Shi Yu

Also published as:


2025

pdf bib
RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
Kunlun Zhu | Yifan Luo | Dingling Xu | Yukun Yan | Zhenghao Liu | Shi Yu | Ruobing Wang | Shuo Wang | Yishan Li | Nan Zhang | Xu Han | Zhiyuan Liu | Maosong Sun
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-Augmented Generation (RAG) is a powerful approach that enables large language models (LLMs) to incorporate external knowledge. However, evaluating the effectiveness of RAG systems in specialized scenarios remains challenging due to the high costs of data construction and the lack of suitable evaluation metrics. This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios by generating high-quality documents, questions, answers, and references through a schema-based pipeline. With a focus on factual accuracy, we propose three novel metrics—Completeness, Hallucination, and Irrelevance—to evaluate LLM-generated responses rigorously. Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples. Furthermore, the use of LLMs for scoring the proposed metrics demonstrates a high level of consistency with human evaluations. RAGEval establishes a new paradigm for evaluating RAG systems in real-world applications. The code and dataset are released at https://github.com/OpenBMB/RAGEval.

pdf bib
RankCoT: Refining Knowledge for Retrieval-Augmented Generation through Ranking Chain-of-Thoughts
Mingyan Wu | Zhenghao Liu | Yukun Yan | Xinze Li | Shi Yu | Zheni Zeng | Yu Gu | Ge Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-Augmented Generation (RAG) enhances the performance of Large Language Models (LLMs) by incorporating external knowledge. However, LLMs still encounter challenges in effectively utilizing the knowledge from retrieved documents, often being misled by irrelevant or noisy information. To address this issue, we introduce RankCoT, a knowledge refinement method that incorporates reranking signals in generating CoT-based summarization for knowledge refinement based on given query and all retrieval documents. During training, RankCoT prompts the LLM to generate Chain-of-Thought (CoT) candidates based on the query and individual documents. It then fine-tunes the LLM to directly reproduce the best CoT from these candidate outputs based on all retrieved documents, which requires LLM to filter out irrelevant documents during generating CoT-style summarization. Additionally, RankCoT incorporates a self-reflection mechanism that further refines the CoT outputs, resulting in higher-quality training data. Our experiments demonstrate the effectiveness of RankCoT, showing its superior performance over other knowledge refinement models. Further analysis reveals that RankCoT can provide shorter but effective refinement results, enabling the generator to produce more accurate answers. All code and data are available at https://github.com/NEUIR/RankCoT.

pdf bib
Multi-Modal Multi-Granularity Tokenizer for Chu Bamboo Slips
Yingfa Chen | Chenlong Hu | Cong Feng | Chenyang Song | Shi Yu | Xu Han | Zhiyuan Liu | Maosong Sun
Proceedings of the 31st International Conference on Computational Linguistics

This study presents a multi-modal multi-granularity tokenizer specifically designed for analyzing ancient Chinese scripts, focusing on the Chu bamboo slip (CBS) script used during the Spring and Autumn and Warring States period (771-256 BCE) in Ancient China. Considering the complex hierarchical structure of ancient Chinese scripts, where a single character may be a combination of multiple sub-characters, our tokenizer first adopts character detection to locate character boundaries. Then it conducts character recognition at both the character and sub-character levels. Moreover, to support the academic community, we assembled the first large-scale dataset of CBSs with over 100K annotated character image scans. On the part-of-speech tagging task built on our dataset, using our tokenizer gives a 5.5% relative improvement in F1-score compared to mainstream sub-word tokenizers. Our work not only aids in further investigations of the specific script but also has the potential to advance research on other forms of ancient Chinese scripts.

pdf bib
Craw4LLM: Efficient Web Crawling for LLM Pretraining
Shi Yu | Zhiyuan Liu | Chenyan Xiong
Findings of the Association for Computational Linguistics: ACL 2025

