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Introduction

This volume contains papers describing systems submitted to the CoNLL 2017 Shared Task: Multilingual
Farsing from Raw Text to Universal Dependencies and an overview paper summarizing the task, its
features, evaluation methodology for the main and additional metrics, and some interesting observations
about the submitted systems and the task as a whole.

This Shared Task (http://universaldependencies.org/conll17/) can be seen as an
extension of the CoNLL 2007 Shared Task on parsing, but there are many important differences that
make this year’s task unique with several “firsts”. Most importantly, the data for this task come from
the Universal Dependencies project (http://universaldependencies.orq), which provides
annotated treebanks for a large number of languages using the same annotation scheme for all of them.
In the shared task setting, this allows for more meaningful comparison between systems as well as
languages, since differences are much more likely due to true parser differences rather than differences
caused by annotation schemes. In addition, the number of languages for which training data were
available is unprecedented for a single shared task: a total of 64 treebanks in 45 languages have been
provided for training the systems. Additional data have been provided too, as were some baseline systems
for those who wanted to try only some particular aspect of parsing. Overall, the task can be described as
“closed”, since only pre-approved data could be used.

For evaluation, there were 81 datasets (standard datasets for the treebank languages provided for training,
plus more test sets in known languages, but based on a specially created and annotated parallel corpus,
and four surprise language test sets). Participants had to process all the test sets. The TIRA platform has
been used for evaluation, as was the case already for the CoNLL 2015 and 2016 Shared Tasks, meaning
that participants had to provide their code on a designated virtual machine to be run by the organizers
to produce official results. However, test data have been published after the official evaluation period,
and participants could run their systems at home to produce additional results they were allowed to
include in the system description papers. There was one main evaluation metric — Labeled Attachment
Score — for the main ranking table evaluating dependency parsing performance, plus additional metrics
for tokenization, word and sentence segmentation, POS tagging, lemmatization and disambiguation of
morphological features, and separate metrics computed for interesting subsets of the evaluation data.

A total of 32 systems ran successfully and have been ranked (http://universaldependencies.
org/conlll7/results.html). While there are clear overall winners, we would like to thank all
participants for working hard on their submissions and adapting their systems not only to the datasets
available, but also to the evaluation platform. We would like to thank all of them for their effort, since it
is the participants who are the core of any shared task’s success.

We would like to thank the CoNLL organizers for their support and the reviewers for helping to improve
the submitted system papers. Special thanks go to Martin Potthast of the TIRA platform for handling
such a large number of systems, running often for several hours each, and for being very responsive and
helpful to us and all system participants, round the clock during the evaluation week and beyond. We
also thank to the 200+ people working on the Universal Dependencies project during the past three years,
without whom there would be no data.

Jan Haji¢, Daniel Zeman, Joakim Nivre, Filip Ginter, Slav
Petrov, Milan Straka, Martin Popel, Eduard Bejcek

Organizers of the CoNLL 2017 Shared Task: Multilingual
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Abstract

The Conference on Computational Natu-
ral Language Learning (CoNLL) features
a shared task, in which participants train
and test their learning systems on the same
data sets. In 2017, one of two tasks was
devoted to learning dependency parsers for
a large number of languages, in a real-
world setting without any gold-standard
annotation on input. All test sets followed
a unified annotation scheme, namely that
of Universal Dependencies. In this paper,
we define the task and evaluation method-
ology, describe data preparation, report
and analyze the main results, and provide
a brief categorization of the different ap-
proaches of the participating systems.

1

martin.potthast@uni-weimar.de

1 Introduction

Ten years ago, two CoNLL shared tasks were a
major milestone for parsing research in general
and dependency parsing in particular. For the first
time dependency treebanks in more than ten lan-
guages were available for learning parsers. Many
of them were used in follow-up work, evaluating
parsers on multiple languages became standard,
and multiple state-of-the-art, open-source parsers
became available, facilitating production of de-
pendency structures to be used in downstream ap-
plications. While the two tasks (Buchholz and
Marsi, 2006; Nivre et al., 2007) were extremely
important in setting the scene for the following
years, there were also limitations that complicated
application of their results: (1) gold-standard to-

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 1-19,
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kenization and part-of-speech tags in the test data
moved the tasks away from real-world scenarios,
and (2) incompatible annotation schemes made
cross-linguistic comparison impossible. CoNLL
2017 has picked up the threads of those pioneer-
ing tasks and addressed these two issues.!

The focus of the 2017 task was learning syn-
tactic dependency parsers that can work in a real-
world setting, starting from raw text, and that can
work over many typologically different languages,
even surprise languages for which there is little
or no training data, by exploiting a common syn-
tactic annotation standard. This task has been
made possible by the Universal Dependencies ini-
tiative (UD) (Nivre et al., 2016), which has de-
veloped treebanks for 50+ languages with cross-
linguistically consistent annotation and recover-
ability of the original raw texts.

Participating systems had to find labeled syn-
tactic dependencies between words, i.e., a syntac-
tic head for each word, and a label classifying the
type of the dependency relation. No gold-standard
annotation (tokenization, sentence segmentation,
lemmas, morphology) was available in the input
text. However, teams wishing to concentrate just
on parsing were able to use segmentation and mor-
phology predicted by the baseline UDPipe system
(Straka et al., 2016).

2 Data

In general, we wanted the participating systems to
be able to use any data that is available free of
charge for research and educational purposes (so
that follow-up research is not obstructed). We de-
liberately did not place upper bounds on data sizes
(in contrast to e.g. Nivre et al. (2007)), despite the
fact that processing large amounts of data may be
difficult for some teams. Our primary objective
was to determine the capability of current parsers
with the data that is currently available.

In practice, the task was formally closed, i.e.,
we listed the approved data resources so that all
participants were aware of their options. How-
ever, the selection was rather broad, ranging from
Wikipedia dumps over the OPUS parallel corpora
(Tiedemann, 2012) to morphological transducers.
Some of the resources were proposed by the par-
ticipating teams.

'Outside CoNLL, there were several other parsing tasks
in the meantime, which naturally also explored previously

unadressed aspects—for example SANCL (Petrov and Mc-
Donald, 2012) or SPMRL (Seddah et al., 2013, 2014).

We provided dependency-annotated training
and test data, and also large quantities of crawled
raw texts. Other language resources are available
from third-party servers and we only referred to
the respective download sites.

2.1 Training Data: UD 2.0

Training and development data come from the
Universal Dependencies (UD) 2.0 collection
(Nivre et al., 2017b). Unlike previous UD re-
leases, the test data was not included in UD 2.0. It
was kept hidden until the evaluation phase of the
shared task terminated. In some cases, the under-
lying texts had been known from previous UD re-
leases but the annotation had not (UD 2.0 follows
new annotation guidelines that are not backward-
compatible).

64 UD treebanks in 45 languages were available
for training. 15 languages had two or more train-
ing treebanks from different sources, often also
from different domains.

56 treebanks contained designated development
data. Participants were asked not to use it for train-
ing proper but only for evaluation, development,
tuning hyperparameters, doing error analysis etc.
The 8 remaining treebanks were small and had
only training data (and even these were extremely
small in some cases, especially for Kazakh and
Uyghur). For those treebanks cross-validation
had to be used during development, but the entire
dataset could be used for training once hyperpa-
rameters were determined.

Participants received the training and develop-
ment data with gold-standard tokenization, sen-
tence segmentation, POS tags and dependency
relations; and for some languages also lemmas
and/or morphological features.

Cross-domain and cross-language training was
allowed and encouraged. Participants were free to
train models on any combination of the training
treebanks and apply it to any test set. They were
even allowed to use the training portions of the 6
UD 2.0 treebanks that were excluded from evalu-
ation (see Section 2.3).

2.2 Supporting Data

To enable the induction of custom embeddings and
the use of semi-supervised methods in general,
the participants were provided with supporting re-
sources primarily consisting of large text corpora
for (nearly) all of the languages in the task, as well
as embeddings pre-trained on these corpora.



Raw texts The supporting raw data was gath-
ered from CommonCrawl, which is a publicly
available web crawl created and maintained by the
non-profit CommonCrawl foundation.> The data
is publicly available in the Amazon cloud both as
raw HTML and as plain text. It is collected from a
number of independent crawls from 2008 to 2017,
and totals petabytes in size.

We used cld2? as the language detection engine
because of its speed, available Python bindings
and large coverage of languages. Language de-
tection was carried out on the first 1024 bytes of
each plaintext document. Deduplication was car-
ried out using hashed document URLs, a simple
strategy found in our tests to be effective for coarse
duplicate removal. The data for each language was
capped at 100,000 tokens per a single input file.

Automatic tokenization, morphology and pars-
ing The raw texts were further processed in or-
der to generate automatic tokenization, segmenta-
tion, morphological annotations and dependency
trees.

At first, basic cleaning was performed — para-
graphs with erroneous encoding or less than 16
characters were dropped, remaining paragraphs
converted to Normalization Form KC (NFKC)*
and again deduplicated. Then the texts were seg-
mented and tokenized, multi-word tokens split
into words, and sentences with less than 5 words
dropped. Because we wanted to publish the re-
sulting corpus, we shuffled the sentences and also
dropped sentences with more than 80 words at
this point for licensing reasons. The segmenta-
tion and tokenization was obtained using the base-
line UDPipe models described in Section 5. These
models were also used to further generate auto-
matic morphological annotations (lemmas, UPOS,
XPOS and FEATS) and dependency trees.

The resulting corpus contains 5.9 M sentences
and 90 G words in 45 languages and is available
in CoNLL-U format (Ginter et al., 2017). The per-
language sizes of the corpus are listed in Table 1

Precomputed word embeddings We also pre-
computed word embeddings using the segmented
and tokenized plain texts. Because UD words can
contain spaces, these in-word spaces were con-

http://commoncrawl.org/ Except for Ancient
Greek, which was gathered from the Perseus Digital Library.

*http://github.com/CLD20wners/cld2

*nttp://unicode.orqg/reports/trl5/

Language Words
English (en) 9,441 M
German (de) 6,003 M
Portuguese (pt) 5,900 M
Spanish (es) 5721 M
French (fr) 5,242 M
Polish (pl) 5,208 M
Indonesian (id) 5,205 M
Japanese (ja) 5,179 M
Italian (it) 5,136 M
Vietnamese (vi) 4,066 M
Turkish (tr) 3477 M
Russian (ru) 3,201 M
Swedish (sv) 2,932 M
Dutch (nl) 2,914 M
Romanian (ro) 2,776 M
Czech (cs) 2,005 M
Hungarian (hu) 1,624 M
Danish (da) 1,564 M
Chinese (zh) 1,530 M
Norwegian-Bokmal (no) 1,305 M
Persian (fa) 1,120 M
Finnish (fi) 1,008 M
Arabic (ar) 963 M
Catalan (ca) 860 M
Slovak (sk) 811 M
Greek (el) 731 M
Hebrew (he) 615 M
Croatian (hr) 583 M
Ukrainian (uk) 538 M
Korean (ko) 527TM
Slovenian (sl) 522 M
Bulgarian (bg) 370 M
Estonian (et) 328M
Latvian (Iv) 276 M
Galician (gl) 262 M
Latin (la) 244 M
Basque (eu) 155M
Hindi (hi) 91 M
Norwegian-Nynorsk (no) 76 M
Kazakh (kk) 54 M
Urdu (ur) 46 M
Irish (ga) 24 M
Ancient Greek (grc) ™M
Uyghur (ug) 3M
Kurdish (kmr) 3M
Upper Sorbian (hsb) 2M
Buryat (bxr) 413 K
North Sami (sme) 331K
Old Church Slavonic (cu) 28 K
Total 90,669 M

Table 1: The supporting data overview: the num-
ber of words (M = million; K = thousand) for each
language.



verted to Unicode character NO-BREAK SPACE
(U+00A0).>

The dimensionality of the word embeddings
was chosen to be 100 after thorough discussion
— more dimensions may yield better results and
are commonly used, but even with just 100, the
uncompressed word embeddings for the 45 lan-
guages take 135 GiB. Also note that Andor et al.
(2016) achieved state-of-the-art results with 64 di-
mensions.

The word embeddings were precomputed using
word2vec (Mikolov et al., 2013) with the fol-
lowing options:

word2vec —-min-count 10 -size 100
-window 10 -negative 5 —-iter 2
—threads 16 -cbow 0 -binary O.

The precomputed word embeddings are available
on-line (Ginter et al., 2017).

2.3 Test Data: UD 2.0

The main part of test data comprises test sets cor-
responding to 63 of the 64 training treebanks.®
Test sets from two different treebanks of one lan-
guage were evaluated separately as if they were
different languages. Every test set contained at
least 10,000 words or punctuation marks. UD
2.0 treebanks that were smaller than 10,000 words
were excluded from the evaluation. Among the
treebanks that were able to provide the required
amount of test data, there are 8 treebanks so small
that the remaining data could not be split to train-
ing and development portions; for two of them,
the data left for training is only a tiny sample (529
words in Kazakh, 1662 in Uyghur). There was no
upper limit on the test data; the largest treebank
had a test set comprising 170K words.

Although the 63 test sets correspond to UD 2.0
treebanks, they were not released with UD 2.0.
They were kept hidden and only published af-
ter the evaluation phase of the shared task (Nivre
et al., 2017a).

2.4 New Parallel Test Sets

In addition, there were test sets for which no corre-
sponding training data sets exist: 4 “surprise” lan-
guages (described in Section 2.5) and 14 test sets
of a new Parallel UD (PUD) treebank (described
in this section). These test sets were created for

5Using udpipe —--output=horizontal.

%We had to withdraw the test set from the Italian ParTUT
treebank because it turned out to significantly overlap with
the training data of the larger Italian treebank in UD 2.0.

this shared task, i.e., not included in any previous
UD release.

The PUD treebank consists of 1000 sentences
currently in 18 languages (15 K to 27 K words, de-
pending on the language), which were randomly
picked from on-line newswire and Wikipedia;’
usually only a few sentences per source document.
750 sentences were originally English, the remain-
ing 250 sentences come from German, French,
Italian and Spanish texts. They were translated
by professional translators to 14 languages (i.e.,
15 languages with the original: Arabic, Chi-
nese, English, French, German, Hindi, Indonesian,
Italian, Japanese, Korean, Portuguese, Russian,
Spanish, Thai and Turkish; but four languages—
Chinese, Indonesian, Korean and Thai—were ex-
cluded from the shared task due to consistency is-
sues). Translators were instructed to prefer trans-
lations closer to original grammatical structure,
provided it is still a fluent sentence in the target
language. In some cases, picking a correct trans-
lation was difficult because the translators did not
see the context of the original document. The
translations were organized at DFKI and text &
form, Germany; they were then tokenized, mor-
phologically and syntactically annotated at Google
following guidelines based on McDonald et al.
(2013), and finally converted to proper UD v2 an-
notation style by volunteers from the UD com-
munity using the Udapi framework (Popel et al.,
2017).8  Three additional translations (Czech,
Finnish and Swedish) were contributed and anno-
tated natively in UD v2 by teams from Charles
University, University of Turku and Uppsala Uni-
versity, respectively.

The Google dependency representation pre-
dates Universal Dependencies, deriving from the
scheme used by McDonald et al. (2013), i.e., Stan-
ford Dependencies 2.0 with the option to make
copula verbs heads (de Marneffe and Manning,
2008, section 4.7) and Google Universal POS tags
(Petrov et al., 2011). Various tree transformations
were needed to convert it to UD.? For example,
prepositions and copula verbs are phrasal heads in
Google annotation but must be dependent function
words in UD. Similarly, some POS tags differ in
the two schemes; particularly hard were conjunc-

"The two domains are encoded in sentence ids but this
information is not visible to the systems participating in the
shared task.

$http://udapi.github.io/

“using ud.Google2ud from the Udapi framework



tions, where the Google tag set does not distin-
guish coordinators (CCONJ in UD) from subordi-
nators (SCONJ). Some bugs, for example where
verbs had multiple subjects or objects, or where
function words were not leaves, were detected au-
tomatically'? and fixed manually.

Finally, the most prominent consistency issues
lay in tokenization and word segmentation, espe-
cially in languages where it interacts with mor-
phology or where the writing system does not
clearly mark word boundaries. The tokenizers
used before manual annotation were not necessar-
ily compatible with existing UD treebanks, yet in
the shared task it was essential to make the seg-
mentation consistent with the training data. We
were able to fix some problems, such as unmarked
multi-word tokens in European languages,'! and
we were even able to re-segment Japanese (note
that this often involved new dependency rela-
tions); on the other hand, we had to exclude Ko-
rean for not being able to fix it in time.

Many transformations were specific to individ-
val languages. For example, in the original to-
kenization of Arabic, the definite article al- was
separated from the modified word, which is com-
parable to the D3 tokenization scheme (Habash,
2010). This scheme was inconsistent with the to-
kenization of the Arabic training data, hence it
had to be changed. Text-level normalization fur-
ther involved removal of the shadda diacritical
mark (marking consonant gemination), which is
optional in Arabic orthography and does not oc-
cur in the training data. On the POS level, the ac-
tive and passive participles and verbal nouns (mas-
dars) were annotated as verbs. For Arabic, how-
ever, these should be mapped to NOUN. Once we
changed the tags, we also had to modify the sur-
rounding relations to those used with nominals.

Like some UD treebanks, the parallel data con-
tains information on document boundaries. They
are projected as empty lines to the raw text pre-
sented to parsers, and they can be exploited to im-
prove sentence segmentation. Note that due to the
way the sentences were collected, the paragraphs
are rather short.'?

1%ysing ud.MarkBugs from the Udapi framework

"using Udapi’s ud.de. AddMwt for German, and similarly
for Spanish (es), French (fr) and Portuguese (pt). For all
languages, we applied ud.ComplyWithText to make sure the
concatenation of tokens matches exactly the original raw text.

I2A special case is Arabic where we artificially marked ev-
ery sentence as a separate paragraph, to make it more con-
sistent with somewhat unusual segmentation of the existing

The fact that the data is parallel was not ex-
ploited in this task. Participating systems were
told the language code so they could select an ap-
propriate model. All parallel test sets were in lan-
guages that have at least one training treebank in
UD 2.0 (although the domain may differ).

After the evaluation phase these parallel test sets
were published together with the main test data;
in the future they will become part of regular UD
releases.

2.5 Surprise Languages

The second type of additional test sets were sur-
prise languages, which had not been previously
released in UD. Names of surprise languages
(Buryat, Kurmanji Kurdish, North Sdmi and Up-
per Sorbian) and small samples of gold-standard
data (about 20 sentences) were published one
week before the beginning of the evaluation phase.
Crawled raw texts were provided too, though in
much smaller quantity than for the other lan-
guages. The point of having surprise languages
was to encourage participants to pursue truly mul-
tilingual approaches to parsing, utilizing data from
other languages.

As with all other test sets, the systems were
able to use segmentation and part-of-speech tags
predicted by the baseline UDPipe system (in this
case UDPipe was trained and applied in a 10-fold
cross-validation manner directly on the test data;
hence this is the only annotation that the partici-
pants were given but could not produce with their
own models).

Note that the smallest non-surprise languages
(Kazakh, Uyghur) were asking for multilingual
approaches as well, given that the amount of their
own training data was close to zero. The differ-
ence was that participants at least knew in advance
what these languages were and had more time to
determine the most suitable training model. On
the other hand, the segmentation and tagging mod-
els for these languages were only trained on the
tiny training data, i.e., they were much worse than
the models for the surprise languages. In this sense
parsing of Kazakh and Uyghur was even harder
than parsing the surprise languages.

When compared to the training data available
in UD 2.0, the genetically closest language to
Kazakh and Uyghur is Turkish; but it uses a dif-
UD Arabic treebank. This gave an advantage to systems that

were able to take paragraph boundaries into account, includ-
ing those that re-used the baseline segmentation.



ferent writing system, and the Turkish dataset it-
self is not particularly large. For Kurmanji Kur-
dish, the closest relative is Persian, again with dif-
ferent script and other reservations. Buryat is a
Mongolic language written in Cyrillic script and
does not have any close relative in UD. North Sdmi
is an Finno-Ugric language; Finnish and Estonian
UD data could be expected to be somewhat sim-
ilar. Finally, Upper Sorbian is a West Slavic lan-
guage spoken in Germany; among the many Slavic
languages in UD, Czech and Polish are its closest
relatives.

In summary, the test data consisted of 81 files
in 49 languages (55 test sets from “big” UD 2.0
treebanks, 8 “small” treebanks, 14 parallel test sets
and 4 surprise-language test sets).

3 Evaluation Metrics

The standard evaluation metric of dependency
parsing is the labeled attachment score (LAS), i.e.,
the percentage of nodes with correctly assigned
reference to parent node, including the label (type)
of the relation. When parsers are applied to raw
text, the metric must be adjusted to the possibility
that the number of nodes in gold-standard anno-
tation and in the system output vary. Therefore,
the evaluation starts with aligning system nodes
and gold nodes. A dependency relation cannot be
counted as correct if one of the nodes could not be
aligned to a gold node. LAS is then re-defined as
the harmonic mean (F}) of precision P and recall
R, where

p_ #£correctRelations 0
#systemNodes
__ #fcorrectRelations 2)
~ #goldNodes
2PR
LAS = 3
P+ R )

Note that attachment of all nodes including
punctuation is evaluated. LAS is computed sep-
arately for each of the 81 test files and a macro-
average of all these scores serves as the main met-
ric for system ranking in the task.

3.1 Token Alignment

UD defines two levels of token/word segmenta-
tion. The lower level corresponds to what is usu-
ally understood as tokenization. However, unlike
some popular tokenization schemes, it does not

include any normalization of the non-whitespace
characters. We can safely assume that any two tok-
enizations of a text differ only in whitespace while
the remaining characters are identical. There is
thus a 1-1 mapping between gold and system non-
whitespace characters, and two tokens are aligned
if all their characters match.

3.2 Syntactic Word Alignment

The higher segmentation level is based on the no-
tion of syntactic word. Some languages contain
multi-word tokens (MWT) that are regarded as
contractions of multiple syntactic words. For ex-
ample, the German token zum is a contraction of
the preposition zu “to” and the article dem “the”.

Syntactic words constitute independent nodes in
dependency trees. As shown by the example, it
is not required that the MWT is a pure concate-
nation of the participating words; the simple to-
ken alignment thus does not work when MWTs
are involved. Fortunately, the CoNLL-U file for-
mat used in UD clearly marks all MWTs so we
can detect them both in system output and in gold
data. Whenever one or more MWTs have overlap-
ping spans of surface character offsets, the longest
common subsequence algorithm is used to align
syntactic words within these spans.

3.3 Sentence Segmentation

Words are aligned and dependencies are evaluated
in the entire file without considering sentence seg-
mentation. Still, the accuracy of sentence bound-
aries has an indirect impact on LAS: any missing
or extra sentence boundary necessarily makes one
or more dependency relations incorrect.

3.4 Invalid Output

If a system fails to produce one of the 81 files or
if the file is not valid CoNLL-U format, the score
of that file (counting towards the system’s macro-
average) is zero.

Formal validity is defined more leniently than
for UD-released treebanks. For example, a non-
existent dependency type does not render the
whole file invalid, it only costs the system one in-
correct relation. However, cycles and multi-root
sentences are disallowed. A file is also invalid
if there are character mismatches that could make
the token alignment algorithm fail.



3.5 CLAS

Content-word Labeled Attachment Score (CLAS)
has been proposed as an alternative parsing metric
that is tailored to the UD annotation style and more
suitable for cross-language comparison (Nivre and
Fang, 2017). It differs from LAS in that it only
considers relations between content words. At-
tachment of function words is disregarded because
it corresponds to morphological features in other
languages (and morphology is not evaluated in this
shared task). Furthermore, languages with many
function words (e.g., English) have longer sen-
tences than morphologically rich languages (e.g.,
Finnish), hence a single error in Finnish costs the
parser significantly more than an error in English.
CLAS also disregards attachment of punctuation.
As CLAS is still experimental, we have desig-
nated full LAS as our main evaluation metric; nev-
ertheless, a large evaluation campaign like this is a
great opportunity to study the behavior of the new
metric, and we present both scores in Section 6.

4 [Evaluation Methodology

Key goals of any empirical evaluation are to en-
sure a blind evaluation, its replicability, and its
reproducibility.  To facilitate these goals, we
employed the cloud-based evaluation platform
TIRA (Potthast et al., 2014),'> which implements
the evaluation as a service paradigm (Hanbury
et al., 2015). In doing so, we depart from the
traditional submission of system output to shared
tasks, which lacks in these regards, toward the
submission of working software. Naturally, soft-
ware submissions bring about additional overhead
for both organizers and participants, whereas the
goal of an evaluation platform like TIRA is to re-
duce this overhead to a bearable level. Still be-
ing an early prototype, though, TIRA fulfills this
goal only with some reservations. Nevertheless,
the scale of the CoNLL 2017 UD Shared Task
also served as a test of scalability of the evalua-
tion as a service paradigm in general as well as
that of TIRA in particular.

4.1 Blind Evaluation

Traditionally, evaluations in shared tasks are half-
blind (the test data are shared with participants
while the ground truth is withheld), whereas out-
side shared tasks, say, during paper-writing, evalu-
ations are typically pseudo-blind (the test data and

Bhttp://www.tira.io/

ground truth are accessible, yet, ignored until the
to-be-evaluated software is ready). In both cases,
remaining blind to the test data is one of the cor-
nerstones of evaluation, and has a significant im-
pact on the validity of evaluation results. While
outside shared tasks, one can only trust that pa-
per authors do not spoil their evaluation by implic-
itly or explicitly exploiting their knowledge of the
test data, within shared tasks, another factor comes
into play, namely the fact that shared tasks are also
competitions.

Dependent on its prestige, winning a shared task
comes along with a lot of visibility, so that supply-
ing participants with the test data up front bears
risks of mistakes that spoil the ground truth, and of
cheating. Here, TIRA implements a proper solu-
tion which ensures blind evaluation, an airlock for
data. On demand, software deployed at TIRA is
locked in the datalock together with the test data,
where it can process the data and have its output
recorded. Otherwise, all communication channels
to the outside are closed or tightly moderated to
prevent data leakage. However, closing down all
communication channels also has its downsides,
since participants cannot check up on their run-
ning software anymore, or have to ask organizers
to do so, which increases the turnaround time to fix
bugs. Participants were only able to learn whether
they achieved a non-zero score on each of the 81
test files; a zero score signaled a bug, in which
case the task moderator would make the diagnostic
output visible to the participants. Such interaction
was only possible when the system run completed;
before that, even the task moderator would not see
whether the system was really producing output
and not just sitting in an endless loop. Especially
given the scale of operations this year, this turned
out to be a major obstacle for some participants;
TIRA needs to be improved by offering more fine-
grained process monitoring tools, both for orga-
nizers and participants.

4.2 Replicability and Reproducibility

The replicability of an evaluation depends on
whether the same results can be obtained from
re-running an experiment using the same setup,
whereas reproducibility refers to achieving results
that are commensurate with a reference evalua-
tion, for instance, when exchanging the test data
with alternative test data. Both are important as-
pects of an evaluation, the former pertaining to



its reliability, and the latter to its validity. En-
suring both requires that a to-be-evaluated soft-
ware is preserved in working condition for as long
as possible. Traditionally, shared tasks do not
take charge of participant software preservation,
mostly because the software remains with partic-
ipants, and since open sourcing the software un-
derlying a paper is still the exception rather than
the rule. To ensure both, TIRA supplies partici-
pants with a virtual machine, offering a range of
commonly used operating systems in order not to
limit the choice of technology stacks and devel-
opment environments. Once deployed and tested,
the virtual machines are archived to preserve the
software within.

Many participants agreed to share their code so
that we decided to collect the respective projects
in a kind of open source proceedings at GitHub.'*

4.3 Resource Allocation

The allocation of an appropriate amount of com-
puting resources (especially CPUs and RAM,
whereas disk space is cheap enough) to each par-
ticipant proved to be difficult, since minimal re-
quirements were unknown. When asked, par-
ticipants typically request liberal amounts of re-
sources, just to be on the safe side, whereas assign-
ing too much up front would not be economical
nor scale well. We hence applied a least commit-
ment strategy with an initial assignment of 1 CPU
and 4 GB RAM. More resources were granted on
request, the limit being the size of the underlying
hardware. When it comes to exploiting available
resources, a lot depends on programming prowess,
whereas more resources do not necessarily trans-
late into better performance. This is best exempli-
fied by the fact that with 4 CPUs and 16 GB RAM,
the winning team Stanford used only a quarter the
amount of resources of the second and third win-
ners, respectively. The team on fourth (sixth) place
was even more frugal, getting by with 1 CPU and
8 GB RAM (4 GB RAM). All of the aforemen-
tioned teams’ approaches exceed the LAS level of
70%.

5 Baseline System

5.1 UDPipe

We prepared a set of baseline models using UD-
Pipe (Straka et al., 2016) version 1.1. A slightly
improved version—UDPipe 1.2—was submitted

“https://github.com/CoNLL-UD-2017

by Straka and Strakova (2017) as one of the com-
peting systems. Straka and Strakovd (2017) de-
scribe both these versions in more detail.

The baseline models were released together
with the UD 2.0 training data, one model for each
treebank. Because only training and development
data were available during baseline model train-
ing, we put aside a part of the training data for
hyperparameter tuning, and evaluated the base-
line model performance on development data. We
called this data split baseline model split. The
baseline models, the baseline model split, and
also UD 2.0 training data with morphology pre-
dicted by 10-fold jack-knifing (cross-validation),
are available on-line (Straka, 2017).

UDPipe baseline models are able to reconstruct
nearly all annotation from CoNLL-U files — they
can generate segmentation, tokenization, multi-
word token splitting, morphological annotation
(lemmas, UPOS, XPOS and FEATS) and depen-
dency trees. Participants were free to use any part
of the model in their systems — for all test sets,
we provided UDPipe processed variants in addi-
tion to raw text inputs. We provided the UD-
Pipe processed variant even for surprise languages
— however, only segmentation, tokenization and
morphology, generated by 10-fold jack-knifing, as
described in Section 2.5.

Baseline UDPipe Shared Task System We fur-
ther used the baseline models as a baseline sys-
tem in the shared task. We used the corresponding
models for the UD 2.0 test data.

For the new parallel treebanks, we used UD
2.0 baseline models of the corresponding lan-
guages. If there were several treebanks for one
language, we arbitrarily chose the one named af-
ter the language only (e.g., we chose ru and not
ru_syntagrus). Unfortunately, we did not ex-
plicitly mention this choice to the participants and
this arbitrary choice had a large impact on results —
some contestant systems fell below UDPipe base-
line just because of choosing different treebanks
to train on for the parallel treebanks. (On the other
hand, there was no guarantee that the models se-
lected in the baseline system would be optimal.)

For each surprise language, we also chose one
baseline model to apply. Even if most words are
unknown to the baseline model, universal POS
tags can be used to drive the parsing, making
the baseline model act similar to a delexicalized
parser. We chose a baseline model to maximize



Team LAS Team CLAS F,
1. Stanford (Dozat et al.) 76.30 1. Stanford (Stanford) 72.57
2. C2L2 (Shi et al.) 75.00 2. C2L2 (Ithaca) 70.91
3. IMS (Bjorkelund et al.) 74.42 3. IMS (Stuttgart) 70.18
4. HIT-SCIR (Che et al.) 72.11 4. HIT-SCIR (Harbin) 67.63
5. LATTICE (Lim and Poibeau) 70.93 5. LATTICE (Paris) 66.16
6. NAIST SATO (Sato et al.) 70.14 6. NAIST SATO (Nara) 65.15
7. Kog University (Kirnap et al.) 69.76 7. Kog University (Istanbul) 64.61
8. UFAL (Straka and Strakova) 69.52 8. UFAL — UDPipe 1.2 (Praha) 64.36
9. UParse (Vania et al.) 68.87 9. Orange — Deskii (Lannion) 64.15
10. Orange (Heinecke and Asadullah) 68.61 10. TurkuNLP (Turku) 63.61
11. TurkuNLP (Kanerva et al.) 68.59 11. UParse (Edinburgh) 63.55
12. darc (Yuetal.) 68.41 12. darc (Tiibingen) 63.24
13. BASELINE UDPipe 1.1 68.35 13. BASELINE UDPipe 1.1 63.02
14. MQuni (Nguyen et al.) 68.05
15. fbaml (Qian and Liu) 67.87 Table 3: Average CLAS F; score.
16. LyS (Vilares and Gémez-Rodriguez) | 67.81
}; E%ﬁl(gizitr::i\;l:?l)eWSkl) 2;;? language.s Buryat, Kurmanji, North Sdmi and Up-
19. IIT Kharagpur (Das et al.) 67.61 per Sorbian, respectively.
20. naistCL (no paper) 67.59 5.2 SyntaxNet
;; gzi%l;?g(fgiigfei\z%? getal) 223431 Another set of baseline models was prepared by
23. Uppsala (de Lhoneux et al.) 65.11 Alberti et al. (2017) based on improved version of
24, METU (AKkus et al.) 6108 the. SyntaxNet system (Apdor et al., 2016). Pre-
. : . trained models were provided for UD 2.0 data.
25. CLCL (Mopr etal) 61.82 However, no SyntaxNet models were prepared
26. Mepgest Jietal) . 61.33 for the surprise languages, therefore, the Syn-
27. ParisNLP (De La Clergerie et al.) 60.02 taxNet baseline is not part of the official results.
28. OpenU (More and Tsarfaty) 56.56
29. TRL (Kanayama et al.) 43.07 6 Results
30. MetaRomance (Garcia and Gamallo) | 34.05
31. UT (no paper) 21.10 6.1 Official Parsing Results
32. ECNU (no paper) 3.18 Table 2 gives the main ranking of participating
33. Wenba-NLU (no paper) 0.58 systems by the LAS F; score macro-averaged over

Table 2: Ranking of the participating systems by
the main evaluation metric, the labeled attach-
ment Fp-score, macro-averaged over 81 test sets.
Pairs of systems with significantly (p < 0.05) dif-
ferent LAS are separated by a line. Names of
several teams are abbreviated in the table: LyS-
FASTPARSE, OpenU NLP Lab, Orange — Deskiil
and UFAL — UDPipe 1.2. Citations refer to the
corresponding system-description papers in this
volume.

the accuracy on the released sample for each sur-
prise language, resulting in Finnish FTB, Polish,
Finnish FTB and Slovak models for the surprise

all 81 test files. The table also shows the perfor-
mance of the baseline UDPipe system; the base-
line is relatively strong and only 12 of the 32 sys-
tems managed to outperform it.

We used bootstrap resampling to compute 95%
confidence intervals: they are in the range +0.11
to £0.15 (% LAS) for all systems except the three
lowest-scoring ones. We used paired bootstrap
resampling to compute whether the difference in
LAS is significant (p < 0.05) for each pair of sys-
tems. >

6.2 Secondary Metrics

In addition to the main LAS ranking, we evaluated
the systems along multiple other axes, which may

Susing Udapi’s eval.Conll17, marked by the presence or
absence of vertical lines in Table 2.



Table 4: Tokenization, word segmentation and
sentence segmentation (ordered by word F;
scores; out-of-order scores in the other two
columns are bold).

shed more light on their strengths and weaknesses.
This section provides an overview of selected sec-
ondary metrics for systems matching or surpassing
the baseline; a large number of additional results
is available at the shared task website.'

