which limits the applicability of our approach to
English-only scenarios. While multilingual VLN
datasets have been proposed – such as Room-
across-Room (RxR) (Ku et al., 2020) – our current
experiments do not address multilingual aspects.

Ethics Statement

This work investigated the use of off-the-shelf
Large Vision-Language Models (LVLMs) for
Vision-and-Language Navigation (VLN) tasks. All

models used in this study are open-source and pub-
licly available. The dataset employed, Room-to-
Room (R2R), is a widely used benchmark in the
VLN community and does not contain personally
identifiable information. We do not foresee any
direct ethical concerns related to the methods, data,
or potential applications of this research. Our study
adheres to the ACL Code of Ethics.
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A Appendix

You are a robot which follows route instructions step-by-step to reach a destination. 
At every step, you will receive:

1. Route Instruction: the instruction to follow.
2. Current Step: The step number you are currently on in the overall route.
3. Cumulative Distance Traveled: The total distance (in meters) you have 
     moved from the starting point up to your current position.
4. Observations from previous steps (if available), including:

- Images captured at previous steps.
- Actions performed at previous steps.

5. Current image: An image showing the robots present view.
6. Possible actions: The set of available actions for this step.

Actions and their definitions:
- Right: Rotates 30 degrees to the right.
- Left: Rotates 30 degrees to the left.
- Move: Moves you forward in your current direction of view.
- Stop: Choose this action when you think you have reached the goal or the     

    end of the navigation path.

Important Notes
- Choose only one action at a time, using only the predefined actions listed   
  in the 'Possible Actions' field.
- The environment is graph-based, meaning movement occurs between 

          discrete nodes rather than continuous space.
- Automatically Turn Towards Node: When you move forward, the camera is      
  automatically adjusted to center on the next node in the graph-based 

          environment. This is handled separately and does not require prediction.     
  Your responsibility is to decide movement and rotation based on the           
  provided inputs.

Your task is to predict the most appropriate next action at each step based on the    
given information.

Figure 4: System prompt for low-level action space
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You are a robot which follows route instructions step-by-step to reach a destination. 
At every step, you will receive:

1. Route Instruction: the instruction to follow.
2. Current Step: The step number you are currently on in the overall route.
3. Cumulative Distance Traveled: The total distance (in meters) you have       
    moved from the starting point up to your current position.
4. Panorama Images from Previous Steps: If available, these images provide   
    context about where you have been. Use them to understand your past       
    movements and to identify which parts of the current route instruction are 
    most relevant to your current step.
5. Current Panorama Image: A 360-degree panoramic image of your current     
    surroundings. The center of the image represents your current forward     
    direction.
6. Candidate Directions: A list of possible directions to move. 

            Each candidate includes:
- Relative angle: The direction relative to your forward                       

                  orientation (e.g., '30° left' or '45° right').
- Distance: The distance (in meters) to the next possible location in      
  that direction.
- A view (image): What you would see if you move in that direction.

7. STOP Candidate: This is always available and must only be selected when 
   you are certain you have reached the final destination as described in the  
   route instruction.

Your task:
Using the provided inputs, analyze and select the one candidate direction that best  
matches the route instruction and ensures you stay aligned with the intended path.

Figure 5: System prompt for panoramic action space
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Turn Left Move Forward

Turn Left Automatically Turn
Towards Node

Move Forward

With adjustment

Without Adjustment

Figure 6: Figure illustrating the Automatically Turn Towards Node step.
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Candidate 1 Candidate 2 Candidate 3

Traditional Approach

Candidate 1 Candidate 2 Candidate 3

Single Panorama Image

Figure 7: Figure illustrating the difference between the traditional panoramic approach and our implementation
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Abstract

Slang is an informal register of language, and
understanding it is crucial for daily commu-
nication. While research on slang detection
and identification exists in English (a resource-
rich language with abundant data on web), the
field remains underexplored in low-resource
Indian languages (e.g., Hindi, which has < 1%
data on web) due to the lack of comprehensive
datasets. Hindi, despite being spoken by over
600 million people worldwide, remains crit-
ically underrepresented in Natural Language
Processing (NLP) research. In this paper, we
introduce HiSlang-4.9k, a dataset containing
4,906 unique sentences, 50% with slang and
50% without slang. HiSlang-4.9k is collected
from various resources and is manually anno-
tated with the help of two linguistic experts
and eight annotators. We benchmark the per-
formance of state-of-the-art models like BERT,
mBERT, IndicBERT, and XLM-RoBERTa on
HiSlang-4.9k. We establish benchmarks for
slang detection and identification tasks, giving
relevant insights into model performance.The
IndicBERT model performs the task of slang
detection and identification with an F1 score of
0.95 and 0.93, respectively. Additional stud-
ies on removing slang and non-slang phrases
from sentences during inference highlightmod-
els’ effectiveness in using the important parts
of input for the relevant tasks.

1 Introduction

Often used in daily conversation, slang is an
informal word or phrase that elicits strong reac-
tions (Coleman, 2012). Lexical flexibility is one
of the unique qualities of slang; it lets speakers
express ideas creatively across diverse contexts.
Slang is an evolving innovation of humans, hence,
frequent words that compose slang take on new
meanings, and often, whole new terms show up.
The evolution makes it difficult for computational

∗Equal contribution.

Fig. 1: A slang interpretation example in Hindi where
the listener detects (top) and identifies (bottom) the
slang. English translation, just for better understanding:
He turns every talk upside-down, I don’t understand it!
(Slang phrase: उलट-पुलट, literal sense: upside-down,
slang sense: into confusion).

systems to catch both semantic and pragmatic nu-
ances in slang (Pei et al., 2019). For example, as
illustrated in Fig. 1, a listener must infer that the
Hindi phrase “उलट-पुलट” (lit. “upside-down”) is
being used in everyday speech in the Hindi lan-
guage to convey a sense of disorder, rather than
its literal sense (upside-down). This makes it es-
sential for NLP models to first detect Slang (figur-
ing out whether a sentence contains slang) and then
identify slang (locating the slang terms), much like
how humans interpret non-literal language.
In the last few years, interesting works have

been done on processing slang computation-
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ally (Dhuliawala et al., 2016; Pei et al., 2019; Sun
et al., 2021), but the majority of their work is in
English. Lexical resources like SlangNet (Dhu-
liawala et al., 2016), a network of slang terms,
demonstrate how structured slang lexicons can aid
downstream NLP tasks in English. There is also
a growing interest in using large language mod-
els (LLMs) to understand slang better (Sun et al.,
2024). The above-mentioned works underscore
steady progress in English slang processing; how-
ever, similar advances are largely absent for low-
resource Indian languages like Hindi, which con-
sists of <1 % of data on web (Q-Success, 2024).
Slang exhibits pronounced semantic divergence

between literal and intended meanings. Such
context-sensitive and evolving usage makes auto-
matic slang recognition exceedingly difficult with-
out specialized data (Cai et al., 2025). Despite be-
ing spoken by more than 600 million people glob-
ally, Hindi is still notably underrepresented in NLP
research (Thirumala and Ferracane, 2022). To the
best of our knowledge, the field of computational
slang processing in Hindi is unexplored. Slang in
Hindi poses unique challenges that have not been
seen in previous English-focused works. Hindi
speakers often intermingle English or regional di-
alect words as slang terms, e.g., आज का क्या सीन
ह,ै translation: what is the scene today. The slang
term scene/सीन represents plan here. Moreover,
Hindi slang sentences often have multiple contin-
uous words or phrases as slang terms, as shown
in Figs. 1, 2, 3(b), and Secs. 4.2.1, 4.2.2. Yet, un-
til now, no public dataset or benchmark exists for
Hindi slang detection and interpretation. The re-
search gap hinders the development of robust NLP
tools for informal Hindi, which are increasingly
needed as social media and online content in In-
dian languages grow. In this work, we address
the above-mentioned gaps by introducing HiSlang-
4.9k towards benchmarking Hindi slang detection
and identification. Our contributions can be sum-
marized as follows:

• We create HiSlang-4.9k: the first dataset for
slang detection and identification in Hindi, to
the best of our knowledge. HiSlang-4.9k con-
tains 2,453 sentences with slang and 2,453
sentences without slang. Each sentence is
manually annotated for slang usage, provid-
ing the first resource to study slang detection
and identification in Hindi.

