
CoNLL 2017

The SIGNLL Conference on
Computational Natural Language Learning

Proceedings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies

August 3-4, 2017
Vancouver, Canada

Sponsors:

Google, Inc. DFKI Berlin CRACKER project text & form

ÚFAL Charles University
LINDAT/CLARIN

c©2017 The Association for Computational Linguistics

ISBN 978-1-945626-70-8

ii

Introduction

This volume contains papers describing systems submitted to the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies and an overview paper summarizing the task, its
features, evaluation methodology for the main and additional metrics, and some interesting observations
about the submitted systems and the task as a whole.

This Shared Task (http://universaldependencies.org/conll17/) can be seen as an
extension of the CoNLL 2007 Shared Task on parsing, but there are many important differences that
make this year’s task unique with several “firsts”. Most importantly, the data for this task come from
the Universal Dependencies project (http://universaldependencies.org), which provides
annotated treebanks for a large number of languages using the same annotation scheme for all of them.
In the shared task setting, this allows for more meaningful comparison between systems as well as
languages, since differences are much more likely due to true parser differences rather than differences
caused by annotation schemes. In addition, the number of languages for which training data were
available is unprecedented for a single shared task: a total of 64 treebanks in 45 languages have been
provided for training the systems. Additional data have been provided too, as were some baseline systems
for those who wanted to try only some particular aspect of parsing. Overall, the task can be described as
“closed”, since only pre-approved data could be used.

For evaluation, there were 81 datasets (standard datasets for the treebank languages provided for training,
plus more test sets in known languages, but based on a specially created and annotated parallel corpus,
and four surprise language test sets). Participants had to process all the test sets. The TIRA platform has
been used for evaluation, as was the case already for the CoNLL 2015 and 2016 Shared Tasks, meaning
that participants had to provide their code on a designated virtual machine to be run by the organizers
to produce official results. However, test data have been published after the official evaluation period,
and participants could run their systems at home to produce additional results they were allowed to
include in the system description papers. There was one main evaluation metric – Labeled Attachment
Score – for the main ranking table evaluating dependency parsing performance, plus additional metrics
for tokenization, word and sentence segmentation, POS tagging, lemmatization and disambiguation of
morphological features, and separate metrics computed for interesting subsets of the evaluation data.

A total of 32 systems ran successfully and have been ranked (http://universaldependencies.
org/conll17/results.html). While there are clear overall winners, we would like to thank all
participants for working hard on their submissions and adapting their systems not only to the datasets
available, but also to the evaluation platform. We would like to thank all of them for their effort, since it
is the participants who are the core of any shared task’s success.

We would like to thank the CoNLL organizers for their support and the reviewers for helping to improve
the submitted system papers. Special thanks go to Martin Potthast of the TIRA platform for handling
such a large number of systems, running often for several hours each, and for being very responsive and
helpful to us and all system participants, round the clock during the evaluation week and beyond. We
also thank to the 200+ people working on the Universal Dependencies project during the past three years,
without whom there would be no data.

Jan Hajič, Daniel Zeman, Joakim Nivre, Filip Ginter, Slav
Petrov, Milan Straka, Martin Popel, Eduard Bejček
Organizers of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies

Prague, June 2017

iii

Chair:

Jan Hajič, Charles University

Management group:

Daniel Zeman, Charles University
Joakim Nivre, Uppsala University
Filip Ginter, University of Turku
Slav Petrov, Google

Milan Straka, Charles University
Martin Popel, Charles University
Eduard Bejček, Charles University (Shared

Task Proceedings Publication Chair)

TIRA support:

Martin Potthast, University of Weimar

Support group:

Christopher Manning, Stanford University
Marie-Catherine de Marneffe, Ohio State

University
Yoav Goldberg, Bar Ilan University
Reut Tsarfaty, Open University of Israel
Sampo Pyysalo, University of Cambridge

Francis Tyers, UiT Norgga árktalaš univer-
sitehta

Jenna Kanerva, University of Turku
Çağrı Çöltekin, University of Tübingen
Juhani Luotolahti, University of Turku

Program Committee:

Lauriane Aufrant, LIMSI-CNRS, DGA
Miguel Ballesteros, IBM Research
Tiberiu Boros, , Romanian Academy
Agnieszka Falenska, University of Stuttgart
Marcos Garcia, Universidade da Coruña
Filip Ginter, University of Turku
Giuseppe Celano, Leipzig University
Johannes Heinecke, Orange Labs
James Henderson, Xerox Research Centre

Europe
Jenna Kanerva, University of Turku
Ömer Kırnap, Koç University
Adam Lopez, University of Edinburgh
Christopher Manning, Stanford University
Paola Merlo, University of Geneva
Dat Quoc Nguyen, Macquarie University
Joakim Nivre, Uppsala University

Hiroshi Noji, Nara Institute of Science and
Technology

Jungyeul Park, University of Arizona
Martin Popel, Charles University
Sudeshna Sarkar, IIT Kharagpur
Sebastian Schuster, Stanford University
Djamé Seddah, Université Paris Sorbonne
Tianze Shi, Cornell University
Pavel Sofroniev, University of Tübingen
Francis Tyers, UiT Norgga árktalaš univer-

sitehta
David Vilares, Universidade da Coruña
Hao Wang, Shanghai JiaoTong University
Katsumasa Yoshikawa, IBM Research
Deniz Yuret, Koç University
Zdeněk Žabokrtský, Charles University
Lilja Øvrelid, University of Oslo

v

Table of Contents

CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
Daniel Zeman, Martin Popel, Milan Straka, Jan Hajic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,

Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Memduh Gokirmak, Anna
Nedoluzhko, Silvie Cinkova, Jan Hajic jr., Jaroslava Hlavacova, Václava Kettnerová, Zdenka Uresova,
Jenna Kanerva, Stina Ojala, Anna Missilä, Christopher D. Manning, Sebastian Schuster, Siva Reddy,
Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria
Simi, Hiroshi Kanayama, Valeria dePaiva, Kira Droganova, Héctor Martínez Alonso, Çağrı Çöltekin,
Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marhei-
necke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran
Lertpradit, Michael Mandl, Jesse Kirchner, Hector Fernandez Alcalde, Jana Strnadová, Esha Banerjee,
Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendonca, Tatiana Lando,
Rattima Nitisaroj and Josie Li . 1

Stanford’s Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task
Timothy Dozat, Peng Qi and Christopher D. Manning . 20

Combining Global Models for Parsing Universal Dependencies
Tianze Shi, Felix G. Wu, Xilun Chen and Yao Cheng . 31

IMS at the CoNLL 2017 UD Shared Task: CRFs and Perceptrons Meet Neural Networks
Anders Björkelund, Agnieszka Falenska, Xiang Yu and Jonas Kuhn . 40

The HIT-SCIR System for End-to-End Parsing of Universal Dependencies
Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng, Huaipeng Zhao, Yang Liu, Dechuan Teng and

Ting Liu . 52

A System for Multilingual Dependency Parsing based on Bidirectional LSTM Feature Representations
KyungTae Lim and Thierry Poibeau . 63

Adversarial Training for Cross-Domain Universal Dependency Parsing
Motoki Sato, Hitoshi Manabe, Hiroshi Noji and Yuji Matsumoto . 71

Parsing with Context Embeddings
Ömer Kırnap, Berkay Furkan Önder and Deniz Yuret . 80

Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe
Milan Straka and Jana Straková . 88

UParse: the Edinburgh system for the CoNLL 2017 UD shared task
Clara Vania, Xingxing Zhang and Adam Lopez . 100

Multi-Model and Crosslingual Dependency Analysis
Johannes Heinecke and Munshi Asadullah . 111

TurkuNLP: Delexicalized Pre-training of Word Embeddings for Dependency Parsing
Jenna Kanerva, Juhani Luotolahti and Filip Ginter . 119

The parse is darc and full of errors: Universal dependency parsing with transition-based and graph-
based algorithms

Kuan Yu, Pavel Sofroniev, Erik Schill and Erhard Hinrichs .126

vii

A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing
Dat Quoc Nguyen, Mark Dras and Mark Johnson . 134

A non-DNN Feature Engineering Approach to Dependency Parsing – FBAML at CoNLL 2017 Shared
Task

Xian Qian and Yang Liu . 143

A non-projective greedy dependency parser with bidirectional LSTMs
David Vilares and Carlos Gómez-Rodríguez . 152

LIMSI@CoNLL’17: UD Shared Task
Lauriane Aufrant, Guillaume Wisniewski and François Yvon . 163

RACAI’s Natural Language Processing pipeline for Universal Dependencies
Stefan Daniel Dumitrescu, Tiberiu Boroş and Dan Tufiş . 174

Delexicalized transfer parsing for low-resource languages using transformed and combined treebanks
Ayan Das, Affan Zaffar and Sudeshna Sarkar . 182

A Transition-based System for Universal Dependency Parsing
Hao Wang, Hai Zhao and Zhisong Zhang . 191

Corpus Selection Approaches for Multilingual Parsing from Raw Text to Universal Dependencies
Ryan Hornby, Clark Taylor and Jungyeul Park . 198

From Raw Text to Universal Dependencies - Look, No Tags!
Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne, Yoav Goldberg

and Joakim Nivre . 207

Initial Explorations of CCG Supertagging for Universal Dependency Parsing
Burak Kerim Akkuş, Heval Azizoglu and Ruket Cakici . 218

CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years Later
Christophe Moor, Paola Merlo, James Henderson and Haozhou Wang. .228

A Fast and Lightweight System for Multilingual Dependency Parsing
Tao Ji, Yuanbin Wu and Man Lan . 237

The ParisNLP entry at the ConLL UD Shared Task 2017: A Tale of a #ParsingTragedy
Eric De La Clergerie, Benoît Sagot and Djamé Seddah . 243

Universal Joint Morph-Syntactic Processing: The Open University of Israel’s Submission to The CoNLL
2017 Shared Task

Amir More and Reut Tsarfaty . 253

A Semi-universal Pipelined Approach to the CoNLL 2017 UD Shared Task
Hiroshi Kanayama, Masayasu Muraoka and Katsumasa Yoshikawa . 265

A rule-based system for cross-lingual parsing of Romance languages with Universal Dependencies
Marcos Garcia and Pablo Gamallo . 274

viii

Conference Program

Overview

CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal De-
pendencies
Daniel Zeman, Martin Popel, Milan Straka, Jan Hajic, Joakim Nivre, Filip Gin-
ter, Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Ty-
ers, Elena Badmaeva, Memduh Gokirmak, Anna Nedoluzhko, Silvie Cinkova,
Jan Hajic jr., Jaroslava Hlavacova, Václava Kettnerová, Zdenka Uresova, Jenna
Kanerva, Stina Ojala, Anna Missilä, Christopher D. Manning, Sebastian Schus-
ter, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de
Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria dePaiva,
Kira Droganova, Héctor Martínez Alonso, Çağrı Çöltekin, Umut Sulubacak, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marhei-
necke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu,
Emily Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirchner, Hector Fernandez
Alcalde, Jana Strnadová, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko
Shimada, Sookyoung Kwak, Gustavo Mendonca, Tatiana Lando, Rattima Nitisaroj
and Josie Li

Systems

Stanford’s Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task
Timothy Dozat, Peng Qi and Christopher D. Manning

Combining Global Models for Parsing Universal Dependencies
Tianze Shi, Felix G. Wu, Xilun Chen and Yao Cheng

IMS at the CoNLL 2017 UD Shared Task: CRFs and Perceptrons Meet Neural
Networks
Anders Björkelund, Agnieszka Falenska, Xiang Yu and Jonas Kuhn

The HIT-SCIR System for End-to-End Parsing of Universal Dependencies
Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng, Huaipeng Zhao, Yang Liu,
Dechuan Teng and Ting Liu

A System for Multilingual Dependency Parsing based on Bidirectional LSTM Fea-
ture Representations
KyungTae Lim and Thierry Poibeau

Adversarial Training for Cross-Domain Universal Dependency Parsing
Motoki Sato, Hitoshi Manabe, Hiroshi Noji and Yuji Matsumoto

Parsing with Context Embeddings
Ömer Kırnap, Berkay Furkan Önder and Deniz Yuret

Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe
Milan Straka and Jana Straková

ix

Systems (continued)

UParse: the Edinburgh system for the CoNLL 2017 UD shared task
Clara Vania, Xingxing Zhang and Adam Lopez

Multi-Model and Crosslingual Dependency Analysis
Johannes Heinecke and Munshi Asadullah

TurkuNLP: Delexicalized Pre-training of Word Embeddings for Dependency Pars-
ing
Jenna Kanerva, Juhani Luotolahti and Filip Ginter

The parse is darc and full of errors: Universal dependency parsing with transition-
based and graph-based algorithms
Kuan Yu, Pavel Sofroniev, Erik Schill and Erhard Hinrichs

A Novel Neural Network Model for Joint POS Tagging and Graph-based Depen-
dency Parsing
Dat Quoc Nguyen, Mark Dras and Mark Johnson

A non-DNN Feature Engineering Approach to Dependency Parsing – FBAML at
CoNLL 2017 Shared Task
Xian Qian and Yang Liu

A non-projective greedy dependency parser with bidirectional LSTMs
David Vilares and Carlos Gómez-Rodríguez

LIMSI@CoNLL’17: UD Shared Task
Lauriane Aufrant, Guillaume Wisniewski and François Yvon

RACAI’s Natural Language Processing pipeline for Universal Dependencies
Stefan Daniel Dumitrescu, Tiberiu Boroş and Dan Tufiş

Delexicalized transfer parsing for low-resource languages using transformed and
combined treebanks
Ayan Das, Affan Zaffar and Sudeshna Sarkar

A Transition-based System for Universal Dependency Parsing
Hao Wang, Hai Zhao and Zhisong Zhang

x

Systems (continued)

Corpus Selection Approaches for Multilingual Parsing from Raw Text to Universal
Dependencies
Ryan Hornby, Clark Taylor and Jungyeul Park

From Raw Text to Universal Dependencies - Look, No Tags!
Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne,
Yoav Goldberg and Joakim Nivre

Initial Explorations of CCG Supertagging for Universal Dependency Parsing
Burak Kerim Akkuş, Heval Azizoglu and Ruket Cakici

CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years
Later
Christophe Moor, Paola Merlo, James Henderson and Haozhou Wang

A Fast and Lightweight System for Multilingual Dependency Parsing
Tao Ji, Yuanbin Wu and Man Lan

The ParisNLP entry at the ConLL UD Shared Task 2017: A Tale of a #Parsing-
Tragedy
Eric De La Clergerie, Benoît Sagot and Djamé Seddah

Universal Joint Morph-Syntactic Processing: The Open University of Israel’s Sub-
mission to The CoNLL 2017 Shared Task
Amir More and Reut Tsarfaty

A Semi-universal Pipelined Approach to the CoNLL 2017 UD Shared Task
Hiroshi Kanayama, Masayasu Muraoka and Katsumasa Yoshikawa

A rule-based system for cross-lingual parsing of Romance languages with Universal
Dependencies
Marcos Garcia and Pablo Gamallo

xi

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 1–19,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies

Daniel Zeman1, Martin Popel1, Milan Straka1, Jan Hajič1, Joakim Nivre2,
Filip Ginter3, Juhani Luotolahti3, Sampo Pyysalo4, Slav Petrov5, Martin Potthast6,
Francis Tyers7, Elena Badmaeva8, Memduh Gökırmak9, Anna Nedoluzhko1, Silvie

Cinková1, Jan Hajič jr.1, Jaroslava Hlaváčová1, Václava Kettnerová1, Zdeňka Urešová1,
Jenna Kanerva3, Stina Ojala3, Anna Missilä3, Christopher Manning10, Sebastian

Schuster10, Siva Reddy10, Dima Taji11, Nizar Habash11, Herman Leung12,
Marie-Catherine de Marneffe13, Manuela Sanguinetti14, Maria Simi15, Hiroshi

Kanayama16, Valeria de Paiva17, Kira Droganova1, Héctor Martı́nez Alonso18, Çağrı
Çöltekin19, Umut Sulubacak9, Hans Uszkoreit20, Vivien Macketanz20, Aljoscha

Burchardt20, Kim Harris21, Katrin Marheinecke21, Georg Rehm20, Tolga Kayadelen5,
Mohammed Attia5, Ali Elkahky5, Zhuoran Yu5, Emily Pitler5, Saran Lertpradit5,

Michael Mandl5, Jesse Kirchner5, Hector Fernandez Alcalde5, Jana Strnadová5, Esha
Banerjee5, Ruli Manurung5, Antonio Stella5, Atsuko Shimada5, Sookyoung Kwak5,

Gustavo Mendonça5, Tatiana Lando5, Rattima Nitisaroj5, and Josie Li5

1Charles University, Faculty of Mathematics and Physics
2Uppsala University, 3University of Turku, 4University of Cambridge

5Google, 6Bauhaus-Universität Weimar, 7UiT The Arctic University of Norway
8University of the Basque Country, 9Istanbul Technical University

10Stanford University, 11New York University Abu Dhabi, 12City University of Hong Kong
13Ohio State University, 14University of Turin, 15University of Pisa, 16IBM Research, 17Nuance

Communications, 18INRIA – Paris 7, 19University of Tübingen, 20DFKI, 21text & form

{zeman|popel|straka|hajic}@ufal.mff.cuni.cz
joakim.nivre@lingfil.uu.se, {figint|mjluot}@utu.fi
slav@google.com, martin.potthast@uni-weimar.de

Abstract
The Conference on Computational Natu-
ral Language Learning (CoNLL) features
a shared task, in which participants train
and test their learning systems on the same
data sets. In 2017, one of two tasks was
devoted to learning dependency parsers for
a large number of languages, in a real-
world setting without any gold-standard
annotation on input. All test sets followed
a unified annotation scheme, namely that
of Universal Dependencies. In this paper,
we define the task and evaluation method-
ology, describe data preparation, report
and analyze the main results, and provide
a brief categorization of the different ap-
proaches of the participating systems.

1 Introduction

Ten years ago, two CoNLL shared tasks were a
major milestone for parsing research in general
and dependency parsing in particular. For the first
time dependency treebanks in more than ten lan-
guages were available for learning parsers. Many
of them were used in follow-up work, evaluating
parsers on multiple languages became standard,
and multiple state-of-the-art, open-source parsers
became available, facilitating production of de-
pendency structures to be used in downstream ap-
plications. While the two tasks (Buchholz and
Marsi, 2006; Nivre et al., 2007) were extremely
important in setting the scene for the following
years, there were also limitations that complicated
application of their results: (1) gold-standard to-

1

kenization and part-of-speech tags in the test data
moved the tasks away from real-world scenarios,
and (2) incompatible annotation schemes made
cross-linguistic comparison impossible. CoNLL
2017 has picked up the threads of those pioneer-
ing tasks and addressed these two issues.1

The focus of the 2017 task was learning syn-
tactic dependency parsers that can work in a real-
world setting, starting from raw text, and that can
work over many typologically different languages,
even surprise languages for which there is little
or no training data, by exploiting a common syn-
tactic annotation standard. This task has been
made possible by the Universal Dependencies ini-
tiative (UD) (Nivre et al., 2016), which has de-
veloped treebanks for 50+ languages with cross-
linguistically consistent annotation and recover-
ability of the original raw texts.

Participating systems had to find labeled syn-
tactic dependencies between words, i.e., a syntac-
tic head for each word, and a label classifying the
type of the dependency relation. No gold-standard
annotation (tokenization, sentence segmentation,
lemmas, morphology) was available in the input
text. However, teams wishing to concentrate just
on parsing were able to use segmentation and mor-
phology predicted by the baseline UDPipe system
(Straka et al., 2016).

2 Data

In general, we wanted the participating systems to
be able to use any data that is available free of
charge for research and educational purposes (so
that follow-up research is not obstructed). We de-
liberately did not place upper bounds on data sizes
(in contrast to e.g. Nivre et al. (2007)), despite the
fact that processing large amounts of data may be
difficult for some teams. Our primary objective
was to determine the capability of current parsers
with the data that is currently available.

In practice, the task was formally closed, i.e.,
we listed the approved data resources so that all
participants were aware of their options. How-
ever, the selection was rather broad, ranging from
Wikipedia dumps over the OPUS parallel corpora
(Tiedemann, 2012) to morphological transducers.
Some of the resources were proposed by the par-
ticipating teams.

1Outside CoNLL, there were several other parsing tasks
in the meantime, which naturally also explored previously
unadressed aspects—for example SANCL (Petrov and Mc-
Donald, 2012) or SPMRL (Seddah et al., 2013, 2014).

We provided dependency-annotated training
and test data, and also large quantities of crawled
raw texts. Other language resources are available
from third-party servers and we only referred to
the respective download sites.

2.1 Training Data: UD 2.0
Training and development data come from the
Universal Dependencies (UD) 2.0 collection
(Nivre et al., 2017b). Unlike previous UD re-
leases, the test data was not included in UD 2.0. It
was kept hidden until the evaluation phase of the
shared task terminated. In some cases, the under-
lying texts had been known from previous UD re-
leases but the annotation had not (UD 2.0 follows
new annotation guidelines that are not backward-
compatible).

64 UD treebanks in 45 languages were available
for training. 15 languages had two or more train-
ing treebanks from different sources, often also
from different domains.

56 treebanks contained designated development
data. Participants were asked not to use it for train-
ing proper but only for evaluation, development,
tuning hyperparameters, doing error analysis etc.
The 8 remaining treebanks were small and had
only training data (and even these were extremely
small in some cases, especially for Kazakh and
Uyghur). For those treebanks cross-validation
had to be used during development, but the entire
dataset could be used for training once hyperpa-
rameters were determined.

Participants received the training and develop-
ment data with gold-standard tokenization, sen-
tence segmentation, POS tags and dependency
relations; and for some languages also lemmas
and/or morphological features.

Cross-domain and cross-language training was
allowed and encouraged. Participants were free to
train models on any combination of the training
treebanks and apply it to any test set. They were
even allowed to use the training portions of the 6
UD 2.0 treebanks that were excluded from evalu-
ation (see Section 2.3).

2.2 Supporting Data
To enable the induction of custom embeddings and
the use of semi-supervised methods in general,
the participants were provided with supporting re-
sources primarily consisting of large text corpora
for (nearly) all of the languages in the task, as well
as embeddings pre-trained on these corpora.

2

Raw texts The supporting raw data was gath-
ered from CommonCrawl, which is a publicly
available web crawl created and maintained by the
non-profit CommonCrawl foundation.2 The data
is publicly available in the Amazon cloud both as
raw HTML and as plain text. It is collected from a
number of independent crawls from 2008 to 2017,
and totals petabytes in size.

We used cld23 as the language detection engine
because of its speed, available Python bindings
and large coverage of languages. Language de-
tection was carried out on the first 1024 bytes of
each plaintext document. Deduplication was car-
ried out using hashed document URLs, a simple
strategy found in our tests to be effective for coarse
duplicate removal. The data for each language was
capped at 100,000 tokens per a single input file.

Automatic tokenization, morphology and pars-
ing The raw texts were further processed in or-
der to generate automatic tokenization, segmenta-
tion, morphological annotations and dependency
trees.

At first, basic cleaning was performed – para-
graphs with erroneous encoding or less than 16
characters were dropped, remaining paragraphs
converted to Normalization Form KC (NFKC)4

and again deduplicated. Then the texts were seg-
mented and tokenized, multi-word tokens split
into words, and sentences with less than 5 words
dropped. Because we wanted to publish the re-
sulting corpus, we shuffled the sentences and also
dropped sentences with more than 80 words at
this point for licensing reasons. The segmenta-
tion and tokenization was obtained using the base-
line UDPipe models described in Section 5. These
models were also used to further generate auto-
matic morphological annotations (lemmas, UPOS,
XPOS and FEATS) and dependency trees.

The resulting corpus contains 5.9 M sentences
and 90 G words in 45 languages and is available
in CoNLL-U format (Ginter et al., 2017). The per-
language sizes of the corpus are listed in Table 1

Precomputed word embeddings We also pre-
computed word embeddings using the segmented
and tokenized plain texts. Because UD words can
contain spaces, these in-word spaces were con-

2http://commoncrawl.org/ Except for Ancient
Greek, which was gathered from the Perseus Digital Library.

3http://github.com/CLD2Owners/cld2
4http://unicode.org/reports/tr15/

Language Words
English (en) 9,441 M
German (de) 6,003 M
Portuguese (pt) 5,900 M
Spanish (es) 5,721 M
French (fr) 5,242 M
Polish (pl) 5,208 M
Indonesian (id) 5,205 M
Japanese (ja) 5,179 M
Italian (it) 5,136 M
Vietnamese (vi) 4,066 M
Turkish (tr) 3,477 M
Russian (ru) 3,201 M
Swedish (sv) 2,932 M
Dutch (nl) 2,914 M
Romanian (ro) 2,776 M
Czech (cs) 2,005 M
Hungarian (hu) 1,624 M
Danish (da) 1,564 M
Chinese (zh) 1,530 M
Norwegian-Bokmål (no) 1,305 M
Persian (fa) 1,120 M
Finnish (fi) 1,008 M
Arabic (ar) 963 M
Catalan (ca) 860 M
Slovak (sk) 811 M
Greek (el) 731 M
Hebrew (he) 615 M
Croatian (hr) 583 M
Ukrainian (uk) 538 M
Korean (ko) 527 M
Slovenian (sl) 522 M
Bulgarian (bg) 370 M
Estonian (et) 328 M
Latvian (lv) 276 M
Galician (gl) 262 M
Latin (la) 244 M
Basque (eu) 155 M
Hindi (hi) 91 M
Norwegian-Nynorsk (no) 76 M
Kazakh (kk) 54 M
Urdu (ur) 46 M
Irish (ga) 24 M
Ancient Greek (grc) 7 M
Uyghur (ug) 3 M
Kurdish (kmr) 3 M
Upper Sorbian (hsb) 2 M
Buryat (bxr) 413 K
North Sámi (sme) 331 K
Old Church Slavonic (cu) 28 K
Total 90,669 M

Table 1: The supporting data overview: the num-
ber of words (M = million; K = thousand) for each
language.

3

verted to Unicode character NO-BREAK SPACE
(U+00A0).5

The dimensionality of the word embeddings
was chosen to be 100 after thorough discussion
– more dimensions may yield better results and
are commonly used, but even with just 100, the
uncompressed word embeddings for the 45 lan-
guages take 135 GiB. Also note that Andor et al.
(2016) achieved state-of-the-art results with 64 di-
mensions.

The word embeddings were precomputed using
word2vec (Mikolov et al., 2013) with the fol-
lowing options:
word2vec -min-count 10 -size 100
-window 10 -negative 5 -iter 2
-threads 16 -cbow 0 -binary 0.

The precomputed word embeddings are available
on-line (Ginter et al., 2017).

2.3 Test Data: UD 2.0

The main part of test data comprises test sets cor-
responding to 63 of the 64 training treebanks.6

Test sets from two different treebanks of one lan-
guage were evaluated separately as if they were
different languages. Every test set contained at
least 10,000 words or punctuation marks. UD
2.0 treebanks that were smaller than 10,000 words
were excluded from the evaluation. Among the
treebanks that were able to provide the required
amount of test data, there are 8 treebanks so small
that the remaining data could not be split to train-
ing and development portions; for two of them,
the data left for training is only a tiny sample (529
words in Kazakh, 1662 in Uyghur). There was no
upper limit on the test data; the largest treebank
had a test set comprising 170K words.

Although the 63 test sets correspond to UD 2.0
treebanks, they were not released with UD 2.0.
They were kept hidden and only published af-
ter the evaluation phase of the shared task (Nivre
et al., 2017a).

2.4 New Parallel Test Sets

In addition, there were test sets for which no corre-
sponding training data sets exist: 4 “surprise” lan-
guages (described in Section 2.5) and 14 test sets
of a new Parallel UD (PUD) treebank (described
in this section). These test sets were created for

5Using udpipe --output=horizontal.
6We had to withdraw the test set from the Italian ParTUT

treebank because it turned out to significantly overlap with
the training data of the larger Italian treebank in UD 2.0.

this shared task, i.e., not included in any previous
UD release.

The PUD treebank consists of 1000 sentences
currently in 18 languages (15 K to 27 K words, de-
pending on the language), which were randomly
picked from on-line newswire and Wikipedia;7

usually only a few sentences per source document.
750 sentences were originally English, the remain-
ing 250 sentences come from German, French,
Italian and Spanish texts. They were translated
by professional translators to 14 languages (i.e.,
15 languages with the original: Arabic, Chi-
nese, English, French, German, Hindi, Indonesian,
Italian, Japanese, Korean, Portuguese, Russian,
Spanish, Thai and Turkish; but four languages—
Chinese, Indonesian, Korean and Thai—were ex-
cluded from the shared task due to consistency is-
sues). Translators were instructed to prefer trans-
lations closer to original grammatical structure,
provided it is still a fluent sentence in the target
language. In some cases, picking a correct trans-
lation was difficult because the translators did not
see the context of the original document. The
translations were organized at DFKI and text &
form, Germany; they were then tokenized, mor-
phologically and syntactically annotated at Google
following guidelines based on McDonald et al.
(2013), and finally converted to proper UD v2 an-
notation style by volunteers from the UD com-
munity using the Udapi framework (Popel et al.,
2017).8 Three additional translations (Czech,
Finnish and Swedish) were contributed and anno-
tated natively in UD v2 by teams from Charles
University, University of Turku and Uppsala Uni-
versity, respectively.

The Google dependency representation pre-
dates Universal Dependencies, deriving from the
scheme used by McDonald et al. (2013), i.e., Stan-
ford Dependencies 2.0 with the option to make
copula verbs heads (de Marneffe and Manning,
2008, section 4.7) and Google Universal POS tags
(Petrov et al., 2011). Various tree transformations
were needed to convert it to UD.9 For example,
prepositions and copula verbs are phrasal heads in
Google annotation but must be dependent function
words in UD. Similarly, some POS tags differ in
the two schemes; particularly hard were conjunc-

7The two domains are encoded in sentence ids but this
information is not visible to the systems participating in the
shared task.

8http://udapi.github.io/
9using ud.Google2ud from the Udapi framework

4

tions, where the Google tag set does not distin-
guish coordinators (CCONJ in UD) from subordi-
nators (SCONJ). Some bugs, for example where
verbs had multiple subjects or objects, or where
function words were not leaves, were detected au-
tomatically10 and fixed manually.

Finally, the most prominent consistency issues
lay in tokenization and word segmentation, espe-
cially in languages where it interacts with mor-
phology or where the writing system does not
clearly mark word boundaries. The tokenizers
used before manual annotation were not necessar-
ily compatible with existing UD treebanks, yet in
the shared task it was essential to make the seg-
mentation consistent with the training data. We
were able to fix some problems, such as unmarked
multi-word tokens in European languages,11 and
we were even able to re-segment Japanese (note
that this often involved new dependency rela-
tions); on the other hand, we had to exclude Ko-
rean for not being able to fix it in time.

Many transformations were specific to individ-
ual languages. For example, in the original to-
kenization of Arabic, the definite article al- was
separated from the modified word, which is com-
parable to the D3 tokenization scheme (Habash,
2010). This scheme was inconsistent with the to-
kenization of the Arabic training data, hence it
had to be changed. Text-level normalization fur-
ther involved removal of the shadda diacritical
mark (marking consonant gemination), which is
optional in Arabic orthography and does not oc-
cur in the training data. On the POS level, the ac-
tive and passive participles and verbal nouns (mas-
dars) were annotated as verbs. For Arabic, how-
ever, these should be mapped to NOUN. Once we
changed the tags, we also had to modify the sur-
rounding relations to those used with nominals.

Like some UD treebanks, the parallel data con-
tains information on document boundaries. They
are projected as empty lines to the raw text pre-
sented to parsers, and they can be exploited to im-
prove sentence segmentation. Note that due to the
way the sentences were collected, the paragraphs
are rather short.12

10using ud.MarkBugs from the Udapi framework
11using Udapi’s ud.de.AddMwt for German, and similarly

for Spanish (es), French (fr) and Portuguese (pt). For all
languages, we applied ud.ComplyWithText to make sure the
concatenation of tokens matches exactly the original raw text.

12A special case is Arabic where we artificially marked ev-
ery sentence as a separate paragraph, to make it more con-
sistent with somewhat unusual segmentation of the existing

The fact that the data is parallel was not ex-
ploited in this task. Participating systems were
told the language code so they could select an ap-
propriate model. All parallel test sets were in lan-
guages that have at least one training treebank in
UD 2.0 (although the domain may differ).

After the evaluation phase these parallel test sets
were published together with the main test data;
in the future they will become part of regular UD
releases.

2.5 Surprise Languages
The second type of additional test sets were sur-
prise languages, which had not been previously
released in UD. Names of surprise languages
(Buryat, Kurmanji Kurdish, North Sámi and Up-
per Sorbian) and small samples of gold-standard
data (about 20 sentences) were published one
week before the beginning of the evaluation phase.
Crawled raw texts were provided too, though in
much smaller quantity than for the other lan-
guages. The point of having surprise languages
was to encourage participants to pursue truly mul-
tilingual approaches to parsing, utilizing data from
other languages.

As with all other test sets, the systems were
able to use segmentation and part-of-speech tags
predicted by the baseline UDPipe system (in this
case UDPipe was trained and applied in a 10-fold
cross-validation manner directly on the test data;
hence this is the only annotation that the partici-
pants were given but could not produce with their
own models).

Note that the smallest non-surprise languages
(Kazakh, Uyghur) were asking for multilingual
approaches as well, given that the amount of their
own training data was close to zero. The differ-
ence was that participants at least knew in advance
what these languages were and had more time to
determine the most suitable training model. On
the other hand, the segmentation and tagging mod-
els for these languages were only trained on the
tiny training data, i.e., they were much worse than
the models for the surprise languages. In this sense
parsing of Kazakh and Uyghur was even harder
than parsing the surprise languages.

When compared to the training data available
in UD 2.0, the genetically closest language to
Kazakh and Uyghur is Turkish; but it uses a dif-

UD Arabic treebank. This gave an advantage to systems that
were able to take paragraph boundaries into account, includ-
ing those that re-used the baseline segmentation.

5

ferent writing system, and the Turkish dataset it-
self is not particularly large. For Kurmanji Kur-
dish, the closest relative is Persian, again with dif-
ferent script and other reservations. Buryat is a
Mongolic language written in Cyrillic script and
does not have any close relative in UD. North Sámi
is an Finno-Ugric language; Finnish and Estonian
UD data could be expected to be somewhat sim-
ilar. Finally, Upper Sorbian is a West Slavic lan-
guage spoken in Germany; among the many Slavic
languages in UD, Czech and Polish are its closest
relatives.

In summary, the test data consisted of 81 files
in 49 languages (55 test sets from “big” UD 2.0
treebanks, 8 “small” treebanks, 14 parallel test sets
and 4 surprise-language test sets).

3 Evaluation Metrics

The standard evaluation metric of dependency
parsing is the labeled attachment score (LAS), i.e.,
the percentage of nodes with correctly assigned
reference to parent node, including the label (type)
of the relation. When parsers are applied to raw
text, the metric must be adjusted to the possibility
that the number of nodes in gold-standard anno-
tation and in the system output vary. Therefore,
the evaluation starts with aligning system nodes
and gold nodes. A dependency relation cannot be
counted as correct if one of the nodes could not be
aligned to a gold node. LAS is then re-defined as
the harmonic mean (F1) of precision P and recall
R, where

P =
#correctRelations

#systemNodes
(1)

R =
#correctRelations

#goldNodes
(2)

LAS =
2PR

P + R
(3)

Note that attachment of all nodes including
punctuation is evaluated. LAS is computed sep-
arately for each of the 81 test files and a macro-
average of all these scores serves as the main met-
ric for system ranking in the task.

3.1 Token Alignment
UD defines two levels of token/word segmenta-
tion. The lower level corresponds to what is usu-
ally understood as tokenization. However, unlike
some popular tokenization schemes, it does not

include any normalization of the non-whitespace
characters. We can safely assume that any two tok-
enizations of a text differ only in whitespace while
the remaining characters are identical. There is
thus a 1-1 mapping between gold and system non-
whitespace characters, and two tokens are aligned
if all their characters match.

3.2 Syntactic Word Alignment

The higher segmentation level is based on the no-
tion of syntactic word. Some languages contain
multi-word tokens (MWT) that are regarded as
contractions of multiple syntactic words. For ex-
ample, the German token zum is a contraction of
the preposition zu “to” and the article dem “the”.

Syntactic words constitute independent nodes in
dependency trees. As shown by the example, it
is not required that the MWT is a pure concate-
nation of the participating words; the simple to-
ken alignment thus does not work when MWTs
are involved. Fortunately, the CoNLL-U file for-
mat used in UD clearly marks all MWTs so we
can detect them both in system output and in gold
data. Whenever one or more MWTs have overlap-
ping spans of surface character offsets, the longest
common subsequence algorithm is used to align
syntactic words within these spans.

3.3 Sentence Segmentation

Words are aligned and dependencies are evaluated
in the entire file without considering sentence seg-
mentation. Still, the accuracy of sentence bound-
aries has an indirect impact on LAS: any missing
or extra sentence boundary necessarily makes one
or more dependency relations incorrect.

3.4 Invalid Output

If a system fails to produce one of the 81 files or
if the file is not valid CoNLL-U format, the score
of that file (counting towards the system’s macro-
average) is zero.

Formal validity is defined more leniently than
for UD-released treebanks. For example, a non-
existent dependency type does not render the
whole file invalid, it only costs the system one in-
correct relation. However, cycles and multi-root
sentences are disallowed. A file is also invalid
if there are character mismatches that could make
the token alignment algorithm fail.

6

3.5 CLAS
Content-word Labeled Attachment Score (CLAS)
has been proposed as an alternative parsing metric
that is tailored to the UD annotation style and more
suitable for cross-language comparison (Nivre and
Fang, 2017). It differs from LAS in that it only
considers relations between content words. At-
tachment of function words is disregarded because
it corresponds to morphological features in other
languages (and morphology is not evaluated in this
shared task). Furthermore, languages with many
function words (e.g., English) have longer sen-
tences than morphologically rich languages (e.g.,
Finnish), hence a single error in Finnish costs the
parser significantly more than an error in English.
CLAS also disregards attachment of punctuation.

As CLAS is still experimental, we have desig-
nated full LAS as our main evaluation metric; nev-
ertheless, a large evaluation campaign like this is a
great opportunity to study the behavior of the new
metric, and we present both scores in Section 6.

4 Evaluation Methodology

Key goals of any empirical evaluation are to en-
sure a blind evaluation, its replicability, and its
reproducibility. To facilitate these goals, we
employed the cloud-based evaluation platform
TIRA (Potthast et al., 2014),13 which implements
the evaluation as a service paradigm (Hanbury
et al., 2015). In doing so, we depart from the
traditional submission of system output to shared
tasks, which lacks in these regards, toward the
submission of working software. Naturally, soft-
ware submissions bring about additional overhead
for both organizers and participants, whereas the
goal of an evaluation platform like TIRA is to re-
duce this overhead to a bearable level. Still be-
ing an early prototype, though, TIRA fulfills this
goal only with some reservations. Nevertheless,
the scale of the CoNLL 2017 UD Shared Task
also served as a test of scalability of the evalua-
tion as a service paradigm in general as well as
that of TIRA in particular.

4.1 Blind Evaluation
Traditionally, evaluations in shared tasks are half-
blind (the test data are shared with participants
while the ground truth is withheld), whereas out-
side shared tasks, say, during paper-writing, evalu-
ations are typically pseudo-blind (the test data and

13http://www.tira.io/

ground truth are accessible, yet, ignored until the
to-be-evaluated software is ready). In both cases,
remaining blind to the test data is one of the cor-
nerstones of evaluation, and has a significant im-
pact on the validity of evaluation results. While
outside shared tasks, one can only trust that pa-
per authors do not spoil their evaluation by implic-
itly or explicitly exploiting their knowledge of the
test data, within shared tasks, another factor comes
into play, namely the fact that shared tasks are also
competitions.

Dependent on its prestige, winning a shared task
comes along with a lot of visibility, so that supply-
ing participants with the test data up front bears
risks of mistakes that spoil the ground truth, and of
cheating. Here, TIRA implements a proper solu-
tion which ensures blind evaluation, an airlock for
data. On demand, software deployed at TIRA is
locked in the datalock together with the test data,
where it can process the data and have its output
recorded. Otherwise, all communication channels
to the outside are closed or tightly moderated to
prevent data leakage. However, closing down all
communication channels also has its downsides,
since participants cannot check up on their run-
ning software anymore, or have to ask organizers
to do so, which increases the turnaround time to fix
bugs. Participants were only able to learn whether
they achieved a non-zero score on each of the 81
test files; a zero score signaled a bug, in which
case the task moderator would make the diagnostic
output visible to the participants. Such interaction
was only possible when the system run completed;
before that, even the task moderator would not see
whether the system was really producing output
and not just sitting in an endless loop. Especially
given the scale of operations this year, this turned
out to be a major obstacle for some participants;
TIRA needs to be improved by offering more fine-
grained process monitoring tools, both for orga-
nizers and participants.

4.2 Replicability and Reproducibility

The replicability of an evaluation depends on
whether the same results can be obtained from
re-running an experiment using the same setup,
whereas reproducibility refers to achieving results
that are commensurate with a reference evalua-
tion, for instance, when exchanging the test data
with alternative test data. Both are important as-
pects of an evaluation, the former pertaining to

7

its reliability, and the latter to its validity. En-
suring both requires that a to-be-evaluated soft-
ware is preserved in working condition for as long
as possible. Traditionally, shared tasks do not
take charge of participant software preservation,
mostly because the software remains with partic-
ipants, and since open sourcing the software un-
derlying a paper is still the exception rather than
the rule. To ensure both, TIRA supplies partici-
pants with a virtual machine, offering a range of
commonly used operating systems in order not to
limit the choice of technology stacks and devel-
opment environments. Once deployed and tested,
the virtual machines are archived to preserve the
software within.

Many participants agreed to share their code so
that we decided to collect the respective projects
in a kind of open source proceedings at GitHub.14

4.3 Resource Allocation
The allocation of an appropriate amount of com-
puting resources (especially CPUs and RAM,
whereas disk space is cheap enough) to each par-
ticipant proved to be difficult, since minimal re-
quirements were unknown. When asked, par-
ticipants typically request liberal amounts of re-
sources, just to be on the safe side, whereas assign-
ing too much up front would not be economical
nor scale well. We hence applied a least commit-
ment strategy with an initial assignment of 1 CPU
and 4 GB RAM. More resources were granted on
request, the limit being the size of the underlying
hardware. When it comes to exploiting available
resources, a lot depends on programming prowess,
whereas more resources do not necessarily trans-
late into better performance. This is best exempli-
fied by the fact that with 4 CPUs and 16 GB RAM,
the winning team Stanford used only a quarter the
amount of resources of the second and third win-
ners, respectively. The team on fourth (sixth) place
was even more frugal, getting by with 1 CPU and
8 GB RAM (4 GB RAM). All of the aforemen-
tioned teams’ approaches exceed the LAS level of
70%.

5 Baseline System

5.1 UDPipe
We prepared a set of baseline models using UD-
Pipe (Straka et al., 2016) version 1.1. A slightly
improved version—UDPipe 1.2—was submitted

14https://github.com/CoNLL-UD-2017

by Straka and Straková (2017) as one of the com-
peting systems. Straka and Straková (2017) de-
scribe both these versions in more detail.

The baseline models were released together
with the UD 2.0 training data, one model for each
treebank. Because only training and development
data were available during baseline model train-
ing, we put aside a part of the training data for
hyperparameter tuning, and evaluated the base-
line model performance on development data. We
called this data split baseline model split. The
baseline models, the baseline model split, and
also UD 2.0 training data with morphology pre-
dicted by 10-fold jack-knifing (cross-validation),
are available on-line (Straka, 2017).

UDPipe baseline models are able to reconstruct
nearly all annotation from CoNLL-U files – they
can generate segmentation, tokenization, multi-
word token splitting, morphological annotation
(lemmas, UPOS, XPOS and FEATS) and depen-
dency trees. Participants were free to use any part
of the model in their systems – for all test sets,
we provided UDPipe processed variants in addi-
tion to raw text inputs. We provided the UD-
Pipe processed variant even for surprise languages
– however, only segmentation, tokenization and
morphology, generated by 10-fold jack-knifing, as
described in Section 2.5.

Baseline UDPipe Shared Task System We fur-
ther used the baseline models as a baseline sys-
tem in the shared task. We used the corresponding
models for the UD 2.0 test data.

For the new parallel treebanks, we used UD
2.0 baseline models of the corresponding lan-
guages. If there were several treebanks for one
language, we arbitrarily chose the one named af-
ter the language only (e.g., we chose ru and not
ru syntagrus). Unfortunately, we did not ex-
plicitly mention this choice to the participants and
this arbitrary choice had a large impact on results –
some contestant systems fell below UDPipe base-
line just because of choosing different treebanks
to train on for the parallel treebanks. (On the other
hand, there was no guarantee that the models se-
lected in the baseline system would be optimal.)

For each surprise language, we also chose one
baseline model to apply. Even if most words are
unknown to the baseline model, universal POS
tags can be used to drive the parsing, making
the baseline model act similar to a delexicalized
parser. We chose a baseline model to maximize

8

Team LAS
1. Stanford (Dozat et al.) 76.30
2. C2L2 (Shi et al.) 75.00
3. IMS (Björkelund et al.) 74.42
4. HIT-SCIR (Che et al.) 72.11
5. LATTICE (Lim and Poibeau) 70.93
6. NAIST SATO (Sato et al.) 70.14
7. Koç University (Kırnap et al.) 69.76
8. ÚFAL (Straka and Straková) 69.52
9. UParse (Vania et al.) 68.87

10. Orange (Heinecke and Asadullah) 68.61
11. TurkuNLP (Kanerva et al.) 68.59
12. darc (Yu et al.) 68.41
13. BASELINE UDPipe 1.1 68.35
14. MQuni (Nguyen et al.) 68.05
15. fbaml (Qian and Liu) 67.87
16. LyS (Vilares and Gómez-Rodrı́guez) 67.81
17. LIMSI (Aufrant and Wisniewski) 67.72
18. RACAI (Dumitrescu et al.) 67.71
19. IIT Kharagpur (Das et al.) 67.61
20. naistCL (no paper) 67.59
21. Wanghao-ftd-SJTU (Wang et al.) 66.53
22. UALING (Hornby et al.) 65.24
23. Uppsala (de Lhoneux et al.) 65.11
24. METU (Akkuş et al.) 61.98
25. CLCL (Moor et al.) 61.82
26. Mengest (Ji et al.) 61.33
27. ParisNLP (De La Clergerie et al.) 60.02
28. OpenU (More and Tsarfaty) 56.56
29. TRL (Kanayama et al.) 43.07
30. MetaRomance (Garcia and Gamallo) 34.05
31. UT (no paper) 21.10
32. ECNU (no paper) 3.18
33. Wenba-NLU (no paper) 0.58

Table 2: Ranking of the participating systems by
the main evaluation metric, the labeled attach-
ment F1-score, macro-averaged over 81 test sets.
Pairs of systems with significantly (p < 0.05) dif-
ferent LAS are separated by a line. Names of
several teams are abbreviated in the table: LyS-
FASTPARSE, OpenU NLP Lab, Orange – Deskiñ
and ÚFAL – UDPipe 1.2. Citations refer to the
corresponding system-description papers in this
volume.

the accuracy on the released sample for each sur-
prise language, resulting in Finnish FTB, Polish,
Finnish FTB and Slovak models for the surprise

Team CLAS F1

1. Stanford (Stanford) 72.57
2. C2L2 (Ithaca) 70.91
3. IMS (Stuttgart) 70.18
4. HIT-SCIR (Harbin) 67.63
5. LATTICE (Paris) 66.16
6. NAIST SATO (Nara) 65.15
7. Koç University (İstanbul) 64.61
8. ÚFAL – UDPipe 1.2 (Praha) 64.36
9. Orange – Deskiñ (Lannion) 64.15

10. TurkuNLP (Turku) 63.61
11. UParse (Edinburgh) 63.55
12. darc (Tübingen) 63.24
13. BASELINE UDPipe 1.1 63.02

Table 3: Average CLAS F1 score.

languages Buryat, Kurmanji, North Sámi and Up-
per Sorbian, respectively.

5.2 SyntaxNet

Another set of baseline models was prepared by
Alberti et al. (2017) based on improved version of
the SyntaxNet system (Andor et al., 2016). Pre-
trained models were provided for UD 2.0 data.

However, no SyntaxNet models were prepared
for the surprise languages, therefore, the Syn-
taxNet baseline is not part of the official results.

6 Results

6.1 Official Parsing Results

Table 2 gives the main ranking of participating
systems by the LAS F1 score macro-averaged over
all 81 test files. The table also shows the perfor-
mance of the baseline UDPipe system; the base-
line is relatively strong and only 12 of the 32 sys-
tems managed to outperform it.

We used bootstrap resampling to compute 95%
confidence intervals: they are in the range ±0.11
to ±0.15 (% LAS) for all systems except the three
lowest-scoring ones. We used paired bootstrap
resampling to compute whether the difference in
LAS is significant (p < 0.05) for each pair of sys-
tems.15

6.2 Secondary Metrics

In addition to the main LAS ranking, we evaluated
the systems along multiple other axes, which may

15using Udapi’s eval.Conll17, marked by the presence or
absence of vertical lines in Table 2.