The website also features a LAS ranking of
unofficial system runs, i.e. those that were not
marked by their teams as primary runs, or were
even run after the official evaluation phase closed
and test data were unblinded. At least two differ-
ences from the official results are remarkable; both
seem to be partially inflicted by the blind evalua-
tion on TIRA and the inability of the participants
to see the diagnostic messages from their software.
In the first case, the Dynet library seems to pro-

Yhttp://universaldependencies.org/
conlll7/results.html
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Team Toks | Wrds | Sents Team UPOS | Feats | Lemm
1. IMS 98.92| 98.8189.10 1. Stanford 93.0938.81| 82.46
2. LIMSI 98.95| 98.68 | 88.49 2. IMS 91.98182.99| 62.83
3. UFAL - UDPipe 1.2[98.89| 98.63 | 88.68 3. ParisNLP 91.91|38.89| 75.32
4. HIT-SCIR 98.95| 98.62 | 88.91 4. UFAL - UDPipe 1.2| 91.22|82.50| 71.17
5. ParisNLP 98.85] 98.58|88.61 5. HIT-SCIR 91.13|81.90| 83.74
6. Wanghao-ftd-SJTU |98.81 | 98.55|88.40 6. TurkuNLP 91.10|82.58| 82.64
darc 98.81| 98.55 | 88.66 7. LIMSI 91.05/82.49| 82.64
8. BASELINE UDPipe | 98.77| 98.50 | 88.49 8. darc 91.00/82.48| 82.60
C2L.2 98.77| 98.50 | 88.49 9. CLCL 90.88 182.31| 82.46
CLCL 98.77| 98.50 | 88.49 10. BASELINE UDPipe| 90.88 [82.31| 82.45
IIT Kharagpur 98.77| 98.50 | 88.49 C2L.2 90.88 182.31| 82.46
Kog University 98.77| 98.50 | 88.49 IIT Kharagpur 90.88 182.31| 82.46
LATTICE 98.77| 98.50 | 88.49 Kog University 90.88|82.31| 82.46
LyS-FASTPARSE |98.77| 98.50 | 88.49 LATTICE 90.88 182.31| 82.46
METU 98.77| 98.50 | 88.49 LyS-FASTPARSE 90.88 82.31| 79.14
MQuni 98.77| 98.50 | 88.49 NAIST SATO 90.88 182.31| 82.46
NAIST SATO 98.77| 98.50 | 88.49 Orange — Deskifi 90.88 38.81| 15.38
Orange — Deskifl 98.77| 98.50 | 88.49 UALING 90.88 182.31| 82.46
Stanford 98.77| 98.50 | 88.49 UParse 90.88 182.31| 82.46
TurkuNLP 98.77| 98.50 | 88.49 naistCL 90.88 182.31| 82.46
UALING 98.77| 98.50 | 88.49
UParse 98.77 | 98.50| 88.49 Table 5: Universal POS tags, features and lemmas
naistCL 98.77| 98.50 | 88.49 (ordered by UPOS F; scores).
24. RACAI 98.58 | 98.39|87.52
25. OpenU NLP Lab 98.77 | 98.38 | 88.49
26. Uppsala 97.64 | 98.20 | 89.03

duce suboptimal results when deployed on a ma-
chine different from the one where it was trained.
Several teams used the library and may have been
affected; for the Uppsala team (de Lhoneux et al.,
2017) the issue led to official LAS = 65.11 (23rd
place) instead of 69.66 (9th place). In the sec-
ond case, the ParisNLP system (De La Clergerie
et al., 2017) used a wrong method of recogniz-
ing the input language, which was not supported
in the test data (but unfortunately it was possi-
ble to get along with it in development and trial
data). Simply crashing could mean that the task
moderator would show the team their diagnostic
output and they would fix the bug; however, the
parser was robust enough to switch to a language-
agnostic mode and produced results that were not
great, but also not so bad to alert the moderator
and make him investigate. Thus the official LAS
of the system is 60.02 (27th place) while without
the bug it could have been 70.35 (6th place).

Table 3 ranks the systems by CLAS instead of
LAS (see Section 3.5). The scores are lower than
LAS but differences in system ranking are mini-
mal, possibly indicating that optimization towards



one of the metrics does not make the parser bad
with respect to the other.

Table 4 evaluates detection of tokens, syntactic
words and sentences. Half of the systems simply
trusted the segmentation offered by the baseline
system. 7 systems were able to improve baseline
segmentation. For most languages and in aggre-
gate, the ability to improve parsing scores through
better segmentation was probably negligible, but
for a few languages, such as Chinese and Viet-
namese, the UDPipe baseline segmentation was
not so strong and several teams, notably IMS, ap-
pear to have improved their LAS by several per-
cent through use of improved segmentation.

The systems were not required to generate any
morphological annotation (part-of-speech tags,
features or lemmas). Some parsers do not even
need morphology and learn to predict syntactic de-
pendencies directly from text. Nevertheless, sys-
tems that did output POS tags, and had them at
least as good as the baseline system, are evalu-
ated in Table 5. Note that as with segmentation,
morphology predicted by the baseline system was
available and some systems simply copied it to the
output.

6.3 Partial Results

Table 6 gives the LAS F; score averaged over
the 55 “big” treebanks (training data larger than
test data, development data available). Higher
scores reflect the fact that models for these test
sets are easier to learn: enough data is available,
no cross-lingual or cross-domain learning is nec-
essary (the parallel test sets are not included here).
When compared to Table 2, four new teams now
surpass the baseline, LyS-FASTPARSE being the
best among them. The likely explanation is that
the systems can learn good models but are not so
good at picking the right model for unknown do-
mains and languages.

Table 7 gives the LAS F; score on the four sur-
prise languages only. The globally best system,
Stanford, now falls back to the fourth rank while
C2L2 (Cornell University) apparently employs the
most successful strategy for underresourced lan-
guages. Another immediate observation is that
our surprise languages are very hard to parse; ac-
curacy under 50% is hardly useful for any down-
stream processing. However, there are significant
language-by-language differences, the best score
on Upper Sorbian surpassing 60%. This proba-
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Team LASF,

1. Stanford (Stanford) 81.77
2. C2L2 (Ithaca) 79.85
3. IMS (Stuttgart) 79.60
4. HIT-SCIR (Harbin) 77.45
5. LATTICE (Paris) 75.79
6. NAIST SATO (Nara) 75.64
7. LyS-FASTPARSE (A Corufia) | 74.55
8. Kog University (Istanbul) 74.39
9. UFAL - UDPipe 1.2 (Praha) 74.38
10. TurkuNLP (Turku) 74.19
11. Orange — Deskifi (Lannion) 74.13
12. MQuni (Sydney) 74.03
13. LIMSI (Paris) 73.64
14. UParse (Edinburgh) 73.56
15. darc (Tiibingen) 73.31
16. fbaml (Palo Alto) 73.11
17. BASELINE UDPipe 1.1 73.04

Table 6: Average attachment score on the 55 “big”
treebanks.

bly owes to the presence of many Slavic treebanks
in training data, including some of the largest
datasets in UD.

In contrast, the results on the 8 small non-
surprise treebanks (Table 8) are higher on average,
but again the variance is huge. Uyghur (best score
43.51) is worse than three surprise languages, and
Kazakh (best score 29.22) is the least parsable
test set of all (see Table 10). These two tree-
banks are outliers in the size of training data (529
words Kazakh and 1662 words Uyghur, while the
other “small” treebanks have between 10K and
20K words). However, the only “training data”
of the surprise languages are samples of 147 to
460 words, yet they seem to be easier for some
systems. It would be interesting to know whether
the more successful systems took a similar ap-
proach to Kazakh and Uyghur as to the surprise
languages.

Table 9 gives the average LAS on the 14 new
parallel test sets (PUD). Three of them (Turkish,
Arabic and Hindi) proved difficult to parse for any
model trained on the UD 2.0 training data; it seems
likely that besides domain differences, inconsis-
tent application of the UD annotation guidelines
played a role, too.

See Table 10 for a ranking of all test sets by
the best LAS achieved on them by any parser.
Note that this cannot be directly interpreted as a



Team LAS F,

1. C2L2 (Ithaca) 47.54

2. IMS (Stuttgart) 45.32

3. HIT-SCIR (Harbin) 42.64

4. Stanford (Stanford) 40.57

5. ParisNLP (Paris) 39.22

6. UParse (Edinburgh) 39.17

7. Kog¢ University (Istanbul) 38.81

8. Orange — Deskifi (Lannion) | 38.72

9. LIMSI (Paris) 37.57

10. IIT Kharagpur (Kharagpur) | 37.17
11. BASELINE UDPipe 1.1 37.07

Table 7: Average attachment score on the 4 sur-
prise languages: Buryat (bxr), Kurmanji (kmr),
North Sdmi (sme) and Upper Sorbian (hsb).

Team LAS F,
1. C2L2 (Ithaca) 61.49
2. Stanford (Stanford) 61.02
3. IMS (Stuttgart) 58.76
4. LATTICE (Paris) 54.78
5. HIT-SCIR (Harbin) 54.77
6. fbaml (Palo Alto) 54.64
7. RACAI (Bucuresti) 54.26
8. TurkuNLP (Turku) 54.19
9. UFAL - UDPipe 1.2 (Praha) 53.76
10. NAIST SATO (Nara) 53.52
11. Kog University (Istanbul) 53.36
12. darc (Tiibingen) 52.46
13. UALING (Tucson) 52.27
14. Wanghao-ftd-SJTU (Shanghai)| 52.13
15. BASELINE UDPipe 1.1 51.80

Table 8: Average attachment score on the 8

small treebanks: French ParTUT, Galician Tree-
Gal, Irish, Kazakh, Latin, Slovenian SST, Uyghur
and Ukrainian.

ranking of languages by their parsing difficulty:
many treebanks have high ranks simply because
the corresponding training data is large. The ta-
ble also gives a secondary ranking by CLAS and
indicates the system that achieved the best LAS /
CLAS (mostly the same system won by both met-
rics). Finally, the best score of word and sen-
tence segmentation is given (without indicating
the best-scoring system). Vietnamese proved to
be the hardest language in terms of word seg-
mentation; it is not surprising given that its writ-
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Team LASF,

1. Stanford (Stanford) 73.73
2. C2L2 (Ithaca) 71.49
3. IMS (Stuttgart) 71.31
4. LATTICE (Paris) 70.77
5. NAIST SATO (Nara) 69.83
6. Koc University (Istanbul) 69.76
7. HIT-SCIR (Harbin) 69.51
8. MQuni (Sydney) 69.28
9. UFAL — UDPipe 1.2 (Praha)| 69.00
10. UParse (Edinburgh) 68.91
11. Orange — Deskifi (Lannion) 68.64
12. TurkuNLP (Turku) 68.56
13. BASELINE UDPipe 1.1 68.33

Table 9: Average attachment score on the 14 par-
allel test sets (PUD).

ing system allows spaces inside words. Second
hardest was Hebrew, probably due to a large num-
ber of multi-word tokens. In both cases the poor
segmentation correlates with poor parsing accu-
racy. Sentence segmentation was particularly dif-
ficult for treebanks without punctuation, i.e., most
of the classical languages and spoken data (the
best score achieved on the Spoken Slovenian Tree-
bank is only 21.41%). On the other hand, the
paragraph boundaries available in some treebanks
made sentence detection significantly easier (the
extreme being Arabic PUD with one sentence per
paragraph; some systems were able to exploit this
anomaly and get 100% correct segmentation).

7 Analysis of Submitted Systems

Table 11 gives an overview of 29 of the systems
evaluated in the shared task. The overview is
based on a post-evaluation questionnaire to which
29 of 32 teams responded. The abbreviations used
in Table 11 are explained in Table 12.

As we can see from Table 11, the typical sys-
tem uses the baseline models for segmentation and
morphological analysis (including part-of-speech
tagging), employs a single parsing model with pre-
trained word embeddings provided by the organiz-
ers, and does not make use of any additional data.
For readability, all the cells corresponding to use
of baseline models (and lack of additional data)
have been shaded gray.

Only 7 teams have developed their own word
and sentence segmenters, while an additional 5



Treebank LAS F; | CLAS F; | Best system Word | Sent

1. ru_syntagrus 92.60| 1.90.11 | Stanford 99.69| 98.64

2. hi 91.59| 6. 87.92 | Stanford 100.00| 99.29

3. sl 91.51| 2.88.98 | Stanford 99.96| 99.24

4. ptbr 91.36| 8. 87.48 | Stanford 99.86| 96.84

5. ja 91.13 | 26. 83.18 | TRL 98.59| 95.11

6. ca 90.70| 10. 86.70 | Stanford 99.97| 99.43

7. it 90.68 | 13. 86.18 | Stanford 99.85| 99.07

8. cs_cac 90.43| 4. 88.31 | Stanford 99.991100.00

9. pl 90.32| 5.87.94 | Stanford 99.90| 99.59

10. cs 90.17| 3. 88.44 | Stanford 99.99| 95.10
11. es_ancora 89.99 | 14. 86.15 | Stanford 99.95| 98.67
12. no_bokmaal 89.88 | 7. 87.67 | Stanford 99.88 | 96.44
13. bg 89.81 | 11. 86.53 | Stanford 99.92| 93.36
14. no_nynorsk 88.81| 12. 86.41 | Stanford 99.93| 94.56
15. fi_pud 88.47| 9. 86.82 | Stanford 99.63| 93.67
16. it_pud 88.14 | 17. 84.49 | Stanford 99.27| 97.81
17. fr_partut 88.13| 24. 83.58 | C2L2 99.56| 99.13
18. nl_lassysmall| 87.71] 15. 85.22 | Stanford 99.99| 85.33
19. pt 87.65| 25. 83.27 | Stanford 99.54| 91.67
20. el 87.38 | 23. 83.59 | Stanford 99.94| 92.68
21. fr_sequoia 87.31| 20. 84.09 | C2L2 99.49| 84.60
22. es 87.29 | 32. 82.08 | Stanford 99.81| 9537
23. laittb 87.02 | 16. 84.94 | Stanford 99.99| 94.34
24. fiftb 86.81 19. 84.12 | Stanford 99.99| 86.98
25. fa 86.31| 28. 82.93 | Stanford 99.65| 99.25
26. sk 86.04 | 21. 83.86 | Stanford 100.00| 85.32
27. ro 85.92| 33. 81.87 | Stanford 99.77| 96.57
28. sv 85.87 | 22. 83.71 | Stanford 99.87| 97.26
29. cs_cltt 85.8227. 83.05|C2L2 99.82| 95.69
30. fi 85.64 | 18. 84.25 | Stanford 99.69| 90.88
31. en_pud 85.51 29. 82.63 | Stanford 99.74| 98.06
32. fr 8551 31. 82.14 | Stanford 99.50| 94.58
33. hr 85.25 | 30. 82.36 | Stanford 99.93| 97.75
34. en_partut 84.46 | 39. 79.80 | C2L2 99.61| 98.40
35. cs_pud 84.42 | 35. 81.60 | Stanford 99.29| 96.43
36. ja_pud 83.75| 50. 75.63 |HIT-SCIR 94.93| 97.52
37. ru 83.65 | 34. 81.80 | Stanford 99.94| 97.16
38. gl 83.23 | 43. 78.05 | Stanford 99.98| 96.36
39. da 82.97 | 37. 80.03 | Stanford 100.00| 82.59
40. sv_lines 82.89 38. 79.92 | Stanford 99.98| 87.89
41. ko 82.49 | 36. 80.85 | Stanford 99.73| 93.05
42. ur 82.28 | 49. 75.88 | Stanford 100.00| 98.60
43. en 82.23 | 41. 78.99 | Stanford 99.03| 78.01
44. en_lines 82.09 | 42. 78.71 | Stanford 99.96| 87.55
45. eu 81.44| 40. 79.71 | Stanford 99.99| 99.83
46. es_pud 81.05 | 53. 74.60 | Stanford 99.48| 98.19
47. de 80.71 | 46. 76.97 | Stanford 99.67| 80.47
48. nl 80.48 | 52. 75.19 | Stanford 99.88| 77.14
49. id 79.19| 45. 77.15 | Stanford 100.00| 92.66
50. fr_pud 78.81| 44. 77.37 | Stanford 98.87| 96.55
51. sv_pud 78.49 | 47. 76.48 | Stanford 98.56| 95.52
52. pt_pud 78.48| 56. 72.80 | C2L2 99.45| 97.32
53. hu 77.56 | 48. 76.08 | Stanford 99.85| 96.56
54. cu 76.84| 51. 75.59 | IMS 100.00| 50.44
55. ru_pud 75.71 55. 73.13 | Stanford 98.29| 98.95
56. uk 75.33| 57. 71.72 | Stanford 99.92| 95.75
57. gre_proiel 75.28 | 60. 69.73 | IMS 100.00| 51.38
58. de_pud 74.86 | 54. 73.96 | Stanford 98.00| 91.40
59. gl_treegal 7434 65. 67.59 | C2L2 98.76| 86.74
60. 1v 74.01| 58. 70.22 | Stanford 99.45| 98.80
61. grc 73.19| 64. 67.59 | Stanford 100.00| 98.96
62. ar 72.90| 61. 69.15 | IMS 95.53| 85.69
63. et 71.65| 59. 69.85 | Stanford 99.89| 93.66
64. la_proiel 71.55 63. 68.93 | IMS 100.00| 40.63
65. got 71.36| 62. 69.02 | IMS 100.00| 41.65
66. ga 70.06 | 67. 61.38 | Stanford 99.73| 96.92
67. zh 68.56 | 66. 64.23 | IMS 94.57| 98.80
68. he 68.16| 68. 61.10 | IMS 91.37{100.00
69. la 63.37| 70. 58.96 | Stanford 100.00| 99.20
70. tr 62.79 | 69. 60.01 | Stanford 97.95| 97.04
71. hsb 61.70| 71. 56.32 | C2L2 / Stanford | 99.84| 91.65
72. slsst 59.07| 72. 54.30 | C2L2 100.00| 21.41
73. hi_pud 54.49| 73. 48.87 | Stanford 99.65| 94.85
74. ar_pud 49.94 | 75. 46.32 | IMS 96.05 | 100.00
75. sme 48.96 | 74. 48.42 | C2L2 99.88| 99.13
76. kmr 47.53| 76. 44.54 | C2L2 98.85| 98.64
77. vi 47.51|77.44.12|IMS 87.30| 92.95
78. ug 43.51 78. 34.07 | IMS 99.94| 70.47
79. tr_pud 38.22|79. 32.32|IMS 96.93| 93.91
80. bxr 32.24| 80. 26.32 | IMS / ParisNLP | 99.35| 93.69
81. kk 29.22 81. 25.14| RACAI 96.56| 89.35

Table 10: Treebank ranking by best parser LAS.
Bold CLAS is higher than the preceding one. Best
F; of word and sentence segmentation is also
shown. ISO 639 language codes are optionally fol-
lowed by a treebank code.
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teams have retrained or improved the baseline
models, or combined them with other techniques.
When it comes to part-of-speech tags and mor-
phology, 7 teams use their own systems and 4 use
modified versions of the baseline, while 2 teams
predict tags jointly with parsing and 3 teams do
not predict morphology at all.

For parsing, most teams use a single parsing
model — transition-based, graph-based or even
rule-based — but 4 teams build ensemble systems
in one way or the other. It is worth noting that,
whereas the C2L2 and IMS systems are ensem-
bles, the winning Stanford system is not, which
makes its performance even more impressive.

The majority of parsers incorporate pre-trained
word embeddings. Only 3 parsers use word em-
beddings without pre-training, and only 4 parsers
do not incorporate word embeddings at all. Except
for training word embeddings, the additional data
provided (or permitted) appears to have been used
very sparingly.

When it comes to the surprise languages (and
some of the other low-resource languages), the
dominant approach is to use a cross-lingual parser,
single- or multi-source, and often delexicalized.
Finally, for the parallel test sets, most teams have
picked a model trained on a single treebank from
the same language, but at least 4 teams have
trained models on multiple treebanks.

8 Conclusion

The CoNLL 2017 Shared Task on UD parsing was
novel in several respects. Besides using cross-
linguistically consistent linguistic representations
and emphasizing end-to-end processing of text, as
discussed in the introduction, it was unusual also
in featuring a very large number of languages,
in integrating cross-lingual learning for resource-
poor languages, and in using a multiply parallel
test set.

It was the first large-scale evaluation on data an-
notated in the Universal Dependencies style. For
most UD languages the results represent a new
state of the art for dependency parsing. The num-
bers are not directly comparable to some older
work for various reasons (different annotation
schemes, gold-standard POS tags, tokenization
etc.) but the way the task was organized should en-
sure their reproducibility and comparability in the
future. Furthermore, parsing results are now more
comparable across languages than ever before.



System R | Segment | Morph/POS Parsing Embed | AddData Surp Para
C2L2 2 Base Aux Ensemble-GT | Random None Cross-MD |  Single
CLCL 25 Base Base Single Random None Cross-M ?
darc 12 UDP Own Single-T Base None Cross Single
fbaml 15 Own Own Single Base None Mono ?
HIT-SCIR 4 Own None Single/Ensemble Base OPUS Cross Single
IIT Kharagpur 19 Base Base Single-T Base None Cross-MD | All/Single
IMS 3 B/O Own Ensemble-GT Base None Cross All
Kog University 7 Base Base Single Crawl None Cross ?
LATTICE 5 Base Base Single B/O/FB | Wiki/OPUS Cross All
LIMSI 17| B/UDP Base B/Single-T Base OPUS Cross Single
LyS-FASTPARSE 16 Base Base Single-T Base None Cross Single
Mengest 26 Base Base Single-T Crawl None Canon Single
MetaRomance 30 Base Base Single-R None None Canon ?
METU 24 Base Base Single-T Base PTB/CCG Cross Single
MQuni 14 Base Joint Single-G Random None Mono Single
NAIST SATO 6 Base Base Single Base None Canon Single
OpenU NLP Lab 28 | B/UDP B/O Single-T None None Cross Single
Orange-Deskiii 10 Base None Single Crawl None Cross Single
ParisNLP 27 | B/lUDP/O | B/UDP/O/AG Single B/C None Cross Single
RACAI 18 Own Own Single-G Crawl None Cross ?
Stanford 1 Base Own Single-G B/FB None Cross-MD |  Single
TRL 29 Own Own Single-R None None Cross-SD Single
TurkuNLP 11 Base Base/UDP Single-T Crawl None Cross-S Single
UALING 22 Base Base Base Base None Cross ?
UFAL - UDPipe 1.2 | 8 Own UDP Single-T Treebank None Cross All/Single
UParse 9 Base Base B/Single-G O/FB OPUS Cross Single
Uppsala 23 Own None Single-T Treebank None Cross-M Single
UT 31 Base Own/AG Ensemble FB None Cross-S ?
Wanghao-ftd-SJTU | 21 Own Base Single None None Cross-D ?

Table 11: Classification of participating systems. The second column repeats the main system ranking.

Two new language resources were produced
whose usefulness reaches far beyond the task it-
self: A UD-style parallel treebank in 18 languages,
and a large, web-crawled parsebank in 48 lan-
guages, over 90 billion words in total.

The analysis of the shared task results has so far
only scratched the surface, and we refer to the sys-
tem description papers for more in-depth analysis
of individual systems and their performance. For
many previous CoNLL shared tasks, the task it-
self has only been the starting point of a long and
fruitful research strand, enabled by the resources
created for the task. We hope and believe that the
2017 UD parsing task will join this tradition.
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Abstract

This paper describes the neural depen-
dency parser submitted by Stanford to the
CoNLL 2017 Shared Task on parsing Uni-
versal Dependencies. Our system uses
relatively simple LSTM networks to pro-
duce part of speech tags and labeled de-
pendency parses from segmented and tok-
enized sequences of words. In order to ad-
dress the rare word problem that abounds
in languages with complex morphology,
we include a character-based word rep-
resentation that uses an LSTM to pro-
duce embeddings from sequences of char-
acters. Our system was ranked first ac-
cording to all five relevant metrics for the
system: UPOS tagging (93.09%), XPOS
tagging (82.27%), unlabeled attachment
score (81.30%), labeled attachment score
(76.30%), and content word labeled at-
tachment score (72.57%).

1 Introduction

In this paper, we describe Stanford’s approach to
tackling the CoNLL 2017 shared task on Univer-
sal Dependency parsing (Nivre et al., 2016; Ze-
man et al., 2017; Nivre et al., 2017b,a). Our sys-
tem builds on the deep biaffine neural dependency
parser presented by Dozat and Manning (2017),
which uses a well-tuned LSTM network to pro-
duce vector representations for each word, then
uses those vector representations in novel biaffine
classifiers to predict the head token of each depen-
dent and the class of the resulting edge. In order to
adapt it to the wide variety of different treebanks
in Universal Dependencies, we make two note-
worthy extensions to the system: first, we incor-
porate a word representation built up from char-
acter sequences using an LSTM, theorizing that

this should improve the model’s ability to adapt
to rare or unknown words in languages with rich
morphology; second, we train our own taggers for
the treebanks using nearly identical architecture to
the one used for parsing, in order to capitalize on
potential improvements in part of speech tag qual-
ity over baseline or off-the-shelf taggers. This ap-
proach gets state-of-the-art results on the macro
average of the shared task datasets according to all
five POS tagging and attachment accuracy metrics.

One noteworthy feature of our approach is its
relative simplicity. It uses a single tagger/parser
pair per language, trained on only words and tags;
thus we refrain from taking advantage of ensem-
bling, lemmas, or morphological features, any one
of which could potentially push accuracy even
higher.

2 Architecture

2.1 Deep biaffine parser

The basic architecture of our approach follows that
of Dozat and Manning (2017), which is closely
related to Kiperwasser and Goldberg (2016), the
first neural graph-based (McDonald et al., 2005)
parser.! In Dozat and Manning’s 2017 parser, the
input to the model is a sequence of tokens and their
part of speech tags, which is then put through a
multilayer bidirectional LSTM network. The out-
put state of the final LSTM layer (which excludes
the cell state) is then fed through four separate
ReLU layers, producing four specialized vector
representations: one for the word as a dependent
seeking its head; one for the word as a head seek-
ing all its dependents; another for the word as a de-
pendent deciding on its label; and a fourth for the
word as head deciding on the labels of its depen-

"For other neural graph-based parsers, cf. Cheng et al.
(2016); Hashimoto et al. (2016); Zhang et al. (2016)

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 20-30,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics
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Figure 1: The architecture of our parser. Arrows indicate structural dependence, but not necessarily

trainable parameters.

dents.? These vectors are then used in two biaffine
classifiers: the first computes a score for each pair
of tokens, with the highest score for a given to-
ken indicating that token’s most probable head; the
second computes a score for each label for a given
token/head pair, with the highest score represent-
ing the most probable label for the arc from the
head to the dependent. This is shown graphically
in Figure 1.

Put formally, given a sequence of n word em-
beddings (to be described in more detail in Section

2.2) (v (wmd), - ,Vv(@word)) and n tag embeddings
(vi9 . v{f%9)) e concatenate each pair to-

gether and feed the result into a BILSTM with ini-
tial state rq:>

X; = Vl(word) @ Vgtag) (1)
r; = BILSTM(ro, (x1,...,%n));, (2)
h;, c; = split(r;) 3)

We then produce four distinct vectors from each
recurrent hidden state h; (without the recurrent
cell state c;) using ReLU perceptron layers:

hz(arc-dep) _ MLP(arc—dep) (hz) (4)
hl(a'rc—head) _ MLP(arc—head) (hz) (5)
hl(rel-dep) _ MLP(rel-dep) (hz) (6)
hz(rel—head) — M p(rel-head) (hy) (7)

In order to produce a prediction y;(mc) for token

i, we use a biaffine classifier involving the (arc)

Interestingly, other researchers have found similar ap-
proaches to be beneficial for other tasks; cf. Reed and de Fre-
itas (2016); Miller et al. (2016); Daniluk et al. (2017)

3We adopt the convention of using lowercase italics for
scalars, lowercase bold for vectors, uppercase italics for ma-
trices, and uppercase bold for tensors. We maintain this con-
vention when indexing and stacking; so a; is the ¢th vector of
matrix A, and matrix A is the stack of all vectors a;.
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hidden vectors:
SZ('aTC) _ H(arc—head)W(arc) hgaTC‘dep) (8)
+ H(arc-head) bT(arc)

1(arc)

Y; = arg max s(jarc) )

J
Note first the similarity between line 8 and a tra-
ditional affine classifier of the form Wh + b,
with each of W and b first being transformed by
H{arc-head) - Note also that both terms of the bi-
affine layer have intuitive interpretations: the first
relates to the probability of word j being the head
of word i given the information in both h(¢7®) vec-
tors (for example, the probability of word 7 de-
pending on word j given that word ¢ is the and
word j is cat); the second relates to the probability
of word j being the head of word ¢ given only the
information in the head’s vector (for example, the
probability of word ¢ depending on word j given
that word j is the, which should be very small no
matter what word 7 is).

After deciding on a head y, for word i, we use
another biaffine transformation—this time involv-
ing the (rel) hidden vectors—to produce a pre-

dicted label:
S(rel) . hT (Tel—head)U(r,‘el)hgrel—dep)

1 - y;(am)

(10)

+ W(rel) (h(rel—dep) h(rel head))

/(a'rc)
Yi

+ b(rel)

/(rel)

v, (rel)

o (11)

= argmaxs,
J

Again, each term in line 10 has an intutive inter-
pretation: the first term relates to the probability
of observing a label given the information in both
h("¢!) vectors (e.g. the probability of the label det
given word 7 is the with head cat); the second re-
lates to the probability of observing a label given
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Figure 2: The architecture of our embedding model. Arrows indicate structural dependence, but not

necessarily trainable parameters.

either h("¢) vector (e.g. the probability of the label
det given that word 7 is the or that word j is cat);
the last relates to the prior probability of observing
a label.

We jointly train these two biaffine classifiers by
optimizing the sum of their softmax cross-entropy
losses. At test time, we ensure the tree is well-
formed by iteratively identifying and fixing cycles
for each proposed root and selecting the one with
the highest score, which is both simple and suffi-
cient for our purposes. 4

2.2 Character-level model

Dozat and Manning (2017) represented words as
the sum of a pretrained vector> and a holistic word
embedding for frequent words. However, that ap-
proach seems insufficient for languages with rich
morphology; so we add a third representation built
up from sequences of characters. Each character
is given a trainable vector embedding, and each
sequence of character embeddings is fed into a
unidirectional LSTM. However, the LSTM pro-
duces a sequence of recurrent states (ry,...,ry,),
which we need to convert into a single vector. The
simplest approach is to take the last one—which
would represent a summary of all the information
aggregated one character at a time—and linearly
transform it to the desired dimensionality. An-
other approach, suggested by Cao and Rei (2016),
is to use attention over the hidden states, and then

4Although in the future we intend to implement than the
Chu-Liu/Edmonds algorithm for nonprojective MST parsing
(Chu and Liu, 1965; Edmonds, 1967)

We use the provided CoNLL vectors trained on
word2vec (Mikolov et al., 2013); for Gothic, which had no

provided vector embeddings, we used Facebook’s FastText
vectors (Bojanowski et al., 2016)
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trasform the resulting context vector to the desired
size; in theory, this should both allow the model
to learn morpheme information more easily by at-
tending more closely to the LSTM output at mor-
pheme boundaries. We choose to combine both
approaches, using the hidden states for attention
and the cell state for summarizing, shown in Fig-
ure 2.

That is, given a sequence of n character em-
beddings and an initial state rg for the LSTM, we
each embedding into an LSTM as before, extract-
ing hidden and cell states:

r; = LSTM (ro, (V%Char), e

’ Vglchar)))i
(12)

hz‘, Cc;, = split(ri) (13)

We then compute linear attention over the stack of
hidden vectors H and concatenate it to the final
cell state:

a = softmax (H w(“ttn)) (14)
h=H'a (15)
v=W(haec,) (16)

In this way we use the hidden states for attention
and the cell state as a final summary vector.

After computing the character-level word em-
bedding, we add together elementwise the pre-
trained embedding, the holistic frequent token em-
bedding, and the newly generated character-level
embedding. We also add together embeddings for
the language’s UPOS and XPOS tags. The result-
ing two vectors are used as input to the BiLSTM
parser in Section 2.1.



2.3 POS tagger

The final piece of our system is a separately-
trained part of speech tagger. The architecture
for the tagger is almost identical to that of the
parser (and shares fundamental properties with
other neural taggers; cf. Ling et al. (2015); Plank
et al. (2016))—it uses a BILSTM over word vec-
tors (using the tripartite representation from Sec-
tion 2.2), then uses ReL.U layers to produce one
vector representation for each type of tag.

Thus we use a BiLSTM, as with the parser ar-
chitecture:

r, = BILSTM(I'(), (ngor‘d)7 o 7V7(1wOTd)))i
a7
by c: = split(r;) (18)

And we use affine classifiers for each type of tag,
which we add together for the parser:

hP2%) = MLP®?%) (h;) (19)

Sgpos) _ Whl(pos) + b(pos) (20)

y;(p"s) = arg max sl(.ﬁ.)os) 20
J

The tag classifiers are trained jointly using cross-
entropy losses that are summed together during
optimization, but the tagger is trained indepen-
dently from the parser.

3 Training details

Our model largely adopts the same hyperparam-
eter configuration laid out by Dozat and Man-
ning (2017), with a few exceptions. The parser
uses three BILSTM layers with 100-dimensional
word and tag embeddings and 200-dimensional re-
current states (in each direction); the arc classi-
fier uses 400-dimensional head/dependent vector
states and the label classifier uses 100-dimensional
ones; we drop word and tag embeddings inde-
pendently with 33% probability;® we use same-
mask dropout (Gal and Ghahramani, 2015) in the
LSTM, ReL.U layers, and classifiers, dropping in-
put and recurrent connections with 33% proba-
bility; and we optimize with Adam (Kingma and
Ba, 2014), setting the learning rate to 2¢~2 and
61 = P2 = .9. We train models for up to 30,000
training steps (where one step/iteration is a single
minibatch with approximately 5,000 tokens), at

SWhen only one is dropped, we scale the other by a factor
of two
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first saving the model every 100 steps if fewer than
1,000 iterations have passed, and afterwards only
saving if validation accuracy increases (or training
accuracy for languages with no validation data).
When 5,000 training steps pass without improving
accuracy, we terminate training.

For the character model, we use 100-
dimensional uncased character embeddings
with 400-dimensional recurrent states. We don’t
drop characters but do include 33% dropout in the
LSTM and attention connections.

In the tagger we use nearly identical settings,
with a few exceptions: the BiILSTM is only two
layers deep, we increase the dropout between re-
current connections to 50%, and we use cased
character embeddings.

Our approach for dealing with the surprise lan-
guages was to train delexicalized “language fam-
ily” parsers with the same architecture detailed in
Section 2.1 on UDPipe v1.1 (Straka et al., 2016)’s
UPOS tags with no word-level information. For
Buryat (Altaic), we used as input the training
datasets for Turkish, Uyghur, Kazakh, Korean, and
Japanese; for Kurmanji (Indo-Iranian), we used
Persian, Urdu, and Hindi; for North Sami (Uralic),
we used Finnish, Finnish-FTB, Estonian, and
Hungarian; and for Upper Sorbian (Slavic), we
used Bulgarian, Czech, Old Church Slavonic, Pol-
ish, Russian, Russian-SynTagRus, Slovak, Slove-
nian, Slovenian-SST, and Ukrainian.

There’s substantial variability in training and
testing speed across treebanks, but on an NVidia
Titan X GPU the models train at 100 to 1000 sen-
tences/sec and test at 1000 to 5000 sentences/sec.
Even without GPU acceleration a tagger or parser
can be run on an entire test treebank in ten to
twenty seconds. By far the greatest runtime over-
head comes not from the model itself, but from
reading in the large matrices of pretrained em-
beddings, which can take several minutes. A full
run over the 81 test sets on the TIRA virtual ma-
chine (Potthast et al., 2014) takes about 16 hours,
but when parallelized on faster machines it can be
done in under an hour.