• We benchmark several state-of-the-art lan-

guage models for slang detection and identifi-
cation in the Hindi language. The results pro-
vide a comprehensive baseline, with the best
fine-tuned model (IndicBERT) achieving F1
scores of 0.95 in detection and 0.93 in identi-
fication. We also present additional studies by
removing slang and non-slang parts from sen-
tences to identify various challenges in slang
detection and identification.

2 Related Work

Efforts to build slang-specific lexical resources in-
clude SlangNet, which organizes slang terms in
a WordNet-like network to better separate senses
(Dhuliawala et al., 2016), and SlangSD, a large sen-
timent dictionary of slang expressions (Wu et al.,
2018). These resources highlight the importance
of structured lexica in handling informal expres-
sions. Researchers have also explored using con-
textual embeddings to better model slang. Pre-
trained models such as BERT (Devlin et al., 2019)
and GPT-4 (Achiam et al., 2023) often assign
low probabilities to slang terms, making them dif-
ficult to detect (Sun et al., 2024). SlangTrack
(Anonymous, 2024) addressed this by fine-tuning
BERT-large-uncased on English slang data, achiev-
ing 87% accuracy in slang detection. Meanwhile
LLMs and slangs are recently explored (Sun et al.,
2024), using datasets from movie subtitles to test
tasks like regional or time-specific slang detection.
They showed that GPT-4 performs well in zero-
shot settings, while smaller models like BERT
can match this performance after fine-tuning on
slang-specific data. Besides, slang detection also
aligns with broader work in informal language pro-
cessing. Notable works in this area includes us-
age of bidirectional LSTMs with POS tagging and
character-level convolutional embeddings for se-
quence labeling of slang, highlighting the syntactic
fluidity of slang terms (Pei et al., 2019).

3 HiSlang-4.9k Dataset

In this section, we describe the collection and the
annotation process of the HiSlang-4.9k dataset, a
novel resource designed for slang detection and
identification in Hindi. To the best of our knowl-
edge, this is the first dataset on Hindi slang related
research. The annotation of HiSlang-4.9k involves
eight native annotators (with two annotators label-
ing each sentence) and two linguistic experts.
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Fig. 2: Phrase level annotation for slang identification
in Hindi highlighting the slang “िदल गाडर्न- गाडर्न” (lit.
“heart garden-garden,” Slang sense “felt overjoyed”).

3.1 Data Source

While the work on slang detection and identifica-
tion exists for English (Pei et al., 2019), no work
exists for Hindi. We first curate 10,000 sentences
from diverse sources, including movies scripts and
subtitles, linguistic corpora, and online platforms
such as social media and discussion forums, fol-
lowing the methodology of (Sun et al., 2024). The
subsequent subsections describe the selection and
annotation procedure for creating HiSlang-4.9k.

3.2 Sentence-level Annotations

The first phase of annotation focuses on classifying
sentences based on whether they contain slang or
not. Each of the 10,000 sentences is independently
reviewed by four annotators who are native Hindi
speakers. Each of the 10,000 sentences is labeled
by two of the annotators. Annotators are instructed
to assign a label based on following:

• Slang Sentence: The sentence contains
words or phrases that are conventionally used
in a non-standard, informal manner in daily
conversation.

• Non-Slang Sentence: The sentence is fully
formal or contains no instances of words or
phrases that are conventionally used in a non-
standard, informal manner in daily conversa-
tion.

With this, we are left with 3,018 sentences iden-
tified as slang sentences and the remaining 6,982
sentences as non-slang sentences. We evaluate an-
notation reliability by computing Cohen’s Kappa
coefficient (Cohen, 1960). For sentence-level an-
notations, we observe the Kappa score of 0.97,
which happens perhaps because of annotators be-
ing native Hindi speakers. As we will see in next
subsection, only 2,453 slang sentences are retained
in the final dataset based on the inconsistencies
in phrase-level annotations. Moreover, 2,453 non-
slang sentences from 6,982 are retained to keep the
dataset balanced towards the two classes.

Dataset Statistics
Statistic Value

Total sentences 4,906
Slang sentences 2,453
Non-slang sentences 2,453
Avg. words per sentence 15.5

Table 1: Key statistics of HiSlang-4.9k.

3.3 Phrase-Level Annotations
In the second phase, the 3,018 slang sentences are
further subjected to phrase-level annotations, as
shown in Fig. 2. The goal is to pinpoint the exact
span of slang within each sentence. To reduce bias,
four annotators, different from those involved in
the sentence-level annotations in the previous sub-
section, are employed. Each sentence is labeled by
two annotators. Precisely, each word in a sentence
is labeled as:

• Slang: part of a slang phrase.

• Non-Slang: not part of any slang phrase.

We observe a Kappa score of 0.94 for phrase-
level annotations, suggesting strong consistency
between annotators. The high agreement may be
attributed to the high frequency of non-slangwords
in sentences, which made non-slang words easier
to agree upon. The annotators’ cultural fluency
and linguistic intuition as native Hindi speakers fa-
miliar with a wide range of slang expressions may
also contribute to the high agreement. Although
3,018 sentences are initially labeled as containing
slang at the sentence-level, only 2,453 are retained
by the two experts in the final dataset based on in-
consistencies in the annotations. The experts also
merge the annotations with slight differences. The
final dataset consists of 4,906 sentences, with 50%
of sentences with slang and the remaining 50%
without slang (sampled from original non-slang
sentences to keep the two classes balanced, as dis-
cussed in the previous subsection). The key statis-
tics of the HiSlang-4.9k dataset are summarized in
Table 1. The next paragraphs presentmore detailed
insights on slang sentences in HiSlang-4.9k.
We now analyze the phrase-level annotations in

the HiSlang-4.9k dataset to understand its prop-
erties. Some interesting distributional patterns
emerge for slang usage; Fig. 3a illustrates the
distribution of the position of slang words within
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(a) Distribution of slang words’ position in the sentences.

(b) Number of slang words per sentence.

(c) POS distribution of slang words

Fig. 3: Analysis of Slang Sentences in HiSlang-4.9k.
the slang sentences, with positions normal-
ized from 0 to 1. As shown, the slang words tend
to exist toward sentence boundaries, appearing
more frequently near the start or the end of a
sentence than in the middle. Therefore, slang
often serves as an opener or closer in informal
Hindi statements, a pattern that detection and
identification models can exploit by incorporating
positional features.
Fig. 3b depicts the count of slang words per sen-

tence in the subset of samples with slang. The
bell-shaped curve displays the variety of slangs in
HiSlang-4.9k, with the majority of sentences hav-
ing three slang words.
Fig. 3c presents the part-of-speech (POS) distri-

bution of slang words. Nouns (NOUN) and verbs
(VERB) dominate Hindi slang usage, followed by
smaller proportions of adpositions (ADP), auxil-

iary verbs (AUX), and adjectives (ADJ). This POS
usage skew reveals a lexical preference for using
slang in descriptive and referential roles, reflecting
how informal Hindi relies on creative nouns and
verbs. Such trends provide valuable cues for slang
detection and identification; knowing that slang is
often a noun or verb can guide models to focus
on these word classes when distinguishing slang
from the standard lexicon. Such insights, mod-
els trained on Indian languages (see Sec. 2), and
the recent work on Indic MCQs (Ravikiran et al.,
2025) help us select the pretrainedmodels and fine-
tuning strategies we discuss in the next section.