Web crawl is a main source of large language models’ (LLMs) pretraining data, but the majority of crawled web pages are discarded in pretraining due to low data quality. This paper presents Craw4LLM, an efficient web crawling method that explores the web graph based on the preference of LLM pretraining. Specifically, it leverages the influence of a webpage in LLM pretraining as the priority score of the web crawler’s scheduler, replacing the standard graph-connectivity-based priority. Our experiments on a web graph containing 900 million webpages from a commercial search engine’s index demonstrate the efficiency of Craw4LLM in obtaining high-quality pretraining data. With just 21% URLs crawled, LLMs pretrained on Craw4LLM data reach the same downstream performances of previous crawls, significantly reducing the crawling waste and alleviating the burdens on websites. Our code is publicly available at https://github.com/cxcscmu/Craw4LLM.

2024

pdf bib
Self-Guide:一种基于自我规划的大语言模型推理增强方法(Self-Guide: Enhancing LLM Reasoning Ability via Self-Plan)
Yibin Liu (刘艺彬) | Zhenghao Liu (刘正皓) | Yukun Yan (闫宇坤) | Shi Yu (于是) | Shuo Wang (王硕) | Liner Yang (杨麟儿) | Huimin Chen (陈慧敏) | Yu Gu (谷峪) | Ge Yu (于戈)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“尽管大语言模型在自然语言处理任务中取得显著进展,但其在复杂问题推理等领域还面临着认知负荷问题,即大语言模型在推理过程需要记忆并处理大量信息。因此,如何有效地减少语言模型推理过程中的认知负荷,缓解推理过程中可能出现的认知过载是一个亟待解决的问题。对此本文提出了Self-Guide方法,用于增强语言模型的推理能力。该方法通过指引大语言模型生成常识知识和推理指导,让语言模型基于自我规划来增强其推理能力,并通过与推理链结合的方式对模型的推理过程进行校准。与现有方法不同的是,本文在不对大语言模型进行微调或使用外部工具的情况下,显著提升了语言模型的推理性能。实验结果表明,Self-Guide方法在四种常见推理任务上性能显著优于基线方法,同时相比传统的推理链模型,Self-Guide方法在推理能力较弱的模型上也具有良好的泛化性能。通过结合大语言模型的自我规划和推理能力,Self-Guide方法为提升语言模型的推理能力提供了一种新的有效途径。”

pdf bib
Fusion-in-T5: Unifying Variant Signals for Simple and Effective Document Ranking with Attention Fusion
Shi Yu | Chenghao Fan | Chenyan Xiong | David Jin | Zhiyuan Liu | Zhenghao Liu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Common document ranking pipelines in search systems are cascade systems that involve multiple ranking layers to integrate different information step-by-step. In this paper, we propose a novel re-ranker Fusion-in-T5 (FiT5), which integrates text matching information, ranking features, and global document information into one single unified model via templated-based input and global attention. Experiments on passage ranking benchmarks MS MARCO and TREC DL show that FiT5, as one single model, significantly improves ranking performance over complex cascade pipelines. Analysis finds that through attention fusion, FiT5 jointly utilizes various forms of ranking information via gradually attending to related documents and ranking features, and improves the detection of subtle nuances. Our code is open-sourced at https://github.com/OpenMatch/FiT5 . Keywords: document ranking, attention, fusion

2023

pdf bib
Augmentation-Adapted Retriever Improves Generalization of Language Models as Generic Plug-In
Zichun Yu | Chenyan Xiong | Shi Yu | Zhiyuan Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval augmentation can aid language models (LMs) in knowledge-intensive tasks by supplying them with external information. Prior works on retrieval augmentation usually jointly fine-tune the retriever and the LM, making them closely coupled. In this paper, we explore the scheme of generic retrieval plug-in: the retriever is to assist target LMs that may not be known beforehand or are unable to be fine-tuned together. To retrieve useful documents for unseen target LMs, we propose augmentation-adapted retriever (AAR), which learns LM’s preferences obtained from a known source LM. Experiments on the MMLU and PopQA datasets demonstrate that our AAR trained with a small source LM is able to significantly improve the zero-shot generalization of larger target LMs ranging from 250M Flan-T5 to 175B InstructGPT. Further analysis indicates that the preferences of different LMs overlap, enabling AAR trained with a single source LM to serve as a generic plug-in for various target LMs. Our code is open-sourced at https://github.com/OpenMatch/Augmentation-Adapted-Retriever.