4 Results

Our model uses a provided tokenization and seg-
mentation and produces UPOS tags, XPOS tags,
arcs, and labels. Thus the relevant metrics for the
system are UPOS accuracy, XPOS accuracy, unla-
beled attachment score, labeled attachment score,



UPOS XPOS UAS LAS CLAS UPOS XPOS UAS LAS CLAS

ar 89.36 87.66 7659 7197  68.17  hsb 90.30  99.84 67.83 60.01 56.32
ar_pud 71.17 0.00 58.87 4950  46.06 hu 95.34 9982 8235 7756 76.08
bg 98.75 96.71 92.89 89.81 86.53 id 94.09 9999 8517 179.19 7715
bxr 84.12 9935 51.19 30.00 2537 it 98.04 9793 9251 90.68  86.18
ca 98.59 9858 92.88 90.70  86.70  it_pud 93.74 248 91.08 88.14 84.49
cs 98.83 9586 92.62 90.17 8844 ja 88.14  89.68 7542 7472 6590
cs_cac 99.05 95.16 93.14 90.43 8831 japud 89.41 7.50 78.64 7792  68.95
cs_cltt 9791 8998 86.02 8256  79.62 kk 5736 5572 4351 2513 19.32
cs_pud 9642  92.60 89.11 84.42 81.60 kmr 90.04 89.84 47.71 3505 28.72
cu 9590 9620 77.10 7184 7049 ko 96.14  93.02 8590 8249 80.85
da 9740 99.69 8533 8297 80.03 Ia 90.67 76.69 72.56 63.37 58.96
de 9441 9729 8410 80.71 7697 laittb 98.36 9479 8944 87.02 84.94
de_pud 8571 2089 80.88 7486 73.96 la_proiel 96.72 9693 73.71 6935  66.56
el 97.74 9776 89.73 8738 8359 v 93.59 80.05 79.26 74.01 70.22
en 95.11 94.82 84.74 8223 7899 nl 93.24 90.61 85.17 80.48 75.19

en_lines 96.64 9541 85.16 82.09 78.71  nllassysmall 9839 9993 89.56 87.71 85.22
en_partut 95.22 95.08 86.10 8254 7740 no_bokmaal 98.35 99.75 91.60 89.88  87.67

en_pud 9540 9429 88.22 8551  82.63 no_nynorsk 98.11 9985 90.75 88.81  86.41
es 96.59 99.69 90.01 87.29 82.08 pl 98.15 9197 9398 9032 87.94
es_ancora 98.72 9873 92.11 8999 86.15 pt 97.24  83.04 8990 87.65 83.27
es_pud 88.39 1.76 88.14 81.05 74.60 ptbr 98.22 9822 9276 91.36 87.48
et 93.01 95.05 78.08 71.65 69.85 ptpud 88.99 0.00 8327 77.14 71.68
eu 95.89 9996 8528 8144 7971 ro 97.59 9698 9043 8592  81.87
fa 97.15 97.12 89.64 8631 8293 ru 96.99 96.73 87.15 83.65 81.80
fi 96.62 9737 8797 85.64 8425 ru_pud 86.85 80.17 8231 7571 7313
Siftb 96.30 9531 89.24 86.81 84.12  ru_syntagrus 98.59 9957 94.00 92.60 90.11
fi-pud 97.54 0.00 90.60 8847 86.82 sk 96.87 85.00 89.58 86.04 83.86
fr 96.20 98.87 88.57 8551 8214 i 98.63 9474 9334 91.51  88.98
[fr_partut 96.16 9588 88.64 8505 7949  slsst 94.04 86.87 61.71 56.02 51.04
frpud 89.32 240 8345 7881 7737  sme 86.81 88.98 51.13 37.21 39.22
frsequoia  97.41  99.06 88.48 86.53 8337 sv 97.70 9640 88.50 8587 83.71
ga 9243 9131 7850 70.06 61.38  sv_lines 96.74 94.84 86.51 82.89 79.92
gl 97.72 9750 85.87 8323 78.05 sv_pud 94.33 9233 8190 7849 7648
gl_treegal 9451 91.65 7828 7339 @ 66.02 1 93.86 93.11 69.62 62.79 60.01
got 95.74 9649 73.10 66.82  63.87 trpud 72.73 0.00 58.72 3772 31.71
gre 92.64 8447 7842 7319 6759 ug 76.65  78.69 56.86 39.79  30.11
gre_proiel 97.06 97.51 7830 7425  68.83 uk 9431 7942 8144 7533 71.72
he 8242 8245 67770 6394 56.78 ur 93.95 9230 87.98 8228 75.88
hi 97.50 97.01 9470 9159 8792 i 7528 7356 46.14 4213  38.59
hi_pud 8548 3482 67.24 5449 4887 zh 8526  85.07 6895 6588  62.03
hr 97.68 9993 90.11 8525 8236
UPOS XPOS UAS LAS CLAS
All treebanks 93.09 8227 8130 7630 72.57
Large treebanks 95.58 9456 85.16 81.77 78.40
Parallell treebanks ~ 88.25  30.66 80.17 73.73  69.88
Small treebanks 87.02 82.03 70.19 61.02 5476
Surprise treebanks - - 5447 4057 37.41

Table 1: Results on each treebank in the shared task plus the macro average over all of them. State of the
art performance by the system is in bold.
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(b) Difterence in CLAS between our parser and UDPipe v1.1
as a function of the difference between the nonprojectivity of
the test and training sets

Figure 3: How the percent of nonprojective arcs in the training and test set influence accuracy of our

graph-based and a transition-based parser

and content labeled attachment score. Our system
achieves the highest aggregated score on all five of
these metrics in the shared task. Below we explore
where our model does particularly well, and where
it can be improved. We choose to evaluate on
CLAS performance because we feel it more accu-
rately reflects model performance, being a princi-
pled extension of the common practice of remov-
ing punctuation from evalution. We also exclude
surprise languages from the following analyses.
One small point to that end is that our sys-
tem assumes tokenization and segmentation has
already been done; we therefore trained on gold
segmentation and evaluated using the segmenta-
tion provided by UDPipe. For most treebanks
this was easily sufficient, but for Vietnamese, Chi-
nese, Japanese, and Arabic, UDPipe’s lower per-
formance at segmenting or tokenizing was corre-
lated with a relatively large gap between CLAS
and gold-aligned CLAS. Because our model re-
ports comparable numbers for nearly all other tree-
banks, we take this to mean that alignment errors
propagated through the system into parsing errors.

4.1 Nonprojectivity

In Universal Dependencies, unlike many other
popular benchmarks, several treebanks have a
large fraction of crossing dependencies, so any
competitive system will need to be able to produce
nonprojective arcs. One of the most frequently
used approaches for producing fully nonprojec-
tive parsers in transition-based systems is to add

the swap action (Nivre, 2009). This makes any
arbitrary nonprojective arc possible, but increases
the number of transition steps required to produce
that arc. One valid concern is that this might bias
the model toward producing projective arcs; in our
graph-based system, by contrast, there’s little rea-
son to think nonprojective arcs should be harder to
predict than projective ones. Here we aim to ex-
plore how the fraction of nonprojective arcs in a
treebank affects the performance of the two types
of systems.

To test the relative performance of a graph-
based and a transition-based model, we compute
the difference in per-treebank CLAS performance
between our parser and the UDPipe v1.1 baseline
(Straka et al., 2016), which uses a transition-based
parser with the swap operation (Straka et al.,
2015). We then plot this against the frequency of
nonprojective arcs in the test set. To determine
whether there is a significant relationship between
the difference in performance, we fit the data to a
generalized linear mixed effects regression model
(Fisher, 1930), using Markov chain Monte Carlo
sampling (Hadfield, 2010). We include log data
size, morphological complexity (see Section 5.2),
and training set projectivity as random effects. We
plot the data with the learned regression lines in
Figure 3a. What we find is that the margin be-
tween the performance of the graph-based and
transition-based parsers increases with the nonpro-
jectivity of the test set significantly (p < 0.001).
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Figure 4: Performance difference between our
model and the highest-performing model other
than ours as a function of log training data size

This remains significant even when outliers’ are
excluded (p < 0.05). To the extent that UDPipe
represents a typical nonprojective transition-based
parser, our results suggest that a graph-based ap-
proach is better suited to parsing UD treebanks
that have significant syntactic freedom or com-
plexity than a transition-based one.

Predicting crossing arcs requires more opera-
tions (and therefore more long-term planning on
behalf of the parser) when using the swap fea-
ture in a transition-based system, but in our graph-
based system they can be predicted as easily as
projective arcs. One might hypothesize that be-
cause of this, a transition-based swapping sys-
tem would need to see more examples of cross-
ing dependencies than a graph-based system in or-
der to generalize well. The data shown in Figure
3b support this hypothesis: we computed the dif-
ference between the projectivity of each test and
training set, and used this as the fixed effect in
another mixed effects model with data size, mor-
phological complexity, and train/test nonprojec-
tivity as random effects. We find that when the
training set has drastically fewer crossing depen-
dencies than the test set, the graph-based model
achieves relatively higher accuracy; but when the
transition-based parser can train on many cross-
ing arcs, the models are closer in performance
(p < 0.001), even when excluding the same out-
liers (p < 0.05). This suggests that the graph-
based approach learns and generalizes crossing
dependencies more efficiently than the transition-

"Korean (top); Ancient Greek, Latin (right)
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Effect of Tagger Improvement
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Figure 5: Performance difference between a ver-
sion of our model trained on our own predicted
tags and a version trained on UDPipe v1.1 tags as
a function of the performance difference between
our taggers and the UDPipe taggers

based approach, although this again comes with
the assumption that UDPipe’s parser is represen-
tative of most transition-based swapping parsers
when it comes to producing nonprojective parses.

4.2 Data size

We use the same hyperparameter configuration for
all datasets, regardless of how much training data
there is for that treebank, which means we may
have overfit to small training datasets or underfit
to large ones. To test this, we computed the per-
treebank difference between the test CLAS per-
formance of our model and that of the highest-
performing model other than ours, and plotted that
ratio against the log training data size in Figure
4. We fit the differences to another mixed ef-
fects regression model with train/test projectivity
and morphological complexity set as random ef-
fects, finding that our system on average tends to
do relatively better on larger datasets compared
to other approaches and worse on smaller ones
(p < 0.001). When the outliers are excluded,?
this tendency is still significant (p < 0.001). This
suggests that our model is overfitting to smaller
datasets, and that increasing regularization or de-
creasing model capacity may improve accuracy
for lower-resource languages.

8Kazakh, Uyghur (left); Japanese (bottom); Czech-CAC,
Russian-SynTagRus, Czech (right)
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Figure 6: Performance difference between parsers using our taggers and parsers without tags (left) and
between parsers using UDPipe v1.1’s tags and parsers without tags (right), with both histograms fit to

skew normal distributions

5 Ablation Studies

5.1 POS Tagger

We chose to train our parsers on our own pre-
dicted tags instead of using provided taggers; here
we aim to justify that strategy empirically with an
ablation study. We trained another set of parsers
with otherwise identical hyperparameter settings
using the baseline tags provided by UDPipe v1.1,
and computed the difference in CLAS between
our reported models and the new ones. We also
computed the difference in UPOS accuracy be-
tween UDPipe v1.1’s taggers and our own. In
Figure 5, we plot how the difference in tagger
quality affects the CLAS of the parser, making
two noteworthy observations. The first is that the
performance difference between the set of mod-
els trained on our own tags is statistically signif-
icantly better than the performance of the models
trained on UDPipe tags according to a Wilcoxon
test (p < 0.001). The second is that this can be
explained by the improvement of our tagger over
UDPipe vl1.1, again accounting for dataset size,
nonprojectivity, and morphology in a mixed ef-
fects model (p < 0.001). This suggests that im-
proving upstream tagger performance is an effec-
tive way of improving downstream parser accu-
racy. We also examined the effect of training size
on the difference in parser performance, finding no
significant correlation (p > 0.05).

The approach laid out in this paper uses one
neural network to tag the sequences of tokens,
and a second neural network to produce a parse
from the tokens and tags. One might ask to what
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extent the tagger network is actually necessary,
for a number of reasons: presumably whatever
predictive patterns it learns from the token se-
quences would also be learnable by the parser net-
work; errors by the tagger are likely to be propa-
gated by the parser; and Ballesteros et al. (2015)
found that POS tags are drastically less impor-
tant for character-based parsers. In order to ex-
amine how useful the POS tag information is to
our character-based system, we trained an addi-
tional set of parsers without UPOS or XPOS in-
put, comparing them to the other two, with the
differences graphed in Figure 6. We find that the
variant with no POS tag input is likewise signif-
icantly worse than our reported model according
to a Wilcoxon test (p < 0.001), but not statisti-
cally different from the one trained with UDPipe
tags (p > 0.05). This suggests that predicted POS
tags are still useful for achieving maximal parsing
accuracy in our system, provided the tagger’s per-
formance is sufficiently high.

5.2 Character model

One of the ways in which we build on Dozat and
Manning’s 2017 work is by adding a character-
level word representation similar to that of Balles-
teros et al. (2015), hypothesizing that it should al-
low the model to more effectively learn the rela-
tionships between words in languages with rich
morphology and loose word order. We test this
using another ablation study; we trained a sec-
ond set of taggers and parsers on the dataset with
only whole token and pretrained vectors, leaving
out the vector composed from character sequences
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Figure 7: Performance difference between our character-based approach and a pure token-based ap-
proach for parsing (left) and tagging (right) as a function of approximated morphological complexity

(for maximal comparability, we use the origi-
nal character-based taggers for the token-based
parsers). As morphological complexity increases,
the difference between the models should increase
as well.

The basis of our approach to quantifying mor-
phological complexity will be the assumption that
in a morphologically complex language, the ra-
tio between the size of the vocabulary |V (X)| of
a corpus to the size of the corpus | X| will be rel-
atively high, because the same lemma may occur
with many different forms; but in a morphologi-
cally simplex language, that ratio will be smaller,
because a given lemma will normally appear with
only a few forms. Assuming both languages have
the same number of lemmas, the vocabulary size
of the complex language will then be larger. The
most principled way of modeling this intuition is
through Heaps’ law (Herdan, 1960; Heaps, 1978)
in Equation 22, which says that the log vocabulary
size increases linearly in the log corpus size.

log([VX))) = wlog(IX[) +b  (22)

We can take advantage of Heaps’ law directly in
approximating morphological complexity. Mor-
phologically richer languages should increase the
size of their vocabulary at a faster rate as the cor-
pus size grows, because a new token being added
to the corpus has a higher probability of having
a previously observed lemma with a previously
unobserved morphological form, thereby increas-
ing the vocabulary size; in a morphologically sim-
plex language, previously observed lemmas are
unlikely to have many morphological forms that
could increase |V'|. Therefore, we would expect
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the parameter w of Equation 22 to be higher for
languages with rich morphology. We computed
this value for each treebank, and the results gen-
erally align with our intuition (although not with-
out some variation, attributable to domain and
dataset size): Hindi and Urdu—which have sig-
nificant allomorphy—are among the lowest, hav-
ing w = .555 and .585 respectively; English and
Vietnamese have .631 and .661; Spanish and Por-
tuguese have .7 and .704; and Finnish, Estonian,
and Hungarian have some of the highest, at .806,
.822, and .846.

Thus we use the coefficient w in Equation 22 as
our metric for morphological richness, and plot the
difference between models trained with character-
level word embeddings and token-level word em-
beddings against this value in Figure 7. First we
perform a Wilcoxon signed rank test, finding that
the difference between the two approaches is sta-
tistically significant for the taggers (p < 0.001)
and parsers (p < 0.001). Then we fit a mixed
effects model to the data with treebank size and
training/test projectivity as random effects, finding
that the character-level approach tends to signifi-
cantly improve performance more as complexity
grows both for parsing (p < 0.005) and tagging
(p < 0.001).° This indicates that incorporating
subword information into UD parsing models is
a promising way to improve performance on lan-
guages with significant morphology.

The assumption of linearity is clearly wrong, but the neg-
ative y-values preclude using a log-linear model on which we
run significance tests



6 Conclusion

In this paper we describe our relatively simple
neural system for parsing that achieved state-of-
the-art performance on the 2017 CoNLL Shared
Task on UD parsing without utilizing lemmas,
morphological features, or ensembling. The sys-
tem uses BiLSTM networks for tagging and pars-
ing, and includes character-level word representa-
tions in addition to token-level ones. We also ex-
amined what can be learned more generally from
our model’s performance. We explore the rel-
ative performance of nonprojective graph-based
and transition-based architectures on this task,
finding evidence that modern graph-based parsers
might be better at producing nonprojective arcs
(with some caveats). Additionally, our network
performs better when there’s an abundance of data,
suggesting that more regularization could improve
accuracy on lower-resource languages.

We also sought to quantitatively justify the ad-
ditional complexity of our system. We consid-
ered how important the POS tagger is to the sys-
tem, comparing the downstream performance of
parsers using our tagger, the baseline tagger, and
no tagger at all. We find that our tagger beats
both baselines significantly, whereas the two base-
lines don’t statistically differ from each other, in-
dicating that POS tags can help our system but
must be sufficiently accurate. The character-based
approach was found to significantly boost perfor-
mance on languages that scored high on our met-
ric for morphological complexity—both for pars-
ing and tagging—suggesting that constructing to-
ken representation from subtoken information is
effective for capturing the influence of morphol-
ogy on syntax, and the naive approach of using
only holistic word embeddings is insufficient. Our
success at the shared task demonstrates that a well-
tuned, straightforward neural approach to parsing
and tagging can get state-of-the-art performance
for datasets with a wide variety of syntactic prop-
erties.
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Abstract

We describe our entry, C2L2, to the
CoNLL 2017 shared task on parsing
Universal Dependencies from raw text.
Our system features an ensemble of
three global parsing paradigms, one
graph-based and two transition-based.
Each model leverages character-level bi-
directional LSTMs as lexical feature ex-
tractors to encode morphological informa-
tion. Though relying on baseline tokeniz-
ers and focusing only on parsing, our sys-
tem ranked second in the official end-to-
end evaluation with a macro-average of
75.00 LAS F1 score over 81 test treebanks.
In addition, we had the top average perfor-
mance on the four surprise languages and
on the small treebank subset.

1 Introduction

General Parsing Approach Our submitted sys-
tem to the CoNLL 2017 shared task (Zeman
et al., 2017) focuses only on the task of depen-
dency parsing, assuming that tokenization, sen-
tence boundary detection, part-of-speech (POS)
tagging and morphological features are already
handled by a baseline model. In this paper, we
highlight our neural-network-based feature extrac-
tors and ensemble of global parsing models, in-
cluding two novel global transition-based models.

Bi-directional long-short term memory net-
works (Graves and Schmidhuber, 2005, bi-
LSTMs) have recently achieved state-of-the-art
performance on syntactic parsing (Kiperwasser
and Goldberg, 2016; Cross and Huang, 2016;
Dozat and Manning, 2017). Our system leverages
the representational power of bi-LSTMs to gen-
erate compact features for both graph-based and
transition-based parsing frameworks. The latter

further enables the application of dynamic pro-
gramming techniques (Huang and Sagae, 2010;
Kuhlmann et al., 2011) for global training and ex-
act decoding. With just two bi-LSTM vectors as
features, all three global parsing paradigms in our
system have efficient O(n?) implementations. The
full system consists of 3-5 each of these unlabeled
parsing models (9-15 in total, depending on the
treebank), and another ensemble of arc labelers.

Adaptation of General Approach to the Shared
Task The CoNLL 2017 shared task presents
two unique challenges: 1. A large fraction of
the datasets are morphologically-rich languages.
Some languages have an exceedingly-high out-of-
vocabulary ratio of over 30%. 2. For many lan-
guages, very little training data is provided. Fur-
thermore, there are four surprise language, for
which we only have tens of sample sentences.

We address the first challenge with character-
level bi-LSTMs, which have previously been
shown to be effective in multi-lingual POS tag-
ging (Plank et al., 2016) and dependency pars-
ing (Ballesteros et al., 2015; Alberti et al., 2017).
Character-level representation gives better cover-
age, and it directly learns sub-word information
through end-to-end training.

The second challenge is approached by transfer-
ring delexicalized information. For each of those
languages with little training data, we select the
most similar language according to linguistic ty-
pology. We then train delexicalized models taking
only part-of-speech and morphology tags as input
features, which are made available through base-
line prediction during test time.

Our full system scored a macro-average LAS
F1 score of 75.00, which ranked second among
all participating systems. Additionally, in the cat-
egories of small treebanks and surprise languages,
we obtained the best average performance.

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 31-39,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics
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Figure 1: Overview of our system.

Figure 1 illustrates our pipelined system. It
processes raw texts in four stages starting from
baseline UDPipe (Straka et al., 2016) tokenization
and sentence delimitation. For this stage we use
predictions provided by the organizers instead of
training our own UDPipe models.

For each sentence, Stage II (§3) extracts a dense
feature vector for each word in the sentence. For
most languages, we employ character-level bi-
LSTMs to capture morphological information. On
top of the character-level representations, there is
another layer of bi-LSTMs processing at the word
level, the output of which gives context-sensitive
features associated with every word in the sen-
tence. For the four surprise languages and a se-
lected set of languages with small training tree-
banks, we substitute the character-level encodings
of each word in Stage II with concatenation of
part-of-speech (POS) tag embeddings and mor-
phological feature embeddings, but keep the word-
level bi-LSTMs. We call these delexicalized fea-
tures as opposed to the lexicalized features in the
general case. All later stages are kept the same.
The POS tags and morphological features are pro-
vided by baseline UDPipe predictions.

Stage III (§4.1) focuses on unlabeled parsing
with an ensemble of three global models, one first-
order graph-based maximal spanning tree algo-
rithm (MST), and two transition-based, namely
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arc-hybrid and arc-eager dynamic programming
(AHDP and AEDP). They share the same un-
derlying feature extractors. We combine outputs
from the unlabeled parsing models with a uniform
weight reparsing model (Sagae and Lavie, 2006).

The final stage (§4.2) of our system is arc label-
ing. Based on the extracted LSTM features and
predicted unlabeled parse trees, this stage assigns
the highest scoring label to each arc. Similar to
Stage III, we train multiple models with different
random initializations, and the ensemble predic-
tion is obtained via majority vote.

Our system was implemented with DyNet
(Neubig et al., 2017). Each single model is of
small size and runs efficiently. The submitted full
system completed the test phase in 4.64 hours with
2 threads. We provide implementation details for
all the modules and training process in §6. The
code is available at https://github.com/
CoNLL-UD-2017/C2L2.

3 Feature Extractors

In Stage II of our system, we first extract features
for each word in isolation, then consider one sen-
tence at a time for context-sensitive representa-
tions. These two feature extractors both leverage
the representational power of bi-LSTMs.

3.1 Character LSTMs

Among the most straightforward ways for repre-
senting a word are through binary features or word
embeddings. Though popular in many existing
parsers, they are not ideal for languages with high
out-of-vocabulary (OOV) ratios. In Universal De-
pendencies, the 56 development sets have an av-
erage OOV ratio of 14.4%, with four languages
(et, hu, ko and sk) higher than 30%, posing a
severe challenge for lexical representation. On the
other hand, the average out-of-charset (OOC) ra-
tio is 0.03%, with the highest (zh) not exceeding
0.1%, suggesting the promise of character-level
representations in terms of coverage.

Our system adopts character-level bi-LSTMs
similar to Plank et al. (2016) and Ballesteros et al.
(2015). They show that the obtained sub-word in-
formation is especially useful for rare and OOV
words in morphologically-rich languages.

Formally, for a word w with its character se-
quence [BOW, ¢y, ..., ¢y, EOW], with two spe-
cial begin-of-word (BOW, or ¢y) and end-of-word
(EOW, or ¢y, +1) symbols, we run a forward and a
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each ¢! denotes the vector representation at layer
[ for ¢;, o denotes concatenation of vectors, and
[-] is a shorthand for a list of vectors. The inputs
to the first layer c0 are character embeddings that
are jointly tralned w1th the model. We take the

concatenation of cm+1 and co at the final layer of
the LSTMs as the output vectors. We use two-
layer bi-LSTMs in our system.

Efficiency Improvement Considering the Zip-
fian distribution for word frequencies, most of the
time is spent on getting char bi-LSTM representa-
tions for frequent words. On the other hand, for
those words, it is considerably easier to train de-
cent representations even without char bi-LSTMs.
We thus directly learn the dense word vectors for
frequent words, as a proxy for character-level bi-
LSTMs and they can be considered as fast look-up
tables without actually running the LSTMs' .

3.2 Delexicalized Features

For languages with small treebanks, the provided
data is not adequate to learn character bi-LSTM:s.
We choose to use the available delexicalized in-
formation predicted by UDPipe. Namely, we use
information from two fields: universal POS tags
(UPOS) and morphological tags.

To get dense vectors for each word w in the
same form as the output of char bi-LSTMs, we

use the concatenation of UPOS embeddings p_,;
and the bag-of-morphology (BOM) embeddings

pool({rg;}). The BOM embeddings require a
pooling function pool(-) because each word may
receive multiple morphological tags. In our sys-
tem, we use element-wise max operator as the
pooling function.

3.3 Word-level LSTMs

The character bi-LSTM vector for each word is
computed in isolation from other words in the
sentence. In this module, we again leverage bi-
LSTMs for integration of contextual information.

'In retrospect, we could have used pre-trained word vec-
tors as extra features.
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Similar to §3.1, we pad a sentence with two
special begin-of-sentence (BOS, or wp), and
end-of-sentence (EOS, or wy,+1) symbols into
[BOS, wy, ..., wp, EOS]. Inputs to the first layer
are character bi-LSTM encodings, or concatena-
tion of POS-tag and BOM embeddings in the
case of delexicalized models. We take the bi-
directional vectors w; at the final layer as the
context-sensitive representation associated with
w;. All parsing components to be described in the
following section will build from these vectors.

4 Parsing Components

Our system parses a sentence in two steps, first
predicting the unlabeled parse tree, and next pre-
dicting the label for each arc in the unlabeled tree.

4.1 Global Models for Unlabeled Parsing

Our system includes one graph-based and two
transition-based, a total of three different global
parsing paradigms. All of these models only han-
dle projective cases. For this reason, before train-
ing, we projectivize all gold-standard trees in the
training sets.

First-order Graph-based Parsing Our graph-
based model is based on the popular edge-factored
Eisner’s algorithm (Eisner, 1996; Eisner and Satta,
1999). Each potential arc (h,m) in the graph
(O(n?) in total with sentence length n) is first
scored with a function scoreMST (h, m). Then Eis-
ner’s algorithm is used to find the maximum span-
ning tree among all possible projective trees:

scoreM3T(h, m)

h,m)ey

argmax
valid parses y (

Following Dozat and Manning (2017), we use a
deep bi-affine scoring function:

scoreMST(h,m) = vhUvm—i-bh U+ by U, + b
where

v, = MLPMST—headO{)
Uy = MLPMST—mod (?ﬁ)

are representations transformed by two multi-layer
perceptrons (MLPs) from their bi-LSTM vectors.
We train separate MLPs for head and modifier
transformation. The weight matrix U, bias vectors
b, by, and term b are parameters of the function.



Global Transition-based Parsing We include
global training and exact decoders for two tran-
sition systems, arc-hybrid and arc-eager. They
are based on dynamic programming approaches
(Huang and Sagae, 2010; Kuhlmann et al., 2011),
thus we call the two models AHDP and AEDP.

The dynamic programming shares computation
for parser configurations with the same extracted
features. In our system, we only use two bi-LSTM
vectors, one from the top of the stack (§6), and one
from the top of the buffer (56). This compact set
of features enables dynamic programming to com-
press the exponentially-large search space down to
O(n?) for the two transition systems.

Below we illustrate the AHDP decoder, with
AEDP being similar. The bare deduction system,
adapted from Kuhlmann et al. (2011) is:

(i, 5] (ki [i, 7], ..
Mg T kg
o Wil D]

[k, J

each deduction item [i, j] corresponds to a push
computation detailed in Kuhlmann et al. (2011).
For the purpose of our decoder, the deduction item
can also be understood as a parser configuration
with w; being s¢ and w; being by. The deduction
system has an axiom [0, 1] and goal [0, n + 1] cor-
responding to initial and terminal configurations.
Next, we incorporate scoring functions:

[k,i] : 01 [i,7] : 2
[k‘,j] cv1 + v+ A

[, 4] v

TR

(re~)

e

where A = scoreg, (Ek,ﬂ;i) + scorere (Wi, w;).
The scoring functions are bi-affine and take the
same form as scoreMST(.). The highest-scoring
proof for the goal item [0, + 1] constitutes the
predicted transition sequence.

Training We employ discriminative training
strategies for all three global parsing models.
Cost-augmented decoding (Taskar et al., 2005;
Smith, 2011) is applied during training. A correct
parse tree is instructed to get higher scores than
an incorrect parse tree by a margin set to be the
number of incorrectly-attached nodes (Hamming
distance). This technique has previously been ap-
plied in training a neural MST parser (Kiperwasser
and Goldberg, 2016).
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UAs F1 Laspr Official

Ranking
Big Treebanks 85.16  79.85 2
Small Treebanks 70.59 61.49 1
PUD Treebanks 80.17  71.49 2
Surprise Languages 58.40  47.54 1
Overall 80.35 75.00 2

Table 1: Official UAS and LAS scores on the test
sets. Rankings are based on the macro-average
LAS F1 scores over all treebanks in the set.

Target Source UAS F1 LASF1 Ofﬁc.l al
Ranking
bxr hi 50.79  31.98 2
hsb cs 69.45 61.70 1
kmr fa 5451 47.53 1
sme fi 58.85  48.96 1
Average 5840 47.54 1

Table 2: Evaluation results of our system on the
surprise languages. We show the source treebanks
from which we trained the delexicalized parsers.

4.2 Arc Labeling

We separate out the stage of arc labeling and adopt
a simple labeler proposed by Kiperwasser and
Goldberg (2016). For a predicted arc with h as
the head and m being the modifier, their associ-
ated vectors are concatenated to be the input to a
MLP. Each dimension of the output from the MLP
corresponds to the score for a potential label, And
we select the label with the highest score:

label(h, m) = argmax MLP/*! (h o m)
!

The arc-labeling models are trained with gold-
standard (h, m) tuples. And we use a discrimina-
tive hinge loss, with margin of 1.

5 Results

The main official evaluation results are given in
Table 1. Our system achieved second place in
overall ranking. When considering average perfor-
mance on small treebanks (8 treebanks) and sur-
prise languages (4 treebanks, detailed in Table 2),
we scored the first among all teams.

We show per-treebank LAS F1 results in Fig-
ure 2. Our system lacks customized modules
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Figure 2: LAS F1 score per treebank. The top/bottom row results are on languages with single/multiple
treebank(s). For comparison, we include the best official result and the average of the top ten results on
each treebank. Each row is sorted by the gap between our system and the average of the top ten.

for tokenization and sentence boundary detection,
which is reflected by the gap between our system
and the best-performing systems on ja, vi, he
and zh. The other large source of gaps comes
from languages with large non-projective ratios,
such as grc, 1a and nl. The global transition-
based AHDP and AEDP models are not compat-
ible with non-projective parsing, and we did not
implement or test with non-projective graph-based
parsers due to time and resource constraints.

Our system performs relatively well on lan-
guages with high OOV ratios, such as hu, ko, 1v
and et, with the help of character bi-LSTMs. In
addition, the strategies of concatenating multiple
training treebanks for the same language (see §6)
brought success on small treebanks.

Table 3 gives the performance of our system
on the 14 additional parallel treebanks. The re-
sults are largely consistent with in-domain eval-
uation results, and we ranked within top third
for most treebanks except ja_pud, en_pud and
ru_pud. We did not implement our own tokenizer
for Japanese, explaining the gap. For the other two
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languages, our selected models were not domain-
robust. We perform a post-evaluation analysis and
parse the PUD treebanks (Nivre et al., 2017a) with
models trained on the canonical treebanks. The
two languages observe an improvement on LAS
scores of 7.53 and 14.73 respectively.

Ablation Analaysis To examine the effect of in-
dividual components in our ensemble system, we
evaluate several variations, where we use single or
an incomplete set of models for unlabeled pars-
ing and arc-labeling. Results are shown in Ta-
ble 4. AEDP gives higher unlabeled parsing per-
formance, and an ensemble of three instances of
AEDPs achieves comparable performance to our
full system. The arc-labeling ensemble gives an-
other gain in LAS result of 0.31.

6 Implementation Details

Our system was trained on the UD 2.0 dataset
(Nivre et al., 2016, 2017b), with the provided
training and development splits when available.
For languages without development sets, we split



Target Selected

Treebank Model LASFL  Rank
pt-pud pt 78.48 1
de_pud de 73.92 2
sv_pud sV 77.97 2
fr_pud fr 78.25 2
es_pud es 80.50 2
fi_pud fi 85.42 2
it_pud it 86.74 2
tr_pud tr 37.65 3
ar_pud ar 49.03 3
hi_pud hi 54.12 3
cs_pud cs_cac 82.23 3
cs_pud cs*® 83.38* 2%
Ja-pud ja 78.22 6
ru_pud ru_syntagrus 61.82 22
ru_pud ru® 76.55% ]*
en_pud en_lines 76.56 23
en_pud en™ 84.09* 2%
Average 71.49 2

Table 3: Evaluation results of our system on PUD
treebanks. We give post-evaluation (non-official)
results* where we tested with models trained on
treebanks with canonical language codes. The ta-
ble is sorted by our rankings.

Unlabeled Arc

Parser Labeler LASFI
Full Full
3x AEDP Full
Full Single
1 x AEDP Full
1 x AHDP Full
1 xMST Full

73 74 75

Table 4: Ablation of our ensemble system.

the training sets into train/dev sets with ratio
0.9/0.1. We did not use any additional data.
All neural network computation was implemented
with DyNet (Neubig et al., 2017).

Stage I of our system is the baseline system UD-
Pipe 1.1, and we directly used the outputs pro-
vided by the organizers. We implemented modules
for all later stages. They were trained with gold-
standard features and tokenizations. For all lan-
guages and all treebanks, we trained models with
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2-layer-deep and 192-unit-wide (96 units for each
direction) word-level bi-LSTMs as feature extrac-
tors. Lexicalized character bi-LSTMs are 2 lay-
ers deep and 128 units wide, with 64-dimensional
input character embeddings. For languages with-
out lexicalized feature extractors, we used con-
catenation of 64-dimensional UPOS embeddings,
and max pooling of 64-dimensional morphologi-
cal embeddings as input to word-level bi-LSTMs.

The word-level bi-LSTM feature vectors were
passed through MLPs with 1 hidden layer and 192
hidden units, before the bi-affine scoring functions
for MST, AHDP and AEDP unlabeled parsing. In
arc-labelers, we concatenated the word-level fea-
ture vectors and passed it through a 1-layer MLP
with 192 hidden units to get scores for the arc la-
bels. Output layer size depends on the number of
labels appearing in the training set for the con-
cerned treebank. We projected language-specific
arc tags into universal ones before training.

All the aforementioned hidden layers used tanh
as activation functions. And the parameters were
uniformly initialized (Glorot and Bengio, 2010),
except for the weight matrices in the bi-affine scor-
ing functions, which were initialized to be orthog-
onal (Saxe et al., 2013). We did not use any pre-
trained word embeddings.

We applied dropout at every stage. MLPs had
dropout rates of 0.3 (Srivastava et al., 2014). Bi-
LSTMs, both character-level and word-level, also
had dropout rates of 0.3 for input and recurrent
connections (Gal and Ghahramani, 2016). Further,
we zeroed out input vectors to word-level LSTMs
for 15% of the time, to encourage the models gain
more information from context.

When we trained each model, we randomly
shuffled the training set before starting each epoch,
and grouped sentences into mini-batches of ap-
proximately 100 words. The discriminative loss
functions were optimized via Adam optimizer
(Kingma and Ba, 2015), with default hyperparam-
eters except initial learning rate set to be 0.002.
We evaluated the models with development data
after every 500 mini-batches. We halved the learn-
ing rate if the performance plateaued in 5 consecu-
tive evaluations, The process was repeated 3 times
before we terminated the training process.

We employed the technique of stack-
propagation (Zhang and Weiss, 2016), where
the auxiliary task of UPOS prediction was used as
a regularizer. It received 0.1 the weight of other



components in computing the loss.

For the languages with multiple treebanks,
we first concatenated the training treebanks and
trained a general model. We then fine-tuned the
models on the respective individual treebanks.

To speed up training,we simultaneously trained
MST, AHDP, AEDP and arc labeling models with
shared LSTM feature extractors. Their losses were
linearly combined with weights 0.6, 0.3, 0.3, 1.5
respectively. After a joint model had been trained,
we fine-tuned each of the four tasks separately.

Our final system included ensembles both for
unlabeled parsing and arc labeling. They were ob-
tained with different random initializations of the
neural network, but trained in the same fashion.
For languages with multiple treebanks, we trained
3 sets of models (3 for each parsing paradigm, 9
unlabeled parsing models in total, plus 3 for arc
labeling). For languages with single treebanks, we
trained 5 sets of models.

For surprise languages, we first trained delexi-
calized models using the training data in a most
similar language according to the WALS features
(Dryer and Haspelmath, 2013). We selected f1i,
fa, hi, cs for sme, kmr, bxr, hsb respectively.
We then fine-tuned the models on the sample data
for these languages. We treated kk and ug simi-
larly as they have quite small training sets. Both
of them used t r as the source language.

The entire training process of all models in the
ensemble for all treebanks was done using 8 CPU
cores (2 x Intel i7-4790 @ 3.60GHz) in approx-
imately one week. Each model required at most
2GB RAM plus the amount needed for holding the
training sets. On the online evaluation platform
TIRA (Potthast et al., 2014), the test phase for our
full model finished in 4.64 hours with 2 threads.
Each model required at most 500MB RAM plus
the amount needed for holding the test sets.
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Abstract

This paper presents the IMS contribution
to the CoNLL 2017 Shared Task. In the
preprocessing step we employed a CRF
POS/morphological tagger and a neural
tagger predicting supertags. On some lan-
guages, we also applied word segmenta-
tion with the CRF tagger and sentence seg-
mentation with a perceptron-based parser.
For parsing we took an ensemble approach
by blending multiple instances of three
parsers with very different architectures.
Our system achieved the third place over-
all and the second place for the surprise
languages.

1 Introduction

This paper presents the IMS contribution to the
CoNLL 2017 UD Shared Task (Zeman et al.,
2017). Our submission to the Shared Task (ST)
ranked third. Our overall approach relies on estab-
lished techniques for improving accuracies of de-
pendency parsers, including strong preprocessing,
supertagging and parser combination.

The task was to predict dependency trees
from raw text. To make the ST more ac-
cessible to participants, the organizers provided
baseline predictions for all preprocessing steps
(including word and sentence segmentation and
POS/morphological feature predictions) using the
baseline UDPipe system (Straka et al., 2016). We
scrutinized the baseline and considered where we
could improve over it. It turns out that, although
the UDPipe baseline is a strong one, considerable
parsing accuracy improvements can be gained by
improving the preprocessing steps. In particular,
we applied our own POS/morphology tagging us-
ing a CRF tagger and supertagging (Ouchi et al.,

* All three authors contributed equally.

2014) with a neural tagger. Additionally, we per-
formed our own word and/or sentence segmenta-
tion on a subset of the test sets.

For the parsing step we applied an ensem-
ble approach using three different parsers, some-
times using multiple instances of the same parser:
one graph-based parser trained with the percep-
tron; one transition-based beam search parser
also trained with the perceptron; and one greedy
transition-based parser trained with neural net-
works. The parser outputs were combined through
blending (also known as reparsing; Sagae and
Lavie, 2006) using the Chu-Liu-Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967).

The final test runs were carried out on the TIRA
platform (Potthast et al., 2014) where participants
were assigned a virtual machine. To ensure that
our final test run would finish on time on the VM,
we established a time budget for each treebank and
set a goal that a full test run should finish within
24 hours. Thus we applied a combination search
under a time constraint to limit the maximal num-
ber of instances of the individual parsers.