4 Experiments and Results

In this section, we present the results of different
Indic language models for the detection and iden-
tification tasks. The tasks are defined by Sun et al.
(2024). Slang detection refers to the classification
task where a model determines whether a given
sentence contains at least one instance of slang us-
age. Slang identification is a more fine-grained
task in whichmodels perform phrase-level tagging
to pinpoint the exact words or spans within a sen-
tence that constitute a slang phrase.
All experiments are performed using

transformer-based architecture, specifically
BERT (Devlin et al., 2019), mBERT (Devlin et al.,
2019), IndicBERT (Kakwani et al., 2020) and
XLM-RoBERTa (Conneau et al., 2020) as used
in a recent work on Indic MCQ difficulty esti-
mation (Ravikiran et al., 2025). Another reason
for using the abovementioned models is that all
models except the BERT are pretrained on Hindi
data. The fine-tuning strategy for slang detection
and identification are the same as classification
and Named Entity Recognition (NER) tasks based
on the dataset analysis discussed in the previous
section and protocols defined by (Ravikiran et al.,
2025) and (Wolf et al., 2020). We evaluate the
performance by means of two configurations:
(a) Complete model fine-tuning, whereby the
final detection/identification layer is added to
the model and the entire model is fine-tuned on
pretrained weights; (b) Last layer fine-tuning,
whereby the last layer added is fine-tuned with the
frozen pretrained weights.
We split the data into train:test ratio of 80:20.

Each model is assessed using the performance met-
rics of Precision (P), Recall (R) and F1-Score (F1).
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(a) Slang Detection
Model P R F1

IndicBERT 0.9379 0.9554 0.9466
XLM-RoBERTa 0.9535 0.9145 0.9336
mBERT 0.9358 0.9220 0.9289
BERT 0.8606 0.8022 0.8302
XLM-RoBERTa† 0.7655 0.8736 0.8167
mBERT† 0.7255 0.6877 0.7061
IndicBERT† 0.6616 0.7104 0.6851
BERT† 0.7252 0.5985 0.6551

(b) Slang Identification
Model P R F1

IndicBERT 0.9221 0.9332 0.9276
XLM-RoBERTa 0.9305 0.9105 0.9204
mBERT 0.9018 0.9093 0.9055
BERT 0.8761 0.8938 0.8849
IndicBERT† 0.8018 0.4345 0.5634
mBERT† 0.7544 0.3555 0.4823
XLM-RoBERTa† 0.4321 0.1897 0.2631
BERT† 0.2627 0.0680 0.1078

Table 2: Results of BERT-based models on (a) slang de-
tection and (b) slang identification. Metrics: Precision
(P), Recall (R), F1. Models: BERT (Devlin et al., 2019),
mBERT (Devlin et al., 2019), IndicBERT (Kakwani
et al., 2020), XLM-RoBERTa (Conneau et al., 2020).
Models marked with † are frozen: only the final layer is
trained.

4.1 Results

Table 2 presents the performance of various mod-
els on the two tasks: (a) slang detection and (b)
slang identification. Across both tasks, we observe
a consistent trend where models whose pretraining
included Hindi data, namely, IndicBERT, XLM-
RoBERTa and mBERT outperform the English-
only model BERT. This indicates that familiarity
with Indian linguistic patterns and vocabulary sub-
stantially improves slang processing capabilities.
For slang detection results shown in rows 1-4 of Ta-
ble 2 (a), IndicBERT achieves the highest F1 score
of 0.9466, closely followed by XLM-RoBERTa
at 0.9336. IndicBERT performs best due to pre-
training of the dataset in Indian languages, while
XLM-RoBERTa and mBERT include a mix of In-
dic and non-Indic languages. XLM-RoBERTa has
higher precision compared to IndicBERT, possibly
due to the involvement of English transliterations
in the slang data (see example on usage of slang
term scene/सीन in Sec 1). In contrast, BERT lags
at 0.8302, suggesting that it fails to model Hindi

slang effectively due to its English-centric pretrain-
ing. The lower F1-Scores with last-layer finetun-
ing in rows 5-8 of Table 2 (a) with respect to rows
1-4 suggest that merely updating the last layer is
not as good as updating all the layers of the models.
Hence, we can conclude that although initializing
the weights with Indian data helps, slang detection
is a complex task and hence requires the transfor-
mation of all the weights in the models.
The results of the slang identification task with

complete model fine-tuning are shown in rows
1-4 of Table 2 (b). Similar to the detection
results, IndicBERT achieves the highest perfor-
mance with an F1-score of 0.9276, followed by
XLM-RoBERTa at 0.9204 and mBERT at 0.9055.
BERT shows lower performance with an F1-score
of 0.8849. The higher gaps between rows 1-4
and rows 5-8 (last-layer fine-tuning) of Table 2
(b), compared to the detection task (previous para-
graph), show that slang identification, being a finer
task than detection, is even harder with the single
last-layer fine-tuning.
The results validate the quality and the complex-

ity of the HiSlang-4.9k dataset. Models trained
and evaluated on it exhibit meaningful perfor-
mance differences that align with their expected
linguistic capabilities. Moreover, HiSlang-4.9k
appears to be a reliable benchmark for both sen-
tence classification and phrase-level tagging in in-
formal language processing for Hindi.

4.2 Qualitative Analysis
In this section, we conduct a qualitative analysis of
the results obtained by IndicBERT (Kakwani et al.,
2020) fine-tuned on the HiSlang-4.9k.

4.2.1 Slang Detection
For the qualitative analysis of the slang detection
task, we observe various patterns in the model’s
decision-making. The labels and predictions are
marked as ✓ for informal slang sentences, while
for a formal sentence without slang, the same are
marked as ✗. Below, we present representative
examples from both success and failure cases,
along with a brief analysis of each.

Success Cases:

• Sentence: पूरी तयैारी के बावजूद फाइनल मचै में
हारने से टीम कɃ शान का बथार् बन गया। (Despite all
the preparation, losing the final match turned
the team’s pride into a mash.)
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Ground Truth: ✓ Prediction: ✓
The model correctly identifies this sentence
as slang due to the use of the informal phrase
बथार् बन गया (literal sense: “turned into a
mash”, slang sense “utterly destroyed”). The
context and the informal phrase, in addition
to the position of the slang phrase and usage
of verbs and nouns in the slang phrase (see
Figs. 3a, 3c and Sec. 3.3), likely helped the
model capture the slang intent.

• Sentence: उन्होंने कायार्लय में सभी लेख्य सही
समय पर जमा िकए। (He submitted all the docu-
ments correctly on time at the office.)
Ground Truth: ✗ Prediction: ✗
The model correctly labels this as a non-slang
sentence because it uses formal vocabulary
and a clear declarative structure, with no in-
formal expressions to suggest slang.

Failure Cases:

• Sentence: उसने छोटा-मोटा काम अपनी बहन से
करवाया और खदु फोन पर खेलता रहा। (He had
his sister do small-fat work, while he himself
kept playing on his phone.)
Ground Truth: ✓ Prediction: ✗
The model labels this as a non-slang sen-
tence because “छोटा-मोटा काम” (literal sense:
“small–fat work”, slang sense: “a little bit
of work”) is composed of some of the terms
(“छोटा काम”/small work) which jointly have
a similar meaning to the slang sense.

