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Abstract

Nonverbal communication (NVC) plays an in-
tegral role in human language, but studying
NVC in general is challenging because of its
broad scope and high variance in interpreta-
tion among individuals and cultures. However,
mime—the theatrical technique of suggest-
ing intent using only gesture, expression, and
movement—is a subset of NVC that consists
of explicit and embodied actions with much
lower human interpretation variance. We argue
that a solid understanding of mimed actions is
a crucial prerequisite for vision-language mod-
els capable of interpreting and commanding
more subtle aspects of NVC. Hence, we pro-
pose Mime Identification Multimodal Evalu-
ation (MIME), a novel video-based question
answering benchmark comprising of 86 mimed
actions. Constructed with motion capture data,
MIME consists of variations of each action with
perturbations applied to the character, back-
ground, and viewpoint for evaluating recog-
nition robustness. We find that both open-
weight and API-based vision-language models
perform significantly worse than humans on
MIME, motivating the need for increased re-
search for instilling more robust understanding
of human gestures.

1 Introduction

Nonverbal communication (NVC) — the use of
nonverbal cues such as gestures, facial expressions,
and body language to convey messages — is an
instrumental part of human language (Mehrabian,
1972; Poyatos, 1983; Stickley, 2011). NVC not
only serves as a crucial substitute to communi-
cation when verbal modes are limited (Friedman,
1979; Mast, 2007; Park et al., 2022; Shafique et al.,
2023; Karmakar and Sinha, 2024), but also makes
interaction engaging and natural (Kendon, 1967;
Duncan Jr, 1969; Ha et al., 2012; Xu et al., 2022),
and may even betray true intent that contradicts
what is verbally expressed (Mehrabian, 1972; Mc-

What action is this person miming?

Multiple ChoiceFree-form 

A: Playing harp 
B: Using phone 
C: Basketball shot
D: Playing guitar

VLM 🤖: B ❌
Human: C ✅

VLM 🤖: Catching
invisible ball ❌

Human: Shooting a
basketball ✅

Figure 1: Simplified illustration of a sample in MIME
shown with a few frames from a video of a 3D male
character miming a basketball shot in a living room.
Humans achieve almost perfect accuracy on identifying
mimed actions regardless of evaluation format, adver-
sarial perturbations, and the absence of salient context
(e.g., basketball, court, basketball outfit), while VLMs
struggle without salient context.

Neill, 1992; Eaves and Leathers, 2015). There-
fore, AI systems need to establish a thorough un-
derstanding of NVC for them to become more ac-
cessible and effective assistants to humans (Argyle
and Trower, 1979; Troshani et al., 2021).

Unfortunately, this is an overwhelming undertak-
ing considering the broad scope of NVC (Mehra-
bian, 1972; Eaves and Leathers, 2015), variabil-
ity in how individuals interpret and exhibit non-
verbal cues (Kita, 2009; Matsumoto and Hwang,
2013), and the limited capabilities of current vision-
language models (VLMs) (Radford et al., 2021; Xu
et al., 2021; Chen et al., 2024; Abdin et al., 2024;
Bai et al., 2023; Gemini, 2024; Tang et al., 2025).
Despite impressive achievements of VLMs on ac-
tion recognition benchmarks (Kong and Fu, 2022;
Wang et al., 2023; Qu et al., 2024), we find that
they cannot even reliably identify a subset of NVC



(1) Collect motion capture data
with Vicon

(2) Retarget to 3D character with
Blender

(3) Render animations with GPU
acceleration

(4) Overlay rendered frames over
background image

Figure 2: An overview of the pipeline for constructing MIME. (1) We first collect motion capture data of a mimed
action on a Vicon stage. (2) Then, a 3D character is retargeted to our motion capture data in Blender, a computer
graphics software. (3) Next, we render frames of the animation with a transparent background. (4) With frames
rendered with transparent backgrounds, we can easily overlay them over images of our choice.

that human adults without apraxia1 comprehend
with ease (O’Reilly, 1995): mime, the theatrical
technique of suggesting intent using only gesture,
expression, and movement. Compared to other gen-
eral gestures, many mimed actions are consistently
identified among humans, in part due to their direct
ties to physical movement and surfaces (O’Reilly,
1995; Alexanderson et al., 2017; van Nispen et al.,
2017; Little and Firestone, 2021). Therefore, we
propose studying whether VLMs can reliably rec-
ognize mimed actions as a foundational prerequi-
site towards the sophisticated comprehension of
the full spectrum of NVC.

To this end, we address the following research
questions: (i) Can VLMs reliably recognize mimed
actions? and (ii) If not, can we improve a VLM’s
performance on identifying mimed actions? For
the first research question, we construct Mime
Identification Multimodal Evaluation (MIME),2 a
novel video-based question answering benchmark
comprising of 86 mimed actions. We create MIME

using motion capture data and computer graphics
software, which enables us to create variations of
each action with perturbations applied to the char-
acter, background, and viewpoint for evaluating
recognition robustness (see Figure 1 for a sample
of MIME and corresponding human and VLM pre-
dictions). On MIME, humans achieve almost 100%
accuracy, regardless of adversarial perturbations
and evaluation format. However, VLMs, open-
weight models and API-based black-box models
alike, only achieve at most 52.3% accuracy in a
multiple choice format where contextual informa-

1A neurological disorder that disrupts the ability to plan
and execute purposeful movements, despite having the physi-
cal ability to do so.

2Data and code for MIME is available https://
justin-cho.com/mime.

tion is provided by the answer choices and at most
19.8% with a free-from short answers format. Ac-
curacy is even lower for videos with adversarial per-
turbations, for which all evaluated models achieve
less than 10%. On the other hand, their perfor-
mance is significantly boosted when provided a
background that is contextually relevant (e.g., bas-
ketball court for mime of basketball shot).

To answer the second research question, we con-
duct a preliminary exploration into whether exist-
ing methods can bridge this shortcoming. Specifi-
cally, we experiment with Chain of Thought (Wei
et al., 2022), few-shot in-context learning, and fine-
tuning with a subset of MIME. We find that the only
method that consistently improves model perfor-
mance over zero-shot is few-shot in-context learn-
ing for API-based black-box models, but their re-
sults remain significantly worse than human perfor-
mance. A manual inspection into the descriptions
of the mimed actions generated by using Chain
of Thought with Gemini 1.5 Flash reveal that the
majority of failure cases is due to incorrect obser-
vations of the demonstrated gestures (80%) and
a smaller portion is from incorrectly interpreting
correctly generated descriptions (15%). In conclu-
sion, our findings with MIME motivate research
that instills a more robust understanding of human
gestures in VLMs for establishing an essential foun-
dation for NVC comprehension.