An interesting aspect of the ST was the intro-
duction of four surprise languages. These lan-
guages were only announced one week before the
test phase at which point the participants were pro-
vided with roughly 20 gold standard sentences for
each language. Unfortunately, among the allowed
external resources the amount of parallel data for
the surprise languages was rather limited. This
prevented us from using cross-lingual techniques
or multilingual word vectors. We therefore re-
sorted to blending models trained on the small
samples as well as delexicalized models trained on
other source languages.

Another challenge of the ST were 14 parallel
new test domains for the known languages. Since
the UD annotation scheme is applied on all of the
treebanks, this suggests that the training data of

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 40-51,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics



the same language from different domains could
be combined. We made several experiments in this
direction and trained models on merged treebanks
for most of the parallel test sets (Section 7).

The remainder of this paper is organized as fol-
lows. Section 2 discusses our preprocessing steps,
including word and sentence segmentation, POS
and morphological tagging, and supertagging. In
Section 3 we describe the three baseline parsers,
while blending is reviewed in Section 4. In Sec-
tion 5 we go through our pipeline and show re-
sults on the development data. Sections 6 and 7
describe our approaches to the surprise languages
and parallel test sets, respectively. Our official test
set results are shown in Section 8 and Section 9
concludes.

2 Preprocessing

For most data sets word and sentence segmenta-
tion plays a minimal role, as it is delivered al-
most for free by means of whitespaces, sentence-
final punctuation and capital letters. Therefore
our overall architecture applies word/sentence seg-
mentation pipeline only on treebanks for which
this task is non-trivial (see Figure 1). These test
sets can roughly be grouped into two categories:
Languages where tokenization is challenging, e.g.,
Chinese and Japanese, but also languages such as
Arabic and Hebrew, where many orthographic to-
kens are segmented into smaller syntactic words
with transformations. The second category com-
prises the treebanks where the detection of sen-
tence boundaries is difficult, mostly classical texts.

2.1 Word Segmentation

We applied our own word segmentation on six lan-
guages: Arabic, French, Hebrew, Japanese, Viet-
namese, and Chinese. We selected them by ana-
lyzing the UDPipe baseline and picking out cases
where we potentially could surpass it.

For Arabic, French and Hebrew, the difficulty
lies in splitting orthographic words (i.e., multi-
word tokens) into several syntactic words (e.g., cl-
itics). Additionally the orthographic words are of-
ten not the simple concatenation of their compo-
nents. For example in French, the multiword to-
ken des would be split into two syntactic words de
and les. We cast this problem as classification by
predicting the Levenshtein edit script to transform
a multiword token into its components.

Concretely with the French example, we take
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the multiword token des as input, and predict
ded&les, where & is an artificial delimiter to split
the token. To reduce the tag set, we used the
Levenshtein edit script “=2+&1e=1" instead of
ded&les as the target class, which means keeping
the first 2 characters, adding “&1e”, then keep-
ing 1 character, so that des can be transformed
into de&les (thus split into de and les). Using edit
scripts reduced the tag set size from about 12,000
to 1,000 for Arabic and from 14,000 to 600 for
Hebrew.

For Japanese, Vietnamese and Chinese, we sim-
ply applied a standard chunking method: for each
character (or phoneme in Vietnamese), we pre-
dicted the chunk boundary, jointly with the POS
tag of the word.

In both cases, we used the state-of-the-art mor-
phological CRF tagger! MarMoT (Miiller et al.,
2013) to predict the tags (edit scripts or chunk
boundaries). We used second order models for
Arabic, French and Hebrew, and third order mod-
els for Japanese, Vietnamese and Chinese.

2.2 Sentence boundary detection

We applied our own sentence segmentation on
nine languages (see Figure 1). For some of
them, like Gothic or Latin PROIEL, typical or-
thographic features (e.g., punctuation or capital-
ization) that indicate sentence boundaries are not
present and UDPipe was achieving extremely low
scores (23.51 and 19.76 F1 respectively). The oth-
ers were selected empirically by tests on the devel-
opment data.

We employed a beam-search transition-based
parser extended to predict sentence boundaries
(Bjorkelund et al., 2016). This parser (referred to
as TPSeg) is an extension of our transition-based
parser (see Section 3.2) using the perceptron and
is trained using DLASO updates (Bjorkelund and
Kuhn, 2014; Bjorkelund et al., 2016). It marks
sentence boundaries with an additional transition.
For this parser the input is not just a pre-tokenized
sentence, but a pre-tokenized document. As docu-
ments during test-time we used paragraphs from
the raw input text, assuming that no sentence
would span across a paragraph break.

A training instance for the parser is a document
(rather than a sentence). Some treebanks have
the entire training set represented as a single para-
graph (document). Initial experiments showed that

"http://cistern.cis.lmu.de/marmot/
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Figure 1: System architecture, where langs;: he, ja, fr, fr_sequoia, fr_partut, fr_pud, vi, zh; langss: cu,
en, et, got, grc_proiel, la, la_ittb, la_proiel, nl_lassysmall, sl_sst; langss: ar, ar_pud.

training the parser on a single document took con-
siderable time and also did not perform very well.
Instead, we created artificial documents for train-
ing by taking chunks of 10 sentences from the
training set and treating them as documents (irre-
spective of whether they went across paragraphs).

We trained the parser using gold word segmen-
tation and POS/morphology information. At test
time we relied on UDPipe predictions in most
cases. However, for Arabic, the only language
where we did both word and sentence segmenta-
tion, we applied our own POS/morphology tag-
ger since the word segmentation had changed.
Additionally, we applied our tagger on OId
Church Slavonic, Estonian, Gothic, Ancient Greek
PROIEL and Dutch LassySmall since we found
that this lead to better sentence segmentation re-
sults on the development sets.

2.3 Part-of-Speech and Morphological
Tagging

We used MarMoT to jointly predict POS tags and
morphological features. We annotated the training
sets via 5-fold jackknifing. All parsers for all lan-
guages except the surprise ones were trained on
jackknifed features. We did not use XPOS tags
and lemmas. We used MarMoT with default hy-
perparameters.

2.4 Supertags

Supertags (Joshi and Bangalore, 1994) are labels
for tokens which encode syntactic information,
e.g., the head direction or the subcategorization
frame. Supertagging has recently been proposed
to provide syntactic information to the feature
model of statistical dependency parsers (Ambati
et al. (2013; 2014), Ouchi et al. (2014)).
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We follow the definition of supertagging from
Ouchi et al. (2014) and extract supertag tag sets
from the treebanks. We use their Model 1 to de-
sign our supertags. That is, we encode the depen-
dency relation (label), the relative head direction
(hdir) and the presence of left and right depen-
dents (hasLdep, hasRdep) and follow the template
label/hdir+hasLdep_hasRdep.

We used an in-house neural-based tagger
(TAGNN) to predict the supertags (Yu et al.,
2017). It takes the context of a word within a win-
dow size of 15. The input word representations
are concatenations of three components: output of
a character-based Convolutional Neural Network
(CNN), pretrained word embeddings provided by
the ST organizers, and a binary code indicating
the target word. The word representations of the
whole context-window are then fed into another
CNN to predict the supertag of the target word.
We used TAGNN instead of CRF for supertagging,
since it performed considerably better in the pre-
liminary experiments.

3 Baseline parsers

Surdeanu and Manning (2010) show that com-
bining a set of parsers with a simple voting
scheme can improve parsing performance. Mar-
tins et al. (2013) demonstrate that self-application,
i.e., stacking a parser on its own output, only leads
to minuscule improvements.” Therefore to profit
from combining components one of the most sig-
nificant factor is their diversity. Thus we experi-
mented with three parsers with quite different ar-

?In fact, even supertagging can be regarded as a form of
stacking. Also in this case, the key ingredient is that the
suppertagger is architecturally sufficiently different from the
parser (Faleriska et al., 2015).



chitectures and additionally varied their settings.

3.1 Graph-based perceptron parser

As the graph-based parser we used mate® (Bohnet,
2010), henceforth referred to as GP. This is
a state-of-the-art graph- and perceptron-based
parser. The parser uses the Carreras (2007) ex-
tension of the Eisner (1997) decoding algorithm
to build a projective parse tree. It then ap-
plies the non-projective approximation algorithm
of McDonald and Pereira (2006) to recover non-
projective dependencies. We train the parser using
the default number of training epochs (10).

We modified the publicly available sources of
this parser in two ways. First, we extended the
feature set with features based on the supertags
following Faleriska et al. (2015). Second, we
changed the perceptron implementation to shuf-
fle the training instances between epochs.* Shuf-
fling enables us to obtain different instances of the
parser trained with different random seeds, which
are used in the blending step.

Since the time complexity of the Carreras
(2007) decoder is quite high (O(n*)) this parser
required a considerable amount of time to parse
long sentences. Therefore, while applying this
parser in the blending scenario, we skipped all sen-
tences longer than 50 tokens.” We additionally
made sure that for each treebank we had at least
one parser that was not GP, so that all sentences
would be parsed.

3.2 Transition-based beam-perceptron
parser

We apply an in-house transition-based beam
search parser trained with the perceptron
(Bjorkelund and Nivre, 2015), henceforth referred
to as TP.® We have previously extended this
parser to accommodate features from supertags
(Falenska et al., 2015). It uses the ArcStandard
system extended with a Swap transition (Nivre,
2009) and is trained using the improved oracle by
Nivre et al. (2009).

The parser is trained with a globally optimized
structured perceptron (Zhang and Clark, 2008) us-
ing max-violation updates (Huang et al., 2012).

Shttp://code.google.com/p/mate-tools

“The publicly available version does not shuffle.

3For the baseline results on the development sets (Tables 3
and 4), the parser was applied to all sentences.

SThis parser as well as the variant that we applied for sen-
tence segmentation (TPSeg) is available on the first author’s
website.
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We use the default settings for beam size (20)
and number of training epochs (also 20). Simi-
larly to GP, we employ different seeds for the ran-
dom number generator used during shuffling of the
training instances in order to obtain multiple dif-
ferent models.

3.3 Transition-based greedy neural parser

We use an in-house transition-based greedy parser
with neural networks (Yu and Vu, 2017), hence-
forth referred to as TN.”

The parser uses a CNN to compose word rep-
resentations from characters, it also takes the em-
beddings of word forms, universal POS tags and
supertags and concatenates all of them as input
features. The input is then fed into two hidden lay-
ers with ReL.U non-linearity, and finally predicts
the transition with a softmax layer. The parser uses
the same Swap transition system and oracle as TP.
We use the default hyperparameters during train-
ing and testing.

During training the parser additionally pre-
dicts the supertag of the top token in the stack
and includes the tagging cross-entropy into the
cost function. This approach is similar to stack-
propagation (Zhang and Weiss, 2016), where the
tagging task is only used as a regularizer.

4 Blending

To enhance the performance of the baseline single
parsers we combined them using blending (Sagae
and Lavie, 2006). We trained multiple instances of
each baseline parser using different random seeds.
We parsed every sentence and assigned scores to
arcs depending on how frequent they were in the
predicted trees. We used the Chu-Liu-Edmonds
algorithm to decode the maximum spanning tree
from the resultant graph. This way we obtained
the majority decision of the parser instances under
the tree constraint.

As a baseline for blending (BLEND-BL), we
took four instances from each of the baseline
parsers: The four GP instances were trained with
different random seeds. The four TP instances
further split into two groups: two parse from
left to right (TP-12r) and two parse from right
to left (TP-r21). The four TN instances differ
not only in the parsing direction, but also in the
word embeddings, two use pretrained embeddings

"This parser as well as the neural tagger used for supertag-
ging (TAGNN) is available on the third author’s website.



from the organizers (TN-12r-vec, TN-r2l-vec) and
two use randomly initialized embeddings (TN-12r-
rand, TN-r2l-rand).

The 4+4+4 combination was rather arbitrary
and simply based on the intuition that different
parsers should be equally represented and as di-
verse as possible. However, this might not be
the optimal combination since different parsers are
better at different treebanks. Also, given the rel-
atively limited computing resources on the VM,
we needed to optimize the number of blended in-
stances in terms of speed.

We thus applied a combination search under a
time constraint. First we measured time needed by
each parser to parse every development treebank
on the VM as an estimation of time usage for the
test run. We then defined a time budget of 1,000
seconds for each treebank, and checked all combi-
nations of the parsers on the development set un-
der the time budget. We took the combinations
from a pool of 24 individual instances, divided
into seven groups: 8x GP; 4xTP-12r; 4 x TP-r2l;
2xTN-12r-rand; 2xTN-12r-vec; 2x TN-r2l-rand;
2x TN-r2l-vec.

Note that enumerating all combinations of indi-
vidual instances is not feasible (224 combinations).
Thus we applied a two-step heuristic search. First
we searched for the optimal number of instances
from the 7 groups, by drawing samples from the
pool of instances with only different random seed
(atmost 9 x 5 x5 x 3 x 3 x 3 x3=18,225 pos-
sibilities). Once the optimal numbers of instances
were found, we then searched exhaustively for the
optimal instances (BLEND-OPT).

5 Evaluation

In this section we evaluate the aforementioned
methods on the 55 treebanks for which develop-
ment data was available.

5.1 Word and sentence segmentation

As discussed in Section 2, we applied our own
word and/or sentence segmentation to a subset of
languages. The corresponding results on the de-
velopment sets are shown in Tables 1 and 2.

For word tokenization both our methods (pre-
dicting edit script and tagging with chunk bound-
aries) outperform the UDPipe baseline by 2.64 F1-
score points on average. The biggest gains are
achieved for Hebrew (4.57 points) and Vietnamese
(4.67 points).

44

Using the TPSeg parser to predict sentence
boundaries results in an average improvement of
9.32 points on sentence segmentation F1-score
over the UDPipe baseline. Especially the diffi-
cult data sets that do not use orthographic features
to indicate sentence boundaries improve by a big
margin, for example Latin PROIEL by 18.76 and
Gothic by 15.73.

Most importantly, the improvements in word
and sentence segmentation Fl-score roughly
translate into LAS improvements with a 1:1 and
a 5:1 ratio, respectively.

UDPipe CRF  ALAS
ar 93.86 9553 2.04
fr 99.18  99.66 0.60
frsequoia  98.65 99.35 0.90
he 88.15 92.72 4.82
ja 89.53  92.10 5.08
vi 83.99 88.66 5.57
zh 88.95 92.76 5.47
average 91.76  94.40 3.50

Table 1: F1 scores for word segmentation and
gains in LAS for TP.

UDPipe TPSeg A LAS
ar 77.99  94.01 0.83
cu 37.09 48.03 3.16
en 76.35  78.69 0.66
et 8491 86.40 0.54
got 2351 39.24 4.01
grc_proiel 4195 5438 1.91
la_ittb 77.38  80.55 0.47
la_proiel 19.76  38.52 4.00
nl_lassysmall 79.31  82.35 0.82
average 57.58 6691 1.82

Table 2: F1 score for sentence segmentation and
gains in LAS for TP.

5.2 Preprocessing and Supertags

To see the improvements stemming from our pre-
processing steps we run the baseline parsers in
four incremental settings: (1) using only the UD-
Pipe baseline predictions, (2) replacing POS and
morphological features with CRF predictions, (3)
adding supertags, and (4) applying our own word
and sentence segmentation. Table 3 shows the
average LAS for each parser across the 55 de-
velopment sets for the consecutive experiments.
For each set of experiments the parsers were
trained on corresponding jackknifed annotations
for POS, morphology, and supertags. Gold word



and sentence segmentation was used while train-
ing parsers in all settings.

The table shows that replacing the POS and
morphological tagging with the CRF instead of
baseline UDPipe predictions improves the parsers
by 0.66 on average.® The introduction of supertags
brings an additional 0.88 points which demon-
strates that supertags are a useful source of syn-
tactic features for dependency parsers, irrespec-
tive of architecture. Replacing the word and sen-
tence segmentation from UDPipe with our own
improves on average by 0.74 points. It is worth
noting that this improvement stems only from the
15 treebanks where we applied our own segmen-
tation, although the averages in Table 3 are com-
puted across all 55 treebanks.

UDPipe CRF +STags +segm.
GP 7546 76.01 +1.12 +0.74
TP (12r) 74.69 7549 +0.97 +0.78
TN (12r-vec) 7495 7558 +0.54 +0.71
average 75.03  75.69 +0.88 +0.74

Table 3: Average (across 55 treebanks) gains in
parsing accuracies (LAS) for incremental changes
to UDPipe preprocessing baseline.

5.3 Development Results

Our overall results on the development sets are
shown in Table 4. The table shows the perfor-
mance of the preprocessing steps, the individual
baseline parsers, and the results of the two blends.
The 15 treebanks where we applied our own word
and/or sentence segmentation are marked explic-
itly in the table, for the other cases we used the
UDPipe baseline.

The three single baseline parsers achieved sim-
ilar average performances. Each one of them per-
formed the highest on some of the treebanks, but
not on all. It is worth noting that the strongest
baseline parser, GP, is perceptron-based rather
than a neural model. That is not to say that per-
ceptrons generally are stronger than neural mod-
els (our neural TN parser is a greedy parser, and
other participants in the Shared Task present con-
siderably stronger neural models), however it in-
dicates that perceptrons are not miles behind the
more recent neural-based parsers.

Blending parsers yield a strong boost over the

8The actual improvements on the POS and morphological
tagging tasks amount to 0.68 and 1.17, respectively.
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baselines. BLEND-BL improves roughly 2-3
points depending on the choice of baseline. By
searching for optimal combinations under the time
budget, this can be further improved by 0.49 on
average (BLEND-OPT). The search reduced the
number of models from 660 to 438. In particular,
there were 221 instances of GP, 79 of TP, and 138
of TN.

6 Surprise languages

The implementation of the surprise languages in
the Shared Task was done in a rather peculiar
way with respect to preprocessing. The test sets
were annotated by the organizers through cross-
validation. That is, the test sets were provided
with predicted (by UDPipe) POS and morpholog-
ical tags. Participants were provided with a small
sample (about 20 sentences) for each surprise lan-
guage, however only with gold standard prepro-
cessing. This meant that it was difficult to use the
samples for tuning/development since we would
either have to use gold standard preprocessing, or
apply cross-validation on the samples ourselves
which most likely would have resulted in consider-
ably worse preprocessing than that which was de-
livered for the test sets. We chose to consistently
use gold preprocessing for all development exper-
iments on the surprise languages.

A straightforward approach to the surprise lan-
guages is to use delexicalized parser transfer (Ze-
man and Resnik, 2008). The idea is to train
a parser on a source treebank using only non-
lexical features (in our case universal POS tags
and morphological features) and apply it on sen-
tences from the target language. We followed
Rosa and Zabokrtsky (2015) and performed multi-
source delexicalized transfer by blending together
models trained on several languages. Contrary to
them, we treat the source languages equally and
blend them with the same weight.

We trained delexicalized TP and GP parsers for
40 source languages (we took the 40 biggest tree-
banks, excluding the domain specific ones). We
refrained from training TN since the main moti-
vation of this parser is that it operates on charac-
ters. Therefore, using it in the delexicalized setting
does not make sense.

To narrow down the number of possible source
language parsers, we used TP to select the best six
source languages for each surprise language using
the sample data. We then searched for the optimal



Preprocessing (F1) Baseline parsers (LAS) Blending (LAS)
Words Sentences UPOS Feats GP TP TN BLEND-BL BLEND-OPT

ar®® 9553 9401 90.73 8640 70.88 70.54 71.35 72.59 72.99
bg 99.84 9241  97.88 96.22 84.81 84.65 83.35 85.93 86.09
ca 99.96 9877  98.16 97.50 87.04 86.75 85.11 87.59 87.90
cs 9996 9241  98.68 93.65 87.36 86.75 83.74 87.42 87.45
cs_cac 100.00  99.09  99.07 91.01 87.37 86.52 85.41 87.56 88.17
cs_cltt 98.65 7411 9030 79.69 73.01 72.83 73.94 76.84 77.30
cu® 100.00  48.03 9492 8926 73.35 7245 73.02 75.27 75.86
da 99.68 8436 9522 9459 78.01 76.98 74.59 79.63 80.01
de 9991 9225 9295 8472 7872 77.83 75.10 80.02 80.54
el 9987  88.67 9577 91.03 81.53 80.78 80.06 83.45 84.16
en® 98.69  78.69  93.09 94.03 7837 7727 7693 79.11 79.41
en_lines 99.93 8736  94.92 9993 7651 7623 76.41 78.59 79.35
en_partut 9946  97.62 9423 9335 76.58 76.15 77.35 79.41 80.12
es 99.80  98.07 96.12 9697 8491 8425 83.00 85.08 85.25
es_ancora 99.94 9633  98.10 97.57 86.66 86.18 85.16 87.07 87.30
et® 99.79  86.40  89.20 84.13 63.56 62.15 63.87 66.49 67.76
eu 99.99  99.00 94.14 89.83 7499 73.73 7447 76.96 77.59
fa 99.69  97.14  96.16 9624 82.86 82.43 81.97 84.21 84.42
fi 99.69  86.47 9549 93.01 80.08 78.99 78.34 81.71 82.13
fi_ftb 9993 8252 9285 93.15 79.97 79.03 80.35 81.17 82.02
fr® 99.66  97.09 9690 96.78 87.24 86.93 86.25 87.76 87.92
fr_sequoia® 9935 9020 96.58 95.68 84.30 83.42 83.01 85.54 86.17
gl 9993  98.04 96.80 99.80 80.33 79.31 78.89 81.74 81.87
got® 100.00 3924 9475 8790 6829 67.59 67.35 70.65 71.01
grc 9998  99.17  88.34 89.58 65.77 64.06 64.28 68.14 69.09
gre_proiel® 100.00 5438  96.64 90.57 75.07 7429 73.98 77.30 77.80
he® 9272 9857  89.24 8721 68.89 68.75 68.31 70.94 71.02
hi 100.00 98.46  96.12 90.89 88.92 88.83 89.73 90.09 90.45
hr 9998 9723  96.70 87.57 80.54 79.91 79.15 82.41 82.99
hu 9991 9455  93.84 7272 72.06 72.00 70.84 76.13 76.50
id 99.99  90.83  93.33 99.56 75.26 74.80 73.68 77.38 77.43
it 99.70 9320 97.14 97.31 85.70 84.80 84.48 86.35 86.77
ja® 92.10 9971  89.82 92.08 78.52 78.66 79.58 79.71 80.04
ko 9945  91.10  93.10 99.17 70.47 71.13 7437 74.03 76.41
la_ittb® 9988  80.55 96.79 9241 76.10 75.40 75.67 78.21 79.16
la_proiel® 99.99 3852 9583 89.46 6899 67.05 67.82 71.45 71.99
v 9891  96.48  91.29 8540 67.08 65.03 65.31 69.19 70.25
nl 99.87 9211 9438 9292 79.04 7829 76.36 80.18 80.72
nl_lassysmall® 9990 8235  96.01 95.74 79.03 77.85 76.27 80.41 80.98
no_bokmaal 99.89 9691  97.55 9636 86.17 85.90 84.89 86.79 87.01
no_nynorsk 99.92 9305 97.05 96.01 8456 84.19 83.55 85.36 85.50
pl 9987 9956 96.12 85.71 84.67 83.78 83.66 85.89 86.89
pt 99.74  89.27  96.86 95.05 86.04 85.71 84.53 87.20 87.56
pt_br 99.83  96.65 97.39 99.71 86.99 86.49 86.33 87.88 87.87
ro 9955 9516  96.68 96.13 82.05 81.61 80.12 83.19 83.37
ru 99.92  96.18 9544 87.50 80.22 79.60 78.89 81.89 82.37
rusyntagrus ~ 99.68  97.67  98.15 9440 89.10 88.45 86.79 89.37 89.19
sk 100.00 77.85 95.04 80.13 7849 77.92 76.71 80.10 80.70
sl 99.94 9959  97.13 90.54 85.92 8433 82.42 87.05 87.40
sV 99.77 9559 9552 94.80 77.11 7634 75.28 79.18 79.96
sv_lines 99.97 8728 9450 99.97 76.10 75.65 75.93 78.00 78.80
tr 97.88 9698 9135 86.17 58.05 58.07 57.04 61.42 62.16
ur 99.99 9837 9346 80.24 79.02 7845 79.78 80.70 80.96
vi® 88.66 9628  80.64 88.56 47.01 47.62 47.76 49.66 49.77
zh® 9276 97.60 8623 91.57 6293 6328 63.37 66.17 66.80
average 99.07 89.45 9456 91.78 77.87 7724 76.83 79.52 80.01

Table 4: Development results. The treebanks for which we did our own word and/or sentence segmen-
tation are marked with ©® and © respectively. The TP and TN models correspond to TP-12r TN-I2r-vec,
respectively.
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combination (across both parsers) where, instead
of a time budget, we arbitrarily set the maximum
number of parsers to eight.

SME;ex 51.02 hsbjes 65.00
figeles 51.02 CSdelex 78.04
no_bokmaalgeje. 47.62 Slgetes 76.74
etieles 47.62 SKdelex 75.43
BLEND-OPT 60.54 BLEND-OPT 78.70

(a) Target language: sme (c) Target language: hsb

kmr;e, 48.76 bXTIex 41.83
fageres 42.15 eUdelex 37.25
eldelez 33.88 Uldelex 35.95
UKgelex 29.75 higeres 35.29

BLEND-OPT 44.63 BLEND-OPT 44.44

(b) Target language: kmr (d) Target language: bxr

Table 5: Parsing accuracy (LAS) for surprise lan-
guages: the three best delexicalized TP-12r parsers
and lexicalized parser obtained by leave-one-out
jackknifing.

In addition to the delexicalized models, we also
trained lexicalized TP and GP models’ on the
sample data and applied leave-one-out jackknif-
ing.! A comparison between the three best delex-
icalized TP models and the lexicalized TP parser
is shown in Table 5. Only for Upper Sorbian
were transferred models able to surpass the model
trained on the very small training data. Interest-
ingly, the blended models were much better than
any of the models for all languages except Kur-
manji. Therefore we decided not to use any of
the delexicalized models for this language. For the
other three surprise languages we used ultimately
blended eight delexicalized (selected as described
above) and eight lexicalized models, the intuition
being that this would give equal weight to lexical-
ized and delexicalized models.

7 Parallel datasets

For the 14 additional parallel datasets (PUD) we
used parsers trained on their corresponding lan-
guages. For several languages there were more
than one treebank in the training data for the cor-
responding PUD test set. This begs the question as
to whether the models used for the PUD test sets

9We did not train lexicalized TN models since it had prob-
lems with exploding gradients and convergence due to the
small size of the sample data.

!0That is, for a sample set of 20 sentences this boils down
to 20-fold cross-validation.
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should be trained only on the primary treebank,
or on the combination of all training sets corre-
sponding to that language. For the main treebanks,
initial experiments indicated that this was a bad
idea and parsers performed better when training
sets were not combined. However, for the PUD
test sets we had no information on the annotation
scheme nor the domain, which made it difficult to
decide whether to use only the primary training set
or all available.

For each language with multiple training sets,
we trained one parser on each training set as well
as on their concatenation. We applied these mod-
els on the development sets and created a confu-
sion matrix. Without prior knowledge about the
PUD treebanks, we estimated the expected LAS
as the average LAS of the development sets and
chose the model that maximizes the estimation.

Table 6 shows such a confusion matrix for
Swedish using the TN parser. The expected LAS
for PUD (right-most column) is highest when
trained on the concatenation of the two treebanks.
This observation held for all the languages with
multiple treebanks that we tested and we there-
fore used models trained on the concatenation of
all training data with two exceptions: For Czech
time prevented us from training models and creat-
ing a confusion matrix and we only used models
trained on the primary treebank. For Finish FTB
the README distributed with the treebank states
that this treebank is a conversion that tries to ap-
proximate the primary Finish treebank. This sug-
gests that it does not entirely conform to the Finish
UD standard. We assumed that the Finish PUD
test set would be closer to the primary treebank
and therefore chose to use only the model trained
on the primary treebank.

sv  sv_lines exp. sv_pud

3% 75.28 63.54 69.41
sv_lines 67.78 7593 71.86
sv_concat 75.31 75.23 75.27

Table 6: Confusion matrix for Swedish with ex-
pected LAS on Swedish PUD.

8 Test Set results

Our final results on the test sets are shown in Ta-
ble 7. Overall we ranked third in the Shared Task
with a macro-average LAS of 74.42 behind two
teams: Stanford and Cornell. Both of them used



state-of-the-art neural-based parsers (Zeman et al.,
2017).

Our efforts to improve the preprocessing scores
paid off. On most of the languages where we ap-
plied our word and/or sentence segmentation we
achieved the best parsing results. On the sec-
ondary evaluation metrics we ranked first for word
segmentation and sentence segmentation, second
for POS tagging, and first for morphological tag-
ging. Additionally we were second on parsing the
surprise languages.

As it turns out, all PUD treebanks were presum-
ably annotated following the guidelines of the pri-
mary treebanks. This most likely lowered our re-
sults a little bit for some of the PUD treebanks.
However, for Russian PUD our results are abnor-
mally low compared to many other participants.
We scored about 13 points behind the top result,
in comparison to an average distance of less than
2 points. This is most likely an artifact of how
the non-primary (SynTagRus) Russian treebank is
considerably larger than the primary Russian tree-
bank, which means that a parser trained on the
concatenation is mostly dominated by the SynTa-
gRus annotation style and domains.

9 Conclusion

We have presented the IMS contribution to the
CoNLL 2017 UD Shared Task. We have shown
that tuning the preprocessing methods is a way
to achieve competitive parsing performance. We
made use of a CRF tagger for POS and morpho-
logical features and very strong word and sentence
segmentation tools.

None of our baseline parsers alone would rank
third. We therefore used blending to combine
them. In general, we can confirm the observation
of Surdeanu and Manning (2010) that the diversity
of parsers is important. Additionally, we observed
that both the diversity of parser architectures and
number of instances of the same parser can im-
prove performance. Furthermore, our automatized
combination search method could be seen as a
case of a “sparsely” weighted voting scheme.

We confirmed two of our previous findings on
a larger scale. (1) Syntactic information can help
sentence segmentation (Bjorkelund et al., 2016).
(2) Supertags improve parsing performance across
all languages (Falenska et al., 2015).

For the surprise languages we blended delexi-
calized models from other languages with lexical-

ized models trained on the small in-language sam-
ple data. This approach seems to have been ro-
bust and rendered us second rank for surprise lan-
guages. However, further analysis would be re-
quired in order to understand whether the lexical-
ized or delexicalized models in general fare better
in this setting.

As for the PUD treebanks we found that, al-
though the UD annotation scheme should be con-
sistent across treebanks, combining training sets
for one language is not useful for parsing the PUD
test sets. Whether this depends on annotation
idiosyncrasies or domain differences is an open
question and deserves further attention.
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Abstract

This paper describes our system (HIT-
SCIR) for the CoNLL 2017 shared task:
Multilingual Parsing from Raw Text to
Universal Dependencies. Our system in-
cludes three pipelined components: fo-
kenization, Part-of-Speech (POS) tag-
ging and dependency parsing. We use
character-based bidirectional long short-
term memory (LSTM) networks for both
tokenization and POS tagging. After-
wards, we employ a list-based transition-
based algorithm for general non-projective
parsing and present an improved Stack-
LSTM-based architecture for representing
each transition state and making predic-
tions.

Furthermore, to parse low/zero-resource
languages and cross-domain data, we use
a model transfer approach to make effec-
tive use of existing resources. We demon-
strate substantial gains against the UDPipe
baseline, with an average improvement of
3.76% in LAS of all languages. And fi-
nally, we rank the 4th place on the official
test sets.

1 Introduction

Our system for the CoNLL 2017 shared task (Ze-
man et al., 2017) is a pipeline which includes three
cascaded modules, tokenization, Part-of-Speech
(POS) tagging and dependency parsing.

* Tokenization. This module includes two
components, the sentence segmenter and the
word segmenter which recognize the sen-
tence and word boundaries respectively (Sec-
tion 2.1).
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* POS tagging. We focus mainly on univer-
sal POS tags, and don’t use language-specific
POS as well as other morphological features
(Section 2.2).

* Dependency parsing. To handle the non-
projective dependencies in most of the lan-
guages (or treebanks) provided in the task,
we employ the list-based transition pars-
ing algorithm (Choi and McCallum, 2013),
equipped with an improved Stack-LSTM-
based model for representing the transition
states, i.e., configurations (Section 2.3).

We mainly concentrate on parsing in this task,
and make use of UDPipe (v1.1) (Straka et al.,
2016a) for most of the pre-processing steps. How-
ever, our preliminary experiments showed that the
UDPipe tokenizer and POS tagger perform rather
poorly in some languages and specific domains.
Therefore, we develop our own tokenizer and POS
tagger for a subset of languages.

To deal with the parallel test sets (cross-
domain) and low/zero-resource languages, we
adopt the neural transfer approaches proposed in
our previous studies (Guo et al., 2015, 2016) to
encourage knowledge transfer across different but
related languages or treebanks.

Experiments on 81 test sets demonstrate that our
system (HIT-SCIR: software4) obtains an average
improvement of 3.76% in LAS as compared with
the UDPipe baseline, and ranks the 4th place in
this task.

2 System Architecture

2.1 Tokenization

2.1.1 Sentence Segmentation

We develop our own sentence segmentation mod-
els for the languages which have white spaces as
token separators and on which UDPipe doesn’t

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 52—62,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics



Another

Other features of
theword “sentence.”

<begin> This sentence. <end>

<end>

<begin> S e

Figure 1: The hierarchical Bi-LSTM model for
sentence segmentation.

perform well. We formalize the sentence segmen-
tation process as a binary classification problem,
that is to classify each token as either the end
of a sentence or not. We notice that character-
level information is critical for sentence segmen-
tation, since texts are not tokenized yet in the cur-
rent phase. Therefore, we develop a hierarchi-
cal LSTM-based model, as illustrated in Figure 1,
in which characters in each token are composed
using a character-based bidirectional LSTM (Bi-
LSTM) network and then concatenated with addi-
tional token-level features (e.g., token embedding,
the first character of this token, etc.) and passed
through a token-level Bi-LSTM. The hidden states
of the token-level Bi-LSTM are finally used for
classification through a softmax layer.

We follow the strategy of the UDPipe tok-
enizer (Straka et al., 2016a) and employ a sliding
window to incrementally segment a document into
sentences.

In addition, we notice that for certain treebanks
(e.g., la_ittb and cs_cltt), some punctuation-related
rules derived from the training data can be highly
effective. To be more specific, some punctuations
that appear as the end of a sentence with high
probability will be used directly for determining
sentence boundaries. Therefore, we develop addi-
tional rule-based systems for these data instead of
using the neural models as describe above.

2.1.2 Word Segmentation

We develop our own word segmentation models
particularly for languages which do not have ex-
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Figure 2: The word segmentation model. ‘B’ de-
notes the beginning position and ‘I’ denotes the
middle or ending positions of a word.

plicit word boundary markers, i.e., white spaces,
including Chinese, Japanese and Vietnamese."

Our word segmentation model is also built
on Bi-LSTM networks, and incorporates rich
statistics-based features gathered from large-scale
unlabeled data. Specifically, we utilize features
like character-unigram embeddings, character-
bigram embeddings and the pointwise mutual in-
formation (Liang, 2005) (PMI) of adjacent charac-
ters. Formally, the input of our model at each time
step ¢ can be computed as:

zt = [Up; Bi-1; Bt; PMI (-1, ¢t ); PMI( ¢ty 1) ]
(D

xy =max {0, Wz, + b} 2)

where U, and B; denote the unigram embedding
and bigram embedding respectively at position ¢
and PMI denotes the pointwise mutual information
between two characters.

The PMI values are computed through:

p(C102)
p(c1)p(e2)

where ¢; and ¢y are two characters, p(c1), p(c2)
and p(cjc2) are counted on the raw data provided
by the shared task. p(s) denotes the probability
string s appears in the raw data. We scale PMI

PMI (Cl, CQ) = log (3)

"Vietnamese requires word segmentation because white
spaces occur both inter- and intra-words. When segmenting
Vietnamese, white space-separated tokens are used as inputs,
rather than characters as in Chinese and Japanese. In addi-
tion, we don’t consider Korean here since the Korean input
texts have already been segmented in the corpus provided by
the task.
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Figure 3: Structure of the character-based compo-
sition model for learning word representations. ‘w’
denotes the pre-trained word embedding, ‘c’ de-
notes the Brown cluster embedding.

with their Z-scores, the Z-score of a PMI value
is %, where p and o are the mean and standard
deviation of the PMI distribution, respectively.

Figure 2 shows the architecture of our word seg-
mentation model.

The character-unigram embeddings and
character-bigram embeddings are obtained using
word2vec (Mikolov et al., 2013) on the raw data.

2.2 Part-of-Speech Tagging

The UDPipe POS tagger is trained using averaged
perceptron with feature engineering. In our sys-
tem, we use a model similar to the one for sentence
segmentation (Section 2.1.1), i.e., a hierarchical
Bi-LSTM model which outperforms UDPipe on
most of datasets with much fewer features. Con-
cretely, each word is modeled using a character-
based Bi-LSTM, so that word prefix and suffix
features can be effectively incorporated, which
is particularly important for morphologically rich
languages. In addition, modeling from charac-
ters alleviates the problem of Out-of-Vocabulary
(OOV) words.