• Sentence: उसने अगंूठा-छाप आदमी को प्रोजेक्ट
सौंप िदया। (He assigned the project to the
thumb print person.)
Ground Truth: ✓ Prediction: ✗
The slang word “अगंूठा-छाप” (literal sense:
“thumb print”, slang sense: “illiterate”) con-
tributes to an informal tone, but the model
fails to identify it as containing slang. This
may be due to the formal tone of the rest of
the sentence overshadowing the slang word,
leading to misclassification.

These examples highlight that while IndicBERT
performs well in cases with explicit or contextual
slang cues, it sometimes struggles with slang terms
having similar meaning to slang sense, and may
also under-detect single-word slang inmore formal
constructions.

4.2.2 Slang Identification
For the qualitative analysis of the slang identifica-
tion task, which involves predicting slang words
from the sentence, we observe a range of pre-
dictions across different kinds of slang sentences.
One pattern of error is that the model misses words
that are at the boundary of the slang phrase. Words
such as मैं, से, ह,ै िदया are excluded from the
predicted span, even though they are part of the
ground truth and contribute significantly to the in-
terpretability of the slang. Representative exam-
ples of such errors include:

• Sentence: उसने अपने पȼरवार कɃ इज्जत को िमट्टी में
िमला िदया। (He completely mixed his family’s
honor into the soil.)
Ground Truth: िमट्टी में िमला िदया (literal sense:
“mixing into the soil”, slang sense: “utterly
destroy or humiliate”)
Prediction: िमट्टी में िमला

• Sentence: पहले इटंरव्यू में पास होते ही मुझे चांदी
हो जाना महसूस हुआ। (As soon as I passed the
first interview, I felt I became silver.)
Ground Truth: चांदी हो जाना (literal sense: “be-
come silver,” slang sense: “got lucky”)
Prediction: चांदी हो

The above-mentioned failure cases are possibly
due to boundary terms being less frequent parts-of-
speech (POS) terms as shown in Fig. 3c.
Contrary to the above example, in the case of a
single-word slang, the model is generally able to
identify the slang term, but sometimes includes
extra words from the surrounding context. This
behavior often leads to over-extended predicted
spans. Such errors are also possibly due to over-
fitting on highly frequent multi-word slangs (see
Fig. 3b). Illustrative examples are:

• Sentence: टीम मीिंटग में ढक्कन ने ऐसा सुझाव िदया
िक सबका ध्यान उसकɃ बेवकूफɃ पर चला गया। (In
the team meeting, the lid made such a sug-
gestion that everyone’s attention shifted to his
foolishness.)
Ground Truth: ढक्कन (literal sense: “lid”,
slang sense: “fool”)
Prediction: ढक्कन ने

• Sentence: दोगला इसंान हमेशा अपनी बातों और
कामों में िवरोधाभास रखता ह।ै (A person with two
necks always keeps contradictions between
their words and their actions.)
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Model Exp. 1 Exp. 2 Exp. 3

BERT 0.8664 0.8914 0.8103
mBERT 0.8861 0.9155 0.9117
IndicBERT 0.9237 0.9287 0.9308
XLM-RoBERTa 0.9237 0.9330 0.9332

Table 3: F1 scores (slang detection) across three addi-
tional experiments: Exp. 1—non-slang sentences only;
Exp. 2—slang removed from slang sentences; Exp. 3—
isolated slang phrases.

Ground Truth: दोगला (literal sense: “two
necks”, slang sense “hypocrite”)
Prediction: दोगला इसंान

Finally, there are several correct predictions where
the slang is identified with precise boundaries, in-
dicating a successful understanding by the model:

• Sentence: पोपट बना िदया उसने अपनी झूठी
कहािनयों से मुझे। (He made a parrot of me with
his false stories.)
Ground Truth: पोपट बना िदया (literal sense:
“made a parrot”, slang sense: “made a fool”)
Prediction: पोपट बना िदया

• Sentence: ज़्यादा उछल रहा है तु आजकल।
(You’ve been jumping too much these days.)
Ground Truth: ज़्यादा उछल रहा है (literal
sense: “jumping too much”, slang sense:
“reckless”)
Prediction: ज़्यादा उछल रहा है

4.3 Additional Studies
Table 3 summarizes the F1-score of each model
across three additional experiments designed to
probe their ability to distinguish slang from non-
slang under increasingly challenging conditions.
The three experiments are performed for the slang
detection task.
In Experiment 1, where fine-tuned models are

applied to the 2,453 non-slang sentences, In-
dicBERT and XLM-RoBERTa achieve the highest
F1-score (92.37%), whereas mBERT and BERT
lag at 88.61% and 86.64% respectively, frequently
mislabeling non-slang words as slang. XLM-
RoBERTa, IndicBERT (92.37%) and mBERT
(88.61%) both outperformed BERT, indicating
that Hindi-aware models work even when explicit
slang cues are absent.
In Experiment 2, slang phrases were removed

from the 2,453 slang sentences that originally con-

tained them, so models had to rely solely on con-
text. The labels are also modified from slang to
non-slang in this case. XLM-RoBERTa again led
the field at 93.30%F1-score. IndicBERT (92.87%)
and mBERT (91.55%) both show good perfor-
mance, confirming that their Hindi-aware pretrain-
ing helps. BERT (89.14%) remains the least reli-
able.
In Experiment 3, models are evaluated on iso-

lated slang phrases with no surrounding context.
XLM-RoBERTa again performs the best (93.32%),
correctly identifying most slang expressions in
isolation. IndicBERT (93.08%) and mBERT
(91.17%) follow the performance closely. In con-
trast, BERT’s performance drops to 81.03%, under-
scoring its difficulty in recognizing slang without
additional contextual information.
These results validate that fine-tuned XLM-

RoBERTa and IndicBERT are effective for Hindi
slang detection under varying and extreme condi-
tions.

5 Conclusion

In this work, we introduce a high-quality dataset,
HiSlang-4.9k, for slang detection and identifica-
tion in the Hindi language. Recognizing the
growth of informal online communication, espe-
cially involving slang, the dataset addresses a
gap in existing language resources for Indian lan-
guages. The corpus comprises 4,906 manually
annotated sentences, sourced from the real-world
text. We employed carefully designed annota-
tion guidelines and a rigorous validation process
to ensure a high-quality dataset. The dataset in-
cludes both slang and non-slang sentences, with di-
verse sentence structures that feature slang words
in varying positions and contexts. To assess the
utility of HiSlang-4.9k, we benchmark multiple
transformer-based model architectures. Our ex-
periments demonstrate that Hindi-language pre-
trained models (e.g., IndicBERT, XLM-RoBERTa,
mBERT) fine-tuned on our data significantly out-
perform the English-only model (BERT), high-
lighting the importance of language-aware train-
ing.
Overall, we believe that HiSlang-4.9k, along

with the benchmarks established in this work, can
serve as a valuable foundation for future research
in informal-language processing for the Hindi lan-
guage. We will release the dataset and baseline im-
plementations to encourage further exploration in
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this direction.

Limitations

The study makes progress in handling informal
Hindi, but it also has limitations. Annotating slang
depends on people’s views; a phrase interpreted by
one person as slang might be a non-slang term for
the other. This subjectivity arises because speak-
ers come from varied backgrounds and use words
in different settings. We try to mitigate these gaps
by giving clear instructions and using multiple an-
notators for each example. Even so, some varia-
tion in how slang is interpreted may still appear
across our data. Also, the dataset might not fully
represent the variety of Hindi slang. Most of our
data comes from social media and online forums,
reflecting mainly the language used by younger
people familiar with the internet. Because of this,
slang from other communities, dialects, or regions
may not be well-covered. This limitation means
our models might struggle with slang terms com-
mon in these underrepresented groups.