9

Team Toks Wrds Sents
1. IMS 98.92 98.81 89.10
2. LIMSI 98.95 98.68 88.49
3. ÚFAL – UDPipe 1.2 98.89 98.63 88.68
4. HIT-SCIR 98.95 98.62 88.91
5. ParisNLP 98.85 98.58 88.61
6. Wanghao-ftd-SJTU 98.81 98.55 88.40

darc 98.81 98.55 88.66
8. BASELINE UDPipe 98.77 98.50 88.49

C2L2 98.77 98.50 88.49
CLCL 98.77 98.50 88.49
IIT Kharagpur 98.77 98.50 88.49
Koç University 98.77 98.50 88.49
LATTICE 98.77 98.50 88.49
LyS-FASTPARSE 98.77 98.50 88.49
METU 98.77 98.50 88.49
MQuni 98.77 98.50 88.49
NAIST SATO 98.77 98.50 88.49
Orange – Deskiñ 98.77 98.50 88.49
Stanford 98.77 98.50 88.49
TurkuNLP 98.77 98.50 88.49
UALING 98.77 98.50 88.49
UParse 98.77 98.50 88.49
naistCL 98.77 98.50 88.49

24. RACAI 98.58 98.39 87.52
25. OpenU NLP Lab 98.77 98.38 88.49
26. Uppsala 97.64 98.20 89.03

Table 4: Tokenization, word segmentation and
sentence segmentation (ordered by word F1

scores; out-of-order scores in the other two
columns are bold).

shed more light on their strengths and weaknesses.
This section provides an overview of selected sec-
ondary metrics for systems matching or surpassing
the baseline; a large number of additional results
is available at the shared task website.16

The website also features a LAS ranking of
unofficial system runs, i.e. those that were not
marked by their teams as primary runs, or were
even run after the official evaluation phase closed
and test data were unblinded. At least two differ-
ences from the official results are remarkable; both
seem to be partially inflicted by the blind evalua-
tion on TIRA and the inability of the participants
to see the diagnostic messages from their software.
In the first case, the Dynet library seems to pro-

16http://universaldependencies.org/
conll17/results.html

Team UPOS Feats Lemm
1. Stanford 93.09 38.81 82.46
2. IMS 91.98 82.99 62.83
3. ParisNLP 91.91 38.89 75.32
4. ÚFAL – UDPipe 1.2 91.22 82.50 71.17
5. HIT-SCIR 91.13 81.90 83.74
6. TurkuNLP 91.10 82.58 82.64
7. LIMSI 91.05 82.49 82.64
8. darc 91.00 82.48 82.60
9. CLCL 90.88 82.31 82.46

10. BASELINE UDPipe 90.88 82.31 82.45
C2L2 90.88 82.31 82.46
IIT Kharagpur 90.88 82.31 82.46
Koç University 90.88 82.31 82.46
LATTICE 90.88 82.31 82.46
LyS-FASTPARSE 90.88 82.31 79.14
NAIST SATO 90.88 82.31 82.46
Orange – Deskiñ 90.88 38.81 15.38
UALING 90.88 82.31 82.46
UParse 90.88 82.31 82.46
naistCL 90.88 82.31 82.46

Table 5: Universal POS tags, features and lemmas
(ordered by UPOS F1 scores).

duce suboptimal results when deployed on a ma-
chine different from the one where it was trained.
Several teams used the library and may have been
affected; for the Uppsala team (de Lhoneux et al.,
2017) the issue led to official LAS = 65.11 (23rd
place) instead of 69.66 (9th place). In the sec-
ond case, the ParisNLP system (De La Clergerie
et al., 2017) used a wrong method of recogniz-
ing the input language, which was not supported
in the test data (but unfortunately it was possi-
ble to get along with it in development and trial
data). Simply crashing could mean that the task
moderator would show the team their diagnostic
output and they would fix the bug; however, the
parser was robust enough to switch to a language-
agnostic mode and produced results that were not
great, but also not so bad to alert the moderator
and make him investigate. Thus the official LAS
of the system is 60.02 (27th place) while without
the bug it could have been 70.35 (6th place).

Table 3 ranks the systems by CLAS instead of
LAS (see Section 3.5). The scores are lower than
LAS but differences in system ranking are mini-
mal, possibly indicating that optimization towards

10

one of the metrics does not make the parser bad
with respect to the other.

Table 4 evaluates detection of tokens, syntactic
words and sentences. Half of the systems simply
trusted the segmentation offered by the baseline
system. 7 systems were able to improve baseline
segmentation. For most languages and in aggre-
gate, the ability to improve parsing scores through
better segmentation was probably negligible, but
for a few languages, such as Chinese and Viet-
namese, the UDPipe baseline segmentation was
not so strong and several teams, notably IMS, ap-
pear to have improved their LAS by several per-
cent through use of improved segmentation.

The systems were not required to generate any
morphological annotation (part-of-speech tags,
features or lemmas). Some parsers do not even
need morphology and learn to predict syntactic de-
pendencies directly from text. Nevertheless, sys-
tems that did output POS tags, and had them at
least as good as the baseline system, are evalu-
ated in Table 5. Note that as with segmentation,
morphology predicted by the baseline system was
available and some systems simply copied it to the
output.

6.3 Partial Results

Table 6 gives the LAS F1 score averaged over
the 55 “big” treebanks (training data larger than
test data, development data available). Higher
scores reflect the fact that models for these test
sets are easier to learn: enough data is available,
no cross-lingual or cross-domain learning is nec-
essary (the parallel test sets are not included here).
When compared to Table 2, four new teams now
surpass the baseline, LyS-FASTPARSE being the
best among them. The likely explanation is that
the systems can learn good models but are not so
good at picking the right model for unknown do-
mains and languages.

Table 7 gives the LAS F1 score on the four sur-
prise languages only. The globally best system,
Stanford, now falls back to the fourth rank while
C2L2 (Cornell University) apparently employs the
most successful strategy for underresourced lan-
guages. Another immediate observation is that
our surprise languages are very hard to parse; ac-
curacy under 50% is hardly useful for any down-
stream processing. However, there are significant
language-by-language differences, the best score
on Upper Sorbian surpassing 60%. This proba-

Team LAS F1

1. Stanford (Stanford) 81.77
2. C2L2 (Ithaca) 79.85
3. IMS (Stuttgart) 79.60
4. HIT-SCIR (Harbin) 77.45
5. LATTICE (Paris) 75.79
6. NAIST SATO (Nara) 75.64
7. LyS-FASTPARSE (A Coruña) 74.55
8. Koç University (İstanbul) 74.39
9. ÚFAL – UDPipe 1.2 (Praha) 74.38

10. TurkuNLP (Turku) 74.19
11. Orange – Deskiñ (Lannion) 74.13
12. MQuni (Sydney) 74.03
13. LIMSI (Paris) 73.64
14. UParse (Edinburgh) 73.56
15. darc (Tübingen) 73.31
16. fbaml (Palo Alto) 73.11
17. BASELINE UDPipe 1.1 73.04

Table 6: Average attachment score on the 55 “big”
treebanks.

bly owes to the presence of many Slavic treebanks
in training data, including some of the largest
datasets in UD.

In contrast, the results on the 8 small non-
surprise treebanks (Table 8) are higher on average,
but again the variance is huge. Uyghur (best score
43.51) is worse than three surprise languages, and
Kazakh (best score 29.22) is the least parsable
test set of all (see Table 10). These two tree-
banks are outliers in the size of training data (529
words Kazakh and 1662 words Uyghur, while the
other “small” treebanks have between 10K and
20K words). However, the only “training data”
of the surprise languages are samples of 147 to
460 words, yet they seem to be easier for some
systems. It would be interesting to know whether
the more successful systems took a similar ap-
proach to Kazakh and Uyghur as to the surprise
languages.

Table 9 gives the average LAS on the 14 new
parallel test sets (PUD). Three of them (Turkish,
Arabic and Hindi) proved difficult to parse for any
model trained on the UD 2.0 training data; it seems
likely that besides domain differences, inconsis-
tent application of the UD annotation guidelines
played a role, too.

See Table 10 for a ranking of all test sets by
the best LAS achieved on them by any parser.
Note that this cannot be directly interpreted as a

11

Team LAS F1

1. C2L2 (Ithaca) 47.54
2. IMS (Stuttgart) 45.32
3. HIT-SCIR (Harbin) 42.64
4. Stanford (Stanford) 40.57
5. ParisNLP (Paris) 39.22
6. UParse (Edinburgh) 39.17
7. Koç University (İstanbul) 38.81
8. Orange – Deskiñ (Lannion) 38.72
9. LIMSI (Paris) 37.57

10. IIT Kharagpur (Kharagpur) 37.17
11. BASELINE UDPipe 1.1 37.07

Table 7: Average attachment score on the 4 sur-
prise languages: Buryat (bxr), Kurmanji (kmr),
North Sámi (sme) and Upper Sorbian (hsb).

Team LAS F1

1. C2L2 (Ithaca) 61.49
2. Stanford (Stanford) 61.02
3. IMS (Stuttgart) 58.76
4. LATTICE (Paris) 54.78
5. HIT-SCIR (Harbin) 54.77
6. fbaml (Palo Alto) 54.64
7. RACAI (Bucureşti) 54.26
8. TurkuNLP (Turku) 54.19
9. ÚFAL – UDPipe 1.2 (Praha) 53.76

10. NAIST SATO (Nara) 53.52
11. Koç University (İstanbul) 53.36
12. darc (Tübingen) 52.46
13. UALING (Tucson) 52.27
14. Wanghao-ftd-SJTU (Shanghai) 52.13
15. BASELINE UDPipe 1.1 51.80

Table 8: Average attachment score on the 8
small treebanks: French ParTUT, Galician Tree-
Gal, Irish, Kazakh, Latin, Slovenian SST, Uyghur
and Ukrainian.

ranking of languages by their parsing difficulty:
many treebanks have high ranks simply because
the corresponding training data is large. The ta-
ble also gives a secondary ranking by CLAS and
indicates the system that achieved the best LAS /
CLAS (mostly the same system won by both met-
rics). Finally, the best score of word and sen-
tence segmentation is given (without indicating
the best-scoring system). Vietnamese proved to
be the hardest language in terms of word seg-
mentation; it is not surprising given that its writ-

Team LAS F1

1. Stanford (Stanford) 73.73
2. C2L2 (Ithaca) 71.49
3. IMS (Stuttgart) 71.31
4. LATTICE (Paris) 70.77
5. NAIST SATO (Nara) 69.83
6. Koç University (İstanbul) 69.76
7. HIT-SCIR (Harbin) 69.51
8. MQuni (Sydney) 69.28
9. ÚFAL – UDPipe 1.2 (Praha) 69.00

10. UParse (Edinburgh) 68.91
11. Orange – Deskiñ (Lannion) 68.64
12. TurkuNLP (Turku) 68.56
13. BASELINE UDPipe 1.1 68.33

Table 9: Average attachment score on the 14 par-
allel test sets (PUD).

ing system allows spaces inside words. Second
hardest was Hebrew, probably due to a large num-
ber of multi-word tokens. In both cases the poor
segmentation correlates with poor parsing accu-
racy. Sentence segmentation was particularly dif-
ficult for treebanks without punctuation, i.e., most
of the classical languages and spoken data (the
best score achieved on the Spoken Slovenian Tree-
bank is only 21.41%). On the other hand, the
paragraph boundaries available in some treebanks
made sentence detection significantly easier (the
extreme being Arabic PUD with one sentence per
paragraph; some systems were able to exploit this
anomaly and get 100% correct segmentation).

7 Analysis of Submitted Systems

Table 11 gives an overview of 29 of the systems
evaluated in the shared task. The overview is
based on a post-evaluation questionnaire to which
29 of 32 teams responded. The abbreviations used
in Table 11 are explained in Table 12.

As we can see from Table 11, the typical sys-
tem uses the baseline models for segmentation and
morphological analysis (including part-of-speech
tagging), employs a single parsing model with pre-
trained word embeddings provided by the organiz-
ers, and does not make use of any additional data.
For readability, all the cells corresponding to use
of baseline models (and lack of additional data)
have been shaded gray.

Only 7 teams have developed their own word
and sentence segmenters, while an additional 5

12

Treebank LAS F1 CLAS F1 Best system Word Sent
1. ru syntagrus 92.60 1. 90.11 Stanford 99.69 98.64
2. hi 91.59 6. 87.92 Stanford 100.00 99.29
3. sl 91.51 2. 88.98 Stanford 99.96 99.24
4. pt br 91.36 8. 87.48 Stanford 99.86 96.84
5. ja 91.13 26. 83.18 TRL 98.59 95.11
6. ca 90.70 10. 86.70 Stanford 99.97 99.43
7. it 90.68 13. 86.18 Stanford 99.85 99.07
8. cs cac 90.43 4. 88.31 Stanford 99.99 100.00
9. pl 90.32 5. 87.94 Stanford 99.90 99.59

10. cs 90.17 3. 88.44 Stanford 99.99 95.10
11. es ancora 89.99 14. 86.15 Stanford 99.95 98.67
12. no bokmaal 89.88 7. 87.67 Stanford 99.88 96.44
13. bg 89.81 11. 86.53 Stanford 99.92 93.36
14. no nynorsk 88.81 12. 86.41 Stanford 99.93 94.56
15. fi pud 88.47 9. 86.82 Stanford 99.63 93.67
16. it pud 88.14 17. 84.49 Stanford 99.27 97.81
17. fr partut 88.13 24. 83.58 C2L2 99.56 99.13
18. nl lassysmall 87.71 15. 85.22 Stanford 99.99 85.33
19. pt 87.65 25. 83.27 Stanford 99.54 91.67
20. el 87.38 23. 83.59 Stanford 99.94 92.68
21. fr sequoia 87.31 20. 84.09 C2L2 99.49 84.60
22. es 87.29 32. 82.08 Stanford 99.81 95.37
23. la ittb 87.02 16. 84.94 Stanford 99.99 94.34
24. fi ftb 86.81 19. 84.12 Stanford 99.99 86.98
25. fa 86.31 28. 82.93 Stanford 99.65 99.25
26. sk 86.04 21. 83.86 Stanford 100.00 85.32
27. ro 85.92 33. 81.87 Stanford 99.77 96.57
28. sv 85.87 22. 83.71 Stanford 99.87 97.26
29. cs cltt 85.82 27. 83.05 C2L2 99.82 95.69
30. fi 85.64 18. 84.25 Stanford 99.69 90.88
31. en pud 85.51 29. 82.63 Stanford 99.74 98.06
32. fr 85.51 31. 82.14 Stanford 99.50 94.58
33. hr 85.25 30. 82.36 Stanford 99.93 97.75
34. en partut 84.46 39. 79.80 C2L2 99.61 98.40
35. cs pud 84.42 35. 81.60 Stanford 99.29 96.43
36. ja pud 83.75 50. 75.63 HIT-SCIR 94.93 97.52
37. ru 83.65 34. 81.80 Stanford 99.94 97.16
38. gl 83.23 43. 78.05 Stanford 99.98 96.36
39. da 82.97 37. 80.03 Stanford 100.00 82.59
40. sv lines 82.89 38. 79.92 Stanford 99.98 87.89
41. ko 82.49 36. 80.85 Stanford 99.73 93.05
42. ur 82.28 49. 75.88 Stanford 100.00 98.60
43. en 82.23 41. 78.99 Stanford 99.03 78.01
44. en lines 82.09 42. 78.71 Stanford 99.96 87.55
45. eu 81.44 40. 79.71 Stanford 99.99 99.83
46. es pud 81.05 53. 74.60 Stanford 99.48 98.19
47. de 80.71 46. 76.97 Stanford 99.67 80.47
48. nl 80.48 52. 75.19 Stanford 99.88 77.14
49. id 79.19 45. 77.15 Stanford 100.00 92.66
50. fr pud 78.81 44. 77.37 Stanford 98.87 96.55
51. sv pud 78.49 47. 76.48 Stanford 98.56 95.52
52. pt pud 78.48 56. 72.80 C2L2 99.45 97.32
53. hu 77.56 48. 76.08 Stanford 99.85 96.56
54. cu 76.84 51. 75.59 IMS 100.00 50.44
55. ru pud 75.71 55. 73.13 Stanford 98.29 98.95
56. uk 75.33 57. 71.72 Stanford 99.92 95.75
57. grc proiel 75.28 60. 69.73 IMS 100.00 51.38
58. de pud 74.86 54. 73.96 Stanford 98.00 91.40
59. gl treegal 74.34 65. 67.59 C2L2 98.76 86.74
60. lv 74.01 58. 70.22 Stanford 99.45 98.80
61. grc 73.19 64. 67.59 Stanford 100.00 98.96
62. ar 72.90 61. 69.15 IMS 95.53 85.69
63. et 71.65 59. 69.85 Stanford 99.89 93.66
64. la proiel 71.55 63. 68.93 IMS 100.00 40.63
65. got 71.36 62. 69.02 IMS 100.00 41.65
66. ga 70.06 67. 61.38 Stanford 99.73 96.92
67. zh 68.56 66. 64.23 IMS 94.57 98.80
68. he 68.16 68. 61.10 IMS 91.37 100.00
69. la 63.37 70. 58.96 Stanford 100.00 99.20
70. tr 62.79 69. 60.01 Stanford 97.95 97.04
71. hsb 61.70 71. 56.32 C2L2 / Stanford 99.84 91.65
72. sl sst 59.07 72. 54.30 C2L2 100.00 21.41
73. hi pud 54.49 73. 48.87 Stanford 99.65 94.85
74. ar pud 49.94 75. 46.32 IMS 96.05 100.00
75. sme 48.96 74. 48.42 C2L2 99.88 99.13
76. kmr 47.53 76. 44.54 C2L2 98.85 98.64
77. vi 47.51 77. 44.12 IMS 87.30 92.95
78. ug 43.51 78. 34.07 IMS 99.94 70.47
79. tr pud 38.22 79. 32.32 IMS 96.93 93.91
80. bxr 32.24 80. 26.32 IMS / ParisNLP 99.35 93.69
81. kk 29.22 81. 25.14 RACAI 96.56 89.35

Table 10: Treebank ranking by best parser LAS.
Bold CLAS is higher than the preceding one. Best
F1 of word and sentence segmentation is also
shown. ISO 639 language codes are optionally fol-
lowed by a treebank code.

teams have retrained or improved the baseline
models, or combined them with other techniques.
When it comes to part-of-speech tags and mor-
phology, 7 teams use their own systems and 4 use
modified versions of the baseline, while 2 teams
predict tags jointly with parsing and 3 teams do
not predict morphology at all.

For parsing, most teams use a single parsing
model – transition-based, graph-based or even
rule-based – but 4 teams build ensemble systems
in one way or the other. It is worth noting that,
whereas the C2L2 and IMS systems are ensem-
bles, the winning Stanford system is not, which
makes its performance even more impressive.

The majority of parsers incorporate pre-trained
word embeddings. Only 3 parsers use word em-
beddings without pre-training, and only 4 parsers
do not incorporate word embeddings at all. Except
for training word embeddings, the additional data
provided (or permitted) appears to have been used
very sparingly.

When it comes to the surprise languages (and
some of the other low-resource languages), the
dominant approach is to use a cross-lingual parser,
single- or multi-source, and often delexicalized.
Finally, for the parallel test sets, most teams have
picked a model trained on a single treebank from
the same language, but at least 4 teams have
trained models on multiple treebanks.

8 Conclusion

The CoNLL 2017 Shared Task on UD parsing was
novel in several respects. Besides using cross-
linguistically consistent linguistic representations
and emphasizing end-to-end processing of text, as
discussed in the introduction, it was unusual also
in featuring a very large number of languages,
in integrating cross-lingual learning for resource-
poor languages, and in using a multiply parallel
test set.

It was the first large-scale evaluation on data an-
notated in the Universal Dependencies style. For
most UD languages the results represent a new
state of the art for dependency parsing. The num-
bers are not directly comparable to some older
work for various reasons (different annotation
schemes, gold-standard POS tags, tokenization
etc.) but the way the task was organized should en-
sure their reproducibility and comparability in the
future. Furthermore, parsing results are now more
comparable across languages than ever before.

13

System R Segment Morph/POS Parsing Embed AddData Surp Para
C2L2 2 Base Aux Ensemble-GT Random None Cross-MD Single
CLCL 25 Base Base Single Random None Cross-M ?
darc 12 UDP Own Single-T Base None Cross Single
fbaml 15 Own Own Single Base None Mono ?
HIT-SCIR 4 Own None Single/Ensemble Base OPUS Cross Single
IIT Kharagpur 19 Base Base Single-T Base None Cross-MD All/Single
IMS 3 B/O Own Ensemble-GT Base None Cross All
Koç University 7 Base Base Single Crawl None Cross ?
LATTICE 5 Base Base Single B/O/FB Wiki/OPUS Cross All
LIMSI 17 B/UDP Base B/Single-T Base OPUS Cross Single
LyS-FASTPARSE 16 Base Base Single-T Base None Cross Single
Mengest 26 Base Base Single-T Crawl None Canon Single
MetaRomance 30 Base Base Single-R None None Canon ?
METU 24 Base Base Single-T Base PTB/CCG Cross Single
MQuni 14 Base Joint Single-G Random None Mono Single
NAIST SATO 6 Base Base Single Base None Canon Single
OpenU NLP Lab 28 B/UDP B/O Single-T None None Cross Single
Orange-Deskiñ 10 Base None Single Crawl None Cross Single
ParisNLP 27 B/UDP/O B/UDP/O/AG Single B/C None Cross Single
RACAI 18 Own Own Single-G Crawl None Cross ?
Stanford 1 Base Own Single-G B/FB None Cross-MD Single
TRL 29 Own Own Single-R None None Cross-SD Single
TurkuNLP 11 Base Base/UDP Single-T Crawl None Cross-S Single
UALING 22 Base Base Base Base None Cross ?
ÚFAL – UDPipe 1.2 8 Own UDP Single-T Treebank None Cross All/Single
UParse 9 Base Base B/Single-G O/FB OPUS Cross Single
Uppsala 23 Own None Single-T Treebank None Cross-M Single
UT 31 Base Own/AG Ensemble FB None Cross-S ?
Wanghao-ftd-SJTU 21 Own Base Single None None Cross-D ?

Table 11: Classification of participating systems. The second column repeats the main system ranking.

Two new language resources were produced
whose usefulness reaches far beyond the task it-
self: A UD-style parallel treebank in 18 languages,
and a large, web-crawled parsebank in 48 lan-
guages, over 90 billion words in total.

The analysis of the shared task results has so far
only scratched the surface, and we refer to the sys-
tem description papers for more in-depth analysis
of individual systems and their performance. For
many previous CoNLL shared tasks, the task it-
self has only been the starting point of a long and
fruitful research strand, enabled by the resources
created for the task. We hope and believe that the
2017 UD parsing task will join this tradition.

Acknowledgments

We are grateful to all the contributors to Universal
Dependencies; without their effort a task like this
simply wouldn’t be possible.

The work described herein, including data
preparation for the CoNLL 2017 UD Shared
Task, has been supported by the following
grants and projects: “CRACKER,” H2020 Project
No. 645357 of the European Commission;
“MANYLA,” Grant No. GA15-10472S of the

Grant Agency of the Czech Republic; FIN-
CLARIN.

The data for the CoNLL 2017 UD Shared Task
are available via the LINDAT/CLARIN repository,
which is part of a research infrastructure project
funded by the Ministry of Education, Youth and
Sports of the Czech Republic, Project. No.
LM2015071.

The parallel evaluation set was made possi-
ble by contributions from DFKI (sentence selec-
tion and translation), Google (initial treebanking)
and UD volunteers (translation to additional lan-
guages, annotation and conversion to UD v2).

References
Burak Kerim Akkuş, Heval Azizoğlu, and Ruket

Çakıcı. 2017. Initial explorations of CCG supertag-
ging for Universal Dependency parsing. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael
Collins, Dan Gillick, Lingpeng Kong, Terry
Koo, Ji Ma, Mark Omernick, Slav Petrov,
Chayut Thanapirom, Zora Tung, and David
Weiss. 2017. Syntaxnet models for the conll

14

Abbreviation Explanation
Segment Word and sentence segmentation
B(ase) Baseline UDPipe
UDP Adapted/retrained UDPipe
O(wn) Own system for word and sentence segmentation
Morph Morphological analysis (including part-of-speech tags)
None No prediction of tags or morphological features
B(ase) Baseline UDPipe
UDP Adapted/retrained UDPipe
Own Own system for predicting tags and/or morphological features
AG Apertium/Giellatekno morphological analyzers
Aux Tags predicted as an auxiliary task during parser training
Joint Tags predicted jointly with parsing
Parsing Parsing technique
B(ase) Baseline UDPipe
Single Single parser
Ensemble Ensemble of several parsers
Suffixes G = Graph-based

T = Transition-based
R = Rule-based (with statistics or unsupervised learning)

Embed Word embeddings
B(ase) Pre-trained word embeddings provided by organizers
C(rawl) Word embeddings trained on the crawled data provided by organizers
Treebank Word embeddings trained (only) on the UD treebanks
O Word embeddings trained on data from OPUS
FB Pre-trained embeddings released by Facebook
Random Randomly initialized (trained only with parser)
AddData Additional data used (over and above treebanks + raw text)
None No additional data
OPUS Parallel data from OPUS
Wiki Wikipedia dumps
PTB Penn Treebank (sic)
CCG CCGBank (sic)
Surp Approach to surprise languages
Mono Monolingual parser trained on dev data
Canon Single canonical model for all surprise languages
Cross Cross-lingual parsing
Suffixes S = Single-source

M = Multi-source
D = Delexicalized

Para Approach to parallel test sets
Single Model trained on a single treebank from each language
All Model trained on all treebanks from each language

Table 12: Abbreviations used in Table 11.

2017 shared task. CoRR abs/1703.04929.
http://arxiv.org/abs/1703.04929.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-
12, 2016, Berlin, Germany, Volume 1: Long Papers.
http://aclweb.org/anthology/P/P16/P16-1231.pdf.

Lauriane Aufrant and Guillaume Wisniewski. 2017.
LIMSI@CoNLL’17: UD shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Anders Björkelund, Agnieszka Faleńska, Xiang Yu,
and Jonas Kuhn. 2017. IMS at the CoNLL 2017
UD shared task: CRFs and perceptrons meet neu-
ral networks. In Proceedings of the CoNLL 2017

Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL-X). As-
sociation for Computational Linguistics, pages 149–
164. http://anthology.aclweb.org/W/W06/W06-
29.pdf#page=165.

Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng,
Huaipeng Zhao, Yang Liu, and Ting Liu. 2017. The
HIT-SCIR system for end-to-end parsing of Univer-
sal Dependencies. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Association for
Computational Linguistics.

Ayan Das, Zaffar Affan, and Sudeshna Sarkar. 2017.
Delexicalized transfer parsing for low-resource lan-

15

guages using transformed and combined treebanks.
In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal De-
pendencies. Association for Computational Linguis-
tics.

Eric De La Clergerie, Benoı̂t Sagot, and Djamé Seddah.
2017. The ParisNLP entry at the CoNLL UD shared
task 2017: A tale of a #parsingtragedy. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017. From raw text to Universal
Dependencies - look, no tags! In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Associa-
tion for Computational Linguistics.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008. Stanford typed dependencies
manual. Technical report, Stanford University.
http://nlp.stanford.edu/software/dependencies_manual.pdf.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Stefan Daniel Dumitrescu, Tiberiu Boroş, and Dan
Tufiş. 2017. RACAI’s natural language processing
pipeline for Universal Dependencies. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Marcos Garcia and Pablo Gamallo. 2017. A rule-based
system for cross-lingual parsing of Romance lan-
guages with universal dependencies. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies. As-
sociation for Computational Linguistics.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan Straka,
and Daniel Zeman. 2017. CoNLL 2017 shared task -
automatically annotated raw texts and word embed-
dings. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics, Charles
University. http://hdl.handle.net/11234/1-1989.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing, volume 3. Morgan & Claypool
Publishers.

Allan Hanbury, Henning Müller, Krisztian Balog, Tor-
ben Brodt, Gordon V. Cormack, Ivan Eggel, Tim
Gollub, Frank Hopfgartner, Jayashree Kalpathy-
Cramer, Noriko Kando, Anastasia Krithara, Jimmy
Lin, Simon Mercer, and Martin Potthast. 2015.
Evaluation-as-a-Service: Overview and Outlook.
ArXiv e-prints http://arxiv.org/abs/1512.07454.

Johannes Heinecke and Munshi Asadullah. 2017.
Multi-model and crosslingual dependency analysis.
In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal De-
pendencies. Association for Computational Linguis-
tics.

Ryan Hornby, Clark Taylor, and Jungyeul Park. 2017.
Corpus selection approaches for multilingual pars-
ing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. Association for Computational Linguistics.

Tao Ji, Yuanbin Wu, and Man Lan. 2017. A fast
and lightweight system for multilingual dependency
parsing. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. Association for Computational
Linguistics.

Hiroshi Kanayama, Masayasu Muraoka, and Kat-
sumasa Yoshikawa. 2017. A semi-universal
pipelined approach to the CoNLL 2017 UD shared
task. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. Association for Computational
Linguistics.

Jenna Kanerva, Juhani Luotolahti, and Filip Ginter.
2017. TurkuNLP: Delexicalized pre-training of
word embeddings for dependency parsing. In Pro-
ceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependen-
cies. Association for Computational Linguistics.

Ömer Kırnap, Berkay Furkan Önder, and Deniz Yuret.
2017. Parsing with context embeddings. In Pro-
ceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependen-
cies. Association for Computational Linguistics.

Kyungtae Lim and Thierry Poibeau. 2017. A system
for multilingual dependency parsing based on bidi-
rectional LSTM feature representations. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Univer-
sal dependency annotation for multilingual parsing.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics. Sofia, Bul-
garia.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems. pages

16

3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.

Christophe Moor, Paola Merlo, James Henderson, and
Haozhou Wang. 2017. Geneva DINN parser: a neu-
ral network dependency parser ten years later. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. Association for Computational Linguistics.

Amir More and Reut Tsarfaty. 2017. Universal joint
morph-syntactic processing: The Open University of
Israel’s submission to the CoNLL 2017. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Dat Quoc Nguyen, Mark Dras, and Mark Johnson.
2017. A novel neural network model for joint POS
tagging and graph-based dependency parsing. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. Association for Computational Linguistics.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Aljoscha Bur-
chardt, Marie Candito, Gauthier Caron, Gülşen Ce-
biroğlu Eryiğit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho,
Silvie Cinková, Çağrı Çöltekin, Miriam Connor,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Marhaba Eli, Ali
Elkahky, Tomaž Erjavec, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Katarína Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Filip Ginter, Iakes Goenaga, Koldo
Gojenola, Memduh Gökırmak, Yoav Goldberg,
Xavier Gómez Guinovart, Berta Gonzáles Saave-
dra, Matias Grioni, Normunds Grūzı̄tis, Bruno Guil-
laume, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh
Hà Mỹ, Kim Harris, Dag Haug, Barbora Hladká,
Jaroslava Hlaváčová, Petter Hohle, Radu Ion,
Elena Irimia, Anders Johannsen, Fredrik Jørgensen,
Hüner Kaşıkara, Hiroshi Kanayama, Jenna Kan-
erva, Tolga Kayadelen, Václava Kettnerová, Jesse
Kirchner, Natalia Kotsyba, Simon Krek, Sooky-
oung Kwak, Veronika Laippala, Lorenzo Lam-
bertino, Tatiana Lando, Phương Lê Hồng, Alessan-
dro Lenci, Saran Lertpradit, Herman Leung,
Cheuk Ying Li, Josie Li, Nikola Ljubešić, Olga
Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina
Mărănduc, David Mareček, Katrin Marheinecke,
Héctor Martínez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gus-
tavo Mendonça, Anna Missilä, Verginica Mi-
titelu, Yusuke Miyao, Simonetta Montemagni, Amir

More, Laura Moreno Romero, Shunsuke Mori,
Bohdan Moskalevskyi, Kadri Muischnek, Nina
Mustafina, Kaili Müürisep, Pinkey Nainwani, Anna
Nedoluzhko, Lương Nguyễn Thị, Huyền Nguyễn
Thị Minh, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Petya Osenova, Lilja
Øvrelid, Elena Pascual, Marco Passarotti, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Martin
Popel, Lauma Pretkalniņa, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Livy Real, Siva Reddy, Georg Rehm,
Larissa Rinaldi, Laura Rituma, Rudolf Rosa, Davide
Rovati, Shadi Saleh, Manuela Sanguinetti, Baiba
Saulı̄te, Yanin Sawanakunanon, Sebastian Schus-
ter, Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Aaron Smith, Antonio Stella, Jana Str-
nadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó,
Dima Taji, Takaaki Tanaka, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Zdeňka Urešová, Larraitz Uria, Hans Uszko-
reit, Gertjan van Noord, Viktor Varga, Veronika
Vincze, Jonathan North Washington, Zhuoran Yu,
Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi
Zhu. 2017a. Universal dependencies 2.0 – CoNLL
2017 shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Bengoetxea,
Riyaz Ahmad Bhat, Eckhard Bick, Cristina Bosco,
Gosse Bouma, Sam Bowman, Marie Candito,
Gülşen Cebiroğlu Eryiğit, Giuseppe G. A. Celano,
Fabricio Chalub, Jinho Choi, Çağrı Çöltekin,
Miriam Connor, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Arantza
Diaz de Ilarraza, Kaja Dobrovoljc, Timothy Dozat,
Kira Droganova, Puneet Dwivedi, Marhaba Eli,
Tomaž Erjavec, Richárd Farkas, Jennifer Fos-
ter, Cláudia Freitas, Katarína Gajdošová, Daniel
Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökırmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds
Grūzı̄tis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà Mỹ, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders
Johannsen, Fredrik Jørgensen, Hüner Kaşıkara,
Hiroshi Kanayama, Jenna Kanerva, Natalia Kot-
syba, Simon Krek, Veronika Laippala, Phương
Lê Hồng, Alessandro Lenci, Nikola Ljubešić, Olga
Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martínez Alonso, André Martins,
Jan Mašek, Yuji Matsumoto, Ryan McDonald, Anna
Missilä, Verginica Mititelu, Yusuke Miyao, Si-
monetta Montemagni, Amir More, Shunsuke Mori,
Bohdan Moskalevskyi, Kadri Muischnek, Nina

17

Mustafina, Kaili Müürisep, Lương Nguyễn Thị,
Huyền Nguyễn Thị Minh, Vitaly Nikolaev, Hanna
Nurmi, Stina Ojala, Petya Osenova, Lilja Øvrelid,
Elena Pascual, Marco Passarotti, Cenel-Augusto
Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen,
Barbara Plank, Martin Popel, Lauma Pretkalniņa,
Prokopis Prokopidis, Tiina Puolakainen, Sampo
Pyysalo, Alexandre Rademaker, Loganathan Ra-
masamy, Livy Real, Laura Rituma, Rudolf Rosa,
Shadi Saleh, Manuela Sanguinetti, Baiba Saulı̄te,
Sebastian Schuster, Djamé Seddah, Wolfgang
Seeker, Mojgan Seraji, Lena Shakurova, Mo Shen,
Dmitry Sichinava, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Aaron Smith, Alane Suhr, Umut Su-
lubacak, Zsolt Szántó, Dima Taji, Takaaki Tanaka,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Larraitz Uria, Gertjan van Noord, Viktor Varga,
Veronika Vincze, Jonathan North Washington,
Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman,
and Hanzhi Zhu. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics, Charles
University, Prague. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, Portorož, Slovenia, pages
1659–1666.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017). pages 86–95.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel,
and Deniz Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Pro-
ceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007. Association for
Computational Linguistics, pages 915–932.
http://www.aclweb.org/anthology/D/D07/D07-
1.pdf#page=949.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2011. A universal part-of-speech tagset. CoRR
abs/1104.2086. http://arxiv.org/abs/1104.2086.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Pro-
ceedings of the First Workshop on Syntactic Analy-
sis of Non-Canonical Language (SANCL). Montréal,
Canada. http://www.petrovi.de/data/sancl12.pdf.

Martin Popel, Zdeněk Žabokrtský, and Martin
Vojtek. 2017. Udapi: Universal API for uni-
versal dependencies. In NoDaLiDa 2017 Work-

shop on Universal Dependencies. Göteborgs
universitet, Göteborg, Sweden, pages 96–
101. http://aclweb.org/anthology/W/W17/W17-
0412.pdf.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1_22.

Xian Qian and Yang Liu. 2017. A non-DNN fea-
ture engineering approach to dependency parsing –
FBAML at CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Motoki Sato, Hitoshi Manabe, Hiroshi Noji, and Yuji
Matsumoto. 2017. Adversarial training for cross-
domain universal dependency parsing. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
Association for Computational Linguistics.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the SPMRL 2014 shared task
on parsing morphologically-rich languages. In First
Joint Workshop on Statistical Parsing of Morpho-
logically Rich Languages and Syntactic Analysis of
Non-Canonical Languages. Dublin, Ireland, pages
103–109. http://www.aclweb.org/anthology/W14-
6111.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola, Yoav
Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński,
Alina Wróblewska, and Eric Villemonte de la Clérg-
erie. 2013. Overview of the SPMRL 2013 shared
task: Cross-framework evaluation of parsing mor-
phologically rich languages. In Proceedings of the
Fourth Workshop on Statistical Parsing of Morpho-
logically Rich Languages. Association for Computa-
tional Linguistics, Seattle, Washington, USA, pages
146–182. http://www.aclweb.org/anthology/W13-
4917.

Tianze Shi, Felix G. Wu, Xilun Chen, and Yao Cheng.
2017. Combining global models for parsing Uni-
versal Dependencies. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Association for
Computational Linguistics.

18

Milan Straka. 2017. CoNLL 2017 shared task - UD-
Pipe baseline models and supplementary materials.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1990.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. Association for Computational
Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and in-
terfaces in OPUS. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Eight International Con-
ference on Language Resources and Evaluation
(LREC’12). European Language Resources Associ-
ation (ELRA), Istanbul, Turkey.

Clara Vania, Xingxing Zhang, and Adam Lopez. 2017.
UParse: the Edinburgh system for the CoNLL 2017
UD shared task. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

David Vilares and Carlos Gómez-Rodríguez. 2017. A
non-projective greedy dependency parser with bidi-
rectional LSTMs. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Association for
Computational Linguistics.

Hao Wang, Hai Zhao, and Zhisong Zhang. 2017. A
transition-based system for universal dependency
parsing. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. Association for Computational
Linguistics.

Kuan Yu, Pavel Sofroniev, and Erik Schill. 2017. The
parse is darc and full of errors: Universal depen-
dency parsing with transition-based and graph-based
algorithms. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

19

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 20–30,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Stanford’s Graph-based Neural Dependency Parser at the CoNLL 2017
Shared Task

Timothy Dozat
Stanford University

tdozat@stanford.edu

Peng Qi
Stanford University

pengqi@stanford.edu

Christopher D. Manning
Stanford University

manning@stanford.edu

Abstract

This paper describes the neural depen-
dency parser submitted by Stanford to the
CoNLL 2017 Shared Task on parsing Uni-
versal Dependencies. Our system uses
relatively simple LSTM networks to pro-
duce part of speech tags and labeled de-
pendency parses from segmented and tok-
enized sequences of words. In order to ad-
dress the rare word problem that abounds
in languages with complex morphology,
we include a character-based word rep-
resentation that uses an LSTM to pro-
duce embeddings from sequences of char-
acters. Our system was ranked first ac-
cording to all five relevant metrics for the
system: UPOS tagging (93.09%), XPOS
tagging (82.27%), unlabeled attachment
score (81.30%), labeled attachment score
(76.30%), and content word labeled at-
tachment score (72.57%).

1 Introduction

In this paper, we describe Stanford’s approach to
tackling the CoNLL 2017 shared task on Univer-
sal Dependency parsing (Nivre et al., 2016; Ze-
man et al., 2017; Nivre et al., 2017b,a). Our sys-
tem builds on the deep biaffine neural dependency
parser presented by Dozat and Manning (2017),
which uses a well-tuned LSTM network to pro-
duce vector representations for each word, then
uses those vector representations in novel biaffine
classifiers to predict the head token of each depen-
dent and the class of the resulting edge. In order to
adapt it to the wide variety of different treebanks
in Universal Dependencies, we make two note-
worthy extensions to the system: first, we incor-
porate a word representation built up from char-
acter sequences using an LSTM, theorizing that

this should improve the model’s ability to adapt
to rare or unknown words in languages with rich
morphology; second, we train our own taggers for
the treebanks using nearly identical architecture to
the one used for parsing, in order to capitalize on
potential improvements in part of speech tag qual-
ity over baseline or off-the-shelf taggers. This ap-
proach gets state-of-the-art results on the macro
average of the shared task datasets according to all
five POS tagging and attachment accuracy metrics.

One noteworthy feature of our approach is its
relative simplicity. It uses a single tagger/parser
pair per language, trained on only words and tags;
thus we refrain from taking advantage of ensem-
bling, lemmas, or morphological features, any one
of which could potentially push accuracy even
higher.

2 Architecture

2.1 Deep biaffine parser

The basic architecture of our approach follows that
of Dozat and Manning (2017), which is closely
related to Kiperwasser and Goldberg (2016), the
first neural graph-based (McDonald et al., 2005)
parser.1 In Dozat and Manning’s 2017 parser, the
input to the model is a sequence of tokens and their
part of speech tags, which is then put through a
multilayer bidirectional LSTM network. The out-
put state of the final LSTM layer (which excludes
the cell state) is then fed through four separate
ReLU layers, producing four specialized vector
representations: one for the word as a dependent
seeking its head; one for the word as a head seek-
ing all its dependents; another for the word as a de-
pendent deciding on its label; and a fourth for the
word as head deciding on the labels of its depen-

1For other neural graph-based parsers, cf. Cheng et al.
(2016); Hashimoto et al. (2016); Zhang et al. (2016)

20

. . .

. . .

〈ROOT〉 ROOT . PUNCT

RNN

Embed

ReLU

arc-depi arc-headj rel-depi rel-headj

Labels for j → iEdge j → i

Figure 1: The architecture of our parser. Arrows indicate structural dependence, but not necessarily
trainable parameters.

dents.2 These vectors are then used in two biaffine
classifiers: the first computes a score for each pair
of tokens, with the highest score for a given to-
ken indicating that token’s most probable head; the
second computes a score for each label for a given
token/head pair, with the highest score represent-
ing the most probable label for the arc from the
head to the dependent. This is shown graphically
in Figure 1.

Put formally, given a sequence of n word em-
beddings (to be described in more detail in Section
2.2) (v(word)

1 , . . . ,v(word)
n) and n tag embeddings

(v(tag)
1 , . . . ,v(tag)

n), we concatenate each pair to-
gether and feed the result into a BiLSTM with ini-
tial state r0:3

xi = v(word)
i ⊕ v(tag)

i (1)

ri = BiLSTM
(
r0, (x1, . . . ,xn)

)
i

(2)

hi, ci = split(ri) (3)

We then produce four distinct vectors from each
recurrent hidden state hi (without the recurrent
cell state ci) using ReLU perceptron layers:

h(arc-dep)
i = MLP(arc-dep)(hi) (4)

h(arc-head)
i = MLP(arc-head)(hi) (5)

h(rel-dep)
i = MLP(rel-dep)(hi) (6)

h(rel-head)
i = MLP(rel-head)(hi) (7)

In order to produce a prediction y′(arc)
i for token

i, we use a biaffine classifier involving the (arc)
2Interestingly, other researchers have found similar ap-

proaches to be beneficial for other tasks; cf. Reed and de Fre-
itas (2016); Miller et al. (2016); Daniluk et al. (2017)

3We adopt the convention of using lowercase italics for
scalars, lowercase bold for vectors, uppercase italics for ma-
trices, and uppercase bold for tensors. We maintain this con-
vention when indexing and stacking; so ai is the ith vector of
matrix A, and matrix A is the stack of all vectors ai.

hidden vectors:

s(arc)
i = H(arc-head)W (arc)h(arc-dep)

i (8)

+H(arc-head)b>(arc)

y
′(arc)
i = arg max

j
s
(arc)
ij (9)

Note first the similarity between line 8 and a tra-
ditional affine classifier of the form Wh + b,
with each of W and b first being transformed by
H(arc-head). Note also that both terms of the bi-
affine layer have intuitive interpretations: the first
relates to the probability of word j being the head
of word i given the information in both h(arc) vec-
tors (for example, the probability of word i de-
pending on word j given that word i is the and
word j is cat); the second relates to the probability
of word j being the head of word i given only the
information in the head’s vector (for example, the
probability of word i depending on word j given
that word j is the, which should be very small no
matter what word i is).

After deciding on a head y′i for word i, we use
another biaffine transformation—this time involv-
ing the (rel) hidden vectors—to produce a pre-
dicted label:

s(rel)
i = h>(rel-head)

y
′(arc)
i

U(rel)h(rel-dep)
i (10)

+W (rel)
(
h(rel-dep)

i ⊕ h(rel-head)

y
′(arc)
i

)
+ b(rel)

y
′(rel)
i = arg max

j
s
(rel)
ij (11)

Again, each term in line 10 has an intutive inter-
pretation: the first term relates to the probability
of observing a label given the information in both
h(rel) vectors (e.g. the probability of the label det
given word i is the with head cat); the second re-
lates to the probability of observing a label given

21

i n f e r

RNN

Embed

Attn/Final Cell

Linear

Char

Token word2vec Char

Tag

UPOS XPOS

Embed

Sum

Word

Embed

Sum

Figure 2: The architecture of our embedding model. Arrows indicate structural dependence, but not
necessarily trainable parameters.

either h(rel) vector (e.g. the probability of the label
det given that word i is the or that word j is cat);
the last relates to the prior probability of observing
a label.

We jointly train these two biaffine classifiers by
optimizing the sum of their softmax cross-entropy
losses. At test time, we ensure the tree is well-
formed by iteratively identifying and fixing cycles
for each proposed root and selecting the one with
the highest score, which is both simple and suffi-
cient for our purposes. 4

2.2 Character-level model
Dozat and Manning (2017) represented words as
the sum of a pretrained vector5 and a holistic word
embedding for frequent words. However, that ap-
proach seems insufficient for languages with rich
morphology; so we add a third representation built
up from sequences of characters. Each character
is given a trainable vector embedding, and each
sequence of character embeddings is fed into a
unidirectional LSTM. However, the LSTM pro-
duces a sequence of recurrent states (r1, . . . , rn),
which we need to convert into a single vector. The
simplest approach is to take the last one—which
would represent a summary of all the information
aggregated one character at a time—and linearly
transform it to the desired dimensionality. An-
other approach, suggested by Cao and Rei (2016),
is to use attention over the hidden states, and then

4Although in the future we intend to implement than the
Chu-Liu/Edmonds algorithm for nonprojective MST parsing
(Chu and Liu, 1965; Edmonds, 1967)

5We use the provided CoNLL vectors trained on
word2vec (Mikolov et al., 2013); for Gothic, which had no
provided vector embeddings, we used Facebook’s FastText
vectors (Bojanowski et al., 2016)

trasform the resulting context vector to the desired
size; in theory, this should both allow the model
to learn morpheme information more easily by at-
tending more closely to the LSTM output at mor-
pheme boundaries. We choose to combine both
approaches, using the hidden states for attention
and the cell state for summarizing, shown in Fig-
ure 2.

That is, given a sequence of n character em-
beddings and an initial state r0 for the LSTM, we
each embedding into an LSTM as before, extract-
ing hidden and cell states:

ri = LSTM
(
r0, (v

(char)
1 , . . . ,v(char)

n)
)
i

(12)

hi, ci = split(ri) (13)

We then compute linear attention over the stack of
hidden vectors H and concatenate it to the final
cell state:

a = softmax
(
Hw(attn)

)
(14)

h̃ = H>a (15)

v̂ = W
(
h̃⊕ cn

)
(16)

In this way we use the hidden states for attention
and the cell state as a final summary vector.

After computing the character-level word em-
bedding, we add together elementwise the pre-
trained embedding, the holistic frequent token em-
bedding, and the newly generated character-level
embedding. We also add together embeddings for
the language’s UPOS and XPOS tags. The result-
ing two vectors are used as input to the BiLSTM
parser in Section 2.1.

22

2.3 POS tagger
The final piece of our system is a separately-
trained part of speech tagger. The architecture
for the tagger is almost identical to that of the
parser (and shares fundamental properties with
other neural taggers; cf. Ling et al. (2015); Plank
et al. (2016))—it uses a BiLSTM over word vec-
tors (using the tripartite representation from Sec-
tion 2.2), then uses ReLU layers to produce one
vector representation for each type of tag.

Thus we use a BiLSTM, as with the parser ar-
chitecture:

ri = BiLSTM
(
r0, (v

(word)
1 , . . . ,v(word)

n)
)
i

(17)

hi, ci = split(ri) (18)

And we use affine classifiers for each type of tag,
which we add together for the parser:

h(pos)
i = MLP(pos)(hi) (19)

s(pos)
i = Wh(pos)

i + b(pos) (20)

y
′(pos)
i = arg max

j
s
(pos)
ij (21)

The tag classifiers are trained jointly using cross-
entropy losses that are summed together during
optimization, but the tagger is trained indepen-
dently from the parser.

3 Training details

Our model largely adopts the same hyperparam-
eter configuration laid out by Dozat and Man-
ning (2017), with a few exceptions. The parser
uses three BiLSTM layers with 100-dimensional
word and tag embeddings and 200-dimensional re-
current states (in each direction); the arc classi-
fier uses 400-dimensional head/dependent vector
states and the label classifier uses 100-dimensional
ones; we drop word and tag embeddings inde-
pendently with 33% probability;6 we use same-
mask dropout (Gal and Ghahramani, 2015) in the
LSTM, ReLU layers, and classifiers, dropping in-
put and recurrent connections with 33% proba-
bility; and we optimize with Adam (Kingma and
Ba, 2014), setting the learning rate to 2e−3 and
β1 = β2 = .9. We train models for up to 30,000
training steps (where one step/iteration is a single
minibatch with approximately 5,000 tokens), at

6When only one is dropped, we scale the other by a factor
of two

first saving the model every 100 steps if fewer than
1,000 iterations have passed, and afterwards only
saving if validation accuracy increases (or training
accuracy for languages with no validation data).
When 5,000 training steps pass without improving
accuracy, we terminate training.

For the character model, we use 100-
dimensional uncased character embeddings
with 400-dimensional recurrent states. We don’t
drop characters but do include 33% dropout in the
LSTM and attention connections.

In the tagger we use nearly identical settings,
with a few exceptions: the BiLSTM is only two
layers deep, we increase the dropout between re-
current connections to 50%, and we use cased
character embeddings.

Our approach for dealing with the surprise lan-
guages was to train delexicalized “language fam-
ily” parsers with the same architecture detailed in
Section 2.1 on UDPipe v1.1 (Straka et al., 2016)’s
UPOS tags with no word-level information. For
Buryat (Altaic), we used as input the training
datasets for Turkish, Uyghur, Kazakh, Korean, and
Japanese; for Kurmanji (Indo-Iranian), we used
Persian, Urdu, and Hindi; for North Sámi (Uralic),
we used Finnish, Finnish-FTB, Estonian, and
Hungarian; and for Upper Sorbian (Slavic), we
used Bulgarian, Czech, Old Church Slavonic, Pol-
ish, Russian, Russian-SynTagRus, Slovak, Slove-
nian, Slovenian-SST, and Ukrainian.

There’s substantial variability in training and
testing speed across treebanks, but on an NVidia
Titan X GPU the models train at 100 to 1000 sen-
tences/sec and test at 1000 to 5000 sentences/sec.
Even without GPU acceleration a tagger or parser
can be run on an entire test treebank in ten to
twenty seconds. By far the greatest runtime over-
head comes not from the model itself, but from
reading in the large matrices of pretrained em-
beddings, which can take several minutes. A full
run over the 81 test sets on the TIRA virtual ma-
chine (Potthast et al., 2014) takes about 16 hours,
but when parallelized on faster machines it can be
done in under an hour.