The character-based compositional embedding
of each word is then concatenated with a pre-
trained word embedding and a Brown cluster em-
bedding, resulting in the final word representation
which is fed as input of a word-level Bi-LSTM for
POS tagging. Formally,

x:maX{O,W[ﬁ;%;w;C] +q} 4)

Figure 3 illustrates the structure of the
character-based composition model.
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2.3 Dependency Parsing

The transition-based dependency parsing algo-
rithm with a list-based arc-eager transition sys-
tem proposed by Choi and McCallum (2013) is
used in our parser. We base our parser mainly on
the Stack-LSTM model proposed by Dyer et al.
(2015), where three Stack-LSTMs are utilized to
incrementally obtain the representations of the
buffer 3, the stack ¢ and the transition action se-
quence A. In addition, a dependency-based Re-
cursive Neural Network (RecNN) is used to com-
pute the partially constructed tree representation.
However, compared with the arc-standard algo-
rithm (Nivre, 2004) used by Dyer et al. (2015), the
list-based arc-eager transition system has an extra
component in each configuration, i.e., the deque
4. So we use an additional Stack-LLSTM to learn
the representation of 6. More importantly, we
introduce two LSTM-based techniques, namely
Bi-LSTM Subtraction and Incremental Tree-LSTM
(explained below) for modeling the buffer and
sub-tree representations in our model.

The pre-trained word embedding (100-
dimensional), Brown cluster embedding (100-
dimensional), along with a 100-dimensional
randomly initialized word embedding updated
while training,? and a 50-dimensional embedding
for UPOS are concatenated and passed through
a non-linear layer to obtain the representation of
each word.

Representations of the four components in our
transition system are concatenated and passed
through a hidden layer to obtain the representation
of the parsing state at time ¢:

er = max{0, W s by pr; ae] + d} ®)

where s¢, b, p; and a; are the representation of
o, B, 0 and A respectively. d is the bias. e; is
finally used to compute the probability distribution
of possible transition actions at time ¢ through a
softmax layer. Figure 4 shows the architecture.

2.3.1 Bi-LSTM Subtraction

We regard the buffer as a segment and use the sub-
traction between LSTM hidden vectors of the seg-
ment head and tail as its representation. To in-
clude the information of words out of the buffer,
we apply subtraction on bidirectional LSTM rep-
resentations over the whole sentence (Wang et al.,

*Unfortunately we did not have access to enough raw text

of Gothic, thus no pre-trained word embedding nor Brown
cluster is utilized for it.
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Figure 5: Illustration of Bi-LSTM Subtraction for
buffer representation learning. h ;(*) and hy,(*) in-
dicate the hidden vectors of forward and backward
LSTM respectively. b, is the resulting buffer rep-
resentation.

2016; Kiperwasser and Goldberg, 2016; Cross and
Huang, 2016), thus called Bi-LSTM Subtraction.

The forward and backward subtractions are cal-
culated independently, i.e., by = h(1)-hs(f) and
by = by(f) — by(l), where hy(f) and hy(l) are
the hidden vectors of the first and the last words
in the forward LSTM, hy(f) and hy(l) are the
hidden vectors of the first and the last words in
the backward LSTM. Then by and by, are concate-
nated as the buffer representation. As illustrated in
Figure 5, the forward and backward subtractions
for the buffer are by = hy(here) — hy(nice) and
by = hy(nice) — hy(here) respectively.
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Figure 6: Representations of a dependency sub-
tree (above) computed by Tree-LSTM (left) and
dependency-based RecNN (right).

2.3.2 Incremental Tree-LSTM

We use a Tree-LSTM (Tai et al., 2015; Zhu et al.,
2015) in our parser to model the sub-trees dur-
ing parsing. The example in Figure 6 shows the
differences between RecNN (Dyer et al., 2015)
and Tree-LSTM. In RecNN, the representation of
a sub-tree is computed by recursively combining
head-modifier pairs. Whereas in Tree-LSTM, a
head is combined with all of its modifiers simul-
taneously in each LSTM unit.

However, our implementation of Tree-LSTM is
different from the conventional one. Unlike tradi-
tional bottom-up Tree-LSTMs in which each head
and all of its modifiers are combined simultane-
ously, the modifiers are found incrementally dur-
ing our parsing procedure. Therefore, we propose
Incremental Tree-LSTM, which obtains sub-tree
representations incrementally. To be more spe-
cific, each time a dependency arc is generated,



we collect representations of all the found mod-
ifiers of the head and combine them along with
the embedding of the head as the representation of
the sub-tree. The original embedding rather than
the current representation of the head is utilized to
avoid the reuse of modifier information, since the
current representation of the head contains infor-
mation of its modifiers found previously.

2.3.3 Parser Ensembling

For a majority of languages, we found that the
parsing performance can be improved by sim-
ply integrating two separately trained models.
More specifically, for each language two models
with different random seeds are trained separately.
While predicting, in each state, both models are
used to calculate the scores for valid transitions
under this configuration as described above. Then
the score distributions computed by two models
are summed to get the final scores for the valid
transitions, among which the one with the highest
score will be taken as the next transition.

3 Transfer Parsing across Domains and
Languages

3.1 Cross-Domain Transfer

For 15 out of 45 languages presented in the task,
multiple treebanks from different domains are pro-
vided. To exploit the benefits from these cross-
domain data, we use a simple inductive transfer
approach which has two stages:

1. Multiple treebanks of each language are com-
bined to train an unified parser.

2. The unified parser is then fine-tuned on the
training treebank of each domain, to obtain
target domain-specific parsers.

In practice, for each language considered here,
we treat the largest treebank as our source-domain
data, and the rest as target-domain data. Only
target-domain models are fine-tuned from the uni-
fied parser, while the source-domain parser is
trained separately using the source treebank alone.

For the new parallel test sets in test phase, we
simply use the model trained on source-domain
data, without any assumption on the target do-
main.

3.2 Cross-Lingual Transfer

We consider the languages which have less than
900 sentences in the training treebank as low-
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ru_syntagrus
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Source

ug kk
tr tr

ga
en

Table 1: Cross-lingual transfer settings for low-
resource target languages.

resource, and employ the cross-lingual model
transfer approach described in Guo et al. (2015,
2016) to benefit from existing resource-rich lan-
guages.

The low-resource languages here include
Ukrainian (uk), Irish (ga), Uyghur (ug) and
Kazakh (kk). We determine their source language
(treebank) according to the language families they
belong to and their linguistic typological similar-
ity. Specifically, the transfer setting is shown in
Table 1.

The transfer approach is similar to cross-
domain transfer as described above, with one im-
portant difference. Here, we use cross-lingual
word embeddings and Brown clusters derived by
the robust projection approach (Guo et al., 2015)
when training the unified parser, to encourage
knowledge transfer across languages at lexical
level. Specifically, for each source and target lan-
guage pair (src, tgt), we derive an alignment ma-
trix Aygy|src from a collected bilingual parallel cor-
pus, where each element A;gy,,.(4,7) is the nor-
malized count of alignments between correspond-
ing words in their vocabularies:

# (Vi = Vi)
Sk # (Vi) < Vi)
Given a pre-trained source language word embed-
ding matrix Ej.., the resulting word embedding

matrix for the target language can be simply com-
puted as:

Atgt|src(i7j) = (6)

(7

Therefore, the embedding of each word in the tar-
get language is the weighted average of the em-
beddings of its translation words in our bilingual
parallel corpus.

The cross-lingual Brown clusters are obtained
using the PROJECTED clustering approach de-
scribed in (Tackstrom et al., 2012), which assigns
a target word to the cluster with which it is most
often aligned:

C(wfgt) = argmax Z Atgt\src(ia j)ﬂ[c(wjrc) = k]
k J

®)

Etgt = Atgt\src “Egre
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Table 2: Cross-lingual delexicalized transfer set-
tings for surprise languages.

After that, target language-specific parsers are
obtained through fine-tuning on their own tree-
banks. Figure 7 illustrates the flow of our transfer
approach.

For the surprise languages in the final test
phase, we use the transfer settings in Table 2. We
use multi-source delexicalized transfer for sur-
prise language parsing, considering that bilingual
parallel data which is required for obtaining cross-
lingual word embeddings is not available for these
languages.

4 Experiments

We first describe our experiment setups and strate-
gies for processing different languages (treebanks)
in each module. Then we present the results and
analysis.

4.1 Experimental Settings
4.1.1 Model Selection Strategies

For sentence segmentation, we apply our own
models for a subset of languages on which UD-
Pipe yields poor performance, and use UDPipe for
the rest languages.® Specifically, we use the rule-
based model for la_ittb and cs_cltt,* and use the Bi-
LSTM-based model (Figure 1) for sk, en, en_lines,
fi_ftb, got, nl_lassysmall, grc_proiel, la_ittb, cu,

3We use the same hyper-parameter settings as provided by
the organizers to train the UDPipe models.

“However, the rule-based model does not yield good per-
formance on the two test sets. We suggest that the rules we
use are overfitting the development sets to some degree.
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la_proiel, da and sl_sst. For word segmentation, we
use our Bi-LSTM-based model for zh, ja, ja_pud
and vi, which don’t have explicit word boundary
markers, i.e., white spaces.

We use our own POS taggers for all of the lan-
guages, except for the surprise languages, which
we rely on UDPipe for all pre-processing steps.

Our strategies for parsing are shown in Table 3.
We determine the optimal parser (single, ensem-
ble or transfer) for each treebank according to the
performance on the development data.

4.1.2 Data and Tools

We use the provided 100-dimensional multilingual
word embeddings’ in our tokenization, POS tag-
ging and parsing models, and use the Wikipedia
and CommonCrawl data for training Brown clus-
ters. The number of clusters is set to 256.

For cross-lingual transfer parsing of low-
resource languages, we use parallel data from
OPUS to derive cross-lingual word embeddings.®
The fast_align toolkit (Dyer et al., 2013) is used
for word alignment.”

We use the Dynet toolkit for the implementation
of all our neural models.®

4.2 Effects of Different Parts in Dependency
Parsing

We conduct experiments on the development sets
of 4 treebanks to investigate the contributions of
the two architectures we proposed (i.e., the In-
cremental Tree-LSTM and the Bi-LSTM Subtrac-
tion) and the Brown cluster. The LAS of differ-
ent experiment settings are presented in Table 4.
Results show that Brown clusters and both archi-
tectures help to improve the parsing performance
in most situations. And the ensemble method we
eventually choosed which incorporated the two ar-
chitectures as well as Brown clusters and utilized
two models for predicting yield the best perfor-
mance.

4.3 Effect of Transfer Parsing

To investigate the effect of transfer parsing on
cross-domain and cross-lingual data, we compare
our transferred system with the supervised system
on a subset of treebanks. Evaluation is conducted

Slindat.mff.cuni. cz/repository/xmlui/
handle/11234/1-1989

6opus .lingfil.uu.se

"https://github.com/clab/fast_align

8github.com/clab/dynet



Strategy Itcode

Single cs_cac, bg, ja, he
cs, ru_syntagrus, la_ittb, fi_ftb, grc_proiel, es_ancora, es, de, hi, ca,
Ensemble (2) en, fi, sk, ro, hr, pl, ar, eu, fa, id, ko, da, sv, cu, ur, zh, tr, got, sv_lines,

lv, gl, et, el, vi, hu

Cross-domain Transfer

gl _treegal, cs_cltt, ru

no_bokmaal, no_nynorsk, la, la_proiel, grc, pt, pt_br, sl, sl_sst, nl,

nl_lassysmall, en_lines, en_partut, fr, fr_sequoia, fr_partut, it, it_partut?,

Cross-lingual Transfer | uk, ga, ug, kk

Delexicalized Transfer | bxr, kmr, sme, hsb

Table 3: Model selection strategies for all treebanks. ' it_partut is excluded from the final test sets. But
it’s used in our transfer parsing as a source treebank.

Settings cs de en ko

Baseline 86.79 80.08 81.87 67.21
B 87.51 80.01 82.48 68.19
T 8743 80.01 82.24 68.29
B+T 87.67 80.24 8273 68.34
B+T+C 87.62 81.45 8337 70.24
Ensemble (2) | 88.52 81.92 83.99 71.38

Table 4: Experiment results (LAS) on devel-
opment sets with different settings. B: Bi-
LSTM Subtraction, T: Incremental Tree-LSTM,
C: Brown cluster. Ensemble is produced with
models we eventually submitted.

on the development data or through 5-fold cross-
validation when development data is not avail-
able. Results are shown in Table 5 and 6 respec-
tively. We can see that both cross-domain and
cross-lingual transfer parsing improve over the su-
pervised systems significantly.

4.4 Results

The overall results of our end-to-end universal
parsing system on 81 test treebanks are shown in
Table 7, with comparison to the UDPipe baseline
models. We obtain substantial gains over UDPipe
on 76 out of 81 treebanks, with 3.76% improve-
ments in average LAS. It spent about 9 hours to
evaluate all of 81 test sets end-to-end and needed
up to 4GB memory on the TIRA virtual machine.

4.5 Post-Evaluation

We realized a small problem in our implementa-
tion of the word segmentation models after offi-
cial evaluation. After revision, we re-evaluated
our models on the four test treebanks: zh, vi, ja
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ltcode Supervised Transfer
UAS LAS | UAS LAS

cs_cltt 81.23 77.80 | 85.38 83.08
en_lines 82.30 78.44 | 83.65 179.75
en_partut 82.66 78.72 | 8597 82.08
fr_sequoia 88.68 86.67 | 89.46 87.79
la_proiel 78777 73.18 | 79.67 T4.46
no_bokmaal | 89.76 87.50 | 90.49 88.37
no_nynorsk 88.39 85.84 | 89.41 87.08
nl_lassysmall | 86.11 82.65 | 87.39 84.02
pt_br 91.59 89.65 | 91.93 90.16
Average 85.50 82.27 | 87.04 84.09

Table 5: Effects of cross-domain transfer parsing
on a subset of development sets.

and ja_pud. The post-evaluation results are shown
in Table 8. On zh, vi and ja_pud, we outperform
the rank-1 system significantly. We can see that
the performance of word segmentation is crucial
for the pipeline system.

5 Conclusion and Future Work

Our CoNLL-2017 system on end-to-end univer-
sal parsing includes three cascaded modules, fo-
kenization, POS tagging and dependency pars-
ing. We develop effective neural models for each
task, with particular utilization of bidirectional
LSTM networks. Furthermore, we use transfer
parsing approaches for cross-domain and cross-
lingual adaption, that can effectively exploit re-
sources from multiple treebanks. We obtain sig-
nificant improvements against the UDPipe base-
line systems on most of the test sets, and obtain
the 4th place in the final evaluation.



lcode Supervised Transfer
UAS LAS | UAS LAS
uk 78.75 7247 | 86.27 80.92
ga 76.66 67.08 | 80.83 73.44
ug 58.53 3832 | 67.19 5223
Average | 71.31 59.29 | 78.10 68.86

Table 6: Effects of cross-lingual transfer parsing
on ug uk and ga. 5-fold cross-validation is used
for evaluation.

6 Credits

There are a few references we would like to give
proper credit, especially to data providers: the core
Universal Dependencies paper from LREC 2016
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models (Weiss et al., 2015) and the evaluation plat-
form TIRA (Potthast et al., 2014).
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ltcode UDPipe 1.1 Ours ltcode UDPipe 1.1 Ours
UAS LAS | UAS LAS UAS LAS | UAS LAS

ar 71.19 6530 | 74.13  69.12 || hsb 61.70 53.83 | 66.64 59.27
ar_pud 5355 43.14 | 57.18 48.01 || hu 7146 6430 | 74.68 66.29
bg 87.79 83.64 | 90.30 86.73 || id 80.91 74.61 | 83.06 76.66
bxr 46.97 3150 | 46.04 27.66 || it 88.03 85.28 | 90.05 87.77
ca 88.62 85.39 | 90.79 88.27 || it_pud 87.04 83.70 | 88.59 85.51
cs 86.46 82.87 | 89.57 86.52 || ja 73.52 7221 | 81.94 80.85
cs_cac 86.49 82.46 | 87.66 83.87 || ja_pud 77.13 7628 | 8438 83.75
cs_cltt 76.26  71.64 | 8496 81.89 || kk 41.92 2451 | 42.11  24.76
cs_pud 84.42 79.80 | 8579 80.75 || kmr 46.20 3235 | 52.55 4470
cu 69.68 62.76 | 72.19 65.80 || ko 66.40 59.09 | 7695 71.82
da 76.94 7338 | 81.14 78.03 || la 5435 4377 | 59.15 4875
de 7427 69.11 | 79.03 74.79 || la.ittb 80.78 76.98 | 84.07 81.03
de_pud 73.64 66.53 | 77.90 71.11 || la_proiel 63.50 57.54 | 68.94 63.48
el 83.00 79.26 | 8572 82.82 || Iv 67.14 5995 | 7191 64.97
en 78.87 75.84 | 82.88 79.94 || nl 7494 6890 | 7890 73.43
en_lines 7739 7294 | 82.70 78.73 || nllassysmall | 81.37 78.15 | 89.06 86.85
en_partut | 77.83 73.64 | 85.57 81.98 || no_bokmaal 86.14 83.27 | 89.09 86.90
en_pud 82.74 7895 | 84.97 81.86 || no_nynorsk 84.88 81.56 | 87.95 8543
es 84.84 8147 | 87.20 84.22 || pl 85.08 78.78 | 88.18 83.75
es.ancora | 86.97 83.78 | 89.94 87.39 || pt 85.77 82.11 | 87.75 84.90
es_pud* 84.71 77.65 | 8234 72.67 || pt-br 87.75 85.36 | 90.51 88.71
et 67.71 58.79 | 73.09 65.10 || pt_pud 80.10 73.96 | 81.18 72.33
eu 7439  69.15 | 79.29 73.85 || ro 8550 79.88 | 87.30 82.21
fa 8336 79.24 | 86.24 82.08 || ru 79.28 74.03 | 8432 80.58
fi 77.90 73.75 | 81.98 77.73 || ru_pud* 75.67 6831 | 72.33  61.60
fi_ftb 78.77 74.03 | 82.79 78.08 || ru_syntagrus | 89.30 86.76 | 91.71 89.77
fi_pud 8224 78.65 | 82.76 78.99 || sk 78.14 7275 | 8438 79.82
fr 84.13 80.75 | 86.07 82.67 || sl 84.68 81.15 | 89.54 87.08
fr_partut 81.69 7738 | 88.39 84.86 || sl.sst 53.79 46.45 | 60.36 54.06
fr_pud 78.62 73.63 | 82.55 77.51 || sme 46.06 30.6 | 52.51 3891
frsequoia | 82.62 79.98 | 87.11 85.09 || sv 80.78 76.73 | 83.93 80.58
ga 72.08 61.52 | 73.48 61.62 || sv_lines 79.18 7429 | 81.77 77.30
el 80.66 77.31 | 83.31 80.23 || sv_pud 75.09 70.62 | 75.15 70.70
gl treegal | 71.17 6582 | 72.65 66.51 || tr 60.48 53.19 | 64.14 56.43
got 67.13 59.81 | 67.61 60.52 || tr_pud* 55.01 3453 | 54.17 34.15
grc 62.74 56.04 | 66.86 59.84 || ug’ 53.58 34.18 | 51.57 3452
grc_proiel | 7042 6522 | 74.19 69.39 || uk 69.78 60.76 | 71.22 63.08
he 61.54 57.23 | 6430 60.07 || ur 83.67 76.69 | 86.41 79.72
hi 90.97 86.77 | 93.31 89.48 || vi 42.12 3747 | 47.53 4252
hi_pud 6343 50.85 | 67.24 54.14 || zh 61.5 57.40 | 68.95 65.10
hr 83.20 77.18 | 86.58 81.30 || Average 7441 6835 | 77.81 T72.11

Table 7: End-to-end parsing results on all test treebanks. * indicates the test sets on which UDPipe
performs better. Among the 5 sets, es_pud, ru_pud and tr_pud are parallel test sets on which we simply
use the model trained from the source treebank. We suggest better strategies should be explored.

ltcode Ours (b/r) Ours (a/r) Rank-1
WSeg LAS | WSeg LAS | WSeg LAS
ja 92.95 80.85| 94.70 84.37 | 98.59 91.13
japud | 94.02 83.75| 95.54 85.33 | 9493 83.75
vi 84.70 4252 | 9140 4898 | 87.30 47.51
zh 91.19 65.10 | 95.21 70.49 | 94.57 68.56
Table 8: Post-evaluation results on zh, vi, ja and

ja_pud. b/r: before revision. a/r: after revision.
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Abstract

In this paper, we present our multilin-
gual dependency parser developed for the
CoNLL 2017 UD Shared Task dealing with
“Multilingual Parsing from Raw Text to
Universal Dependencies”!. Our parser ex-
tends the monolingual BIST-parser as a
multi-source multilingual trainable parser.
Thanks to multilingual word embeddings
and one hot encodings for languages,
our system can use both monolingual
and multi-source training. We trained
69 monolingual language models and 13
multilingual models for the shared task.
Our multilingual approach making use
of different resources yield better results
than the monolingual approach for 11
languages. Our system ranked 5" and
achieved 70.93 overall LAS score over the
81 test corpora (macro-averaged LAS F1
score).

1 Introduction

Many existing parsers are trainable on monolin-
gual data. Normally such systems take a monolin-
gual corpus in input, along with monolingual word
embeddings and possibly monolingual dictionar-
ies as well as other knowledge sources. However
for resource-poor languages such as Kurmanji and
Buryat?, there are generally not enough resources
to train an efficient parser. One reasonable ap-
proach is then to infer knowledge from similar lan-
guages (Tiedemann, 2015). Developing tools to
process several languages including resource-poor
languages has been conducted in many different
ways in the past (Heid and Raab, 1989). Thanks

Uhttp:/funiversaldependencies.org/conll17/
>http://universaldependencies.org/conll17/surprise.html

Univ. Sorbonne nouvelle & USPC
Paris, France
thierry.poibeaulens.fr

to Universal Dependency (Nivre et al., 2016), it
is now possible to train a system for several lan-
guages from the same set of POS tags. It has
also been demonstrated that, with current machine
learning approaches, parsing accuracy improves
when using multilingual word embeddings (i.e.
word embeddings inferred from corpora in differ-
ent languages) even for resource-rich languages
(Ammar et al., 2016a; Guo et al., 2015).

In this paper, we describe the development of
a system using either a monolingual or multilin-
gual strategy (depending on the kind of resources
available for each language considered) for the
CoNLL 2017 shared task (Zeman et al., 2017).
For the multilingual model, we assume that learn-
ing over words and POS sequences is a first step
from which better parsers can then be derived. For
this reason, we re-used most of the training al-
gorithms implemented for the BIST-parser since
these have proven to be effective when dealing
with sequential information even for long sen-
tences, thanks to bidirectional LSTM feature rep-
resentations (Kiperwasser and Goldberg, 2016).

In addition, our parser can also have recourse to
multilingual word embeddings that merge differ-
ent word vectors in a single vector space in order
to get multi-source models. As for multilingual
word embeddings, we extend the bilingual word
mapping approach (Artetxe et al., 2016) to be able
to deal with multilingual data. We have only used
this approach based on multilingual word embed-
dings for two different language groups in this
experiment: (i) for resource-poor languages for
which less than 30 sentences were provided for
training such as surprise languages and Kazakh,
and (ii) for another group of 7 resource-rich lan-
guages that are all Indo-European languages. This
is to show that even the analysis of resource-rich
languages can be improved thanks to a multilin-
gual approach.

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 6370,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics
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features that are feeding into Bidirectional LSTM. (2) Bidirectional-LSTM: train representation of each
token as vector values based on bidirectional LSTM neural network. (3) Multi-Layer Perceptron:
build candidate of parse trees based on trained(changed) features by bidirectional LSTM layer, and then
calculate probabilistic scores for each of candidates. Finally, if it has multiple roots, revise it (section 3)

or select the best parse tree.

Although we could theoretically train a single
model for all the languages considered in the eval-
uation based on our multilingual approach, rele-
vant results can only be obtained if one takes into
account language similarities and typological in-
formation. Moreover, given the limited time and
the specific resource environment designed for the
shared task, it was hard to get better results using
a multilingual approach than using a monolingual
approach for resource-rich languages since train-
ing new word embeddings requires time. Thus,
we processed 69 corpora with monolingual mod-
els, and only 13 corpora with our multilingual ap-
proach.

In what follows we describe the architecture
of our system (section 2), our monolingual (sec-
tion 3) as well as our multilingual approach (sec-
tion 4). Finally, we compare the results with the
baseline provided by UDPipel.1 and with the re-
sults of other teams (section 5).

2 System Overview

Our system extends the Graph-based parser
(Taskar et al., 2005) especially in BIST-parser that
works by default with monolingual data. Basi-
cally the Graph-based BIST-parser uses bidirec-
tional Long Short Term Memory (LSTM) feature
representations thanks to two neural network lay-
ers (Kiperwasser and Goldberg, 2016). In or-
der to select the best relation and head for each
tokens in a sentence, Kiperwasser and Goldberg
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link the output of the bidirectional LSTM with the
Multi-Layer Perceptron (MLP) thanks to one neu-
ral layer. Here we adopt the same feature repre-
sentation and MLP but different training features
and decision models.

In order to adapt the parser to a multilingual
approach, we add new parameters and new fea-
tures to the training algorithm, notably the pos-
sibility to use multilingual word embeddings and
one hot encoding to encode languages. Finally, the
parser can be trained on monolingual and multilin-
gual data depending on the parameters chosen for
training. An overview of the overall architecture
is given in Figure 1. Details on word embeddings
along with the number of dimensions considered
are given below.

Word: randomly generated word embedding
(100)

XPOS: language-specific POS (25)
UPOS: universal POS (25)

External embeddingl: pretrained word em-
bedding (100)

External embedding?2: pretrained word em-
bedding that is replaced with Word (100)

one-hot encoding: one-hot encoding of the
language ID (65)



Corpus Embedding model Bilingual Dic Training corpora

Buryat Buryat-Russian wiki dump brx(20), ru

Kurmanyji Kurmanji-English wiki dump kmr(20), en

North Sdmi North Sdmi-Finnish wiki dump sme(20), fi, fi-fbt

Upper Sorbian Upper Sorbian-Polish OPUS hsb(20), pl

Kazakh Kazakh-Turkish OPUS kk(20), tr

Portuguese 7 languages* Europarl7, WMT11 en, it, fr, es, pt, de, sv
Italian 7 languages™ Europarl7,WMT11 en, it, fr, es, pt, de, sv
Italian_ParTUT 7 languages* Europarl7, WMT11 | en, en_partut, fr_partut, it, it_partut
English_ParTUT 7 languages™ Europarl7,WMT11 | en, en_partut, fr_partut, it_partut
French_ParTUT 7 languages* Europarl7,WMT11 | en_partut, fr(2), fr_partut, it_partut
Czech-CLTT Czech - cs, cs_cac, cs_cltt
Galician-TreeGal Galician - ga, ga_treegal
Slovenian-SST Slovenian - s, sl_sst

Table 1:

Languages trained by a multilingual model. Embedding model: applied languages that

were used for making multilingual word embeddings. Bilingual Dic: resources to generate bilingual
dictionaries Training corpora: Training corpora that were used. 7 languages: English, Italian, French,
Spanish, Portuguese, German, Swedish. (number): the number of multiplication to expand the total

amount of corpus.

Word refers to words taken from the training
corpora and used as lexical features with vector-
ized embeddings in our parser. Both XPOS and
UPOS® are used as delexicalized features. The
content of Word and POS is set randomly when
the training phase starts. In addition, two external
word embeddings are added to the representations
of words, one is concatenated with the Word vec-
tor additionally, and the other is used to replace
the Word vector. For example, let Word be gen-
erated randomly with 100 dimensional vector val-
ues and Externall and let External2 be pretrained
word embeddings made from different resources
with 100 dimensional vector values. If we just add
Externall to an additional word embedding, then
final word embedding could be Word+Externall
(200 dimensions) based on concatenation. How-
ever, if we add just External?2 as an additional
word embedding, Word is deleted because it is re-
placed with External? so that final word embed-
ding could be External2 (100 dimensions). If both
are used, final word embedding could be Exter-
nall + External2 (Word is deleted because of Ex-
ternal2). Since we have found if we can use two
external word embeddings, replacing one word
embedding as the Word made better results than
concatenating two word embeddings based on ex-
periments.

Since our goal is to develop a multilingual pars-

*http://universaldependencies.org/format.html
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ing model, we took the idea of one-hot encodings
from (Ammar et al., 2016a). The idea is to add
language one-hot encoding as an additional fea-
ture while training multilingual models. It allows
the model to directly focus on language specifici-
ties. There are 65 hot-encoding dimensions be-
cause there are 64 languages in UD 2.0 (Nivre
et al., 2017) plus unknown languages.

3 Monolingual Model

There were 81 different corpora to be parsed
within the CoNLL 2017 shared task. We used
a monolingual approach for 69 corpora, and our
results are detailed in section 5. As mentioned
above, training a monolingual model in our system
is very similar to training a BIST-parser model.
However, we made two modifications to the origi-
nal approach.

Multiple roots: The BIST-parser can generate
multiple roots for a given sentence. This is not
a problem in general but for the shared task we
need to provide only one single root per sentence.
Not detecting the right root for a sentence leads
to major errors so the problem had to be addressed
carefully. We chose to develop a simple algorithm:
when the parser returns multiple roots, our sys-
tem revises the overall sentence analysis so as to
select one single primary root and change other
previous roots as links pointing to the new head
node. Choosing the primary root is the result of an



empirical process depending on the language con-
sidered (i.e. taking into account language-specific
word order). For example, the primary root is the
first head node in the case of an English sentence
and the last one in the case of a Korean sentence.
This very simple trick improved the LAS scores by
0.43 overall F1-measure on the development set.
Customizing for UD: Basically, the BIST-
parser is not adapted to the Universal Dependency
format. Thus several changes had to be made.
First, we added both XPOS and UPOS categories
to the parser. Second, if a word in a training sen-
tence did not exist in external word embeddings,
we replaced the word as a lemma of the word.
Third, we used the external word embeddings pro-
vided by the shared task organizers* and concate-
nated them with the original Word embedding.

4 Multilingual Model

We processed 13 test corpora with our multilin-
gual model. The Fl-measure of our system for
these corpora are better than with our monolingual
system for resource-poor languages and even for
most of the resource-rich languages.

4.1 Surprise Languages and Kazakh

There were four surprise languages provided for
evaluation within the CONLL 2017 shared task:
Buryat, Kurmanji, North Sdmi and Upper Sorbian
(all in the Universal Dependency format). Less
than 30 sentences were provided for training, and
Kazakh also had 30 sentences for training. We di-
vided the training corpus in half: half od the data
were set apart for development and never used for
training.

Word embeddings. The first step for training
multilingual model is finding topologically simi-
lar languages. Thus, we selected three languages
for each surprise language in order to be able to
derive multilingual word embeddings. The choice
of languages was based on the Word Atlas of Lan-
guage Structures® and on advices from linguists.

Bilingual Dictionary. There has been many
attempts to build multilingual embeddings (Am-
mar et al., 2016b; Smith et al., 2017). One sim-
ple but powerful method is finding a linear trans-
formation matrix from two monolingual embed-

dings. (Artetxe et al., 2016) propose to do this with
pretrained word embeddings and bilingual dictio-
naries. We tried to follow their approach using
monolingual embeddings provided by Facebook
research® and building bilingual dictionaries. Un-
fortunately there were not many resources (even
with a limited coverage) for building a bilingual
dictionary in the case of surprise languages.

For some languages we were able to find bilin-
gual dictionaries from OPUS’. When no cor-
pus was available, we used Swadesh lists from
Wikipedia dumps. Swadesh lists are composed
of 207 bilingual words that are supposed to be
“basic concepts for the purposes of historical-
comparative linguistics”®.  Finally, we trans-
formed both embeddings in a single vector space.

Tablel shows details about the selected pairs of
languages and the different sources used for our
dictionaries. From these resources, we trained a
multilingual model and after testing with the de-
velopment set set apart for each pair of candidate
languages, we picked up the best candidate for the
different surprise languages and for Kazakh.

4.2 Italian and Portuguese

There have been several attempts aiming at train-
ing multilingual models for resource-rich lan-
guages (Guo et al., 2016; Ammar et al., 2016a).
We have tested our multilingual system in a sim-
ilar way as explained in the previous section for
resource-rich languages, except that we of course
changed the resources used. We used the mul-
tilingual word embeddings for 7 languages pre-
sented in Ammar et al.’s paper (average and brown
cluster model), and then trained a multilingual
model with the training set provided for the 7 lan-
guages considered. Although the size of word
vectors for multilingual embeddings is almost 10
times smaller than with the monolingual embed-
dings made by Facebook research, the result (F1-
measure) is slightly better than with the monolin-
gual model for Italian and Portuguese, with 0.39
and 0.41 within development sets.

4.3 ParTUT corpora

We assumed that all ParTUT corpora are related
with each other. Thus, we used a similar mul-
tilingual approach to parse the ParTUT corpora

*https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1- but we used different compositions of corpora for

1989

>The Word Atlas of Language Structures provides infor-
mation about different languages in the world (family, lati-
tude and longitude, see http://wals.info).

®https://github.com/facebookresearch/fastText/
"http://opus.lingfil.uu.se/
8https://en.wikipedia.org/wiki/Swadesh_list



Corpus LAS | UAS | Rank(LAS) | Rank(UAS) | Baseline(LAS)
Overall (81) 70.93 | 76.75 5 5 68.35
Big treebanks only (55) 75.79 | 80.55 5 5 73.04
PUD treebanks only (14) 70.77 | 77.64 4 4 68.33
Small treebanks only (8) 54.78 | 64.99 4 5 51.80
Surprise language only (4) | 36.93 | 48.66 12 15 37.07
English_ PUD 82.38 | 85.77 2 2 78.95
Russian_PUD 72.03 | 79.31 2 2 68.31
Spanish 85.22 | 88.40 2 3 81.47

Table 2: Official experiment results with rank. (number): number of corpora

Corpus LATTICE | Baseline Corpus LATTICE | Baseline
Arabic_PUD 47.13 43.14 Croatian 80.96 77.18
Arabic 68.54 65.3 Hungarian 68.49 64.3
Bulgarian 85.6 83.64 Indonesian 76.6 74.61
Catalan 86.83 85.39 Italian_PUD 86.49 83.7
Czech-CAC 84.77 82.46 Japanese_PUD 77.41 76.28
Czech_PUD 80.86 79.8 Japanese 73.98 72.21
Czech 83.68 82.87 Korean 72.35 59.09
Old_Church_Slavonic 60.81 62.76 Latin-ITTB 74.33 76.98
Danish 76.47 73.38 Latin-PROIEL 55.04 57.54
Danish_ PUD 71.45 66.53 Latin 51.95 43.77
German 75.09 69.11 Latvian 64.49 59.95
Greek 81.13 79.26 Dutch-LassySmall 75.67 78.15
English-LinES 76.17 72.94 Dutch 70.6 68.9
English_ PUD 82.38 78.95 Norwegian-Bokmaal 85.55 83.27
English 78.91 75.84 Norwegian-Nynorsk 84.57 81.56
Spanish-AnCora 86.87 83.78 Polish 85.94 78.78
Spanish_PUD 79.87 77.65 Portuguese-BR 88.56 85.36
Spanish 85.22 81.47 Portuguese_PUD 76.56 73.96
Estonian 62.93 58.79 Romanian 81.93 79.88
Basque 72.13 69.15 Russian_PUD 72.03 68.31
Persian 82.63 79.24 Russian-SynTagRus 87.9 86.76
Finnish-FTB 79.44 74.03 Russian 78.42 74.03
Finnish_PUD 80.82 78.65 Slovak 79.23 72.75
Finnish 77.11 73.75 Slovenian 84.52 81.15
French_PUD 76.55 73.63 Swedish-LinES 78.15 74.29
French-Sequoia 83.7 79.98 Swedish_PUD 73.4 70.62
French 82.83 80.75 Swedish 81.07 76.73
Irish 64.39 61.52 Turkish_ PUD 34.82 34.53
Galician 80.68 77.31 Turkish 58.89 53.19
Gothic 60.55 59.81 Uyghur 34.94 34.18
Ancient_Greek-PROIEL 60.58 65.22 Ukrainian 63.63 60.76
Ancient_Greek 51.5 56.04 Urdu 79.26 76.69
Hebrew 61.24 57.23 Vietnamese 39.87 37.47
Hindi_ PUD 50.94 50.85 Chinese 61.94 574
Hindi 86.99 86.77 Average 73.13 70.45

Table 3: Official experiment results processed by monolingual models.
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Corpus LATTICE-Multi | LATTICE-Mono | Baseline
Buryat 27.08 19.7 31.5
Kurmanji 41.71 37.59 32.35
North Sami 28.39 25.89 30.6
Upper Sorbian 50.54 41.23 53.83
Kazakh 22.11 19.98 24.51
Italian 87.75 87.98 85.28
Portuguese 84.08 84.08 82.11
English-ParTUT 80.45 77.62 73.64
French-ParTUT 83.26 80.66 77.38
Italian-ParTUT 84.09 80.36 -
Czech-CLTT 75.45 74.85 71.64
Galician-TreeGal 68.01 67.75 65.82
Slovenian-SST 49.94 48.06 46.45

Table 4: Official experiment results processed by multilingual models.

training, such as French ParTUT with en_partut,
fr_partut, it_partut and doubled-fr corpus. Finally,
the best training compositions are listed in Tablel.