2 MIME

In this section, we describe the data collection
pipeline for MIME. An overview is shown in Fig-
ure 2. MIME is a video-based question answer-
ing benchmark that comprises of animations of
86 mimed actions, each with ten variants that are
shown in Figure 3, resulting in a total of 860 eval-

https://justin-cho.com/mime
https://justin-cho.com/mime


(a) Base + blank (0°) (b) Base + blank (90°)

(f) Base + blank (180°) (g) Base + blank (270°)

(c) Woman + blank (0°)

(h) 😈 + blank (0°)

(d) Base + =background (0°) (e) Base + ≠background (0°)

(i) 😈 + =background (0°) (j) 😈 + ≠background (0°)

Figure 3: Overview of variations of each action in MIME. Our setup of using motion capture and computer graphics
software allows us to flexibly permute different configurations for each action to ablate the robustness of a VLM’s
understanding of mimed actions. (a,b,f,g) are examples of the same animation but with changes to the camera
angle where different body parts become occluded depending on the angle. (c) and (h) only change the character
from (a). (c) is a female human character while (h) is an adversarial character in a sci-fi spacesuit. (d) and
(i) are variants of (a) and (h) respectively with aligned backgrounds (=background, e.g., basketball court for
basketball-related action) while (e) and (j) have adversarial backgrounds ( ̸=background, e.g., living room).

uation samples. The videos are rendered with 3D
graphics software by combining digital assets with
motion capture data of actors miming various ac-
tions. This setup is advantageous to alternative
methods3 for conducting a systematic study of
recognition robustness with regards to various com-
ponents that comprise an action as each action can
be post-processed and remixed with different back-
grounds, characters, and camera angles.

2.1 Collecting Motion Capture Data

First, we brainstorm 75 mimed action candidates
for which salient context is missing. For example,
playing a violin is a valid candidate because it is
acted out without a violin and swimming is also
valid because it is acted out without being in water,
and both mimed actions are understood by human
subjects. On the other hand, we exclude gestures
such as hand-waving or thumbs-up as no salient
context is missing in their enactment.

Next, we have two actors (one male nonprofes-
sional actor and one female professional actor) act
out these action candidates with three takes each.
Each take introduces some variance of the same
acts if there are multiple ways to perform them
(e.g., swimming can be done with front stroke, back

3We discuss challenges with alternative methods, such
as using live action footage and video generation models in
Appendix F.

stroke, etc. and pushing can be done with various
intensity) and if they are clearly distinct, multi-
ple takes of the same action are kept. For more
complex actions such as shot putting, the actors
reference YouTube videos of professional athletes.

Only the motion capture data for which at least
two out of three authors assign the same label to
the final rendered output without seeing the action
name are included in MIME. This process results
in 47 action types and 86 mimed action samples.
Additional technical details of our motion capture
process is described in Appendix A.1.

2.2 Creating Blender Files

Motion capture data is imported into Blender and
combined with digital assets to render frames with
a transparent background so that they can be eas-
ily overlaid over our background of choice later
without redundant rendering.

To efficiently combine various characters with
a large number of motion capture data together,
we write a Python-based macro that automates the
process of creating blender files to be rendered.
The result of the macro is shown in (2) of Figure 2.
The detailed steps that our script automates are
elaborated in Appendix A.2.



2.3 Rendering with Variations

Characters We use free 3D characters from Mix-
amo.4 For the base setting of MIME, we use a male
human character with casual clothes. To evaluate
for mime recognition robustness with regards to
the character, we also render with an adversarial
character that is wearing a sci-fi spacesuit (shown
in (h,i,j) in Figure 3. While we may choose even
more adversarial characters that look less human
to create a more challenging variant, we find that
not all motion capture data is compatible for char-
acters with largely diverging body proportions as
the mimed action can become unrecognizable due
to different body parts overlapping one another.

To test for a VLM’s robustness to the character’s
gender, we also render with a female human char-
acter with casual clothes. The female character that
we use is illustrated in (c) in Figure 3.

Backgrounds We use images from Creative
Commons licensed images from Wikimedia5 as
aligned and misaligned backgrounds (e.g., (d,i)
and (e,j) in Figure 3, respectively). We do our
best to find images for which the background pro-
vides a large open space in the middle so that the
full action sequence does not look awkward and
the character does not appear disproportionately
large or small.6

Angle To test robustness to viewpoints of the ob-
served mimed action, we also render videos with
various angles by rotating the camera with the
character at the center. We select angles of 90°,
180°, and 270° rotations applied to the base setting.
These are shown in (b,f,g) in Figure 3.

3 Experimental Setup

3.1 Evaluation Format

Prior work examine mime recognition under two
different question answering conditions, the choice
condition and naming condition (Osiurak et al.,
2012; van Nispen et al., 2017), as the results be-
tween the two can differ significantly. The choice
condition provides answer choices, which in effect

4https://www.mixamo.com
5https://commons.wikimedia.org/
6While most images fulfill this criteria, there are a few

for which it was not feasible to scale or crop properly so that
the character ends up disproportionately large, such as the
example shown in Figure 6 in Appendix D. However, we find
this not to be an issue for humans to correctly identify the
mimed action, and therefore consider reasonable evaluation
samples and keep them in MIME.

supplies contextual information, while the latter re-
quires answering directly without any choices and
is therefore more challenging and leads to lower
agreement. Therefore, we construct MIME so that
it evaluates VLMs with both of these conditions.
We elaborate on the setup for each condition in the
following.

Choice condition: multiple choice (MC) This
is the best setting for computing accuracy as it can
be done with exact match, but performance is de-
pendent on how confusing the distractors are. Our
multiple choice setup has four options to choose
from and the distractors are selected by randomly
sampling from other action labels that are included
in MIME after removing the top 10 that have high-
est cosine similarities when compared with sen-
tence embeddings (Reimers and Gurevych, 2019).7

While this may make the multiple choice setup eas-
ier, it simplifies evaluation by preventing instances
where there are multiple valid answers.

Naming condition: Free-form short answers
(FF) In order to test model performance when
it is not provided any context from the multiple
choice options, we also assess their performance
with a free-form short answer format. To as-
sess the reference-based accuracy of our freeform
answers, we adopt a single sentence-embedding
cosine-similarity-based metric, effectively a relax-
ation of BertScore (Zhang et al., 2019), which is
popular in VLM question answering-based evalua-
tion of text-image similarity (Hu et al., 2023; Saxon
et al., 2024). We use a sentence transformers model,
the same one used for selecting distractors in the
multiple choice format, to produce sentence-level
embeddings of the generated free-form answers
and gold labels, and use a heuristically-selected
cosine similarity threshold of 0.5 to mark an an-
swer as correct. While we find these to return a few
false positives (e.g., baseball swing given credit
for baseball pitch) and false negatives (e.g., pulling
not given credit for dragging), we find these to be
a small subset that does not significantly shift the
overall performance of a model.

3.2 Models

We evaluate a comprehensive set of open- and
closed-source VLMs with MIME to get a gen-
eral understanding of whether VLMs can identify
mimed activities.