4 Results

Our model uses a provided tokenization and seg-
mentation and produces UPOS tags, XPOS tags,
arcs, and labels. Thus the relevant metrics for the
system are UPOS accuracy, XPOS accuracy, unla-
beled attachment score, labeled attachment score,

23

UPOS XPOS UAS LAS CLAS
ar 89.36 87.66 76.59 71.97 68.17
ar pud 71.17 0.00 58.87 49.50 46.06
bg 98.75 96.71 92.89 89.81 86.53
bxr 84.12 99.35 51.19 30.00 25.37
ca 98.59 98.58 92.88 90.70 86.70
cs 98.83 95.86 92.62 90.17 88.44
cs cac 99.05 95.16 93.14 90.43 88.31
cs cltt 97.91 89.98 86.02 82.56 79.62
cs pud 96.42 92.60 89.11 84.42 81.60
cu 95.90 96.20 77.10 71.84 70.49
da 97.40 99.69 85.33 82.97 80.03
de 94.41 97.29 84.10 80.71 76.97
de pud 85.71 20.89 80.88 74.86 73.96
el 97.74 97.76 89.73 87.38 83.59
en 95.11 94.82 84.74 82.23 78.99
en lines 96.64 95.41 85.16 82.09 78.71
en partut 95.22 95.08 86.10 82.54 77.40
en pud 95.40 94.29 88.22 85.51 82.63
es 96.59 99.69 90.01 87.29 82.08
es ancora 98.72 98.73 92.11 89.99 86.15
es pud 88.39 1.76 88.14 81.05 74.60
et 93.01 95.05 78.08 71.65 69.85
eu 95.89 99.96 85.28 81.44 79.71
fa 97.15 97.12 89.64 86.31 82.93
fi 96.62 97.37 87.97 85.64 84.25
fi ftb 96.30 95.31 89.24 86.81 84.12
fi pud 97.54 0.00 90.60 88.47 86.82
fr 96.20 98.87 88.57 85.51 82.14
fr partut 96.16 95.88 88.64 85.05 79.49
fr pud 89.32 2.40 83.45 78.81 77.37
fr sequoia 97.41 99.06 88.48 86.53 83.37
ga 92.43 91.31 78.50 70.06 61.38
gl 97.72 97.50 85.87 83.23 78.05
gl treegal 94.51 91.65 78.28 73.39 66.02
got 95.74 96.49 73.10 66.82 63.87
grc 92.64 84.47 78.42 73.19 67.59
grc proiel 97.06 97.51 78.30 74.25 68.83
he 82.42 82.45 67.70 63.94 56.78
hi 97.50 97.01 94.70 91.59 87.92
hi pud 85.48 34.82 67.24 54.49 48.87
hr 97.68 99.93 90.11 85.25 82.36

UPOS XPOS UAS LAS CLAS
hsb 90.30 99.84 67.83 60.01 56.32
hu 95.34 99.82 82.35 77.56 76.08
id 94.09 99.99 85.17 79.19 77.15
it 98.04 97.93 92.51 90.68 86.18
it pud 93.74 2.48 91.08 88.14 84.49
ja 88.14 89.68 75.42 74.72 65.90
ja pud 89.41 7.50 78.64 77.92 68.95
kk 57.36 55.72 43.51 25.13 19.32
kmr 90.04 89.84 47.71 35.05 28.72
ko 96.14 93.02 85.90 82.49 80.85
la 90.67 76.69 72.56 63.37 58.96
la ittb 98.36 94.79 89.44 87.02 84.94
la proiel 96.72 96.93 73.71 69.35 66.56
lv 93.59 80.05 79.26 74.01 70.22
nl 93.24 90.61 85.17 80.48 75.19
nl lassysmall 98.39 99.93 89.56 87.71 85.22
no bokmaal 98.35 99.75 91.60 89.88 87.67
no nynorsk 98.11 99.85 90.75 88.81 86.41
pl 98.15 91.97 93.98 90.32 87.94
pt 97.24 83.04 89.90 87.65 83.27
pt br 98.22 98.22 92.76 91.36 87.48
pt pud 88.99 0.00 83.27 77.14 71.68
ro 97.59 96.98 90.43 85.92 81.87
ru 96.99 96.73 87.15 83.65 81.80
ru pud 86.85 80.17 82.31 75.71 73.13
ru syntagrus 98.59 99.57 94.00 92.60 90.11
sk 96.87 85.00 89.58 86.04 83.86
sl 98.63 94.74 93.34 91.51 88.98
sl sst 94.04 86.87 61.71 56.02 51.04
sme 86.81 88.98 51.13 37.21 39.22
sv 97.70 96.40 88.50 85.87 83.71
sv lines 96.74 94.84 86.51 82.89 79.92
sv pud 94.33 92.33 81.90 78.49 76.48
tr 93.86 93.11 69.62 62.79 60.01
tr pud 72.73 0.00 58.72 37.72 31.71
ug 76.65 78.69 56.86 39.79 30.11
uk 94.31 79.42 81.44 75.33 71.72
ur 93.95 92.30 87.98 82.28 75.88
vi 75.28 73.56 46.14 42.13 38.59
zh 85.26 85.07 68.95 65.88 62.03

UPOS XPOS UAS LAS CLAS
All treebanks 93.09 82.27 81.30 76.30 72.57
Large treebanks 95.58 94.56 85.16 81.77 78.40
Parallell treebanks 88.25 30.66 80.17 73.73 69.88
Small treebanks 87.02 82.03 70.19 61.02 54.76
Surprise treebanks – – 54.47 40.57 37.41

Table 1: Results on each treebank in the shared task plus the macro average over all of them. State of the
art performance by the system is in bold.

24

0 5 10 15
Nonprojectivity in test

−5
0
5

10
15
20
25
30

CL
AS

 d
iff

er
en

ce
Effect of Nonprojectivity

0.60x + 8.70

(a) Difference in CLAS between our parser and UDPipe v1.1
as a function of the nonprojectivity of the test set

−4 −3 −2 −1 0 1 2 3 4
Nonprojectivity difference

−5
0
5

10
15
20
25
30

CL
AS

 d
iff

er
en

ce

Effect of Nonprojectivity Discrepancy

1.73x + 9.99

(b) Difference in CLAS between our parser and UDPipe v1.1
as a function of the difference between the nonprojectivity of
the test and training sets

Figure 3: How the percent of nonprojective arcs in the training and test set influence accuracy of our
graph-based and a transition-based parser

and content labeled attachment score. Our system
achieves the highest aggregated score on all five of
these metrics in the shared task. Below we explore
where our model does particularly well, and where
it can be improved. We choose to evaluate on
CLAS performance because we feel it more accu-
rately reflects model performance, being a princi-
pled extension of the common practice of remov-
ing punctuation from evalution. We also exclude
surprise languages from the following analyses.

One small point to that end is that our sys-
tem assumes tokenization and segmentation has
already been done; we therefore trained on gold
segmentation and evaluated using the segmenta-
tion provided by UDPipe. For most treebanks
this was easily sufficient, but for Vietnamese, Chi-
nese, Japanese, and Arabic, UDPipe’s lower per-
formance at segmenting or tokenizing was corre-
lated with a relatively large gap between CLAS
and gold-aligned CLAS. Because our model re-
ports comparable numbers for nearly all other tree-
banks, we take this to mean that alignment errors
propagated through the system into parsing errors.

4.1 Nonprojectivity

In Universal Dependencies, unlike many other
popular benchmarks, several treebanks have a
large fraction of crossing dependencies, so any
competitive system will need to be able to produce
nonprojective arcs. One of the most frequently
used approaches for producing fully nonprojec-
tive parsers in transition-based systems is to add

the swap action (Nivre, 2009). This makes any
arbitrary nonprojective arc possible, but increases
the number of transition steps required to produce
that arc. One valid concern is that this might bias
the model toward producing projective arcs; in our
graph-based system, by contrast, there’s little rea-
son to think nonprojective arcs should be harder to
predict than projective ones. Here we aim to ex-
plore how the fraction of nonprojective arcs in a
treebank affects the performance of the two types
of systems.

To test the relative performance of a graph-
based and a transition-based model, we compute
the difference in per-treebank CLAS performance
between our parser and the UDPipe v1.1 baseline
(Straka et al., 2016), which uses a transition-based
parser with the swap operation (Straka et al.,
2015). We then plot this against the frequency of
nonprojective arcs in the test set. To determine
whether there is a significant relationship between
the difference in performance, we fit the data to a
generalized linear mixed effects regression model
(Fisher, 1930), using Markov chain Monte Carlo
sampling (Hadfield, 2010). We include log data
size, morphological complexity (see Section 5.2),
and training set projectivity as random effects. We
plot the data with the learned regression lines in
Figure 3a. What we find is that the margin be-
tween the performance of the graph-based and
transition-based parsers increases with the nonpro-
jectivity of the test set significantly (p < 0.001).

25

103 104 105 106

Training size

−20

−15

−10

−5

0

5

10
CL

AS
 d

iff
er

en
ce

Effect of Training Size

2.59log10(x) - 11.89

Figure 4: Performance difference between our
model and the highest-performing model other
than ours as a function of log training data size

This remains significant even when outliers7 are
excluded (p < 0.05). To the extent that UDPipe
represents a typical nonprojective transition-based
parser, our results suggest that a graph-based ap-
proach is better suited to parsing UD treebanks
that have significant syntactic freedom or com-
plexity than a transition-based one.

Predicting crossing arcs requires more opera-
tions (and therefore more long-term planning on
behalf of the parser) when using the swap fea-
ture in a transition-based system, but in our graph-
based system they can be predicted as easily as
projective arcs. One might hypothesize that be-
cause of this, a transition-based swapping sys-
tem would need to see more examples of cross-
ing dependencies than a graph-based system in or-
der to generalize well. The data shown in Figure
3b support this hypothesis: we computed the dif-
ference between the projectivity of each test and
training set, and used this as the fixed effect in
another mixed effects model with data size, mor-
phological complexity, and train/test nonprojec-
tivity as random effects. We find that when the
training set has drastically fewer crossing depen-
dencies than the test set, the graph-based model
achieves relatively higher accuracy; but when the
transition-based parser can train on many cross-
ing arcs, the models are closer in performance
(p < 0.001), even when excluding the same out-
liers (p < 0.05). This suggests that the graph-
based approach learns and generalizes crossing
dependencies more efficiently than the transition-

7Korean (top); Ancient Greek, Latin (right)

0 2 4 6 8 10
UPOS difference

0

2

4

6

8

CL
AS

 d
iff

er
en

ce

Effect of Tagger Improvement

0.35x + 0.75

Figure 5: Performance difference between a ver-
sion of our model trained on our own predicted
tags and a version trained on UDPipe v1.1 tags as
a function of the performance difference between
our taggers and the UDPipe taggers

based approach, although this again comes with
the assumption that UDPipe’s parser is represen-
tative of most transition-based swapping parsers
when it comes to producing nonprojective parses.

4.2 Data size

We use the same hyperparameter configuration for
all datasets, regardless of how much training data
there is for that treebank, which means we may
have overfit to small training datasets or underfit
to large ones. To test this, we computed the per-
treebank difference between the test CLAS per-
formance of our model and that of the highest-
performing model other than ours, and plotted that
ratio against the log training data size in Figure
4. We fit the differences to another mixed ef-
fects regression model with train/test projectivity
and morphological complexity set as random ef-
fects, finding that our system on average tends to
do relatively better on larger datasets compared
to other approaches and worse on smaller ones
(p < 0.001). When the outliers are excluded,8

this tendency is still significant (p < 0.001). This
suggests that our model is overfitting to smaller
datasets, and that increasing regularization or de-
creasing model capacity may improve accuracy
for lower-resource languages.

8Kazakh, Uyghur (left); Japanese (bottom); Czech-CAC,
Russian-SynTagRus, Czech (right)

26

−1 0 1 2 3 4 5 6 7 8
CLAS difference

0.0

0.1

0.2

0.3

0.4

0.5 Own Tagger vs. No Tagger

−8 −6 −4 −2 0 2 4
CLAS difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6 UDPipe Tagger vs. No Tagger

Figure 6: Performance difference between parsers using our taggers and parsers without tags (left) and
between parsers using UDPipe v1.1’s tags and parsers without tags (right), with both histograms fit to
skew normal distributions

5 Ablation Studies

5.1 POS Tagger

We chose to train our parsers on our own pre-
dicted tags instead of using provided taggers; here
we aim to justify that strategy empirically with an
ablation study. We trained another set of parsers
with otherwise identical hyperparameter settings
using the baseline tags provided by UDPipe v1.1,
and computed the difference in CLAS between
our reported models and the new ones. We also
computed the difference in UPOS accuracy be-
tween UDPipe v1.1’s taggers and our own. In
Figure 5, we plot how the difference in tagger
quality affects the CLAS of the parser, making
two noteworthy observations. The first is that the
performance difference between the set of mod-
els trained on our own tags is statistically signif-
icantly better than the performance of the models
trained on UDPipe tags according to a Wilcoxon
test (p < 0.001). The second is that this can be
explained by the improvement of our tagger over
UDPipe v1.1, again accounting for dataset size,
nonprojectivity, and morphology in a mixed ef-
fects model (p < 0.001). This suggests that im-
proving upstream tagger performance is an effec-
tive way of improving downstream parser accu-
racy. We also examined the effect of training size
on the difference in parser performance, finding no
significant correlation (p > 0.05).

The approach laid out in this paper uses one
neural network to tag the sequences of tokens,
and a second neural network to produce a parse
from the tokens and tags. One might ask to what

extent the tagger network is actually necessary,
for a number of reasons: presumably whatever
predictive patterns it learns from the token se-
quences would also be learnable by the parser net-
work; errors by the tagger are likely to be propa-
gated by the parser; and Ballesteros et al. (2015)
found that POS tags are drastically less impor-
tant for character-based parsers. In order to ex-
amine how useful the POS tag information is to
our character-based system, we trained an addi-
tional set of parsers without UPOS or XPOS in-
put, comparing them to the other two, with the
differences graphed in Figure 6. We find that the
variant with no POS tag input is likewise signif-
icantly worse than our reported model according
to a Wilcoxon test (p < 0.001), but not statisti-
cally different from the one trained with UDPipe
tags (p > 0.05). This suggests that predicted POS
tags are still useful for achieving maximal parsing
accuracy in our system, provided the tagger’s per-
formance is sufficiently high.

5.2 Character model

One of the ways in which we build on Dozat and
Manning’s 2017 work is by adding a character-
level word representation similar to that of Balles-
teros et al. (2015), hypothesizing that it should al-
low the model to more effectively learn the rela-
tionships between words in languages with rich
morphology and loose word order. We test this
using another ablation study; we trained a sec-
ond set of taggers and parsers on the dataset with
only whole token and pretrained vectors, leaving
out the vector composed from character sequences

27

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Heaps' coefficient

−2

0

2

4

6

8

10
CL

AS
 d

iff
er

en
ce

Effect of Morphological Complexity
on Parser

7.57x - 4.42

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Heaps' coefficient

−2
0
2
4
6
8

10
12
14
16

UP
OS

 d
iff

er
en

ce

Effect of Morphological Complexity
on Tagger

14.37x - 8.34

Figure 7: Performance difference between our character-based approach and a pure token-based ap-
proach for parsing (left) and tagging (right) as a function of approximated morphological complexity

(for maximal comparability, we use the origi-
nal character-based taggers for the token-based
parsers). As morphological complexity increases,
the difference between the models should increase
as well.

The basis of our approach to quantifying mor-
phological complexity will be the assumption that
in a morphologically complex language, the ra-
tio between the size of the vocabulary |V (X)| of
a corpus to the size of the corpus |X| will be rel-
atively high, because the same lemma may occur
with many different forms; but in a morphologi-
cally simplex language, that ratio will be smaller,
because a given lemma will normally appear with
only a few forms. Assuming both languages have
the same number of lemmas, the vocabulary size
of the complex language will then be larger. The
most principled way of modeling this intuition is
through Heaps’ law (Herdan, 1960; Heaps, 1978)
in Equation 22, which says that the log vocabulary
size increases linearly in the log corpus size.

log(|V (X)|) = w log(|X|) + b (22)

We can take advantage of Heaps’ law directly in
approximating morphological complexity. Mor-
phologically richer languages should increase the
size of their vocabulary at a faster rate as the cor-
pus size grows, because a new token being added
to the corpus has a higher probability of having
a previously observed lemma with a previously
unobserved morphological form, thereby increas-
ing the vocabulary size; in a morphologically sim-
plex language, previously observed lemmas are
unlikely to have many morphological forms that
could increase |V |. Therefore, we would expect

the parameter w of Equation 22 to be higher for
languages with rich morphology. We computed
this value for each treebank, and the results gen-
erally align with our intuition (although not with-
out some variation, attributable to domain and
dataset size): Hindi and Urdu—which have sig-
nificant allomorphy—are among the lowest, hav-
ing w = .555 and .585 respectively; English and
Vietnamese have .631 and .661; Spanish and Por-
tuguese have .7 and .704; and Finnish, Estonian,
and Hungarian have some of the highest, at .806,
.822, and .846.

Thus we use the coefficient w in Equation 22 as
our metric for morphological richness, and plot the
difference between models trained with character-
level word embeddings and token-level word em-
beddings against this value in Figure 7. First we
perform a Wilcoxon signed rank test, finding that
the difference between the two approaches is sta-
tistically significant for the taggers (p < 0.001)
and parsers (p < 0.001). Then we fit a mixed
effects model to the data with treebank size and
training/test projectivity as random effects, finding
that the character-level approach tends to signifi-
cantly improve performance more as complexity
grows both for parsing (p < 0.005) and tagging
(p < 0.001).9 This indicates that incorporating
subword information into UD parsing models is
a promising way to improve performance on lan-
guages with significant morphology.

9The assumption of linearity is clearly wrong, but the neg-
ative y-values preclude using a log-linear model on which we
run significance tests

28

6 Conclusion

In this paper we describe our relatively simple
neural system for parsing that achieved state-of-
the-art performance on the 2017 CoNLL Shared
Task on UD parsing without utilizing lemmas,
morphological features, or ensembling. The sys-
tem uses BiLSTM networks for tagging and pars-
ing, and includes character-level word representa-
tions in addition to token-level ones. We also ex-
amined what can be learned more generally from
our model’s performance. We explore the rel-
ative performance of nonprojective graph-based
and transition-based architectures on this task,
finding evidence that modern graph-based parsers
might be better at producing nonprojective arcs
(with some caveats). Additionally, our network
performs better when there’s an abundance of data,
suggesting that more regularization could improve
accuracy on lower-resource languages.

We also sought to quantitatively justify the ad-
ditional complexity of our system. We consid-
ered how important the POS tagger is to the sys-
tem, comparing the downstream performance of
parsers using our tagger, the baseline tagger, and
no tagger at all. We find that our tagger beats
both baselines significantly, whereas the two base-
lines don’t statistically differ from each other, in-
dicating that POS tags can help our system but
must be sufficiently accurate. The character-based
approach was found to significantly boost perfor-
mance on languages that scored high on our met-
ric for morphological complexity—both for pars-
ing and tagging—suggesting that constructing to-
ken representation from subtoken information is
effective for capturing the influence of morphol-
ogy on syntax, and the naı̈ve approach of using
only holistic word embeddings is insufficient. Our
success at the shared task demonstrates that a well-
tuned, straightforward neural approach to parsing
and tagging can get state-of-the-art performance
for datasets with a wide variety of syntactic prop-
erties.

References
Miguel Ballesteros, Chris Dyer, and Noah A Smith.

2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. EMNLP
.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. EMNLP .

Kris Cao and Marek Rei. 2016. A joint model for
word embedding and word morphology. ACL 2016
page 18.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao,
and Li Deng. 2016. Bi-directional attention with
agreement for dependency parsing. EMNLP 2016
.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On short-
est arborescence of a directed graph. Scientia Sinica
14(10):1396.

Michal Daniluk, Tim Rocktäschel, Johannes Welbl,
and Sebastian Riedel. 2017. Frustratingly short at-
tention spans in neural language modeling. ICLR
2017 .

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. ICLR 2017 .

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B
71(4):233–240.

Ronald Aylmer Fisher. 1930. The genetical theory of
natural selection: a complete variorum edition. Ox-
ford University Press.

Yarin Gal and Zoubin Ghahramani. 2015. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. International Conference
on Machine Learning .

Jarrod D Hadfield. 2010. Mcmc methods for multi-
response generalized linear mixed models: The
MCMCglmm R package. Journal of Statistical Soft-
ware 33(2):1–22. http://www.jstatsoft.org/v33/i02/.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587 .

Harold Stanley Heaps. 1978. Information retrieval:
Computational and theoretical aspects. Academic
Press, Inc.

Gustav Herdan. 1960. Type-token mathematics, vol-
ume 4. Mouton.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations .

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding function
in form: Compositional character models for open
vocabulary word representation. NAACL .

29

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 523–530.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. International Conference on
Learning Representations .

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In ACL 2016. pages 1400–
1409.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP:
Volume 1-Volume 1. Association for Computational
Linguistics, pages 351–359.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. ACL .

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,

editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Scott E. Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. ICLR 2016 .

Milan Straka, Jan Hajic, Jana Straková, and Jan Ha-
jic jr. 2015. Parsing universal dependency treebanks
using neural networks and search-based oracle. In
International Workshop on Treebanks and Linguis-
tic Theories (TLT14). page 208.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2016. Dependency parsing as head selection. EACL
2017 .

30

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 31–39,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Combining Global Models for Parsing Universal Dependencies

Tianze Shi Felix G. Wu Xilun Chen Yao Cheng
Cornell University

{tianze,felixgwu,xlchen,yc2258}@cs.cornell.edu

Abstract

We describe our entry, C2L2, to the
CoNLL 2017 shared task on parsing
Universal Dependencies from raw text.
Our system features an ensemble of
three global parsing paradigms, one
graph-based and two transition-based.
Each model leverages character-level bi-
directional LSTMs as lexical feature ex-
tractors to encode morphological informa-
tion. Though relying on baseline tokeniz-
ers and focusing only on parsing, our sys-
tem ranked second in the official end-to-
end evaluation with a macro-average of
75.00 LAS F1 score over 81 test treebanks.
In addition, we had the top average perfor-
mance on the four surprise languages and
on the small treebank subset.

1 Introduction

General Parsing Approach Our submitted sys-
tem to the CoNLL 2017 shared task (Zeman
et al., 2017) focuses only on the task of depen-
dency parsing, assuming that tokenization, sen-
tence boundary detection, part-of-speech (POS)
tagging and morphological features are already
handled by a baseline model. In this paper, we
highlight our neural-network-based feature extrac-
tors and ensemble of global parsing models, in-
cluding two novel global transition-based models.

Bi-directional long-short term memory net-
works (Graves and Schmidhuber, 2005, bi-
LSTMs) have recently achieved state-of-the-art
performance on syntactic parsing (Kiperwasser
and Goldberg, 2016; Cross and Huang, 2016;
Dozat and Manning, 2017). Our system leverages
the representational power of bi-LSTMs to gen-
erate compact features for both graph-based and
transition-based parsing frameworks. The latter

further enables the application of dynamic pro-
gramming techniques (Huang and Sagae, 2010;
Kuhlmann et al., 2011) for global training and ex-
act decoding. With just two bi-LSTM vectors as
features, all three global parsing paradigms in our
system have efficient Opn3q implementations. The
full system consists of 3-5 each of these unlabeled
parsing models (9-15 in total, depending on the
treebank), and another ensemble of arc labelers.

Adaptation of General Approach to the Shared
Task The CoNLL 2017 shared task presents
two unique challenges: 1. A large fraction of
the datasets are morphologically-rich languages.
Some languages have an exceedingly-high out-of-
vocabulary ratio of over 30%. 2. For many lan-
guages, very little training data is provided. Fur-
thermore, there are four surprise language, for
which we only have tens of sample sentences.

We address the first challenge with character-
level bi-LSTMs, which have previously been
shown to be effective in multi-lingual POS tag-
ging (Plank et al., 2016) and dependency pars-
ing (Ballesteros et al., 2015; Alberti et al., 2017).
Character-level representation gives better cover-
age, and it directly learns sub-word information
through end-to-end training.

The second challenge is approached by transfer-
ring delexicalized information. For each of those
languages with little training data, we select the
most similar language according to linguistic ty-
pology. We then train delexicalized models taking
only part-of-speech and morphology tags as input
features, which are made available through base-
line prediction during test time.

Our full system scored a macro-average LAS
F1 score of 75.00, which ranked second among
all participating systems. Additionally, in the cat-
egories of small treebanks and surprise languages,
we obtained the best average performance.

31

2 System Overview

Character bi-LSTM / delexicalized features

Word-level bi-LSTM

AEDP

Ensemble

IV. Arc Labeling

AHDPMST

II. Feature Extraction

III. Unlabeled Parsing

I. UDPipe pre-processing

Figure 1: Overview of our system.

Figure 1 illustrates our pipelined system. It
processes raw texts in four stages starting from
baseline UDPipe (Straka et al., 2016) tokenization
and sentence delimitation. For this stage we use
predictions provided by the organizers instead of
training our own UDPipe models.

For each sentence, Stage II (§3) extracts a dense
feature vector for each word in the sentence. For
most languages, we employ character-level bi-
LSTMs to capture morphological information. On
top of the character-level representations, there is
another layer of bi-LSTMs processing at the word
level, the output of which gives context-sensitive
features associated with every word in the sen-
tence. For the four surprise languages and a se-
lected set of languages with small training tree-
banks, we substitute the character-level encodings
of each word in Stage II with concatenation of
part-of-speech (POS) tag embeddings and mor-
phological feature embeddings, but keep the word-
level bi-LSTMs. We call these delexicalized fea-
tures as opposed to the lexicalized features in the
general case. All later stages are kept the same.
The POS tags and morphological features are pro-
vided by baseline UDPipe predictions.

Stage III (§4.1) focuses on unlabeled parsing
with an ensemble of three global models, one first-
order graph-based maximal spanning tree algo-
rithm (MST), and two transition-based, namely

arc-hybrid and arc-eager dynamic programming
(AHDP and AEDP). They share the same un-
derlying feature extractors. We combine outputs
from the unlabeled parsing models with a uniform
weight reparsing model (Sagae and Lavie, 2006).

The final stage (§4.2) of our system is arc label-
ing. Based on the extracted LSTM features and
predicted unlabeled parse trees, this stage assigns
the highest scoring label to each arc. Similar to
Stage III, we train multiple models with different
random initializations, and the ensemble predic-
tion is obtained via majority vote.

Our system was implemented with DyNet
(Neubig et al., 2017). Each single model is of
small size and runs efficiently. The submitted full
system completed the test phase in 4.64 hours with
2 threads. We provide implementation details for
all the modules and training process in §6. The
code is available at https://github.com/
CoNLL-UD-2017/C2L2.

3 Feature Extractors

In Stage II of our system, we first extract features
for each word in isolation, then consider one sen-
tence at a time for context-sensitive representa-
tions. These two feature extractors both leverage
the representational power of bi-LSTMs.

3.1 Character LSTMs

Among the most straightforward ways for repre-
senting a word are through binary features or word
embeddings. Though popular in many existing
parsers, they are not ideal for languages with high
out-of-vocabulary (OOV) ratios. In Universal De-
pendencies, the 56 development sets have an av-
erage OOV ratio of 14.4%, with four languages
(et, hu, ko and sk) higher than 30%, posing a
severe challenge for lexical representation. On the
other hand, the average out-of-charset (OOC) ra-
tio is 0.03%, with the highest (zh) not exceeding
0.1%, suggesting the promise of character-level
representations in terms of coverage.

Our system adopts character-level bi-LSTMs
similar to Plank et al. (2016) and Ballesteros et al.
(2015). They show that the obtained sub-word in-
formation is especially useful for rare and OOV
words in morphologically-rich languages.

Formally, for a word w with its character se-
quence rBOW, c1, ..., cm, EOWs, with two spe-
cial begin-of-word (BOW, or c0) and end-of-word
(EOW, or cm`1) symbols, we run a forward and a

32

backward LSTM at layer l:

r
Ñ
cl
i s “ LSTMforwardpr

ÑÐ

cl´1
i sq

r
Ð
cl
i s “ LSTMbackwardpr

ÑÐ

cl´1
i sq

ÑÐ

cl
i “
Ñ
cl
i ˝
Ð
cl
i

each cl
i denotes the vector representation at layer

l for ci, ˝ denotes concatenation of vectors, and
r¨s is a shorthand for a list of vectors. The inputs
to the first layer c0

i are character embeddings that
are jointly trained with the model. We take the
concatenation of

Ñ
cm`1 and

Ð
c0 at the final layer of

the LSTMs as the output vectors. We use two-
layer bi-LSTMs in our system.

Efficiency Improvement Considering the Zip-
fian distribution for word frequencies, most of the
time is spent on getting char bi-LSTM representa-
tions for frequent words. On the other hand, for
those words, it is considerably easier to train de-
cent representations even without char bi-LSTMs.
We thus directly learn the dense word vectors for
frequent words, as a proxy for character-level bi-
LSTMs and they can be considered as fast look-up
tables without actually running the LSTMs1 .

3.2 Delexicalized Features
For languages with small treebanks, the provided
data is not adequate to learn character bi-LSTMs.
We choose to use the available delexicalized in-
formation predicted by UDPipe. Namely, we use
information from two fields: universal POS tags
(UPOS) and morphological tags.

To get dense vectors for each word w in the
same form as the output of char bi-LSTMs, we
use the concatenation of UPOS embeddings

Ñ
pw

and the bag-of-morphology (BOM) embeddings
poolpt

Ñ
mwuq. The BOM embeddings require a

pooling function poolp¨q because each word may
receive multiple morphological tags. In our sys-
tem, we use element-wise max operator as the
pooling function.

3.3 Word-level LSTMs
The character bi-LSTM vector for each word is
computed in isolation from other words in the
sentence. In this module, we again leverage bi-
LSTMs for integration of contextual information.

1In retrospect, we could have used pre-trained word vec-
tors as extra features.

Similar to §3.1, we pad a sentence with two
special begin-of-sentence (BOS, or w0), and
end-of-sentence (EOS, or wn`1) symbols into
rBOS, w1, ..., wn, EOSs. Inputs to the first layer
are character bi-LSTM encodings, or concatena-
tion of POS-tag and BOM embeddings in the
case of delexicalized models. We take the bi-
directional vectors

ÑÐ

wi at the final layer as the
context-sensitive representation associated with
wi. All parsing components to be described in the
following section will build from these vectors.

4 Parsing Components

Our system parses a sentence in two steps, first
predicting the unlabeled parse tree, and next pre-
dicting the label for each arc in the unlabeled tree.

4.1 Global Models for Unlabeled Parsing

Our system includes one graph-based and two
transition-based, a total of three different global
parsing paradigms. All of these models only han-
dle projective cases. For this reason, before train-
ing, we projectivize all gold-standard trees in the
training sets.

First-order Graph-based Parsing Our graph-
based model is based on the popular edge-factored
Eisner’s algorithm (Eisner, 1996; Eisner and Satta,
1999). Each potential arc ph, mq in the graph
(Opn2q in total with sentence length n) is first
scored with a function scoreMSTph, mq. Then Eis-
ner’s algorithm is used to find the maximum span-
ning tree among all possible projective trees:

argmax
valid parses y

ÿ

ph,mqPy

scoreMSTph, mq

Following Dozat and Manning (2017), we use a
deep bi-affine scoring function:

scoreMSTph, mq “ vᵀ
hUvm`bh ¨vh`bm ¨vm`b

where

vh “ MLPMST-headp
ÑÐ

hq

vm “ MLPMST-modp
ÑÐ

mq

are representations transformed by two multi-layer
perceptrons (MLPs) from their bi-LSTM vectors.
We train separate MLPs for head and modifier
transformation. The weight matrix U , bias vectors
bh, bm and term b are parameters of the function.

33

Global Transition-based Parsing We include
global training and exact decoders for two tran-
sition systems, arc-hybrid and arc-eager. They
are based on dynamic programming approaches
(Huang and Sagae, 2010; Kuhlmann et al., 2011),
thus we call the two models AHDP and AEDP.

The dynamic programming shares computation
for parser configurations with the same extracted
features. In our system, we only use two bi-LSTM
vectors, one from the top of the stack (

ÑÐ

s0), and one
from the top of the buffer (

ÑÐ

b0). This compact set
of features enables dynamic programming to com-
press the exponentially-large search space down to
Opn3q for the two transition systems.

Below we illustrate the AHDP decoder, with
AEDP being similar. The bare deduction system,
adapted from Kuhlmann et al. (2011) is:

sh
ri, js

rj, j ` 1s
reñ

rk, is ri, js

rk, js
kñi

reð

rk, is ri, js

rk, js
iðj

each deduction item ri, js corresponds to a push
computation detailed in Kuhlmann et al. (2011).
For the purpose of our decoder, the deduction item
can also be understood as a parser configuration
with wi being s0 and wj being b0. The deduction
system has an axiom r0, 1s and goal r0, n`1s cor-
responding to initial and terminal configurations.

Next, we incorporate scoring functions:

ri, js : v

rj, j ` 1s : 0
pshq

rk, is : v1 ri, js : v2

rk, js : v1 ` v2 `∆
preñq

where ∆ “ scoreshp
ÑÐ

wk,
ÑÐ

wiq ` scorereñp
ÑÐ

wi,
ÑÐ

wjq.
The scoring functions are bi-affine and take the
same form as scoreMSTp¨q. The highest-scoring
proof for the goal item r0, n ` 1s constitutes the
predicted transition sequence.

Training We employ discriminative training
strategies for all three global parsing models.
Cost-augmented decoding (Taskar et al., 2005;
Smith, 2011) is applied during training. A correct
parse tree is instructed to get higher scores than
an incorrect parse tree by a margin set to be the
number of incorrectly-attached nodes (Hamming
distance). This technique has previously been ap-
plied in training a neural MST parser (Kiperwasser
and Goldberg, 2016).

UAS F1 LAS F1
Official
Ranking

Big Treebanks 85.16 79.85 2
Small Treebanks 70.59 61.49 1
PUD Treebanks 80.17 71.49 2

Surprise Languages 58.40 47.54 1

Overall 80.35 75.00 2

Table 1: Official UAS and LAS scores on the test
sets. Rankings are based on the macro-average
LAS F1 scores over all treebanks in the set.

Target Source UAS F1 LAS F1
Official
Ranking

bxr hi 50.79 31.98 2
hsb cs 69.45 61.70 1
kmr fa 54.51 47.53 1
sme fi 58.85 48.96 1

Average 58.40 47.54 1

Table 2: Evaluation results of our system on the
surprise languages. We show the source treebanks
from which we trained the delexicalized parsers.

4.2 Arc Labeling
We separate out the stage of arc labeling and adopt
a simple labeler proposed by Kiperwasser and
Goldberg (2016). For a predicted arc with h as
the head and m being the modifier, their associ-
ated vectors are concatenated to be the input to a
MLP. Each dimension of the output from the MLP
corresponds to the score for a potential label, And
we select the label with the highest score:

labelph, mq “ argmax
l

MLPlabel
l p

ÑÐ

h ˝
ÑÐ

mq

The arc-labeling models are trained with gold-
standard ph, mq tuples. And we use a discrimina-
tive hinge loss, with margin of 1.

5 Results

The main official evaluation results are given in
Table 1. Our system achieved second place in
overall ranking. When considering average perfor-
mance on small treebanks (8 treebanks) and sur-
prise languages (4 treebanks, detailed in Table 2),
we scored the first among all teams.

We show per-treebank LAS F1 results in Fig-
ure 2. Our system lacks customized modules

34

20

30

40

50

60

70

80

90

100

hu ko lv uk et eu got tr ug el da cu ga pl sk fa hr de ro bg id kk hi ar ur zh ca he vi ja

Best Ours Avg. Top 10 We use UDPipe tokenization

(larger) Gap between ours and avg. top 10 (smaller)
Languages w/ single treebank

Languages w/ multiple treebanks

50

55

60

65

70

75

80

85

90

95
Best Ours Avg. Top 10

Figure 2: LAS F1 score per treebank. The top/bottom row results are on languages with single/multiple
treebank(s). For comparison, we include the best official result and the average of the top ten results on
each treebank. Each row is sorted by the gap between our system and the average of the top ten.

for tokenization and sentence boundary detection,
which is reflected by the gap between our system
and the best-performing systems on ja, vi, he
and zh. The other large source of gaps comes
from languages with large non-projective ratios,
such as grc, la and nl. The global transition-
based AHDP and AEDP models are not compat-
ible with non-projective parsing, and we did not
implement or test with non-projective graph-based
parsers due to time and resource constraints.

Our system performs relatively well on lan-
guages with high OOV ratios, such as hu, ko, lv
and et, with the help of character bi-LSTMs. In
addition, the strategies of concatenating multiple
training treebanks for the same language (see §6)
brought success on small treebanks.

Table 3 gives the performance of our system
on the 14 additional parallel treebanks. The re-
sults are largely consistent with in-domain eval-
uation results, and we ranked within top third
for most treebanks except ja pud, en pud and
ru pud. We did not implement our own tokenizer
for Japanese, explaining the gap. For the other two

languages, our selected models were not domain-
robust. We perform a post-evaluation analysis and
parse the PUD treebanks (Nivre et al., 2017a) with
models trained on the canonical treebanks. The
two languages observe an improvement on LAS
scores of 7.53 and 14.73 respectively.

Ablation Analaysis To examine the effect of in-
dividual components in our ensemble system, we
evaluate several variations, where we use single or
an incomplete set of models for unlabeled pars-
ing and arc-labeling. Results are shown in Ta-
ble 4. AEDP gives higher unlabeled parsing per-
formance, and an ensemble of three instances of
AEDPs achieves comparable performance to our
full system. The arc-labeling ensemble gives an-
other gain in LAS result of 0.31.

6 Implementation Details

Our system was trained on the UD 2.0 dataset
(Nivre et al., 2016, 2017b), with the provided
training and development splits when available.
For languages without development sets, we split

35

Target
Treebank

Selected
Model

LAS F1 Rank

pt pud pt 78.48 1
de pud de 73.92 2
sv pud sv 77.97 2
fr pud fr 78.25 2
es pud es 80.50 2
fi pud fi 85.42 2
it pud it 86.74 2
tr pud tr 37.65 3
ar pud ar 49.03 3
hi pud hi 54.12 3
cs pud cs cac 82.23 3
cs pud cs˚ 83.38˚ 2˚

ja pud ja 78.22 6
ru pud ru syntagrus 61.82 22
ru pud ru˚ 76.55˚ 1˚

en pud en lines 76.56 23
en pud en˚ 84.09˚ 2˚

Average 71.49 2

Table 3: Evaluation results of our system on PUD
treebanks. We give post-evaluation (non-official)
results˚ where we tested with models trained on
treebanks with canonical language codes. The ta-
ble is sorted by our rankings.

Unlabeled
Parser

Arc
Labeler

LAS F1

Full Full

73 74 75

75.00
74.79
74.69

74.32
74.00

73.75

3ˆAEDP Full
Full Single

1ˆAEDP Full
1ˆAHDP Full
1ˆMST Full

Table 4: Ablation of our ensemble system.

the training sets into train/dev sets with ratio
0.9{0.1. We did not use any additional data.
All neural network computation was implemented
with DyNet (Neubig et al., 2017).

Stage I of our system is the baseline system UD-
Pipe 1.1, and we directly used the outputs pro-
vided by the organizers. We implemented modules
for all later stages. They were trained with gold-
standard features and tokenizations. For all lan-
guages and all treebanks, we trained models with

2-layer-deep and 192-unit-wide (96 units for each
direction) word-level bi-LSTMs as feature extrac-
tors. Lexicalized character bi-LSTMs are 2 lay-
ers deep and 128 units wide, with 64-dimensional
input character embeddings. For languages with-
out lexicalized feature extractors, we used con-
catenation of 64-dimensional UPOS embeddings,
and max pooling of 64-dimensional morphologi-
cal embeddings as input to word-level bi-LSTMs.

The word-level bi-LSTM feature vectors were
passed through MLPs with 1 hidden layer and 192
hidden units, before the bi-affine scoring functions
for MST, AHDP and AEDP unlabeled parsing. In
arc-labelers, we concatenated the word-level fea-
ture vectors and passed it through a 1-layer MLP
with 192 hidden units to get scores for the arc la-
bels. Output layer size depends on the number of
labels appearing in the training set for the con-
cerned treebank. We projected language-specific
arc tags into universal ones before training.

All the aforementioned hidden layers used tanh
as activation functions. And the parameters were
uniformly initialized (Glorot and Bengio, 2010),
except for the weight matrices in the bi-affine scor-
ing functions, which were initialized to be orthog-
onal (Saxe et al., 2013). We did not use any pre-
trained word embeddings.

We applied dropout at every stage. MLPs had
dropout rates of 0.3 (Srivastava et al., 2014). Bi-
LSTMs, both character-level and word-level, also
had dropout rates of 0.3 for input and recurrent
connections (Gal and Ghahramani, 2016). Further,
we zeroed out input vectors to word-level LSTMs
for 15% of the time, to encourage the models gain
more information from context.

When we trained each model, we randomly
shuffled the training set before starting each epoch,
and grouped sentences into mini-batches of ap-
proximately 100 words. The discriminative loss
functions were optimized via Adam optimizer
(Kingma and Ba, 2015), with default hyperparam-
eters except initial learning rate set to be 0.002.
We evaluated the models with development data
after every 500 mini-batches. We halved the learn-
ing rate if the performance plateaued in 5 consecu-
tive evaluations, The process was repeated 3 times
before we terminated the training process.

We employed the technique of stack-
propagation (Zhang and Weiss, 2016), where
the auxiliary task of UPOS prediction was used as
a regularizer. It received 0.1 the weight of other

36

components in computing the loss.
For the languages with multiple treebanks,

we first concatenated the training treebanks and
trained a general model. We then fine-tuned the
models on the respective individual treebanks.

To speed up training,we simultaneously trained
MST, AHDP, AEDP and arc labeling models with
shared LSTM feature extractors. Their losses were
linearly combined with weights 0.6, 0.3, 0.3, 1.5
respectively. After a joint model had been trained,
we fine-tuned each of the four tasks separately.

Our final system included ensembles both for
unlabeled parsing and arc labeling. They were ob-
tained with different random initializations of the
neural network, but trained in the same fashion.
For languages with multiple treebanks, we trained
3 sets of models (3 for each parsing paradigm, 9
unlabeled parsing models in total, plus 3 for arc
labeling). For languages with single treebanks, we
trained 5 sets of models.

For surprise languages, we first trained delexi-
calized models using the training data in a most
similar language according to the WALS features
(Dryer and Haspelmath, 2013). We selected fi,
fa, hi, cs for sme, kmr, bxr, hsb respectively.
We then fine-tuned the models on the sample data
for these languages. We treated kk and ug simi-
larly as they have quite small training sets. Both
of them used tr as the source language.

The entire training process of all models in the
ensemble for all treebanks was done using 8 CPU
cores (2 ˆ Intel i7-4790 @ 3.60GHz) in approx-
imately one week. Each model required at most
2GB RAM plus the amount needed for holding the
training sets. On the online evaluation platform
TIRA (Potthast et al., 2014), the test phase for our
full model finished in 4.64 hours with 2 threads.
Each model required at most 500MB RAM plus
the amount needed for holding the test sets.

Acknowledgments

The first author was supported by a Google fo-
cused research grant. The second author was sup-
ported by Kilian Q. Weinberger with IIS-1550179,
IIS-1525919, IIS-1618134 grants from National
Science Foundation. The fourth author was sup-
ported by DARPA DEFT Grant FA8750-13-2-
0015. We thank Lillian Lee for her helpful input
and support throughout the shared task. And we
thank the two anonymous reviewers for their valu-
able comments.

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Dan Gillick, Lingpeng Kong, Terry Koo,
Ji Ma, Mark Omernick, Slav Petrov, Chayut
Thanapirom, Zora Tung, and David Weiss. 2017.
SyntaxNet models for the CoNLL 2017 shared task.
arXiv:1703.04929. http://arxiv.org/abs/1703.04929.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 349–359.
https://doi.org/10.18653/v1/D15-1041.

James Cross and Liang Huang. 2016. Incre-
mental parsing with minimal features using bi-
directional LSTM. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Asso-
ciation for Computational Linguistics, pages 32–37.
https://doi.org/10.18653/v1/P16-2006.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the 5th International Confer-
ence on Learning Representations.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig. http://wals.info/.

Jason Eisner. 1996. Three new probabilistic
models for dependency parsing: An explo-
ration. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics.
http://aclweb.org/anthology/C96-1058.

Jason Eisner and Giorgio Satta. 1999. Effi-
cient parsing for bilexical context-free grammars
and head automaton grammars. In Proceed-
ings of the 37th Annual Meeting of the Associa-
tion for Computational Linguistics. pages 457–464.
http://aclweb.org/anthology/P99-1059.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems. pages 1019–1027.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics.
volume 9, pages 249–256.

Alex Graves and Jürgen Schmidhuber. 2005.
Framewise phoneme classification with bidi-
rectional LSTM and other neural network ar-
chitectures. Neural Networks 18(56):602–610.
https://doi.org/10.1016/j.neunet.2005.06.042.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In

37

Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics, pages 1077–1086.
http://aclweb.org/anthology/P10-1110.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 4th International Conference on Learn-
ing Representations.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics
4:313–327. http://aclweb.org/anthology/Q16-1023.

Marco Kuhlmann, Carlos Gómez-Rodrı̀guez, and Gior-
gio Satta. 2011. Dynamic programming algo-
rithms for transition-based dependency parsers.
In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 673–682.
http://aclweb.org/anthology/P11-1068.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng
Ji, Lingpeng Kong, Adhiguna Kuncoro, Gau-
rav Kumar, Chaitanya Malaviya, Paul Michel,
Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. 2017.
DyNet: The dynamic neural network toolkit.
arXiv:1701.03980. http://arxiv.org/abs/1701.03980.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation. European Language Resources Associ-
ation, Portoro, Slovenia, pages 1659–1666.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague. http://hdl.handle.net/11234/1-1983.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th An-
nual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 412–418.
https://doi.org/10.18653/v1/P16-2067.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author identifica-
tion, and author profiling. In Evangelos Kanoulas,
Mihai Lupu, Paul Clough, Mark Sanderson, Mark
Hall, Allan Hanbury, and Elaine Toms, editors, In-
formation Access Evaluation meets Multilingual-
ity, Multimodality, and Visualization. 5th Interna-
tional Conference of the CLEF Initiative. Springer,
Berlin Heidelberg New York, pages 268–299.
https://doi.org/10.1007/978-3-319-11382-1 22.

Kenji Sagae and Alon Lavie. 2006. Parser com-
bination by reparsing. In Proceedings of the
Human Language Technology Conference of the
North American Chapter of the ACL, Com-
panion Volume: Short Papers. pages 129–132.
http://aclweb.org/anthology/N06-2033.

Andrew M. Saxe, James L. McClelland, and Surya
Ganguli. 2013. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks.
In Proceedings of the International Conference on
Learning Representations.

Noah A. Smith. 2011. Linguistic Structure Prediction,
volume 4 of Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research 15(1):1929–1958.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings of
the 10th International Conference on Language Re-
sources and Evaluation. European Language Re-
sources Association, Portoro, Slovenia.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning structured predic-
tion models: A large margin approach. In Proceed-
ings of the 22nd International Conference on Ma-
chine Learning. pages 896–903.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,

38

Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1557–1566.
https://doi.org/10.18653/v1/P16-1147.

39

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 40–51,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

IMS at the CoNLL 2017 UD Shared Task:
CRFs and Perceptrons Meet Neural Networks

Anders Björkelund∗ and Agnieszka Falenska∗ and Xiang Yu∗ and Jonas Kuhn
Institute for Natural Language Processing

University of Stuttgart
{anders,falenska,xiangyu,jonas}@ims.uni-stuttgart.de

Abstract

This paper presents the IMS contribution
to the CoNLL 2017 Shared Task. In the
preprocessing step we employed a CRF
POS/morphological tagger and a neural
tagger predicting supertags. On some lan-
guages, we also applied word segmenta-
tion with the CRF tagger and sentence seg-
mentation with a perceptron-based parser.
For parsing we took an ensemble approach
by blending multiple instances of three
parsers with very different architectures.
Our system achieved the third place over-
all and the second place for the surprise
languages.

1 Introduction

This paper presents the IMS contribution to the
CoNLL 2017 UD Shared Task (Zeman et al.,
2017). Our submission to the Shared Task (ST)
ranked third. Our overall approach relies on estab-
lished techniques for improving accuracies of de-
pendency parsers, including strong preprocessing,
supertagging and parser combination.

The task was to predict dependency trees
from raw text. To make the ST more ac-
cessible to participants, the organizers provided
baseline predictions for all preprocessing steps
(including word and sentence segmentation and
POS/morphological feature predictions) using the
baseline UDPipe system (Straka et al., 2016). We
scrutinized the baseline and considered where we
could improve over it. It turns out that, although
the UDPipe baseline is a strong one, considerable
parsing accuracy improvements can be gained by
improving the preprocessing steps. In particular,
we applied our own POS/morphology tagging us-
ing a CRF tagger and supertagging (Ouchi et al.,

∗All three authors contributed equally.

2014) with a neural tagger. Additionally, we per-
formed our own word and/or sentence segmenta-
tion on a subset of the test sets.

For the parsing step we applied an ensem-
ble approach using three different parsers, some-
times using multiple instances of the same parser:
one graph-based parser trained with the percep-
tron; one transition-based beam search parser
also trained with the perceptron; and one greedy
transition-based parser trained with neural net-
works. The parser outputs were combined through
blending (also known as reparsing; Sagae and
Lavie, 2006) using the Chu-Liu-Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967).

The final test runs were carried out on the TIRA
platform (Potthast et al., 2014) where participants
were assigned a virtual machine. To ensure that
our final test run would finish on time on the VM,
we established a time budget for each treebank and
set a goal that a full test run should finish within
24 hours. Thus we applied a combination search
under a time constraint to limit the maximal num-
ber of instances of the individual parsers.

An interesting aspect of the ST was the intro-
duction of four surprise languages. These lan-
guages were only announced one week before the
test phase at which point the participants were pro-
vided with roughly 20 gold standard sentences for
each language. Unfortunately, among the allowed
external resources the amount of parallel data for
the surprise languages was rather limited. This
prevented us from using cross-lingual techniques
or multilingual word vectors. We therefore re-
sorted to blending models trained on the small
samples as well as delexicalized models trained on
other source languages.

Another challenge of the ST were 14 parallel
new test domains for the known languages. Since
the UD annotation scheme is applied on all of the
treebanks, this suggests that the training data of

40

the same language from different domains could
be combined. We made several experiments in this
direction and trained models on merged treebanks
for most of the parallel test sets (Section 7).

The remainder of this paper is organized as fol-
lows. Section 2 discusses our preprocessing steps,
including word and sentence segmentation, POS
and morphological tagging, and supertagging. In
Section 3 we describe the three baseline parsers,
while blending is reviewed in Section 4. In Sec-
tion 5 we go through our pipeline and show re-
sults on the development data. Sections 6 and 7
describe our approaches to the surprise languages
and parallel test sets, respectively. Our official test
set results are shown in Section 8 and Section 9
concludes.

2 Preprocessing

For most data sets word and sentence segmenta-
tion plays a minimal role, as it is delivered al-
most for free by means of whitespaces, sentence-
final punctuation and capital letters. Therefore
our overall architecture applies word/sentence seg-
mentation pipeline only on treebanks for which
this task is non-trivial (see Figure 1). These test
sets can roughly be grouped into two categories:
Languages where tokenization is challenging, e.g.,
Chinese and Japanese, but also languages such as
Arabic and Hebrew, where many orthographic to-
kens are segmented into smaller syntactic words
with transformations. The second category com-
prises the treebanks where the detection of sen-
tence boundaries is difficult, mostly classical texts.

2.1 Word Segmentation

We applied our own word segmentation on six lan-
guages: Arabic, French, Hebrew, Japanese, Viet-
namese, and Chinese. We selected them by ana-
lyzing the UDPipe baseline and picking out cases
where we potentially could surpass it.

For Arabic, French and Hebrew, the difficulty
lies in splitting orthographic words (i.e., multi-
word tokens) into several syntactic words (e.g., cl-
itics). Additionally the orthographic words are of-
ten not the simple concatenation of their compo-
nents. For example in French, the multiword to-
ken des would be split into two syntactic words de
and les. We cast this problem as classification by
predicting the Levenshtein edit script to transform
a multiword token into its components.