4.4 Czech-CLTT, Galician-TreeGal,
Slovenian-SST

These three corpora have a small number of train-
ing sentences. We thus chose to train them to-
gether but with different language hot-encoding
values.

S Experimental Results

Because we wanted to focus on the dependency
parsing task, we used automatically annotated cor-
pora for testing and also trained all models with
the annotated corpora provided by UDPipe (Straka
etal., 2016).

As described in section 4, we used different
word embeddings and training corpora for multi-
lingual models. As for monolingual models, we
simply trained the system with monolingual em-
beddings (see details in section 3).

Overall results. Table 2, 3 and 4 show the of-
ficial results (except for it_ParTUT), using the F1-
measure computed by the TIRA platform (Potthast
et al., 2014) for the CoNLL 2017 Shared task’.
Our system achieved 70.93 F1 (LAS) on the over-
all 81 test sets and ranked 5! out of 33 teams. The
average gap between the baseline obtained with
UDPipel.1 (Straka et al., 2016) and our system
is 2.58 LAS in our favor. Our system shows bet-
ter results in avoiding over-fitting issues. Perfor-
mance gaps are narrowed when considering only

*http://universaldependencies.org/conll17/results.html
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PUD test sets (for example, our system ranked
second best for processing English_ PUD and Rus-
sian_PUD), which is encouraging for practical ap-
plications.

Multilingual model. Table 4 shows the re-
sults obtained when using the multilingual mod-
els on the small treebank dataset (fr_partut, ga,
gl_treegal, Kk, la, sl_sst, ug, uk). We ranked 4",
with 54.78 LAS score on this group of languages.
However, in terms of extremely resource-poor lan-
guages (surprise languages), we have ranked only
12¢", with 36.93 LAS score. This is slightly lower
than the UDPipel.l baseline model: we assume
this is the result of using half of the corpus for
training surprise languages (section 4). If we com-
pare monolingual models of surprise languages
with multilingual ones, we see an improvement
between 2.5 and 9.31 percent. The same kind
of improvement can be observed for the ParTUT
group. In this case, the multilingual approach im-
proves performance by almost 3 points.

6 Conclusion

In this paper, we have described our system for
multilingual dependency parsing that has been
tested over the 81 Universal Dependency cor-
pora provided for the CoNLL 2017 shared task.
Our parser mainly extends the monolingual BIST-
parser as a multi-source trainable parser. We pro-
posed three main contributions: (/) the integration
of multilingual word embeddings and one hot en-
codings for the different languages, which means
our system can work using monolingual models
as well as on multilingual ones. (2) a simple but



effective way to solve the multiple roots problem
of the original BIST parser and (3) an original ap-
proach for the elaboration of multilingual dictio-
naries for resource-poor languages and the projec-
tion of monolingual word embeddings in a single
vector space. Our system ranked 5'” and achieved
70.93 overall F1-measure over the 81 test corpora
provided for evaluation. We are confident there is
room for improvement since this system is only
preliminary and lots of components could be op-
timized. A better account of language typology
could also help the process and show the benefit of
linguistic knowledge in this kind of environment.
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Abstract

We describe our submission to the CoNLL
2017 shared task, which exploits the
shared common knowledge of a language
across different domains via a domain
adaptation technique. Our approach is
an extension to the recently proposed ad-
versarial training technique for domain
adaptation, which we apply on top of
a graph-based neural dependency parsing
model on bidirectional LSTMs. In our
experiments, we find our baseline graph-
based parser already outperforms the offi-
cial baseline model (UDPipe) by a large
margin. Further, by applying our tech-
nique to the treebanks of the same lan-
guage with different domains, we observe
an additional gain in the performance, in
particular for the domains with less train-
ing data.

1 Introduction

In the CoNLL 2017 shared task (Zeman et al.,
2017), some language data is available in more
than one treebanks typically from different anno-
tation projects. While the treebanks differ in many
respects such as the genre and the source of the
text (i.e., original or translated text), the most no-
table difference is that the size of the treebanks
often varies significantly. For example, there are
three variants of English treebanks: en, en_lines,
and en_parunt, in which the largest dataset en con-
tains 12,543 training sentences while en_lines and
en_parunt contain only 2,738 and 1,090 sentences,
respectively.

In this paper, we describe our approach to
improve the parser performance for the tree-
banks with lesser training data (e.g., en_lines and
en_parunt), by jointly learning with the dominant

treebank of the same language (e.g, en). We for-
mulate our approach as a kind of domain adapta-
tion, in which we treat the dominant treebank as
the source domain while the others as the target
domains.

Our approach to domain adaptation, which we
call SharedGateAdvNet, is an extension to the re-
cently proposed neural architecture for domain
adaptation (Ganin and Lempitsky, 2015) with
adversarial training (Goodfellow et al., 2014),
which learns domain-invariant feature representa-
tions through an adversarial domain classifier. We
extend this architecture with an additional neural
layer for each domain, which captures domain-
specific feature representations. To our knowl-
edge this is the first study to apply the adversarial
training-based domain adaptation to parsing.

We utilize this architecture to obtain the rep-
resentation of each token of a sentence, and
feed it into a graph-based dependency parsing
model where each dependency arc score is cal-
culated using bilinear attention (Dozat and Man-
ning, 2017). Specifically, we obtain the domain-
specific and domain-invariant feature represen-
tations for each token via separate bidirectional
LSTMs (Bi-LSTMs), and then combine them via
a gated mechanism.

Our baseline method is our reimplementation of
the graph-based dependency parser with LSTMs
(Dozat and Manning, 2017) trained with a sin-
gle treebank. First, we observe that this model
is already much stronger than the official baseline
model of UDPipe (Straka et al., 2016) in most tree-
banks. We then apply our domain adaptation tech-
nique to the set of treebanks of the same language,
and in most cases we observe a clear improvement
of the scores, especially for the treebanks with
lesser training data. We also try our architecture
across multiple languages, i.e., a high-resource
language with a large treebank, such as English,

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 71-79,
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and a low-resource language with a small data set.
Interestingly, even though the mixed languages are
completely different, we observe some score im-
provements in low-resource languages with this
approach. Finally we rank the 6th place on the
main result of the shared task.

2 System overview

The CoNLL 2017 shared task aims at parsing
Universal Dependencies 2.0 (Nivre et al., 2017).
While its concern is parsing in the wild, i.e., from
the raw input text, in this work we focus only on
the dependency parsing layer that receives the to-
kenized and POS tagged input text. For all pre-
processing from sentence splitting to POS tagging,
we use the provided UDPipe pipeline. For obtain-
ing the training treebanks, we keep the gold word
segmentation while assign the predicted POS tags
with the UDPipe.!

We did a simple model selection with the de-
velopment data for choosing the final submitted
models. First, we trained our baseline graph-
based LSTM parsing model (Section 3) indepen-
dently for each treebank. Then for some languages
with more than one treebank, or low-resource lan-
guages with a small treebank alone, we applied our
proposed domain adaptation technique (Section 4)
and obtained additional models. For treebanks for
which we trained several models, we selected the
best performing model on the development set in
terms of LAS. For the other treebanks, we submit-
ted our baseline graph-based parser.

For the parallel test sets (e.g., en_pub) with no
training data, we use the model trained on the
largest treebank of a target language. We did not
pay much attention to the surprise languages. For
Buryat (bxr), we just ran the model of Russian
(ru). For the other three languages, we ran the
model of English (en).

3 Biaffine Attention model

Our baseline model is the biaffine attention model
(Dozat and Manning, 2017), which is an exten-
sion to the recently proposed dependency parsing
method calculating the score of each arc indepen-
dently from the representations of two tokens ob-
tained by Bi-LSTMs (Kiperwasser and Goldberg,
2016). For labeled dependency parsing, this model

'We were not aware of the jack-knifed training data pro-
vided by the organizer at submission time.

first predicts the best unlabeled dependency struc-
ture, and then assigns a label to each predicted arc
with another classifier. For the first step, receiv-
ing the word and POS tag sequences as an input,
the model calculates the score of every possible
dependency arc. To obtain a well-formed depen-
dency tree, these scores are given to the maximum
spanning tree (MST) algorithm (Pemmaraju and
Skiena, 2003), which finds the tree with the high-
est total score of all arcs. The overview of the bi-
affine model is shown in Figure 1.

Let w; be the t-th token in the sentence. As
an input the model receives the word embedding
w; € Rword and POS embedding p; € R%os for
each wy, which are concatenated to a vector x;.
This input is mapped by Bi-LSTMs to a hidden
vector r;, which is then fed into an extension of
bilinear transformation called a biaffine function
to obtain the score for an arc from w; (head) to w;
(dependent):

r; = Bi-LSTM(x,), (D
hiarcfhead) — MLPplare=head) (y.y
héarcfdffp) —  MIplarc—dep) (r;),
(a?"c) . hT(arc—head) U(arc) h(arc—dep)

(2 - ( J
_i_h;l“(arcfhead) u(arc)

)

where MLP is a multi layer perceptron. A weight
matrix U(@¢) determines the strength of a link
from w; to w; while u(97) is used in the bias term,
which controls the prior headedness of w;.

After obtaining the best unlabeled tree from

these scores, we assign the best label for every
arc according to sglqbd), in which the k-th element

corresponds to the score of k-th label:
h(label—head) . MLP(label—head) (I‘ )
l - 1)

label—d label—d
hg abel—dep) — MLP( abel—dep) (rj),

hl(l;zbel) _ hglabel—head)@hyabel—dep)’
Z(f;zbel) _ h;l‘(label—head)U(label)h§label—dep)

_i_hz](label) W(label) + u(label) ’

where Ulabel) ig g third-order tensor, W (abel) jg o
weight matrix, and u(®®) is a bias vector.

4 Domain Adaptation Techniques with
Adversarial Training

Here we describe our network architectures for do-
main adaptation. We present two different net-
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Figure 1: Overview of the biaffine model.

works both using adversarial training; the main
difference between them is whether we use a
domain-specific feature representation for each
domain. The basic architecture with adversar-
ial training (Section 4.1) is an application of the
existing domain adaptation technique (Ganin and
Lempitsky, 2015) that does not employ domain-
specific representations. We then extend this ar-
chitecture to add a domain-specific component
with a gated mechanism (Section 4.2).

In Section 5 we compare the empirical perfor-
mances of these two approaches as well as several
ablated settings.

4.1 Adversarial Training

Figure 2 describes the application of adversar-
ial training (Ganin and Lempitsky, 2015) for the
biaffine model. In this architecture all models
for different domains are parameterized by the
same LSTMs (Shared Bi-LSTMs), which output
r; (Eqn. 1) that are fed into the biaffine model.
The key of this approach is a domain classifier,
which also receives r; and tries to classify the do-
main of the input. During training the classifier is
trained to correctly classify the input domain. At
the same time, we train the shared BiLSTM lay-
ers so that the domain classification task becomes
harder. By this adversarial mechanism the model
is encouraged to find the shared parameters that
are not specific to a particular domain as much
as possible. As a result, we expect the target do-
main model (with lesser training data) is trained to
utilize the knowledge of the source domain effec-
tively. Note that the domain classifier in Figure 2
is applied for every token in the input sentence.
This domain adaptation technique can be im-
plemented by introducing the gradient reversal
layer (GRL). The GRL has no parameters asso-
ciated with it (apart from the hyper-parameter A,
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Figure 2: An application of the adversarial train-
ing for the biaffine model. In this basic architec-
ture all domains are modeled with a common sin-
gle Bi-LSTM network (Shared Bi-LSTMs).

which is not updated with backpropagation). Dur-
ing the forward propagation GRL acts as an iden-
tity transform, while during the backpropagation
GRL takes the gradient from the subsequent layer,
multiplies it by A and passes it to the preceding
layer.

The parameter A controls the trade-off between
the two objectives (the domain classifier and the
biaffine model) that shape the feature representa-
tion during training. The GRL layer R (x) for the
forward and backward propagation is defined as
follows:

dRy

Ry(x) = x; x

—AL

4.2 Shared Gated Adversarial Networks

Now we present our extension to adversarial train-
ing described above, which we call the shared
gated adversarial networks (SharedGateAdvNet).

Figure 3 shows the overall architecture. The
largest difference from Figure 2 is the existence
of the domain-specific Bi-LSTMs (Not-shared Bi-
LSTMs) that we expect to capture the representa-
tions not fitted into the shared LSTMs and special-
ized to a particular domain. The model comprises
of the following three components.

Shared Bi-LSTMs As in the basic model with
adversarial training (Figure 2), the shared Bi-
LSTMs in this model try to learn the domain in-
variant feature representation via a domain classi-
fier, which facilitates effective domain adaptation.

Domain-specific Bi-LSTMs This domain-
specific component captures the information that
does not fit into the domain-invariant shared
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Figure 3: The architecture of SharedGateAdvNet. Each token in the input sentence is passed to the

biaffine model through this network.

Bi-LSTMs. The domain-specific LSTMs exist on
each domain. Figure 3 shows the case when two
treebanks (domains) are trained at the same time.
When training with three treebanks, there exist
three Bi-LSTMs, one for each domain.

Gated connection The gated connection selects
which information to use between the domain-
invariant and domain-specific feature represen-
tations (the shared Bi-LSTMs and the domain-
specific Bi-LSTMs). We get the combined repre-
sentation ry** from these two vectors as follows:

U(U(gate)(r;lom ® rfha,re) + u(gate))’

gt =
gate share dom
ry = 8t Ty + (1 —gt) -y,
where o is the sigmoid function. r*"%"¢ is the out-

put of the shared Bi-LSTMs while r?™ is the out-
put of the domain-specific Bi-LSTMs.

S Experiments

5.1 Settings

For the settings of the biaffine models, we fol-
low the same network settings as Dozat and Man-
ning (2017): 3-layer, 400-dimentional LSTMs for
each direction, 500-dimentional MLP for arc pre-
diction, and 100-dimentional MLP for label pre-
diction. We use the 100-dimensional pre-trained
word embeddings trained by word2vec (Mikolov
et al., 2013) 2 and the 100-dimensional randomly
initialized POS tag embeddings. For the model

>The pre-trained word embeddings are provided by the
CoNLL 2017 Shared Task organizers. These are trained with
CommonCrawl and Wikipedia.
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with adversarial training, we fix A to 0.5.> We ap-
ply dropout (Srivastava et al., 2014) with a 0.33
rate at the input and output layers. For optimiza-
tion, we use Adam (Kingma and Ba, 2014) with
the batch size of 128 and gradient clipping of 5.
We use early stopping (Caruana et al., 2001) based
on the performance on the development set.

5.2 Preliminary Experiment

Before selecting the final submitted model for
each treebank (Section 5.3) here we perform a
small experiment on selected languages (English
and French) to see the effectiveness of our domain
adaptation techniques.

English experiment First, for English, we com-
pare the performances of several domain adapta-
tion techniques as well as the baselines without
adaptation, to see which technique performs bet-
ter. We compare the following six systems:

e UDPipe: The official baseline parser (Straka
et al., 2016). This is a transition-based parser
selecting each action using neural networks.

Biaffine: Our reimplementation of the graph-
based parser of Dozat and Manning (2017).
We use Chainer (Tokui et al., 2015) for our
implementation. We train this model inde-
pendently on each treebank.

Biaffine-MIX: A simple baseline of domain
adaptation, which just trains a single biaffine
model across different domains. We obtain

3 We did not obtain any performance gains by scheduling
A in our preliminary experiments.



en_lines en_partut
Method UAS LAS | UAS LAS | UAS LAS
UDPipe 83.83 80.13 | 79.00 74.68 | 78.26 74.23
Biaffine 86.19 8245 | 81.94 77.64 | 80.01 75.52
Biaffine-MIX 86.19 82.28 | 82.23 76.95 | 83.34 78.02
Biaffine-MIX + Adv | 86.05 82.36 | 82.47 77.45 | 83.38 78.37
SharedGateNet 86.17 82.42 | 82.67 78.28 | 84.06 80.09
SharedGateAdvNet | 86.27 82.47 | 82.69 78.27 | 84.32 80.35

Table 1: The result of our preliminary English experiment across multiple domains. UDPipe and Biaffine
are trained separately for each language, while the other models are trained across all domains jointly.

Method en en_lines en_partut fr fr_partut fr_sequoia
UAS LAS | UAS LAS | UAS LAS | UAS LAS | UAS LAS | UAS LAS
Biaffine 86.19 8245|8194 77.64 | 80.01 75.52|90.39 88.11 | 86.79 83.70 | 87.20 84.90
Ours (domain) 86.27 82.47 | 82.69 78.27 | 84.32 80.35 | 90.26 88.06 | 88.71 86.18 | 87.64 85.27
Ours (domain, lang) | 85.47 81.75 | 82.03 77.58 | 83.60 79.51 | 90.07 87.71 | 89.49 87.08 | 87.90 85.34

Table 2: The result of our preliminary experiment across different languages (English and French). Ours
(domain) is trained for each language across multiple domains by SharedGateAdvNet. Ours (domain,
lang) is trained with all six treebanks of two languages jointly. Joint training of two languages brings a
small improvement on the smaller French treebanks (fr_partut and fr_sequoia).

this by removing the domain classification
component in Figure 2.

Biaffine-MIX + Adv: The model in Figure
2, which shares the same parameters across
multiple domains but adversarial training fa-
cilitates learning domain-invariant represen-
tations.

SharedGateNet: A simpler version of our
proposed architecture (Figure 3), which does
not have the adversarial component but has
the gated unit controlling the strength of the
two, domain-invariant and domain-specific
Bi-LSTMs.

SharedGateAdvNet: Our full architecture
(Figure 3) with both adversarial training and
the gated unit.

The result is shown in Table 1. First, we
find that our baseline biaffine parser already out-
performs the official baseline parser (UDPipe)
by a large margin (e.g., for English, 82.45 vs.
80.13 LAS), which suggests the strength of graph-
based parsing with Bi-LSTMs that enable the
model to capture the entire sentence as a context.
By just mixing the training treebanks (Biaffine-
MIX), we observe a score improvement for the
domains with less data, en_lines and en_parunt,
which only contain 2,738 and 1,090 sentences,
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respectively.  We also observe an additional
small gain with adversarial training (Biaffine-MIX
Adv). Comparing with this, our proposed archi-
tectures (SharedGateNet and SharedGate AdvNet)
perform better. This shows the importance of hav-
ing the domain-specific network layers. Our fi-
nal architecture SharedGateAdvNet slightly out-
performs SharedGateNet, indicating that the ad-
versarial technique also has its own advantage.

Since SharedGateAdvNet consitently outper-
forms the others in English, we only try this
method in the following experiments.

English and French experiment To see the ef-
fects of our approach when combining completely
different data, i.e., different language treebanks,
we perform a small experiment using two lan-
guages: English and French. French treebanks
are also divided into three domains and also are
imbalanced: fr (14,553 sentences), fr_partut (620
sentences), and fr_sequoria (2,231 sentences). We
compare the models trained within each language
(3 domains for each), and the model trained with
all six treebanks of English and French. The re-
sult is shown in Figure 2. Interestingly, especially
for fr_partut and fr_sequoria, we observe a small
score improvement by jointly learning two lan-
guages. The best model for fr is the biaffine model
without joint training. Note also that for en, the
effect of the adaptation technique is very small, or



Language . . .‘UAS . . LAS
UDPipe Biaffine SharedGateAdv | UDPipe Biaffine SharedGateAdv

ar 80.13 82.97 - 73.04 76.35 -

bg 88.02 90.60 - 83.22 86.23 -

ca 88.37 90.57 - 85.28 87.42 -

cs 88.14 91.36 91.23 84.68 88.31 88.29 )
cs_cac 86.81 89.03 89.77 83.50 85.65 86.73 &
cs_cltt 72.65 75.88 78.87 69.01 71.43 7523 o
cu 80.41 82.83 - 73.19 75.30 -
da 78.40 82.04 - 74.74 78.42 -
de 79.40 84.40 - 74.11 80.17 -

el 82.37 84.99 - 78.69 80.88 -
en 83.83 86.19 86.27 80.13 82.45 82.47
en_lines 79.00 81.94 82.69 74.68 77.64 78.27 &
en_partut 78.26 80.01 84.32 74.23 75.52 80.35 &
es 87.50 89.37 89.49 84.29 86.25 86.33 &
es_ancora 87.53 90.34 90.26 84.54 87.76 87.61 &
et 69.26 70.57 - 60.16 59.01 -
eu 74.59 77.58 - 69.23 70.06 -

fa 83.89 87.02 - 79.81 83.15 -

fi 79.97 80.57 81.74 75.37 74.62 75.98 &
fi_ftb 80.72 81.60 82.21 76.10 75.38 76.20
fr 88.72 90.39 90.07 86.36 88.11 87.71 ai
fr_partut 77.82 86.79 89.49 73.67 83.70 87.08
fr_sequoia 84.35 87.20 87.89 81.93 84.90 85.33 @
ga 74.57 80.28 - 63.47 72.70 -

gl 80.66 83.73 83.81 77.17 80.08 80.11 ¢
gl _treegal 72.32 78.48 83.69 66.43 73.62 78.08 &
got 76.42 78.21 - 68.92 70.32 -
gre 62.12 66.13 69.16 55.23 58.77 61.23 &
gre_proiel 77.35 80.74 81.83 72.03 75.43 76.22
he 83.93 86.12 - 78.03 80.13 -

hi 91.29 93.03 - 86.90 88.97 -

hr 81.99 85.66 - 76.40 79.79 -
hu 71.52 74.09 - 65.04 63.31 -

id 80.76 83.34 - 74.08 76.67 -

it 87.77 90.09 90.82 85.04 87.62 88.15 4
it_partut 82.02 82.66 90.66 78.47 78.72 87.34
ja 94.31 95.48 - 92.94 94.15 -
kk 37.08 64.51 - 23.60 37.09 -
ko 63.71 67.01 - 56.41 59.04 -

la 56.93 67.41 73.06 47.13 58.65 64.53 &
la_ittb 75.95 82.82 83.29 71.07 78.24 78.69 &
la_proiel 75.31 79.30 80.34 69.11 72.83 73.74 &
Iv 56.93 71.98 - 47.13 63.45 -

nl 79.57 85.44 85.38 74.55 80.21 80.28
nl_lassysmall | 79.59 85.01 86.59 75.46 81.17 82.53 ¢
no_bokmaal 87.52 90.17 - 84.38 87.40 -
no_nynorsk 85.79 88.51 - 82.49 85.54 -

pl 85.18 86.84 - 79.01 81.15 -

pt 88.37 90.75 91.02 85.20 87.84 87.79
pt_br 88.37 90.53 90.93 86.26 88.36 88.75 &
o 85.22 88.04 - 79.66 82.35 -

ru 80.13 82.79 84.01 75.07 77.14 78.98
ru_syntagrus 89.69 92.07 91.86 86.84 89.48 89.23 i
sk 81.81 84.09 - 75.55 77.41 -

sl 81.81 87.12 87.17 80.72 83.80 83.73 &
sl_sst 63.71 77.56 80.17 55.39 69.67 72.28 &
SV 77.94 80.32 82.27 73.64 75.28 7791
sv_lines 79.72 79.81 82.71 74.72 74.23 77.87 &
tr 63.41 64.77 - 55.70 53.88 -
ug 62.50 74.80 75.57 38.46 52.67 52.68 i
uk 62.66 78.05 79.59 54.17 71.39 72.93 i
ur 83.05 85.69 - 76.15 78.87 -

vi 63.99 65.98 - 56.34 57.91 -
zh 74.03 77.09 - 68.75 71.38 -

Table 3: The result of our experiment for model selection on the development data. (i), (ii), and (iii)
correspond to the differnt domain adaptation strategies found in the body.
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negative, and these suggest our approach may be
ineffective for a treebank that already contains suf-
ficient amount of data.

Due to time constraints, we were unable to try
many language pairs for joint training, but this re-
sult suggests the parser may benefit from training
across different languages. For the final experi-
ment for model selection below, we try some other
pairs for some languages, and select those models
when they perform better.

5.3 Model Selection

As we summarize in Section 2 we perform a sim-
ple model selection for each language with the de-
velopment data in order to select the final submit-
ted models. Besides a biaffine model with a single
treebank, for some treebanks we additionally train
other models with our SharedGateAdvNet. Our
approach is divided into the following three strate-
gies according to the languages:

(i) Training multiple domains within a single
language. We try this for many languages,
such as English (en), Czech (cs), Spanish
(es), etc.

(i1) Training multiple domains across different
languages. Based on the positive result of
our preliminary experiment, we try this only
for obtaining French models (training jointly
with English treebanks).

(iii) Training two treebanks in different lan-
guages. We only try this for two very small
treebanks: Ukrainian (uk), which we train
with en, and Uyghur (u#g), which we train
with Russian (ru) that we find performs better
than training with en.

See Table 3 for the results. Again, our base-
line biaffine parser outperforms UDPipe in most
treebanks. Training multiple domains in one lan-
guage often brings performance gains, in par-
ticular for smaller treebanks, as in the case for
English. For example, for Galician, LAS in
gl_treegal largely improves from 73.63 to 78.08
with our joint training. The largest gain is obtained
in Italian (it_partut), from 78.72 to 87.34, about 10
points improvement in LAS.

From these results, for example, we select our
SharedGateAdvNet model for cs_cac while select
the biaffine model for c¢s, which does not benefit
from joint training.
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Language . UAS . LAS .
UDPipe Ours | Stanford | UDPipe  Ours | Stanford
ar 71.19 7334 | 76.59 6530 67.78 | 71.96
ar_pub 53.55 55.66 | 58.87 43.14 4556 | 49.50
bg 8779 89.95| 92.89 83.64 8597 | 89.81
bxr 46.97  44.07 51.19 31.50 27.20 30.00
ca 88.62  90.59 | 92.88 85.39 8747 | 90.70
cs 86.46  89.74 | 92.62 82.87 86.50 | 90.17
cs_cac 86.49  90.09 | 93.14 82.46  86.41 90.43
cs_cltt 76.26  81.10 | 86.02 71.64 7714 82.56
cs_pub 8442 8722 | 89.11 79.80  82.30 84.42
cu 69.68 72.19 | 77.10 6276 65.13 | 71.84
da 76.94  80.90 | 85.33 73.38  77.08 82.97
de 7427 7843 84.10 69.11  74.04 80.71
de_pub 73.64 7720 | 80.88 66.53  70.74 | 74.86
el 83.00 8548 | 89.73 79.26  81.79 87.38
en 78.87  80.96 | 84.74 75.84 7793 82.23
en_lines 7739  81.87 85.16 7294  77.53 82.09
en_partut 7783  83.17 86.10 73.64  79.10 82.54
en_pub 82.74  84.75 88.22 7895 8118 85.51
es 84.84  87.80 | 90.01 81.47  84.25 87.29
es_ancora 86.97 89.93 | 92.11 83.78  87.27 | 89.99
es_pub 8471  86.91 88.14 77.65  79.66 81.05
et 67.71 69.00 | 78.08 58.79 5772 | 71.65
eu 7439 7794 | 8528 69.15  70.71 81.44
fa 8336  86.06 | 89.64 79.24  82.01 86.31
fi 7790 80.17 | 87.97 7375 7471 85.64
fi_ftb 78.77  80.43 89.24 74.03  74.42 86.81
fi_pub 8224  82.40 | 90.60 78.65  77.11 88.47
fr 84.13  85.88 | 88.57 80.75  82.43 85.51
fr_partut 81.69 84.79 | 88.64 7738  80.31 85.05
fr_pub 78.62 8032 | 83.45 73.63 7520 | 788l
fr_sequoia 82.62 8585 88.48 7998  83.10 86.53
ga 72.08 7329 | 78.50 61.52  62.25 | 70.06
gl 80.66  83.51 85.87 7731  80.13 83.23
gl_treegal 71.17  73.60 | 78.28 6582  66.84 | 7339
got 67.13  67.84 | 73.10 59.81  60.20 66.82
gre 62.74  68.85 78.42 56.04 6128 | 73.19
gre_proiel 7042 7433 | 7830 6522 6923 | 7425
he 61.54 6416 | 67.70 5723  59.56 63.94
hi 90.97  92.64 | 94.70 86.77 8870 | 91.59
hi_pub 6343 6529 | 67.24 50.85  52.81 54.49
hr 8320 8547 90.11 77.18  79.32 85.25
hsb 61.70  49.38 67.83 53.83 4132 | 60.01
hu 7146  71.87 82.35 6430  60.30 | 77.56
id 80.91 83.11 | 85.17 7461 7650 | 79.19
it 88.03  89.93 92.51 8528  87.39 | 90.68
it_pub 87.04  88.61 91.08 83.70  85.30 88.14
ja 7352 7446 | 7542 72.21 7327 | 7472
ja_pub 7713  77.65 78.64 76.28  76.78 77.92
kk 41.92  40.12 | 4351 2451 2249 25.13
kmr 46.20 31.68 | 47.71 3235 2318 35.05
ko 6640 7148 | 85.90 59.09 64.46 | 8249
la 5435 63.60 | 72.56 4377 5219 | 63.37
la_ittb 80.78  85.53 89.44 7698  82.20 87.02
la_proiel 63.50  67.68 | 73.71 5754 6134 | 69.35
v 67.14  68.83 79.26 59.95  60.20 | 74.01
nl 7494  79.16 | 85.17 68.90  73.22 80.48
nl_lassysmall | 81.37 87.74 | 89.56 78.15  85.03 87.71
no_bokmaal 86.14  88.55 | 91.60 8327  86.05 | 89.88
no_nynorsk 84.88  87.22 | 90.75 81.56  84.39 88.81
pl 85.08 86.89 | 93.98 78.78  80.68 | 90.32
pt 85.77 8770 | 89.90 82.11 8435 | 87.65
pt_br 87.75  90.06 | 92.76 8536 87.73 | 91.36
pt_pub 80.10  82.58 | 83.27 7396 7635 | 77.14
ro 8550 87.28 | 9043 79.88  81.66 85.92
ru 79.28 8275 87.15 74.03  77.63 83.65
ru_syntagrus 89.30  91.68 | 82.31 86.76  89.31 | 75.71
ru_pub 75.67 7193 94.00 68.31 7051 92.60
sk 78.14  81.11 | 89.58 7275 7528 | 86.04
sl 84.68 87.35 93.34 81.15 84.06 | 91.51
sl_sst 5379 5747 61.71 46.45  50.16 56.02
sme 46.06 37.74 | 51.13 30.60 23.54 37.21
sV 80.78  83.71 88.50 76.73  79.68 85.87
sv_lines 79.18  81.49 | 86.51 7429  76.63 82.89
sv_pub 75.09 7747 81.90 70.62 72.89 | 78.49
tr 60.48  62.48 | 69.62 53.19 5144 62.79
tr_pub 55.01 5295 58.72 3453  31.17 37.72
ug 53.58 5145 56.86 3418 33.19 39.79
uk 69.78 7022 | 81.44 60.76  60.73 | 7533
ur 83.67 86.40 | 87.98 76.69  79.38 82.28
vi 4212 44.01 | 46.14 37.47 3899 | 42.13
zh 61.50  63.87 68.95 5740  59.99 65.88
AVG. 7440  76.35 81.30 68.35 7013 | 76.29
Table 4: The main result on the test data.




5.4 Evaluation on Test data

The main result of CoNLL 2017 shared task on
the test data is shown in Table 4. In addition to
the official baseline (UDPipe) and our system, we
also report the scores of the winning system by
the Stanford team. See Zeman et al. (2017) for the
overview of the other participating systems.

Our system outperforms UDPipe in many test
treebanks, 69 out of 81 treebanks. We find many
cases that UDPipe performs better are when the
training teebank is very small, e.g., Kazakh (kk),
Ukrainian (uk), and Uyghur (ug), or not available
at all, i.e., surprise languages: Buryat (bxr), Kur-
manji (kmr), Upper Sorbian (hsb), and North Sami
(sme), for which our approach is somewhat naive
(Section 2) and UDPipe performs always better.
We can also see that for some treebanks (e.g., ef,
fi-pub and hu), our system performs better in UAS
while worse in LAS. This may be due to the design
of the baseline biaffine model, which determines
the best unlabeled tree before assigning the labels
(Section 3), i.e., does not perform labeled parsing
as a single task.

Our system (NAIST-SATO) achieves the over-
all average LAS of 70.13, which is the 6th rank
among 33 participants in the shared task. UDPipe
(68.35) is the 13th rank.

6 Related Work

A related approach to us in parsing is Ammar et al.
(2016), where a single multilingual dependency
parser parses sentences in several languages. Dif-
ferently from our final architecture their model
shares all parameters across different languages.
In this study, we found the importance of model-
ing language-specific syntactic features explicitly
with the separate Bi-LSTMs.

Our network architecture for domain adaptation
is an extension of Ganin and Lempitsky (2015),
which applies adversarial training (Goodfellow
et al., 2014) for the domain adaptation purpose.
There is little prior work applying this adversarial
domain adaptation technique to NLP tasks; Chen
et al. (2016) use it for cross-lingual sentiment clas-
sification, in which the adversarial component has
a classifier that tries to classify the language of an
input sentence. To our knowledge, this is the first
study applying adversarial training for parsing. In
addition to the simple application, we also pro-
posed an extended architecture with the domain
specific LSTMs and demonstrated the importance
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of them.

7 Conclusion

We have proposed a domain adaptation technique
with adversarial training for parsing. By apply-
ing it on the recent state-of-the-art graph-based de-
pendency parsing model with Bi-LSTMs, we ob-
tained a consistent score improvement, especially
for the treebanks having less training data. For
the architecture design, we found the importance
of preparing the network layer capturing the do-
main specific representation. We also performed a
small experiment for training across multiple lan-
guages and had an encouraging result. In this
work, we have not investigated incorporating in-
formation on language families, so a natural future
direction would be to investigate whether typolog-
ical knowledge helps to select good combinations
of languages for training multilingual models.
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Abstract

We introduce context embeddings, dense
vectors derived from a language model
that represent the left/right context of a
word instance, and demonstrate that con-
text embeddings significantly improve the
accuracy of our transition based parser.
Our model consists of a bidirectional
LSTM (BiLSTM) based language model
that is pre-trained to predict words in plain
text, and a multi-layer perceptron (MLP)
decision model that uses features from the
language model to predict the correct ac-
tions for an ArcHybrid transition based
parser. We participated in the CoNLL
2017 UD Shared Task as the “Kog¢ Univer-
sity” team and our system was ranked 7th
out of 33 systems that parsed 81 treebanks
in 49 languages.

1 Introduction

Recent studies in parsing natural language has
seen a shift from shallow models that use high di-
mensional, sparse, hand engineered features, e.g.
(Zhang and Nivre, 2011), to deeper models with
dense feature vectors, e.g. (Chen and Manning,
2014). Shallow linear models cannot represent
feature conjunctions that may be useful for parsing
decisions, therefore designers of such models have
to add specific combinations to the feature list by
hand: for example Zhang and Nivre (2011) define
72 hand designed conjunctive combinations of 39
primitive features. Deep models can represent and
automatically learn feature combinations that are
useful for a given task, so the designer only has
to come up with a list of primitive features. Two
questions about feature representation still remain
critical: what parts of the parser state to represent,

and how to represent these (typically discrete) fea-
tures with continuous embedding vectors.

In this work we derive features for the parser
from a bidirectional LSTM language model
trained with pre-tokenized text to predict words in
a sentence using both the left and the right con-
text. In particular we derive word embeddings
and context embeddings from the language model.
Word embeddings represent the general features of
a word type averaged over all its occurrences. Tak-
ing advantage of word embeddings derived from
language models in other applications is common
practice, however, using the same embedding for
every occurrence of an ambiguous word ignores
polysemy and meaning shifts. To mitigate this
problem, we also construct and use context em-
beddings that represent the immediate context of
a word instance. Context embeddings were pre-
viously shown to improve tasks such as part-of-
speech induction (Yatbaz et al., 2012) and word
sense induction (Bagkaya et al., 2013). In this
study, we derive context embeddings from the hid-
den states of the forward and backward LSTMs of
the language model that are generated while pre-
dicting a word. These hidden states summarize the
information from the left context and the right con-
text of a word that was useful in predicting it. Our
main contribution is to demonstrate that using con-
text embeddings as features leads to a significant
improvement in parsing performance.

The rest of the paper is organized as follows:
Section 2 introduces basic components of a tran-
sition based neural network parser and describes
related work based on their design choices. Sec-
tion 3 describes the details of our model and train-
ing method. Section 4 discusses our results and
Section 5 summarizes our contributions.

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 80-87,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics



2 Related work

In this section, we describe related work in transi-
tion based neural network parsers in terms of their
design decisions regarding common components.