7sentence-transformers/all-MiniLM-L6-v2

https://www.mixamo.com
https://commons.wikimedia.org/


Mime Real

Figure 4: A frame from videos of deadlifting from
MIME (left) and REAL (right). In MIME, salient context
is missing (e.g., barbell and gym clothing).

For open-source models, we evaluate on (i)
Qwen 2.5 VL Instruction (Bai et al., 2025), both
3B and 7B versions, (ii) InternVL 2.5 8B Instruct
(Chen et al., 2024), (iii) Phi 3.5 VL Instruction,
which is a 4.2B model released by Microsoft (Ab-
din et al., 2024). For closed-soure models, we eval-
uate on (iv) Gemini 1.5 Flash from Google (Gem-
ini, 2024) and (v) GPT-4o Mini from OpenAI.8 For
our first set of results, we use a zero-shot setting
where the models are asked to directly predict the
answer based on the video without any examples
or reasoning steps. Our zero-shot prompt for mul-
tiple choice and free-form formats are shown in
Appendix B.

3.3 Human Evaluation

We measure human performance on MIME to en-
sure that MIME is a tractable benchmark that hu-
mans perform well on and also confirm prior re-
search that mimed action has low interpretation
variability among humans (O’Reilly, 1995; Alexan-
derson et al., 2017; van Nispen et al., 2017; Little
and Firestone, 2021). We recruit 60 internal partic-
ipants from the University of Southern California’s
Viterbi School of Engineering. They cover a wide
demographic with eight unique nationalities, ages
ranging from early 20s to mid 40s, and a 6:4 ratio
of men to women. Although most are located in
the same city, we believe their diverse international
backgrounds provide a reasonable representation of
general human performance. Each sample across
all variations in MIME is completed by three par-
ticipants. We share further detail on our human
evaluation setup in Appendix D.

8gpt-4o-mini-2024-07-18, https://platform.
openai.com/docs/models/gpt-4o-mini

3.4 REAL

We ground the performance on MIME by measur-
ing the performance on recognizing actions from
live action footage (i.e., video created through tra-
ditional filmmaking techniques, capturing real ac-
tors, props, sets, and locations.) of the same set
of actions in MIME. We collect a set of royalty-
and copyright-free videos of such footage sourced
from Pexels9 and call it REAL. An example of
a video from REAL and its corresponding sam-
ple in MIME is shown side by side in Figure 4.
REAL functions as a control dataset that estimates a
VLMs understanding of the actions that are mimed
in MIME when all reasonable salient context is
present. Therefore, the gap between performance
on REAL and MIME serves as a proxy in the lack
of generalizability in the understanding of the ac-
tion to the understanding of its mimed counterpart.
Note that while MIME contains 86 total mimed ac-
tions with multiple variations of the same activity,
we only find one for each in REAL, and therefore
REAL consists of 47 videos.

4 Results

4.1 MIME vs REAL

Humans understand actions and their mimed
counterparts equally well, while VLMs struggle
significantly for the latter. First, we share our
results with the models mentioned in Section 3.2
on the base setting of MIME ((a) in Figure 3) and
REAL in Figure 5.

Results on REAL clearly indicate that all VLMs
are able to identify actions when all of the salient
context is present (e.g., doing a deadlift in a gym
with a barbell while wearing gym attire), achieving
almost perfect scores for the MC while showing
only a minor drop for the FF. This is on par with
human performance.

However, on MIME, VLM performance drops
sharply, while human performance remains consis-
tent, with only a 0.4% drop in MC while there is a
boost for FF by 12.3%. Upon manual inspection,
we find that this is not because human performance
is worse with live action footage, but rather because
humans are more descriptive in their responses for
FF for REAL and this produces more false nega-
tives. Gemini 1.5 Flash shows the strongest perfor-
mance, but even its accuracy is slightly over 50%
in MC and less than 20% in FF.

9https://www.pexels.com/

https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o-mini
https://www.pexels.com/


0 20 40 60 80 100

Human

Gemini 1.5 Flash

GPT-4o Mini

InternVL2.5 (8B)

Phi-3.5

Qwen2.5 VL (7B)

Qwen2.5 VL (3B)

100%
99.6%

100%
52.3%

97.8%
41.9%

97.8%
31.4%

93.5%
29.1%

100%
39.5%

100%
34.9%

Multiple Choice (MC)

0 20 40 60 80 100

77.2%
89.5%

95.7%
19.8%

91.3%
11.6%

82.6%
2.3%

67.4%
2.3%

84.8%
5.8%

73.9%
2.3%

Free-form (FF)

Accuracy (%) REAL MIME

Figure 5: Performance comparison on the base setting of MIME and on the REAL dataset. Humans show equally
strong performance on both MIME and REAL. VLMs struggle with MIME while achieving comparative performance
on REAL, which suggests they lack a robust understanding of human actions.

Model Base + blank Base + =back. Base + ̸=back. + blank + =back. + ̸=back.

MC FF MC FF MC FF MC FF MC FF MC FF

Qwen 2.5 VL (3B) 34.9 2.3 61.6 30.2 27.9 0.0 30.2 1.2 60.5 29.1 24.4 0.0
Qwen 2.5 VL (7B) 39.5 5.8 68.6 38.4 32.6 1.2 34.9 0.0 64.0 30.2 30.2 0.0
Phi 3.5 29.1 2.3 73.3 27.9 31.4 8.1 44.2 0.0 72.1 27.9 36.1 5.8
InternVL2.5 8B 31.4 2.3 57.0 26.7 22.1 2.3 25.6 2.3 59.3 20.9 30.2 2.3

GPT-4o Mini 41.9 11.6 66.3 39.5 37.2 3.5 33.7 8.1 67.4 33.7 36.1 2.3
Gemini 1.5 Flash 52.3 19.8 68.6 51.2 37.2 12.8 44.2 8.1 75.6 46.5 36.1 3.5

Human 99.6 89.5 98.5 89.2 99.2 93.4 98.5 93.8 99.2 94.1 99.2 95.0

Table 1: Evaluation results on MIME for various perturbations. We use the same notations as Figure 3, with back.
used as a shorthand for background. Refer to Figure 3 to view samples of each variation. Humans are robust to all
variations, but VLMs drop performance for adversarial perturbations and get a significant boost when exposed to
signals from the background that are aligned with the action.

4.2 Character and Background Variations

Humans demonstrate similar performance
across all variations, while VLMs benefit from
contextual hints and suffer from adversarial per-
turbations. The main advantage of MIME is the
flexibility to swap out components of the anima-
tions in order to conduct ablation studies that shed
light on the nature of the VLMs shortcomings.

We apply the perturbations shown in Figure 3 to
test how performance is affected when the character
and backgrounds are changed. Results from these
perturbations with zero-shot are shown in Table 1.