Concretely with the French example, we take

the multiword token des as input, and predict
de&les, where & is an artificial delimiter to split
the token. To reduce the tag set, we used the
Levenshtein edit script “=2+&le=1” instead of
de&les as the target class, which means keeping
the first 2 characters, adding “&le”, then keep-
ing 1 character, so that des can be transformed
into de&les (thus split into de and les). Using edit
scripts reduced the tag set size from about 12,000
to 1,000 for Arabic and from 14,000 to 600 for
Hebrew.

For Japanese, Vietnamese and Chinese, we sim-
ply applied a standard chunking method: for each
character (or phoneme in Vietnamese), we pre-
dicted the chunk boundary, jointly with the POS
tag of the word.

In both cases, we used the state-of-the-art mor-
phological CRF tagger1 MarMoT (Müller et al.,
2013) to predict the tags (edit scripts or chunk
boundaries). We used second order models for
Arabic, French and Hebrew, and third order mod-
els for Japanese, Vietnamese and Chinese.

2.2 Sentence boundary detection

We applied our own sentence segmentation on
nine languages (see Figure 1). For some of
them, like Gothic or Latin PROIEL, typical or-
thographic features (e.g., punctuation or capital-
ization) that indicate sentence boundaries are not
present and UDPipe was achieving extremely low
scores (23.51 and 19.76 F1 respectively). The oth-
ers were selected empirically by tests on the devel-
opment data.

We employed a beam-search transition-based
parser extended to predict sentence boundaries
(Björkelund et al., 2016). This parser (referred to
as TPSeg) is an extension of our transition-based
parser (see Section 3.2) using the perceptron and
is trained using DLASO updates (Björkelund and
Kuhn, 2014; Björkelund et al., 2016). It marks
sentence boundaries with an additional transition.
For this parser the input is not just a pre-tokenized
sentence, but a pre-tokenized document. As docu-
ments during test-time we used paragraphs from
the raw input text, assuming that no sentence
would span across a paragraph break.

A training instance for the parser is a document
(rather than a sentence). Some treebanks have
the entire training set represented as a single para-
graph (document). Initial experiments showed that

1http://cistern.cis.lmu.de/marmot/

41

UDPipe

Words, Sentences

CRF UDPipe

Words Sentences

UDPipe TPSeg

Words Sentences

CRF TPSeg

Words Sentences

UDPipe

UPOS, Feats

CRF TagNN
UPOS, STags

Feats

surprise
default

langs1

langs2

langs3

P
R
E
P
R
O
C
E
S
S
E
D

GP

TP

TN

Blend-Opt OUT

Preprocessing Parsing

Figure 1: System architecture, where langs1: he, ja, fr, fr sequoia, fr partut, fr pud, vi, zh; langs2: cu,
en, et, got, grc proiel, la, la ittb, la proiel, nl lassysmall, sl sst; langs3: ar, ar pud.

training the parser on a single document took con-
siderable time and also did not perform very well.
Instead, we created artificial documents for train-
ing by taking chunks of 10 sentences from the
training set and treating them as documents (irre-
spective of whether they went across paragraphs).

We trained the parser using gold word segmen-
tation and POS/morphology information. At test
time we relied on UDPipe predictions in most
cases. However, for Arabic, the only language
where we did both word and sentence segmenta-
tion, we applied our own POS/morphology tag-
ger since the word segmentation had changed.
Additionally, we applied our tagger on Old
Church Slavonic, Estonian, Gothic, Ancient Greek
PROIEL and Dutch LassySmall since we found
that this lead to better sentence segmentation re-
sults on the development sets.

2.3 Part-of-Speech and Morphological
Tagging

We used MarMoT to jointly predict POS tags and
morphological features. We annotated the training
sets via 5-fold jackknifing. All parsers for all lan-
guages except the surprise ones were trained on
jackknifed features. We did not use XPOS tags
and lemmas. We used MarMoT with default hy-
perparameters.

2.4 Supertags

Supertags (Joshi and Bangalore, 1994) are labels
for tokens which encode syntactic information,
e.g., the head direction or the subcategorization
frame. Supertagging has recently been proposed
to provide syntactic information to the feature
model of statistical dependency parsers (Ambati
et al. (2013; 2014), Ouchi et al. (2014)).

We follow the definition of supertagging from
Ouchi et al. (2014) and extract supertag tag sets
from the treebanks. We use their Model 1 to de-
sign our supertags. That is, we encode the depen-
dency relation (label), the relative head direction
(hdir) and the presence of left and right depen-
dents (hasLdep, hasRdep) and follow the template
label/hdir+hasLdep hasRdep.

We used an in-house neural-based tagger
(TAGNN) to predict the supertags (Yu et al.,
2017). It takes the context of a word within a win-
dow size of 15. The input word representations
are concatenations of three components: output of
a character-based Convolutional Neural Network
(CNN), pretrained word embeddings provided by
the ST organizers, and a binary code indicating
the target word. The word representations of the
whole context-window are then fed into another
CNN to predict the supertag of the target word.
We used TAGNN instead of CRF for supertagging,
since it performed considerably better in the pre-
liminary experiments.

3 Baseline parsers

Surdeanu and Manning (2010) show that com-
bining a set of parsers with a simple voting
scheme can improve parsing performance. Mar-
tins et al. (2013) demonstrate that self-application,
i.e., stacking a parser on its own output, only leads
to minuscule improvements.2 Therefore to profit
from combining components one of the most sig-
nificant factor is their diversity. Thus we experi-
mented with three parsers with quite different ar-

2In fact, even supertagging can be regarded as a form of
stacking. Also in this case, the key ingredient is that the
suppertagger is architecturally sufficiently different from the
parser (Faleńska et al., 2015).

42

chitectures and additionally varied their settings.

3.1 Graph-based perceptron parser
As the graph-based parser we used mate3 (Bohnet,
2010), henceforth referred to as GP. This is
a state-of-the-art graph- and perceptron-based
parser. The parser uses the Carreras (2007) ex-
tension of the Eisner (1997) decoding algorithm
to build a projective parse tree. It then ap-
plies the non-projective approximation algorithm
of McDonald and Pereira (2006) to recover non-
projective dependencies. We train the parser using
the default number of training epochs (10).

We modified the publicly available sources of
this parser in two ways. First, we extended the
feature set with features based on the supertags
following Faleńska et al. (2015). Second, we
changed the perceptron implementation to shuf-
fle the training instances between epochs.4 Shuf-
fling enables us to obtain different instances of the
parser trained with different random seeds, which
are used in the blending step.

Since the time complexity of the Carreras
(2007) decoder is quite high (O(n4)) this parser
required a considerable amount of time to parse
long sentences. Therefore, while applying this
parser in the blending scenario, we skipped all sen-
tences longer than 50 tokens.5 We additionally
made sure that for each treebank we had at least
one parser that was not GP, so that all sentences
would be parsed.

3.2 Transition-based beam-perceptron
parser

We apply an in-house transition-based beam
search parser trained with the perceptron
(Björkelund and Nivre, 2015), henceforth referred
to as TP.6 We have previously extended this
parser to accommodate features from supertags
(Faleńska et al., 2015). It uses the ArcStandard
system extended with a Swap transition (Nivre,
2009) and is trained using the improved oracle by
Nivre et al. (2009).

The parser is trained with a globally optimized
structured perceptron (Zhang and Clark, 2008) us-
ing max-violation updates (Huang et al., 2012).

3http://code.google.com/p/mate-tools
4The publicly available version does not shuffle.
5For the baseline results on the development sets (Tables 3

and 4), the parser was applied to all sentences.
6This parser as well as the variant that we applied for sen-

tence segmentation (TPSeg) is available on the first author’s
website.

We use the default settings for beam size (20)
and number of training epochs (also 20). Simi-
larly to GP, we employ different seeds for the ran-
dom number generator used during shuffling of the
training instances in order to obtain multiple dif-
ferent models.

3.3 Transition-based greedy neural parser

We use an in-house transition-based greedy parser
with neural networks (Yu and Vu, 2017), hence-
forth referred to as TN.7

The parser uses a CNN to compose word rep-
resentations from characters, it also takes the em-
beddings of word forms, universal POS tags and
supertags and concatenates all of them as input
features. The input is then fed into two hidden lay-
ers with ReLU non-linearity, and finally predicts
the transition with a softmax layer. The parser uses
the same Swap transition system and oracle as TP.
We use the default hyperparameters during train-
ing and testing.

During training the parser additionally pre-
dicts the supertag of the top token in the stack
and includes the tagging cross-entropy into the
cost function. This approach is similar to stack-
propagation (Zhang and Weiss, 2016), where the
tagging task is only used as a regularizer.

4 Blending

To enhance the performance of the baseline single
parsers we combined them using blending (Sagae
and Lavie, 2006). We trained multiple instances of
each baseline parser using different random seeds.
We parsed every sentence and assigned scores to
arcs depending on how frequent they were in the
predicted trees. We used the Chu-Liu-Edmonds
algorithm to decode the maximum spanning tree
from the resultant graph. This way we obtained
the majority decision of the parser instances under
the tree constraint.

As a baseline for blending (BLEND-BL), we
took four instances from each of the baseline
parsers: The four GP instances were trained with
different random seeds. The four TP instances
further split into two groups: two parse from
left to right (TP-l2r) and two parse from right
to left (TP-r2l). The four TN instances differ
not only in the parsing direction, but also in the
word embeddings, two use pretrained embeddings

7This parser as well as the neural tagger used for supertag-
ging (TAGNN) is available on the third author’s website.

43

from the organizers (TN-l2r-vec, TN-r2l-vec) and
two use randomly initialized embeddings (TN-l2r-
rand, TN-r2l-rand).

The 4+4+4 combination was rather arbitrary
and simply based on the intuition that different
parsers should be equally represented and as di-
verse as possible. However, this might not be
the optimal combination since different parsers are
better at different treebanks. Also, given the rel-
atively limited computing resources on the VM,
we needed to optimize the number of blended in-
stances in terms of speed.

We thus applied a combination search under a
time constraint. First we measured time needed by
each parser to parse every development treebank
on the VM as an estimation of time usage for the
test run. We then defined a time budget of 1,000
seconds for each treebank, and checked all combi-
nations of the parsers on the development set un-
der the time budget. We took the combinations
from a pool of 24 individual instances, divided
into seven groups: 8×GP; 4×TP-l2r; 4×TP-r2l;
2×TN-l2r-rand; 2×TN-l2r-vec; 2×TN-r2l-rand;
2×TN-r2l-vec.

Note that enumerating all combinations of indi-
vidual instances is not feasible (224 combinations).
Thus we applied a two-step heuristic search. First
we searched for the optimal number of instances
from the 7 groups, by drawing samples from the
pool of instances with only different random seed
(at most 9× 5× 5× 3× 3× 3× 3 = 18, 225 pos-
sibilities). Once the optimal numbers of instances
were found, we then searched exhaustively for the
optimal instances (BLEND-OPT).

5 Evaluation

In this section we evaluate the aforementioned
methods on the 55 treebanks for which develop-
ment data was available.

5.1 Word and sentence segmentation

As discussed in Section 2, we applied our own
word and/or sentence segmentation to a subset of
languages. The corresponding results on the de-
velopment sets are shown in Tables 1 and 2.

For word tokenization both our methods (pre-
dicting edit script and tagging with chunk bound-
aries) outperform the UDPipe baseline by 2.64 F1-
score points on average. The biggest gains are
achieved for Hebrew (4.57 points) and Vietnamese
(4.67 points).

Using the TPSeg parser to predict sentence
boundaries results in an average improvement of
9.32 points on sentence segmentation F1-score
over the UDPipe baseline. Especially the diffi-
cult data sets that do not use orthographic features
to indicate sentence boundaries improve by a big
margin, for example Latin PROIEL by 18.76 and
Gothic by 15.73.

Most importantly, the improvements in word
and sentence segmentation F1-score roughly
translate into LAS improvements with a 1:1 and
a 5:1 ratio, respectively.

UDPipe CRF ∆ LAS

ar 93.86 95.53 2.04
fr 99.18 99.66 0.60
fr sequoia 98.65 99.35 0.90
he 88.15 92.72 4.82
ja 89.53 92.10 5.08
vi 83.99 88.66 5.57
zh 88.95 92.76 5.47

average 91.76 94.40 3.50

Table 1: F1 scores for word segmentation and
gains in LAS for TP.

UDPipe TPSeg ∆ LAS

ar 77.99 94.01 0.83
cu 37.09 48.03 3.16
en 76.35 78.69 0.66
et 84.91 86.40 0.54
got 23.51 39.24 4.01
grc proiel 41.95 54.38 1.91
la ittb 77.38 80.55 0.47
la proiel 19.76 38.52 4.00
nl lassysmall 79.31 82.35 0.82

average 57.58 66.91 1.82

Table 2: F1 score for sentence segmentation and
gains in LAS for TP.

5.2 Preprocessing and Supertags
To see the improvements stemming from our pre-
processing steps we run the baseline parsers in
four incremental settings: (1) using only the UD-
Pipe baseline predictions, (2) replacing POS and
morphological features with CRF predictions, (3)
adding supertags, and (4) applying our own word
and sentence segmentation. Table 3 shows the
average LAS for each parser across the 55 de-
velopment sets for the consecutive experiments.
For each set of experiments the parsers were
trained on corresponding jackknifed annotations
for POS, morphology, and supertags. Gold word

44

and sentence segmentation was used while train-
ing parsers in all settings.

The table shows that replacing the POS and
morphological tagging with the CRF instead of
baseline UDPipe predictions improves the parsers
by 0.66 on average.8 The introduction of supertags
brings an additional 0.88 points which demon-
strates that supertags are a useful source of syn-
tactic features for dependency parsers, irrespec-
tive of architecture. Replacing the word and sen-
tence segmentation from UDPipe with our own
improves on average by 0.74 points. It is worth
noting that this improvement stems only from the
15 treebanks where we applied our own segmen-
tation, although the averages in Table 3 are com-
puted across all 55 treebanks.

UDPipe CRF +STags +segm.

GP 75.46 76.01 +1.12 +0.74
TP (l2r) 74.69 75.49 +0.97 +0.78
TN (l2r-vec) 74.95 75.58 +0.54 +0.71

average 75.03 75.69 +0.88 +0.74

Table 3: Average (across 55 treebanks) gains in
parsing accuracies (LAS) for incremental changes
to UDPipe preprocessing baseline.

5.3 Development Results

Our overall results on the development sets are
shown in Table 4. The table shows the perfor-
mance of the preprocessing steps, the individual
baseline parsers, and the results of the two blends.
The 15 treebanks where we applied our own word
and/or sentence segmentation are marked explic-
itly in the table, for the other cases we used the
UDPipe baseline.

The three single baseline parsers achieved sim-
ilar average performances. Each one of them per-
formed the highest on some of the treebanks, but
not on all. It is worth noting that the strongest
baseline parser, GP, is perceptron-based rather
than a neural model. That is not to say that per-
ceptrons generally are stronger than neural mod-
els (our neural TN parser is a greedy parser, and
other participants in the Shared Task present con-
siderably stronger neural models), however it in-
dicates that perceptrons are not miles behind the
more recent neural-based parsers.

Blending parsers yield a strong boost over the

8The actual improvements on the POS and morphological
tagging tasks amount to 0.68 and 1.17, respectively.

baselines. BLEND-BL improves roughly 2-3
points depending on the choice of baseline. By
searching for optimal combinations under the time
budget, this can be further improved by 0.49 on
average (BLEND-OPT). The search reduced the
number of models from 660 to 438. In particular,
there were 221 instances of GP, 79 of TP, and 138
of TN.

6 Surprise languages

The implementation of the surprise languages in
the Shared Task was done in a rather peculiar
way with respect to preprocessing. The test sets
were annotated by the organizers through cross-
validation. That is, the test sets were provided
with predicted (by UDPipe) POS and morpholog-
ical tags. Participants were provided with a small
sample (about 20 sentences) for each surprise lan-
guage, however only with gold standard prepro-
cessing. This meant that it was difficult to use the
samples for tuning/development since we would
either have to use gold standard preprocessing, or
apply cross-validation on the samples ourselves
which most likely would have resulted in consider-
ably worse preprocessing than that which was de-
livered for the test sets. We chose to consistently
use gold preprocessing for all development exper-
iments on the surprise languages.

A straightforward approach to the surprise lan-
guages is to use delexicalized parser transfer (Ze-
man and Resnik, 2008). The idea is to train
a parser on a source treebank using only non-
lexical features (in our case universal POS tags
and morphological features) and apply it on sen-
tences from the target language. We followed
Rosa and Zabokrtský (2015) and performed multi-
source delexicalized transfer by blending together
models trained on several languages. Contrary to
them, we treat the source languages equally and
blend them with the same weight.

We trained delexicalized TP and GP parsers for
40 source languages (we took the 40 biggest tree-
banks, excluding the domain specific ones). We
refrained from training TN since the main moti-
vation of this parser is that it operates on charac-
ters. Therefore, using it in the delexicalized setting
does not make sense.

To narrow down the number of possible source
language parsers, we used TP to select the best six
source languages for each surprise language using
the sample data. We then searched for the optimal

45

Preprocessing (F1) Baseline parsers (LAS) Blending (LAS)

Words Sentences UPOS Feats GP TP TN BLEND-BL BLEND-OPT

ar⊗� 95.53 94.01 90.73 86.40 70.88 70.54 71.35 72.59 72.99
bg 99.84 92.41 97.88 96.22 84.81 84.65 83.35 85.93 86.09
ca 99.96 98.77 98.16 97.50 87.04 86.75 85.11 87.59 87.90
cs 99.96 92.41 98.68 93.65 87.36 86.75 83.74 87.42 87.45
cs cac 100.00 99.09 99.07 91.01 87.37 86.52 85.41 87.56 88.17
cs cltt 98.65 74.11 90.30 79.69 73.01 72.83 73.94 76.84 77.30
cu� 100.00 48.03 94.92 89.26 73.35 72.45 73.02 75.27 75.86
da 99.68 84.36 95.22 94.59 78.01 76.98 74.59 79.63 80.01
de 99.91 92.25 92.95 84.72 78.72 77.83 75.10 80.02 80.54
el 99.87 88.67 95.77 91.03 81.53 80.78 80.06 83.45 84.16
en� 98.69 78.69 93.09 94.03 78.37 77.27 76.93 79.11 79.41
en lines 99.93 87.36 94.92 99.93 76.51 76.23 76.41 78.59 79.35
en partut 99.46 97.62 94.23 93.35 76.58 76.15 77.35 79.41 80.12
es 99.80 98.07 96.12 96.97 84.91 84.25 83.00 85.08 85.25
es ancora 99.94 96.33 98.10 97.57 86.66 86.18 85.16 87.07 87.30
et� 99.79 86.40 89.20 84.13 63.56 62.15 63.87 66.49 67.76
eu 99.99 99.00 94.14 89.83 74.99 73.73 74.47 76.96 77.59
fa 99.69 97.14 96.16 96.24 82.86 82.43 81.97 84.21 84.42
fi 99.69 86.47 95.49 93.01 80.08 78.99 78.34 81.71 82.13
fi ftb 99.93 82.52 92.85 93.15 79.97 79.03 80.35 81.17 82.02
fr⊗ 99.66 97.09 96.90 96.78 87.24 86.93 86.25 87.76 87.92
fr sequoia⊗ 99.35 90.20 96.58 95.68 84.30 83.42 83.01 85.54 86.17
gl 99.93 98.04 96.80 99.80 80.33 79.31 78.89 81.74 81.87
got� 100.00 39.24 94.75 87.90 68.29 67.59 67.35 70.65 71.01
grc 99.98 99.17 88.34 89.58 65.77 64.06 64.28 68.14 69.09
grc proiel� 100.00 54.38 96.64 90.57 75.07 74.29 73.98 77.30 77.80
he⊗ 92.72 98.57 89.24 87.21 68.89 68.75 68.31 70.94 71.02
hi 100.00 98.46 96.12 90.89 88.92 88.83 89.73 90.09 90.45
hr 99.98 97.23 96.70 87.57 80.54 79.91 79.15 82.41 82.99
hu 99.91 94.55 93.84 72.72 72.06 72.00 70.84 76.13 76.50
id 99.99 90.83 93.33 99.56 75.26 74.80 73.68 77.38 77.43
it 99.70 93.20 97.14 97.31 85.70 84.80 84.48 86.35 86.77
ja⊗ 92.10 99.71 89.82 92.08 78.52 78.66 79.58 79.71 80.04
ko 99.45 91.10 93.10 99.17 70.47 71.13 74.37 74.03 76.41
la ittb� 99.88 80.55 96.79 92.41 76.10 75.40 75.67 78.21 79.16
la proiel� 99.99 38.52 95.83 89.46 68.99 67.05 67.82 71.45 71.99
lv 98.91 96.48 91.29 85.40 67.08 65.03 65.31 69.19 70.25
nl 99.87 92.11 94.38 92.92 79.04 78.29 76.36 80.18 80.72
nl lassysmall� 99.90 82.35 96.01 95.74 79.03 77.85 76.27 80.41 80.98
no bokmaal 99.89 96.91 97.55 96.36 86.17 85.90 84.89 86.79 87.01
no nynorsk 99.92 93.05 97.05 96.01 84.56 84.19 83.55 85.36 85.50
pl 99.87 99.56 96.12 85.71 84.67 83.78 83.66 85.89 86.89
pt 99.74 89.27 96.86 95.05 86.04 85.71 84.53 87.20 87.56
pt br 99.83 96.65 97.39 99.71 86.99 86.49 86.33 87.88 87.87
ro 99.55 95.16 96.68 96.13 82.05 81.61 80.12 83.19 83.37
ru 99.92 96.18 95.44 87.50 80.22 79.60 78.89 81.89 82.37
ru syntagrus 99.68 97.67 98.15 94.40 89.10 88.45 86.79 89.37 89.19
sk 100.00 77.85 95.04 80.13 78.49 77.92 76.71 80.10 80.70
sl 99.94 99.59 97.13 90.54 85.92 84.33 82.42 87.05 87.40
sv 99.77 95.59 95.52 94.80 77.11 76.34 75.28 79.18 79.96
sv lines 99.97 87.28 94.50 99.97 76.10 75.65 75.93 78.00 78.80
tr 97.88 96.98 91.35 86.17 58.05 58.07 57.04 61.42 62.16
ur 99.99 98.37 93.46 80.24 79.02 78.45 79.78 80.70 80.96
vi⊗ 88.66 96.28 80.64 88.56 47.01 47.62 47.76 49.66 49.77
zh⊗ 92.76 97.60 86.23 91.57 62.93 63.28 63.37 66.17 66.80

average 99.07 89.45 94.56 91.78 77.87 77.24 76.83 79.52 80.01

Table 4: Development results. The treebanks for which we did our own word and/or sentence segmen-
tation are marked with ⊗ and � respectively. The TP and TN models correspond to TP-l2r TN-l2r-vec,
respectively.

46

combination (across both parsers) where, instead
of a time budget, we arbitrarily set the maximum
number of parsers to eight.

smelex 51.02
fidelex 51.02
no bokmaaldelex 47.62
etdelex 47.62

BLEND-OPT 60.54

(a) Target language: sme

kmrlex 48.76
fadelex 42.15
eldelex 33.88
ukdelex 29.75

BLEND-OPT 44.63

(b) Target language: kmr

hsblex 65.00
csdelex 78.04
sldelex 76.74
skdelex 75.43

BLEND-OPT 78.70

(c) Target language: hsb

bxrlex 41.83
eudelex 37.25
urdelex 35.95
hidelex 35.29

BLEND-OPT 44.44

(d) Target language: bxr

Table 5: Parsing accuracy (LAS) for surprise lan-
guages: the three best delexicalized TP-l2r parsers
and lexicalized parser obtained by leave-one-out
jackknifing.

In addition to the delexicalized models, we also
trained lexicalized TP and GP models9 on the
sample data and applied leave-one-out jackknif-
ing.10 A comparison between the three best delex-
icalized TP models and the lexicalized TP parser
is shown in Table 5. Only for Upper Sorbian
were transferred models able to surpass the model
trained on the very small training data. Interest-
ingly, the blended models were much better than
any of the models for all languages except Kur-
manji. Therefore we decided not to use any of
the delexicalized models for this language. For the
other three surprise languages we used ultimately
blended eight delexicalized (selected as described
above) and eight lexicalized models, the intuition
being that this would give equal weight to lexical-
ized and delexicalized models.

7 Parallel datasets

For the 14 additional parallel datasets (PUD) we
used parsers trained on their corresponding lan-
guages. For several languages there were more
than one treebank in the training data for the cor-
responding PUD test set. This begs the question as
to whether the models used for the PUD test sets

9We did not train lexicalized TN models since it had prob-
lems with exploding gradients and convergence due to the
small size of the sample data.

10That is, for a sample set of 20 sentences this boils down
to 20-fold cross-validation.

should be trained only on the primary treebank,
or on the combination of all training sets corre-
sponding to that language. For the main treebanks,
initial experiments indicated that this was a bad
idea and parsers performed better when training
sets were not combined. However, for the PUD
test sets we had no information on the annotation
scheme nor the domain, which made it difficult to
decide whether to use only the primary training set
or all available.

For each language with multiple training sets,
we trained one parser on each training set as well
as on their concatenation. We applied these mod-
els on the development sets and created a confu-
sion matrix. Without prior knowledge about the
PUD treebanks, we estimated the expected LAS
as the average LAS of the development sets and
chose the model that maximizes the estimation.

Table 6 shows such a confusion matrix for
Swedish using the TN parser. The expected LAS
for PUD (right-most column) is highest when
trained on the concatenation of the two treebanks.
This observation held for all the languages with
multiple treebanks that we tested and we there-
fore used models trained on the concatenation of
all training data with two exceptions: For Czech
time prevented us from training models and creat-
ing a confusion matrix and we only used models
trained on the primary treebank. For Finish FTB
the README distributed with the treebank states
that this treebank is a conversion that tries to ap-
proximate the primary Finish treebank. This sug-
gests that it does not entirely conform to the Finish
UD standard. We assumed that the Finish PUD
test set would be closer to the primary treebank
and therefore chose to use only the model trained
on the primary treebank.

sv sv lines exp. sv pud

sv 75.28 63.54 69.41
sv lines 67.78 75.93 71.86

sv concat 75.31 75.23 75.27

Table 6: Confusion matrix for Swedish with ex-
pected LAS on Swedish PUD.

8 Test Set results

Our final results on the test sets are shown in Ta-
ble 7. Overall we ranked third in the Shared Task
with a macro-average LAS of 74.42 behind two
teams: Stanford and Cornell. Both of them used

47

state-of-the-art neural-based parsers (Zeman et al.,
2017).

Our efforts to improve the preprocessing scores
paid off. On most of the languages where we ap-
plied our word and/or sentence segmentation we
achieved the best parsing results. On the sec-
ondary evaluation metrics we ranked first for word
segmentation and sentence segmentation, second
for POS tagging, and first for morphological tag-
ging. Additionally we were second on parsing the
surprise languages.

As it turns out, all PUD treebanks were presum-
ably annotated following the guidelines of the pri-
mary treebanks. This most likely lowered our re-
sults a little bit for some of the PUD treebanks.
However, for Russian PUD our results are abnor-
mally low compared to many other participants.
We scored about 13 points behind the top result,
in comparison to an average distance of less than
2 points. This is most likely an artifact of how
the non-primary (SynTagRus) Russian treebank is
considerably larger than the primary Russian tree-
bank, which means that a parser trained on the
concatenation is mostly dominated by the SynTa-
gRus annotation style and domains.

9 Conclusion

We have presented the IMS contribution to the
CoNLL 2017 UD Shared Task. We have shown
that tuning the preprocessing methods is a way
to achieve competitive parsing performance. We
made use of a CRF tagger for POS and morpho-
logical features and very strong word and sentence
segmentation tools.

None of our baseline parsers alone would rank
third. We therefore used blending to combine
them. In general, we can confirm the observation
of Surdeanu and Manning (2010) that the diversity
of parsers is important. Additionally, we observed
that both the diversity of parser architectures and
number of instances of the same parser can im-
prove performance. Furthermore, our automatized
combination search method could be seen as a
case of a “sparsely” weighted voting scheme.

We confirmed two of our previous findings on
a larger scale. (1) Syntactic information can help
sentence segmentation (Björkelund et al., 2016).
(2) Supertags improve parsing performance across
all languages (Faleńska et al., 2015).

For the surprise languages we blended delexi-
calized models from other languages with lexical-

ized models trained on the small in-language sam-
ple data. This approach seems to have been ro-
bust and rendered us second rank for surprise lan-
guages. However, further analysis would be re-
quired in order to understand whether the lexical-
ized or delexicalized models in general fare better
in this setting.

As for the PUD treebanks we found that, al-
though the UD annotation scheme should be con-
sistent across treebanks, combining training sets
for one language is not useful for parsing the PUD
test sets. Whether this depends on annotation
idiosyncrasies or domain differences is an open
question and deserves further attention.

Acknowledgments

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) via the SFB 732,
project D8. We express our gratitude to the orga-
nizers of the Shared Task (Zeman et al., 2017), the
treebank providers (Nivre et al., 2017) and base-
line system authors (Straka et al., 2016). We also
thank our colleagues Özlem Çetinoğlu and Kyle
Richardson for the contribution of ideas.

References
Bharat Ram Ambati, Tejaswini Deoskar, and Mark

Steedman. 2013. Using CCG categories to im-
prove Hindi dependency parsing. In Proceed-
ings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 604–609.
http://www.aclweb.org/anthology/P13-2107.

Bharat Ram Ambati, Tejaswini Deoskar, and
Mark Steedman. 2014. Improving Depen-
dency Parsers using Combinatory Categorial
Grammar. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, volume 2: Short
Papers. Association for Computational Lin-
guistics, Gothenburg, Sweden, pages 159–163.
http://www.aclweb.org/anthology/E14-4031.

Anders Björkelund, Agnieszka Faleńska, Wolfgang
Seeker, and Jonas Kuhn. 2016. How to train de-
pendency parsers with inexact search for joint sen-
tence boundary detection and parsing of entire doc-
uments. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1924–
1934. http://www.aclweb.org/anthology/P16-1181.

Anders Björkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolu-

48

Words Sent. UPOS Feats LAS Rank

ar⊗� 95.53 77.71 90.62 87.15 72.90 1
bg 99.91 92.83 97.95 96.47 87.65 3
ca 99.97 98.95 97.97 97.16 87.74 4
cs 99.90 92.03 98.44 93.14 86.39 5
cs cac 99.99 100.0 98.76 90.72 86.99 3
cs cltt 99.35 95.06 96.79 87.88 80.67 4
cu� 99.96 50.44 94.94 88.90 76.84 1
da 99.69 79.36 95.27 94.83 79.52 3
de 99.65 79.11 92.24 83.11 75.47 3
el 99.88 90.79 96.53 91.37 84.96 3
en� 98.67 74.72 93.29 94.40 78.71 5
en lines 99.94 85.84 95.08 99.94 78.25 4
en partut 99.49 97.51 93.32 92.69 79.37 5
es 99.69 94.15 95.53 96.34 83.15 9
es ancora 99.95 97.05 98.19 97.72 87.12 5
et� 99.77 85.21 89.50 84.62 67.60 3
eu 99.96 99.58 94.01 89.57 77.97 3
fa 99.64 98.00 96.21 96.34 83.34 3
fi 99.63 84.56 95.15 92.43 81.21 3
fi ftb 99.88 83.83 92.80 93.43 81.33 3
fr⊗ 99.46 93.59 96.22 96.12 83.82 3
fr sequoia⊗ 99.49 83.75 96.61 96.10 85.40 4
gl 99.92 96.15 96.87 99.75 81.60 3
got� 100.0 41.65 95.03 88.36 71.36 1
grc 99.95 98.43 87.59 88.00 68.23 2
grc proiel� 100.0 51.38 96.48 90.24 75.28 1
he⊗ 91.37 99.39 87.34 85.06 68.16 1
hi 100.0 99.20 96.28 91.03 90.41 2
hr 99.93 96.92 96.48 85.82 82.51 3
hu 99.82 93.85 92.63 72.61 73.55 3
id 99.99 91.15 93.42 99.45 77.70 3
it 99.73 97.10 97.43 97.37 87.85 3
ja⊗ 91.68 94.92 89.07 91.66 78.21 5
ko 99.73 93.05 93.74 99.34 79.51 3
la ittb� 99.99 93.37 97.41 94.27 84.09 2
la proiel� 100.0 40.63 95.63 89.22 71.55 1
lv 98.91 98.59 89.72 84.14 68.03 3
nl 99.88 77.14 91.38 90.04 75.07 3
nl lassysmall� 99.93 84.59 97.61 97.55 86.86 2
no bokmaal 99.75 95.76 97.12 95.56 85.98 5
no nynorsk 99.85 91.23 96.80 95.25 85.05 4
pl 99.88 98.91 96.35 86.53 86.75 3
pt 99.52 89.79 96.58 94.62 85.11 2
pt br 99.84 96.84 97.36 99.73 87.10 7
ro 99.64 93.42 96.86 96.24 83.50 3
ru 99.91 96.42 95.45 87.27 81.49 3
ru syntagrus 99.57 97.81 98.18 94.55 89.80 3
sk 100.0 83.53 94.60 81.23 80.53 3
sl 99.96 99.24 96.90 90.08 85.86 4
sv 99.84 96.37 96.10 95.15 82.28 3
sv lines 99.98 86.44 94.40 99.98 78.88 3
tr 97.89 96.63 91.54 86.82 62.39 3
ur 100.0 98.32 92.98 81.03 80.93 3
vi⊗ 86.67 92.59 77.88 86.33 47.51 1
zh⊗ 92.81 98.19 86.33 91.71 68.56 1

average 99.01 88.96 94.45 91.75 79.60 3

(a) Big treebanks.

Words Sent. UPOS Feats LAS Rank

bxr 99.35 91.81 84.12 81.65 32.24 1
hsb 99.84 90.69 90.30 74.20 61.67 2
kmr 98.85 97.02 90.04 81.61 46.70 2
sme 99.88 98.79 86.81 81.93 40.67 2

average 99.48 94.58 87.82 79.85 45.32 2

(b) Surprise treebanks. All preprocessing by UDPipe.

Words Sent. UPOS Feats LAS Rank

ar pud⊗� 93.32 96.79 73.89 24.66 49.94 1
cs pud 99.29 96.43 95.76 89.89 81.00 5
de pud 98.00 86.49 84.53 31.67 71.88 3
en pud 99.66 97.13 93.95 89.27 81.55 4
es pud 99.47 93.42 88.48 40.47 78.63 9
fi pud 99.61 93.67 96.77 95.35 85.21 3
fr pud⊗ 98.87 92.32 58.62 36.83 77.60 3
hi pud 97.81 90.83 83.68 16.84 53.57 4
it pud 99.17 96.58 93.22 57.34 86.16 4
ja pud 93.44 94.89 91.07 54.44 81.98 3
pt pud 99.42 95.65 88.36 43.51 75.53 5
ru pud 97.18 98.95 87.19 33.35 62.72 21
sv pud 98.26 90.20 90.32 53.47 74.41 3
tr pud 96.62 93.91 71.39 23.62 38.23 1

average 97.87 94.09 87.69 50.89 71.31 3

(c) PUD treebanks.

Words Sent. UPOS Feats LAS Rank

fr partut⊗ 99.56 98.00 95.92 93.50 83.82 4
ga 99.29 95.81 89.99 80.05 69.22 3
gl treegal 98.62 81.63 92.32 91.31 71.30 3
kk 94.91 81.38 58.48 45.49 25.29 5
la� 99.99 93.75 84.41 75.56 51.82 5
sl sst� 99.82 21.41 90.91 84.82 55.88 3
ug 98.52 63.55 74.96 98.52 43.51 1
uk 99.81 92.59 89.68 74.88 69.27 3

average 98.81 78.52 84.58 80.52 58.76 3

(d) Small treebanks.

Table 7: Test results. The treebanks for which we did our own word and/or sentence segmentation are
marked with ⊗ and � respectively.

49

tion with latent antecedents and non-local features.
In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 47–
57. http://www.aclweb.org/anthology/P14-1005.

Anders Björkelund and Joakim Nivre. 2015. Non-
deterministic oracles for unrestricted non-projective
transition-based dependency parsing. In Pro-
ceedings of the 14th International Conference on
Parsing Technologies. Association for Computa-
tional Linguistics, Bilbao, Spain, pages 76–86.
http://www.aclweb.org/anthology/W15-2210.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010). Coling 2010 Or-
ganizing Committee, Beijing, China, pages 89–97.
http://www.aclweb.org/anthology/C10-1011.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 957–
961. http://www.aclweb.org/anthology/D/D07/D07-
1101.

Yoeng-jin Chu and Tseng-hong Liu. 1965. On the
shortest aborescence of a directed graph. Science
Sinica 14:1396–1400.

Jack Edmonds. 1967. Optimum branchings. Jour-
nal of Research of the National Bureau of Standards
71(B):233–240.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the
5th International Workshop on Parsing Technolo-
gies (IWPT). MIT, Cambridge, MA, pages 54–65.
http://cs.jhu.edu/ jason/papers/#eisner-1997-iwpt.

Agnieszka Faleńska, Anders Björkelund, Özlem
Çetinoğlu, and Wolfgang Seeker. 2015. Stacking
or supertagging for dependency parsing – what’s the
difference? In Proceedings of the 14th International
Conference on Parsing Technologies. Association
for Computational Linguistics, Bilbao, Spain, pages
118–129. http://www.aclweb.org/anthology/W15-
2215.

Liang Huang, Suphan Fayong, and Yang Guo.
2012. Structured perceptron with inexact search.
In Proceedings of the 2012 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational
Linguistics, Montréal, Canada, pages 142–151.
http://www.aclweb.org/anthology/N12-1015.

Aravind K. Joshi and Srinivas Bangalore. 1994. Dis-
ambiguation of Super Parts of Speech (or Su-
pertags): Almost Parsing. In Proceedings of the

15th Conference on Computational Linguistics -
Volume 1. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, COLING ’94, pages
154–160. https://doi.org/10.3115/991886.991912.

A. Martins, M. Almeida, and N. A. Smith. 2013. ”turn-
ing on the turbo: Fast third-order non-projective
turbo parsers”. In Annual Meeting of the Associa-
tion for Computational Linguistics - ACL. volume -,
pages 617–622.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of the 11th Conference of the
European Chapter of the ACL (EACL 2006). Asso-
ciation for Computational Linguistics, Trento, Italy,
pages 81–88. http://www.aclweb.org/anthology-
new/E/E06/E06-1011.pdf.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient Higher-Order CRFs for Morpholog-
ical Tagging. In In Proceedings of EMNLP.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceed-
ings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP. Association for Computa-
tional Linguistics, Suntec, Singapore, pages 351–
359. http://www.aclweb.org/anthology/P/P09/P09-
1040.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marco Kuhlmann, and Johan Hall.
2009. An improved oracle for dependency pars-
ing with online reordering. In Proceedings
of the 11th International Conference on Parsing
Technologies (IWPT’09). Association for Compu-
tational Linguistics, Paris, France, pages 73–76.
http://www.aclweb.org/anthology/W09-3811.

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto.
2014. Improving Dependency Parsers with Su-
pertags. In Proceedings of the 14th Confer-
ence of the European Chapter of the Associ-
ation for Computational Linguistics, volume 2:
Short Papers. Association for Computational Lin-
guistics, Gothenburg, Sweden, pages 154–158.
http://www.aclweb.org/anthology/E14-4030.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th

50

International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Rudolf Rosa and Zdenek Zabokrtský. 2015. Kl-
cpos3 - a language similarity measure for delex-
icalized parser transfer. In Proceedings of the
53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International
Joint Conference on Natural Language Process-
ing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 2: Short Papers. pages 243–249.
http://aclweb.org/anthology/P/P15/P15-2040.pdf.

Kenji Sagae and Alon Lavie. 2006. Parser com-
bination by reparsing. In Proceedings of the
Human Language Technology Conference of
the NAACL, Companion Volume: Short Pa-
pers. Association for Computational Linguis-
tics, New York City, USA, pages 129–132.
http://www.aclweb.org/anthology/N/N06/N06-
2033.

Milan Straka, Jan Hajič, and Jana Straková. 2016.
UDPipe: trainable pipeline for processing CoNLL-
U files performing tokenization, morphologi-
cal analysis, pos tagging and parsing. In
Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation
(LREC’16). European Language Resources Asso-
ciation (ELRA), Paris, France. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/873 Paper.pdf.

Mihai Surdeanu and Christopher D Manning. 2010.
Ensemble models for dependency parsing: cheap
and good? In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 649–652.

Xiang Yu, Agnieszka Falenska, and Ngoc Thang
Vu. 2017. A general-purpose tagger with con-
volutional neural networks. In arXiv preprint
arXiv:1706.01723.

Xiang Yu and Ngoc Thang Vu. 2017. Character com-
position model with convolutional neural networks
for dependency parsing on morphologically rich lan-
guages. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics, Vancou-
ver, Canada.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,

Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Third International Joint Conference on
Natural Language Processing, IJCNLP 2008, Hy-
derabad, India, January 7-12, 2008. pages 35–42.
http://aclweb.org/anthology/I/I08/I08-3008.pdf.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1557–1566.
https://doi.org/10.18653/v1/P16-1147.

Yue Zhang and Stephen Clark. 2008. A tale
of two parsers: Investigating and combining
graph-based and transition-based dependency pars-
ing. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Honolulu, Hawaii, pages 562–571.
http://www.aclweb.org/anthology/D08-1059.

51

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 52–62,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

The HIT-SCIR System for End-to-End Parsing of Universal Dependencies

Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng
Huaipeng Zhao, Yang Liu, Dechuan Teng and Ting Liu

Center for Social Computing and Information Retrieval
Harbin Institute of Technology, Harbin, China 150001

{wxche,jguo,yxwang,bzheng,hpzhao,yliu,dcteng,tliu}@ir.hit.edu.cn

Abstract

This paper describes our system (HIT-
SCIR) for the CoNLL 2017 shared task:
Multilingual Parsing from Raw Text to
Universal Dependencies. Our system in-
cludes three pipelined components: to-
kenization, Part-of-Speech (POS) tag-
ging and dependency parsing. We use
character-based bidirectional long short-
term memory (LSTM) networks for both
tokenization and POS tagging. After-
wards, we employ a list-based transition-
based algorithm for general non-projective
parsing and present an improved Stack-
LSTM-based architecture for representing
each transition state and making predic-
tions.

Furthermore, to parse low/zero-resource
languages and cross-domain data, we use
a model transfer approach to make effec-
tive use of existing resources. We demon-
strate substantial gains against the UDPipe
baseline, with an average improvement of
3.76% in LAS of all languages. And fi-
nally, we rank the 4th place on the official
test sets.

1 Introduction

Our system for the CoNLL 2017 shared task (Ze-
man et al., 2017) is a pipeline which includes three
cascaded modules, tokenization, Part-of-Speech
(POS) tagging and dependency parsing.

• Tokenization. This module includes two
components, the sentence segmenter and the
word segmenter which recognize the sen-
tence and word boundaries respectively (Sec-
tion 2.1).

• POS tagging. We focus mainly on univer-
sal POS tags, and don’t use language-specific
POS as well as other morphological features
(Section 2.2).

• Dependency parsing. To handle the non-
projective dependencies in most of the lan-
guages (or treebanks) provided in the task,
we employ the list-based transition pars-
ing algorithm (Choi and McCallum, 2013),
equipped with an improved Stack-LSTM-
based model for representing the transition
states, i.e., configurations (Section 2.3).

We mainly concentrate on parsing in this task,
and make use of UDPipe (v1.1) (Straka et al.,
2016a) for most of the pre-processing steps. How-
ever, our preliminary experiments showed that the
UDPipe tokenizer and POS tagger perform rather
poorly in some languages and specific domains.
Therefore, we develop our own tokenizer and POS
tagger for a subset of languages.

To deal with the parallel test sets (cross-
domain) and low/zero-resource languages, we
adopt the neural transfer approaches proposed in
our previous studies (Guo et al., 2015, 2016) to
encourage knowledge transfer across different but
related languages or treebanks.

Experiments on 81 test sets demonstrate that our
system (HIT-SCIR: software4) obtains an average
improvement of 3.76% in LAS as compared with
the UDPipe baseline, and ranks the 4th place in
this task.

2 System Architecture

2.1 Tokenization
2.1.1 Sentence Segmentation
We develop our own sentence segmentation mod-
els for the languages which have white spaces as
token separators and on which UDPipe doesn’t

52

This<begin> sentence. Another <end>

W

S<begin> . <end>e

Other features of

the word “sentence.”

Figure 1: The hierarchical Bi-LSTM model for
sentence segmentation.

perform well. We formalize the sentence segmen-
tation process as a binary classification problem,
that is to classify each token as either the end
of a sentence or not. We notice that character-
level information is critical for sentence segmen-
tation, since texts are not tokenized yet in the cur-
rent phase. Therefore, we develop a hierarchi-
cal LSTM-based model, as illustrated in Figure 1,
in which characters in each token are composed
using a character-based bidirectional LSTM (Bi-
LSTM) network and then concatenated with addi-
tional token-level features (e.g., token embedding,
the first character of this token, etc.) and passed
through a token-level Bi-LSTM. The hidden states
of the token-level Bi-LSTM are finally used for
classification through a softmax layer.

We follow the strategy of the UDPipe tok-
enizer (Straka et al., 2016a) and employ a sliding
window to incrementally segment a document into
sentences.

In addition, we notice that for certain treebanks
(e.g., la ittb and cs cltt), some punctuation-related
rules derived from the training data can be highly
effective. To be more specific, some punctuations
that appear as the end of a sentence with high
probability will be used directly for determining
sentence boundaries. Therefore, we develop addi-
tional rule-based systems for these data instead of
using the neural models as describe above.

2.1.2 Word Segmentation
We develop our own word segmentation models
particularly for languages which do not have ex-

B I B I

Unigram Embedding Bigram Embedding Mutual Information

Figure 2: The word segmentation model. ‘B’ de-
notes the beginning position and ‘I’ denotes the
middle or ending positions of a word.

plicit word boundary markers, i.e., white spaces,
including Chinese, Japanese and Vietnamese.1

Our word segmentation model is also built
on Bi-LSTM networks, and incorporates rich
statistics-based features gathered from large-scale
unlabeled data. Specifically, we utilize features
like character-unigram embeddings, character-
bigram embeddings and the pointwise mutual in-
formation (Liang, 2005) (PMI) of adjacent charac-
ters. Formally, the input of our model at each time
step t can be computed as:

zt = [Ut;Bt−1;Bt;PMI(ct−1, ct);PMI(ct, ct+1)]
(1)

xt =max{0,Wzt + b} (2)

where Ut and Bt denote the unigram embedding
and bigram embedding respectively at position t
and PMI denotes the pointwise mutual information
between two characters.

The PMI values are computed through:

PMI (c1, c2) = log
p (c1c2)

p (c1)p (c2)
(3)

where c1 and c2 are two characters, p(c1), p(c2)
and p(c1c2) are counted on the raw data provided
by the shared task. p(s) denotes the probability
string s appears in the raw data. We scale PMI

1Vietnamese requires word segmentation because white
spaces occur both inter- and intra-words. When segmenting
Vietnamese, white space-separated tokens are used as inputs,
rather than characters as in Chinese and Japanese. In addi-
tion, we don’t consider Korean here since the Korean input
texts have already been segmented in the corpus provided by
the task.

53

c

c h a r

Figure 3: Structure of the character-based compo-
sition model for learning word representations.‘w’
denotes the pre-trained word embedding, ‘c’ de-
notes the Brown cluster embedding.

with their Z-scores, the Z-score of a PMI value x
is x−µ

σ , where µ and σ are the mean and standard
deviation of the PMI distribution, respectively.

Figure 2 shows the architecture of our word seg-
mentation model.

The character-unigram embeddings and
character-bigram embeddings are obtained using
word2vec (Mikolov et al., 2013) on the raw data.

2.2 Part-of-Speech Tagging

The UDPipe POS tagger is trained using averaged
perceptron with feature engineering. In our sys-
tem, we use a model similar to the one for sentence
segmentation (Section 2.1.1), i.e., a hierarchical
Bi-LSTM model which outperforms UDPipe on
most of datasets with much fewer features. Con-
cretely, each word is modeled using a character-
based Bi-LSTM, so that word prefix and suffix
features can be effectively incorporated, which
is particularly important for morphologically rich
languages. In addition, modeling from charac-
ters alleviates the problem of Out-of-Vocabulary
(OOV) words.

The character-based compositional embedding
of each word is then concatenated with a pre-
trained word embedding and a Brown cluster em-
bedding, resulting in the final word representation
which is fed as input of a word-level Bi-LSTM for
POS tagging. Formally,

x =max{0,W [Ð→h ;
←Ð
h ;w; c] + q} (4)

Figure 3 illustrates the structure of the
character-based composition model.

2.3 Dependency Parsing
The transition-based dependency parsing algo-
rithm with a list-based arc-eager transition sys-
tem proposed by Choi and McCallum (2013) is
used in our parser. We base our parser mainly on
the Stack-LSTM model proposed by Dyer et al.
(2015), where three Stack-LSTMs are utilized to
incrementally obtain the representations of the
buffer β, the stack σ and the transition action se-
quence A. In addition, a dependency-based Re-
cursive Neural Network (RecNN) is used to com-
pute the partially constructed tree representation.
However, compared with the arc-standard algo-
rithm (Nivre, 2004) used by Dyer et al. (2015), the
list-based arc-eager transition system has an extra
component in each configuration, i.e., the deque
δ. So we use an additional Stack-LSTM to learn
the representation of δ. More importantly, we
introduce two LSTM-based techniques, namely
Bi-LSTM Subtraction and Incremental Tree-LSTM
(explained below) for modeling the buffer and
sub-tree representations in our model.

The pre-trained word embedding (100-
dimensional), Brown cluster embedding (100-
dimensional), along with a 100-dimensional
randomly initialized word embedding updated
while training,2 and a 50-dimensional embedding
for UPOS are concatenated and passed through
a non-linear layer to obtain the representation of
each word.

Representations of the four components in our
transition system are concatenated and passed
through a hidden layer to obtain the representation
of the parsing state at time t:

et =max{0,W [st; bt;pt;at] + d} (5)

where st, bt, pt and at are the representation of
σ, β, δ and A respectively. d is the bias. et is
finally used to compute the probability distribution
of possible transition actions at time t through a
softmax layer. Figure 4 shows the architecture.

2.3.1 Bi-LSTM Subtraction
We regard the buffer as a segment and use the sub-
traction between LSTM hidden vectors of the seg-
ment head and tail as its representation. To in-
clude the information of words out of the buffer,
we apply subtraction on bidirectional LSTM rep-
resentations over the whole sentence (Wang et al.,

2Unfortunately we did not have access to enough raw text
of Gothic, thus no pre-trained word embedding nor Brown
cluster is utilized for it.