2.1 Embedding words and features

In neural network parsers, words, part of speech
tags, and other discrete features are represented
with numeric vectors. These vectors can be ini-
tialized and optimized in a number of ways. The
first choice is between binary (one-hot) vectors vs
dense continuous vectors. If dense vectors are to
be used, they can be initialized randomly or trans-
ferred from a model for a related task such as lan-
guage modeling. Finally, once initialized, these
vectors can be fixed or fine-tuned during the train-
ing of the dependency parser.

Chen and Manning (2014) initialize with pre-
trained word vectors from (Collobert et al., 2011)
in English and (Mikolov et al., 2013) in Chinese,
and dense, randomly initialized vectors for POS
tags. Similarly, Dyer et al. (2015) get pre-trained
word embeddings from Bansal et al. (2014) and
use POS tag vectors that are randomly initialized.
Both studies fine-tune the vectors during parser
training.

Kiperwasser and Goldberg (2016) start with
random POS embeddings and fine-tuned word em-
beddings from (Dyer et al., 2015) and further opti-
mize all embeddings during parser training. They
also report that initialization with random word
vectors give inferior performance.

In (Alberti et al., 2017), a character-level LSTM
reads each word character by character and the last
hidden state creates a word representation. The
word representation is used as input to a word-
level LSTM whose hidden states constitute the
lookahead representation of each word. Finally,
the lookahead representation is used by a tagger
LSTM trained to predict POS tags. Concatenation
of the lookahead and tagger representations of a
word, together with additional features are used to
represent the word in the parser model.

2.2 Feature extraction

A neural network parser uses a feature extractor
that represents the state of the parser using con-
tinuous embeddings of its various elements. Chen
and Manning (2014); Kiperwasser and Goldberg
(2016); Andor et al. (2016) use POS tag and word
embedding features of the stack’s first and second
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words, their right and leftmost children, and the
buffer’s first word. They have done experiments
with different subsets of those features, but they
report their best performance using all of them.
Alberti et al. (2017) extract the ragger features that
are explained in 2.1 for the first and second words
of the stack and the first word of the buffer plus the
lookahead feature of buffer’s first word. They also
use the last two transitions executed by the parser
(including shift and reduce operations) as binary
encoded features in their parser model.

2.3 Decision module

A transition based parser composes the parse of
a sentence by taking a number of parser actions.
We name the component that picks a parser ac-
tion using the extracted features the decision mod-
ule. Chen and Manning (2014) use an MLP deci-
sion module with a hidden size of 200 whose in-
put is a concatenation of word, POS tag, and de-
pendency embeddings. Kuncoro et al. (2016) use
an LSTM as the decision module instead, carrying
internal state between actions. Dyer et al. (2015)
introduce stack-LSTMs, which have the ability to
recover earlier hidden states. They construct the
parser state using three stack-LSTMs, represent-
ing the buffer, the stack, and the action history.
Kiperwasser and Goldberg (2016) train a BiLSTM
whose input is word and POS embeddings and
whose hidden states are fed to an MLP that de-
cides parsing actions.

2.4 Training

Parsing is a structured prediction problem and a
number of training objectives and optimization
methods have been proposed beyond simple like-
lihood maximization of correct parser actions.
Kiperwasser and Goldberg (2016) use dynamic
oracle training proposed in (Goldberg and Nivre,
2012). In dynamic oracle training, the parser takes
predicted actions rather than gold actions which
lets it explore states otherwise not visited. Andor
et al. (2016), use beam training based on (Collins
and Roark, 2004). The objective in beam train-
ing is to maximize the probability of the whole se-
quence rather than a single action. Andor et al.
(2016) use global normalization with beam search
(Collins and Roark, 2004) which normalizes the
total score of the action sequence instead of turn-
ing the score of each action into a probability. This
allows the model to represent a richer set of prob-
ability distributions. They report that their MLP
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Processing of the sentence “Economic news had little effect on financial markets” by the

bidirectional LSTM language model. Word embeddings are generated by the character LSTM. Each
word is predicted (e.g. "news”) by feeding the adjacent hidden states (e.g. ”hf2” and ”hb8”) to a softmax

layer.

based globally normalized parser performs better
than locally normalized recurrent models.

3 Model

Our parser uses a bidirectional language model
to generate word and context embeddings, an
ArcHybrid transition system (Kuhlmann et al.,
2011) to construct a parse tree, and a simple MLP
decision module to pick the right parser actions.
These components are detailed below. The model
was implemented and trained using the Knet deep
learning package in Julia (Yuret, 2016) and the
source code is publicly available at https://
github.com/CoNLL-UD-2017.

3.1 Language Model

We trained bidirectional language models to ex-
tract word and context embeddings using the
Wikipedia data sets provided by task organizers
(Ginter et al., 2017) and tokenized with UDPipe
(Straka et al., 2016). Our language models con-
sist of two parts: a character based unidirectional
LSTM to produce word embeddings, and a word
based bidirectional LSTM to predict words and
produce context embeddings. First, each word of a
sentence is padded in the beginning and the end by

a start character and an end character respectively.
Next, the character based LSTM reads each word
left to right and the final hidden layer is used as
the word embedding. This step is repeated until all
the words of an input sentence is mapped to dense
embedding vectors. Next, those word embeddings
become inputs to the BiLSTM, which tries to pre-
dict each word based on its left and right contexts.
A context embedding for a word is created by con-
catenating the hidden vectors of the forward and
backward LSTMs used in predicting that word.

Figure 1 depicts the language model processing
an example sentence. The unidirectional charac-
ter LSTM produces the word embeddings (shown
for the word "Economic” in the Figure) which are
fed as input to the bidirectional word LSTM. The
bidirectional LSTM predicts a given word using
the adjacent forward and backward hidden states
at that position (e.g. the word “news” is predicted
using “hf2” and “hb8”).

The parser uses both word embeddings pro-
duced by the character LSTM (350 dimensions)
and the context embeddings produced by the word
LSTM (3004300 dimensions) as features. We did
not fine-tune the LM weights during parser train-
ing.



The character and word LSTMs were trained
end-to-end using backpropagation through time
(Werbos, 1990) using Adam (Kingma and Ba,
2014) with default parameters and with gradients
clipped at 5.0. Sentences that are longer than 28
words were skipped during LM training. In addi-
tion, if a word is longer than 65 characters, only
the first 65 characters were used and the rest was
ignored. The output vocabulary was restricted to
the most frequent 20K words of each language.
The training was stopped if there was no signifi-
cant improvement in out-of-sample perplexity dur-
ing the last 1M words. Table 3 includes the per-
plexity of each bidirectional language model we
used.

3.2 The ArcHybrid transition system

We wused the ArcHybrid transition system
(Kuhlmann et al., 2011) in our model where the
state of the parser ¢ = (0,3, A), consists of a
stack of tree fragments o, a buffer of unused
words 3 and a set A of dependency arcs. The
initial state has an empty stack and dependency
set and all words start in the buffer. The system
has 3 types of transitions:

e shift(o, b3, A) = (a|b, B, A)
o lefty(ols, b|3, A) = (0,b|3, AU{(b,d,s)})
o right,(o|s|t, B, A) = (as, 8, AU{(s,d,t)})

where | denotes concatenation and (b, d, s) is a de-
pendency arc between b (head) and s (modifier)
with label d. The parser stops when the buffer
is empty and there is a single word in the stack,
which is assumed to be the root.

3.3 Features

Abbrev || Feature

context embedding

word embedding

universal POS tag

distance to the next word
number of left children
number of right children

set of left dependency labels
set of right dependency labels

dependency label of current word

CWm»>o S s < o6

Table 1: Possible features for each word

Table 1 lists the potential features our model
is able to extract for each word. Context and
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word embeddings come from the language model.
The 17 universal POS tags are mapped to 128 di-
mensional embedding vectors and the 37 univer-
sal dependency labels are mapped to 32 dimen-
sional embedding vectors. These are initialized
randomly and trained with the parser. To represent
sets of dependency labels we simply add the em-
beddings of each element in the set. Each distinct
left/right child count and distance is represented
using a randomly initialized 16 dimensional em-
bedding vector trained with the parser. Counts and
distances larger than 10 were truncated to 10.
This leaves the question of which words to use
and which of their features to extract. The tran-
sition system informs feature selection: ArcHy-
brid transitions directly effect the top word in the
buffer and the top two words in the stack. Figure 2
lists the features that are actually extracted by our
model to represent each parser state. s0,sl,...
are stack words, n0, n1, ... are buffer words, slr
and sOr are the rightmost children of the top two
stack words, n0! is the leftmost child of the top
buffer word. The letters below each word are the
features extracted for that word (using the notation
in Table 1). Nonexistent features (e.g. the depen-
dency label of n0l when n0 does not have any left
children) are represented with vectors of zeros.

sl s@ nl
cvpabAB cvpabABd cvp
sir ser nol
L L L

Figure 2: Features used by our model. See the text
and Table 1 for an explanation of the notations.

no
cvpAa

3.4 Decision module

We use a simple MLP with a single hidden layer
of 2048 units to choose parser actions. The em-
beddings of each feature are concatenated to pro-
vide the input to the decision module, which re-
sults in a 4664 dimensional input vector. Note that
word and context embeddings come from the lan-
guage model and are fixed, whereas the other em-
beddings are randomly initialized and trained with
the MLP.

The output of the MLP is a 73 dimensional soft-
max layer. These represent the shift, 36 left and 36
right (labeled) actions of the parser: there are no
actions for the “root” label.



To train the MLP we used Adam with a dropout
rate of 0.5. We train 5 to 30 epochs, quitting with
the best model when the dev score does not im-
prove for 5 epochs.

3.5 Training

We followed different procedures for training lan-
guages that had training and development data,
languages that did not have development data, and
surprise languages that only had a small amount of
sample data. We detail our methodology below.

3.5.1 Languages with training and
development data

For most languages, a substantial amount of train-
ing data with gold parses along with development
data were supplied. In this case we first trained
our language models using the additional raw data
(Ginter et al., 2017) provided by CoNLL 2017 UD
Shared Task Organizers as described in 3.1. Next,
the decision module (MLP part) is trained as de-
scribed in 3.5 using the context and word embed-
dings from the language model as fixed inputs.
The development data was used to determine when
to stop training.

3.5.2 Languages without development data

For languages with no development data, we used
5 fold cross validation on the training data to deter-
mine the number of epochs for training. The MLP
model is trained on each fold for up to 30 epochs
during the 5 fold cross validation. If the LAS score
on the test split does not improve for 5 epochs,
training is stopped and the number of epochs to
reach the best score is recorded. In the final step,
the MLP model is trained using the whole train-
ing data for a number of epochs determined by the
average of the 5 splits.

3.5.3 Surprise languages

The surprise languages did not come with raw data
to train a language model, so we decided to use
unlexicalized parsers for them. An unlexicalized
model in our case is simply one that does not use
the “c” and “v” features in Figure 2, i.e. no word
and context embeddings. The surprise languages
also did not have enough training data to train a
parser. We decided that an unlexicalized parser
trained on a related language may perform better
than one trained on the small amount of sample
data we had for each surprise language. We trained
unlexicalized parsers for most of the languages
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Language Parent Language | LAS

North Sami Estonian 60.48
Buryat Turkish 47.68
Kurmanji Bulgarian 46.87
Upper Sorbian | Croatian 65.98

Table 2: Parent models used for parsing surprise
languages and LAS scores obtained after pre-train
and finetuning.

provided in the task and tried them as “parent”
languages for each surprise language. An unlex-
icalized model trained on the parent language was
finetuned for the surprise language with its small
amount of sample data. Table 2 lists the parent
language used for each surprise language and the
LAS score achieved on the sample data provided
using 5-fold cross validation.'

4 Results and Discussion

We submitted our system to CoNLL 2017 UD
Shared Task as the “Kog¢ University” team and our
scoring can be found under official CoNLL 2017
UD Shared Task website® replicated here in Ta-
ble 3. All our experiments are done with UD ver-
sion 2.0 datasets (Nivre et al., 2017). In this sec-
tion we discuss our best/worst results relative to
other task participants, and analyze the benefit of
using context vectors.

4.1 Best and worst results

Looking at our best/worst results may give insights
into the strengths and weaknesses of our approach.
Relative to other participants, Finnish, Hungarian,
and Turkish are among our best languages: all ag-
glutinative languages with complex morphology.
This may be due to our character based language
model which can capture morphological features
when constructing word vectors. Our worst results
are in ancient languages: Ancient Greek, Gothic,
Old Church Slavonic. We believe this is due to
lack of raw text to construct high quality language
models. Finally, our results for languages with
large treebanks (Syntagrus and Czech) are also
relatively worse than languages with smaller tree-
banks. A large treebank may offset the advantage

! Note that for two ancient languages, Gothic and Old
Church Slavonic, our LM training was not successful, and
we used unlexicalized models for them like the surprise lan-
guages.

2http: //universaldependencies.org/conlll7/
results.html



Language | LM Perp. | Rank | LAS || Language LM Perp. | Rank | LAS

ar 99.21 13 66.14 || hsb Notused | 17 50.25
ar_pud 99.21 12 4497 || hu 27.83 4 69.55
bg 25.60 9 84.95 || id 52.64 9 75.54
bxr Notused | 14 2496 || it 27.97 10 86.45
ca 18.49 10 86.09 || it_pud 27.97 10 84.52
cs 37.65 20 81.55 | ja 29.14 18 72.67
cs_cac 44.87 15 82.91 || ja_pud 29.14 15 76.27
cs_cltt 52.64 10 73.88 || kk 715.23 17 22.34
cs_pud 37.65 20 78.57 || kmr Notused | 4 42.11
cu Not used | 26 58.63 || ko 34.60 8 71.70
da 30.28 7 76.39 || la 111.51 10 47.08
de 33.98 11 72.44 || la_ittb 59.28 16 76.15
de_pud 33.98 6 70.96 || la_proiel 130.01 13 59.36
el 20.14 7 81.35 || Iv 37.81 6 63.63
en 44.50 15 75.96 || nl 32.43 11 70.24
en_lines 40.79 10 74.39 || nl_lassysmall | 35.62 8 80.85
en_ParTUT | 51.57 11 75.71 || no_bokmaal | 34.38 12 83.73
en_pud 44.50 11 79.51 || no_nynorsk 31.03 9 82.72
es 26.33 7 83.34 || pl 27.97 9 80.84
es_ancora 26.33 9 85.63 || pt 24.11 9 82.92
es_pud 26.33 8 78.74 || pt-br 33.6 10 86.7

et 45.77 6 62.04 || pt_pud 24.11 6 75.02
eu 39.92 8 71.47 || ro 21.02 7 81.48
fa 63.29 12 79.56 || ru 26.99 7 77.11
fi 29.36 5 77.72 || ru_pud 26.99 3 71.2

fi_ftb 41.03 11 75.37 || ru_syntagrus | 29.36 20 85.24
fi_pud 29.36 4 82.37 || sk 21.99 7 76.46
fr 18.76 9 81.30 || sl_sst 194.75 8 49.56
fr ParTUT | 14.60 7 80.22 || sme Notused | 4 37.93
fr_pud 18.76 6 76.04 || sv 40.42 9 78.31
fr_sequoia | 16.75 7 81.97 || sv_lines 34.21 7 75.71
ga 56.32 8 63.22 || sv_pud 40.42 6 72.36
gl 28.70 5 80.27 || tr 57.31 6 56.8

gl_treegal 32.32 4 69.13 || trpud 57.31 6 34.65
got Notused | 24 56.81 || ug 866.74 21 31.59
grc 116.72 23 49.31 || uk 36.16 6 63.76
grc_proiel | 227.78 22 61.70 || ur 105.38 11 77.64
he 78.75 10 58.98 || vi 91.67 13 38.3

hi 37.36 10 87.23 || zh 92.01 19 57.15
hi_pud 37.36 9 51.49 || hr 33.29 7 79.22

Table 3: Our official results in CoNLL 2017 UD Shared Task
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of extra information we capture from a language
model trained on raw text. Our simple MLP model
trained with a static oracle is probably not compet-
itive on large datasets. Whether our pre-trained
language model and context embeddings would
boost the scores of more sophisticated approaches
(e.g. stack-LSTMs or global normalization) is an
open question.

4.2 Impact of context vectors

Feats | Hungarian | En-ParTUT | Latvian
p 63.6 76.6 55.9

v 73.5 75.9 63

c 72.2 76 63.5

v-C 76 79 67.6

p-c 78 82.5 70.6

p-v 76.6 80.8 67.7
p-fb 74.7 79.7 66.3
p-v-c || 79.3 83.2 74.2

Table 4: Feature comparison results on three
languages. p=postag, v=word-vector, c=context-
vector, fb=Facebook-vector.

To analyze the impact of context vectors and
other embeddings on parsing performance, we
performed experiments on three corpora (Hungar-
ian, English-ParTUT, Latvian) with different fea-
ture combinations. These corpora were chosen for
their relatively small sizes to allow quick experi-
mentation. We tried eight different feature combi-
nations on each language. In each setting, we used
a different subset of context, word, and postag
embeddings. The ”p-fb” setting uses postag em-
beddings and Facebook’s pre-trained word embed-
dings (Bojanowski et al., 2016) instead of the ones
from our language model. We can make some
observations consistent across all three languages
based on the results in Table 4:

e Word vectors from our BiLSTM language
model perform slightly better than Facebook
vectors (p-v vs p-fb).

Both part-of-speech tags and context vectors
have significant contributions (comparing v
with p-v or v-c).

Context vectors seem to provide independent
information on top of part-of-speech tags that
significantly boosts parser accuracy (p-v vs
p-v-c).
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5 Contributions

We introduced a transition based neural network
parser that uses word and context embeddings
derived from a bidirectional language model as
features. Our experiments suggest that context
embeddings can have a significant positive im-
pact on parsing accuracy. Our source code is
publicly available at https://github.com/
CoNLL-UD-2017.
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Abstract

We present an update to UDPipe 1.0
(Straka et al., 2016), a trainable pipeline
which performs sentence segmentation,
tokenization, POS tagging, lemmatization
and dependency parsing. We provide
models for all 50 languages of UD 2.0, and
furthermore, the pipeline can be trained
easily using data in CoNLL-U format.

For the purpose of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text
to Universal Dependencies, the updated
UDPipe 1.1 was used as one of the base-
line systems, finishing as the 13th system
of 33 participants. A further improved
UDPipe 1.2 participated in the shared task,
placing as the 8th best system, while
achieving low running times and moder-
ately sized models.

The tool is available under open-source
Mozilla Public Licence (MPL) and
provides bindings for C++, Python
(through ufal.udpipe PyPI package),
Perl (through uraL::ubpPipe CPAN
package), Java and C#.

1 Introduction

The Universal Dependencies project (Nivre et al.,
2016) seeks to develop cross-linguistically consis-
tent treebank annotation of morphology and syn-
tax for many languages. The latest version of
UD (Nivre et al., 2017a) consists of 70 depen-
dency treebanks in 50 languages. As such, the
UD project represents an excellent data source
for developing multi-lingual NLP tools which per-
form sentence segmentation, tokenization, POS
tagging, lemmatization and dependency tree pars-
ing.

The goal of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies (CoNLL 2017 UD Shared Task) is
to stimulate research in multi-lingual dependency
parsers which process raw text only. The overview
of the task and the results are presented in Zeman
et al. (2017).

This paper describes UDPipe (Straka et al.,
2016)! — an open-source tool which automati-
cally generates sentence segmentation, tokeniza-
tion, POS tagging, lemmatization and dependency
trees, using UD version 2 treebanks as training
data.

The contributions of this paper are:

e Description of UDPipe 1.1 Baseline System,
which was used to provide baseline models
for CoNLL 2017 UD Shared Task and pre-
processed test sets for the CoNLL 2017 UD
Shared Task participants. UDPipe 1.1 pro-
vided a strong baseline for the task, placing
as the 13 (out of 33) best system in the of-
ficial ranking. The UDPipe 1.1 Baseline Sys-
tem is described in Section 3.

e Description of UDPipe 1.2 Participant Sys-
tem, an improved variant of UDPipe 1.1,
which was used as a contestant system in the
CoNLL 2017 UD Shared Task, finishing 8"
in the official ranking, while keeping very
low software requirements. The UDPipe 1.2
Farticipant System is described in Section 4.

e Evaluation of search-based oracle and sev-
eral transition-based system on UD 2.0 de-
pendency trees (Section 5).

2 Related Work

There is a number of NLP pipelines available, e.g.,
Natural Language Processing Toolkit? (Bird et al.,

"http://ufal.mff.cuni.cz/udpipe
’NLTK, http://nltk.org

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 88-99,
Vancouver, Canada, August 3-4, 2017. (©) 2017 Association for Computational Linguistics



2009) or OpenNLP? to name a few. We designed
yet another one, UDPipe, with the aim to provide
extremely simple tool which can be trained eas-
ily using only a CoNLL-U file without additional
resources or feature engineering.

Deep neural networks have recently achieved
remarkable results in many areas of machine
learning. In NLP, end-to-end approaches were ini-
tially explored by Collobert et al. (2011). With a
practical method for precomputing word embed-
dings (Mikolov et al., 2013) and routine utiliza-
tion of recurrent neural networks (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), deep neural
networks achieved state-of-the-art results in many
NLP areas like POS tagging (Ling et al., 2015),
named entity recognition (Yang et al., 2016) or
machine translation (Vaswani et al., 2017). The
wave of neural network parsers was started re-
cently by Chen and Manning (2014) who pre-
sented fast and accurate transition-based parser.
Many other parser models followed, employing
various techniques like stack LSTM (Dyer et al.,
2015), global normalization (Andor et al., 2016),
biaffine attention (Dozat and Manning, 2016)
or recurrent neural network grammars (Kuncoro
et al., 2016), improving LAS score in English and
Chinese dependency parsing by more than 2 points
in 2016.

3 UDPipe 1.1 Baseline System

UDPipe 1.0 (Straka et al., 2016)* is a trainable
pipeline performing sentence segmentation, tok-
enization, POS tagging, lemmatization and depen-
dency parsing. It is fully trainable using CoNLL-U
version 1 files and the pretrained models for UD
1.2 treebanks are provided.

For the purpose of the CoNLL 2017 UD Shared
Task, we implemented a new version UDPipe 1.1
which processes CoNLL-U version 2 files. UD-
Pipe 1.1 was used as one of the baseline systems in
the shared task. UDPipe 1.1 Baseline System was
trained and tuned in the training phase of CoNLL
2017 UD Shared Task on the UD 2.0 training data
and the trained models and outputs were available
to the participants.

In this Section, we describe the UDPipe 1.1
Baseline System, focusing on the differences to
the previous version described in (Straka et al.,
2016): the tokenizer (Section 3.1), the tagger (Sec-

*https://opennlp.apache.org
*nttp://ufal.mff.cuni.cz/udpipe
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tion 3.2), the parser (Section 3.3), the hyperparam-
eter search support (Section 3.4), the training de-
tails (Section 3.5) and evaluation (Section 3.6).

3.1 Tokenizer

In UD and in CoNLL-U files, the text is structured
on several levels — a document consists of para-
graphs composed of (possibly partial) sentences,
which are sequences of fokens. A token is also
usually a word (unit used in further morphologi-
cal and syntactic processing), but a single token
may be composed of several syntactic words (for
example, token zum consists of words zu and dem
in German). The original text can be therefore re-
constructed as a concatenation of tokens with ade-
quate spaces, but not as a concatenation of words.

Sentence Segmentation and Tokenization

Sentence segmentation and tokenization is per-
formed jointly (as it was in UDPipe 1.0) using
a single-layer bidirectional GRU network which
predicts for each character whether it is the last
one in a sentence, the last one in a token, or not
the last one in a token. Spaces are usually not al-
lowed in tokens and therefore the network does not
need to predict end-of-token before a space (it only
learns to separate adjacent tokens, like for exam-
ple Hi! or cannot).

Multi-Word Token Splitting

In UDPipe 1.0, a case insensitive dictionary was
used to split tokens into words. This approach is
beneficial if there is a fixed number of multi-word
tokens in the language (which is the case for ex-
ample in German).

In UDPipe 1.1 Baseline System we also employ
automatically generated suffix rules — a token with
a specific suffix is split, using the non-matching
part of the token as prefix of the first words, and a
fixed sequence of first word suffix and other words
(e.g, in Polish we create a rule xtem — xt 4 em).
The rules are generated automatically by keeping
all such rules present in the training data, which do
not trigger incorrectly too often. The contribution
of suffix rules is evaluated in Section 5.

Documents and Paragraphs

We use an improved sentence segmenter in UD-
Pipe 1.1 Baseline System. The segmenter learns
sentence boundaries in the text in a standard way
as in UDPipe 1.1 Baseline System, but it omits the
sentence breaks at the end of a paragraph or a doc-
ument. The reason for excluding these boundaries



from the training data is that the ends of para-
graphs and documents are frequently recognized
by layout (e.g. newspaper headlines) and if the
recognizer is trained to recognize these sentence
breaks, it tends to erroneously split regular sen-
tences.

Additionally, we now also mark paragraph
boundaries (recognized by empty lines) and docu-
ment boundaries (corresponding to files being pro-
cessed, storing file names as document ids) when
running the segmenter.

Spaces in Tokens

Additional feature allowed in CoNLL-U version
2 files is presence of spaces in tokens. If spaces
in tokens are allowed, the GRU tokenizer network
must be modified to predict token breaks in front
of spaces. On the other side, many UD 2.0 lan-
guages do not allow spaces in tokens (and in such
languages a space in a token might confuse the
following systems in the pipeline), therefore, it is
configurable whether spaces in tokens are allowed,
with the default being to allow spaces in tokens if
there is any token with spaces in the training data.

Precise Reconstruction of Spaces

Unfortunately, neither CoNLL-U version 1 nor
version 2 provide a standardized way of storing
inter-token spaces which would allow reconstruct-
ing the original plain text. Therefore, UDPipe 1.1
Baseline System supports several UDPipe-specific
MISC fields that are used for this purpose.

CoNLL-U defines spaceafter=No MISC
feature which denotes that a given to-
ken is not followed by a space. We ex-
tend this scheme in a compatible way
by introducing SpacesAfter=spaces and
SpacesBefore=spaces fields. These fields
store the spaces following and preceding this
token, with spacesBefore by default empty and
SpacesAfter being by default empty or one
space depending on SpaceAfter=No presence.
Therefore, these fields are not needed if tokens
are separated by no space or a single space.
The spaces are encoded by a means of a C-like
escaping mechanism, with escape sequences \s,
\t, \r, \n, \p, \\ for space, tab, CF, LF, | and \
characters, respectively.

If spaces in tokens are allowed, these spaces
cannot be represented faithfully in the FORM
field which disallows tabs and new line charac-
ters. Therefore, UDPipe utilizes an additional
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MISC field spacesInToken=token_with_spaces
representing the token with original spaces. Once
again, with the default value being the value of the
FORM field, the field is needed only if the token
spaces cannot be represented in the FORM field.

All described MISC fields are generated au-
tomatically by UDPipe 1.1 Baseline System tok-
enizer, with spacesBefore used only at the begin-
ning of a sentence.

Furthermore, we also provide an optional way
of storing the document-level character offsets of
all tokens, using Tokenoffset MISC field. The
values of this field employ Python-like start :end
format.

Detokenization

To train the tokenizer, the original plain texts of
the CoNLL-U files are required. These plain texts
can be reconstructed using the SpaceAfter=No
feature. However, very little UD version 1 cor-
pora contains this information. Therefore, UDPipe
1.0 offers a way of generating these features us-
ing a different raw text in the concerned language
(Straka et al., 2016).

Fortunately, most UD 2.0 treebanks do include
the spaceAfter=No feature. We perform deto-
kenization only for Dannish, Finnish-FTB and
Slovenian-SST.

Inference

When employing the segmenter and tokenizer
GRU network during inference, it is important to
normalize spaces in the given text. The reason is
that during training, tokens were either adjacent or
separated by a single space, so we need to modify
the network input during inference accordingly.
During inference, we precompute as much net-
work operations on character embeddings as pos-
sible® (to be specific, we cache 6 matrix prod-
ucts for every character embedding in each GRU).
Consequently, the inference is almost twice as fast.

3.2 Tagger

The tagger utilized by UDPipe 1.1 Baseline Sys-
tem is nearly identical to the previous version in
UDPipe 1.0. A guesser generates several (UPOS,
XPOS, FEATYS) triplets for each word according to
its last four characters, and an averaged perceptron
tagger with a fixed set of features disambiguates
the generated tags (Straka et al., 2016; Strakova
et al., 2014).

5 Similarly to Devlin et al. (2014).



The lemmatizer is analogous. A guesser pro-
duces (lemma rule, UPOS) pairs, where the lemma
rule generates a lemma from a word by stripping
some prefix and suffix and prepending and ap-
pending new prefix and suffix. To generate cor-
rect lemma rules, the guesser generates the results
not only according to the last four characters of a
word, but also using word prefix. Again, the dis-
ambiguation is performed by an averaged percep-
tron tagger.

We prefer to perform lemmatization and POS
tagging separately (not as a joint task), because we
found out that utilization of two different guessers
and two different feature sets improves the perfor-
mance of our system (Straka et al., 2016).

The only change in UDPipe 1.1 Baseline Sys-
tem is a possibility to store lemmas not only as
lemma rules, i.e., relatively, but also as “absolute”
lemmas. This change was required by the fact that
some languages such as Persian contain a lot of
empty lemmas which are difficult to encode using
relative lemma rules, and because Latin-PROIEL
treebank uses greek.expression lemma for all
Greek forms.

3.3 Dependency Parsing

UDPipe 1.0 utilizes fast transition-based neural
dependency parser. The parser is based on a sim-
ple neural network with just one hidden layer and
without any recurrent connections, using locally-
normalized scores.

The parser offers several transition systems —
a projective arc-standard system (Nivre, 2008),
partially non-projective link2 system (Gomez-
Rodriguez et al., 2014) and a fully non-projective
swap system (Nivre, 2009). Several transition ora-
cles are implemented — static oracles, dynamic or-
acle for the arc-standard system (Goldberg et al.,
2014) and a search-based oracle (Straka et al.,
2015). Detailed description of the parser archi-
tecture and transition systems and oracles can be
found in Straka et al. (2016) and Straka et al.
(2015).

The parser makes use of FORM, UPOS, FEATS
and DEPREL embeddings. The form embeddings
are precomputed with word2vec using the train-
ing data, the other embeddings are initialized ran-
domly, and all embeddings are updated during
training.

We again precompute as much network opera-
tions as possible for the input embeddings. How-

91

ever, to keep memory requirements and loading
times reasonable, we do so only for 1000 most fre-
quent embeddings of every type.

Because the CoNLL 2017 UD Shared Task did
not allow sentences with multiple roots, we mod-
ified all the transition systems in UDPipe 1.1 to
generate only one root node and to use the root
dependency relation only for this node.

3.4 Hyperparameter Search Support

All three described components employ several
hyperparameters which can improve performance
if tuned correctly. To ease up the process, UD-
Pipe offers random hyperparameter search for all
the components — the run=number option during
training generates pseudorandom but determinis-
tic values for predefined hyperparameters. The hy-
perparameters are supposed to be tuned for every
component individually, and then merged.

3.5 Training the UDPipe 1.1 Baseline System

When developing the UDPipe 1.1 Baseline System
in the training phase of CoNLL 2017 UD Shared
Task, the testing data were not yet available for the
participants. Therefore a new data split was cre-
ated from the available training and development
data: the performance of the models was evaluated
on the development data, and part of the training
data was put aside and used to tune the hyperpa-
rameters. This baselinemodel-split of the UD 2.0
data is provided together with the baseline modes
from Straka (2017).

The following subsections describe the details
of training the UDPipe 1.1 Baseline System.

Tokenizer

The segmenter and tokenizer network employs
character embeddings and GRU cells of dimen-
sion 24. The network was trained using dropout
both before and after the recurrent units, using the
Adam optimization algorithm (Kingma and Ba,
2014). Suitable batch size, dropout probability,
learning rate and number of training epochs was
tuned on the fune set.

Tagger

The tagger and the lemmatizer do not use any hy-
perparameters which require tuning. The guesser
hyperparameter were tuned on the tune set.

Parser

The parser network employs form embeddings of
dimension 50, and UPOS, FEATS and DEPREL



embeddings of dimension 20. The hidden layer
has dimension 200, batch consists of 10 words and
the network was trained for 10 iterations. The suit-
able transition system, oracle, learning rate and L2
regularization was chosen to maximize the accu-
racy on the tune set.

3.6 Evaluation of the UDPipe 1.1 Baseline
System

There are three testing collections in CoNLL 2017
UD Shared Task: UD 2.0 test data, new parallel
treebank (PUD) sets, and four surprise languages.

The UDPipe 1.1 Baseline System models were
completely trained, released and “frozen” on the
UD 2.0 training and development data with a new
split (see the previous Section 3.5) already in the
training phase of the CoNLL 2017 UD Shared Task
on the UD 2.0 training data, unlike the participant
systems, which could use the full training data for
training and development data for tuning.

We used the UDPipe 1.1 Baseline System mod-
els for evaluation of the completely new parallel
treebank (PUD) set and completely new surprise
languages in the following way:

For the new parallel treebank sets we utilized
the “main” treebank for each language (e.g., for
Finish f£i instead of £i_ftb). This arbitrary de-
cision was a lucky one — after the shared task eval-
uation, the performance on the parallel treebanks
was shown to be significantly worse if different
treebanks than the “main” were used (even if they
were larger or provided higher LAS on their own
test set). The reason seem to be the inconsisten-
cies among the treebanks of the same language —
the Universal Dependencies are yet not so univer-
sal as everyone would like.

To parse the surprise languages, we employed
a baseline model which resulted in highest LAS
F1-score on the surprise language sample data —
resulting in Finnish FTB, Polish, Finnish FTB and
Slovak models for the surprise languages Buryat,
Kurmanji, North Sdmi and Upper Sorbian, respec-
tively. Naturally, most words of a surprise lan-
guage are not recognized by a baseline model for
a different language. Conveniently, the UPOS tags
and FEATS are shared across languages, allowing
the baseline model to operate similarly to a delex-
icalized parser.
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4 UDPipe 1.2 Participant System

We further updated the UDPipe 1.1 Baseline Sys-
tem to participate in CoNLL 2017 UD Shared Task
with an improved UDPipe 1.2 Participant System.

As participants of the shared task, we trained
the system using the whole training data and
searched for hyperparameters using the develop-
ment data (instead of using the baselinemodel-
split described in Section 3.5). Although the data
size increase is not exactly a change in the sys-
tem itself, it improves performance, especially for
smaller treebanks.

4.1 Hyperparameter Changes

While tokenization and segmentation is straight-
forward in some languages, it is quite complex in
others (notably in Japanese and Chinese, which
do not use spaces for word separation, or in Viet-
namese, in which many tokens contain spaces). In
order to improve the performance on these lan-
guages we increased the embedding dimension
and GRU cell dimension in the tokenizer from 24
to 64.

We increased form embedding dimension in the
parser from 50 to 64 (larger dimensions showed no
more improvements on the development set) and
also trained the parser for 20 iterations over the
training data instead of 10.

Furthermore, instead of using beam of size 5
during parsing as in UDPipe 1.1 Baseline System,
we tuned the beam size individually for each tree-
bank, choosing 5, 10, 15 or 20 according to result-
ing LAS on a development set.

4.2 Merging Treebanks of the Same
Language

For several languages, there are multiple tree-
banks available in the UD 2.0 collection. Ide-
ally, one would merge all training data of all tree-
banks of a given language. However, accord-
ing to our preliminary experiments, the annota-
tion is not perfectly consistent even across tree-
banks of the same language. Still, additional train-
ing data, albeit imperfect, could benefit small tree-
banks.

We therefore attempt to exploit these multiplex
treebanks by enriching each treebank’s training
data with training data from other treebanks of the
same language. Given a treebank for which an-
other treebanks of the same language exist, we
evaluate performance of several such expansions



Maximum sentence | Changed sentence boundary | Every sentence

Treebank 1 .
length log-probability log-probability
Gothic 20 -0.5 -0.9
Latin-PROIEL 25 -0.4 -0.7
Slovenian-SST 15 -0.7 -0.9

Table 1: Hyperparameters for joint segmentation and parsing.

and choose the best according to LAS score on
the development data of the treebank in question.
We extend the original training data by adding ran-
dom sentences from the additional treebanks of the
same language — we consider subsets containing
%, %, 1 and 2 times the size of the original tree-
bank.

4.3 Joint Sentence Segmentation and Parsing

Some treebanks are very difficult to segment
into sentences due to missing punctuation, which
harms the parser performance. We segment three
smallest treebanks of this kind (namely Gothic,
Latin-PROIEL and Slovenian-SST) jointly with
the parser, by choosing such sentence segmen-
tation which maximizes likelihood of their parse
trees.

In order to determine the segmentation with
maximum parsing likelihood, we evaluate every
possible segmentation with sentences up to a given
maximum length L. Because likelihoods of parse
trees are independent, we can utilize dynamic pro-
gramming and find the best segmentation in poly-
nomial time by parsing sentences of lengths 1 to
L at every location in the original text. Therefore,
the procedure has the same complexity as parsing
text which is circa L2 /2 times longer than the orig-
inal one.

