Jingshen Zhang


2024

pdf bib
Readability-guided Idiom-aware Sentence Simplification (RISS) for Chinese
Jingshen Zhang | Xinglu Chen | Xinying Qiu | Zhimin Wang | Wenhe Feng
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“Chinese sentence simplification faces challenges due to the lack of large-scale labeledparallel corpora and the prevalence of idioms. To address these challenges, we pro-pose Readability-guided Idiom-aware Sentence Simplification (RISS), a novel frameworkthat combines data augmentation techniques. RISS introduces two key components: (1)Readability-guided Paraphrase Selection (RPS), a method for mining high-quality sen-tence pairs, and (2) Idiom-aware Simplification (IAS), a model that enhances the compre-hension and simplification of idiomatic expressions. By integrating RPS and IAS usingmulti-stage and multi-task learning strategies, RISS outperforms previous state-of-the-artmethods on two Chinese sentence simplification datasets. Furthermore, RISS achievesadditional improvements when fine-tuned on a small labeled dataset. Our approachdemonstrates the potential for more effective and accessible Chinese text simplification.”

pdf bib
Multi-Error Modeling and Fluency-Targeted Pre-training for Chinese Essay Evaluation
Jingshen Zhang | Xiangyu Yang | Xinkai Su | Xinglu Chen | Tianyou Huang | Xinying Qiu
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“This system report presents our approaches and results for the Chinese Essay Fluency Evaluation (CEFE) task at CCL-2024. For Track 1, we optimized predictions for challenging fine-grained error types using binary classification models and trained coarse-grained models on the Chinese Learner 4W corpus. In Track 2, we enhanced performance by constructing a pseudo-dataset with multiple error types per sentence. For Track 3, where we achieved first place, we generated fluency-rated pseudo-data via back-translation for pretraining and used an NSP-based strategy with Symmetric Cross Entropy loss to capture context and mitigate long dependencies. Our methods effectively address key challenges in Chinese Essay Fluency Evaluation.”

pdf bib
Label Confidence Weighted Learning for Target-level Sentence Simplification
Xin Ying Qiu | Jingshen Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Multi-level sentence simplification generates simplified sentences with varying language proficiency levels. We propose Label Confidence Weighted Learning (LCWL), a novel approach that incorporates a label confidence weighting scheme in the training loss of the encoder-decoder model, setting it apart from existing confidence-weighting methods primarily designed for classification. Experimentation on English grade-level simplification dataset shows that LCWL outperforms state-of-the-art unsupervised baselines. Fine-tuning the LCWL model on in-domain data and combining with Symmetric Cross Entropy (SCE) consistently delivers better simplifications compared to strong supervised methods. Our results highlight the effectiveness of label confidence weighting techniques for text simplification tasks with encoder-decoder architectures.