The most noticeable result from this table is that
the aligned background significantly boosts per-
formance, even when the character is adversarial.
With the direct opposite effect, changing the back-
ground to an adversarial one seriously harms per-
formance for most models, but interestingly less so
for the open-weight models. Interestingly, humans
are extremely robust to all of the given perturba-
tions, maintaining almost perfect scores on all MC
settings while scoring at least 89.5% in the FF set-

tings. These results indicate that while humans are
able to ignore irrelevant information and focus on
the actions themselves, VLMs rely on other hints
about the action present in the scene. These results
are in line with the resuls on REAL.

4.3 Angle and Gender Variations

VLMs demonstrate higher variance across an-
gle and gender variations than humans. Next,
we share results with various angle perturbations
to observe whether VLMs are viewpoint-agnostic
for identifying mime. We see that humans clearly
are consistent in this setting as well, as shown by
the small variance in scores in the last row of Ta-
ble 2. For the most part, MIME is challenging
such that performance remains low regardless of
the angle and there is no clearly preferred angle
shared by VLMs. However, for MC, the variance
in accuracy is much larger for VLMs than humans,
another indication of a lack of robustness in VLMs
in comparison to humans.

Lastly, although our dataset has been verified as



Model Eval Rotation Angle Avg. Std. ↓
0° 90° 180° 270°

Qwen 2.5 VL
(3B)

MC 34.9 34.9 32.6 32.6 33.7 1.2
FF 2.3 1.2 0.0 1.2 1.2 0.8

Qwen 2.5 VL
(7B)

MC 39.5 39.5 50.0 43.0 43.0 4.3
FF 5.8 7.0 3.5 8.1 6.1 1.7

Phi 3.5
MC 29.1 31.4 33.7 33.7 32.0 1.9
FF 2.3 5.8 3.5 3.5 3.8 1.3

InternVL2.5
(8B)

MC 31.4 36.0 33.7 37.2 34.6 2.2
FF 2.3 7.0 7.0 4.7 5.2 1.9

GPT-4o Mini
MC 41.9 47.7 43.0 47.7 45.1 2.6
FF 11.6 15.1 13.9 13.9 13.7 1.3

Gemini 1.5
Flash

MC 52.3 47.7 52.3 53.5 51.5 2.2
FF 19.8 18.6 17.4 23.3 19.8 2.2

Human
MC 99.6 98.8 98.8 98.7 99.0 0.4
FF 89.5 95.0 90.7 85.1 90.1 3.5

Table 2: Performance on MIME for varying angles. For
MC, relative to human performance, model performance
varies largely depending on the viewpoint angle.

easily identifiable for humans by evaluators that
span a balanced distribution across genders, we are
interested in whether VLMs have any underlying
gender biases that may affect their performance.
Therefore, we only change the character to a fe-
male character and compare results. These results
are shown in Table 3. As is the case in the angle
variations, we also observe a lack of robustness in
VLMs from the larger performance differences in
the VLMs compared to that of humans. On a posi-
tive note, we do not observe a consistent preference
for a particular gender by the VLMs.

5 Improving on MIME

Given the poor performance of VLMs on MIME,
we are interested in whether simple methods can
surface VLMs’ potential to understand mimed ac-
tions. In this section, we discuss our attempts to
improve their performance via such methods.

5.1 Methods

The methods that we explore are the following: (i)
Chain-of-Thought (CoT) is a method of produc-
ing a reasoning chain before making a final judge-
ment. We ask the model to describe what it sees
in detail and then provide its prediction (Wei et al.,
2022). (ii) Few-shot in-context learning (Few-
shot): For models that support few-shot in-context
learning, we select three samples from the base
configuration of MIME with minimal overlap in en-
acted actions (shooting a soccer ball, fishing, play-
ing violin) and provide them as in-context exam-
ples that the models can leverage to improve their
predictions on the remaining samples. (iv) Fine-

Model Method
MC FF

♂ ♀ ∆ ↓ ♂ ♀ ∆ ↓

Qwen2.5 VL
(3B)

Zero-shot 34.9 29.1 5.8 2.3 1.2 1.1
CoT 43.0 37.2 5.8 0.0 2.3 2.3

Qwen2.5 VL
(7B)

Zero-shot 39.5 41.9 2.4 5.8 9.3 3.5
CoT 41.9 46.5 4.6 8.1 10.5 2.4

Phi-3.5
Zero-shot 29.1 34.9 5.8 2.3 2.3 0.0
CoT 41.9 33.7 8.2 4.7 2.3 2.4

InternVL2.5
(8B)

Zero-shot 31.4 33.7 2.3 2.3 5.8 3.5
CoT 25.6 24.4 1.2 1.2 5.8 4.6

GPT-4o Mini
Zero-shot 41.9 44.2 2.3 11.6 12.8 1.2
CoT 43.0 53.5 10.5 16.3 10.5 5.8
Few-shot 74.4 65.1 9.3 9.3 10.5 1.2

Gemini 1.5
Flash

Zero-shot 52.3 47.7 4.6 19.8 20.9 1.1
CoT 54.6 52.3 2.3 22.1 19.8 2.3
Few-shot 57.0 59.3 2.3 13.9 22.1 8.2

Human - 99.6 98.5 1.1 89.5 90.3 0.8

Table 3: Performance comparison on MIME for gender
variations. ∆ is shown in blue if♂− ♀≥ 0 and in orange
otherwise. Similar to angle variation results, results for
VLMs vary largely depending on the gender without a
consistent performance advantage of a certain gender,
while human performance is consistent.

tuning: Lastly, we experiment with fine-tuning to
see if fine-tuning on a small amount of data con-
taining mimed actions can help models generalize
to unseen ones. Since MIME only contains 86 sam-
ples in total per configuration, we fine-tune (FT)
our model using a 5-fold validation approach with
a 36/14/36 train/validation/test split. The details
of these splits are present in Appendix C. Fine-
tuning is conducted separately for each task type
(free-form, and multiple choice). Due to limited
compute, we limit our fine-tuning experiments to
the base configuration and + blank background
configuration ((a) and (h) in Figure 3) and the
Qwen 2.5 VL (3B, 7B) models and Phi 3.5 (4.2B).
Refer to Appendix B for the few-shot and CoT
prompts and Appendix C for further details of our
fine-tuning setup.

5.2 Improvement Results

The main results of these preliminary methods are
shown in Table 4. We observe that, apart from
the API-based black box models, most methods do
not lead to consistent and significant improvements
over the results from zero-shot. One noticeable
improvement is that of GPT-4o Mini when it is
given few-shot examples, where results on most
variations are boosted to over 50% for MC. While
a smaller boost, we see a similar trend for Gemini
1.5 Flash. However, the performance for most cases
still remain very low for FF, indicating that they
continue to struggle without contextual information.



Model Method Base & blank Base & =back. Base & ̸=back. & blank & =back. & ̸=back.

