Zeping Li

Also published as: 泽平


2025

pdf bib
Enhancing One-Shot Pruned Pre-trained Language Models through Sparse-Dense-Sparse Mechanism
Guanchen Li | Xiandong Zhao | Lian Liu | Zeping Li | Yixing Xu | Dong Li | Lu Tian | Jie He | Ashish Sirasao | Emad Barsoum
Proceedings of the 31st International Conference on Computational Linguistics

Pre-trained language models (PLMs) are engineered to be robust in contextual understanding and exhibit outstanding performance in various natural language processing tasks. However, their considerable size incurs significant computational and storage costs. Modern pruning strategies employ retraining-free one-shot techniques to compress PLMs; however, these approaches often lead to an indispensable reduction in performance. In this paper, we propose SDS, a Sparse-Dense-Sparse pruning framework to enhance the performance of the pruned PLMs from a weight distribution optimization perspective. We outline the pruning process in three steps. Initially, we prune less critical connections in the model using conventional one-shot pruning methods. Next, we reconstruct a dense model featuring a pruning-friendly weight distribution by reactivating pruned connections with sparse regularization. Finally, we perform a second pruning round, yielding a superior pruned model compared to the initial pruning. Experiments demonstrate that SDS outperforms the state-of-the-art pruning techniques SparseGPT and Wanda under an identical sparsity configuration. For instance, SDS reduces perplexity by 5.16 on Raw-Wikitext2 and improves average accuracy by 3.86% across multiple zero-shot benchmarks for LLaMA-3-8B compared to Wanda with 2:4 sparsity.

pdf bib
Amphista: Bi-directional Multi-head Decoding for Accelerating LLM Inference
Zeping Li | Xinlong Yang | Ziheng Gao | Ji Liu | Guanchen Li | Zhuang Liu | Dong Li | Jinzhang Peng | Lu Tian | Emad Barsoum
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speed. While methods such as Medusa constructs parallelized heads, they lack adequate information interaction across different prediction positions. To overcome this limitation, we introduce Amphista, an enhanced speculative decoding framework that builds upon Medusa. Specifically, Amphista models an *Auto-embedding Block* capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista integrates *Staged Adaptation Layers*, which ensure a seamless transition of semantic information from the target model’s autoregressive inference to the drafting heads’ non-autoregressive inference, effectively achieving paradigm shift and feature fusion. Experimental results on Vicuna models using MT-Bench and Spec-Bench demonstrate that Amphista achieves substantial acceleration while maintaining generation quality. On MT-Bench, Amphista delivers up to **2.75×** speedup over vanilla autoregressive decoding and **1.40×** over Medusa on Vicuna 33B in wall-clock time.

2024

pdf bib
银瞳:基于自适应语义空间学习的中文金融多任务大模型(SilverSight: A Multi-Task Chinese Financial Large Language Model Based on Adaptive Semantic Space Learning)
Yuhang Zhou (周宇航) | Zeping Li (李泽平) | Siyu Tian (田思雨) | Yuchen Ni (倪雨琛) | Jian Zhang (张健) | Xiang Liu (刘响) | Guangnan Ye (叶广楠) | Jie Wu (吴杰) | Hongfeng Chai (柴洪峰)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“大语言模型正逐渐被用于各种垂直领域,利用其广泛的知识储备来赋能领域中的多种场景。然而,各领域拥有多种待学习的特定任务,且多源异构的领域数据容易引发模型进行任务迁移时的冲突。基于此,本研究提出自适应语义空间学习框架,利用对语义空间内数据的自适应重分布,提升多专家模型的性能及选择效果,并基于此框架训练了一个金融多任务大模型“银瞳”。研究结果表明,我们的框架只需利用10%的数据就能达到接近全数据训练的效果,并拥有较强的泛化表现。”