Ethics Statement

We acknowledge that slang is inherently subjec-
tive and can be sensitive in certain contexts, es-
pecially in informal speech where meanings may
vary widely across different communities and gen-
erations. All annotations and analyses were per-
formed by native Hindi speakers, and the data was
sourced from publicly available content such as
social media posts and discussion forums. We
ensured that all contributors to data annotation
and analysis participated voluntarily and were in-
formed of the research goals. No personally iden-
tifiable or sensitive information was collected or
shared. We understand that certain slang terms
might carry connotations that could be consid-
ered offensive or inappropriate in some contexts.
We therefore encourage users of the HiSlang-4.9k
dataset to apply cultural sensitivity and appropriate
disclaimers when deploying models or sharing re-
sults derived from this dataset. Our aim is solely to
advance the understanding of informal Hindi lan-
guage in NLP research and to promote inclusive
and responsible use of linguistic resources.
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Abstract
We investigate the impact of text preprocessing
on Arabic Information Retrieval (IR) systems
and, consequently, on the quality of Retrieval-
Augmented Generative (RAG) systems. Our
work focuses on academic content in Arabic.
We analyze how the IR performance affects the
quality of RAG systems in answering users’
questions on various academic topics. Our find-
ings indicate that the performance of an IR
system is significantly influenced by the qual-
ity of Optical Character Recognition (OCR)
applied to PDF files. We employ a state-of-
the-art deep learning-based OCR solution to
create our IR index. Eventually, this IR in-
dex is used to generate a context-window for
the generative model that is employed in chat
assistant to answer questions in the scientific
domain. We introduce a benchmark dataset for
the IR system, comprising 170 Arabic queries
and IR relevance assessment with numerous
query-document judgment pairs. Our results
demonstrate that advanced text preprocessing
can lead to an increase of 8 points in terms of
P@5 of the IR mode, an increase of 11% in
the accuracy of the answering system, and up
to 95% of correct citations compared to our
baseline system.

1 Introduction

The Arabic language presents unique challenges
for Natural Language Processing (NLP) applica-
tions, particularly in Information Retrieval (IR),
Question Answering (QA), and Optical Character
Recognition (OCR). These challenges stem from
the script’s complexity, including its cursive nature,
contextual letter forms, and bidirectional text ori-
entation. Additionally, the scarcity of high-quality
annotated datasets for Arabic further exacerbates
these issues. In recent years, Retrieval-Augmented
Generation (RAG) systems have emerged as a
promising approach to enhance generative mod-
els like GPT by grounding their outputs in relevant
retrieved documents. This paradigm has proven

effective in reducing hallucinations and improving
factual accuracy by providing contextually relevant
information to generative models.

This paper investigates the impact of advanced
Arabic preprocessing techniques on IR systems and
their downstream influence on RAG performance.
Specifically, we focus on academic content from
Arabic scientific papers published in PDF format
where accurate OCR and IR are critical for gen-
erating high-quality responses. By employing a
state-of-the-art deep learning-based OCR solution
and optimizing the IR pipeline, we demonstrate sig-
nificant improvements in both retrieval precision
and the relevance of generated answers. Our con-
tributions include a comprehensive evaluation of
OCR tools for Arabic PDF processing, and their
impact on IR performance, and the development of
an Arabic RAG system capable of answering aca-
demic queries with enhanced relevance and citation
accuracy.

2 Related Work

Recently, RAG systems have attracted significant
attention from researchers tackling various down-
stream tasks, particularly in the development of cus-
tomized chatbots. RAG combines the strengths of
retrieval and generative models, enabling chatbots
to access grounding knowledge-base and produce
contextually relevant responses. This approach has
proven effective in creating chatbots that are tai-
lored to in-domain data, by building a retrieval
system that searches within in-domain data index
and provides context to generative model which has
shown to significantly reduces hallucination and
provides timely updated information. The ability of
generative models to synthesize information from
diverse sources showed recently that such models
can be used to achieve comparable results to state-
of-the-art methods in various NLP tasks (Brown
et al., 2020), such as translation, translation-quality
evaluation (Kocmi and Federmann, 2023), and
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question-answering, usually applying generative
models in down-stream tasks requires a few-shot
learning approach that can be applied post model
training via system prompt.

Sadek et al. (2012) presented one of the first Ara-
bic question-answering system designed to answer
why and how questions. Their approach relies on
the discourse structure of Arabic texts to automat-
ically find answers. This method uses Rhetorical
Structure Theory (RST), which has been proven
effective in NLP applications.

Studies indicated that off-the-shelf OCR tools,
which perform considerably well on English, strug-
gle with Arabic due to the script’s complexity and
the scarcity of high-quality labeled datasets for
training purposes. Such models often utilize Hid-
den Markov Model for sequence modeling (Bunke
et al., 1995) . In order to achieve reasonable per-
formance, more advanced method including lever-
aging language modeling and deep learning ap-
proaches (Bhatia et al., 2024).

IR-RAG @ SIGIR24 is a dedicated workshop
in SIGIR that emphasizes on the critical rule of
IR systems as an internal component of RAG sys-
tem (Petroni et al., 2024). Multiple submissions
argued that the effectiveness of RAG systems heav-
ily relies on the quality of retrieved documents,
as poor-quality or irrelevant sources can lead to
misleading outputs, and called for a further explo-
ration of robust retrieval mechanisms to enhance
RAG capabilities 1.

3 Experiment Settings

3.1 Data
3.1.1 Queries
We leverage multiple data sources to enhance our
analysis. Our dataset comprises 12,000 PDF files
of Arabic journal papers sourced from the Shamra
Academia portal2. This portal is accessible on-
line and indexed by major search engines such as
Google3 and Bing4. These search engines provide
a search console for website owners, offering in-
sights into visitor engagement, clicks, and search
queries.

We analyzed the query logs from the past six
months, focusing on the top 100 most frequently
searched queries each month. This approach

1https://ceur-ws.org/Vol-3784/
2https://shamra-academia.com
3https://google.com
4https://bing.com

yielded a total of 600 queries covering various aca-
demic research topics. To ensure a diverse and
comprehensive set of queries, three experts (native
Arabic speakers and academic researchers) selected
170 queries from this pool. We split these queries
into 100 queries for training and 70 queries for
testing. The split takes into account preserving the
distribution of query categories. Table 1 shows the
distribution of query categories on both the training
and test set. Queries were manually segmented into
8 categories, based on the field of the study related
to researches that are relevant to each query.

Category train queries test queries

Economy 14 10
History 11 8
Engineering 15 11
Agriculture 14 10
Science 6 4
Math 4 3
Medicine 10 7
Literature 26 18

Table 1: Distribution of query categories on both train-
ing and test sets

Table 2 shows a sample of query text and their
categories. The query text is what users type in the
search engine to find information that meets their
information need. It is important to mention that
query text is not necessarily a good representation
of searcher’s information need. When searchers
need to find information about a specific topic, they
predict how an ideal document will look like, and
what might be the main keywords in that document
(e.g. the document title, headers and sub-headers),
and they expect the IR system to find those doc-
uments for them (El Zein and da Costa Pereira,
2022).
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Table 2: Samples of queries chosen and proofread by
expert annotators
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3.1.2 Documents
We have access to 12,000 documents in the portal.
These documents are academic papers published in
various open-access journals with which the portal
has agreements.

Each document in the portal has the following
entries (in addition to the PDF file): title, abstract,
keywords and the main content. Those fields were
added by authors and verified by the portal editors.
However, there is still large amount of text in the
PDF files needs to be extracted and added to the
index so it can be searchable (the main content). To
extract the text from PDF files, we experiment with
two methods: The first method is based on an open-
source python library PyPDF 5, and the second
method is based on a more advanced method that
utilizes Deep Learning (Surya)6.

