2025
pdf
bib
abs
Jailbreaking? One Step Is Enough!
Weixiong Zheng
|
Peijian Zeng
|
YiWei Li
|
Hongyan Wu
|
Nankai Lin
|
Junhao Chen
|
Aimin Yang
|
Yongmei Zhou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) excel in various tasks but remain vulnerable to jailbreak attacks, where adversaries manipulate prompts to generate harmful outputs. Examining jailbreak prompts helps uncover the shortcomings of LLMs. However, current jailbreak methods and the target model’s defenses are engaged in an independent and adversarial process, resulting in the need for frequent attack iterations and redesigning attacks for different models. To address these gaps, we propose a Reverse Embedded Defense Attack (REDA) mechanism that disguises the attack intention as the “defense”. intention against harmful content. Specifically, REDA starts from the target response, guiding the model to embed harmful content within its defensive measures, thereby relegating harmful content to a secondary role and making the model believe it is performing a defensive task. The attacking model considers that it is guiding the target model to deal with harmful content, while the target model thinks it is performing a defensive task, creating an illusion of cooperation between the two. Additionally, to enhance the model’s confidence and guidance in “defensive” intentions, we adopt in-context learning (ICL) with a small number of attack examples and construct a corresponding dataset of attack examples. Extensive evaluations demonstrate that the REDA method enables cross-model attacks without the need to redesign attack strategies for different models, enables successful jailbreak in one iteration, and outperforms existing methods on both open-source and closed-source models.
pdf
bib
abs
Rethinking Vocabulary Augmentation: Addressing the Challenges of Low-Resource Languages in Multilingual Models
Nankai Lin
|
Peijian Zeng
|
Weixiong Zheng
|
Shengyi Jiang
|
Dong Zhou
|
Aimin Yang
Proceedings of the 31st International Conference on Computational Linguistics
The performance of multilingual language models (MLLMs) is notably inferior for low-resource languages (LRL) compared to high-resource ones, primarily due to the limited available corpus during the pre-training phase. This inadequacy stems from the under-representation of low-resource language words in the subword vocabularies of MLLMs, leading to their misidentification as unknown or incorrectly concatenated subwords. Previous approaches are based on frequency sorting to select words for augmenting vocabularies. However, these methods overlook the fundamental disparities between model representation distributions and frequency distributions. To address this gap, we introduce a novel Entropy-Consistency Word Selection (ECWS) method, which integrates semantic and frequency metrics for vocabulary augmentation. Our results indicate an improvement in performance, supporting our approach as a viable means to enrich vocabularies inadequately represented in current MLLMs.
2024
pdf
bib
abs
基于上下文学习的空间语义理解
Hongyan Wu (武洪艳)
|
Nankai Lin (林楠铠)
|
Peijian Ceng (曾培健)
|
Weixiong Zheng (郑伟雄)
|
Shengyi Jiang (蒋盛益)
|
Aimin Yang (阳爱民)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
“空间语义理解任务致力于使语言模型能够准确解析和理解文本中描述的物体间的空间方位关系,这一能力对于深入理解自然语言并支持复杂的空间推理至关重要。本文聚焦于探索大模型的上下文学习策略在空间语义理解任务上的有效性,提出了一种基于选项相似度与空间语义理解能力相似度的样本选择策略。本文将上下文学习与高效微调融合对开源模型进行微调,以提高大模型的空间语义理解能力。此外,本文尝试结合开源模型和闭源模型的能力处理不同类型的样本。实验结果显示,本文所采用的策略有效地提高了大模型在空间语义理解任务上的性能。”
pdf
bib
abs
IndoCL: Benchmarking Indonesian Language Development Assessment
Nankai Lin
|
Hongyan Wu
|
Weixiong Zheng
|
Xingming Liao
|
Shengyi Jiang
|
Aimin Yang
|
Lixian Xiao
Findings of the Association for Computational Linguistics: EMNLP 2024
Recently, the field of language acquisition (LA) has significantly benefited from natural language processing technologies. A crucial task in LA involves tracking the evolution of language learners’ competence, namely language development assessment (LDA). However, the majority of LDA research focuses on high-resource languages, with limited attention directed toward low-resource languages. Moreover, existing methodologies primarily depend on linguistic rules and language characteristics, with a limited exploration of exploiting pre-trained language models (PLMs) for LDA. In this paper, we construct the IndoCL corpus (Indonesian Corpus of L2 Learners), which comprises compositions written by undergraduate students majoring in Indonesian language. Moreover, we propose a model for LDA tasks, which automatically extracts language-independent features, relieving laborious computation and reliance on specific language. The proposed model uses sequential information attention and similarity representation learning to capture the differences and common information from the first-written and second-written essays, respectively. It has demonstrated remarkable performance on both our self-constructed corpus and publicly available corpora. Our work could serve as a novel benchmark for Indonesian LDA tasks. We also explore the feasibility of using existing large-scale language models (LLMs) for LDA tasks. The results show significant potential for improving LLM performance in LDA tasks.