54

Ø is

δ

TOP

et = max{0,W [stabtaptaat]+d}

Right-Pass

TOP

No-Shift A

No-PassNo-Shift

nice paid byThe

 paid by

β

Bi-LSTM Subtraction

σ

Ø

TOP

Incremental

Tree-LSTM

Root

The

man

man

The

nice

nice

Figure 4: Example transition state representation based on LSTMs. The buffer β is represented by
Bi-LSTM Subtraction, the sub-trees are computed by Incremental Tree-LSTM.

nice lives hereThe

hf (The) hb(The)hf (nice) hb(nice) hf (lives) hb(lives) hf (here) hb(here)

hf (nice) hb(nice)hf (here) hb(here)

-

-

-
-bb =bf =

bt =bf bb+

The nice lives here

σ δ β

Figure 5: Illustration of Bi-LSTM Subtraction for
buffer representation learning. hf (*) and hb(*) in-
dicate the hidden vectors of forward and backward
LSTM respectively. bt is the resulting buffer rep-
resentation.

2016; Kiperwasser and Goldberg, 2016; Cross and
Huang, 2016), thus called Bi-LSTM Subtraction.

The forward and backward subtractions are cal-
culated independently, i.e., bf = hf(l)−hf(f) and
bb = bb(f) − bb(l), where hf(f) and hf(l) are
the hidden vectors of the first and the last words
in the forward LSTM, hb(f) and hb(l) are the
hidden vectors of the first and the last words in
the backward LSTM. Then bf and bb are concate-
nated as the buffer representation. As illustrated in
Figure 5, the forward and backward subtractions
for the buffer are bf = hf(here) − hf(nice) and
bb = hb(nice) − hb(here) respectively.

The

man

man

The

nice

nice

c1

mannice

rel

amod

c2

The det

The mannice

Figure 6: Representations of a dependency sub-
tree (above) computed by Tree-LSTM (left) and
dependency-based RecNN (right).

2.3.2 Incremental Tree-LSTM

We use a Tree-LSTM (Tai et al., 2015; Zhu et al.,
2015) in our parser to model the sub-trees dur-
ing parsing. The example in Figure 6 shows the
differences between RecNN (Dyer et al., 2015)
and Tree-LSTM. In RecNN, the representation of
a sub-tree is computed by recursively combining
head-modifier pairs. Whereas in Tree-LSTM, a
head is combined with all of its modifiers simul-
taneously in each LSTM unit.

However, our implementation of Tree-LSTM is
different from the conventional one. Unlike tradi-
tional bottom-up Tree-LSTMs in which each head
and all of its modifiers are combined simultane-
ously, the modifiers are found incrementally dur-
ing our parsing procedure. Therefore, we propose
Incremental Tree-LSTM, which obtains sub-tree
representations incrementally. To be more spe-
cific, each time a dependency arc is generated,

55

we collect representations of all the found mod-
ifiers of the head and combine them along with
the embedding of the head as the representation of
the sub-tree. The original embedding rather than
the current representation of the head is utilized to
avoid the reuse of modifier information, since the
current representation of the head contains infor-
mation of its modifiers found previously.

2.3.3 Parser Ensembling
For a majority of languages, we found that the
parsing performance can be improved by sim-
ply integrating two separately trained models.
More specifically, for each language two models
with different random seeds are trained separately.
While predicting, in each state, both models are
used to calculate the scores for valid transitions
under this configuration as described above. Then
the score distributions computed by two models
are summed to get the final scores for the valid
transitions, among which the one with the highest
score will be taken as the next transition.

3 Transfer Parsing across Domains and
Languages

3.1 Cross-Domain Transfer
For 15 out of 45 languages presented in the task,
multiple treebanks from different domains are pro-
vided. To exploit the benefits from these cross-
domain data, we use a simple inductive transfer
approach which has two stages:

1. Multiple treebanks of each language are com-
bined to train an unified parser.

2. The unified parser is then fine-tuned on the
training treebank of each domain, to obtain
target domain-specific parsers.

In practice, for each language considered here,
we treat the largest treebank as our source-domain
data, and the rest as target-domain data. Only
target-domain models are fine-tuned from the uni-
fied parser, while the source-domain parser is
trained separately using the source treebank alone.

For the new parallel test sets in test phase, we
simply use the model trained on source-domain
data, without any assumption on the target do-
main.

3.2 Cross-Lingual Transfer
We consider the languages which have less than
900 sentences in the training treebank as low-

Target hu uk qa ug kk
Source fi ftb ru syntagrus en tr tr

Table 1: Cross-lingual transfer settings for low-
resource target languages.

resource, and employ the cross-lingual model
transfer approach described in Guo et al. (2015,
2016) to benefit from existing resource-rich lan-
guages.

The low-resource languages here include
Ukrainian (uk), Irish (ga), Uyghur (ug) and
Kazakh (kk). We determine their source language
(treebank) according to the language families they
belong to and their linguistic typological similar-
ity. Specifically, the transfer setting is shown in
Table 1.

The transfer approach is similar to cross-
domain transfer as described above, with one im-
portant difference. Here, we use cross-lingual
word embeddings and Brown clusters derived by
the robust projection approach (Guo et al., 2015)
when training the unified parser, to encourage
knowledge transfer across languages at lexical
level. Specifically, for each source and target lan-
guage pair ⟨src, tgt⟩, we derive an alignment ma-
trixAtgt∣src from a collected bilingual parallel cor-
pus, where each element Atgt∣src(i, j) is the nor-
malized count of alignments between correspond-
ing words in their vocabularies:

Atgt∣src(i, j) =
#(V (i)tgt ↔ V

(j)
src)

∑k #(V (i)tgt ↔ V
(k)
src)

(6)

Given a pre-trained source language word embed-
ding matrix Esrc, the resulting word embedding
matrix for the target language can be simply com-
puted as:

Etgt = Atgt∣src ⋅Esrc (7)

Therefore, the embedding of each word in the tar-
get language is the weighted average of the em-
beddings of its translation words in our bilingual
parallel corpus.

The cross-lingual Brown clusters are obtained
using the PROJECTED clustering approach de-
scribed in (Täckström et al., 2012), which assigns
a target word to the cluster with which it is most
often aligned:

c(wtgti) = argmax
k

∑
j

Atgt∣src(i, j)⋅1[c(wsrcj) = k]

(8)

56

Source

Unified
model

train

Target

fine-tuning

Target
model

Cross-lingual	
word	embeddings

BiTexts

Figure 7: The cross-lingual transfer approach.

Target bxr kmr sme hsb
Source tr & ug & kk fa fi ftb & fi cs

Table 2: Cross-lingual delexicalized transfer set-
tings for surprise languages.

After that, target language-specific parsers are
obtained through fine-tuning on their own tree-
banks. Figure 7 illustrates the flow of our transfer
approach.

For the surprise languages in the final test
phase, we use the transfer settings in Table 2. We
use multi-source delexicalized transfer for sur-
prise language parsing, considering that bilingual
parallel data which is required for obtaining cross-
lingual word embeddings is not available for these
languages.

4 Experiments

We first describe our experiment setups and strate-
gies for processing different languages (treebanks)
in each module. Then we present the results and
analysis.

4.1 Experimental Settings
4.1.1 Model Selection Strategies
For sentence segmentation, we apply our own
models for a subset of languages on which UD-
Pipe yields poor performance, and use UDPipe for
the rest languages.3 Specifically, we use the rule-
based model for la ittb and cs cltt,4 and use the Bi-
LSTM-based model (Figure 1) for sk, en, en lines,
fi ftb, got, nl lassysmall, grc proiel, la ittb, cu,

3We use the same hyper-parameter settings as provided by
the organizers to train the UDPipe models.

4However, the rule-based model does not yield good per-
formance on the two test sets. We suggest that the rules we
use are overfitting the development sets to some degree.

la proiel, da and sl sst. For word segmentation, we
use our Bi-LSTM-based model for zh, ja, ja pud
and vi, which don’t have explicit word boundary
markers, i.e., white spaces.

We use our own POS taggers for all of the lan-
guages, except for the surprise languages, which
we rely on UDPipe for all pre-processing steps.

Our strategies for parsing are shown in Table 3.
We determine the optimal parser (single, ensem-
ble or transfer) for each treebank according to the
performance on the development data.

4.1.2 Data and Tools
We use the provided 100-dimensional multilingual
word embeddings5 in our tokenization, POS tag-
ging and parsing models, and use the Wikipedia
and CommonCrawl data for training Brown clus-
ters. The number of clusters is set to 256.

For cross-lingual transfer parsing of low-
resource languages, we use parallel data from
OPUS to derive cross-lingual word embeddings.6

The fast align toolkit (Dyer et al., 2013) is used
for word alignment.7

We use the Dynet toolkit for the implementation
of all our neural models.8

4.2 Effects of Different Parts in Dependency
Parsing

We conduct experiments on the development sets
of 4 treebanks to investigate the contributions of
the two architectures we proposed (i.e., the In-
cremental Tree-LSTM and the Bi-LSTM Subtrac-
tion) and the Brown cluster. The LAS of differ-
ent experiment settings are presented in Table 4.
Results show that Brown clusters and both archi-
tectures help to improve the parsing performance
in most situations. And the ensemble method we
eventually choosed which incorporated the two ar-
chitectures as well as Brown clusters and utilized
two models for predicting yield the best perfor-
mance.

4.3 Effect of Transfer Parsing

To investigate the effect of transfer parsing on
cross-domain and cross-lingual data, we compare
our transferred system with the supervised system
on a subset of treebanks. Evaluation is conducted

5lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-1989

6opus.lingfil.uu.se
7https://github.com/clab/fast_align
8github.com/clab/dynet

57

Strategy ltcode
Single cs cac, bg, ja, he

cs, ru syntagrus, la ittb, fi ftb, grc proiel, es ancora, es, de, hi, ca,
Ensemble (2) en, fi, sk, ro, hr, pl, ar, eu, fa, id, ko, da, sv, cu, ur, zh, tr, got, sv lines,

lv, gl, et, el, vi, hu

no bokmaal, no nynorsk, la, la proiel, grc, pt, pt br, sl, sl sst, nl,
Cross-domain Transfer nl lassysmall, en lines, en partut, fr, fr sequoia, fr partut, it, it partut†,

gl treegal, cs cltt, ru

Cross-lingual Transfer uk, ga, ug, kk

Delexicalized Transfer bxr, kmr, sme, hsb

Table 3: Model selection strategies for all treebanks. † it partut is excluded from the final test sets. But
it’s used in our transfer parsing as a source treebank.

Settings cs de en ko
Baseline 86.79 80.08 81.87 67.21
B 87.51 80.01 82.48 68.19
T 87.43 80.01 82.24 68.29
B + T 87.67 80.24 82.73 68.34
B + T + C 87.62 81.45 83.37 70.24
Ensemble (2) 88.52 81.92 83.99 71.38

Table 4: Experiment results (LAS) on devel-
opment sets with different settings. B: Bi-
LSTM Subtraction, T: Incremental Tree-LSTM,
C: Brown cluster. Ensemble is produced with
models we eventually submitted.

on the development data or through 5-fold cross-
validation when development data is not avail-
able. Results are shown in Table 5 and 6 respec-
tively. We can see that both cross-domain and
cross-lingual transfer parsing improve over the su-
pervised systems significantly.

4.4 Results

The overall results of our end-to-end universal
parsing system on 81 test treebanks are shown in
Table 7, with comparison to the UDPipe baseline
models. We obtain substantial gains over UDPipe
on 76 out of 81 treebanks, with 3.76% improve-
ments in average LAS. It spent about 9 hours to
evaluate all of 81 test sets end-to-end and needed
up to 4GB memory on the TIRA virtual machine.

4.5 Post-Evaluation

We realized a small problem in our implementa-
tion of the word segmentation models after offi-
cial evaluation. After revision, we re-evaluated
our models on the four test treebanks: zh, vi, ja

ltcode Supervised Transfer
UAS LAS UAS LAS

cs cltt 81.23 77.80 85.38 83.08
en lines 82.30 78.44 83.65 79.75
en partut 82.66 78.72 85.97 82.08
fr sequoia 88.68 86.67 89.46 87.79
la proiel 78.77 73.18 79.67 74.46
no bokmaal 89.76 87.50 90.49 88.37
no nynorsk 88.39 85.84 89.41 87.08
nl lassysmall 86.11 82.65 87.39 84.02
pt br 91.59 89.65 91.93 90.16
Average 85.50 82.27 87.04 84.09

Table 5: Effects of cross-domain transfer parsing
on a subset of development sets.

and ja pud. The post-evaluation results are shown
in Table 8. On zh, vi and ja pud, we outperform
the rank-1 system significantly. We can see that
the performance of word segmentation is crucial
for the pipeline system.

5 Conclusion and Future Work

Our CoNLL-2017 system on end-to-end univer-
sal parsing includes three cascaded modules, to-
kenization, POS tagging and dependency pars-
ing. We develop effective neural models for each
task, with particular utilization of bidirectional
LSTM networks. Furthermore, we use transfer
parsing approaches for cross-domain and cross-
lingual adaption, that can effectively exploit re-
sources from multiple treebanks. We obtain sig-
nificant improvements against the UDPipe base-
line systems on most of the test sets, and obtain
the 4th place in the final evaluation.

58

ltcode Supervised Transfer
UAS LAS UAS LAS

uk 78.75 72.47 86.27 80.92
ga 76.66 67.08 80.83 73.44
ug 58.53 38.32 67.19 52.23
Average 71.31 59.29 78.10 68.86

Table 6: Effects of cross-lingual transfer parsing
on ug uk and ga. 5-fold cross-validation is used
for evaluation.

6 Credits

There are a few references we would like to give
proper credit, especially to data providers: the core
Universal Dependencies paper from LREC 2016
(Nivre et al., 2016), the UD version 2.0 datasets
(Nivre et al., 2017b,a), the baseline UDPipe mod-
els (Straka et al., 2016b), the baseline SyntaxNet
models (Weiss et al., 2015) and the evaluation plat-
form TIRA (Potthast et al., 2014).

Acknowledgments

This work was supported by the National Key
Basic Research Program of China via grant
2014CB340503 and the National Natural Science
Foundation of China (NSFC) via grant 61300113
and 61632011.

References
Jinho D. Choi and Andrew McCallum. 2013.

Transition-based dependency parsing with selec-
tional branching. In Proc. of ACL. pages 1052–
1062.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
lstm. In Proc. of ACL. pages 32–37.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proc. of ACL and IJCNLP. pages
334–343.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In NAACL. Association for
Computational Linguistics, Atlanta, Georgia, pages
644–648.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the

7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). pages
1234–1244.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
AAAI. pages 2734–2740.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. TACL 4:313–
327.

Percy Liang. 2005. Semi-supervised learning for natu-
ral language. Master thesis, Massachusetts Institute
of Technology.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. International Conference on
Learning Representations (ICLR) Workshop .

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proc. of the Workshop on In-
cremental Parsing: Bringing Engineering and Cog-
nition Together. pages 50–57.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Aljoscha Bur-
chardt, Marie Candito, Gauthier Caron, Gülşen
Cebirolu Eryiit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok
Cho, Silvie Cinková, Çar Çöltekin, Miriam Con-
nor, Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Marhaba Eli, Ali
Elkahky, Tomaž Erjavec, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Filip Ginter, Iakes Goenaga, Koldo
Gojenola, Memduh Gökrmak, Yoav Goldberg,
Xavier Gómez Guinovart, Berta Gonzáles Saave-
dra, Matias Grioni, Normunds Grūzītis, Bruno Guil-
laume, Nizar Habash, Jan Hajič, Jan Hajič jr.,
Linh Hà M, Kim Harris, Dag Haug, Barbora
Hladká, Jaroslava Hlaváčová, Petter Hohle, Radu
Ion, Elena Irimia, Anders Johannsen, Fredrik
Jørgensen, Hüner Kaşkara, Hiroshi Kanayama,
Jenna Kanerva, Tolga Kayadelen, Václava Ket-
tnerová, Jesse Kirchner, Natalia Kotsyba, Si-
mon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Tatiana Lando, Phng Lê Hng,
Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Nikola Ljubešić,
Olga Loginova, Olga Lyashevskaya, Teresa Lynn,
Vivien Macketanz, Aibek Makazhanov, Michael
Mandl, Christopher Manning, Ruli Manurung,
Cătălina Mărănduc, David Mareček, Katrin Marhei-
necke, Héctor Martı́nez Alonso, André Martins,

59

ltcode UDPipe 1.1 Ours ltcode UDPipe 1.1 Ours
UAS LAS UAS LAS UAS LAS UAS LAS

ar 71.19 65.30 74.13 69.12 hsb 61.70 53.83 66.64 59.27
ar pud 53.55 43.14 57.18 48.01 hu 71.46 64.30 74.68 66.29
bg 87.79 83.64 90.30 86.73 id 80.91 74.61 83.06 76.66
bxr‡ 46.97 31.50 46.04 27.66 it 88.03 85.28 90.05 87.77
ca 88.62 85.39 90.79 88.27 it pud 87.04 83.70 88.59 85.51
cs 86.46 82.87 89.57 86.52 ja 73.52 72.21 81.94 80.85
cs cac 86.49 82.46 87.66 83.87 ja pud 77.13 76.28 84.38 83.75
cs cltt 76.26 71.64 84.96 81.89 kk 41.92 24.51 42.11 24.76
cs pud 84.42 79.80 85.79 80.75 kmr 46.20 32.35 52.55 44.70
cu 69.68 62.76 72.19 65.80 ko 66.40 59.09 76.95 71.82
da 76.94 73.38 81.14 78.03 la 54.35 43.77 59.15 48.75
de 74.27 69.11 79.03 74.79 la ittb 80.78 76.98 84.07 81.03
de pud 73.64 66.53 77.90 71.11 la proiel 63.50 57.54 68.94 63.48
el 83.00 79.26 85.72 82.82 lv 67.14 59.95 71.91 64.97
en 78.87 75.84 82.88 79.94 nl 74.94 68.90 78.90 73.43
en lines 77.39 72.94 82.70 78.73 nl lassysmall 81.37 78.15 89.06 86.85
en partut 77.83 73.64 85.57 81.98 no bokmaal 86.14 83.27 89.09 86.90
en pud 82.74 78.95 84.97 81.86 no nynorsk 84.88 81.56 87.95 85.43
es 84.84 81.47 87.20 84.22 pl 85.08 78.78 88.18 83.75
es ancora 86.97 83.78 89.94 87.39 pt 85.77 82.11 87.75 84.90
es pud‡ 84.71 77.65 82.34 72.67 pt br 87.75 85.36 90.51 88.71
et 67.71 58.79 73.09 65.10 pt pud 80.10 73.96 81.18 72.33
eu 74.39 69.15 79.29 73.85 ro 85.50 79.88 87.30 82.21
fa 83.36 79.24 86.24 82.08 ru 79.28 74.03 84.32 80.58
fi 77.90 73.75 81.98 77.73 ru pud‡ 75.67 68.31 72.33 61.60
fi ftb 78.77 74.03 82.79 78.08 ru syntagrus 89.30 86.76 91.71 89.77
fi pud 82.24 78.65 82.76 78.99 sk 78.14 72.75 84.38 79.82
fr 84.13 80.75 86.07 82.67 sl 84.68 81.15 89.54 87.08
fr partut 81.69 77.38 88.39 84.86 sl sst 53.79 46.45 60.36 54.06
fr pud 78.62 73.63 82.55 77.51 sme 46.06 30.6 52.51 38.91
fr sequoia 82.62 79.98 87.11 85.09 sv 80.78 76.73 83.93 80.58
ga 72.08 61.52 73.48 61.62 sv lines 79.18 74.29 81.77 77.30
gl 80.66 77.31 83.31 80.23 sv pud 75.09 70.62 75.15 70.70
gl treegal 71.17 65.82 72.65 66.51 tr 60.48 53.19 64.14 56.43
got 67.13 59.81 67.61 60.52 tr pud‡ 55.01 34.53 54.17 34.15
grc 62.74 56.04 66.86 59.84 ug‡ 53.58 34.18 51.57 34.52
grc proiel 70.42 65.22 74.19 69.39 uk 69.78 60.76 71.22 63.08
he 61.54 57.23 64.30 60.07 ur 83.67 76.69 86.41 79.72
hi 90.97 86.77 93.31 89.48 vi 42.12 37.47 47.53 42.52
hi pud 63.43 50.85 67.24 54.14 zh 61.5 57.40 68.95 65.10
hr 83.20 77.18 86.58 81.30 Average 74.41 68.35 77.81 72.11

Table 7: End-to-end parsing results on all test treebanks. ‡ indicates the test sets on which UDPipe
performs better. Among the 5 sets, es pud, ru pud and tr pud are parallel test sets on which we simply
use the model trained from the source treebank. We suggest better strategies should be explored.

ltcode Ours (b/r) Ours (a/r) Rank-1
WSeg LAS WSeg LAS WSeg LAS

ja 92.95 80.85 94.70 84.37 98.59 91.13
ja pud 94.02 83.75 95.54 85.33 94.93 83.75
vi 84.70 42.52 91.40 48.98 87.30 47.51
zh 91.19 65.10 95.21 70.49 94.57 68.56

Table 8: Post-evaluation results on zh, vi, ja and
ja pud. b/r: before revision. a/r: after revision.

Jan Mašek, Yuji Matsumoto, Ryan McDonald,
Gustavo Mendonça, Anna Missilä, Verginica Mi-
titelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Pinkey Nain-

wani, Anna Nedoluzhko, Lng Nguyn Th, Huyn
Nguyn Th Minh, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Petya Osenova, Lilja
Øvrelid, Elena Pascual, Marco Passarotti, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Martin
Popel, Lauma Pretkalnia, Prokopis Prokopidis, Ti-
ina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Livy Real, Siva Reddy, Georg Rehm,
Larissa Rinaldi, Laura Rituma, Rudolf Rosa, Davide
Rovati, Shadi Saleh, Manuela Sanguinetti, Baiba
Saulīte, Yanin Sawanakunanon, Sebastian Schus-
ter, Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Mária Šimková,
Kiril Simov, Aaron Smith, Antonio Stella, Jana Str-

60

nadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó,
Dima Taji, Takaaki Tanaka, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Zdeňka Urešová, Larraitz Uria, Hans Uszko-
reit, Gertjan van Noord, Viktor Varga, Veronika
Vincze, Jonathan North Washington, Zhuoran Yu,
Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi
Zhu. 2017a. Universal dependencies 2.0 CoNLL
2017 shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick,
Cristina Bosco, Gosse Bouma, Sam Bowman,
Marie Candito, Gülşen Cebirolu Eryiit, Giuseppe
G. A. Celano, Fabricio Chalub, Jinho Choi, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jen-
nifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökrmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds
Grūzītis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà M, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşkara, Hiroshi
Kanayama, Jenna Kanerva, Natalia Kotsyba, Simon
Krek, Veronika Laippala, Phng Lê Hng, Alessan-
dro Lenci, Nikola Ljubešić, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Cătălina Mărănduc, David Mareček, Héctor
Martı́nez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Anna Mis-
silä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Amir More, Shunsuke Mori, Bo-
hdan Moskalevskyi, Kadri Muischnek, Nina Musta-
fina, Kaili Müürisep, Lng Nguyn Th, Huyn Nguyn
Th Minh, Vitaly Nikolaev, Hanna Nurmi, Stina
Ojala, Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Barbara Plank,
Martin Popel, Lauma Pretkalnia, Prokopis Proko-
pidis, Tiina Puolakainen, Sampo Pyysalo, Alexan-
dre Rademaker, Loganathan Ramasamy, Livy Real,
Laura Rituma, Rudolf Rosa, Shadi Saleh, Manuela
Sanguinetti, Baiba Saulīte, Sebastian Schuster,
Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Dmitry Sichinava,
Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Kiril Simov, Aaron
Smith, Alane Suhr, Umut Sulubacak, Zsolt Szántó,
Dima Taji, Takaaki Tanaka, Reut Tsarfaty, Fran-
cis Tyers, Sumire Uematsu, Larraitz Uria, Gert-
jan van Noord, Viktor Varga, Veronika Vincze,
Jonathan North Washington, Zdeněk Žabokrtský,

Amir Zeldes, Daniel Zeman, and Hanzhi Zhu.
2017b. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajic, and Jana Straková. 2016a.
Ud-pipe: Trainable pipeline for processing conll-u
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016).

Milan Straka, Jan Hajič, and Jana Straková. 2016b.
UDPipe: trainable pipeline for processing CoNLL-
U files performing tokenization, morphological
analysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In NAACL. As-
sociation for Computational Linguistics, Montréal,
Canada, pages 477–487.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proc. of ACL and IJCNLP. pages 1556–
1566.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and
Hai Zhao. 2016. Learning distributed word repre-
sentations for bidirectional lstm recurrent neural net-
work. In Proc. of HLT-NAACL.

61

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. CoRR abs/1506.06158.
http://arxiv.org/abs/1506.06158.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In Proc. of ICML. pages 1604–1612.

62

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 63–70,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A System for Multilingual Dependency Parsing based on Bidirectional
LSTM Feature Representations

KyungTae Lim
LATTICE Laboratory

École Normale Supérieure & PSL Univ.
Univ. Sorbonne nouvelle & USPC

Paris, France
KISTI / DaeJeon, Korea

ktlim@ens.fr

Thierry Poibeau
LATTICE Laboratory

École Normale Supérieure & PSL Univ.
Univ. Sorbonne nouvelle & USPC

Paris, France
thierry.poibeau@ens.fr

Abstract

In this paper, we present our multilin-
gual dependency parser developed for the
CoNLL 2017 UD Shared Task dealing with
“Multilingual Parsing from Raw Text to
Universal Dependencies”1. Our parser ex-
tends the monolingual BIST-parser as a
multi-source multilingual trainable parser.
Thanks to multilingual word embeddings
and one hot encodings for languages,
our system can use both monolingual
and multi-source training. We trained
69 monolingual language models and 13
multilingual models for the shared task.
Our multilingual approach making use
of different resources yield better results
than the monolingual approach for 11
languages. Our system ranked 5th and
achieved 70.93 overall LAS score over the
81 test corpora (macro-averaged LAS F1
score).

1 Introduction

Many existing parsers are trainable on monolin-
gual data. Normally such systems take a monolin-
gual corpus in input, along with monolingual word
embeddings and possibly monolingual dictionar-
ies as well as other knowledge sources. However
for resource-poor languages such as Kurmanji and
Buryat2, there are generally not enough resources
to train an efficient parser. One reasonable ap-
proach is then to infer knowledge from similar lan-
guages (Tiedemann, 2015). Developing tools to
process several languages including resource-poor
languages has been conducted in many different
ways in the past (Heid and Raab, 1989). Thanks

1http://universaldependencies.org/conll17/
2http://universaldependencies.org/conll17/surprise.html

to Universal Dependency (Nivre et al., 2016), it
is now possible to train a system for several lan-
guages from the same set of POS tags. It has
also been demonstrated that, with current machine
learning approaches, parsing accuracy improves
when using multilingual word embeddings (i.e.
word embeddings inferred from corpora in differ-
ent languages) even for resource-rich languages
(Ammar et al., 2016a; Guo et al., 2015).

In this paper, we describe the development of
a system using either a monolingual or multilin-
gual strategy (depending on the kind of resources
available for each language considered) for the
CoNLL 2017 shared task (Zeman et al., 2017).
For the multilingual model, we assume that learn-
ing over words and POS sequences is a first step
from which better parsers can then be derived. For
this reason, we re-used most of the training al-
gorithms implemented for the BIST-parser since
these have proven to be effective when dealing
with sequential information even for long sen-
tences, thanks to bidirectional LSTM feature rep-
resentations (Kiperwasser and Goldberg, 2016).

In addition, our parser can also have recourse to
multilingual word embeddings that merge differ-
ent word vectors in a single vector space in order
to get multi-source models. As for multilingual
word embeddings, we extend the bilingual word
mapping approach (Artetxe et al., 2016) to be able
to deal with multilingual data. We have only used
this approach based on multilingual word embed-
dings for two different language groups in this
experiment: (i) for resource-poor languages for
which less than 30 sentences were provided for
training such as surprise languages and Kazakh,
and (ii) for another group of 7 resource-rich lan-
guages that are all Indo-European languages. This
is to show that even the analysis of resource-rich
languages can be improved thanks to a multilin-
gual approach.

63

Figure 1: Overall system structure for training language models. (1) Embedding Layer: vectorized
features that are feeding into Bidirectional LSTM. (2) Bidirectional-LSTM: train representation of each
token as vector values based on bidirectional LSTM neural network. (3) Multi-Layer Perceptron:
build candidate of parse trees based on trained(changed) features by bidirectional LSTM layer, and then
calculate probabilistic scores for each of candidates. Finally, if it has multiple roots, revise it (section 3)
or select the best parse tree.

Although we could theoretically train a single
model for all the languages considered in the eval-
uation based on our multilingual approach, rele-
vant results can only be obtained if one takes into
account language similarities and typological in-
formation. Moreover, given the limited time and
the specific resource environment designed for the
shared task, it was hard to get better results using
a multilingual approach than using a monolingual
approach for resource-rich languages since train-
ing new word embeddings requires time. Thus,
we processed 69 corpora with monolingual mod-
els, and only 13 corpora with our multilingual ap-
proach.

In what follows we describe the architecture
of our system (section 2), our monolingual (sec-
tion 3) as well as our multilingual approach (sec-
tion 4). Finally, we compare the results with the
baseline provided by UDPipe1.1 and with the re-
sults of other teams (section 5).

2 System Overview

Our system extends the Graph-based parser
(Taskar et al., 2005) especially in BIST-parser that
works by default with monolingual data. Basi-
cally the Graph-based BIST-parser uses bidirec-
tional Long Short Term Memory (LSTM) feature
representations thanks to two neural network lay-
ers (Kiperwasser and Goldberg, 2016). In or-
der to select the best relation and head for each
tokens in a sentence, Kiperwasser and Goldberg

link the output of the bidirectional LSTM with the
Multi-Layer Perceptron (MLP) thanks to one neu-
ral layer. Here we adopt the same feature repre-
sentation and MLP but different training features
and decision models.

In order to adapt the parser to a multilingual
approach, we add new parameters and new fea-
tures to the training algorithm, notably the pos-
sibility to use multilingual word embeddings and
one hot encoding to encode languages. Finally, the
parser can be trained on monolingual and multilin-
gual data depending on the parameters chosen for
training. An overview of the overall architecture
is given in Figure 1. Details on word embeddings
along with the number of dimensions considered
are given below.

• Word: randomly generated word embedding
(100)

• XPOS: language-specific POS (25)

• UPOS: universal POS (25)

• External embedding1: pretrained word em-
bedding (100)

• External embedding2: pretrained word em-
bedding that is replaced with Word (100)

• one-hot encoding: one-hot encoding of the
language ID (65)

64

Corpus Embedding model Bilingual Dic Training corpora
Buryat Buryat-Russian wiki dump brx(20), ru
Kurmanji Kurmanji-English wiki dump kmr(20), en
North Sámi North Sámi-Finnish wiki dump sme(20), fi, fi-fbt
Upper Sorbian Upper Sorbian-Polish OPUS hsb(20), pl
Kazakh Kazakh-Turkish OPUS kk(20), tr
Portuguese 7 languages* Europarl7,WMT11 en, it, fr, es, pt, de, sv
Italian 7 languages* Europarl7,WMT11 en, it, fr, es, pt, de, sv
Italian ParTUT 7 languages* Europarl7,WMT11 en, en partut, fr partut, it, it partut
English ParTUT 7 languages* Europarl7,WMT11 en, en partut, fr partut, it partut
French ParTUT 7 languages* Europarl7,WMT11 en partut, fr(2), fr partut, it partut
Czech-CLTT Czech - cs, cs cac, cs cltt
Galician-TreeGal Galician - ga, ga treegal
Slovenian-SST Slovenian - sl, sl sst

Table 1: Languages trained by a multilingual model. Embedding model: applied languages that
were used for making multilingual word embeddings. Bilingual Dic: resources to generate bilingual
dictionaries Training corpora: Training corpora that were used. 7 languages: English, Italian, French,
Spanish, Portuguese, German, Swedish. (number): the number of multiplication to expand the total
amount of corpus.

Word refers to words taken from the training
corpora and used as lexical features with vector-
ized embeddings in our parser. Both XPOS and
UPOS3 are used as delexicalized features. The
content of Word and POS is set randomly when
the training phase starts. In addition, two external
word embeddings are added to the representations
of words, one is concatenated with the Word vec-
tor additionally, and the other is used to replace
the Word vector. For example, let Word be gen-
erated randomly with 100 dimensional vector val-
ues and External1 and let External2 be pretrained
word embeddings made from different resources
with 100 dimensional vector values. If we just add
External1 to an additional word embedding, then
final word embedding could be Word+External1
(200 dimensions) based on concatenation. How-
ever, if we add just External2 as an additional
word embedding, Word is deleted because it is re-
placed with External2 so that final word embed-
ding could be External2 (100 dimensions). If both
are used, final word embedding could be Exter-
nal1 + External2 (Word is deleted because of Ex-
ternal2). Since we have found if we can use two
external word embeddings, replacing one word
embedding as the Word made better results than
concatenating two word embeddings based on ex-
periments.

Since our goal is to develop a multilingual pars-
3http://universaldependencies.org/format.html

ing model, we took the idea of one-hot encodings
from (Ammar et al., 2016a). The idea is to add
language one-hot encoding as an additional fea-
ture while training multilingual models. It allows
the model to directly focus on language specifici-
ties. There are 65 hot-encoding dimensions be-
cause there are 64 languages in UD 2.0 (Nivre
et al., 2017) plus unknown languages.

3 Monolingual Model

There were 81 different corpora to be parsed
within the CoNLL 2017 shared task. We used
a monolingual approach for 69 corpora, and our
results are detailed in section 5. As mentioned
above, training a monolingual model in our system
is very similar to training a BIST-parser model.
However, we made two modifications to the origi-
nal approach.

Multiple roots: The BIST-parser can generate
multiple roots for a given sentence. This is not
a problem in general but for the shared task we
need to provide only one single root per sentence.
Not detecting the right root for a sentence leads
to major errors so the problem had to be addressed
carefully. We chose to develop a simple algorithm:
when the parser returns multiple roots, our sys-
tem revises the overall sentence analysis so as to
select one single primary root and change other
previous roots as links pointing to the new head
node. Choosing the primary root is the result of an

65

empirical process depending on the language con-
sidered (i.e. taking into account language-specific
word order). For example, the primary root is the
first head node in the case of an English sentence
and the last one in the case of a Korean sentence.
This very simple trick improved the LAS scores by
0.43 overall F1-measure on the development set.

Customizing for UD: Basically, the BIST-
parser is not adapted to the Universal Dependency
format. Thus several changes had to be made.
First, we added both XPOS and UPOS categories
to the parser. Second, if a word in a training sen-
tence did not exist in external word embeddings,
we replaced the word as a lemma of the word.
Third, we used the external word embeddings pro-
vided by the shared task organizers4 and concate-
nated them with the original Word embedding.

4 Multilingual Model

We processed 13 test corpora with our multilin-
gual model. The F1-measure of our system for
these corpora are better than with our monolingual
system for resource-poor languages and even for
most of the resource-rich languages.

4.1 Surprise Languages and Kazakh

There were four surprise languages provided for
evaluation within the CONLL 2017 shared task:
Buryat, Kurmanji, North Sámi and Upper Sorbian
(all in the Universal Dependency format). Less
than 30 sentences were provided for training, and
Kazakh also had 30 sentences for training. We di-
vided the training corpus in half: half od the data
were set apart for development and never used for
training.

Word embeddings. The first step for training
multilingual model is finding topologically simi-
lar languages. Thus, we selected three languages
for each surprise language in order to be able to
derive multilingual word embeddings. The choice
of languages was based on the Word Atlas of Lan-
guage Structures5 and on advices from linguists.

Bilingual Dictionary. There has been many
attempts to build multilingual embeddings (Am-
mar et al., 2016b; Smith et al., 2017). One sim-
ple but powerful method is finding a linear trans-
formation matrix from two monolingual embed-

4https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-
1989

5The Word Atlas of Language Structures provides infor-
mation about different languages in the world (family, lati-
tude and longitude, see http://wals.info).

dings. (Artetxe et al., 2016) propose to do this with
pretrained word embeddings and bilingual dictio-
naries. We tried to follow their approach using
monolingual embeddings provided by Facebook
research6 and building bilingual dictionaries. Un-
fortunately there were not many resources (even
with a limited coverage) for building a bilingual
dictionary in the case of surprise languages.

For some languages we were able to find bilin-
gual dictionaries from OPUS7. When no cor-
pus was available, we used Swadesh lists from
Wikipedia dumps. Swadesh lists are composed
of 207 bilingual words that are supposed to be
”basic concepts for the purposes of historical-
comparative linguistics”8. Finally, we trans-
formed both embeddings in a single vector space.

Table1 shows details about the selected pairs of
languages and the different sources used for our
dictionaries. From these resources, we trained a
multilingual model and after testing with the de-
velopment set set apart for each pair of candidate
languages, we picked up the best candidate for the
different surprise languages and for Kazakh.

4.2 Italian and Portuguese
There have been several attempts aiming at train-
ing multilingual models for resource-rich lan-
guages (Guo et al., 2016; Ammar et al., 2016a).
We have tested our multilingual system in a sim-
ilar way as explained in the previous section for
resource-rich languages, except that we of course
changed the resources used. We used the mul-
tilingual word embeddings for 7 languages pre-
sented in Ammar et al.’s paper (average and brown
cluster model), and then trained a multilingual
model with the training set provided for the 7 lan-
guages considered. Although the size of word
vectors for multilingual embeddings is almost 10
times smaller than with the monolingual embed-
dings made by Facebook research, the result (F1-
measure) is slightly better than with the monolin-
gual model for Italian and Portuguese, with 0.39
and 0.41 within development sets.

4.3 ParTUT corpora
We assumed that all ParTUT corpora are related
with each other. Thus, we used a similar mul-
tilingual approach to parse the ParTUT corpora
but we used different compositions of corpora for

6https://github.com/facebookresearch/fastText/
7http://opus.lingfil.uu.se/
8https://en.wikipedia.org/wiki/Swadesh list

66

Corpus LAS UAS Rank(LAS) Rank(UAS) Baseline(LAS)
Overall (81) 70.93 76.75 5 5 68.35
Big treebanks only (55) 75.79 80.55 5 5 73.04
PUD treebanks only (14) 70.77 77.64 4 4 68.33
Small treebanks only (8) 54.78 64.99 4 5 51.80
Surprise language only (4) 36.93 48.66 12 15 37.07
English PUD 82.38 85.77 2 2 78.95
Russian PUD 72.03 79.31 2 2 68.31
Spanish 85.22 88.40 2 3 81.47

Table 2: Official experiment results with rank. (number): number of corpora

Corpus LATTICE Baseline
Arabic PUD 47.13 43.14
Arabic 68.54 65.3
Bulgarian 85.6 83.64
Catalan 86.83 85.39
Czech-CAC 84.77 82.46
Czech PUD 80.86 79.8
Czech 83.68 82.87
Old Church Slavonic 60.81 62.76
Danish 76.47 73.38
Danish PUD 71.45 66.53
German 75.09 69.11
Greek 81.13 79.26
English-LinES 76.17 72.94
English PUD 82.38 78.95
English 78.91 75.84
Spanish-AnCora 86.87 83.78
Spanish PUD 79.87 77.65
Spanish 85.22 81.47
Estonian 62.93 58.79
Basque 72.13 69.15
Persian 82.63 79.24
Finnish-FTB 79.44 74.03
Finnish PUD 80.82 78.65
Finnish 77.11 73.75
French PUD 76.55 73.63
French-Sequoia 83.7 79.98
French 82.83 80.75
Irish 64.39 61.52
Galician 80.68 77.31
Gothic 60.55 59.81
Ancient Greek-PROIEL 60.58 65.22
Ancient Greek 51.5 56.04
Hebrew 61.24 57.23
Hindi PUD 50.94 50.85
Hindi 86.99 86.77

Corpus LATTICE Baseline
Croatian 80.96 77.18
Hungarian 68.49 64.3
Indonesian 76.6 74.61
Italian PUD 86.49 83.7
Japanese PUD 77.41 76.28
Japanese 73.98 72.21
Korean 72.35 59.09
Latin-ITTB 74.33 76.98
Latin-PROIEL 55.04 57.54
Latin 51.95 43.77
Latvian 64.49 59.95
Dutch-LassySmall 75.67 78.15
Dutch 70.6 68.9
Norwegian-Bokmaal 85.55 83.27
Norwegian-Nynorsk 84.57 81.56
Polish 85.94 78.78
Portuguese-BR 88.56 85.36
Portuguese PUD 76.56 73.96
Romanian 81.93 79.88
Russian PUD 72.03 68.31
Russian-SynTagRus 87.9 86.76
Russian 78.42 74.03
Slovak 79.23 72.75
Slovenian 84.52 81.15
Swedish-LinES 78.15 74.29
Swedish PUD 73.4 70.62
Swedish 81.07 76.73
Turkish PUD 34.82 34.53
Turkish 58.89 53.19
Uyghur 34.94 34.18
Ukrainian 63.63 60.76
Urdu 79.26 76.69
Vietnamese 39.87 37.47
Chinese 61.94 57.4
Average 73.13 70.45

Table 3: Official experiment results processed by monolingual models.

67

Corpus LATTICE-Multi LATTICE-Mono Baseline
Buryat 27.08 19.7 31.5
Kurmanji 41.71 37.59 32.35
North Sámi 28.39 25.89 30.6
Upper Sorbian 50.54 41.23 53.83
Kazakh 22.11 19.98 24.51
Italian 87.75 87.98 85.28
Portuguese 84.08 84.08 82.11
English-ParTUT 80.45 77.62 73.64
French-ParTUT 83.26 80.66 77.38
Italian-ParTUT 84.09 80.36 -
Czech-CLTT 75.45 74.85 71.64
Galician-TreeGal 68.01 67.75 65.82
Slovenian-SST 49.94 48.06 46.45

Table 4: Official experiment results processed by multilingual models.

training, such as French ParTUT with en partut,
fr partut, it partut and doubled-fr corpus. Finally,
the best training compositions are listed in Table1.

4.4 Czech-CLTT, Galician-TreeGal,
Slovenian-SST

These three corpora have a small number of train-
ing sentences. We thus chose to train them to-
gether but with different language hot-encoding
values.

5 Experimental Results

Because we wanted to focus on the dependency
parsing task, we used automatically annotated cor-
pora for testing and also trained all models with
the annotated corpora provided by UDPipe (Straka
et al., 2016).

As described in section 4, we used different
word embeddings and training corpora for multi-
lingual models. As for monolingual models, we
simply trained the system with monolingual em-
beddings (see details in section 3).

Overall results. Table 2, 3 and 4 show the of-
ficial results (except for it ParTUT), using the F1-
measure computed by the TIRA platform (Potthast
et al., 2014) for the CoNLL 2017 Shared task9.
Our system achieved 70.93 F1 (LAS) on the over-
all 81 test sets and ranked 5th out of 33 teams. The
average gap between the baseline obtained with
UDPipe1.1 (Straka et al., 2016) and our system
is 2.58 LAS in our favor. Our system shows bet-
ter results in avoiding over-fitting issues. Perfor-
mance gaps are narrowed when considering only

9http://universaldependencies.org/conll17/results.html

PUD test sets (for example, our system ranked
second best for processing English PUD and Rus-
sian PUD), which is encouraging for practical ap-
plications.

Multilingual model. Table 4 shows the re-
sults obtained when using the multilingual mod-
els on the small treebank dataset (fr partut, ga,
gl treegal, kk, la, sl sst, ug, uk). We ranked 4th,
with 54.78 LAS score on this group of languages.
However, in terms of extremely resource-poor lan-
guages (surprise languages), we have ranked only
12th, with 36.93 LAS score. This is slightly lower
than the UDPipe1.1 baseline model: we assume
this is the result of using half of the corpus for
training surprise languages (section 4). If we com-
pare monolingual models of surprise languages
with multilingual ones, we see an improvement
between 2.5 and 9.31 percent. The same kind
of improvement can be observed for the ParTUT
group. In this case, the multilingual approach im-
proves performance by almost 3 points.

6 Conclusion

In this paper, we have described our system for
multilingual dependency parsing that has been
tested over the 81 Universal Dependency cor-
pora provided for the CoNLL 2017 shared task.
Our parser mainly extends the monolingual BIST-
parser as a multi-source trainable parser. We pro-
posed three main contributions: (1) the integration
of multilingual word embeddings and one hot en-
codings for the different languages, which means
our system can work using monolingual models
as well as on multilingual ones. (2) a simple but

68

effective way to solve the multiple roots problem
of the original BIST parser and (3) an original ap-
proach for the elaboration of multilingual dictio-
naries for resource-poor languages and the projec-
tion of monolingual word embeddings in a single
vector space. Our system ranked 5th and achieved
70.93 overall F1-measure over the 81 test corpora
provided for evaluation. We are confident there is
room for improvement since this system is only
preliminary and lots of components could be op-
timized. A better account of language typology
could also help the process and show the benefit of
linguistic knowledge in this kind of environment.

7 Acknowledgements

Kyung Tae Lim is supported by the ANR ERA-
NET ATLANTIS project. This work is also sup-
ported by the LAKME project through a grant
from Paris Sciences et Lettres within the frame-
work of the IDEX (Initiatives d’Excellence) PSL
reference ANR-10-IDEX-0001-02.

References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah A. Smith. 2016a. One
parser, many languages. CoRR abs/1602.01595.
http://arxiv.org/abs/1602.01595.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A Smith.
2016b. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925 .

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016.
Learning principled bilingual mappings of word em-
beddings while preserving monolingual invariance.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of ACL.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
AAAI. pages 2734–2740.

Ulrich Heid and Sybille Raab. 1989. Collocations
in multilingual generation. In Proceedings of the
fourth conference on European chapter of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics, pages 130–136.

Eliyahu Kiperwasser and Yoav Goldberg.
2016. Simple and accurate dependency

parsing using bidirectional LSTM fea-
ture representations. TACL 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/885.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, Portorož, Slovenia, pages
1659–1666.

Joakim Nivre et al. 2017. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Samuel L. Smith, David H. P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline bilin-
gual word vectors, orthogonal transformations and
the inverted softmax. CoRR abs/1702.03859.
http://arxiv.org/abs/1702.03859.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning structured predic-
tion models: A large margin approach. In Proceed-
ings of the 22nd international conference on Ma-
chine learning. ACM, pages 896–903.

Jörg Tiedemann. 2015. Cross-lingual dependency
parsing with universal dependencies and predicted
pos labels. Depling 2015 page 340.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,

69

Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

70

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 71–79,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Adversarial Training for Cross-Domain Universal Dependency Parsing

Motoki Sato1 Hitoshi Manabe1 Hiroshi Noji1 Yuji Matsumoto1,2

1 Nara Institute of Science and Technology
2 RIKEN Center for Advanced Intelligence Project (AIP)

{ sato.motoki.sa7, manabe.hitoshi.me0, noji, matsu }@is.naist.jp

Abstract

We describe our submission to the CoNLL
2017 shared task, which exploits the
shared common knowledge of a language
across different domains via a domain
adaptation technique. Our approach is
an extension to the recently proposed ad-
versarial training technique for domain
adaptation, which we apply on top of
a graph-based neural dependency parsing
model on bidirectional LSTMs. In our
experiments, we find our baseline graph-
based parser already outperforms the offi-
cial baseline model (UDPipe) by a large
margin. Further, by applying our tech-
nique to the treebanks of the same lan-
guage with different domains, we observe
an additional gain in the performance, in
particular for the domains with less train-
ing data.

1 Introduction

In the CoNLL 2017 shared task (Zeman et al.,
2017), some language data is available in more
than one treebanks typically from different anno-
tation projects. While the treebanks differ in many
respects such as the genre and the source of the
text (i.e., original or translated text), the most no-
table difference is that the size of the treebanks
often varies significantly. For example, there are
three variants of English treebanks: en, en lines,
and en parunt, in which the largest dataset en con-
tains 12,543 training sentences while en lines and
en parunt contain only 2,738 and 1,090 sentences,
respectively.

In this paper, we describe our approach to
improve the parser performance for the tree-
banks with lesser training data (e.g., en lines and
en parunt), by jointly learning with the dominant

treebank of the same language (e.g, en). We for-
mulate our approach as a kind of domain adapta-
tion, in which we treat the dominant treebank as
the source domain while the others as the target
domains.

Our approach to domain adaptation, which we
call SharedGateAdvNet, is an extension to the re-
cently proposed neural architecture for domain
adaptation (Ganin and Lempitsky, 2015) with
adversarial training (Goodfellow et al., 2014),
which learns domain-invariant feature representa-
tions through an adversarial domain classifier. We
extend this architecture with an additional neural
layer for each domain, which captures domain-
specific feature representations. To our knowl-
edge this is the first study to apply the adversarial
training-based domain adaptation to parsing.

We utilize this architecture to obtain the rep-
resentation of each token of a sentence, and
feed it into a graph-based dependency parsing
model where each dependency arc score is cal-
culated using bilinear attention (Dozat and Man-
ning, 2017). Specifically, we obtain the domain-
specific and domain-invariant feature represen-
tations for each token via separate bidirectional
LSTMs (Bi-LSTMs), and then combine them via
a gated mechanism.

Our baseline method is our reimplementation of
the graph-based dependency parser with LSTMs
(Dozat and Manning, 2017) trained with a sin-
gle treebank. First, we observe that this model
is already much stronger than the official baseline
model of UDPipe (Straka et al., 2016) in most tree-
banks. We then apply our domain adaptation tech-
nique to the set of treebanks of the same language,
and in most cases we observe a clear improvement
of the scores, especially for the treebanks with
lesser training data. We also try our architecture
across multiple languages, i.e., a high-resource
language with a large treebank, such as English,

71

and a low-resource language with a small data set.
Interestingly, even though the mixed languages are
completely different, we observe some score im-
provements in low-resource languages with this
approach. Finally we rank the 6th place on the
main result of the shared task.

2 System overview

The CoNLL 2017 shared task aims at parsing
Universal Dependencies 2.0 (Nivre et al., 2017).
While its concern is parsing in the wild, i.e., from
the raw input text, in this work we focus only on
the dependency parsing layer that receives the to-
kenized and POS tagged input text. For all pre-
processing from sentence splitting to POS tagging,
we use the provided UDPipe pipeline. For obtain-
ing the training treebanks, we keep the gold word
segmentation while assign the predicted POS tags
with the UDPipe.1

We did a simple model selection with the de-
velopment data for choosing the final submitted
models. First, we trained our baseline graph-
based LSTM parsing model (Section 3) indepen-
dently for each treebank. Then for some languages
with more than one treebank, or low-resource lan-
guages with a small treebank alone, we applied our
proposed domain adaptation technique (Section 4)
and obtained additional models. For treebanks for
which we trained several models, we selected the
best performing model on the development set in
terms of LAS. For the other treebanks, we submit-
ted our baseline graph-based parser.

For the parallel test sets (e.g., en pub) with no
training data, we use the model trained on the
largest treebank of a target language. We did not
pay much attention to the surprise languages. For
Buryat (bxr), we just ran the model of Russian
(ru). For the other three languages, we ran the
model of English (en).

3 Biaffine Attention model

Our baseline model is the biaffine attention model
(Dozat and Manning, 2017), which is an exten-
sion to the recently proposed dependency parsing
method calculating the score of each arc indepen-
dently from the representations of two tokens ob-
tained by Bi-LSTMs (Kiperwasser and Goldberg,
2016). For labeled dependency parsing, this model

1We were not aware of the jack-knifed training data pro-
vided by the organizer at submission time.

first predicts the best unlabeled dependency struc-
ture, and then assigns a label to each predicted arc
with another classifier. For the first step, receiv-
ing the word and POS tag sequences as an input,
the model calculates the score of every possible
dependency arc. To obtain a well-formed depen-
dency tree, these scores are given to the maximum
spanning tree (MST) algorithm (Pemmaraju and
Skiena, 2003), which finds the tree with the high-
est total score of all arcs. The overview of the bi-
affine model is shown in Figure 1.