Additionally, we incorporate the segmentation
suggested by the tokenizer in the likelihood of
the parse trees — we multiply the tree likelihood
by a fixed probability for each sentence bound-
ary different than the one returned by the tok-
enizer.

However, if a transition-based parser is used,
the optimum solution for the algorithm described
so far would probably be to segment the text into
one-token sentences, due to the fact that for a sin-
gle word there is only one possible sequence of
transitions (to make the word a root node), which
has therefore probability one. Consequently, we
introduce a third hyperparameter, which is an ad-
ditional “cost” for every sentence.
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We tuned the three described hyperparameters
for every treebank independently to maximize
LAS score on development set. The chosen hy-
perparameter values are shown in Table 1.

We expect graphical parsing models to ben-
efit even more from this kind of joint segmen-
tation — for every word, one can compute the
probability distribution of attaching it as a depen-
dent to all words within a distance of L (includ-
ing the word itself, which represents the word
being a root node). Then, the likelihood of
a single-word sentence would not be one, but
would take into account the possibility of at-
taching the word as a dependent to every near
word.

5 Experiments and Results

The official CoNLL 2017 UD Shared Task evalua-
tion was performed using a TIRA platform (Pot-
thast et al., 2014), which provided virtual ma-
chines for every participants’ systems. During test
data evaluation, the machines were disconnected
from the internet, and reset after the evaluation
finished — this way, the entire test sets were kept
private even during the evaluation.

In addition to official results, we also report re-
sults of supplementary experiments. These were
evaluated after the shared task, using the released
test data (Nivre et al., 2017b). All results are pro-
duced using the official evaluation script.

Because only plain text (and not gold tokeniza-
tion) is used as input, all results are in fact F1-
scores and always take tokenization performance
into account.

The complete UDPipe 1.2 Participant System
scores are shown in Table 2. We also include LAS
Fl1-score of the UDPipe 1.1 Baseline System for
reference. Note that due to time constraints, some
UDPipe 1.2 Participant System submitted models
did not generate any XPOS and lemmas. In these
cases, we show XPOS and lemmatization results
using post-competition models and typeset them
in italic.



Treebank UDPipe 1.2 Participant System Baseline
Tokens Words Sents Words UPOS | XPOS | Feats AllTags | Lemmas | UAS LAS LAS
Ancient Greek 99.96 99.96 98.73 | 99.96 85.55 43.69 7330 | 43.67 82.89 65.37 | 57.39 56104
Ancient Greek-PROIEL 100.00 100.00 47.09 | 100.00 95.60 93.34 87.66 | 84.85 92.73 7172 | 66.51 65122
Arabic 99.98 93.71 81.77 | 93.71 88.26 83.27 83.40 | 82.08 87.34 71.69 | 66.06 635130
Basque 99.96 99.96 99.50 | 99.96 92.33 99.96 87.25 | 84.66 93.49 75.59 | 70.45 69115
Bulgarian 99.92 99.92 92.85 | 99.92 97.72 94.57 95.55 | 94.01 94.60 88.82 | 84.92 88,64
Catalan 99.97 99.97 99.03 | 99.97 98.00 98.00 97.20 | 96.56 97.87 88.69 | 85.53 85139
Chinese 89.55 89.55 98.20 | 89.55 83.47 83.38 88.28 | 82.13 89.54 61.81 | 57.89 57140
Croatian 99.90 99.90 95.56 | 99.90 95.88 99.90 84.34 | 83.43 94.33 83.73 | 771.73 7118
Czech 99.93 99.93 92.30 | 99.93 98.23 92.71 91.97 | 91.60 97.82 86.73 | 83.19 82,87
Czech-CAC 99.97 99.96 | 100.00 | 99.96 98.34 91.92 90.53 | 90.36 97.31 88.21 | 84.40 82,46
Czech-CLTT 99.34 99.34 94.19 | 99.34 95.49 88.07 86.14 | 85.04 96.79 80.52 | 76.69 71.64
Danish 99.60 99.60 7897 | 99.60 95.28 99.60 94.37 | 93.25 94.51 7891 | 75.28 73138
Dutch 99.80 99.80 76.95 | 99.80 91.33 88.05 89.23 | 86.94 89.77 76.50 | 70.52 68190
Dutch-LassySmall 99.99 99.99 81.83 | 99.99 97.43 99.99 97.17 | 96.39 97.99 82.76 | 80.15 815
English 99.03 99.03 75.33 | 99.03 93.50 92.88 94.44 | 91.48 96.10 80.34 | 77.25 7584
English-LinES 99.92 99.92 87.40 | 99.92 94.87 92.01 99.39 | 90.41 98.34 79.06 | 74.92 12194
English-ParTUT 99.57 99.55 98.40 | 99.55 93.41 91.92 91.45 | 89.83 96.39 81.13 | 76.89 73.64
Estonian 99.89 99.89 93.66 | 99.89 87.60 89.98 81.14 | 78.99 80.96 68.65 | 60.01 58179
Finnish 99.69 99.69 86.75 | 99.69 94.49 95.68 91.42 | 90.35 86.49 80.74 | 77.26 7375
Finnish-FTB 99.97 99.96 85.54 | 99.96 92.28 91.05 92.53 | 89.41 88.68 79.69 | 75.31 74,03
French 99.76 98.88 94.58 | 98.88 95.49 98.88 9542 | 94.26 96.59 84.09 | 80.50 80175
French-ParTUT 99.85 98.97 97.76 | 98.97 95.38 85.35 91.23 | 82.06 94.87 84.03 | 80.17 77.38
French-Sequoia 99.76 99.06 84.60 | 99.06 95.63 99.06 94.74 | 93.59 96.82 84.06 | 81.35 79198
Galician 99.93 99.93 96.18 | 99.93 96.93 96.44 99.70 | 96.08 96.93 80.95 | 77.73 7731
Galician-TreeGal 99.62 98.66 85.35 | 98.66 91.08 87.70 89.84 | 86.90 92.56 71.59 | 66.31 65182
German 99.67 99.67 79.35 | 99.67 90.72 94.65 80.46 | 76.26 95.38 74.15 | 68.61 6911
Gothic 100.00 100.00 24.12 | 100.00 94.32 94.87 87.06 | 85.03 92.45 69.26 | 62.80 5981
Greek 99.87 99.87 90.00 | 99.87 95.35 95.35 89.89 | 88.62 94.44 84.31 80.67 79126
Hebrew 99.98 85.16 |100.00 | 85.16 80.87 80.87 77.57 | 76.78 79.58 62.06 | 57.86 5723
Hindi 100.00 100.00 99.20 |100.00 95.75 94.82 90.12 | 87.57 98.00 91.45 | 87.28 86,77
Hungarian 99.81 99.81 95.54 | 99.81 90.80 99.81 70.59 | 69.57 88.40 7236 | 66.54 64.30
Indonesian 100.00 100.00 91.73 | 100.00 93.43 | 100.00 99.52 | 93.42 100.00 81.67 | 7547 74,61
Irish 99.40 99.40 94.78 | 99.40 88.86 87.90 76.27 | 73.53 85.45 73.10 | 62.87 61152
Italian 99.91 99.83 97.11 | 99.83 97.31 97.06 97.20 | 96.26 97.34 88.62 | 86.11 8528
Japanese 90.97 90.97 95.01 | 90.97 88.19 90.97 90.95 | 88.19 90.19 7581 | 74.49 72121
Kazakh 96.07 95.63 81.23 | 95.63 50.69 50.56 46.06 | 39.57 59.46 4177 | 2543 2451
Korean 99.69 99.69 92.41 | 99.69 94.22 89.13 99.34 | 89.13 99.32 66.64 | 60.30 59,09
Latin 99.99 99.99 98.56 | 99.99 83.66 68.03 72.75 | 68.02 51.85 57.57 | 47.02 43,77
Latin-ITTB 99.89 99.89 82.58 | 99.89 96.83 91.58 93.50 | 89.71 97.61 79.74 | 75.84 76198
Latin-PROIEL 100.00 100.00 19.56 | 100.00 95.00 95.08 87.94 | 86.89 94.91 66.45 | 61.55 57.54
Latvian 98.94 98.94 98.32 | 98.94 88.40 75.00 82.02 | 7445 86.76 68.38 | 61.80 59.95
Norwegian-Bokmaal 99.79 99.79 96.38 | 99.79 96.83 99.79 95.25 | 94.38 96.66 86.62 | 83.89 8327
Norwegian-Nynorsk 99.93 99.93 92.08 | 99.93 96.54 99.93 95.02 | 94.15 96.48 85.86 | 82.74 81156
Old Church Slavonic 99.99 99.99 40.94 | 99.99 93.55 93.60 86.72 | 85.43 90.69 72.60 | 66.29 62176
Persian 100.00 99.65 97.76 | 99.65 96.02 95.94 96.09 | 95.36 93.58 84.18 | 80.33 79.24
Polish 99.98 99.87 99.18 | 99.87 95.43 83.36 83.46 | 81.35 93.34 86.31 | 80.21 7878
Portuguese 99.66 99.54 89.24 | 99.54 96.30 72.63 93.36 | 71.59 96.70 86.30 | 82.72 8211
Portuguese-BR 99.96 99.86 96.71 | 99.86 97.07 97.07 99.72 | 97.05 98.75 88.18 | 8597 8536
Romanian 99.67 99.67 93.72 | 99.67 96.62 95.87 96.05 | 95.71 96.54 85.74 | 80.32 79188
Russian 99.90 99.90 96.59 | 99.90 94.69 94.38 84.17 | 82.61 74.91 80.94 | 76.15 74,03
Russian-SynTagRus 99.58 99.58 97.97 | 99.58 97.91 99.58 93.45 | 93.11 95.43 89.35 | 86.80 86176
Slovak 100.00 100.00 84.26 |100.00 92.85 77.32 79.61 76.93 86.17 80.78 | 75.63 72175
Slovenian 99.96 99.96 98.86 | 99.96 96.11 88.01 88.33 | 87.50 95.27 85.37 | 81.84 8115
Slovenian-SST 99.87 99.87 13.13 | 99.87 91.78 86.40 85.32 | 82.33 93.79 59.26 | 53.94 46.45
Spanish 99.91 99.74 9526 | 99.74 95.54 99.74 96.10 | 93.70 95.89 8532 | 81.95 81147
Spanish-AnCora 99.97 99.95 98.26 | 99.95 98.14 98.14 97.57 | 96.89 98.09 87.91 84.95 83,78
Swedish 99.86 99.86 95.57 | 99.86 95.66 93.92 94.43 | 92.85 95.48 81.67 | 77.58 76173
Swedish-LinES 99.97 99.97 86.43 | 99.97 94.26 91.27 99.60 | 90.04 98.53 80.14 | 75.57 74129
Turkish 99.85 97.92 96.89 | 97.92 91.51 90.58 86.70 | 84.60 89.60 60.78 | 53.78 53119
Ukrainian 99.66 99.66 94.84 | 99.66 87.33 70.77 71.00 | 69.74 86.64 69.28 | 61.09 60176
Urdu 100.00 100.00 98.32 | 100.00 92.13 89.93 80.31 76.03 93.04 83.86 | 77.09 76,69
Uyghur 99.94 99.94 65.31 | 99.94 76.09 79.04 99.94 | 7557 99.94 53.49 | 3321 34018
Vietnamese 84.26 84.26 92.87 | 84.26 75.29 73.30 83.93 | 73.26 83.54 4499 | 39.97 37.47
Arabic-PUD 80.85 90.81 98.95 | 90.81 70.39 0.00 22.73 0.00 0.00 54.57 | 44.34 48114
Czech-PUD 99.28 99.28 95.40 | 99.28 96.57 89.92 88.33 | 87.69 95.37 84.50 | 79.67 7980
German-PUD 97.90 97.94 90.75 | 97.94 84.46 20.40 31.77 1.55 3.10 73.75 | 66.05 6653
English-PUD 99.74 99.74 95.57 | 99.74 94.11 92.99 94.19 | 90.13 95.47 82.80 | 79.21 78195
Spanish-PUD 99.48 99.43 94.14 | 99.43 88.17 1.76 54.21 0.00 343 84.96 | 77.99 77,65
Finnish-PUD 99.63 99.63 9220 | 99.63 95.84 0.00 93.75 0.00 86.50 83.89 | 80.86 7865
French-PUD 99.81 98.86 93.33 | 98.86 88.00 2.39 58.65 0.00 4.79 79.64 | 74.19 73163
Hindi-PUD 98.78 98.78 9326 | 98.78 84.69 33.09 18.11 4.80 0.00 65.56 | 52.53 50.85
Italian-PUD 99.64 99.22 94.11 | 99.22 93.10 2.47 57.26 2.47 95.52 87.39 | 84.03 83170
Japanese-PUD 92.41 92.41 95.04 | 92.41 90.02 7.65 53.75 7.07 91.39 79.26 | 78.36 7628
Portuguese-PUD 99.27 99.39 95.94 | 99.39 88.45 0.00 59.22 0.00 12.57 80.32 | 74.43 73196
Russian-PUD 97.25 97.25 98.51 | 97.25 85.86 78.82 38.20 | 34.28 0.00 76.69 | 69.37 6831
Swedish-PUD 98.35 98.35 94.44 | 98.35 91.16 88.07 7458 | 73.09 84.55 7543 | 70.88 70.62
Turkish-PUD 99.13 96.93 90.87 | 96.93 71.38 0.00 23.67 0.00 0.09 53.58 | 34.12 3453
Buryat (surprise) 99.35 99.35 91.81 | 99.35 84.12 99.35 81.65 | 78.08 81.40 41.64 | 21.58 31150
Kurmanji (surprise) 99.01 98.85 97.02 | 98.85 90.04 89.84 81.61 80.62 89.76 46.33 | 32.89 3235
North Sami (surprise) 99.88 99.88 98.79 | 99.88 86.81 88.98 81.93 | 77.76 81.86 45.53 | 33.62 30160
Upper Sorbian (surprise) 99.84 99.84 90.69 | 99.84 90.30 99.84 7420 | 7243 87.70 63.34 | 55.76 53183
Average Score 98.89 98.63 88.68 | 98.63 91.22 79.48 82.50 | 73.47 82.64 7539 | 69.52 68.35

Table 2: Full results of UDPipe 1.2 Participant System and LAS Fl-score of UDPipe 1.1 Baseline
System for reference. The results in italic are not part of the official results and were generated using
post-competition models due to time constraints.
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Enlarged training data using other tree

banks

Original training data only

Treebank UPOS [ XPOS | Feats [AllTags [Lemmas| UAS | LAS || UPOS | XPOS | Feats |AllTags [Lemmas| UAS | LAS
Ancient Greek 8555 | 73.69 | 7330 | 43.67 | 82.89 | 6537 | 5739 |[8237 | 72831 8582 72321 8263 | 6405 | 57144
Ancient Greek-PROIEL || 95.60 | 93.34 | 87.66 | 8485 | 92.73 | 7172 | 66.51 || 9574 | 95941 88:491| 87041 9266 | 7129 | 66149
Crech-CAC 98.34 | 91.92 | 9053 | 90.36 | 97.31 | 88.21 | 84.40 || 98117 | 90.64 [789143 |IB8S1 | 97.04 [786.17 [VBLSS
Crech-CLTT 95.49 | 88.07 | 86.14 | 85.04 | 96.79 | 80.52 | 76.69 || 96:287| 8686 | 871027| 8675 (19556 |TB66 | 46T
English-LinES 0487 | 92.01 | 9939 | 90.41 | 9834 | 79.06 | 74.92 || 94194 | 92556 | 9992 | 9087 | 99192%| 7930 | 75120
English-ParTUT 93.41 | 97.92 | 9145 | 89.83 | 9639 | 81.13 | 76.89 || 93108 | 92185 | 92231 | 90:84 | 96:50 | 7986 | 7531
French-ParTUT 9538 | 85.35 | 9123 | 82.06 | 94.87 | 84.03 | 80.17 |[n9448 | 94123u| 9189 | 9075%| 9429 | 83124 | 79.07
Ttalian 97.31 | 97.06 | 9720 | 96.26 | 97.34 | 88.62 | 86.11 || 9722 | 97.04 | 9700 | 96.14 | 97.28 | 88153 | 8572
Latin-ITTB 96.83 | 91.58 | 9350 | 89.71 | 97.61 | 7974 | 75.84 || 9715 | 92:64 | 93151 | 9124 | 97173 | 8003 | 76226
Slovenian-SST 9178 | 86.40 | 8532 | 82.33 | 93.79 | 59.26 | 53.94 |[788.90 |[¥BL.59 [W8L77 [F79.12 [19139 [753.60 747,50
Swedish-LinES 0426 | 91.27 | 99.60 | 90.04 | 9853 | 80.14 | 75.57 || 94133 | 9176 | 99197 | 90:56 | 99:975| 80125 | 75.45
Ttalian-PUD 93.10 | 247 | 5726 | 2.47 | 9552 | 87.30 | 84.03 || 93118 | 2147 | 5719 | 247 | 9557 | 8687 | 8361

Table 3: The effect of additional training data from other treebanks of the same language in UDPipe 1.2

Farticipant System.

GRU-based segmentation Joint segmentation
Treebank followed by parsing and parsing

Sents | UAS LAS Sents | UAS LAS
Gothic 32.46 | 69.04 | 62.23 2412 | 6926 | 6280
Latin-PROIEL 30.37 | 66.11 | 60.63 19156 | 66145 | 6155
Slovenian-SST 17.76 | 57.93 | 51.95 1313 | 5926 | 5394

Table 5: Joint segmentation and parsing in UD-
Pipe 1.2 Participant System, optimized to maxi-
mize parsing likelihood, in comparison with se-
quential segmentation and parsing.

In order to make the extensive results more vi-
sual, we show relative difference of baseline LAS
score using the grey bars (on a scale that ignores 3
outliers). We use this visualization also in later ta-
bles, always showing relative difference to the first
occurrence of the metric in question.

The effect of enlarging training data using other
treebanks of the same language (Section 4.2) is
evaluated in Table 3. We include only those tree-
banks in which the enlarged training data result in
better LAS score and compare the performance to
cases in which only the original training data is
used.

The impact of tokenizer dimension 64 com-
pared to dimension 24 can be found in Table 4.
We also include the effect of not using the suffix
rules for multi-word token splitting, and not using
multi-word token splitting at all. As expected, for
many languages the dimension 64 does not change
the results, but yields superior performance for
languages with either difficult tokenization or sen-
tence segmentation.

The improvement resulting from joint sentence
segmentation and parsing is evaluated in Table 5.
While the LAS and UAS F1-scores of the joint ap-
proach improves, the sentence segmentation F1-
score deteriorates significantly.

The overall effect of search-based oracle with
various transition systems on parsing accuracy is
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Beam size UAS LAS
1 74.36 | 68.46
5 75.33 | 69.45
10 75.39 | 69.51
15 75.41 | 69.53
20 75.42 | 69.54
Best on development

data for each treebank 75.39 | 69.52

Table 7: UDPipe 1.2 Participant System parsing
scores with various beam sizes.

summarized in Table 6. The search-based or-
acle improves results in all cases, but the in-
crease is only slight if a dynamic oracle is also
used. Note however that dynamic oracles for
non-projective systems are usually either very in-
efficient (for link2, only O(n®) dynamic oracle
is proposed in Gémez-Rodriguez et al. (2014))
or not known (as is the case for the swap sys-
tem).

Furthermore, if only a static oracle is used, par-
tially or fully non-projective systems yield better
overall performance than a projective one. Yet,
a dynamic oracle improves performance of the
projective system to the extent it yield better re-
sults (which is further improved by utilizing also a
search-based oracle).

The influence of beam size on UAS and LAS
scores is analyzed in Table 7. According to the
results, tuning beam size for every treebank inde-
pendently is worse than using large beam size all
the time.

Finally, model size and runtime performance of
individual UDPipe components are outlined in Ta-
ble 8. The median of complete model size is circa
13MB and the speed of full processing (tokeniza-
tion, tagging and parsing with beam size 5) is ap-
proximately 1700 words per second on a single
core of an Intel Xeon E5-2630 2.4GHz proces-
SOf.



Treebank UDPipe 1.2 Participant System Tokenizer dim 24 No suffix rules No token splitting
Tokens | Words Sents LAS Words Sents LAS Words | LAS Words LAS
Ancient Greek 99.96 99.96 98.73 | 57.39 99,96 98185 | 57.42 99.96 57139 99,96 57139
Ancient Greek-PROIEL || 100.00 100.00 47.09 | 66.51 ||100.00 45.14 | 65.79 || 10000 6651 || 100,00 66.51
Arabic 99.98 93.71 81.77 | 66.06 93171 80.89 | 66.08 92.89 65.13 78.39 45.84
Basque 99.96 99.96 99.50 | 70.45 99196 99108 | 70.39 99196 70.45 99196 70145
Bulgarian 99.92 99.92 92.85 | 84.92 99191 92154 | 84.87 99192 84192 99192 84192
Catalan 99.97 99.97 99.03 | 85.53 99196 99103 | 8552 9977 85117 99167 8493
Chinese 89.55 89.55 98.20 | 57.89 89.25 98150 | 57.63 89\55 57.89 89\55 57.89
Croatian 99.90 99.90 95.56 | 71.73 99.92 96/98 | 77.83 99190 77173 99190 77173
Czech 99.93 99.93 92.30 | 83.19 99192 ou82 | 83l16 9993 8319 99180 82196
Czech-CAC 99.97 99.96 [100.00 | 84.40 99196 99176 | 84.40 99196 8440 99172 84.03
Czech-CLTT 99.34 99.34 94.19 | 76.69 9952 9649 | 77.30 99134 76169 99131 76165
Danish 99.60 99.60 7897 | 75.28 99158 80107 | 7543 99.60 75128 99,60 75128
Dutch 99.80 99.80 76.95 | 70.52 99184 77062 | 70.09 99180 70,52 99180 70152
Dutch-LassySmall 99.99 99.99 81.83 | 80.15 99197 7484 | [79.18 99199 8015 99199 80115
English 99.03 99.03 7533 | 71.25 98197 7567 | 7724 9903 77.25 99,03 7725
English-LinES 99.92 99.92 87.40 | 74.92 99190 86,59 | 74196 99192 74192 99192 74192
English-ParTUT 99.57 99.55 98.40 | 76.89 99:61 97.19 | 7704 99154 76186 99145 76175
Estonian 99.89 99.89 93.66 | 60.01 99188 93175 | 5999 99189 60101 9989 6001
Finnish 99.69 99.69 86.75 | 77.26 9969 84170 | 7711 99.69 77.26 9969 77.26
Finnish-FTB 99.97 99.96 85.54 | 7531 99194 8472 | 75,03 99195 75.28 99174 75108
French 99.76 98.88 94.58 | 80.50 98.89 94109 | 80.41 98/88 80150 9554 74,98
French-ParTUT 99.85 98.97 97.76 | 80.17 98188 97138 | 80.06 98197 8017 95.00 7443
French-Sequoia 99.76 99.06 84.60 | 81.35 99104 84,00 | 81i34 99106 81135 95,07 7474
Galician 99.93 99.93 96.18 | 77.73 99.94 95198 | 77.81 99193 77173 99193 77173
Galician-TreeGal 99.62 98.66 85.35 | 66.31 9870 86/69 | 66.32 98.09 65.48 87.58 48.87
German 99.67 99.67 79.35 | 68.61 99.68 79134 | 6841 99167 6861 97.17 64.81
Gothic 100.00 100.00 2412 | 62.80 || 100.00 20175 | 62.08 || 100.00 62/80 || 100,00 62180
Greek 99.87 99.87 90.00 | 80.67 99187 9044 | 80.54 99.87 80167 9987 8067
Hebrew 99.98 85.16 |100.00 | 57.86 85112 99159 | 57183 8173 54.60 57112 2611
Hindi 100.00 100.00 99.20 | 87.28 ||100.00 99120 | 87.28 || 100.00 8728 || 100,00 8728
Hungarian 99.81 99.81 95.54 | 66.54 99.81 95,58 | 66.63 99.81 66154 99.81 66154
Indonesian 100.00 100.00 91.73 | 75.47 ||100.,00 90171 7548 || 100,00 75147 || 100,00 75147
Irish 99.40 99.40 94.78 | 62.87 9956 9414 | 63.00 99140 62[87 99140 62(87
Italian 99.91 99.83 97.11 | 86.11 99178 96191 85,97 99158 85153 88.92 6898
Japanese 90.97 90.97 95.01 | 74.49 90102 9501 |"73.19 90197 74,49 90,97 74,49
Kazakh 96.07 95.63 81.23 | 2543 92,74 81.56 |[24.39 9536 2595 95.36 25195
Korean 99.69 99.69 92.41 | 60.30 99167 92104 | 60.08 99169 60130 99,69 6030
Latin 99.99 99.99 98.56 | 47.02 || 10000 98135 | 46.96 99199 47.02 99199 47,02
Latin-ITTB 99.89 99.89 82.58 | 75.84 99194 82149 | 7591 99189 75184 99189 75184
Latin-PROIEL 100.00 100.00 19.56 | 61.55 ||100.00 18143 | 61.55 || 100.00 6155 || 100,00 61.55
Latvian 98.94 98.94 98.32 | 61.80 98189 9837 | 61i81 98,94 61180 98194 61180
Norwegian-Bokmaal 99.79 99.79 96.38 | 83.89 9978 9579 | 83l86 99,79 83,89 99\79 83189
Norwegian-Nynorsk 99.93 99.93 92.08 | 82.74 99193 92/03 | 82.68 9993 8274 99193 82174
Old Church Slavonic 99.99 99.99 40.94 | 66.29 || 10000 39114 | 66.15 99199 66129 99199 66129
Persian 100.00 99.65 97.76 | 80.33 99.65 98!74 | 8030 99148 80106 9908 79142
Polish 99.98 99.87 99.18 | 80.21 99.88 99100 | 80.20 99.09 77.98 98160 76.67
Portuguese 99.66 99.54 89.24 | 82.72 99.55 88175 | 82163 99129 82111 88,36 64171
Portuguese-BR 99.96 99.86 96.71 | 85.97 99185 96180 | 8598 99.86 85(97 89.41 67.97
Romanian 99.67 99.67 93.72 | 80.32 99162 93185 | 80i29 99.67 80132 99,67 80132
Russian 99.90 99.90 96.59 | 76.15 99,91 96148 | 76.11 99190 76,15 99190 76115
Russian-SynTagRus 99.58 99.58 97.97 | 86.80 99150 9772 | 86.70 99158 86180 99,58 86,80
Slovak 100.00 100.00 84.26 | 75.63 99199 83114 | 75143 || 100.00 75.63 || 100.00 7563
Slovenian 99.96 99.96 98.86 | 81.84 99193 98(85 | 8174 99196 81.84 99196 81.84
Slovenian-SST 99.87 99.87 13.13 | 53.94 99197 1538 | 53186 99187 53,94 99187 53194
Spanish 99.91 99.74 95.26 | 81.95 99.70 9489 | 8192 99141 81132 96.55 7175
Spanish-AnCora 99.97 99.95 98.26 | 84.95 99195 98115 | 84195 99173 84i51 99145 83.74
Swedish 99.86 99.86 95.57 | 77.58 99178 93117 | 71.30 99.86 77.58 99.86 77.58
Swedish-LinES 99.97 99.97 86.43 | 75.57 99196 85,73 | 7544 9997 75,57 99197 75157
Turkish 99.85 97.92 96.89 | 53.78 97,92 97109 | 53.73 97.28 52.58 96104 50188
Ukrainian 99.66 99.66 94.84 | 61.09 99.77 9489 | 6121 99166 61109 99166 61109
Urdu 100.00 100.00 98.32 | 77.09 ||100.00 98!60 | 77.11 || 100.00 77109 || 100,00 77,09
Uyghur 99.94 99.94 65.31 | 33.21 99185 6723 | 33118 9994 33.21 99194 33121
Vietnamese 84.26 84.26 92.87 | 39.97 82,57 92126 |138.45 84126 39,97 84.26 39197
Arabic-PUD 80.85 90.81 98.95 | 4434 90187 99110 | 44.37 89,91 48.92 80.85 36,61
Czech-PUD 99.28 99.28 95.40 | 79.67 99.29 96129 | 79.74 99128 79167 99113 79146
German-PUD 97.90 97.94 90.75 | 66.05 97183 86158 | 65.43 97.94 6605 95158 62.62
English-PUD 99.74 99.74 95.57 | 79.21 99.66 9722 | 7934 99,74 79121 99174 79121
Spanish-PUD 99.48 99.43 94.14 | 7799 99150 94136 | 78103 99130 THL78 96146 74194
Finnish-PUD 99.63 99.63 92.20 | 80.86 99160 OlI87 | 80.92 99.63 80186 99,63 80,86
French-PUD 99.81 98.86 93.33 | 74.19 98.88 96!38° | 7431 98186 74119 96115 69.79
Hindi-PUD 98.78 98.78 93.26 | 52.53 9884 9092 | 52154 9878 52153 9878 52153
Italian-PUD 99.64 99.22 94.11 | 84.03 99125 94140 | 8395 9905 83172 89,56 68,04
Japanese-PUD 92.41 92.41 95.04 | 78.36 90195 9504 |776.00 92i41 78.36 92141 7836
Portuguese-PUD 99.27 99.39 9594 | 74.43 99144 95121 | 7437 9924 74.18 89.49 60118
Russian-PUD 97.25 97.25 98.51 | 69.37 97.38 99110 | 6957 97125 69137 97125 69137
Swedish-PUD 98.35 98.35 94.44 | 70.88 98141 94,47 | 70.88 98135 70.88 98135 7088
Turkish-PUD 99.13 96.94 90.87 | 34.12 96.31 92120 | 34.02 96.02 32156 95199 3215

Table 4: Impact of tokenizer dimension 64 versus 24, no suffix rules for multi-word token splitting, and
no multi-word token splitting at all in the UDPipe 1.2 Participant System.
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Transition system and oracle

No search-based Search-based
oracle oracle
UAS | LAS UAS | LAS

Arc standard system with static oracle
Arc standard system with dynamic oracle
Swap system with static lazy oracle
Link?2 system with static oracle

7429 | 68.27 74.80 | 68.87
75.31 | 69.36 75.40 | 69.51
74.73 | 68.76 75.16 | 69.27
74.79 | 68.76 75.21 | 69.29

Any system, static oracle
Any system, any oracle

74.72 | 68.71 75.21 | 69.31
75.27 | 69.31 75.38 | 69.52

Table 6: The overall effect of search-based oracle on various transition systems.

Model configuration Mo[(;i}gs]lze N[Il(():ilr(sjz;a;d
Tokenizer dim 24 0.04 (0.03-0.15) | 27.7 (20-37)

Tokenizer dim 64 0.20 (0.19-0.31) 6.0 (4.9-8.6)
Tagger&lemmatizer 9.4 (2.3-24.8) 6.5 (2.1-14)
Parser beam size 1 14.9 (12-19)

Parser beam size 5 3.2(1.9-6.9) 2.7 (2.2-3.6)
Complete model 13.2 (4.4-31.9) 1.7 (1.2-2.3)

Table 8: UDPipe 1.2 Participant System model
size and runtime performance, displayed as a me-
dian for all the treebanks, together with the 5*" and
95" percentile. The complete model consists of a
tokenizer with character embedding and GRU cell
dimension 64, a tagger, a lemmatizer and a parser
with beam size 5.

6 Conclusions and Future Work

We described our contributions to CoNLL 2017
UD Shared Task: UDPipe 1.1 Baseline System
and UDPipe 1.2 Participant System. Both these
systems and the pretrained models are available at
http://ufal.mff.cuni.cz/udpipe under open-
source Mozilla Public Licence (MPL). Binary
tools as well as bindings for C++, Python, Perl,
Java and C# are provided.

As our future work, we consider using deeper
models in UDPipe for tokenizers, POS taggers and
especially for the parser.
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Abstract

This paper presents our submissions for
the CoNLL 2017 UD Shared Task. Our
parser, called UParse, is based on a neural
network graph-based dependency parser.
The parser uses features from a bidirec-
tional LSTM to produce a distribution over
possible heads for each word in the sen-
tence. To allow transfer learning for low-
resource treebanks and surprise languages,
we train several multilingual models for
related languages, grouped by their genus
and language families. Out of 33 partici-
pants, our system achieves rank 9th in the
main results, with 75.49 UAS and 68.87
LAS F-1 scores (average across 81 tree-
banks).

1 Introduction

Dependency parsing aims to automatically ex-
tract dependencies between words in a sentence,
in the form of tree structure. These dependen-
cies define the grammatical structure of the sen-
tence, which makes it beneficial for many natural
language applications, such as question answer-
ing (Cui et al., 2005), machine translation (Car-
reras and Collins, 2009), and information extrac-
tion (Angeli et al., 2015). The most common ap-
proaches for dependency parsing are transition-
based (Nivre et al., 2006) or graph-based (Mc-
Donald et al., 2005). Recent works also apply
neural network approaches for dependency pars-
ing (Chen and Manning, 2014; Dyer et al., 2015;
Kiperwasser and Goldberg, 2016; Zhang et al.,
2017), particularly for learning rich feature repre-
sentations that improve parser accuracy.

To train a high-quality parser, one typically
needs a large treebank, annotated with some lin-
guistic information, such as part of speech (POS)

tags, lemmas, and morphological features. How-
ever, human annotations are expensive. As a re-
sult, most of the work has been focused on few
languages, such as English, Czech, or Chinese.

The Universal Dependencies (UD; Nivre et al.
(2016)) is an initiative to develop consistent tree-
bank annotations across many languages. It pro-
vides an opportunity to perform model transfer —
using model trained on high-resource languages
to parse low-resource languages, allowing the de-
velopment of treebanks for many more languages.
Several works (McDonald et al., 2011; Zhang
and Barzilay, 2015; Duong et al., 2015a,b; Guo
et al., 2015, 2016) have shown that this technique
can help improve accuracy for low-resource lan-
guages, and in fact recent work of Ammar et al.
(2016) demonstrated that it is possible to train a
single multilingual model that works well both in
low-resource and high-resource settings.

The CoNLL 2017 UD Shared Task (Zeman
et al., 2017) uses Universal Dependencies version
2.0 (Nivre et al., 2017), with training data con-
sists of 64 treebanks from 45 languages. Some of
the challenges are the truly low-resource treebanks
(e.g., Kazakh and Uyghur with only 30 and 100
training sentences, respectively), small treebanks
without development data (e.g., Irish, French-
ParTUT, Galician-TreeGal, Ukrainian), and the
surprise languages and treebanks needed to be
parse during test phase.

To address these challenges, we designed our
system for the shared task to use both monolingual
and multilingual models. In particular:

* We train one monolingual model per high-
resource treebank in the training set.

¢ For low-resource treebanks, we train several
multilingual models, each for related lan-
guages grouped by their genus and language
families.

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 100-110,
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* For surprise languages, we train several
delexalized parsers using treebanks that are
closest to the surprise languages in terms of
language family.

Our parsing model uses pretrained word vectors,
gold universal POS tags (UPOS), and gold mor-
phological analysis (XFEATS, if available). For
the multilingual models, we also use language 1D
and replace pre-trained word vectors with multi-
lingual word vectors. For the delexicalized mod-
els, we remove the word vectors from our feature
set because we want to use the model for other
languages which use different vocabularies.

We submitted three systems, which are de-
scribed in Section 5. The final ranking of the
shared task brings our parser to the ninth place,
with average UAS and LAS, 75.49 and 68.87, re-
spectively. On the surprise languages, our system
reaches the 6th rank, with 39.17 LAS.

2 System Description

Our system, called UParse, is a combination
of monolingual, multilingual, and delexicalized
models. In this section, we describe our parsing
model which extends DENSE, the neural network
graph-based parser of Zhang et al. (2017).

2.1 DENSE Parser

DENSE (Dependency Neural Selection) is a neu-
ral graph-based parser which generates depen-
dency tree by predicting the heads of each word
in a sentence. Given an input sentence of length
N, the parser first produces N (head, dependent)
dependency arcs by greedily selecting the most
likely head word. If the predicted dependency arcs
do not result a (projective) tree structure, a maxi-
mum spanning tree algorithm will be used to ad-
just the output to a (projective) tree. In the follow-
ing, we will describe the DENSE parser in details.

Token Representations. In the first step, the
parser computes the representation of each word
in the sentence. The objective is to encode both
local (lexical meaning and POS tag) and global
information (word position and context). To do
this, the parser uses a bidirectional LSTM (bi-
LSTMs), which have shown to be effective in cap-
turing long-term dependencies. More formally, let

'As the convention in dependency parsing, we add a
dummy ROOT token to the sentence. Therefore, the result-
ing length of the sentence will be N + 1.
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S = (wp,wr,...,wy) be the input sentence of
length N, where wq denotes the artificial ROOT
token. Each input token wj is represented by x;,
which is a concatenation of its word and POS tag
embeddings, e(w;) and e(t;), respectively.

X; = [e(ws); e(t;)] (D
These representations are the input to a bi-LSTM,
which produces a sentence-specific representation
of token w; computed by concatenating the hidden
states of a forward and a backward LSTM:

a; = [h/;h!
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]

where hlf and h® denotes the hidden states of the
forward and backward LSTMs.

2

Head Predictions. For each token w;, the
parser com