Table 3 presents a sample sentence extracted
from a PDF file after conversion to text using two
different libraries. The PyPDF library consistently
exhibits issues such as merging two words by elim-
inating the space between them or omitting letters
from words. This results in significant informa-
tion loss. In the sample shown, out of 15 words,
PyPDF correctly extracted only 6 words. In con-
trast, the Surya library accurately extracted the en-
tire sentence without any error. These findings
were consistently observed across other documents
as well. The primary reasons for PyPDF’s poor
performance with Arabic text are the complexity of
the Arabic script and the bidirectional nature of the
language. Arabic script includes cursive writing,
contextual letter forms, and diacritics, which are
challenging for OCR systems primarily designed
for Latin scripts like English. Additionally, Arabic
is written from right to left, adding another layer of
complexity that PyPDF may not handle effectively.

We observed some issues with Surya OCR sys-
tem as well when handling Arabic terms that are in-
domain, e.g. scientific terms in the medical and en-
gineering domains. To further improve the output
of the Surya OCR system and restore information
loss, we leverage an LLM as an auto-correction sys-
tem, where we ask the LLM to improve the output
of OCR using the following prompt:

You are an expert copyeditor special-
izing in academic and scientific Arabic
texts. Your task is to correct errors in a
given OCR-scanned paragraph, consider

5https://github.com/py-pdf/pypdf
6https://github.com/VikParuchuri/surya

the following:
Text Source: The input is from an Op-
tical Character Recognition (OCR) sys-
tem. Therefore, you must identify and
correct common OCR errors, which in-
clude spelling mistakes, garbled words,
and incorrect character recognition.
Content Type: The text is academic and
contains specific scientific terminology.
You must preserve all original technical
terms and academic phrases without al-
teration or simplification.
Correction Scope: Your corrections
should focus exclusively on spelling,
grammar, and reconstructing garbled
words to make the text fluent and accu-
rate. Do not rewrite, rephrase, or change
the intended meaning of the original con-
tent.
Output Format: Provide ONLY the fully
corrected Arabic text. Do not include
any introductory phrases, explanations,
or commentary.
Text to be corrected:
{{paragraph_input}}

From observations with preliminary prompt de-
signs, it was noted that the LLM occasionally
tended to rephrase the input text or introduce ad-
ditional words, altering the original meaning. To
remedy this and address common OCR-related er-
rors such as character misrecognition and garbled
words, the proposed LLM prompt explicitly iden-
tifies the text as OCR output and is designed to
instruct the model to preserve domain-specific ter-
minology while strictly avoiding any rephrasing or
insertion of extra words.

3.1.3 Annotations
To evaluate the performance of our IR system,
we conducted a human evaluation using the open-
source tool: relevation7. Relevation is a web ap-
plication in which human judges can evaluate the
relevance of the retrieved documents.

We asked three human judges, all are academic
researchers and native Arabic speakers, to perform
the evaluation. Each judge was presented with a
query and a corresponding document in PDF for-
mat. Alongside the query, we provided the infor-
mation need behind it, and the judges’ task was
to determine whether the document satisfied the

7https://github.com/ielab/relevation
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Table 3: Samples of sentence taken from a PDF file of a paper published in a medical journal. The sentence is taken
after converting the PDF file into text using two OCR librares, PyPDF

user’s need. We employed a ranked evaluation ap-
proach, where each document can be annotated as
highly relevant, relevant, somewhat relevant, or ir-
relevant based on how well it addresses the user’s
information need. At the end of the evaluation,
we analyzed the agreement rate among the judges.
Each judge was shown 30 document-query pairs
that had been previously judged by another judge,
and they were asked to re-evaluate these pairs. This
process provided insights into the reliability of the
judgments. We then binarized the judgments into a
0-1 scale, where irrelevant and somewhat relevant
were coded as 0, and relevant and highly relevant
as 1. Before binarization, the agreement rate was
70%, which increased to 78% after binarization.
This increase is understandable given the varying
degrees of relevance perceived by the judges, with
the highest disagreement occurring between the
somewhat relevant and relevant degrees.

3.2 Indexing
To build the IR system that is used to inject context
to the LLM prompt, we employed Elasticsearch to
retrieve the top 100 most pertinent studies for each
query in our dataset. We constructed two distinct
indexes for this purpose: one utilizing PyPDF and
the other based on Surya. The search filter was de-
signed to optimize the relevance of the results, and
include all possible information in each document.
The Elasticsearch query schema used is as follows:

{
"multi_match": {

"query": "query goes here",
"fields": [

"title^3",
"abstract^2",
"content"

],
"type": "best_fields",

"tie_breaker": 1
}

}

Filter Schema: The following is the filter
schema that is used to query the ElasticSearch in-
dex:

• multi_match: This is a query type in Elastic-
search that allows searching across multiple
fields. It is particularly useful when the same
query needs to be matched against various
fields in the documents.

• query: Represents the search terms or phrases
written by the user. This is the text that Elastic-
search will look for across the specified fields.

• fields:

– "title^3": This field corresponds to the
full title of the document in Arabic. The
^3 denotes a boost factor of 3, mean-
ing matches in the title are considered
three times more relevant than matches
in fields without a boost.

– "abstract^2": This field contains the
abstract of the document in Arabic. With
a boost factor of 2, matches here are
deemed twice as relevant compared to
unboosted fields.

– "content": This field encompasses the
main content of the research documents,
extracted from PDFs using either PyPDF
or Surya. It does not have an explicit
boost factor, so it serves as the baseline
relevance.

• type: Set to "best_fields", this parameter in-
structs Elasticsearch to return documents that
have the best score from any one field. It fo-
cuses on the single most relevant field match
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rather than combining scores from multiple
fields.

• tie_breaker: With a value of 1, the tie breaker
adjusts the scoring when documents match the
query in multiple fields. A higher tie breaker
increases the influence of secondary matches
on the overall score, ensuring that documents
with multiple field matches are ranked higher.

More information about Elasticsearch Query Lan-
guage can be found in the official documentation
8.

By leveraging this schema, we prioritized docu-
ments where the query terms appeared in the title
or abstract, reflecting a higher likelihood of rele-
vance. The boosting factors ensured that matches
in the title and abstract had a more significant im-
pact on the relevance score than matches in the
main content. The use of the best_fields type, com-
bined with an appropriate tie breaker, allowed for
a balanced and effective retrieval of documents,
enhancing the quality of the search results; after
retrieving the search results from Elasticsearch, we
extracted the relevance scores and the ranks of the
documents as provided by the search engine. These
scores and ranks are fed into the relevation tool for
human evaluation.

PDF files

Indexing HelperChatBot Helper

Autocorrect Prompt

Elasticsearch

Figure 1: System architecture of the proposed chatbot,
illustrating the interaction between the IR, the LLM
(OpenAI’s GPT-4-turbo) and the auto-correct compo-
nents for generating accurate, context-aware responses.

3.3 QA Evaluation
The classical way of evaluating QA systems re-
quires gold dataset, which includes a set of ques-
tions and their answers. Then usually a metric

8https://www.elastic.co/blog/
getting-started-elasticsearch-query-language

is based on lexical matching between the system-
generated answer (prediction) and the real answer
(reference) is used to generate a similarity score.
Kamalloo et al. (2023) has shown that lexical-
matching approaches suffer from a big fall, because
of two reasons:

• It is almost impossible to provide a list of gold
answers that cover all possibilities.

• Lexical matching methods cannot detect hal-
lucinations and false claims in the output of
LLM models.