Let wt be the t-th token in the sentence. As
an input the model receives the word embedding
wt ∈ Rdword and POS embedding pt ∈ Rdpos for
each wt, which are concatenated to a vector xt.
This input is mapped by Bi-LSTMs to a hidden
vector rt, which is then fed into an extension of
bilinear transformation called a biaffine function
to obtain the score for an arc from wi (head) to wj

(dependent):

rt = Bi-LSTM(xt), (1)

h(arc−head)
i = MLP(arc−head)(ri),

h(arc−dep)
j = MLP(arc−dep)(rj),

s
(arc)
i,j = hT(arc−head)

i U (arc)h(arc−dep)
j

+hT(arc−head)
i u(arc),

where MLP is a multi layer perceptron. A weight
matrix U (arc) determines the strength of a link
from wi to wj while u(arc) is used in the bias term,
which controls the prior headedness of wi.

After obtaining the best unlabeled tree from
these scores, we assign the best label for every
arc according to s(label)

i,j , in which the k-th element
corresponds to the score of k-th label:

h(label−head)
i = MLP(label−head)(ri),

h(label−dep)
j = MLP(label−dep)(rj),

h(label)
i,j = h(label−head)

i ⊕ h(label−dep)
j ,

s(label)
i,j = hT(label−head)

i U(label)h(label−dep)
j

+hT(label)
i,j W (label) + u(label),

where U(label) is a third-order tensor, W (label) is a
weight matrix, and u(label) is a bias vector.

4 Domain Adaptation Techniques with
Adversarial Training

Here we describe our network architectures for do-
main adaptation. We present two different net-

72

Bi−LSTMs

Input
embedding

x
1

x
2

x
3

MLP

BiaffineBiaffineBiaffine Biaffine

Figure 1: Overview of the biaffine model.

works both using adversarial training; the main
difference between them is whether we use a
domain-specific feature representation for each
domain. The basic architecture with adversar-
ial training (Section 4.1) is an application of the
existing domain adaptation technique (Ganin and
Lempitsky, 2015) that does not employ domain-
specific representations. We then extend this ar-
chitecture to add a domain-specific component
with a gated mechanism (Section 4.2).

In Section 5 we compare the empirical perfor-
mances of these two approaches as well as several
ablated settings.

4.1 Adversarial Training

Figure 2 describes the application of adversar-
ial training (Ganin and Lempitsky, 2015) for the
biaffine model. In this architecture all models
for different domains are parameterized by the
same LSTMs (Shared Bi-LSTMs), which output
rt (Eqn. 1) that are fed into the biaffine model.
The key of this approach is a domain classifier,
which also receives rt and tries to classify the do-
main of the input. During training the classifier is
trained to correctly classify the input domain. At
the same time, we train the shared BiLSTM lay-
ers so that the domain classification task becomes
harder. By this adversarial mechanism the model
is encouraged to find the shared parameters that
are not specific to a particular domain as much
as possible. As a result, we expect the target do-
main model (with lesser training data) is trained to
utilize the knowledge of the source domain effec-
tively. Note that the domain classifier in Figure 2
is applied for every token in the input sentence.

This domain adaptation technique can be im-
plemented by introducing the gradient reversal
layer (GRL). The GRL has no parameters asso-
ciated with it (apart from the hyper-parameter λ,

Domain 1

Shared
LSTMs

Domain 2

Biaffine

PredictBiaffine

Domain 1

Shared
LSTMs

Domain 2

Biaffine

PredictBiaffine

Gradient
Reversal

Layer

Domain 1

Domain 2

Domain
classifier

MLP

Figure 2: An application of the adversarial train-
ing for the biaffine model. In this basic architec-
ture all domains are modeled with a common sin-
gle Bi-LSTM network (Shared Bi-LSTMs).

which is not updated with backpropagation). Dur-
ing the forward propagation GRL acts as an iden-
tity transform, while during the backpropagation
GRL takes the gradient from the subsequent layer,
multiplies it by λ and passes it to the preceding
layer.

The parameter λ controls the trade-off between
the two objectives (the domain classifier and the
biaffine model) that shape the feature representa-
tion during training. The GRL layer Rλ(x) for the
forward and backward propagation is defined as
follows:

Rλ(x) = x;
dRλ

dx
= −λI.

4.2 Shared Gated Adversarial Networks

Now we present our extension to adversarial train-
ing described above, which we call the shared
gated adversarial networks (SharedGateAdvNet).

Figure 3 shows the overall architecture. The
largest difference from Figure 2 is the existence
of the domain-specific Bi-LSTMs (Not-shared Bi-
LSTMs) that we expect to capture the representa-
tions not fitted into the shared LSTMs and special-
ized to a particular domain. The model comprises
of the following three components.

Shared Bi-LSTMs As in the basic model with
adversarial training (Figure 2), the shared Bi-
LSTMs in this model try to learn the domain in-
variant feature representation via a domain classi-
fier, which facilitates effective domain adaptation.

Domain-specific Bi-LSTMs This domain-
specific component captures the information that
does not fit into the domain-invariant shared

73

Domain 1

Shared
LSTMs

Not-Shared
LSTMs

Domain 2

Gate

Gate

Biaffine

Gated
connection

Predict
Gradient
Reversal

Layer

Biaffine

Domain 1

Domain 2

Domain
classifier

Figure 3: The architecture of SharedGateAdvNet. Each token in the input sentence is passed to the
biaffine model through this network.

Bi-LSTMs. The domain-specific LSTMs exist on
each domain. Figure 3 shows the case when two
treebanks (domains) are trained at the same time.
When training with three treebanks, there exist
three Bi-LSTMs, one for each domain.

Gated connection The gated connection selects
which information to use between the domain-
invariant and domain-specific feature represen-
tations (the shared Bi-LSTMs and the domain-
specific Bi-LSTMs). We get the combined repre-
sentation rgate

t from these two vectors as follows:

gt = σ(U (gate)(rdom
t ⊕ rshare

t) + u(gate)),
rgate
t = gt · rshare

t + (1− gt) · rdom
t ,

where σ is the sigmoid function. rshare is the out-
put of the shared Bi-LSTMs while rdom is the out-
put of the domain-specific Bi-LSTMs.

5 Experiments

5.1 Settings

For the settings of the biaffine models, we fol-
low the same network settings as Dozat and Man-
ning (2017): 3-layer, 400-dimentional LSTMs for
each direction, 500-dimentional MLP for arc pre-
diction, and 100-dimentional MLP for label pre-
diction. We use the 100-dimensional pre-trained
word embeddings trained by word2vec (Mikolov
et al., 2013) 2 and the 100-dimensional randomly
initialized POS tag embeddings. For the model

2The pre-trained word embeddings are provided by the
CoNLL 2017 Shared Task organizers. These are trained with
CommonCrawl and Wikipedia.

with adversarial training, we fix λ to 0.5.3 We ap-
ply dropout (Srivastava et al., 2014) with a 0.33
rate at the input and output layers. For optimiza-
tion, we use Adam (Kingma and Ba, 2014) with
the batch size of 128 and gradient clipping of 5.
We use early stopping (Caruana et al., 2001) based
on the performance on the development set.

5.2 Preliminary Experiment
Before selecting the final submitted model for
each treebank (Section 5.3) here we perform a
small experiment on selected languages (English
and French) to see the effectiveness of our domain
adaptation techniques.

English experiment First, for English, we com-
pare the performances of several domain adapta-
tion techniques as well as the baselines without
adaptation, to see which technique performs bet-
ter. We compare the following six systems:

• UDPipe: The official baseline parser (Straka
et al., 2016). This is a transition-based parser
selecting each action using neural networks.

• Biaffine: Our reimplementation of the graph-
based parser of Dozat and Manning (2017).
We use Chainer (Tokui et al., 2015) for our
implementation. We train this model inde-
pendently on each treebank.

• Biaffine-MIX: A simple baseline of domain
adaptation, which just trains a single biaffine
model across different domains. We obtain

3 We did not obtain any performance gains by scheduling
λ in our preliminary experiments.

74

Method
en en lines en partut

UAS LAS UAS LAS UAS LAS
UDPipe 83.83 80.13 79.00 74.68 78.26 74.23
Biaffine 86.19 82.45 81.94 77.64 80.01 75.52
Biaffine-MIX 86.19 82.28 82.23 76.95 83.34 78.02
Biaffine-MIX + Adv 86.05 82.36 82.47 77.45 83.38 78.37
SharedGateNet 86.17 82.42 82.67 78.28 84.06 80.09
SharedGateAdvNet 86.27 82.47 82.69 78.27 84.32 80.35

Table 1: The result of our preliminary English experiment across multiple domains. UDPipe and Biaffine
are trained separately for each language, while the other models are trained across all domains jointly.

Method
en en lines en partut fr fr partut fr sequoia

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Biaffine 86.19 82.45 81.94 77.64 80.01 75.52 90.39 88.11 86.79 83.70 87.20 84.90
Ours (domain) 86.27 82.47 82.69 78.27 84.32 80.35 90.26 88.06 88.71 86.18 87.64 85.27
Ours (domain, lang) 85.47 81.75 82.03 77.58 83.60 79.51 90.07 87.71 89.49 87.08 87.90 85.34

Table 2: The result of our preliminary experiment across different languages (English and French). Ours
(domain) is trained for each language across multiple domains by SharedGateAdvNet. Ours (domain,
lang) is trained with all six treebanks of two languages jointly. Joint training of two languages brings a
small improvement on the smaller French treebanks (fr partut and fr sequoia).

this by removing the domain classification
component in Figure 2.

• Biaffine-MIX + Adv: The model in Figure
2, which shares the same parameters across
multiple domains but adversarial training fa-
cilitates learning domain-invariant represen-
tations.

• SharedGateNet: A simpler version of our
proposed architecture (Figure 3), which does
not have the adversarial component but has
the gated unit controlling the strength of the
two, domain-invariant and domain-specific
Bi-LSTMs.

• SharedGateAdvNet: Our full architecture
(Figure 3) with both adversarial training and
the gated unit.

The result is shown in Table 1. First, we
find that our baseline biaffine parser already out-
performs the official baseline parser (UDPipe)
by a large margin (e.g., for English, 82.45 vs.
80.13 LAS), which suggests the strength of graph-
based parsing with Bi-LSTMs that enable the
model to capture the entire sentence as a context.
By just mixing the training treebanks (Biaffine-
MIX), we observe a score improvement for the
domains with less data, en lines and en parunt,
which only contain 2,738 and 1,090 sentences,

respectively. We also observe an additional
small gain with adversarial training (Biaffine-MIX
Adv). Comparing with this, our proposed archi-
tectures (SharedGateNet and SharedGateAdvNet)
perform better. This shows the importance of hav-
ing the domain-specific network layers. Our fi-
nal architecture SharedGateAdvNet slightly out-
performs SharedGateNet, indicating that the ad-
versarial technique also has its own advantage.

Since SharedGateAdvNet consitently outper-
forms the others in English, we only try this
method in the following experiments.

English and French experiment To see the ef-
fects of our approach when combining completely
different data, i.e., different language treebanks,
we perform a small experiment using two lan-
guages: English and French. French treebanks
are also divided into three domains and also are
imbalanced: fr (14,553 sentences), fr partut (620
sentences), and fr sequoria (2,231 sentences). We
compare the models trained within each language
(3 domains for each), and the model trained with
all six treebanks of English and French. The re-
sult is shown in Figure 2. Interestingly, especially
for fr partut and fr sequoria, we observe a small
score improvement by jointly learning two lan-
guages. The best model for fr is the biaffine model
without joint training. Note also that for en, the
effect of the adaptation technique is very small, or

75

Language
UAS LAS

UDPipe Biaffine SharedGateAdv UDPipe Biaffine SharedGateAdv
ar 80.13 82.97 - 73.04 76.35 -
bg 88.02 90.60 - 83.22 86.23 -
ca 88.37 90.57 - 85.28 87.42 -
cs 88.14 91.36 91.23 84.68 88.31 88.29 (i)

cs cac 86.81 89.03 89.77 83.50 85.65 86.73 (i)

cs cltt 72.65 75.88 78.87 69.01 71.43 75.23 (i)

cu 80.41 82.83 - 73.19 75.30 -
da 78.40 82.04 - 74.74 78.42 -
de 79.40 84.40 - 74.11 80.17 -
el 82.37 84.99 - 78.69 80.88 -
en 83.83 86.19 86.27 80.13 82.45 82.47 (i)

en lines 79.00 81.94 82.69 74.68 77.64 78.27 (i)

en partut 78.26 80.01 84.32 74.23 75.52 80.35 (i)

es 87.50 89.37 89.49 84.29 86.25 86.33 (i)

es ancora 87.53 90.34 90.26 84.54 87.76 87.61 (i)

et 69.26 70.57 - 60.16 59.01 -
eu 74.59 77.58 - 69.23 70.06 -
fa 83.89 87.02 - 79.81 83.15 -
fi 79.97 80.57 81.74 75.37 74.62 75.98 (i)

fi ftb 80.72 81.60 82.21 76.10 75.38 76.20 (i)

fr 88.72 90.39 90.07 86.36 88.11 87.71 (ii)

fr partut 77.82 86.79 89.49 73.67 83.70 87.08 (ii)

fr sequoia 84.35 87.20 87.89 81.93 84.90 85.33 (ii)

ga 74.57 80.28 - 63.47 72.70 -
gl 80.66 83.73 83.81 77.17 80.08 80.11 (i)

gl treegal 72.32 78.48 83.69 66.43 73.62 78.08 (i)

got 76.42 78.21 - 68.92 70.32 -
grc 62.12 66.13 69.16 55.23 58.77 61.23 (i)

grc proiel 77.35 80.74 81.83 72.03 75.43 76.22 (i)

he 83.93 86.12 - 78.03 80.13 -
hi 91.29 93.03 - 86.90 88.97 -
hr 81.99 85.66 - 76.40 79.79 -
hu 71.52 74.09 - 65.04 63.31 -
id 80.76 83.34 - 74.08 76.67 -
it 87.77 90.09 90.82 85.04 87.62 88.15 (i)

it partut 82.02 82.66 90.66 78.47 78.72 87.34 (i)

ja 94.31 95.48 - 92.94 94.15 -
kk 37.08 64.51 - 23.60 37.09 -
ko 63.71 67.01 - 56.41 59.04 -
la 56.93 67.41 73.06 47.13 58.65 64.53 (i)

la ittb 75.95 82.82 83.29 71.07 78.24 78.69 (i)

la proiel 75.31 79.30 80.34 69.11 72.83 73.74 (i)

lv 56.93 71.98 - 47.13 63.45 -
nl 79.57 85.44 85.38 74.55 80.21 80.28 (i)

nl lassysmall 79.59 85.01 86.59 75.46 81.17 82.53 (i)

no bokmaal 87.52 90.17 - 84.38 87.40 -
no nynorsk 85.79 88.51 - 82.49 85.54 -
pl 85.18 86.84 - 79.01 81.15 -
pt 88.37 90.75 91.02 85.20 87.84 87.79 (i)

pt br 88.37 90.53 90.93 86.26 88.36 88.75 (i)

ro 85.22 88.04 - 79.66 82.35 -
ru 80.13 82.79 84.01 75.07 77.14 78.98 (i)

ru syntagrus 89.69 92.07 91.86 86.84 89.48 89.23 (i)

sk 81.81 84.09 - 75.55 77.41 -
sl 81.81 87.12 87.17 80.72 83.80 83.73 (i)

sl sst 63.71 77.56 80.17 55.39 69.67 72.28 (i)

sv 77.94 80.32 82.27 73.64 75.28 77.91 (i)

sv lines 79.72 79.81 82.71 74.72 74.23 77.87 (i)

tr 63.41 64.77 - 55.70 53.88 -
ug 62.50 74.80 75.57 38.46 52.67 52.68 (iii)

uk 62.66 78.05 79.59 54.17 71.39 72.93 (iii)

ur 83.05 85.69 - 76.15 78.87 -
vi 63.99 65.98 - 56.34 57.91 -
zh 74.03 77.09 - 68.75 71.38 -

Table 3: The result of our experiment for model selection on the development data. (i), (ii), and (iii)
correspond to the differnt domain adaptation strategies found in the body.

76

negative, and these suggest our approach may be
ineffective for a treebank that already contains suf-
ficient amount of data.

Due to time constraints, we were unable to try
many language pairs for joint training, but this re-
sult suggests the parser may benefit from training
across different languages. For the final experi-
ment for model selection below, we try some other
pairs for some languages, and select those models
when they perform better.

5.3 Model Selection

As we summarize in Section 2 we perform a sim-
ple model selection for each language with the de-
velopment data in order to select the final submit-
ted models. Besides a biaffine model with a single
treebank, for some treebanks we additionally train
other models with our SharedGateAdvNet. Our
approach is divided into the following three strate-
gies according to the languages:

(i) Training multiple domains within a single
language. We try this for many languages,
such as English (en), Czech (cs), Spanish
(es), etc.

(ii) Training multiple domains across different
languages. Based on the positive result of
our preliminary experiment, we try this only
for obtaining French models (training jointly
with English treebanks).

(iii) Training two treebanks in different lan-
guages. We only try this for two very small
treebanks: Ukrainian (uk), which we train
with en, and Uyghur (ug), which we train
with Russian (ru) that we find performs better
than training with en.

See Table 3 for the results. Again, our base-
line biaffine parser outperforms UDPipe in most
treebanks. Training multiple domains in one lan-
guage often brings performance gains, in par-
ticular for smaller treebanks, as in the case for
English. For example, for Galician, LAS in
gl treegal largely improves from 73.63 to 78.08
with our joint training. The largest gain is obtained
in Italian (it partut), from 78.72 to 87.34, about 10
points improvement in LAS.

From these results, for example, we select our
SharedGateAdvNet model for cs cac while select
the biaffine model for cs, which does not benefit
from joint training.

Language
UAS LAS

UDPipe Ours Stanford UDPipe Ours Stanford
ar 71.19 73.34 76.59 65.30 67.78 71.96
ar pub 53.55 55.66 58.87 43.14 45.56 49.50
bg 87.79 89.95 92.89 83.64 85.97 89.81
bxr 46.97 44.07 51.19 31.50 27.20 30.00
ca 88.62 90.59 92.88 85.39 87.47 90.70
cs 86.46 89.74 92.62 82.87 86.50 90.17
cs cac 86.49 90.09 93.14 82.46 86.41 90.43
cs cltt 76.26 81.10 86.02 71.64 77.14 82.56
cs pub 84.42 87.22 89.11 79.80 82.30 84.42
cu 69.68 72.19 77.10 62.76 65.13 71.84
da 76.94 80.90 85.33 73.38 77.08 82.97
de 74.27 78.43 84.10 69.11 74.04 80.71
de pub 73.64 77.20 80.88 66.53 70.74 74.86
el 83.00 85.48 89.73 79.26 81.79 87.38
en 78.87 80.96 84.74 75.84 77.93 82.23
en lines 77.39 81.87 85.16 72.94 77.53 82.09
en partut 77.83 83.17 86.10 73.64 79.10 82.54
en pub 82.74 84.75 88.22 78.95 81.18 85.51
es 84.84 87.80 90.01 81.47 84.25 87.29
es ancora 86.97 89.93 92.11 83.78 87.27 89.99
es pub 84.71 86.91 88.14 77.65 79.66 81.05
et 67.71 69.00 78.08 58.79 57.72 71.65
eu 74.39 77.94 85.28 69.15 70.71 81.44
fa 83.36 86.06 89.64 79.24 82.01 86.31
fi 77.90 80.17 87.97 73.75 74.71 85.64
fi ftb 78.77 80.43 89.24 74.03 74.42 86.81
fi pub 82.24 82.40 90.60 78.65 77.11 88.47
fr 84.13 85.88 88.57 80.75 82.43 85.51
fr partut 81.69 84.79 88.64 77.38 80.31 85.05
fr pub 78.62 80.32 83.45 73.63 75.20 78.81
fr sequoia 82.62 85.85 88.48 79.98 83.10 86.53
ga 72.08 73.29 78.50 61.52 62.25 70.06
gl 80.66 83.51 85.87 77.31 80.13 83.23
gl treegal 71.17 73.60 78.28 65.82 66.84 73.39
got 67.13 67.84 73.10 59.81 60.20 66.82
grc 62.74 68.85 78.42 56.04 61.28 73.19
grc proiel 70.42 74.33 78.30 65.22 69.23 74.25
he 61.54 64.16 67.70 57.23 59.56 63.94
hi 90.97 92.64 94.70 86.77 88.70 91.59
hi pub 63.43 65.29 67.24 50.85 52.81 54.49
hr 83.20 85.47 90.11 77.18 79.32 85.25
hsb 61.70 49.38 67.83 53.83 41.32 60.01
hu 71.46 71.87 82.35 64.30 60.30 77.56
id 80.91 83.11 85.17 74.61 76.50 79.19
it 88.03 89.93 92.51 85.28 87.39 90.68
it pub 87.04 88.61 91.08 83.70 85.30 88.14
ja 73.52 74.46 75.42 72.21 73.27 74.72
ja pub 77.13 77.65 78.64 76.28 76.78 77.92
kk 41.92 40.12 43.51 24.51 22.49 25.13
kmr 46.20 31.68 47.71 32.35 23.18 35.05
ko 66.40 71.48 85.90 59.09 64.46 82.49
la 54.35 63.60 72.56 43.77 52.19 63.37
la ittb 80.78 85.53 89.44 76.98 82.20 87.02
la proiel 63.50 67.68 73.71 57.54 61.34 69.35
lv 67.14 68.83 79.26 59.95 60.20 74.01
nl 74.94 79.16 85.17 68.90 73.22 80.48
nl lassysmall 81.37 87.74 89.56 78.15 85.03 87.71
no bokmaal 86.14 88.55 91.60 83.27 86.05 89.88
no nynorsk 84.88 87.22 90.75 81.56 84.39 88.81
pl 85.08 86.89 93.98 78.78 80.68 90.32
pt 85.77 87.70 89.90 82.11 84.35 87.65
pt br 87.75 90.06 92.76 85.36 87.73 91.36
pt pub 80.10 82.58 83.27 73.96 76.35 77.14
ro 85.50 87.28 90.43 79.88 81.66 85.92
ru 79.28 82.75 87.15 74.03 77.63 83.65
ru syntagrus 89.30 91.68 82.31 86.76 89.31 75.71
ru pub 75.67 77.93 94.00 68.31 70.51 92.60
sk 78.14 81.11 89.58 72.75 75.28 86.04
sl 84.68 87.35 93.34 81.15 84.06 91.51
sl sst 53.79 57.47 61.71 46.45 50.16 56.02
sme 46.06 37.74 51.13 30.60 23.54 37.21
sv 80.78 83.71 88.50 76.73 79.68 85.87
sv lines 79.18 81.49 86.51 74.29 76.63 82.89
sv pub 75.09 77.47 81.90 70.62 72.89 78.49
tr 60.48 62.48 69.62 53.19 51.44 62.79
tr pub 55.01 52.95 58.72 34.53 31.17 37.72
ug 53.58 51.45 56.86 34.18 33.19 39.79
uk 69.78 70.22 81.44 60.76 60.73 75.33
ur 83.67 86.40 87.98 76.69 79.38 82.28
vi 42.12 44.01 46.14 37.47 38.99 42.13
zh 61.50 63.87 68.95 57.40 59.99 65.88
AVG. 74.40 76.35 81.30 68.35 70.13 76.29

Table 4: The main result on the test data.

77

5.4 Evaluation on Test data

The main result of CoNLL 2017 shared task on
the test data is shown in Table 4. In addition to
the official baseline (UDPipe) and our system, we
also report the scores of the winning system by
the Stanford team. See Zeman et al. (2017) for the
overview of the other participating systems.

Our system outperforms UDPipe in many test
treebanks, 69 out of 81 treebanks. We find many
cases that UDPipe performs better are when the
training teebank is very small, e.g., Kazakh (kk),
Ukrainian (uk), and Uyghur (ug), or not available
at all, i.e., surprise languages: Buryat (bxr), Kur-
manji (kmr), Upper Sorbian (hsb), and North Sàmi
(sme), for which our approach is somewhat naive
(Section 2) and UDPipe performs always better.
We can also see that for some treebanks (e.g., et,
fi pub and hu), our system performs better in UAS
while worse in LAS. This may be due to the design
of the baseline biaffine model, which determines
the best unlabeled tree before assigning the labels
(Section 3), i.e., does not perform labeled parsing
as a single task.

Our system (NAIST-SATO) achieves the over-
all average LAS of 70.13, which is the 6th rank
among 33 participants in the shared task. UDPipe
(68.35) is the 13th rank.

6 Related Work

A related approach to us in parsing is Ammar et al.
(2016), where a single multilingual dependency
parser parses sentences in several languages. Dif-
ferently from our final architecture their model
shares all parameters across different languages.
In this study, we found the importance of model-
ing language-specific syntactic features explicitly
with the separate Bi-LSTMs.

Our network architecture for domain adaptation
is an extension of Ganin and Lempitsky (2015),
which applies adversarial training (Goodfellow
et al., 2014) for the domain adaptation purpose.
There is little prior work applying this adversarial
domain adaptation technique to NLP tasks; Chen
et al. (2016) use it for cross-lingual sentiment clas-
sification, in which the adversarial component has
a classifier that tries to classify the language of an
input sentence. To our knowledge, this is the first
study applying adversarial training for parsing. In
addition to the simple application, we also pro-
posed an extended architecture with the domain
specific LSTMs and demonstrated the importance

of them.

7 Conclusion

We have proposed a domain adaptation technique
with adversarial training for parsing. By apply-
ing it on the recent state-of-the-art graph-based de-
pendency parsing model with Bi-LSTMs, we ob-
tained a consistent score improvement, especially
for the treebanks having less training data. For
the architecture design, we found the importance
of preparing the network layer capturing the do-
main specific representation. We also performed a
small experiment for training across multiple lan-
guages and had an encouraging result. In this
work, we have not investigated incorporating in-
formation on language families, so a natural future
direction would be to investigate whether typolog-
ical knowledge helps to select good combinations
of languages for training multilingual models.

Acknowledgments

We thank two anonymous reviewers for helpful
comments. This work was in part supported by
JSPS KAKENHI Grant Number 16H06981.

References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah A Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics (TACL) 5:431–444.

Rich Caruana, Steve Lawrence, and C. Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems 13, MIT
Press, pages 402–408.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie,
and Kilian Weinberger. 2016. Adversarial deep av-
eraging networks for cross-lingual sentiment classi-
fication. arXiv preprint arXiv:1606.01614 .

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. Proc. International Conference on Learning
Representations (ICLR) .

Yaroslav Ganin and Victor Lempitsky. 2015. Unsuper-
vised domain adaptation by backpropagation. arXiv
preprint arXiv:1409.7495 .

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems. pages 2672–2680.

78

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University,
Prague. http://hdl.handle.net/11234/1-1983.

Sriram Pemmaraju and Steven S Skiena. 2003. Com-
putational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica R⃝. Cambridge
university press.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16). European
Language Resources Association (ELRA), Paris,
France.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of Workshop on Machine Learning Systems (Learn-
ingSys) in The Twenty-ninth Annual Conference on
Neural Information Processing Systems (NIPS).

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael

Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

79

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 80–87,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Parsing with Context Embeddings

Ömer Kırnap Berkay Furkan Önder Deniz Yuret

Koç University
Artificial Intelligence Laboratory

İstanbul, Turkey
okirnap,bonder17,dyuret@ku.edu.tr

Abstract

We introduce context embeddings, dense
vectors derived from a language model
that represent the left/right context of a
word instance, and demonstrate that con-
text embeddings significantly improve the
accuracy of our transition based parser.
Our model consists of a bidirectional
LSTM (BiLSTM) based language model
that is pre-trained to predict words in plain
text, and a multi-layer perceptron (MLP)
decision model that uses features from the
language model to predict the correct ac-
tions for an ArcHybrid transition based
parser. We participated in the CoNLL
2017 UD Shared Task as the “Koç Univer-
sity” team and our system was ranked 7th
out of 33 systems that parsed 81 treebanks
in 49 languages.

1 Introduction

Recent studies in parsing natural language has
seen a shift from shallow models that use high di-
mensional, sparse, hand engineered features, e.g.
(Zhang and Nivre, 2011), to deeper models with
dense feature vectors, e.g. (Chen and Manning,
2014). Shallow linear models cannot represent
feature conjunctions that may be useful for parsing
decisions, therefore designers of such models have
to add specific combinations to the feature list by
hand: for example Zhang and Nivre (2011) define
72 hand designed conjunctive combinations of 39
primitive features. Deep models can represent and
automatically learn feature combinations that are
useful for a given task, so the designer only has
to come up with a list of primitive features. Two
questions about feature representation still remain
critical: what parts of the parser state to represent,

and how to represent these (typically discrete) fea-
tures with continuous embedding vectors.

In this work we derive features for the parser
from a bidirectional LSTM language model
trained with pre-tokenized text to predict words in
a sentence using both the left and the right con-
text. In particular we derive word embeddings
and context embeddings from the language model.
Word embeddings represent the general features of
a word type averaged over all its occurrences. Tak-
ing advantage of word embeddings derived from
language models in other applications is common
practice, however, using the same embedding for
every occurrence of an ambiguous word ignores
polysemy and meaning shifts. To mitigate this
problem, we also construct and use context em-
beddings that represent the immediate context of
a word instance. Context embeddings were pre-
viously shown to improve tasks such as part-of-
speech induction (Yatbaz et al., 2012) and word
sense induction (Başkaya et al., 2013). In this
study, we derive context embeddings from the hid-
den states of the forward and backward LSTMs of
the language model that are generated while pre-
dicting a word. These hidden states summarize the
information from the left context and the right con-
text of a word that was useful in predicting it. Our
main contribution is to demonstrate that using con-
text embeddings as features leads to a significant
improvement in parsing performance.

The rest of the paper is organized as follows:
Section 2 introduces basic components of a tran-
sition based neural network parser and describes
related work based on their design choices. Sec-
tion 3 describes the details of our model and train-
ing method. Section 4 discusses our results and
Section 5 summarizes our contributions.

80

2 Related work

In this section, we describe related work in transi-
tion based neural network parsers in terms of their
design decisions regarding common components.

2.1 Embedding words and features

In neural network parsers, words, part of speech
tags, and other discrete features are represented
with numeric vectors. These vectors can be ini-
tialized and optimized in a number of ways. The
first choice is between binary (one-hot) vectors vs
dense continuous vectors. If dense vectors are to
be used, they can be initialized randomly or trans-
ferred from a model for a related task such as lan-
guage modeling. Finally, once initialized, these
vectors can be fixed or fine-tuned during the train-
ing of the dependency parser.

Chen and Manning (2014) initialize with pre-
trained word vectors from (Collobert et al., 2011)
in English and (Mikolov et al., 2013) in Chinese,
and dense, randomly initialized vectors for POS
tags. Similarly, Dyer et al. (2015) get pre-trained
word embeddings from Bansal et al. (2014) and
use POS tag vectors that are randomly initialized.
Both studies fine-tune the vectors during parser
training.

Kiperwasser and Goldberg (2016) start with
random POS embeddings and fine-tuned word em-
beddings from (Dyer et al., 2015) and further opti-
mize all embeddings during parser training. They
also report that initialization with random word
vectors give inferior performance.

In (Alberti et al., 2017), a character-level LSTM
reads each word character by character and the last
hidden state creates a word representation. The
word representation is used as input to a word-
level LSTM whose hidden states constitute the
lookahead representation of each word. Finally,
the lookahead representation is used by a tagger
LSTM trained to predict POS tags. Concatenation
of the lookahead and tagger representations of a
word, together with additional features are used to
represent the word in the parser model.

2.2 Feature extraction

A neural network parser uses a feature extractor
that represents the state of the parser using con-
tinuous embeddings of its various elements. Chen
and Manning (2014); Kiperwasser and Goldberg
(2016); Andor et al. (2016) use POS tag and word
embedding features of the stack’s first and second

words, their right and leftmost children, and the
buffer’s first word. They have done experiments
with different subsets of those features, but they
report their best performance using all of them.
Alberti et al. (2017) extract the tagger features that
are explained in 2.1 for the first and second words
of the stack and the first word of the buffer plus the
lookahead feature of buffer’s first word. They also
use the last two transitions executed by the parser
(including shift and reduce operations) as binary
encoded features in their parser model.

2.3 Decision module
A transition based parser composes the parse of
a sentence by taking a number of parser actions.
We name the component that picks a parser ac-
tion using the extracted features the decision mod-
ule. Chen and Manning (2014) use an MLP deci-
sion module with a hidden size of 200 whose in-
put is a concatenation of word, POS tag, and de-
pendency embeddings. Kuncoro et al. (2016) use
an LSTM as the decision module instead, carrying
internal state between actions. Dyer et al. (2015)
introduce stack-LSTMs, which have the ability to
recover earlier hidden states. They construct the
parser state using three stack-LSTMs, represent-
ing the buffer, the stack, and the action history.
Kiperwasser and Goldberg (2016) train a BiLSTM
whose input is word and POS embeddings and
whose hidden states are fed to an MLP that de-
cides parsing actions.

2.4 Training
Parsing is a structured prediction problem and a
number of training objectives and optimization
methods have been proposed beyond simple like-
lihood maximization of correct parser actions.

Kiperwasser and Goldberg (2016) use dynamic
oracle training proposed in (Goldberg and Nivre,
2012). In dynamic oracle training, the parser takes
predicted actions rather than gold actions which
lets it explore states otherwise not visited. Andor
et al. (2016), use beam training based on (Collins
and Roark, 2004). The objective in beam train-
ing is to maximize the probability of the whole se-
quence rather than a single action. Andor et al.
(2016) use global normalization with beam search
(Collins and Roark, 2004) which normalizes the
total score of the action sequence instead of turn-
ing the score of each action into a probability. This
allows the model to represent a richer set of prob-
ability distributions. They report that their MLP

81

Figure 1: Processing of the sentence ”Economic news had little effect on financial markets” by the
bidirectional LSTM language model. Word embeddings are generated by the character LSTM. Each
word is predicted (e.g. ”news”) by feeding the adjacent hidden states (e.g. ”hf2” and ”hb8”) to a softmax
layer.

based globally normalized parser performs better
than locally normalized recurrent models.

3 Model

Our parser uses a bidirectional language model
to generate word and context embeddings, an
ArcHybrid transition system (Kuhlmann et al.,
2011) to construct a parse tree, and a simple MLP
decision module to pick the right parser actions.
These components are detailed below. The model
was implemented and trained using the Knet deep
learning package in Julia (Yuret, 2016) and the
source code is publicly available at https://
github.com/CoNLL-UD-2017.

3.1 Language Model
We trained bidirectional language models to ex-
tract word and context embeddings using the
Wikipedia data sets provided by task organizers
(Ginter et al., 2017) and tokenized with UDPipe
(Straka et al., 2016). Our language models con-
sist of two parts: a character based unidirectional
LSTM to produce word embeddings, and a word
based bidirectional LSTM to predict words and
produce context embeddings. First, each word of a
sentence is padded in the beginning and the end by

a start character and an end character respectively.
Next, the character based LSTM reads each word
left to right and the final hidden layer is used as
the word embedding. This step is repeated until all
the words of an input sentence is mapped to dense
embedding vectors. Next, those word embeddings
become inputs to the BiLSTM, which tries to pre-
dict each word based on its left and right contexts.
A context embedding for a word is created by con-
catenating the hidden vectors of the forward and
backward LSTMs used in predicting that word.

Figure 1 depicts the language model processing
an example sentence. The unidirectional charac-
ter LSTM produces the word embeddings (shown
for the word ”Economic” in the Figure) which are
fed as input to the bidirectional word LSTM. The
bidirectional LSTM predicts a given word using
the adjacent forward and backward hidden states
at that position (e.g. the word “news” is predicted
using “hf2” and “hb8”).

The parser uses both word embeddings pro-
duced by the character LSTM (350 dimensions)
and the context embeddings produced by the word
LSTM (300+300 dimensions) as features. We did
not fine-tune the LM weights during parser train-
ing.

82

The character and word LSTMs were trained
end-to-end using backpropagation through time
(Werbos, 1990) using Adam (Kingma and Ba,
2014) with default parameters and with gradients
clipped at 5.0. Sentences that are longer than 28
words were skipped during LM training. In addi-
tion, if a word is longer than 65 characters, only
the first 65 characters were used and the rest was
ignored. The output vocabulary was restricted to
the most frequent 20K words of each language.
The training was stopped if there was no signifi-
cant improvement in out-of-sample perplexity dur-
ing the last 1M words. Table 3 includes the per-
plexity of each bidirectional language model we
used.

3.2 The ArcHybrid transition system
We used the ArcHybrid transition system
(Kuhlmann et al., 2011) in our model where the
state of the parser c = (σ, β,A), consists of a
stack of tree fragments σ, a buffer of unused
words β and a set A of dependency arcs. The
initial state has an empty stack and dependency
set and all words start in the buffer. The system
has 3 types of transitions:

• shift(σ, b|β,A) = (σ|b, β,A)

• leftd(σ|s, b|β,A) = (σ, b|β,A ∪ {(b, d, s)})
• rightd(σ|s|t, β, A) = (σ|s, β,A∪{(s, d, t)})

where | denotes concatenation and (b, d, s) is a de-
pendency arc between b (head) and s (modifier)
with label d. The parser stops when the buffer
is empty and there is a single word in the stack,
which is assumed to be the root.

3.3 Features

Abbrev Feature
c context embedding
v word embedding
p universal POS tag
d distance to the next word
a number of left children
b number of right children
A set of left dependency labels
B set of right dependency labels
L dependency label of current word

Table 1: Possible features for each word

Table 1 lists the potential features our model
is able to extract for each word. Context and

word embeddings come from the language model.
The 17 universal POS tags are mapped to 128 di-
mensional embedding vectors and the 37 univer-
sal dependency labels are mapped to 32 dimen-
sional embedding vectors. These are initialized
randomly and trained with the parser. To represent
sets of dependency labels we simply add the em-
beddings of each element in the set. Each distinct
left/right child count and distance is represented
using a randomly initialized 16 dimensional em-
bedding vector trained with the parser. Counts and
distances larger than 10 were truncated to 10.

This leaves the question of which words to use
and which of their features to extract. The tran-
sition system informs feature selection: ArcHy-
brid transitions directly effect the top word in the
buffer and the top two words in the stack. Figure 2
lists the features that are actually extracted by our
model to represent each parser state. s0, s1, . . .
are stack words, n0, n1, . . . are buffer words, s1r
and s0r are the rightmost children of the top two
stack words, n0l is the leftmost child of the top
buffer word. The letters below each word are the
features extracted for that word (using the notation
in Table 1). Nonexistent features (e.g. the depen-
dency label of n0l when n0 does not have any left
children) are represented with vectors of zeros.

s1
cvpabAB

s0r
L

s1r
L

n0
cvpAa

n1
cvp

s0
cvpabABd

n0l
L

Figure 2: Features used by our model. See the text
and Table 1 for an explanation of the notations.

3.4 Decision module

We use a simple MLP with a single hidden layer
of 2048 units to choose parser actions. The em-
beddings of each feature are concatenated to pro-
vide the input to the decision module, which re-
sults in a 4664 dimensional input vector. Note that
word and context embeddings come from the lan-
guage model and are fixed, whereas the other em-
beddings are randomly initialized and trained with
the MLP.

The output of the MLP is a 73 dimensional soft-
max layer. These represent the shift, 36 left and 36
right (labeled) actions of the parser: there are no
actions for the “root” label.

83

To train the MLP we used Adam with a dropout
rate of 0.5. We train 5 to 30 epochs, quitting with
the best model when the dev score does not im-
prove for 5 epochs.

3.5 Training

We followed different procedures for training lan-
guages that had training and development data,
languages that did not have development data, and
surprise languages that only had a small amount of
sample data. We detail our methodology below.

3.5.1 Languages with training and
development data

For most languages, a substantial amount of train-
ing data with gold parses along with development
data were supplied. In this case we first trained
our language models using the additional raw data
(Ginter et al., 2017) provided by CoNLL 2017 UD
Shared Task Organizers as described in 3.1. Next,
the decision module (MLP part) is trained as de-
scribed in 3.5 using the context and word embed-
dings from the language model as fixed inputs.
The development data was used to determine when
to stop training.

3.5.2 Languages without development data
For languages with no development data, we used
5 fold cross validation on the training data to deter-
mine the number of epochs for training. The MLP
model is trained on each fold for up to 30 epochs
during the 5 fold cross validation. If the LAS score
on the test split does not improve for 5 epochs,
training is stopped and the number of epochs to
reach the best score is recorded. In the final step,
the MLP model is trained using the whole train-
ing data for a number of epochs determined by the
average of the 5 splits.

3.5.3 Surprise languages
The surprise languages did not come with raw data
to train a language model, so we decided to use
unlexicalized parsers for them. An unlexicalized
model in our case is simply one that does not use
the “c” and “v” features in Figure 2, i.e. no word
and context embeddings. The surprise languages
also did not have enough training data to train a
parser. We decided that an unlexicalized parser
trained on a related language may perform better
than one trained on the small amount of sample
data we had for each surprise language. We trained
unlexicalized parsers for most of the languages

Language Parent Language LAS
North Sami Estonian 60.48
Buryat Turkish 47.68
Kurmanji Bulgarian 46.87
Upper Sorbian Croatian 65.98

Table 2: Parent models used for parsing surprise
languages and LAS scores obtained after pre-train
and finetuning.

provided in the task and tried them as “parent”
languages for each surprise language. An unlex-
icalized model trained on the parent language was
finetuned for the surprise language with its small
amount of sample data. Table 2 lists the parent
language used for each surprise language and the
LAS score achieved on the sample data provided
using 5-fold cross validation.1

4 Results and Discussion

We submitted our system to CoNLL 2017 UD
Shared Task as the “Koç University” team and our
scoring can be found under official CoNLL 2017
UD Shared Task website2 replicated here in Ta-
ble 3. All our experiments are done with UD ver-
sion 2.0 datasets (Nivre et al., 2017). In this sec-
tion we discuss our best/worst results relative to
other task participants, and analyze the benefit of
using context vectors.

4.1 Best and worst results

Looking at our best/worst results may give insights
into the strengths and weaknesses of our approach.
Relative to other participants, Finnish, Hungarian,
and Turkish are among our best languages: all ag-
glutinative languages with complex morphology.
This may be due to our character based language
model which can capture morphological features
when constructing word vectors. Our worst results
are in ancient languages: Ancient Greek, Gothic,
Old Church Slavonic. We believe this is due to
lack of raw text to construct high quality language
models. Finally, our results for languages with
large treebanks (Syntagrus and Czech) are also
relatively worse than languages with smaller tree-
banks. A large treebank may offset the advantage

1 Note that for two ancient languages, Gothic and Old
Church Slavonic, our LM training was not successful, and
we used unlexicalized models for them like the surprise lan-
guages.

2
http://universaldependencies.org/conll17/

results.html

84

Language LM Perp. Rank LAS Language LM Perp. Rank LAS
ar 99.21 13 66.14 hsb Not used 17 50.25
ar pud 99.21 12 44.97 hu 27.83 4 69.55
bg 25.60 9 84.95 id 52.64 9 75.54
bxr Not used 14 24.96 it 27.97 10 86.45
ca 18.49 10 86.09 it pud 27.97 10 84.52
cs 37.65 20 81.55 ja 29.14 18 72.67
cs cac 44.87 15 82.91 ja pud 29.14 15 76.27
cs cltt 52.64 10 73.88 kk 715.23 17 22.34
cs pud 37.65 20 78.57 kmr Not used 4 42.11
cu Not used 26 58.63 ko 34.60 8 71.70
da 30.28 7 76.39 la 111.51 10 47.08
de 33.98 11 72.44 la ittb 59.28 16 76.15
de pud 33.98 6 70.96 la proiel 130.01 13 59.36
el 20.14 7 81.35 lv 37.81 6 63.63
en 44.50 15 75.96 nl 32.43 11 70.24
en lines 40.79 10 74.39 nl lassysmall 35.62 8 80.85
en ParTUT 51.57 11 75.71 no bokmaal 34.38 12 83.73
en pud 44.50 11 79.51 no nynorsk 31.03 9 82.72
es 26.33 7 83.34 pl 27.97 9 80.84
es ancora 26.33 9 85.63 pt 24.11 9 82.92
es pud 26.33 8 78.74 pt br 33.6 10 86.7
et 45.77 6 62.04 pt pud 24.11 6 75.02
eu 39.92 8 71.47 ro 21.02 7 81.48
fa 63.29 12 79.56 ru 26.99 7 77.11
fi 29.36 5 77.72 ru pud 26.99 3 71.2
fi ftb 41.03 11 75.37 ru syntagrus 29.36 20 85.24
fi pud 29.36 4 82.37 sk 21.99 7 76.46
fr 18.76 9 81.30 sl sst 194.75 8 49.56
fr ParTUT 14.60 7 80.22 sme Not used 4 37.93
fr pud 18.76 6 76.04 sv 40.42 9 78.31
fr sequoia 16.75 7 81.97 sv lines 34.21 7 75.71
ga 56.32 8 63.22 sv pud 40.42 6 72.36
gl 28.70 5 80.27 tr 57.31 6 56.8
gl treegal 32.32 4 69.13 tr pud 57.31 6 34.65
got Not used 24 56.81 ug 866.74 21 31.59
grc 116.72 23 49.31 uk 36.16 6 63.76
grc proiel 227.78 22 61.70 ur 105.38 11 77.64
he 78.75 10 58.98 vi 91.67 13 38.3
hi 37.36 10 87.23 zh 92.01 19 57.15
hi pud 37.36 9 51.49 hr 33.29 7 79.22

Table 3: Our official results in CoNLL 2017 UD Shared Task

85

of extra information we capture from a language
model trained on raw text. Our simple MLP model
trained with a static oracle is probably not compet-
itive on large datasets. Whether our pre-trained
language model and context embeddings would
boost the scores of more sophisticated approaches
(e.g. stack-LSTMs or global normalization) is an
open question.

4.2 Impact of context vectors

Feats Hungarian En-ParTUT Latvian
p 63.6 76.6 55.9
v 73.5 75.9 63
c 72.2 76 63.5
v-c 76 79 67.6
p-c 78 82.5 70.6
p-v 76.6 80.8 67.7
p-fb 74.7 79.7 66.3
p-v-c 79.3 83.2 74.2

Table 4: Feature comparison results on three
languages. p=postag, v=word-vector, c=context-
vector, fb=Facebook-vector.

To analyze the impact of context vectors and
other embeddings on parsing performance, we
performed experiments on three corpora (Hungar-
ian, English-ParTUT, Latvian) with different fea-
ture combinations. These corpora were chosen for
their relatively small sizes to allow quick experi-
mentation. We tried eight different feature combi-
nations on each language. In each setting, we used
a different subset of context, word, and postag
embeddings. The ”p-fb” setting uses postag em-
beddings and Facebook’s pre-trained word embed-
dings (Bojanowski et al., 2016) instead of the ones
from our language model. We can make some
observations consistent across all three languages
based on the results in Table 4:

• Word vectors from our BiLSTM language
model perform slightly better than Facebook
vectors (p-v vs p-fb).

• Both part-of-speech tags and context vectors
have significant contributions (comparing v
with p-v or v-c).

• Context vectors seem to provide independent
information on top of part-of-speech tags that
significantly boosts parser accuracy (p-v vs
p-v-c).

5 Contributions

We introduced a transition based neural network
parser that uses word and context embeddings
derived from a bidirectional language model as
features. Our experiments suggest that context
embeddings can have a significant positive im-
pact on parsing accuracy. Our source code is
publicly available at https://github.com/
CoNLL-UD-2017.

Acknowledgments

This work was supported by the Scientific
and Technological Research Council of Turkey
(TÜBİTAK) grants 114E628 and 215E201.

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Dan Gillick, Lingpeng Kong, Terry
Koo, Ji Ma, Mark Omernick, Slav Petrov,
Chayut Thanapirom, Zora Tung, and David
Weiss. 2017. Syntaxnet models for the conll
2017 shared task. CoRR abs/1703.04929.
http://arxiv.org/abs/1703.04929.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. CoRR
abs/1603.06042. http://arxiv.org/abs/1603.06042.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In ACL (2). pages 809–815.

Osman Başkaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. Ai-ku: Using substitute vectors
and co-occurrence modeling for word sense induc-
tion and disambiguation. In Second Joint Con-
ference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2013). Association for Computational Lin-
guistics, Atlanta, Georgia, USA, pages 300–306.
http://www.aclweb.org/anthology/S13-2050.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, page 111.

86

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long
short-term memory. CoRR abs/1505.08075.
http://arxiv.org/abs/1505.08075.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan
Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task - automatically annotated raw texts
and word embeddings. LINDAT/CLARIN
digital library at the Institute of Formal
and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1989.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In COL-
ING. pages 959–976.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR
abs/1603.04351. http://arxiv.org/abs/1603.04351.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Com-
putational Linguistics, pages 673–682.

Adhiguna Kuncoro, Yuichiro Sawai, Kevin Duh,
and Yuji Matsumoto. 2016. Dependency pars-
ing with lstms: An empirical evaluation. CoRR
abs/1604.06529. http://arxiv.org/abs/1604.06529.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Joakim Nivre et al. 2017. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE 78(10):1550–1560.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret.
2012. Learning syntactic categories using
paradigmatic representations of word context.
In Proceedings of the 2012 Conference on
Empirical Methods in Natural Language Pro-
cessing (EMNLP-CONLL 2012). Association
for Computational Linguistics, Jeju, Korea.
http://denizyuret.blogspot.com/2012/05/learning-
syntactic-categories-using.html.

Deniz Yuret. 2016. Knet: beginning deep learning with
100 lines of julia. In Machine Learning Systems
Workshop at NIPS 2016.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2. Asso-
ciation for Computational Linguistics, pages 188–
193.

87

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 88–99,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe

Milan Straka and Jana Straková
Charles University

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

{straka,strakova}@ufal.mff.cuni.cz

Abstract

We present an update to UDPipe 1.0
(Straka et al., 2016), a trainable pipeline
which performs sentence segmentation,
tokenization, POS tagging, lemmatization
and dependency parsing. We provide
models for all 50 languages of UD 2.0, and
furthermore, the pipeline can be trained
easily using data in CoNLL-U format.

For the purpose of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text
to Universal Dependencies, the updated
UDPipe 1.1 was used as one of the base-
line systems, finishing as the 13th system
of 33 participants. A further improved
UDPipe 1.2 participated in the shared task,
placing as the 8th best system, while
achieving low running times and moder-
ately sized models.

The tool is available under open-source
Mozilla Public Licence (MPL) and
provides bindings for C++, Python
(through ufal.udpipe PyPI package),
Perl (through UFAL::UDPipe CPAN
package), Java and C#.

1 Introduction

The Universal Dependencies project (Nivre et al.,
2016) seeks to develop cross-linguistically consis-
tent treebank annotation of morphology and syn-
tax for many languages. The latest version of
UD (Nivre et al., 2017a) consists of 70 depen-
dency treebanks in 50 languages. As such, the
UD project represents an excellent data source
for developing multi-lingual NLP tools which per-
form sentence segmentation, tokenization, POS
tagging, lemmatization and dependency tree pars-
ing.