MC FF MC FF MC FF MC FF MC FF MC FF

Qwen 2.5 VL
(3B)

Zero-shot 34.9 2.3 61.6 30.2 27.9 0.0 30.2 1.2 60.5 29.1 24.4 0.0
CoT 43.0 0.0 57.0 25.6 27.9 0.0 29.1 0.0 58.1 22.1 25.6 0.0
FT† 31.6 0.0 - - - - 22.0 0.0 - - - -

Qwen 2.5 VL
(7B)

Zero-shot 39.5 5.8 68.6 38.4 32.6 1.2 34.9 0.0 64.0 30.2 30.2 0.0
CoT 41.9 8.1 62.8 37.2 31.4 3.5 27.9 0.0 61.6 17.4 26.7 1.2
FT† 36.8 0.0 - - - - 25.0 0.0 - - - -

Phi 3.5
(4.2B)

Zero-shot 29.1 2.3 73.3 27.9 31.4 8.1 44.2 0.0 72.1 27.9 36.1 5.8
CoT 41.9 4.7 64.0 30.2 24.4 1.2 31.4 1.2 59.3 30.2 33.7 2.3
FT† 26.3 0.0 - - - - 22.0 0.0 - - - -

InternVL2.5
(8B)

Zero-shot 31.4 2.3 57.0 26.7 22.1 2.3 25.6 2.3 59.3 20.9 30.2 2.3
CoT 25.6 1.2 60.5 23.3 32.6 2.3 26.7 1.2 52.3 15.1 23.3 0.0

GPT-4o Mini
Zero-shot 41.9 11.6 66.3 39.5 37.2 3.5 33.7 8.1 67.4 33.7 36.1 2.3

CoT 43.0 16.3 73.3 47.7 44.2 8.1 44.2 4.7 65.1 38.4 36.1 1.2
Few-shot† 74.4 9.3 94.2 39.5 52.3 0.0 70.9 2.3 89.5 40.7 59.3 0.0

Gemini 1.5
Flash

Zero-shot 52.3 19.8 68.6 51.2 37.2 12.8 44.2 8.1 75.6 46.5 36.1 3.5
CoT 54.7 22.1 69.8 48.8 40.7 11.6 48.8 9.3 74.4 51.2 41.9 7.0

Few-shot† 57.0 14.0 72.1 41.9 46.5 10.5 48.8 4.7 77.9 39.5 44.2 0.0

Human - 99.6 89.5 98.5 89.2 99.2 93.4 98.5 93.8 99.2 94.1 99.2 95.0

Table 4: Results for various methods to improve performance on MIME. The table follows the same format as
Table 1. †Refer to §5.1 for details on the experimental setup for few-shot and fine-tuning results for which the
number of evaluation samples is smaller. Accuracy is shown in blue for methods that is higher than the corresponding
zero-shot score and in orange otherwise.

Overall, our results demonstrate that there is ample
room for improvement for VLMs to acquire an
understanding of human gestures that is as robust
as those of humans.

5.3 Failure Mode Analysis

In order to understand where improvement opportu-
nities lie, we analyze the modes of failure by Gem-
ini 1.5 Flash with CoT on FF to examine the reason-
ing they generate for making predictions without
contextual hints provided by multiple choice op-
tions. The reasoning serves as a proxy of what the
VLM observes and thus analyzing it can surface
the point of failure that needs to be corrected. We
want to know whether the models fail to correctly
describe the shown action or whether they can ac-
curately describe it but cannot interpret it as the
intended mimed action, and also how much they
are affected by the aligned and misaligned back-
grounds. We manually categorize the modes of
failure for predictions of the first three columns in
Table 4 (i.e., using the base character with blank,
aligned, and misaligned backgrounds).

We find that, with the blank background, Gem-
ini 1.5 Flash generates a description of the shown
mimed action that is only partially correct 54%
of the time and completely incorrect 16% of the
time (e.g., They wind up their arm as if holding

a ball, then perform a throwing motion with their
arm and hand extending forward for arm curls). In
13% of instances, the description is correct, but it
is interpreted incorrectly, leading to an incorrect
prediction (e.g., predicts bowling a ball after gener-
ating They start with a wind-up motion, bringing
their arm back, then swing forward as if releasing
a ball for baseball pitch). When shown an aligned
background, 43% of predictions that were incorrect
with the blank background become correct predic-
tions. With the misaligned background, 24% of
all predictions are confused by irrelevant context
provided by the background (e.g., predicts conduct-
ing an orchestra for climbing given a concert hall
background), which leads to a drop in proportion of
predictions that had completely or partially correct
descriptions of the shown mimed action.10

6 Related Work

6.1 Nonverbal Communication

One major branch of NVC research leverages NVC
to enhance predictions for a downstream task, such

10We share the full statistics and more examples of each
mode of failure in Appendix E. Other VLMs also show sim-
ilar failure patterns, with most instances of failure caused
by partial or completely incorrect descriptions of the mimed
actions. Overall, these results indicate that future research
should prioritize training VLMs that can accurately describe
the human gestures they observe.



as using posture, prosodic features, and facial ex-
pressions to predict dialogue acts (Sridhar et al.,
2009; Boyer et al., 2011; Ha et al., 2012), gaze,
head movement, and breath patterns to detect turn-
taking and engagement behavior (Jokinen, 2010;
Ishii et al., 2013, 2014, 2015, 2016a,b), visual in-
formation and motion capture data for emotion
representations and predictions (Busso et al., 2008;
Zhang et al., 2023). There are a few prior work that
seeks to predict NVC with gestures, but they are
constrained to those expressed with limited body
parts, such as hands for hand gestures (Burke and
Lasenby, 2015; Kapitanov et al., 2024) or sign lan-
guage (Papastratis et al., 2021; Kezar et al., 2023).
Others use verbal signals to predict or generate
NVC, usually in the context of developing realistic
virtual agents (Graf et al., 2002; Busso et al., 2007)
or robots (Shamsuddin et al., 2011; Sakai et al.,
2015; Cass et al., 2018), such as using dialogue
acts and affective information to predict nods (Lee
and Marsella, 2010; Ishii et al., 2018). In contrast,
MIME examines whether machine learning models
have a robust understanding of explicit full-body
gestures, a fundamental prerequisite to compre-
hending more variable and subtle gestures in the
full spectrum of NVC, by evaluating whether they
can identify mimed actions — a subset of NVC
with low interpretation variability.

6.2 Action Recognition

While mimed action understanding is an instrumen-
tal step towards general NVC understanding, it is
also highly related to action understanding. Many
datasets exist for evaluating whether machine learn-
ing models understand human actions (Kong and
Fu, 2022; Sun et al., 2022), with early work fo-
cused on sporting actions (Kuehne et al., 2011;
Soomro et al., 2012; Karpathy et al., 2014; Idrees
et al., 2017) and recent work expanding to a larger
scope and scale, including daily activities that are
crowdsourced (Sigurdsson et al., 2016; Damen
et al., 2018) and extracted from YouTube (Heilbron
et al., 2015; Xu et al., 2016; Krishna et al., 2017;
Kay et al., 2017; Sanabria et al., 2018; Zhou et al.,
2018; Miech et al., 2019; Weinzaepfel and Rogez,
2021), Tumblr (Li et al., 2016), Flickr (Anne Hen-
dricks et al., 2017), or movies (Torabi et al., 2015;
Rohrbach et al., 2015, 2017). Miech et al. (2020)
takes a step further to evaluate action recognition
robustness with a dataset that contains rare activ-
ities (e.g., blending phone and cutting keyboard).
While these datasets collectively cover more than

hundreds of different classes, none of them contain
mimed actions. As such, even if VLMs perform
well on these datasets, it is unclear whether they
have a robust understanding of complex human
body motions or if they are relying on spurious
correlations provided by the salient context.