Another work by Min et al. (2021) demonstrated
that when humans who have experience in the
domain evaluate the performance of question-
answering (QA) system, the evaluation metric can
increase up to 23% compared to evaluations con-
ducted through automated methods. Encouraged
by their finding, we choose to perform human-
evaluation of our proposed RAG system.

4 Experiments and Discussion

Figure 1 shows our system architecture. The sys-
tem consists of mainly two components: the IR
component and the Chatbot component. Users start
their sessions by posing a question to the system,
then the ChatBot helper generates queries from
this question and conducts a search from the index.
The purpose of the search is to build up context
for the LLM model that will be used to generate
a full answer to the user’s question. This context
helps reduce hallucination and makes inferring an-
swers accurate by providing scientific references
for users. The context consists of a list of papers (ti-
tle, abstract and content) that will be injected to the
system prompt. For that reason, a relevant context
is highly important to generate answers that satisfy
the user’s question. To ensure high quality context,
focus mainly on tuning choosing IR system that
performs reasonably well for our use-case.

When indexing a new document, the following
process is initiated: First, the document is parsed
using an OCR system to extract its text. This text
is then passed to the LLM with the proposed auto-
correction prompt to fix any potential error intro-
duced by the OCR. Finally, the corrected text is
indexed by Elasticsearch, making it available for
search queries.
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4.1 IR experiments
To experiment with multiple scoring models in
our dataset, we evaluate the performance of the
IR system against the training dataset on the fol-
lowing retrieval model: LM-Dirichlet (Blei et al.,
2003), Okapi BM25 (Crestani et al., 1998), and
LM-JelinekMercer (Zhai and Lafferty, 2017).

A list of retrieval models supported by Elastic-
Search is available in the official documentation9.
We focus in our IR evaluation on two IR met-
rics: Normalized Discounted Cumulative Gain
(NDCG@k), and Precision at k (P@k). NDCG@k
considers both the relevance and the position of
the retrieved documents, with higher weights as-
signed to the results at the top of the list. P@10
measures the proportion of relevant items in the top
k ranked documents, focusing solely on precision
without considering the ranking order within the
top-k items (Teufel, 2007).

Our IR experiments aim to address two pivotal
questions:

• Can an off-the-shelf OCR model deliver satis-
factory performance for Arabic IR, or is there
a need for a more sophisticated model?

• Which IR model demonstrates superior per-
formance in our experimental settings?

To address these two questions, we construct
two ElasticSearch indices: one utilizing text ex-
tracted from PDF files using PyPDF library, and
another employing the Surya model. The details of
these indices are elaborated in Section 3.2. There
is no difference between these two indices nor the
querying mechanism.

Table 4 shows the evaluation results for the
three IR models against the test set. This set is
unseen and was not used to make any decision.
The results show consistent improvement of both
NDCG@5 and P@5 for all retrieval models when
using more advanced OCR system (Surya), the
biggest improvement is shown in Okapi BM25
model, where NDCG@5 increased by +4.85
points, and P@5 by +7.53 points. It is evident
that Okapi BM25 demonstrates superior overall
ranking quality (NDCG@5), LM-JelinekMercer
shows slightly better precision in the top 5 results
(P@5). This suggests that Okapi BM25 might

9https://www.elastic.co/guide/
en/elasticsearch/reference/current/
index-modules-similarity.html

be more effective at distinguishing between de-
grees of relevance across the result set, while LM-
JelinekMercer is particularly good at identifying
highly relevant documents for the top positions,
possibly due to its smoothing technique being well
suited to the characteristics of Arabic scientific
text. Considering those results, we decide to choose
Okapi BM25 as the scoring model for our IR sys-
tem, and Surya model as an OCR system to parse
the PDF files.

4.2 Chatbot
In this section, we discuss how we use our IR sys-
tem and leverage the LLM model to answer users’
questions. First, user starts their session by pos-
ing a question to the system, as shown in Figure
1. Then the question is used as a query to retrieve
top 5 relevant documents from Elasticsearch. Each
document includes its title, abstract and content.
These documents are then injected into the prompt,
then a request is made to the Azure OpenAI API
chat completion endpoint (GPT-4 turbo-2024-04-
09 version) 10 to answer the user’s question. The
LLM prompt is as follows:

You are an Expert Academic Re-
search Synthesizer. Your function is to
act as a research assistant, tasked with
extracting and synthesizing information
exclusively from a provided corpus of sci-
entific documents. Strictly follow these
instructions:
1. Corpus Definition: You will receive a
series of academic papers, each format-
ted with a clear title and content.
2. Information Adherence: You MUST
NOT use any external knowledge. All
information in your response must be di-
rectly derived from the provided papers.
3. Answer Structure: The response must
be a comprehensive and cohesive syn-
thesis of the information relevant to the
question. Do not provide a list of facts;
instead, integrate findings from multiple
papers to create a single, detailed an-
swer.
4. Specificity and Detail: Focus on
providing an extremely specific and fac-
tual answer. Avoid all forms of vague,
generic, or abstract language.

10https://learn.microsoft.com/en-us/azure/
ai-services/openai/concepts/models
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5. Citations: Every single statement of
fact or claim must be followed immedi-
ately by a citation in the format ‘(Paper-
Title)‘. If a sentence synthesizes informa-
tion from multiple papers, list all relevant
citations.
6. Language: The final, complete an-
swer MUST be generated entirely in the
Arabic language.
7. Provide only the answer to the ques-
tion. Given the following papers:
{{Title Abstract Content}}
.
.
{{Title Abstract Content}}
Answer the following question: {{Ques-
tion}}

The prompt is designed to make the LLM simulate
the process of a human researcher while strictly
preventing hallucination. By forbidding external
knowledge and demanding that every factual state-
ment be anchored to a source with a mandatory
citation, we enforce a high degree of verifiability,
ensuring the model cannot invent information. This
mimics a researcher’s reliance on primary sources.
Moreover, the instruction to integrate findings from
multiple papers to create a single, detailed answer
compels the model to move beyond simple fact ex-
traction and replicate the human cognitive process
of synthesis. This dual approach ensures that the
generated output is not only factually grounded and
trustworthy but also demonstrates a sophisticated,
human-like understanding of the source material, a
crucial requirement for reliable academic use.

To evaluate the performance of our proposed
Chatbot architecture, we developed two Telegram
bots utilizing the Telegram Bot API 11. This API al-
lows for the creation of programs that use Telegram
messages as an interface. Users can interact with
it using their mobile devices or Telegram desktop
version. Our experimental setup consisted of two
distinct bots:

• Baseline Bot This bot directly sends user
questions to the LLM endpoint. The only sys-
tem prompt that we use in the baseline system
is: Answer the following question and provide
citations for your answer: {question}.

• The Proposed Chatbot (ArabicRAG) This
bot implements our proposed architecture (as

11https://core.telegram.org/

described in Figure 1), utilizing the prompt
we presented earlier, including contextual in-
formation.

Using the Telegram API, we were able to create
a robust experimental framework to compare the
performance of our proposed architecture with the
baseline system. We asked our human judges to
send each question in the test set to both systems
and give each answer a grade based on its relevance.
We introduce the following grading system, the
final grade is the sum of all of them:

• Does the generated output provide correct
citations?

– 3: There is at least one correct citation
for each statement.

– 2: Some correct citations are missing,
but not very crucial.

– 1: Crucial citations are missing, or incor-
rect citations are provided.

– 0: There are no correct citations pro-
vided.

• Does the generated output answer your
question?

– 3: Yes, the output fully answers my ques-
tion.

– 2: The output partially answers my ques-
tion.

– 1: The output somewhat answers my
question.

– 0: The output does not answer my ques-
tion.

Then we take the average of the two grades, a per-
fect answer will be graded 3 for citation and 3 for
correctness, yielding an average of 3 final grade.
This evaluation is done for the 70 queries in the test
set.