pdf bib
Structure-Aware Language Model Pretraining Improves Dense Retrieval on Structured Data
Xinze Li | Zhenghao Liu | Chenyan Xiong | Shi Yu | Yu Gu | Zhiyuan Liu | Ge Yu
Findings of the Association for Computational Linguistics: ACL 2023

This paper presents Structure Aware Dense Retrieval (SANTA) model, which encodes user queries and structured data in one universal embedding space for retrieving structured data. SANTA proposes two pretraining methods to make language models structure-aware and learn effective representations for structured data: 1) Structured Data Alignment, which utilizes the natural alignment relations between structured data and unstructured data for structure-aware pretraining. It contrastively trains language models to represent multi-modal text data and teaches models to distinguish matched structured data for unstructured texts. 2) Masked Entity Prediction, which designs an entity-oriented mask strategy and asks language models to fill in the masked entities. Our experiments show that SANTA achieves state-of-the-art on code search and product search and conducts convincing results in the zero-shot setting. SANTA learns tailored representations for multi-modal text data by aligning structured and unstructured data pairs and capturing structural semantics by masking and predicting entities in the structured data. All codes are available at https://github.com/OpenMatch/OpenMatch.

2022

pdf bib
MIC: A Multi-task Interactive Curation Tool
Shi Yu | Mingfeng Yang | Jerrod Parker | Stephen Brock
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

This paper introduces MIC, a Multi-task Interactive Curation tool, a human-machine collaborative curation tool for multiple NLP tasks. The tool aims to borrow recent advances in literature to solve pain-points in real NLP tasks. Firstly, it supports multiple projects with multiple users which enables collaborative annotations. Secondly, MIC allows easy integration of pre-trained models, rules, and dictionaries to auto label the text and speed up the labeling process. Thirdly, MIC supports annotation at different scales (span of characters and words, tokens and lines, or document) and different types (free text, sentence labels, entity labels, and relationship triplets) with easy GUI operations.

pdf bib
Speech Aerodynamics Database, Tools and Visualisation
Shi Yu | Clara Ponchard | Roland Trouville | Sergio Hassid | Didier Demolin
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Aerodynamic processes underlie the characteristics of the acoustic signal of speech sounds. The aerodynamics of speech give insights on acoustic outcome and help explain the mechanisms of speech production. This database was designed during an ARC project ”Dynamique des systèmes phonologiques” in which the study of aerodynamic constraints on speech production was an important target. Data were recorded between 1996 and 1999 at the Erasmus Hospital (Hôpital Erasme) of Université Libre de Bruxelles, Belgium and constitute one of the few datasets available on direct measurement of subglottal pressure and other aerodynamic parameters. The goal was to obtain a substantial amount of data with simultaneous recording, in various context, of the speech acoustic signal, subglottal pressure (Ps), intraoral pressure (Po), oral airflow (Qo) and nasal airflow (Qn). This database contains recordings of 2 English, 1 Amharic, and 7 French speakers and is provided with data conversion and visualisation tools. Another aim of this project was to obtain some reference values of the aerodynamics of speech production for female and male speakers uttering different types of segments and sentences in French.

2021

pdf bib
Named Entity Recognition through Deep Representation Learning and Weak Supervision
Jerrod Parker | Shi Yu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2018

pdf bib
Sign Languages and the Online World Online Dictionaries & Lexicostatistics
Shi Yu | Carlo Geraci | Natasha Abner
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)