The CMU-MMAC Database (la Torre et al.,
2008) is similar to MIME in that it contains ani-
mated videos of motion capture data, but the anima-
tions are extremely simple, featuring a black back-
ground with yellow stick figures, and do not include
finger and thumb joints, which lowers fidelity to the
captured actions. IEMOCAP (Busso et al., 2008) is
also based on motion capture data but it is focused
on emotion prediction in dyadic conversations and
motion capture is only collected for the face, head,
and hands. van Nispen et al. (2017) presents a
dataset of footage of human participants pantomim-
ing various objects, but it is limited to hand ges-
tures. Lastly, the Mimetics dataset (Weinzaepfel
and Rogez, 2021) is the most similar to MIME

in that in contains live action footage videos of
mimed actions extracted from YouTube with vary-
ing amounts of relevant context provided. However,
it lacks the flexibility to systematically adjust the
amount of relevant context provided in each video
with precision for conducting the ablative analy-
sis possible with MIME. Moreover, the Mimetics
dataset may be included in the training of VLMs as
the videos are from YouTube, and therefore MIME

serves as a more reliable benchmark for mimed
action understanding unaffected by data leakage.

7 Conclusion

We introduce MIME, a novel video-based question
answering benchmark that consist of animations
of 86 mimed actions created with motion capture
data and 3D graphics software. MIME contains sys-
tematic perturbations in character, background, and
viewpoint to assess the robustness of VLMs’ un-
derstanding of full-body gestures. While humans
demonstrate almost perfect accuracy and remain
highly robust to all modifications in MIME, both
open-weight and API-based VLMs struggle, par-
ticularly in the free-form format where recognition
accuracy approaches zero under adversarial pertur-
bations. These results highlight the need for further
research in enhancing VLMs with a robust under-
standing of human gestures to establish a crucial
bedrock for NVC comprehension.
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Limitations

Lack of Photorealism The main limitation of
MIME is that it is not photorealistic as it contains
animated videos of motion capture data. This lack
of realism may introduce a domain shift for VLMs
for which the majority of the training data is likely
to be live action footage rather than animations,
leading to an artificially discounted performance of
VLMs on MIME. However, given that humans can
successfully interpret mimed actions in MIME, we
argue that models should also be able to achieve
comparable performance to humans on MIME if
they develop a robust understanding of human ges-
tures by generalizing from what they learn through
more photorealistic content.

The flip side of this concern is that performance
on MIME do not translate to equivalent perfor-
mance on mimed actions captured as live action
footage. We believe that this concern is addressed
to a reasonable extent in that MIME contains mul-
tiple perturbations of the same set of actions with
varying characters, backgrounds, and viewpoints.
It would be unlikely for a VLM to achieve high
accuracy on all of these variants without a robust
understanding of human actions that do not trans-
late to understanding of these actions in live action
footage. In addition, as the fidelity of digital assets
improve and with the availability of more compute,
we will be able to create versions of MIME that
are increasingly photoreaslitic, which further mit-
igates this concern. Therefore, despite concerns
arising from the lack of photorealism, we argue
that MIME is the most advantageous for system-
atic analysis of robustness because of the ease of
producing variants that enable ablation studies. Al-
ternative methods, i.e., using live action footage or
video generation models, are significantly limited
in being able to modify equivalent mimed actions
at the same level of flexibility and consistency. Re-
fer to a detailed discussion on alternative methods
in Appendix F.

Representation Bias Next, MIME only consists
of animations that are based on motion capture data

from two actors. However, one of these actors is
an Asian male non-professional actor and the other
is an European female professional actor. Despite
minimal overlap in demographics of these two ac-
tors, our human evaluation results show that there
is not a higher recognition accuracy for samples
that come from one actor over those of another.11

In other words, there may be differences in how
people enact actions as mimes, but they are not
significant enough to affect recognition, at least for
the pool of 60 participants that we recruited. We
believe these results should address concerns of
representation bias of the mimed actions in MIME.

Data contamination in REAL Another caveat
of our results that compare VLM performance be-
tween MIME and REAL is that samples in REAL

may have been included in the training of the
VLMs that we evaluated, thus inflating their re-
sults on REAL due to data contamination. Also,
an ideal systematic study of a model’s understand-
ing of actions would have entailed studying REAL

without contextual information provided by the
background, but we could not pursue this path due
to technical challenges preventing background re-
moval in REAL. Unfortunately, the VLMs that we
study in this paper do not share the full scope of
their training data, and therefore we cannot confirm
whether strong performance on REAL is due to data
leakage or because they can reliably identify actual
actions (as opposed to mimed actions) from live
action footage.

Fine-tuning result caveats A noteworthy limi-
tation in our improvement results from §5 is that
our fine-tuning experiments do not provide conclu-
sive evidence regarding the effectiveness of fine-
tuning for improving model performance on MIME.
Our fine-tuning experiments are an attempt at do-
main adaptation using a limited sample size, which
likely leads to overfitting, preventing the model
from achieving meaningful generalization. While
this does not rule out the potential benefits of fine-
tuning on larger and more diverse datasets, our
findings suggest that additional research is neces-
sary to explore optimal fine-tuning strategies for
tasks as challenging as MIME.

1199.0% vs. 98.8% in multiple choice format and 92.6% vs.
90.6% for free-form format. A t-test indicates insignificant
differences in these accuracies at p < 0.01 (p = 0.71 and
p = 0.03, respectively).



Ethical Considerations

While MIME serves as an important milestone for
VLMs to reach on their path to commanding fluent
NVC, strong performance on MIME should be in-
terpreted with caution. First, it is important to note
that the set of mimed actions explored in MIME

is not exhaustive of actions that can be possibly
mimed. It is a carefully curated subset that we find
high agreement among human participants with di-
verse backgrounds and therefore propose as one of
the lowest-hanging fruits in NVC recognition. In
other words, strong performance on MIME should
be considered a prerequisite being met for VLMs
that can be further improved to understand and
also generate the more nuanced forms of NVC. It
should not be interpreted incorrectly as an indica-
tion that VLMs can command NVC fluently and
thus is ready to be applied to downstream tasks
that require such skills. Future work should expand
the scope on MIME to include more nuanced ges-
tures that potentially have relatively lower universal
agreement but nonetheless have high intracultural
agreement.