Table 5 summarizes the performance of our pro-
posed system (ArabicRAG) and the baseline (GPT-
4o). ArabicRAG demonstrates superior perfor-
mance across all the metrics. With a 60% higher
rate of fully correct answers (score=3 as judged by
the human experts), and 3 times fewer complete
failures (score=0) compared to GPT. We can notice
a smaller standard deviation in ArabicRAG (0.8)
compared to GPT of 1.2. This means that Arabi-
cRAG tends to have more predictable performance
around the mean score. GPT in 15% of the test
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Model PyPDF OCR Surya OCR
NDCG@5 P@5 NDCG@5 P@5

Okapi BM25 67.30 37.97 73.15 45.50
LMDirichlet 58.99 38.82 61.60 41.39
LM-JelinekMercer 65.84 41.55 69.17 43.10

Table 4: Performance of three retrieval models against the test dataset, both NDCG@10 and P@10 are reported in
percentages, bold numbers are statistically significants

Metric ArabicRAG Baseline

Mean Score (±SD) 2.4 (±0.8) 1.5 (±1.2)
%Score =3 60% 40%
%Score =0 5% 15%

Table 5: Evaluation of the two bots on the test set. We
report average of relevance graded score, and average
of citation graded score for each system

set (around 10 questions) fails to provide a correct
answer with accurate citations. For example, when
GPT is asked to provide a brief introduction about
historical figures from the Arabic literature, it tends
to provide basic information as usually found in
Wikipedia, but the main issue is with almost un-
related citations to books and articles. When we
checked those references, we found out that they
are irrelevant. This is considered hallucination.
The pattern of synthetic scholarships poses partic-
ular risks in academic applications where source
authenticity is crucial to the credibility of the re-
search.

However, upon examining the failures in the Ara-
bicRAG system, we observed that the inability to
generate correct answers is primarily due to the lim-
ited number of research documents in the corpus
(approximately 10,000). Consequently, the Infor-
mation Retrieval system often retrieves documents
that are poorly relevant to the questions, leading to
irrelevant answers generated by the LLM. One so-
lution is to enable real-time internet searches from
reliable Arabic sources when the retrieved docu-
ments have low similarity scores. Another potential
solution is to continuously expand the corpus by
indexing more documents, thereby covering a di-
verse set of research topics. This is a potential
future work of this research.

5 Conclusion

In this paper, we explored the impact of advanced
Arabic language preprocessing techniques on the
performance of information retrieval systems and

their downstream influence on retrieval-augmented
generation systems. Our findings suggest that em-
ploying a state-of-the-art deep learning-based OCR
system (Surya) significantly enhances the IR per-
formance, with improvements of up to 8 points in
P@5 and 11% in RAG answering accuracy com-
pared to baseline system. These results under-
score the importance of robust preprocessing and
language-aware IR in addressing challenges posed
by Arabic script complexity and domain-specific
terminology.

By integrating our enhanced IR system with a
generative model, we developed ArabicRAG, a
chatbot capable of providing contextually accu-
rate and citation-rich answers to academic queries.
Comparative evaluations against a baseline system
revealed that ArabicRAG achieves a 20% higher
rate of fully correct answers and significantly re-
duces hallucinations.

Future work will focus on expanding the corpus
to cover a broader range of research topics and ex-
ploring real-time internet-based retrieval to address
low-similarity cases. These enhancements aim to
further improve the system’s ability to deliver ac-
curate and relevant responses, thereby advancing
the state of Arabic NLP in academic contexts.
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● A Retail-Corpus for Aspect-Based Sentiment Analysis with Large Language Models 
Oleg Şilcenco; Marcos Machado; Wallace Ugulino; Daniel Braun 

● Demographics and Democracy: Benchmarking LLMs’ Gender Bias and Political Leaning 
in European Parliament  
Jinrui Yang; Xudong Han ; Timothy Baldwin 

14:40 - 15:00 Coffee Break 

15:00 - 17:00 Session 6 (Chair: Esben Andreas Wrona Bay Sørensen) 

● ASR Models for Traditional Emirati Arabic: Challenges, Adaptations, and Performance 
Evaluation  
Maha Alblooki 

● Building an Ewe Language Dataset: Towards Enhancing Automatic Speech Recognition 
Technologies for Low Resource Languages  
Isaac Wiafe; Akon Obu Ekpezu; Raynard Dodzi Helegah; Fiifi Baffoe Payin Winful ; Elikem 
Doe Atsakpo; Charles Nutrokpor; Kafui Kwashie Solaga 

● CLEAR: Code-Mixed ASR with LLM-Driven Rescoring   
Shivam Kumar; Md Shad Akhtar 

● Evaluating ASR in a Clinical Context : What Whisper Misses  
Haeeul Hwang; Eric Jordan; Deok-Hee Kim-Dufor; Christophe Lemey; Motasem Alrahabi 

● Assessing ASR Robustness for Burmese: Impacts of Missing Speech Segments and 
Interruptions  
Ankit Maurya; Manikandan Ravikiran; Rohit Saluja 

18:00 Reception at Storm’s Pakhus 

Address: Lerchesgade 4, 5000 Odense, Denmark 
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Day 3, Wednesday 27 August 
 

08.30 - 09.00 Registration & Breakfast 

09.00 - 10.40 Session 7 (Chair: Alexandra Diehl) 

● Scalable Text Vectorization with Hyperdimensional Computing Through Selective Word 

Encoding 

Timur Mudarisov; Evgeny Polyachenko; Zsofia Kraussl; Enriqueta Patricia Becerra 

Sanchez; Tatiana Petrova; Radu State 

● Style-Controlled Response Generation for Dialog Systems with Intimacy Interpretation 

Takuto Miura; Kiyoaki Shirai; Natthawut Kertkeidkachorn 

● Dora explores Clinically Relevant Information in EHRs using NER 

Martin Laursen; Lina Elkjær Pedersen; Josefine Bak H. Adelhelm; Rasmus Bank 

Lynggaard; Pernille Just Vinholt 

● Beyond Labeled Datasets: Advancing TTS with Direct Preference Optimization on 

Unlabeled Speech Dataset  

Andrii Zhuravlov; Volodymyr Sydorskyi 

● CUPE: Contextless Universal Phoneme Encoder for Language-Agnostic Speech 

Processing  

Abdul Rehman; Jian-jun Zhang; Xiasong Yang 

10.40 - 11.00 Coffee Break 

11:00 - 12:00 Keynote by Prof. Dr. Peter Schneider-Kamp 

The Cost of Intelligence: Efficiency Is the Only Path to 

Democratized AI 

12:00 - 13:00 Lunch Break 
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13:00 - 15:00 Session 8 (Chair: Nicklas Sindlev Andersen) 

● Tachelhiyt-Darija: a parallel speech corpus for two underrepresented languages  
Noureddine Atouf; Elsayed Issa; Said Ouzbayr 

● The Need for Robust and Inclusive Benchmarks in Evaluating LLMs on Arabic Text  
Lubana Al Rayes; Ashraf Elnagar 

● On Limitations of LLM as Annotator for Low Resource Languages  
Raviraj Joshi; Abhay Shanbhag; Amogh Thakurdesai; Ridhima Sinare; Suramya Jadhav 

● HiSlang-4.9k: A Benchmark Dataset for Hindi Slang Detection and Identification  
Tanmay Tiwari; Vibhu Gupta; Manikandan Ravikiran; Rohit Saluja 

● Enhancing Arabic Retrieval Augmented Generation through Language Processing  
Shadi Saleh; Belkacem EL Jattari; Layth Oud; Maryam Alblooshi; Bouthaina Lakhdari; Ali 
Alnaqbi 
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