The goal of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies (CoNLL 2017 UD Shared Task) is
to stimulate research in multi-lingual dependency
parsers which process raw text only. The overview
of the task and the results are presented in Zeman
et al. (2017).

This paper describes UDPipe (Straka et al.,
2016)1 – an open-source tool which automati-
cally generates sentence segmentation, tokeniza-
tion, POS tagging, lemmatization and dependency
trees, using UD version 2 treebanks as training
data.

The contributions of this paper are:

• Description of UDPipe 1.1 Baseline System,
which was used to provide baseline models
for CoNLL 2017 UD Shared Task and pre-
processed test sets for the CoNLL 2017 UD
Shared Task participants. UDPipe 1.1 pro-
vided a strong baseline for the task, placing
as the 13th (out of 33) best system in the of-
ficial ranking. The UDPipe 1.1 Baseline Sys-
tem is described in Section 3.
• Description of UDPipe 1.2 Participant Sys-

tem, an improved variant of UDPipe 1.1,
which was used as a contestant system in the
CoNLL 2017 UD Shared Task, finishing 8th

in the official ranking, while keeping very
low software requirements. The UDPipe 1.2
Participant System is described in Section 4.
• Evaluation of search-based oracle and sev-

eral transition-based system on UD 2.0 de-
pendency trees (Section 5).

2 Related Work

There is a number of NLP pipelines available, e.g.,
Natural Language Processing Toolkit2 (Bird et al.,

1http://ufal.mff.cuni.cz/udpipe
2NLTK, http://nltk.org

88

2009) or OpenNLP3 to name a few. We designed
yet another one, UDPipe, with the aim to provide
extremely simple tool which can be trained eas-
ily using only a CoNLL-U file without additional
resources or feature engineering.

Deep neural networks have recently achieved
remarkable results in many areas of machine
learning. In NLP, end-to-end approaches were ini-
tially explored by Collobert et al. (2011). With a
practical method for precomputing word embed-
dings (Mikolov et al., 2013) and routine utiliza-
tion of recurrent neural networks (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), deep neural
networks achieved state-of-the-art results in many
NLP areas like POS tagging (Ling et al., 2015),
named entity recognition (Yang et al., 2016) or
machine translation (Vaswani et al., 2017). The
wave of neural network parsers was started re-
cently by Chen and Manning (2014) who pre-
sented fast and accurate transition-based parser.
Many other parser models followed, employing
various techniques like stack LSTM (Dyer et al.,
2015), global normalization (Andor et al., 2016),
biaffine attention (Dozat and Manning, 2016)
or recurrent neural network grammars (Kuncoro
et al., 2016), improving LAS score in English and
Chinese dependency parsing by more than 2 points
in 2016.

3 UDPipe 1.1 Baseline System

UDPipe 1.0 (Straka et al., 2016)4 is a trainable
pipeline performing sentence segmentation, tok-
enization, POS tagging, lemmatization and depen-
dency parsing. It is fully trainable using CoNLL-U
version 1 files and the pretrained models for UD
1.2 treebanks are provided.

For the purpose of the CoNLL 2017 UD Shared
Task, we implemented a new version UDPipe 1.1
which processes CoNLL-U version 2 files. UD-
Pipe 1.1 was used as one of the baseline systems in
the shared task. UDPipe 1.1 Baseline System was
trained and tuned in the training phase of CoNLL
2017 UD Shared Task on the UD 2.0 training data
and the trained models and outputs were available
to the participants.

In this Section, we describe the UDPipe 1.1
Baseline System, focusing on the differences to
the previous version described in (Straka et al.,
2016): the tokenizer (Section 3.1), the tagger (Sec-

3https://opennlp.apache.org
4http://ufal.mff.cuni.cz/udpipe

tion 3.2), the parser (Section 3.3), the hyperparam-
eter search support (Section 3.4), the training de-
tails (Section 3.5) and evaluation (Section 3.6).

3.1 Tokenizer
In UD and in CoNLL-U files, the text is structured
on several levels – a document consists of para-
graphs composed of (possibly partial) sentences,
which are sequences of tokens. A token is also
usually a word (unit used in further morphologi-
cal and syntactic processing), but a single token
may be composed of several syntactic words (for
example, token zum consists of words zu and dem
in German). The original text can be therefore re-
constructed as a concatenation of tokens with ade-
quate spaces, but not as a concatenation of words.

Sentence Segmentation and Tokenization
Sentence segmentation and tokenization is per-
formed jointly (as it was in UDPipe 1.0) using
a single-layer bidirectional GRU network which
predicts for each character whether it is the last
one in a sentence, the last one in a token, or not
the last one in a token. Spaces are usually not al-
lowed in tokens and therefore the network does not
need to predict end-of-token before a space (it only
learns to separate adjacent tokens, like for exam-
ple Hi! or cannot).

Multi-Word Token Splitting
In UDPipe 1.0, a case insensitive dictionary was
used to split tokens into words. This approach is
beneficial if there is a fixed number of multi-word
tokens in the language (which is the case for ex-
ample in German).

In UDPipe 1.1 Baseline System we also employ
automatically generated suffix rules – a token with
a specific suffix is split, using the non-matching
part of the token as prefix of the first words, and a
fixed sequence of first word suffix and other words
(e.g, in Polish we create a rule ?łem → ?ł + em).
The rules are generated automatically by keeping
all such rules present in the training data, which do
not trigger incorrectly too often. The contribution
of suffix rules is evaluated in Section 5.

Documents and Paragraphs
We use an improved sentence segmenter in UD-
Pipe 1.1 Baseline System. The segmenter learns
sentence boundaries in the text in a standard way
as in UDPipe 1.1 Baseline System, but it omits the
sentence breaks at the end of a paragraph or a doc-
ument. The reason for excluding these boundaries

89

from the training data is that the ends of para-
graphs and documents are frequently recognized
by layout (e.g. newspaper headlines) and if the
recognizer is trained to recognize these sentence
breaks, it tends to erroneously split regular sen-
tences.

Additionally, we now also mark paragraph
boundaries (recognized by empty lines) and docu-
ment boundaries (corresponding to files being pro-
cessed, storing file names as document ids) when
running the segmenter.

Spaces in Tokens
Additional feature allowed in CoNLL-U version
2 files is presence of spaces in tokens. If spaces
in tokens are allowed, the GRU tokenizer network
must be modified to predict token breaks in front
of spaces. On the other side, many UD 2.0 lan-
guages do not allow spaces in tokens (and in such
languages a space in a token might confuse the
following systems in the pipeline), therefore, it is
configurable whether spaces in tokens are allowed,
with the default being to allow spaces in tokens if
there is any token with spaces in the training data.

Precise Reconstruction of Spaces
Unfortunately, neither CoNLL-U version 1 nor
version 2 provide a standardized way of storing
inter-token spaces which would allow reconstruct-
ing the original plain text. Therefore, UDPipe 1.1
Baseline System supports several UDPipe-specific
MISC fields that are used for this purpose.

CoNLL-U defines SpaceAfter=No MISC
feature which denotes that a given to-
ken is not followed by a space. We ex-
tend this scheme in a compatible way
by introducing SpacesAfter=spaces and
SpacesBefore=spaces fields. These fields
store the spaces following and preceding this
token, with SpacesBefore by default empty and
SpacesAfter being by default empty or one
space depending on SpaceAfter=No presence.
Therefore, these fields are not needed if tokens
are separated by no space or a single space.
The spaces are encoded by a means of a C-like
escaping mechanism, with escape sequences \s,
\t, \r, \n, \p, \\ for space, tab, CF, LF, | and \

characters, respectively.
If spaces in tokens are allowed, these spaces

cannot be represented faithfully in the FORM
field which disallows tabs and new line charac-
ters. Therefore, UDPipe utilizes an additional

MISC field SpacesInToken=token with spaces

representing the token with original spaces. Once
again, with the default value being the value of the
FORM field, the field is needed only if the token
spaces cannot be represented in the FORM field.

All described MISC fields are generated au-
tomatically by UDPipe 1.1 Baseline System tok-
enizer, with SpacesBefore used only at the begin-
ning of a sentence.

Furthermore, we also provide an optional way
of storing the document-level character offsets of
all tokens, using TokenOffset MISC field. The
values of this field employ Python-like start:end
format.

Detokenization
To train the tokenizer, the original plain texts of
the CoNLL-U files are required. These plain texts
can be reconstructed using the SpaceAfter=No

feature. However, very little UD version 1 cor-
pora contains this information. Therefore, UDPipe
1.0 offers a way of generating these features us-
ing a different raw text in the concerned language
(Straka et al., 2016).

Fortunately, most UD 2.0 treebanks do include
the SpaceAfter=No feature. We perform deto-
kenization only for Dannish, Finnish-FTB and
Slovenian-SST.

Inference
When employing the segmenter and tokenizer
GRU network during inference, it is important to
normalize spaces in the given text. The reason is
that during training, tokens were either adjacent or
separated by a single space, so we need to modify
the network input during inference accordingly.

During inference, we precompute as much net-
work operations on character embeddings as pos-
sible5 (to be specific, we cache 6 matrix prod-
ucts for every character embedding in each GRU).
Consequently, the inference is almost twice as fast.

3.2 Tagger
The tagger utilized by UDPipe 1.1 Baseline Sys-
tem is nearly identical to the previous version in
UDPipe 1.0. A guesser generates several (UPOS,
XPOS, FEATS) triplets for each word according to
its last four characters, and an averaged perceptron
tagger with a fixed set of features disambiguates
the generated tags (Straka et al., 2016; Straková
et al., 2014).

5Similarly to Devlin et al. (2014).

90

The lemmatizer is analogous. A guesser pro-
duces (lemma rule, UPOS) pairs, where the lemma
rule generates a lemma from a word by stripping
some prefix and suffix and prepending and ap-
pending new prefix and suffix. To generate cor-
rect lemma rules, the guesser generates the results
not only according to the last four characters of a
word, but also using word prefix. Again, the dis-
ambiguation is performed by an averaged percep-
tron tagger.

We prefer to perform lemmatization and POS
tagging separately (not as a joint task), because we
found out that utilization of two different guessers
and two different feature sets improves the perfor-
mance of our system (Straka et al., 2016).

The only change in UDPipe 1.1 Baseline Sys-
tem is a possibility to store lemmas not only as
lemma rules, i.e., relatively, but also as “absolute”
lemmas. This change was required by the fact that
some languages such as Persian contain a lot of
empty lemmas which are difficult to encode using
relative lemma rules, and because Latin-PROIEL
treebank uses greek.expression lemma for all
Greek forms.

3.3 Dependency Parsing

UDPipe 1.0 utilizes fast transition-based neural
dependency parser. The parser is based on a sim-
ple neural network with just one hidden layer and
without any recurrent connections, using locally-
normalized scores.

The parser offers several transition systems –
a projective arc-standard system (Nivre, 2008),
partially non-projective link2 system (Gómez-
Rodrı́guez et al., 2014) and a fully non-projective
swap system (Nivre, 2009). Several transition ora-
cles are implemented – static oracles, dynamic or-
acle for the arc-standard system (Goldberg et al.,
2014) and a search-based oracle (Straka et al.,
2015). Detailed description of the parser archi-
tecture and transition systems and oracles can be
found in Straka et al. (2016) and Straka et al.
(2015).

The parser makes use of FORM, UPOS, FEATS
and DEPREL embeddings. The form embeddings
are precomputed with word2vec using the train-
ing data, the other embeddings are initialized ran-
domly, and all embeddings are updated during
training.

We again precompute as much network opera-
tions as possible for the input embeddings. How-

ever, to keep memory requirements and loading
times reasonable, we do so only for 1000 most fre-
quent embeddings of every type.

Because the CoNLL 2017 UD Shared Task did
not allow sentences with multiple roots, we mod-
ified all the transition systems in UDPipe 1.1 to
generate only one root node and to use the root

dependency relation only for this node.

3.4 Hyperparameter Search Support
All three described components employ several
hyperparameters which can improve performance
if tuned correctly. To ease up the process, UD-
Pipe offers random hyperparameter search for all
the components – the run=number option during
training generates pseudorandom but determinis-
tic values for predefined hyperparameters. The hy-
perparameters are supposed to be tuned for every
component individually, and then merged.

3.5 Training the UDPipe 1.1 Baseline System
When developing the UDPipe 1.1 Baseline System
in the training phase of CoNLL 2017 UD Shared
Task, the testing data were not yet available for the
participants. Therefore a new data split was cre-
ated from the available training and development
data: the performance of the models was evaluated
on the development data, and part of the training
data was put aside and used to tune the hyperpa-
rameters. This baselinemodel-split of the UD 2.0
data is provided together with the baseline modes
from Straka (2017).

The following subsections describe the details
of training the UDPipe 1.1 Baseline System.

Tokenizer
The segmenter and tokenizer network employs
character embeddings and GRU cells of dimen-
sion 24. The network was trained using dropout
both before and after the recurrent units, using the
Adam optimization algorithm (Kingma and Ba,
2014). Suitable batch size, dropout probability,
learning rate and number of training epochs was
tuned on the tune set.

Tagger
The tagger and the lemmatizer do not use any hy-
perparameters which require tuning. The guesser
hyperparameter were tuned on the tune set.

Parser
The parser network employs form embeddings of
dimension 50, and UPOS, FEATS and DEPREL

91

embeddings of dimension 20. The hidden layer
has dimension 200, batch consists of 10 words and
the network was trained for 10 iterations. The suit-
able transition system, oracle, learning rate and L2
regularization was chosen to maximize the accu-
racy on the tune set.

3.6 Evaluation of the UDPipe 1.1 Baseline
System

There are three testing collections in CoNLL 2017
UD Shared Task: UD 2.0 test data, new parallel
treebank (PUD) sets, and four surprise languages.

The UDPipe 1.1 Baseline System models were
completely trained, released and “frozen” on the
UD 2.0 training and development data with a new
split (see the previous Section 3.5) already in the
training phase of the CoNLL 2017 UD Shared Task
on the UD 2.0 training data, unlike the participant
systems, which could use the full training data for
training and development data for tuning.

We used the UDPipe 1.1 Baseline System mod-
els for evaluation of the completely new parallel
treebank (PUD) set and completely new surprise
languages in the following way:

For the new parallel treebank sets we utilized
the “main” treebank for each language (e.g., for
Finish fi instead of fi ftb). This arbitrary de-
cision was a lucky one – after the shared task eval-
uation, the performance on the parallel treebanks
was shown to be significantly worse if different
treebanks than the “main” were used (even if they
were larger or provided higher LAS on their own
test set). The reason seem to be the inconsisten-
cies among the treebanks of the same language –
the Universal Dependencies are yet not so univer-
sal as everyone would like.

To parse the surprise languages, we employed
a baseline model which resulted in highest LAS
F1-score on the surprise language sample data –
resulting in Finnish FTB, Polish, Finnish FTB and
Slovak models for the surprise languages Buryat,
Kurmanji, North Sámi and Upper Sorbian, respec-
tively. Naturally, most words of a surprise lan-
guage are not recognized by a baseline model for
a different language. Conveniently, the UPOS tags
and FEATS are shared across languages, allowing
the baseline model to operate similarly to a delex-
icalized parser.

4 UDPipe 1.2 Participant System

We further updated the UDPipe 1.1 Baseline Sys-
tem to participate in CoNLL 2017 UD Shared Task
with an improved UDPipe 1.2 Participant System.

As participants of the shared task, we trained
the system using the whole training data and
searched for hyperparameters using the develop-
ment data (instead of using the baselinemodel-
split described in Section 3.5). Although the data
size increase is not exactly a change in the sys-
tem itself, it improves performance, especially for
smaller treebanks.

4.1 Hyperparameter Changes

While tokenization and segmentation is straight-
forward in some languages, it is quite complex in
others (notably in Japanese and Chinese, which
do not use spaces for word separation, or in Viet-
namese, in which many tokens contain spaces). In
order to improve the performance on these lan-
guages we increased the embedding dimension
and GRU cell dimension in the tokenizer from 24
to 64.

We increased form embedding dimension in the
parser from 50 to 64 (larger dimensions showed no
more improvements on the development set) and
also trained the parser for 20 iterations over the
training data instead of 10.

Furthermore, instead of using beam of size 5
during parsing as in UDPipe 1.1 Baseline System,
we tuned the beam size individually for each tree-
bank, choosing 5, 10, 15 or 20 according to result-
ing LAS on a development set.

4.2 Merging Treebanks of the Same
Language

For several languages, there are multiple tree-
banks available in the UD 2.0 collection. Ide-
ally, one would merge all training data of all tree-
banks of a given language. However, accord-
ing to our preliminary experiments, the annota-
tion is not perfectly consistent even across tree-
banks of the same language. Still, additional train-
ing data, albeit imperfect, could benefit small tree-
banks.

We therefore attempt to exploit these multiplex
treebanks by enriching each treebank’s training
data with training data from other treebanks of the
same language. Given a treebank for which an-
other treebanks of the same language exist, we
evaluate performance of several such expansions

92

Treebank
Maximum sentence Changed sentence boundary Every sentence

length log-probability log-probability
Gothic 20 -0.5 -0.9
Latin-PROIEL 25 -0.4 -0.7
Slovenian-SST 15 -0.7 -0.9

Table 1: Hyperparameters for joint segmentation and parsing.

and choose the best according to LAS score on
the development data of the treebank in question.
We extend the original training data by adding ran-
dom sentences from the additional treebanks of the
same language – we consider subsets containing
1
4 , 1

2 , 1 and 2 times the size of the original tree-
bank.

4.3 Joint Sentence Segmentation and Parsing

Some treebanks are very difficult to segment
into sentences due to missing punctuation, which
harms the parser performance. We segment three
smallest treebanks of this kind (namely Gothic,
Latin-PROIEL and Slovenian-SST) jointly with
the parser, by choosing such sentence segmen-
tation which maximizes likelihood of their parse
trees.

In order to determine the segmentation with
maximum parsing likelihood, we evaluate every
possible segmentation with sentences up to a given
maximum length L. Because likelihoods of parse
trees are independent, we can utilize dynamic pro-
gramming and find the best segmentation in poly-
nomial time by parsing sentences of lengths 1 to
L at every location in the original text. Therefore,
the procedure has the same complexity as parsing
text which is circa L2/2 times longer than the orig-
inal one.

Additionally, we incorporate the segmentation
suggested by the tokenizer in the likelihood of
the parse trees – we multiply the tree likelihood
by a fixed probability for each sentence bound-
ary different than the one returned by the tok-
enizer.

However, if a transition-based parser is used,
the optimum solution for the algorithm described
so far would probably be to segment the text into
one-token sentences, due to the fact that for a sin-
gle word there is only one possible sequence of
transitions (to make the word a root node), which
has therefore probability one. Consequently, we
introduce a third hyperparameter, which is an ad-
ditional “cost” for every sentence.

We tuned the three described hyperparameters
for every treebank independently to maximize
LAS score on development set. The chosen hy-
perparameter values are shown in Table 1.

We expect graphical parsing models to ben-
efit even more from this kind of joint segmen-
tation – for every word, one can compute the
probability distribution of attaching it as a depen-
dent to all words within a distance of L (includ-
ing the word itself, which represents the word
being a root node). Then, the likelihood of
a single-word sentence would not be one, but
would take into account the possibility of at-
taching the word as a dependent to every near
word.

5 Experiments and Results

The official CoNLL 2017 UD Shared Task evalua-
tion was performed using a TIRA platform (Pot-
thast et al., 2014), which provided virtual ma-
chines for every participants’ systems. During test
data evaluation, the machines were disconnected
from the internet, and reset after the evaluation
finished – this way, the entire test sets were kept
private even during the evaluation.

In addition to official results, we also report re-
sults of supplementary experiments. These were
evaluated after the shared task, using the released
test data (Nivre et al., 2017b). All results are pro-
duced using the official evaluation script.

Because only plain text (and not gold tokeniza-
tion) is used as input, all results are in fact F1-
scores and always take tokenization performance
into account.

The complete UDPipe 1.2 Participant System
scores are shown in Table 2. We also include LAS
F1-score of the UDPipe 1.1 Baseline System for
reference. Note that due to time constraints, some
UDPipe 1.2 Participant System submitted models
did not generate any XPOS and lemmas. In these
cases, we show XPOS and lemmatization results
using post-competition models and typeset them
in italic.

93

Treebank UDPipe 1.2 Participant System Baseline
Tokens Words Sents Words UPOS XPOS Feats AllTags Lemmas UAS LAS LAS

Ancient Greek 99.96 99.96 98.73 99.96 85.55 43.69 73.30 43.67 82.89 65.37 57.39 56.04
Ancient Greek-PROIEL 100.00 100.00 47.09 100.00 95.60 93.34 87.66 84.85 92.73 71.72 66.51 65.22
Arabic 99.98 93.71 81.77 93.71 88.26 83.27 83.40 82.08 87.34 71.69 66.06 65.30
Basque 99.96 99.96 99.50 99.96 92.33 99.96 87.25 84.66 93.49 75.59 70.45 69.15
Bulgarian 99.92 99.92 92.85 99.92 97.72 94.57 95.55 94.01 94.60 88.82 84.92 83.64
Catalan 99.97 99.97 99.03 99.97 98.00 98.00 97.20 96.56 97.87 88.69 85.53 85.39
Chinese 89.55 89.55 98.20 89.55 83.47 83.38 88.28 82.13 89.54 61.81 57.89 57.40
Croatian 99.90 99.90 95.56 99.90 95.88 99.90 84.34 83.43 94.33 83.73 77.73 77.18
Czech 99.93 99.93 92.30 99.93 98.23 92.71 91.97 91.60 97.82 86.73 83.19 82.87
Czech-CAC 99.97 99.96 100.00 99.96 98.34 91.92 90.53 90.36 97.31 88.21 84.40 82.46
Czech-CLTT 99.34 99.34 94.19 99.34 95.49 88.07 86.14 85.04 96.79 80.52 76.69 71.64
Danish 99.60 99.60 78.97 99.60 95.28 99.60 94.37 93.25 94.51 78.91 75.28 73.38
Dutch 99.80 99.80 76.95 99.80 91.33 88.05 89.23 86.94 89.77 76.50 70.52 68.90
Dutch-LassySmall 99.99 99.99 81.83 99.99 97.43 99.99 97.17 96.39 97.99 82.76 80.15 78.15
English 99.03 99.03 75.33 99.03 93.50 92.88 94.44 91.48 96.10 80.34 77.25 75.84
English-LinES 99.92 99.92 87.40 99.92 94.87 92.01 99.39 90.41 98.34 79.06 74.92 72.94
English-ParTUT 99.57 99.55 98.40 99.55 93.41 91.92 91.45 89.83 96.39 81.13 76.89 73.64
Estonian 99.89 99.89 93.66 99.89 87.60 89.98 81.14 78.99 80.96 68.65 60.01 58.79
Finnish 99.69 99.69 86.75 99.69 94.49 95.68 91.42 90.35 86.49 80.74 77.26 73.75
Finnish-FTB 99.97 99.96 85.54 99.96 92.28 91.05 92.53 89.41 88.68 79.69 75.31 74.03
French 99.76 98.88 94.58 98.88 95.49 98.88 95.42 94.26 96.59 84.09 80.50 80.75
French-ParTUT 99.85 98.97 97.76 98.97 95.38 85.35 91.23 82.06 94.87 84.03 80.17 77.38
French-Sequoia 99.76 99.06 84.60 99.06 95.63 99.06 94.74 93.59 96.82 84.06 81.35 79.98
Galician 99.93 99.93 96.18 99.93 96.93 96.44 99.70 96.08 96.93 80.95 77.73 77.31
Galician-TreeGal 99.62 98.66 85.35 98.66 91.08 87.70 89.84 86.90 92.56 71.59 66.31 65.82
German 99.67 99.67 79.35 99.67 90.72 94.65 80.46 76.26 95.38 74.15 68.61 69.11
Gothic 100.00 100.00 24.12 100.00 94.32 94.87 87.06 85.03 92.45 69.26 62.80 59.81
Greek 99.87 99.87 90.00 99.87 95.35 95.35 89.89 88.62 94.44 84.31 80.67 79.26
Hebrew 99.98 85.16 100.00 85.16 80.87 80.87 77.57 76.78 79.58 62.06 57.86 57.23
Hindi 100.00 100.00 99.20 100.00 95.75 94.82 90.12 87.57 98.00 91.45 87.28 86.77
Hungarian 99.81 99.81 95.54 99.81 90.80 99.81 70.59 69.57 88.40 72.36 66.54 64.30
Indonesian 100.00 100.00 91.73 100.00 93.43 100.00 99.52 93.42 100.00 81.67 75.47 74.61
Irish 99.40 99.40 94.78 99.40 88.86 87.90 76.27 73.53 85.45 73.10 62.87 61.52
Italian 99.91 99.83 97.11 99.83 97.31 97.06 97.20 96.26 97.34 88.62 86.11 85.28
Japanese 90.97 90.97 95.01 90.97 88.19 90.97 90.95 88.19 90.19 75.81 74.49 72.21
Kazakh 96.07 95.63 81.23 95.63 50.69 50.56 46.06 39.57 59.46 41.77 25.43 24.51
Korean 99.69 99.69 92.41 99.69 94.22 89.13 99.34 89.13 99.32 66.64 60.30 59.09
Latin 99.99 99.99 98.56 99.99 83.66 68.03 72.75 68.02 51.85 57.57 47.02 43.77
Latin-ITTB 99.89 99.89 82.58 99.89 96.83 91.58 93.50 89.71 97.61 79.74 75.84 76.98
Latin-PROIEL 100.00 100.00 19.56 100.00 95.00 95.08 87.94 86.89 94.91 66.45 61.55 57.54
Latvian 98.94 98.94 98.32 98.94 88.40 75.00 82.02 74.45 86.76 68.38 61.80 59.95
Norwegian-Bokmaal 99.79 99.79 96.38 99.79 96.83 99.79 95.25 94.38 96.66 86.62 83.89 83.27
Norwegian-Nynorsk 99.93 99.93 92.08 99.93 96.54 99.93 95.02 94.15 96.48 85.86 82.74 81.56
Old Church Slavonic 99.99 99.99 40.94 99.99 93.55 93.60 86.72 85.43 90.69 72.60 66.29 62.76
Persian 100.00 99.65 97.76 99.65 96.02 95.94 96.09 95.36 93.58 84.18 80.33 79.24
Polish 99.98 99.87 99.18 99.87 95.43 83.36 83.46 81.35 93.34 86.31 80.21 78.78
Portuguese 99.66 99.54 89.24 99.54 96.30 72.63 93.36 71.59 96.70 86.30 82.72 82.11
Portuguese-BR 99.96 99.86 96.71 99.86 97.07 97.07 99.72 97.05 98.75 88.18 85.97 85.36
Romanian 99.67 99.67 93.72 99.67 96.62 95.87 96.05 95.71 96.54 85.74 80.32 79.88
Russian 99.90 99.90 96.59 99.90 94.69 94.38 84.17 82.61 74.91 80.94 76.15 74.03
Russian-SynTagRus 99.58 99.58 97.97 99.58 97.91 99.58 93.45 93.11 95.43 89.35 86.80 86.76
Slovak 100.00 100.00 84.26 100.00 92.85 77.32 79.61 76.93 86.17 80.78 75.63 72.75
Slovenian 99.96 99.96 98.86 99.96 96.11 88.01 88.33 87.50 95.27 85.37 81.84 81.15
Slovenian-SST 99.87 99.87 13.13 99.87 91.78 86.40 85.32 82.33 93.79 59.26 53.94 46.45
Spanish 99.91 99.74 95.26 99.74 95.54 99.74 96.10 93.70 95.89 85.32 81.95 81.47
Spanish-AnCora 99.97 99.95 98.26 99.95 98.14 98.14 97.57 96.89 98.09 87.91 84.95 83.78
Swedish 99.86 99.86 95.57 99.86 95.66 93.92 94.43 92.85 95.48 81.67 77.58 76.73
Swedish-LinES 99.97 99.97 86.43 99.97 94.26 91.27 99.60 90.04 98.53 80.14 75.57 74.29
Turkish 99.85 97.92 96.89 97.92 91.51 90.58 86.70 84.60 89.60 60.78 53.78 53.19
Ukrainian 99.66 99.66 94.84 99.66 87.33 70.77 71.00 69.74 86.64 69.28 61.09 60.76
Urdu 100.00 100.00 98.32 100.00 92.13 89.93 80.31 76.03 93.04 83.86 77.09 76.69
Uyghur 99.94 99.94 65.31 99.94 76.09 79.04 99.94 75.57 99.94 53.49 33.21 34.18
Vietnamese 84.26 84.26 92.87 84.26 75.29 73.30 83.93 73.26 83.54 44.99 39.97 37.47
Arabic-PUD 80.85 90.81 98.95 90.81 70.39 0.00 22.73 0.00 0.00 54.57 44.34 43.14
Czech-PUD 99.28 99.28 95.40 99.28 96.57 89.92 88.33 87.69 95.37 84.50 79.67 79.80
German-PUD 97.90 97.94 90.75 97.94 84.46 20.40 31.77 1.55 3.10 73.75 66.05 66.53
English-PUD 99.74 99.74 95.57 99.74 94.11 92.99 94.19 90.13 95.47 82.80 79.21 78.95
Spanish-PUD 99.48 99.43 94.14 99.43 88.17 1.76 54.21 0.00 3.43 84.96 77.99 77.65
Finnish-PUD 99.63 99.63 92.20 99.63 95.84 0.00 93.75 0.00 86.50 83.89 80.86 78.65
French-PUD 99.81 98.86 93.33 98.86 88.00 2.39 58.65 0.00 4.79 79.64 74.19 73.63
Hindi-PUD 98.78 98.78 93.26 98.78 84.69 33.09 18.11 4.80 0.00 65.56 52.53 50.85
Italian-PUD 99.64 99.22 94.11 99.22 93.10 2.47 57.26 2.47 95.52 87.39 84.03 83.70
Japanese-PUD 92.41 92.41 95.04 92.41 90.02 7.65 53.75 7.07 91.39 79.26 78.36 76.28
Portuguese-PUD 99.27 99.39 95.94 99.39 88.45 0.00 59.22 0.00 12.57 80.32 74.43 73.96
Russian-PUD 97.25 97.25 98.51 97.25 85.86 78.82 38.20 34.28 0.00 76.69 69.37 68.31
Swedish-PUD 98.35 98.35 94.44 98.35 91.16 88.07 74.58 73.09 84.55 75.43 70.88 70.62
Turkish-PUD 99.13 96.93 90.87 96.93 71.38 0.00 23.67 0.00 0.09 53.58 34.12 34.53
Buryat (surprise) 99.35 99.35 91.81 99.35 84.12 99.35 81.65 78.08 81.40 41.64 21.58 31.50
Kurmanji (surprise) 99.01 98.85 97.02 98.85 90.04 89.84 81.61 80.62 89.76 46.33 32.89 32.35
North Sámi (surprise) 99.88 99.88 98.79 99.88 86.81 88.98 81.93 77.76 81.86 45.53 33.62 30.60
Upper Sorbian (surprise) 99.84 99.84 90.69 99.84 90.30 99.84 74.20 72.43 87.70 63.34 55.76 53.83
Average Score 98.89 98.63 88.68 98.63 91.22 79.48 82.50 73.47 82.64 75.39 69.52 68.35

Table 2: Full results of UDPipe 1.2 Participant System and LAS F1-score of UDPipe 1.1 Baseline
System for reference. The results in italic are not part of the official results and were generated using
post-competition models due to time constraints.

94

Treebank Enlarged training data using other treebanks Original training data only
UPOS XPOS Feats AllTags Lemmas UAS LAS UPOS XPOS Feats AllTags Lemmas UAS LAS

Ancient Greek 85.55 43.69 73.30 43.67 82.89 65.37 57.39 82.37 72.33 85.82 72.32 82.63 64.05 57.44
Ancient Greek-PROIEL 95.60 93.34 87.66 84.85 92.73 71.72 66.51 95.74 95.94 88.49 87.04 92.66 71.29 66.49
Czech-CAC 98.34 91.92 90.53 90.36 97.31 88.21 84.40 98.17 90.64 89.43 88.51 97.04 86.17 81.88
Czech-CLTT 95.49 88.07 86.14 85.04 96.79 80.52 76.69 96.28 86.86 87.02 86.75 95.56 78.66 74.67
English-LinES 94.87 92.01 99.39 90.41 98.34 79.06 74.92 94.94 92.56 99.92 90.87 99.92 79.30 75.20
English-ParTUT 93.41 91.92 91.45 89.83 96.39 81.13 76.89 93.08 92.85 92.23 90.84 96.50 79.86 75.31
French-ParTUT 95.38 85.35 91.23 82.06 94.87 84.03 80.17 94.48 94.23 91.89 90.75 94.29 83.24 79.07
Italian 97.31 97.06 97.20 96.26 97.34 88.62 86.11 97.22 97.04 97.00 96.14 97.28 88.53 85.72
Latin-ITTB 96.83 91.58 93.50 89.71 97.61 79.74 75.84 97.15 92.64 93.51 91.24 97.73 80.03 76.26
Slovenian-SST 91.78 86.40 85.32 82.33 93.79 59.26 53.94 88.90 81.59 81.77 79.12 91.39 53.60 47.50
Swedish-LinES 94.26 91.27 99.60 90.04 98.53 80.14 75.57 94.33 91.76 99.97 90.56 99.97 80.25 75.45
Italian-PUD 93.10 2.47 57.26 2.47 95.52 87.39 84.03 93.18 2.47 57.19 2.47 95.57 86.87 83.61

Table 3: The effect of additional training data from other treebanks of the same language in UDPipe 1.2
Participant System.

Treebank
GRU-based segmentation

followed by parsing
Joint segmentation

and parsing
Sents UAS LAS Sents UAS LAS

Gothic 32.46 69.04 62.23 24.12 69.26 62.80
Latin-PROIEL 30.37 66.11 60.63 19.56 66.45 61.55
Slovenian-SST 17.76 57.93 51.95 13.13 59.26 53.94

Table 5: Joint segmentation and parsing in UD-
Pipe 1.2 Participant System, optimized to maxi-
mize parsing likelihood, in comparison with se-
quential segmentation and parsing.

In order to make the extensive results more vi-
sual, we show relative difference of baseline LAS
score using the grey bars (on a scale that ignores 3
outliers). We use this visualization also in later ta-
bles, always showing relative difference to the first
occurrence of the metric in question.

The effect of enlarging training data using other
treebanks of the same language (Section 4.2) is
evaluated in Table 3. We include only those tree-
banks in which the enlarged training data result in
better LAS score and compare the performance to
cases in which only the original training data is
used.

The impact of tokenizer dimension 64 com-
pared to dimension 24 can be found in Table 4.
We also include the effect of not using the suffix
rules for multi-word token splitting, and not using
multi-word token splitting at all. As expected, for
many languages the dimension 64 does not change
the results, but yields superior performance for
languages with either difficult tokenization or sen-
tence segmentation.

The improvement resulting from joint sentence
segmentation and parsing is evaluated in Table 5.
While the LAS and UAS F1-scores of the joint ap-
proach improves, the sentence segmentation F1-
score deteriorates significantly.

The overall effect of search-based oracle with
various transition systems on parsing accuracy is

Beam size UAS LAS
1 74.36 68.46
5 75.33 69.45
10 75.39 69.51
15 75.41 69.53
20 75.42 69.54
Best on development 75.39 69.52data for each treebank

Table 7: UDPipe 1.2 Participant System parsing
scores with various beam sizes.

summarized in Table 6. The search-based or-
acle improves results in all cases, but the in-
crease is only slight if a dynamic oracle is also
used. Note however that dynamic oracles for
non-projective systems are usually either very in-
efficient (for link2, only O(n8) dynamic oracle
is proposed in Gómez-Rodrı́guez et al. (2014))
or not known (as is the case for the swap sys-
tem).

Furthermore, if only a static oracle is used, par-
tially or fully non-projective systems yield better
overall performance than a projective one. Yet,
a dynamic oracle improves performance of the
projective system to the extent it yield better re-
sults (which is further improved by utilizing also a
search-based oracle).

The influence of beam size on UAS and LAS
scores is analyzed in Table 7. According to the
results, tuning beam size for every treebank inde-
pendently is worse than using large beam size all
the time.

Finally, model size and runtime performance of
individual UDPipe components are outlined in Ta-
ble 8. The median of complete model size is circa
13MB and the speed of full processing (tokeniza-
tion, tagging and parsing with beam size 5) is ap-
proximately 1700 words per second on a single
core of an Intel Xeon E5-2630 2.4GHz proces-
sor.

95

Treebank UDPipe 1.2 Participant System Tokenizer dim 24 No suffix rules No token splitting
Tokens Words Sents LAS Words Sents LAS Words LAS Words LAS

Ancient Greek 99.96 99.96 98.73 57.39 99.96 98.85 57.42 99.96 57.39 99.96 57.39
Ancient Greek-PROIEL 100.00 100.00 47.09 66.51 100.00 45.14 65.79 100.00 66.51 100.00 66.51
Arabic 99.98 93.71 81.77 66.06 93.71 80.89 66.08 92.89 65.13 78.39 45.84
Basque 99.96 99.96 99.50 70.45 99.96 99.08 70.39 99.96 70.45 99.96 70.45
Bulgarian 99.92 99.92 92.85 84.92 99.91 92.54 84.87 99.92 84.92 99.92 84.92
Catalan 99.97 99.97 99.03 85.53 99.96 99.03 85.52 99.77 85.17 99.67 84.93
Chinese 89.55 89.55 98.20 57.89 89.25 98.50 57.63 89.55 57.89 89.55 57.89
Croatian 99.90 99.90 95.56 77.73 99.92 96.98 77.83 99.90 77.73 99.90 77.73
Czech 99.93 99.93 92.30 83.19 99.92 91.82 83.16 99.93 83.19 99.80 82.96
Czech-CAC 99.97 99.96 100.00 84.40 99.96 99.76 84.40 99.96 84.40 99.72 84.03
Czech-CLTT 99.34 99.34 94.19 76.69 99.52 96.49 77.30 99.34 76.69 99.31 76.65
Danish 99.60 99.60 78.97 75.28 99.58 80.07 75.43 99.60 75.28 99.60 75.28
Dutch 99.80 99.80 76.95 70.52 99.84 77.62 70.09 99.80 70.52 99.80 70.52
Dutch-LassySmall 99.99 99.99 81.83 80.15 99.97 74.84 79.18 99.99 80.15 99.99 80.15
English 99.03 99.03 75.33 77.25 98.97 75.67 77.24 99.03 77.25 99.03 77.25
English-LinES 99.92 99.92 87.40 74.92 99.90 86.59 74.96 99.92 74.92 99.92 74.92
English-ParTUT 99.57 99.55 98.40 76.89 99.61 97.19 77.04 99.54 76.86 99.45 76.75
Estonian 99.89 99.89 93.66 60.01 99.88 93.75 59.99 99.89 60.01 99.89 60.01
Finnish 99.69 99.69 86.75 77.26 99.69 84.70 77.11 99.69 77.26 99.69 77.26
Finnish-FTB 99.97 99.96 85.54 75.31 99.94 84.72 75.03 99.95 75.28 99.74 75.08
French 99.76 98.88 94.58 80.50 98.89 94.09 80.41 98.88 80.50 95.54 74.98
French-ParTUT 99.85 98.97 97.76 80.17 98.88 97.38 80.06 98.97 80.17 95.00 74.43
French-Sequoia 99.76 99.06 84.60 81.35 99.04 84.00 81.34 99.06 81.35 95.07 74.74
Galician 99.93 99.93 96.18 77.73 99.94 95.98 77.81 99.93 77.73 99.93 77.73
Galician-TreeGal 99.62 98.66 85.35 66.31 98.70 86.69 66.32 98.09 65.48 87.58 48.87
German 99.67 99.67 79.35 68.61 99.68 79.34 68.41 99.67 68.61 97.17 64.81
Gothic 100.00 100.00 24.12 62.80 100.00 20.75 62.08 100.00 62.80 100.00 62.80
Greek 99.87 99.87 90.00 80.67 99.87 90.44 80.54 99.87 80.67 99.87 80.67
Hebrew 99.98 85.16 100.00 57.86 85.12 99.59 57.83 81.73 54.60 57.12 26.11
Hindi 100.00 100.00 99.20 87.28 100.00 99.20 87.28 100.00 87.28 100.00 87.28
Hungarian 99.81 99.81 95.54 66.54 99.81 95.58 66.63 99.81 66.54 99.81 66.54
Indonesian 100.00 100.00 91.73 75.47 100.00 90.71 75.48 100.00 75.47 100.00 75.47
Irish 99.40 99.40 94.78 62.87 99.56 94.14 63.00 99.40 62.87 99.40 62.87
Italian 99.91 99.83 97.11 86.11 99.78 96.91 85.97 99.58 85.53 88.92 68.98
Japanese 90.97 90.97 95.01 74.49 90.02 95.01 73.19 90.97 74.49 90.97 74.49
Kazakh 96.07 95.63 81.23 25.43 92.74 81.56 24.39 95.36 25.95 95.36 25.95
Korean 99.69 99.69 92.41 60.30 99.67 92.04 60.08 99.69 60.30 99.69 60.30
Latin 99.99 99.99 98.56 47.02 100.00 98.35 46.96 99.99 47.02 99.99 47.02
Latin-ITTB 99.89 99.89 82.58 75.84 99.94 82.49 75.91 99.89 75.84 99.89 75.84
Latin-PROIEL 100.00 100.00 19.56 61.55 100.00 18.43 61.55 100.00 61.55 100.00 61.55
Latvian 98.94 98.94 98.32 61.80 98.89 98.37 61.81 98.94 61.80 98.94 61.80
Norwegian-Bokmaal 99.79 99.79 96.38 83.89 99.78 95.79 83.86 99.79 83.89 99.79 83.89
Norwegian-Nynorsk 99.93 99.93 92.08 82.74 99.93 92.03 82.68 99.93 82.74 99.93 82.74
Old Church Slavonic 99.99 99.99 40.94 66.29 100.00 39.14 66.15 99.99 66.29 99.99 66.29
Persian 100.00 99.65 97.76 80.33 99.65 98.74 80.30 99.48 80.06 99.08 79.42
Polish 99.98 99.87 99.18 80.21 99.88 99.00 80.20 99.09 77.98 98.60 76.67
Portuguese 99.66 99.54 89.24 82.72 99.55 88.75 82.63 99.29 82.11 88.36 64.71
Portuguese-BR 99.96 99.86 96.71 85.97 99.85 96.80 85.98 99.86 85.97 89.41 67.97
Romanian 99.67 99.67 93.72 80.32 99.62 93.85 80.29 99.67 80.32 99.67 80.32
Russian 99.90 99.90 96.59 76.15 99.91 96.48 76.11 99.90 76.15 99.90 76.15
Russian-SynTagRus 99.58 99.58 97.97 86.80 99.50 97.72 86.70 99.58 86.80 99.58 86.80
Slovak 100.00 100.00 84.26 75.63 99.99 83.14 75.43 100.00 75.63 100.00 75.63
Slovenian 99.96 99.96 98.86 81.84 99.93 98.85 81.74 99.96 81.84 99.96 81.84
Slovenian-SST 99.87 99.87 13.13 53.94 99.97 15.38 53.86 99.87 53.94 99.87 53.94
Spanish 99.91 99.74 95.26 81.95 99.70 94.89 81.92 99.41 81.32 96.55 77.75
Spanish-AnCora 99.97 99.95 98.26 84.95 99.95 98.15 84.95 99.73 84.51 99.45 83.74
Swedish 99.86 99.86 95.57 77.58 99.78 93.17 77.30 99.86 77.58 99.86 77.58
Swedish-LinES 99.97 99.97 86.43 75.57 99.96 85.73 75.44 99.97 75.57 99.97 75.57
Turkish 99.85 97.92 96.89 53.78 97.92 97.09 53.73 97.28 52.58 96.04 50.88
Ukrainian 99.66 99.66 94.84 61.09 99.77 94.89 61.21 99.66 61.09 99.66 61.09
Urdu 100.00 100.00 98.32 77.09 100.00 98.60 77.11 100.00 77.09 100.00 77.09
Uyghur 99.94 99.94 65.31 33.21 99.85 67.23 33.18 99.94 33.21 99.94 33.21
Vietnamese 84.26 84.26 92.87 39.97 82.57 92.26 38.45 84.26 39.97 84.26 39.97
Arabic-PUD 80.85 90.81 98.95 44.34 90.87 99.10 44.37 89.91 43.92 80.85 36.61
Czech-PUD 99.28 99.28 95.40 79.67 99.29 96.29 79.74 99.28 79.67 99.13 79.46
German-PUD 97.90 97.94 90.75 66.05 97.83 86.58 65.43 97.94 66.05 95.58 62.62
English-PUD 99.74 99.74 95.57 79.21 99.66 97.22 79.34 99.74 79.21 99.74 79.21
Spanish-PUD 99.48 99.43 94.14 77.99 99.50 94.36 78.03 99.30 77.78 96.46 74.94
Finnish-PUD 99.63 99.63 92.20 80.86 99.60 91.87 80.92 99.63 80.86 99.63 80.86
French-PUD 99.81 98.86 93.33 74.19 98.88 96.38 74.31 98.86 74.19 96.15 69.79
Hindi-PUD 98.78 98.78 93.26 52.53 98.84 90.92 52.54 98.78 52.53 98.78 52.53
Italian-PUD 99.64 99.22 94.11 84.03 99.25 94.40 83.95 99.05 83.72 89.56 68.04
Japanese-PUD 92.41 92.41 95.04 78.36 90.95 95.04 76.00 92.41 78.36 92.41 78.36
Portuguese-PUD 99.27 99.39 95.94 74.43 99.44 95.21 74.37 99.24 74.18 89.49 60.18
Russian-PUD 97.25 97.25 98.51 69.37 97.38 99.10 69.57 97.25 69.37 97.25 69.37
Swedish-PUD 98.35 98.35 94.44 70.88 98.41 94.47 70.88 98.35 70.88 98.35 70.88
Turkish-PUD 99.13 96.94 90.87 34.12 96.31 92.20 34.02 96.02 32.56 95.99 32.15

Table 4: Impact of tokenizer dimension 64 versus 24, no suffix rules for multi-word token splitting, and
no multi-word token splitting at all in the UDPipe 1.2 Participant System.

96

Transition system and oracle
No search-based Search-based

oracle oracle
UAS LAS UAS LAS

Arc standard system with static oracle 74.29 68.27 74.80 68.87
Arc standard system with dynamic oracle 75.31 69.36 75.40 69.51
Swap system with static lazy oracle 74.73 68.76 75.16 69.27
Link2 system with static oracle 74.79 68.76 75.21 69.29
Any system, static oracle 74.72 68.71 75.21 69.31
Any system, any oracle 75.27 69.31 75.38 69.52

Table 6: The overall effect of search-based oracle on various transition systems.

Model configuration Model size Model speed
[MB] [kwords/s]

Tokenizer dim 24 0.04 (0.03–0.15) 27.7 (20–37)
Tokenizer dim 64 0.20 (0.19–0.31) 6.0 (4.9–8.6)
Tagger&lemmatizer 9.4 (2.3–24.8) 6.5 (2.1–14)
Parser beam size 1 3.2 (1.9–6.9) 14.9 (12–19)
Parser beam size 5 2.7 (2.2–3.6)
Complete model 13.2 (4.4–31.9) 1.7 (1.2–2.3)

Table 8: UDPipe 1.2 Participant System model
size and runtime performance, displayed as a me-
dian for all the treebanks, together with the 5th and
95th percentile. The complete model consists of a
tokenizer with character embedding and GRU cell
dimension 64, a tagger, a lemmatizer and a parser
with beam size 5.

6 Conclusions and Future Work

We described our contributions to CoNLL 2017
UD Shared Task: UDPipe 1.1 Baseline System
and UDPipe 1.2 Participant System. Both these
systems and the pretrained models are available at
http://ufal.mff.cuni.cz/udpipe under open-
source Mozilla Public Licence (MPL). Binary
tools as well as bindings for C++, Python, Perl,
Java and C# are provided.

As our future work, we consider using deeper
models in UDPipe for tokenizers, POS taggers and
especially for the parser.

Acknowledgments

This work has been partially supported and has
been using language resources and tools de-
veloped, stored and distributed by the LIN-
DAT/CLARIN project of the Ministry of Ed-
ucation, Youth and Sports of the Czech Re-
public (project LM2015071). This research
was also partially supported by OP VVV
projects CZ.02.1.01/0.0/0.0/16 013/0001781 and
CZ.02.2.69/0.0/0.0/16 018/0002373, and by SVV
project number 260 453.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
aly normalized transition-based neural networks.
In Association for Computational Linguistic.
http://arxiv.org/abs/1603.06042.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc., 1st edition.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

KyungHyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine translation:
Encoder-decoder approaches. CoRR abs/1409.1259.
http://arxiv.org/abs/1409.1259.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
12:2493–2537.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang,
Thomas Lamar, Richard M. Schwartz, and John
Makhoul. 2014. Fast and robust neural net-
work joint models for statistical machine transla-
tion. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, Volume 1: Long Papers. pages 1370–1380.
http://aclweb.org/anthology/P/P14/P14-1129.pdf.

Timothy Dozat and Christopher D. Manning.
2016. Deep biaffine attention for neural de-
pendency parsing. CoRR abs/1611.01734.
http://arxiv.org/abs/1611.01734.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint

97

Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Yoav Goldberg, Francesco Sartorio, and Giorgio Satta.
2014. A tabular method for dynamic oracles
in transition-based parsing. TACL 2:119–130.
http://www.aclweb.org/anthology/Q14-1010.

Carlos Gómez-Rodrı́guez, Francesco Sartorio, and
Giorgio Satta. 2014. A polynomial-time dy-
namic oracle for non-projective dependency pars-
ing. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 917–927.
http://www.aclweb.org/anthology/D14-1099.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2016. What do recurrent neural net-
work grammars learn about syntax? CoRR
abs/1611.05774. http://arxiv.org/abs/1611.05774.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W.
Black, and Isabel Trancoso. 2015. Finding func-
tion in form: Compositional character models
for open vocabulary word representation. CoRR
abs/1508.02096. http://arxiv.org/abs/1508.02096.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States.. pages
3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Comput. Linguist.
34(4):513–553. https://doi.org/10.1162/coli.07-
056-R1-07-027.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceed-
ings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International
Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1 - Volume
1. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’09, pages 351–359.
http://dl.acm.org/citation.cfm?id=1687878.1687929.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University,
Prague. http://hdl.handle.net/11234/1-1983.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017b. Universal dependencies 2.0 – CoNLL
2017 shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, Portorož, Slovenia, pages
1659–1666.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka. 2017. CoNLL 2017 shared task - UD-
Pipe baseline models and supplementary materials.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1990.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

Milan Straka, Jan Hajič, Jana Straková, and Jan
Hajič jr. 2015. Parsing universal dependency tree-
banks using neural networks and search-based or-
acle. In Proceedings of Fourteenth International
Workshop on Treebanks and Linguistic Theories
(TLT 14).