In addition, with concerns of test data leakage on
the rise (Zhou et al., 2023; Xu et al., 2024; Jiang
et al., 2024), performance improvement on MIME

may not be indicative of robust understanding of hu-
man gestures if improvement on MIME is achieved
simply by training more on a data distribution simi-
lar to MIME instead of improving the generalizabil-
ity of VLMs. Therefore, it is important for VLM
developers to be cautious and transparent about
how they source visual data to prevent misleading
performance gains on MIME. Luckily, our pipeline
for creating MIME can be easily replicated for pro-
ducing unseen permutations of mimed actions in
MIME to further test the limits of generalizability
if there is suspected data contamination.
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Appendix

A MIME Details

A.1 Motion Capture Technical Details
We collect motion capture with actors wearing mo-
tion capture suits configured in the Vicon 10 finger
marker setup, in addition to the standard 53 body
marker setup.12 Motion capture is performed on a
Vicon stage configured with Vero capture cameras
driven by Vicon Shogun 1.11. An example of a
single frame from the resulting motion capture data
is shown in (1) of Figure 2. Finally, the dataset
is batch cleaned, post-processed, and exported via
Shogun Post into FBX format for further process-
ing in Blender.

A.2 Blender Macro Script
Our script imports the character and motion capture
armature, adjusting their resting positions to be as
aligned as possible using the MCATS plugin,13 and
using the Rokoko Studio Live plugin14 to retarget
the animations from the motion capture data to
the character. In addition, a sun light source and
large plane at the feet level of the character are
added for shadow capture for more realistic videos.
Lastly, a camera is added so that videos can be
rendered from the camera’s viewpoint. We select
a conservatively zoomed out viewpoint in order to
make sure that the full action sequence is captured
in the rendered output.

A.3 Render settings
Each frame is rendered with the following render-
ing configurations:

• Number of samples: 32
• Maximum number of light bounces: 1
• Resolution: 1280 × 720

12https://help.vicon.com/space/Shogun112/
31229851/Place+markers+on+a+performer

13https://github.com/absolute-quantum/
cats-blender-plugin

14https://github.com/Rokoko/
rokoko-studio-live-blender
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• Adaptive threshold: 0.5
• Denoise using GPU: True
• Use persistent data: True
• Caustics reflective: False
• Caustics refractive: False
• Use light tree: Falses

We find these settings to strike a reasonable balance
between video quality and render time.

We process rendering jobs in parallel on P100
and V100 GPUs, depending on availability. The
final step of overlaying the frames with transparent
backgrounds over various backgrounds are acceler-
ated with parallel(Tange, 2024). Generative AI
workloads were run locally on an RTX 4090.

B Prompt Details

We provide the templates for our prompts here:

B.1 Zero-shot Multiple Choice
What action is the person miming in this
image/video?
Choose the most accurate description from the
options below.

A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}

Respond with just a single letter (A, B, C, or D).

B.2 Zero-shot Free-form
What action is the person miming in this
image/video?
Describe the action in a single short phrase
(under 5 words).

You can think out the action in a chain of thought,
but please reply on the final line of your
response, a single short phrase (under 5 words).

This action is being 'mimed' meaning backgrounds
or objects that are relevant may not be present.
Think about only the *action* taking place
in the video, and give a response for what it looks
like the character is "acting out" or
doing "charades" of.

B.3 CoT Multiple Choice
What action is the person miming in this
image/video?
Choose the most accurate description from the
options below.

A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}

Carefully think through the answer, by detailing

the particular actions and movements that you see
the person doing. Your output should contain your
explanation, and then on a new line, a single
letter corresponding to the answer you choose, with
no punctuation. An example response is shown below:

'In the video, the person is moving a single
arm back and forth, as if they are swinging a bat.
This action is most accurately described by
option B.

B'

B.4 CoT Free-form
What action is the person miming in this
image/video?
Carefully think through the answer, by detailing
the particular actions and movements
that you see the person doing.

This action is being 'mimed' meaning backgrounds
or objects that are relevant may not be present.
Think about only the *action* taking place
in the video, and give a response for what it
looks like the character is "acting out" or
doing "charades" of. Your output should contain
your explanation, and then on a new line,
a short phrase (under 5 words) corresponding to
your answer, with no punctuation or answer
prefix such as 'Answer:'

B.5 Few-shot ICL Multiple Choice
What action is the person miming in this video?
Choose from:
A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}
Answer with just a single letter (A, B, C, or D).
Answer: <answer>

What action is the person miming in this video?
Choose from:
A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}
Answer with just a single letter (A, B, C, or D).
Answer: <answer>
...
What action is the person miming in this video?
Choose from:
A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}
Answer with just a single letter (A, B, C, or D).

B.6 Few-shot ICL Free-form
What action is the person miming in this video?
Describe the action in a single short phrase.
Answer: <answer>
What action is the person miming in this video?
Describe the action in a single short phrase.
Answer: <answer>
...
What action is the person miming in this video?
Describe the action in a single short phrase.



C Fine-tuning Details

The n = 5 folds that we use for N-fold training for
fine-tuning experiments are shown in Table 5. Dur-
ing FT, only the vision encoder is trained, while the
text encoder remains frozen. We train for 7 epochs
with an initial learning rate of 2e-5, following a
cosine learning rate schedule. The batch size is
set to 8, and we use the AdamW optimizer with
β1 = 0.9 and β2 = 0.999. To optimize the balance
between computational speed and precision, BF16
and TF32 are enabled. All models are trained using
2× A100 GPUs.

D Human Evaluation Details

Without any prior guidance, each participant is
asked to answer the question in free-form format
first after watching a sample in MIME and then
answer the same question with the multiple choice
format. The interface shown to our participants
is illustrated in Figure 6. While this setup is ef-
ficient for collecting both free-form and multiple
choice format results from a single participant, op-
tions shown for the multiple choice format in prior
samples may provide contextual information for
free-form format answers in the remaining samples.
However, we find this effect to be negligible in
comparison to the large performance gap between
humans and models: human performance with the
free-form format on the first samples that they an-
notate is ~88% while that of the remaining samples
is ~93%. Each participant annotates half of the to-
tal samples (43) in one of the configurations shown
in Figure 3 in order to keep annotator burden low.

E Failure Mode Anlaysis Details

Distribution of failure modes and examples of each
mode are shown in Table 6.

F Alternative Methods for Creating
MIME

F.1 Live Action Footage

The ideal setup that does not introduce domain shift
is to create an equivalent of MIME that contains live
action footage. However, we intentionally avoid
this option because of the difficulty to create sys-
tematic variations of the same mimed actions that
enable robustness analysis and concerns of privacy
of the actors that would be included in said dataset.
Our attempts with removing objects and replacing
backgrounds in each frame of the videos in REAL

produced inconsistent results, and even if they were
consistent, we would need another method to per-
turb the actor in a way that the resulting footage
remains photorealistic.

F.2 Video Generation Models
We also explore video generation models for cre-
ating MIME and show sample outputs in Figure 7.
For paid services, we test Sora15 and Runway16,
and for open-weight models, we use a variety of
Hunyuan (Sun et al., 2024) fp16 and bf8 mod-
els using ComfyUI’s17 recommended text-to-video
Hunyuan workflow (Weijie Kong, 2024). De-
spite various prompts, all video models struggle
to generate mimed actions and generate the action
with the salient context still present in the video,
even when explicitly asked not to include it (see
Figure 7c) or ensuring it is not mentioned in the
prompt (see Figure 7a. We also try prompts that
are generated by language models, such as the out-
put for the prompt: “Generate a prompt for
a video generation model to generate a
video of someone miming fencing such that
the resulting video does not include any
fencing equipment”. While this avoids produc-
ing salient context in some cases, it fails to pro-
duce a video that matches the intended action (e.g.,
dancing move shown for a prompt for fencing Fig-
ure 7b).

15https://openai.com/sora/
16https://runwayml.com/
17https://github.com/comfyanonymous/ComfyUI
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Figure 6: Our interface for human evaluation. The evaluators can only attempt to answer the question after seeing
the full video. After answering a free-form short answer question, they are asked to complete a multiple choice
equivalent before moving on to the next sample.



(a) OpenAI Sora’s output with prompt: still shot
without background of someone miming typing
sitting by a desk without any objects on it.

(b) OpenAI Sora’s output with LM-generated prompt:
Generate a high-quality video of a person
performing mime movements that resemble
fencing. The individual should use expressive
body language, dynamic footwork, and precise
hand gestures to create the illusion of fencing
without any actual fencing equipment, such as
swords or protective gear. The performance
should be fluid and theatrical, emphasizing
exaggerated parries, lunges, and ripostes to
convey the essence of fencing through mime
alone. The person should be dressed in neutral
or casual clothing suitable for a performance,
with a simple background that keeps the focus
on their movement.

(c) Runway’s output with prompt: Generate a video
of a person miming a fencing match without any
fencing equipment. The person should perform
precise exaggerated fencing movements such as
lunges, parries, and ripostes. Their footwork
should be light and agile, moving back and forth
as if engaged in a real bout.

(d) Hunyuan-Large’s (Sun et al., 2024) output with prompt:
Man acting like shooting an arrow without
anything in his hands. This should be a mimed
action without any props.

Figure 7: Snapshots of outputs from various video generation models to generate mimed actions. All models that
we tested failed to produce videos that either did not include the action’s key object (e.g., keyboard while typing,
bow and arrow while shooting an arrow) or correctly act out the intended action.



Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Volleyball001 Climbing001 DrinkingCoffee001 ConsoleGaming01 ArmCurls001
VolleyballServe Climbing01 ShootingAHandgun001 Darts001 ArmCurls01
WeightedSquat002 DeadLift001 ShootingARifle001 Bowling003 ArmCurls03
CheckingWatch001 Deadlift01 ShootingHandgun01 Bowling01 Baseball004
CheckingWatch01 Archery001 Basketball001 Weightlifting001 BaseballPitch002
Swimming001 Archery01 BasketballLayup001 Violin002 BaseballPitch02
Swimming002 Driving002 BasketballLayup02 ShotPut001 CheckingPhone002
Swimming03 Driving003 BasketballShot02 ShotPut01 WatchingTV01
Swimming04 Soccer003 Boxing001 DrivingSitting001 SittingAndWriting001
Swimming06 SoccerShot01 Boxing03 DrivingSittingDown03 TakingPhotoWithCamera001

Table 5: The action IDs in MIME that are divided into five folds we use for our fine-tuning setup.



Configuration Mode % Mimed Action Prediction Generated CoT Description

Base +blank # 16.3 Drinking out of a
cup

Answering a phone
call

They bring their hand to their ear as if holding a phone, and move
their mouth as if talking. They also have a slightly downward gaze,
as if focusing on the phone.

H# 53.5 Driving Riding a tiny board They are miming the action of holding a small object, such as a
remote control, and are making small, precise movements with
their hands as if they are controlling or manipulating something.
Their body posture and stance remain relatively static. The actions
are subtle, suggesting a delicate or precise control of the imagined
object.

 12.8 Pushing Falling down They bend their knees, lean forward, and spread their arms out as
if they are losing their balance and falling onto the ground. Their
posture and movements strongly suggest a loss of equilibrium
resulting in a fall. The shadow on the ground further emphasizes
this interpretation.

✓ 3.5 Backstroke swim-
ming

Falling down The person in the video is lying on their back. Their arms are
initially by their sides, then they slowly raise their arms above
their head, then bring them back down to their sides. Their legs
are spread slightly apart. The movements suggest the person is
acting out falling and lying on the ground.

Base =back. # 18.6 Baseball swing Pitching a baseball They go through the windup motion, bringing their arm back and
then forward in a throwing motion. Their legs and body also shift
their weight from one foot to the other, mimicking the motion of a
pitcher.

H# 23.3 Playing piano Pulling something
heavy

The person in the video is crouched down, and moving their arms
and hands in a way that mimics pulling something heavy. Their
body language suggests exertion and strain.

 7.0 Frontstroke swim-
ming

Belly flopping The person in the video is lying on their stomach on the sand,
their legs extended behind them, and their arms outstretched in
front. Their body is relatively flat against the ground. One arm
is slightly raised, possibly suggesting a wave-like motion. The
overall posture and movement suggest a person mimicking the
action of someone swimming, or more specifically, diving or belly-
flopping into the water.

37.2 Throwing dart Throwing darts They go through the motions of holding an imaginary dart, aiming,
and then releasing it with a follow-through.

Base ̸=back. # 14.0 Drinking out of a
cup

Looking through
binoculars

They hold their hands up to their eyes in a characteristic manner,
mimicking the way one would hold and adjust binoculars to look
through them. Their hand movements are consistent with focusing
and looking through an imaginary device.

H# 38.4 Throwing dart Answering phone
call

They bring their hand to their ear as if holding a phone, and then
extend their arm and point as if speaking to someone on the other
end of the call.

 10.5 Deadlifting Picking up a spill The person in the video is bending over, appearing to pick up
something from the floor. Their hands move as if they are gathering
or collecting a substance. Their body is positioned as if they are
carefully handling whatever is on the ground.

24.4 Climbing Conducting orches-
tra

They are standing in a relatively formal posture, and their arm
movements are sweeping and expressive, suggesting they are lead-
ing a musical piece. The upward and downward motions of their
arms mimic the conducting of different musical sections or in-
struments. The movements are deliberate and rhythmic, further
supporting the interpretation of conducting.

Table 6: Gemini 1.5 Flash with CoT’s prediction category distributions (*Note % indicates proportion of predictions,
including correct ones) and corresponding examples, as discussed in §5.3. #: completely incorrect description.
H#: partially correct description of action.  : correct description with only minor discrepancies but incorrect
interpretation. ✓: correct description and valid alternative interpretation. Correct descriptions are in blue and
incorrect descriptions are in orange.
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