Jana Straková, Milan Straka, and Jan Hajič. 2014.
Open-source tools for morphology, lemmatiza-
tion, pos tagging and named entity recognition.
In Proceedings of 52nd Annual Meeting of the

98

Association for Computational Linguistics: Sys-
tem Demonstrations. Association for Computational
Linguistics, Baltimore, Maryland, pages 13–18.
http://www.aclweb.org/anthology/P14-5003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. CoRR abs/1706.03762.
http://arxiv.org/abs/1706.03762.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2016. Multi-task cross-lingual sequence
tagging from scratch. CoRR abs/1603.06270.
http://arxiv.org/abs/1603.06270.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

99

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 100–110,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

UParse: the Edinburgh system for the CoNLL 2017 UD shared task

Clara Vania, Xingxing Zhang, and Adam Lopez
Institute for Language, Cognition and Computation

School of Informatics
University of Edinburgh

{c.vania, x.zhang}@ed.ac.uk, alopez@inf.ed.ac.uk

Abstract

This paper presents our submissions for
the CoNLL 2017 UD Shared Task. Our
parser, called UParse, is based on a neural
network graph-based dependency parser.
The parser uses features from a bidirec-
tional LSTM to produce a distribution over
possible heads for each word in the sen-
tence. To allow transfer learning for low-
resource treebanks and surprise languages,
we train several multilingual models for
related languages, grouped by their genus
and language families. Out of 33 partici-
pants, our system achieves rank 9th in the
main results, with 75.49 UAS and 68.87
LAS F-1 scores (average across 81 tree-
banks).

1 Introduction

Dependency parsing aims to automatically ex-
tract dependencies between words in a sentence,
in the form of tree structure. These dependen-
cies define the grammatical structure of the sen-
tence, which makes it beneficial for many natural
language applications, such as question answer-
ing (Cui et al., 2005), machine translation (Car-
reras and Collins, 2009), and information extrac-
tion (Angeli et al., 2015). The most common ap-
proaches for dependency parsing are transition-
based (Nivre et al., 2006) or graph-based (Mc-
Donald et al., 2005). Recent works also apply
neural network approaches for dependency pars-
ing (Chen and Manning, 2014; Dyer et al., 2015;
Kiperwasser and Goldberg, 2016; Zhang et al.,
2017), particularly for learning rich feature repre-
sentations that improve parser accuracy.

To train a high-quality parser, one typically
needs a large treebank, annotated with some lin-
guistic information, such as part of speech (POS)

tags, lemmas, and morphological features. How-
ever, human annotations are expensive. As a re-
sult, most of the work has been focused on few
languages, such as English, Czech, or Chinese.

The Universal Dependencies (UD; Nivre et al.
(2016)) is an initiative to develop consistent tree-
bank annotations across many languages. It pro-
vides an opportunity to perform model transfer –
using model trained on high-resource languages
to parse low-resource languages, allowing the de-
velopment of treebanks for many more languages.
Several works (McDonald et al., 2011; Zhang
and Barzilay, 2015; Duong et al., 2015a,b; Guo
et al., 2015, 2016) have shown that this technique
can help improve accuracy for low-resource lan-
guages, and in fact recent work of Ammar et al.
(2016) demonstrated that it is possible to train a
single multilingual model that works well both in
low-resource and high-resource settings.

The CoNLL 2017 UD Shared Task (Zeman
et al., 2017) uses Universal Dependencies version
2.0 (Nivre et al., 2017), with training data con-
sists of 64 treebanks from 45 languages. Some of
the challenges are the truly low-resource treebanks
(e.g., Kazakh and Uyghur with only 30 and 100
training sentences, respectively), small treebanks
without development data (e.g., Irish, French-
ParTUT, Galician-TreeGal, Ukrainian), and the
surprise languages and treebanks needed to be
parse during test phase.

To address these challenges, we designed our
system for the shared task to use both monolingual
and multilingual models. In particular:

• We train one monolingual model per high-
resource treebank in the training set.

• For low-resource treebanks, we train several
multilingual models, each for related lan-
guages grouped by their genus and language
families.

100

• For surprise languages, we train several
delexalized parsers using treebanks that are
closest to the surprise languages in terms of
language family.

Our parsing model uses pretrained word vectors,
gold universal POS tags (UPOS), and gold mor-
phological analysis (XFEATS, if available). For
the multilingual models, we also use language ID
and replace pre-trained word vectors with multi-
lingual word vectors. For the delexicalized mod-
els, we remove the word vectors from our feature
set because we want to use the model for other
languages which use different vocabularies.

We submitted three systems, which are de-
scribed in Section 5. The final ranking of the
shared task brings our parser to the ninth place,
with average UAS and LAS, 75.49 and 68.87, re-
spectively. On the surprise languages, our system
reaches the 6th rank, with 39.17 LAS.

2 System Description

Our system, called UParse, is a combination
of monolingual, multilingual, and delexicalized
models. In this section, we describe our parsing
model which extends DENSE, the neural network
graph-based parser of Zhang et al. (2017).

2.1 DENSE Parser

DENSE (Dependency Neural Selection) is a neu-
ral graph-based parser which generates depen-
dency tree by predicting the heads of each word
in a sentence. Given an input sentence of length
N1, the parser first produces N 〈head, dependent〉
dependency arcs by greedily selecting the most
likely head word. If the predicted dependency arcs
do not result a (projective) tree structure, a maxi-
mum spanning tree algorithm will be used to ad-
just the output to a (projective) tree. In the follow-
ing, we will describe the DENSE parser in details.

Token Representations. In the first step, the
parser computes the representation of each word
in the sentence. The objective is to encode both
local (lexical meaning and POS tag) and global
information (word position and context). To do
this, the parser uses a bidirectional LSTM (bi-
LSTMs), which have shown to be effective in cap-
turing long-term dependencies. More formally, let

1As the convention in dependency parsing, we add a
dummy ROOT token to the sentence. Therefore, the result-
ing length of the sentence will be N + 1.

S = (w0, w1, . . . , wN) be the input sentence of
length N , where w0 denotes the artificial ROOT
token. Each input token wi is represented by xi,
which is a concatenation of its word and POS tag
embeddings, e(wi) and e(ti), respectively.

xi = [e(wi); e(ti)] (1)

These representations are the input to a bi-LSTM,
which produces a sentence-specific representation
of token wi computed by concatenating the hidden
states of a forward and a backward LSTM:

ai = [hf
i ; hb

i] (2)

where hf
i and hb

i denotes the hidden states of the
forward and backward LSTMs.

Head Predictions. For each token wi, the
parser computes the probability of wj being the
head as:

Phead(wj |wi, S) =
exp(g(aj , ai))

ΣN
k=0 exp(g(ak, ai))

(3)

where ai and aj are the word representations of
wi and wj , respectively. Function g is a neural
network with a single layer which computes the
associative score between the two words:

g(aj , ai) = vT
a · tanh(Ua · aj + Wa · ai) (4)

Note that, this step is similar to the neural atten-
tion mechanism in the sequence-to-sequence mod-
els (Bahdanau et al., 2015). The model is trained
to minimize the negative log likelihood of the gold
standard 〈head, dependent〉 arcs of all the training
sentences. At test time, the parser greedily choose
the most probable head for each word in the sen-
tence.

Adjusting Tree Outputs. In many cases, the
individual predictions form a tree. However, if this
is not the case, a maximum spanning tree (MST)
algorithm is used to constrain the set of predic-
tions to form a tree. DENSE can use two algo-
rithms: Chu-Liu-Edmonds (Chu and Liu, 1965;
Edmonds, 1967) algorithm to generating non-
projective trees; and the Eisner algorithm (Eisner,
1996) to generate projective trees. The decision
of the MST algorithms depends on the language’s
treebank. For the shared task, we assume that each
language can produce non-projective trees.

101

Model Word Multi- UPOS XFEATS LID
Word

MONO X X X
MULTI X X X X
DELEX X X

Table 1: Feature set used for each type of model
in UParse. Multi-Word denotes the multilingual
word embeddings. XFEATS feature is only used
if the annotation is available in the training data.

Label Predictions. After obtaining the unla-
beled dependency trees, the parser needs to predict
labels. To do this, a two-layer rectifier network
(Glorot et al., 2011) is used. More formally, to
predict the arc label between wi and wj , the clas-
sifier takes as input the concatenation of the local
(Eq. 1) and global (Eq. 2) vector representations
of both words, [ai; aj ; xi; xj] and predicts a valid
dependency label.

Zhang et al. (2017) presents more detailed ac-
count of the parsing model.

2.2 UParse
Next, we describe UParse, the extended version of
DENSE which we use for the UD shared task. As
mentioned in Section 1, UParse is a combination
of monolingual, multilingual, UDPipe baseline,
and delexicalized models. In general, the key dif-
ference between DENSE and UParse is in the type
of features used for training. UParse uses richer
linguistic features, namely word embeddings, uni-
versal POS tag (UPOS), morphological analysis
(XFEATS), and language ID (LID). This design
is mostly inspired by the work of Ammar et al.
(2016) and Straka et al. (2016) for monolingual
and multilingual parsing models. Each feature is
represented by its vector representations and we
concatenate them together to represent each in-
put token which will be fed into the bi-LSTMs.
Specifically, we modify Eq. 1 to

xi = [e(wi); e(ti); e(mi); e(lidi)] (5)

where e(mi) and e(lidi) denotes the embeddings
of XFEATS and language ID, respectively.2 Dur-
ing training our system uses gold annotations (to-
kenization, UPOS, and XFEATS) provided in the
data. At test time, it uses predicted annotations
produced by UDPipe (Straka et al., 2016).

Table 1 shows different feature set used in
each type of model in the UParse. We employ

2We treat XFEATS as an atomic symbol.

the original DENSE architecture for the mono-
lingual models in UParse, with an additional fea-
ture (XFEATS, if available). For the multilingual
models, we replace the standard word embeddings
with multilingual word embeddings (Section 2.3).
This is important since we need to project word
vectors of different languages to the same vector
space. We also use language ID as a feature, to
inform the parser about the language of the sen-
tence it is currently parsing. This allows the model
to learn not only transferable dependency features
across languages, but also the language-specific
features.

2.3 Multilingual Word Embeddings

Following Ammar et al. (2016), we adapt the ro-
bust projection approach of Guo et al. (2016) to
build our multilingual word embeddings. The idea
is to train word embeddings of a source language
and project them to obtain word embeddings for
the target languages. For the shared task, we use
English pre-trained word vectors trained on the
Wikipedia data (Bojanowski et al., 2016) as our
source embeddings. Next, we use OPUS data
(Tiedemann, 2012, 2009) to build alignment dic-
tionaries for languages that have parallel text with
English. Specifically, we use parallel corpora of
Europarl, Global Voices, Wikipedia, and hrWaC
(for Croatian).

To build the alignment dictionaries, we use
fast align toolkit (Dyer et al., 2013). We
then compute vector for each target word using the
weighted average of its aligned English word em-
beddings, weighted by the alignment probabilities.
A limitation of this approach is that it creates em-
beddings for target words that appear in the par-
allel data. Thus, the final step of this approach
also compute embeddings for other target words
not aligned with the source words by averaging the
embeddings of all aligned target words within an
edit distance of 1. The token level embeddings are
shared across languages.

3 Preliminary Experiments

Prior to our participation in the shared task, we
ran a number of preliminary experiments that in-
formed the design of the final system. Our shared
task submission is based on these results.

In our preliminary experiments, our main goal
is to evaluate the multilingual model of UParse.
These experiments are mainly inspired by the

102

Type Model
Languages

Average
de en es fr it pt sv

MONO UDPipe 82.9 87.5 87.1 84.5 90.2 87.2 86.2 86.5
UParse 86.8 88.7 89.2 87.1 91.4 88.0 88.2 88.5

MULTI UParse 85.9 87.4 88.3 87.6 91.8 89.0 88.8 88.4

Table 2: UAS results for monolingual and multilingual model of UParse on the Universal Dependencies
version 1.2.

Type Model
Languages

Average
de en es fr it pt sv

MONO UDPipe 78.6 85.0 84.5 81.0 88.1 84.7 83.2 83.6
UParse 80.4 85.5 85.5 83.1 88.9 84.2 82.7 84.3

MULTI MALOPA 78.9 85.4 84.3 82.4 89.1 86.2 84.5 84.4
UParse 77.9 85.1 84.3 81.9 89.0 86.5 81.1 83.7

Table 3: LAS results for monolingual and multilingual model of UParse on the Universal Dependencies
version 1.2. MALOPA is the multilingual parser of Ammar et al. (2016).

work of Ammar et al. (2016). To compare our
results, we use the same datasets from Univer-
sal Dependencies version 1.2 (Nivre et al., 2015),
for seven languages: English, French, German,
Italian, Spanish, Swedish, and Portuguese. The
training data for the first five languages consists
of more than 10K training sentences, while for
Portuguese and Swedish, there are 8.8K and 4.3K
training sentences, respectively. For simplicity, we
also follow their experimental setup for training
optimization (more detail is reported in Section 4).
In addition, we also compare our parser perfor-
mance for the monolingual models with UDPipe
parser.

Table 2 and 3 present the performance of our
parser compared to UDPipe (monolingual) and
MALOPA (multilingual) parsers. In terms of
UAS, our multilingual model achieves the best
scores, except for English, German, and French.
The results for LAS are slightly different. We
found that for languages where we have more than
10K training sentences, our monolingual model
outperforms the other models, with an exception
on Italian. For the smaller treebanks, although
we see UAS improvements for Portuguese and
Swedish when we use multilingual model, we only
obtain LAS improvement on Portuguese. We be-
lieve that these mixed results are due to poor accu-
racy of our label classifier, since the UAS results
demonstrate that the parser itself is quite effective
in predicting the dependency arcs.

4 Experiments

This section describes the experimental design,
training, and also our submissions to the shared
task. After looking at the results of our prelimi-
nary experiments, we decided to train both mono-
lingual and multilingual parsers, evaluate them on
the shared task development data and choose the
best settings for our submissions.

4.1 Language Groups

To build the multilingual models, we first group
the treebanks such that treebanks of related lan-
guages will be trained in a single model. We use
genus and language family information taken from
the World Atlas of Language Structures(WALS;
Dryer and Haspelmath (2013)) to group the lan-
guages. For each treebank in which the language
is not related to any other treebanks, it will be in
a singleton group, hence the same as a monolin-
gual model. For classic languages like Ancient
Greek, Latin, Gothic, and Old Church Slavonic,
we group them to the same group, instead of using
the WALS information. Table 4 shows the lan-
guage groups used in UParse.

4.2 Training

In the preprocessing step, following the common
setup in parsing, we remove multiword tokens and
language specific dependency relations. For the
multilingual training, we also combine treebanks
of the same language in the same training data.
We also use two additional datasets: pre-trained

103

Group Languages
Classic Ancient Greek, Latin, Gothic

Old Church Slavonic
Finnic Finnish
Germanic Danish, Dutch, English, German

Norwegian, Swedish
Indic Hindi, Urdu
Romance Catalan, French, Italian

Portuguese, Spanish
Slavic Bulgarian, Croatian, Czech

Polish, Russian, Slovak
Slovenian, Ukrainian

Semitic Arabic, Hebrew
Turkic Kazakh, Turkish, Uyghur

Table 4: Language groups used for building UP-
arse multilingual models. Finish language has two
treebanks, we group them together in the same
group.

word embeddings from Bojanowski et al. (2016)
and OPUS parallel data (Tiedemann, 2012, 2009).

Unless we explicitly mention in the description,
we follow the same training configurations as de-
scribed in Zhang et al. (2017). We use two-layer
bi-LSTMs with 150 hidden units, and set embed-
ding size for {words, UPOS, XFEATS, LID} to
{300, 30, 40, 10}, respectively. The word em-
bedding size matches that of the pre-trained em-
beddings. We did not use the Czech-CLLT or any
ParTUT treebanks for training since they contain
many long sentences (the longest sentence in the
Czech-CLLT treebank consists of 534 words). At
test time, we parse these treebanks using the mod-
els trained on the same language. We trained our
models on an Nvidia GPU card; training a mono-
lingual model takes 1-2 hours, while training a
multilingual model takes 4-5 hours.

Word embeddings. For monolingual training,
we initialize the embeddings with the pre-trained
ones and keep them fixed during training. For the
multilingual models, we first create multilingual
word embeddings as described in Section 2.3, us-
ing OPUS parallel data and English as the source
language. Unlike Ammar et al. (2016) and Guo
et al. (2016), we also share representations for
words which are used by more than one language.
For example, if system appears in the English and
German data, we only use a single vector to repre-
sent it. Of course, this means we allow param-
eter sharing across words with the same forms,

but different meanings. But on the other hand, it
also enables named entities and loanwords to have
the same representation across languages. We ini-
tialize the embeddings with the multilingual word
embeddings and update them during training.3 For
all models, embeddings for words with no pre-
trained representation are initialized uniformly at
random in the range [-0.1, 0.1].

Optimization for multilingual training. For
multilingual training, we follow Ammar et al.
(2016) when updating the parameters. Specifi-
cally, we use mini-batch updates in which we uni-
formly sampled (without replacement) the same
number of sentences for each treebank, until all
sentences in the smallest treebank are used. In
other words, each epoch will use N×L sentences,
where N is the number of sentences in the smallest
treebank and L is the number of languages.

4.3 Truly Low-Resource Treebanks
There are some challenges when training the truly
low-resource treebanks, i.e., treebanks with less
than 2K sentences, with no other treebanks from
the same language available. For example, Viet-
namese treebank only has 1400 sentences with no
related languages in terms of genus and language
family. Ideally, we want to apply multilingual
learning for these treebanks since we do not have
enough examples to train them using monolingual
models. Moreover, languages like Kazakh and
Uyghur have 100 training sentences or fewer and
no development data, which makes it difficult to
do multilingual training as described above. Our
initial experiments show that multilingual learning
helps improve accuracy of the truly low-resource
treebanks (with less than 1K training sentences),
but degrades accuracy of the high-resource tree-
banks. This is because using our training set up,
each epoch will only consists of small number of
sentences per language. Irish is particularly chal-
lenging, with only 566 training sentences, no de-
velopment data, and no related languages. Our
training strategy for these particular cases are as
follows:

Estonian and Hungarian. These languages are
belong to the Uralic language family. Since
Finnish has two treebanks with large training
data, we train two more multilingual models
for each, using additional Finnish treebanks.

3We did not fix the embeddings since in our preliminary
experiments, it gave us lower accuracy.

104

We do not use a single model to train both
Estonian and Hungarian since Estonian has
more training sentences than Hungarian.

Greek. We train a multilingual model for Greek,
using training data from Ancient Greek and
Greek treebanks.4

Irish. Since this language does not have any re-
lated languages, we use delexicalized model
of Czech. We chose Czech since the language
has the largest treebank.

Kazakh and Uyghur. For the two languages,
since the training data are very small, we use
a single delexicalized model of Turkish. We
only use Turkish data during training, but in-
clude both Kazakh and Uyghur training data
in the development set.

4.4 Surprise Languages and Treebanks

For the surprise languages, since we do not have
any training data, we train delexicalized models
on related languages. In particular, we use delexi-
calized Russian for Buryat, Persian for Kurmanji,
Finnic for North Sami, and Czech for Upper Sor-
bian. Note that the delexicalized models of Rus-
sian, Finnic, and Czech use all the treebanks of the
language, thus allowing transfer learning between
different treebanks of the same language. For
example, to train a delexicalized model of Rus-
sian, we use both UD Russian and UD Russian-
SynTagRus treebanks.

For the surprise treebanks from known lan-
guages, we simply use a parser trained on other
treebanks in that language.

5 Results and Analysis

5.1 Initial Results on Development Data

During the training phase, we evaluated the perfor-
mance of our monolingual and multilingual sys-
tems using the official development data. Since
we use gold annotations (tokenization, UPOS, and
XFEATS) as our features, we compare our perfor-
mance with UDPipe baseline which also use gold
annotations. Table 5 shows the average UAS and
LAS of the monolingual and multilingual systems.
Similar to our preliminary results, we see improve-
ments on UAS for the multilingual model, but with

4This specific model is slightly different, one might as-
sume that Ancient Greek and Modern Greek are highly re-
lated.

Model Avg. UAS Avg. LAS
Baseline 83.29 79.53
MONO 79.53 78.44
MULTI 85.76 77.55

Table 5: Average UAS and LAS of the monolin-
gual versus multilingual models. The baseline is
UDPipe with gold annotations.

LAS lower than the monolingual or even the UD-
Pipe system. When we look at the results for in-
dividual treebanks, we found that our models are
especially achieved lower LAS than the baseline
system on the smaller treebanks.

5.2 Submission
The UD shared task employs TIRA (Potthast et al.,
2014) to evaluate all systems. When we deployed
our system on the TIRA virtual machine, we en-
countered two problems which break the evalua-
tion script. First, our system sometimes produces
multiple roots in the prediction, which the script
rejects. To address this, we post-processed the
predicted tree by taking the first prediction as the
root, and connect other roots to the first root with
a clausal component label, ccomp.5 The second
problem occurs when the test data has sentence
longer than the maximum sentence length in the
training data.6 Because we had limited time to ad-
dress this, we used the following algorithm: Let
n be the maximum length of sentence allowed by
the parsing model. For each sentences with length
k, where k > n:

1. Parse the first n words in the sentence.

2. For the rest k − n words, connect each word
with the previous word, and label the arc be-
tween them using a heuristic label (DIST), or
a random label (RAND). We simply take the
most frequent label between the head POS
and the dependent POS in the training data
for DIST.

We decided to use the combination of monolin-
gual, multilingual, UDPipe (only for the primary
system, UP-1), and delexicalized models for our
primary system. For each treebank, we pick the

5We choose this label based from our observation on the
multiple roots prediction. Most of the time, our parser pre-
dicts multiple roots if the sentences are too long and contain
multiple clauses.

6In the current training setup, the maximum sentence
length is fixed.

105

Model Avg. LAS
UP-1 73.66
UP-2 73.30
UP-3 73.29

Table 6: Macro-averaged LAS F1 score on devel-
opment data.

Treebank name Model
Estonian* Finnic-Estonian
Gothic Classic
Hungarian* Finnic-Hungarian
Irish* DEL-Czech
Kazakh* DEL-Turkic
Old Church Slavonic* Classic
Slovak* Slavic
Swedish Germanic
Swedish-LinES Germanic
Uyghur* DEL-Turkic
Buryat DEL-Russian
Kurmanji DEL-Persian
North Sami DEL-Finnic
Upper Sorbian DEL-Czech

Table 7: List of treebanks which use multilingual
or delexicalized models in UParse. (*) denotes
treebanks which use UDPipe models in UP-1.
The bottom part of the table shows the models
used to parse surprise languages.

best model based on its performance on the devel-
opment data. We use UDPipe models for 24 tree-
banks in which we achieved lower performance
than the baseline on the development data (de-
noted by (*) in Table 9). UP-2 and UP-3 do not
use any UDPipe models. Table 7 lists all treebanks
which use multilingual or delexicalized models for
parsing. Our final submission consists of three dif-
ferent systems:

1. UP-1: UParse + DIST + UDPipe

2. UP-2: UParse + DIST

3. UP-3: UParse + RAND

Table 6 shows the macro-averaged LAS F1 scores
for all the systems.

5.3 Results on Test Data
Table 8 shows the results of our primary system
of LAS, UAS, and CLAS (Nivre and Fang, 2017).
The more detailed results for each treebank and
system is given in Table 9. Similar to the results

Metric Score
LAS 68.87
UAS 75.49
CLAS 63.55

Table 8: LAS, UAS, and CLAS results of our pri-
mary system, UP-1.

on development data (Table 6), UP-1 achieves the
best macro-average F1 score out of the three sys-
tems. The results of UP-2 and UP-3 are quite
similar, which is not surprising since there are only
a few long sentences in the test data.

We further observe the performance of the UD-
Pipe baseline model versus UParse models, by
comparing the performance of UP-1 and UP-2 on
the 24 treebanks (treebanks with (*) in Table 9).
Based on the results, our system achieves lower
LAS-F1 scores on 16 treebanks, which are either
treebanks with small training data or treebanks
with long sentences, for which we did not train
any model. For the other six treebanks, our sys-
tem achieves higher LAS-F1 scores than the UD-
Pipe baseline system, with 4 treebanks predicted
using the multilingual models.

Our system is deployed on the TIRA virtual
machine, which is a quad-core CPU with 16GB
RAM. It took 2 hours and 43 minutes for our pri-
mary system to parse the official test data.

6 Conclusion and Future Work

We described UParse, our system for the CoNLL
UD Shared Task 2017. Our observation from the
overall results suggested that our parsing model
outperforms the UDPipe baseline model, except
in cases when there is little training data avail-
able. Our approach to perform multilingual learn-
ing by transferring models from high-resource to
low-resource treebank seems to be quite effective
in predicting the dependency arcs, but less for the
label predictions. However, we observed some im-
provements for a number of treebanks when we
use a multilingual model trained using treebanks
from related languages.

In the light of these results, some possible di-
rections for the future work include improving the
label predictions of the parsing model and explor-
ing the possibilities to use character-level mod-
els, as they have shown to be effective for parsing
morphologically rich languages (Ballesteros et al.,
2015). Another interesting direction is to combine

106

Treebank Code
LAS F-1 score

UP-1 UP-2 UP-3
ar pud 45.3 45.3 45.3
ar 66.35 66.35 66.3
bg* 83.64 83.46 83.46
bxr 21.63 21.63 21.63
ca 86.8 86.8 86.8
cs cac 85.57 85.57 85.57
cs cltt* 71.64 66.74 66.37
cs pud 81.06 81.06 81.06
cs 85.24 85.24 85.24
cu* 62.76 64.24 64.24
da 73.46 73.46 73.46
de pud 67.36 67.36 67.36
de 70.09 70.09 70.09
el* 79.26 76.93 76.93
en lines 73.28 73.28 73.28
en partut* 73.64 69.63 69.63
en pud 79.54 79.54 79.54
en 76.42 76.42 76.41
es ancora 86.01 86.01 86.01
es pud 79.2 79.2 79.2
es 83.02 83.02 83.02
et* 58.78 56.26 56.26
eu 69.85 69.85 69.85
fa 79.97 79.97 79.97
fi ftb* 74.04 73.77 73.77
fi pud 79.66 79.66 79.66
fi 75.35 75.35 75.35
fr partut* 77.38 76.05 76.05
fr pud 74.44 74.44 74.44
fr sequoia 78.57 78.57 78.57
fr 81.58 81.58 81.58
ga* 61.52 36.31 36.2
gl treegal 64.18 64.18 64.18
gl 78.08 78.08 78.08
got 60.71 60.71 60.71
grc proiel 64.48 64.48 64.45
grc 57.22 57.22 57.22
he 57.6 57.6 57.6
hi pud 51.89 51.89 51.89
hi 87.2 87.2 87.2
hr* 77.18 76.28 76.28

Treebank Code
LAS F-1 score

UP-1 UP-2 UP-3
hsb 59.24 59.24 59.24
hu* 64.3 57.37 57.37
id 75.01 75.01 75.01
it pud 85.13 85.13 85.13
it 86.62 86.62 86.62
ja pud 74.64 74.64 74.64
ja* 72.21 70.51 70.51
kk 21.96 21.96 21.96
kmr 39.76 39.76 39.76
ko* 59.09 58.74 58.74
la ittb 79.35 79.35 79.35
la proiel 56.93 56.93 56.91
la* 43.77 46.07 46.07
lv* 59.95 57.09 57.09
nl lassysmall 79.56 79.56 79.56
nl 69.9 69.9 69.9
no bokmaal 83.81 83.81 83.81
no nynorsk 81.91 81.91 81.91
pl* 78.78 79.69 79.69
pt br 86.38 86.38 86.38
pt pud 74.76 74.76 74.76
pt 83.12 83.12 83.12
ro 80.45 80.45 80.45
ru pud 68.64 68.64 68.64
ru syntagrus 89.18 89.18 89.18
ru* 74.03 74.86 74.76
sk* 72.75 74.77 74.77
sl sst 46.97 46.97 46.97
sl* 81.15 81.09 81.09
sme 36.04 36.04 36.04
sv lines 74.04 74.04 74.04
sv pud 70.44 70.44 70.44
sv 75.29 75.29 75.29
tr pud 32.63 32.63 32.63
tr* 53.22 51.69 51.69
ug* 34.18 20.8 20.8
uk* 60.76 60.78 60.78
ur 76.35 76.35 76.35
vi* 37.47 37.14 37.14
zh* 57.4 56.14 56.14
Average LAS 68.87 68.09 68.09

Table 9: LAS F-1 scores for each treebank in the test data. (*) denotes treebanks which are predicted
using UDPipe baseline models in the UP-1 system and the best accuracies are shown in bold.

107

both morphological analysis and also sub-word
unit representation (characters, character n-grams,
or morphemes) and investigate whether these fea-
tures are transferable across languages with simi-
lar typology.

Acknowledgments

We would like to thank Sameer Bansal, Jianpeng
Cheng, Jonathan Mallinson, and the anonymous
reviewers for the helpful feedbacks. Clara Vania is
supported by the Indonesian Endowment Fund for
Education (LPDP), the Centre for Doctoral Train-
ing in Data Science, funded by the UK EPSRC
(grant EP/L016427/1), and the University of Ed-
inburgh.

References
Waleed Ammar, George Mulcaire, Miguel Balles-

teros, Chris Dyer, and Noah Smith. 2016. Many
languages, one parser. Transactions of the As-
sociation for Computational Linguistics 4:431–
444. https://www.transacl.org/ojs/index.php/tacl
/article/view/892.

Gabor Angeli, Melvin Jose Johnson Premkumar,
and Christopher D. Manning. 2015. Leverag-
ing linguistic structure for open domain informa-
tion extraction. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 344–354.
http://www.aclweb.org/anthology/P15-1034.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. Proceedings of the
3rd International Conference on Learning Repre-
sentations .

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Lisbon, Portugal,
pages 349–359. http://aclweb.org/anthology/D15-
1041.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Xavier Carreras and Michael Collins. 2009. Non-
projective parsing for statistical machine trans-
lation. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language

Processing: Volume 1 - Volume 1. Associa-
tion for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’09, pages 200–209.
http://dl.acm.org/citation.cfm?id=1699510.1699537.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica 14.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan,
and Tat-Seng Chua. 2005. Question answer-
ing passage retrieval using dependency relations.
In Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. ACM, New
York, NY, USA, SIGIR ’05, pages 400–407.
https://doi.org/10.1145/1076034.1076103.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig. http://wals.info/.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015a. Low resource dependency pars-
ing: Cross-lingual parameter sharing in a neu-
ral network parser. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 845–850.
http://www.aclweb.org/anthology/P15-2139.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015b. A neural network model for low-
resource universal dependency parsing. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, pages
339–348. http://aclweb.org/anthology/D15-1040.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

108

Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 644–648.
http://www.aclweb.org/anthology/N13-1073.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B
71(4):233–240.

Jason Eisner. 1996. Efficient normal-form pars-
ing for combinatory categorial grammar. In
Proceedings of the 34th Annual Meeting of
the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Santa Cruz, California, USA, pages 79–86.
https://doi.org/10.3115/981863.981874.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In In-
ternational Conference on Artificial Intelligence and
Statistics. Cadiz, Spain, pages 315–323.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual de-
pendency parsing based on distributed representa-
tions. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers). Association for Computational
Linguistics, Beijing, China, pages 1234–1244.
http://www.aclweb.org/anthology/P15-1119.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representa-
tion learning framework for multi-source transfer
parsing. https://www.aaai.org/ocs/index.php/AAAI
/AAAI16/paper/view/12236.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics
4:313–327. https://transacl.org/ojs/index.php/tacl
/article/view/885.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05). Association for Com-
putational Linguistics, Ann Arbor, Michigan, pages
91–98. https://doi.org/10.3115/1219840.1219852.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Lin-
guistics, Edinburgh, Scotland, UK., pages 62–72.
http://www.aclweb.org/anthology/D11-1006.

Joakim Nivre, Željko Agić, Maria Jesus Aranzabe,
Masayuki Asahara, Aitziber Atutxa, Miguel Balles-
teros, John Bauer, Kepa Bengoetxea, Riyaz Ah-
mad Bhat, Cristina Bosco, Sam Bowman, Giuseppe

G. A. Celano, Miriam Connor, Marie-Catherine
de Marneffe, Arantza Diaz de Ilarraza, Kaja Do-
brovoljc, Timothy Dozat, Tomaž Erjavec, Richárd
Farkas, Jennifer Foster, Daniel Galbraith, Filip Gin-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Gold-
berg, Berta Gonzales, Bruno Guillaume, Jan Hajič,
Dag Haug, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Hiroshi Kanayama, Jenna Kanerva, Simon
Krek, Veronika Laippala, Alessandro Lenci, Nikola
Ljubešić, Teresa Lynn, Christopher Manning, Ctlina
Mrnduc, David Mareček, Héctor Martı́nez Alonso,
Jan Mašek, Yuji Matsumoto, Ryan McDonald,
Anna Missilä, Verginica Mititelu, Yusuke Miyao,
Simonetta Montemagni, Shunsuke Mori, Hanna
Nurmi, Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Slav Petrov,
Jussi Piitulainen, Barbara Plank, Martin Popel,
Prokopis Prokopidis, Sampo Pyysalo, Loganathan
Ramasamy, Rudolf Rosa, Shadi Saleh, Sebastian
Schuster, Wolfgang Seeker, Mojgan Seraji, Natalia
Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Kiril Simov, Aaron Smith, Jan Štěpánek,
Alane Suhr, Zsolt Szántó, Takaaki Tanaka, Reut
Tsarfaty, Sumire Uematsu, Larraitz Uria, Viktor
Varga, Veronika Vincze, Zdeněk Žabokrtský, Daniel
Zeman, and Hanzhi Zhu. 2015. Universal depen-
dencies 1.2 LINDAT/CLARIN digital library at In-
stitute of Formal and Applied Linguistics, Charles
University in Prague. http://hdl.handle.net/11234/1-
1548.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017). pages 86–95.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen
Eryiǧit, and Svetoslav Marinov. 2006. Labeled
pseudo-projective dependency parsing with support
vector machines. In Proceedings of the Tenth
Conference on Computational Natural Language
Learning (CoNLL-X). Association for Computa-
tional Linguistics, New York City, pages 221–225.
http://www.aclweb.org/anthology/W/W06/W06-
2933.

Joakim Nivre et al. 2017. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

109

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Jörg Tiedemann. 2009. News from OPUS - A collec-
tion of multilingual parallel corpora with tools and
interfaces. In N. Nicolov, K. Bontcheva, G. An-
gelova, and R. Mitkov, editors, Recent Advances
in Natural Language Processing, John Benjamins,
Amsterdam/Philadelphia, Borovets, Bulgaria, vol-
ume V, pages 237–248.

Jörg Tiedemann. 2012. Parallel data, tools and in-
terfaces in opus. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Eight International Con-
ference on Language Resources and Evaluation
(LREC’12). European Language Resources Associ-
ation (ELRA), Istanbul, Turkey.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to

Universal Dependencies. Association for Computa-
tional Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers. Association for
Computational Linguistics, Valencia, Spain, pages
665–676. http://www.aclweb.org/anthology/E17-
1063.

Yuan Zhang and Regina Barzilay. 2015. Hier-
archical low-rank tensors for multilingual trans-
fer parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1857–1867.
http://aclweb.org/anthology/D15-1213.

110

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 111–118,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Multi-Model and Crosslingual Dependency Analysis

Johannes Heinecke, Munshi Asadullah
Orange Labs

2 avenue Pierre Marzin
F - 22300 Lannion, France

{johannes.heinecke,munshi.asadullah}@orange.com

Abstract

This paper describes the system of the
team Orange-Deskiñ, used for the CoNLL
2017 UD Shared Task. We based our ap-
proach on an existing open source tool
(BistParser), which we modified in or-
der to produce the required output. Ad-
ditionally we added a kind of pseudo-
projectivisation. This was needed since
some of the task’s languages have a high
percentage of non-projective dependency
trees. In most cases we also employed
word embeddings. For the 4 surprise lan-
guages, the data provided seemed too lit-
tle to train on. Thus we decided to use
the training data of typologically close lan-
guages instead. Our system achieved a
macro-averaged LAS of 68.61% (10th in
the overall ranking) which improved to
69.38% after bug fixes.

1 Introduction

For our work in our lab (Orange-Deskiñ) we
needed a robust dependency analysis for written
French with the highest Labeled Attachment Score
(LAS)1 possible, using a wide range of depen-
dency relations. Having worked in the past on
rule based dependency analysis, it became obvi-
ous that we need to adopt a more modern ap-
proach to dependency analysis. Thus during the
last year we tried several freely available open
source tools available (e.g. MaltParser2, Google’s
SyntaxNet3, Standford Dependency Tools4, Bist-

1Since we are interested in semantic relations a good
CLAS score (Nivre and Fang, 2017) is even more relevant.

2http://www.maltparser.org/
3https://www.tensorflow.org/versions/

r0.11/tutorials/syntaxnet/
4https://nlp.stanford.edu/software/

stanford-dependencies.shtml

Parser5 and HTParser6), trained on different Tree-
banks (notably French Sequoia (Candito et al.,
2014) and Universal Dependencies (McDonald
et al., 2013)). All combinations of tools and tree-
banks had some advantages and some inconve-
niences. For instance, the underlying linguistic
models of the treebanks are not the same or some
tools would not accept CONLLU input but only raw
text and apply their own segmentation and POS
tagging.

In a next step we enriched the French treebanks
with additional information like lemmas, morpho-
logical features and more fine-graded XPOS in
addition to the about 20 UPOS categories of the
treebanks (UD-French v1.2 does not contain nei-
ther lemmas nor morphological features) and con-
ducted a new training/test/evaluation cycle. Since
the initial results for French were encouraging we
tried the same approaches with other languages,
such as the languages proposed for CoNLL 2017
UD Shared Task (Zeman et al., 2017). However,
for participation at the shared task, we relied ex-
clusively on the data provided by Universal De-
pendencies (Nivre et al., 2016, 2017b), also for
French in spite of our previous work.

For the shared task we have trained models sep-
arately for each language. So strictly speaking,
this is not a multilingual but a monolingual multi-
model approach.

2 System Description

2.1 Software

For the shared task, we used an (older) ver-
sion of BistParser for all treebanks (ud-treebanks-
conll2017). BistParser (Kiperwasser and Gold-
berg, 2016) is a transition based parser (Nivre
(2008), and which uses the arc-hybrid transition

5https://github.com/elikip/bist-parser
6https://github.com/elikip/htparser

111

system (Kuhlmann et al., 2011)) with the three
“basic” transitions LEFT ARC, RIGHT ARC and
SHIFT. Since the shared task requires that out-
put dependency trees have exactly one root, we
modified BistParser accordingly by deleting the
additional ROOT node added to each sentence in
the original version of this parser. BistParser uses
a bidirectional LSTM neural network. Currently
BistParser uses forms and XPOS for both learning
and predicting. We have started implementing the
use of feature column as well, but this has not been
used for the CoNLL 2017 UD Shared Task.

Some of the languages in the shared task
have a large percentage of non-projective sen-
tences. We thus decided to implement a pseudo-
projectivisation (Kübler et al., 2009, p. 37) of the
input sentences before training or predicting. The
output sentences are than de-projectivised. Some-
times of course, the de-projectivisation can fail,
especially if there are other dependency relation
errors. Our tests showed, however, that the overall
result for most languages is still better than with-
out any pseudo-projectivisation.

Finally we implemented filters which ignore
the special CONLLU lines for multi-word tokens
(2-3 ...) and elliptic insertions (4.1 ...)
and reinsert those lines after predicting.

In order to reduce memory usage during train-
ing and prediction, we modified BistParser and
the underlying CNN library7 to load word embed-
dings only for the words present in the training or
test data. For the same reason we modified Bist-
Parser to read sentences one by one, to predict, and
to output the result, instead of reading the entire
test file at once8.

2.2 Training Data

We trained our models using all treebanks pro-
vided by the CoNLL 2017 UD Shared Task. Since
for some of the languages there were no devel-
opment treebanks available, we split the training
treebank in order to get a small development cor-
pus (10% of the training corpus is split to test dur-
ing development). This posed a certain problem
for treebanks like Kazakh and Uyghur, which are
hopelessly small (31 and 100 sentences respec-
tively). Eventhough both languages are geneti-

7https://github.com/clab/cnn-v1, CNN has
meanwhile evolved to Dynet (https://github.com/
clab/dynet)

8The code is available at https://github.com/
CoNLL-UD-2017/Orange-Deskin

cally and typologically very close to Turkish (3685
sentences), we finally trained on those small tree-
banks for time constraints (with more time avail-
able we would have experimented with various
other parameters and a cross-lingual approach).

In most cases, adding word embeddings im-
proved the LAS considerably. We downloaded the
language specific corpora provided9 by the task
organisers and calculated our own word embed-
dings with Mikolov’s word2vec (Mikolov et al.,
2013)10, which gave better results than the 100-
dimensional word embeddings provided. In order
to get the best results, we cleaned the text cor-
pora (e.g. deleting letter-digit combinations and
separating punctuation symbols such as commas,
question marks etc. by a white space from the pre-
ceding token). For those languages which use an
alphabet which has case distinction (Latin, Cyril-
lic and Greek) we put everything in lowercase. Fi-
nally we trained word embeddings with 300 and
500 dimensional vectors respectively. For all other
parameters of word2vec we used the default set-
ting, apart from the lower frequency limit, which
we increased to 15 words.

The word embeddings were calculated on a
server with a 32 core CPU running Ubuntu
14.0411. For the biggest text corpora like English
(9 billion words), German (5,9 billion words),
Indonesian (5 billion words) French (4,8 billion
words) training for 500 dimensional word vectors
took up to 6 hours (English).

A similar approach to word2vec is fastText
The fundamental difference is the adoption of the
“subword model” described in Bojanowski et al.
(2016). A subword model is described as a open
model allowing each word to be represented not
only by the word itself but also the subword com-
ponents of the word in combination. Subword
components can be n-grams with varying values
for n, stems, root words, prefixes, and suffixes or
any other possible formalism. As a matter of fact,
word2vec can been seen as the minimum config-
uration of fastText where only the words are con-
sidered. FastText has been demonstrated (Joulin
et al., 2016) to perform rather well in two different
tasks i.e. sentiment analysis and tag prediction.
For the CoNLL 2017 UD Shared Task we finally

9https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-1989

10https://code.google.com/archive/p/
word2vec/

11Intel Xeon CPU E5-2640 v3 at 2.60GHz.

112

used word2vec, since the results were similar,
but fastText was taking significantly more time to
train.

3 Training and development

We trained all treebanks without any word embed-
dings, with 300 and with 500 dimensional word
embeddings. For BistParser, the only other param-
eter we changed was the size of the first hidden
layer (default 100) which we set to 50 (or lower,
especially for languages whose treebanks are very
small). Every sentence of the training treebanks
was pseudo-projectivised before training. Using
the weighted LAS, we then chose the best com-
bination of parameters for each language. Since
the python version of CNN (used by our adapta-
tion of BistParser) does not support GPU, training
was slow12. Thus we stopped training usually af-
ter 15 epochs unless the intermediary results were
promising enough to continue. Figure 1 shows the
system architecture. The upper part represents the
data flow for the training, the lower part represents
the predicting phase.

We did all training on two Ubuntu 16.04
servers13 with 64 GB RAM. As said above, the
version of the CNN library we used, does not run
on GPU, so all training was single threaded. The
training processes used up to 15 GB RAM, and
took between 1 minute (Kazakh) and 53 hours
(Czech). depending on the size of the treebank.
This corresponds to 0.5 to 3 seconds per sentence
during training. Training for the surprise lan-
guages (using treebanks of typologically close lan-
guages, cf. section, 4), took significantly longer
(up to 90 hours for Czech).

Training was on the gold values (form, lemma,
XPOS, UPOS, deprel, head) of the training tree-
banks14, however, both, the development set (on
the Tira-platform) and the final test set use the UD-
Pipe output e.g. lemma, XPOS or UPOS (Straka
et al., 2016) which may be erroneous. So we ex-
pected a certain drop of LAS for the tests. In order
to be prepared, we tried to add erroneous lemmas
and UPOS in the training data. This, however, did
not produce better results, so we abandoned the

12The successor of CNN, Dynet, supports GPU, but since
BistParser learns on a phrase by phrase base, no gain in time
can be observed.

13Intel Xeon CPU E5-1620 v4 at 3.50GHz and Intel Core
i7-6900K CPU at 3.20GHz respectively.

14Apart from numerous punctuation symbols with wrong
heads, we found several bad annotations for words as well in
different languages.

Figure 1: Schema of the system architecture

idea. Knowing that training takes a certain time
we did not POS-tag the training treebanks with
UDpipe to have similar “noise” than the test tree-
banks. The final results obtained with the devel-
opment corpora (or split from train corpora when
there were no development corpora) are shown in
table 1. We did not (yet) use the morphological
features (column 6). First tests on French showed
that a slight increase in LAS is possible, so we will
work on this in the future.

With 16GB RAM on the virtual machine pro-
vided by Tira (Potthast et al., 2014)15 the 56 devel-
opment corpora (on the Tira platform) were pro-
cessed in about 130 minutes.

4 Surprise languages

The biggest challenge were the 4 surprise lan-
guages. Having only between 20 and 109 sen-
tences to train on (even less if we wanted to split it
into a train and development corpus) did not help
(see table 2 for some details). Since the word em-
bedding files where also rather small we chose not
to train on the languages themselves, but to keep
all of the provided sentences for the development
corpus. So we first tried three similar approaches
in order to be able to predict dependency relations
for these languages:

1. lumping together 2000 sentences of 11 typo-
logically different languages (German, Irish,
Russian, Spanish, Turkisch, Arabic, Persian,
Indonesian, Basque, Finnish and Estonian)

2. lumping together 5000 sentences of 11 typo-
logically different languages (as above)

15The tests are run on the Tira platform (http://www.
tira.io), we used Ubuntu 16.04 as operating system

113

treebank nu
m

be
r

of
di

m
en

si
on

s
of

w
or

d
em

be
dd

in
gs

si
ze

of
hi

dd
en

la
ye

r

w
ei

gh
te

d
LA

S

ar 300 50 76.75
bg 300 100 83.62
ca 300 50 85.67
cs 300 50 87.08
cs-CAC 300 100 85.93
cs-CLTT 500 100 78.95
cu 500 40 75.18
da 500 40 72.46
de 300 50 78.03
el 300 100 80.59
en 300 50 84.60
en-LinES 500 40 77.83
en-ParTUT 300 50 79.93
es 300 50 80.29
es-AnCora 500 100 85.60
et 300 50 67.68
eu 300 50 65.65
fa 500 40 84.23
fi 300 100 77.84
fi-FTP 300 50 82.70
fr 500 100 83.64
fr-ParTut 500 100 83.03
fr-Sequoia 300 50 80.42
ga 500 100 64.84
gl 300 50 78.46
gl-TreeGal 500 100 70.04
got none 100 68.53
grc 500 40 58.21
grc-PROIEL 300 50 66.81
he 300 50 78.87
hi 500 40 89.70
hr 300 100 72.56

treebank nu
m

be
r

of
di

m
en

si
on

s
of

w
or

d
em

be
dd

in
gs

si
ze

of
hi

dd
en

la
ye

r

w
ei

gh
te

d
LA

S

hu 300 40 64.72
id 300 50 71.82
it 500 100 86.34
it-ParTUT 300 100 79.54
ja 500 100 91.04
kk 300 100 31.53
ko 300 50 73.76
la 300 50 54.40
la-ITTB 300 50 72.32
la-PROIEL 300 50 70.49
lv 300 50 69.47
nl 500 100 78.70
nl-LassySmall 500 100 73.99
no-Bokmaal 300 50 82.19
no-Nynorsk 300 50 80.25
pl 500 40 86.78
pt 300 50 91.21
pt-BR 500 100 87.22
ro 300 50 80.10
ru 300 50 80.22
ru-SynTagRus 300 50 82.06
sk 500 40 82.67
sl 300 50 86.62
sl-sst 300 100 60.24
sv 500 100 80.01
sv-LinES 300 50 79.73
tr 300 50 56.60
ug 500 40 42.35
uk 300 50 75.77
ur 500 100 80.89
vi 500 100 71.06
zh 500 100 78.28

Table 1: Development results (without surprise languages)

114

3. lumping together 2000 sentences of 23 typo-
logically different languages (as above and
Chinese, Japanese, Korean, Vietnamese, Ro-
manian, Latin, Greek, Ancient Greek, He-
brew, Urdu and Hungarian)

hsb sme kmr bxr
sentences 109 20 65 20
words 460 147 242 153
has XPOS no yes yes no
has features yes yes yes yes

Table 2: Statistics on the data of the surprise lan-
guages

In all three cases we replaced the forms of all
closed word classes (i.e. all but nouns, adjectives
and verbs) with the corresponding UPOS in the
training and in the test corpus (for the CoNLL 2017
UD Shared Task we inserted the original forms
again after predicting the dependency relations.
The “mix” is then trained with a hidden layer size
of either 100 or 50, but without word embeddings.
We initially tested these models using the test cor-
pus for the Tamil treebank (UD v2.0). Using the
“mix” with 23 languages (3) resulted in the best
weighted LAS, 35.2% (35.3% if using a hidden
layer size of 50). The weighted LAS for the sur-
prise languages is shown in table 3.

language hidden layer size
50 100

Upper Sorbian (hsb) 59.5% 63.2%
Northern Sami (sme) 49.2% 47.5%
Kurmanji (kmr) 28.9% 29.2%
Buryat (bxr) 25.3% 26.3%

Table 3: Weighted LAS of the surprise languages
using a model trained on 23 languages

By replacing words of the closed word classes
by their UPOS we tried to get similar corpora
for training (on languages other than the surprise
language) and predicting (surprise languages), as-
suming that the syntactical structures are simi-
lar enough, especially if we use only typologi-
cally close languages (see below). This technique
avoids also the problem of different alphabets for
typologically close languages, since we use UPOS
and not character chains.

Eventhough these results were encouraging, we
hoped an increase of the weighted LAS should still
be feasible. Especially since some of the surprise

Upper Sorbian Northern Sami
cs (100) 69.5% fi (100) 52.9%
cs (50) 67.5% fiu16(100) 51.7%
pl (50) 56.9% fiu (50) 49.7%
pl (100) 51.9% fi (50) 50.8%

Table 4: Weighted LAS using typologically close
languages (with hidden layer size)

languages are typologically (very) close to lan-
guages within the Universal Dependency corpus:
Upper Sorbian is a slavonic language very close to
Czech (and slightly less close to Polish). North-
ern Sami shares quite a lot of typological features
with the Finnic branch of the Fenno-Ugric lan-
guages (here Finnish and Estonian), and Kurmanji
shares at least some typolological feature with Per-
sian (both are from the Iranian subgroup of the
Indo-European language family. However Buryat,
a Mongolian language, is not typologically close
to any of the shared task’s languages. Even though
Turkish seems close enough, to our surprise Hindi
was finally the best guess. With Urdu, which is
very similar to Hindi apart from the fact that it
uses the Arabic alphabet instead of Devanagari,
the LAS was less good.

As for the language mix, we replaced the forms
of the closed word classes in the training corpora
by the corresponding UPOS (except nouns, verbs
and adjectives) and trained the modified treebanks
(cf. tables 4 and 5, best configuration in bold).

Kurmanji Buryat
fa (100) 36.7% hi (50) 32.0%
fa (50) 35.8% hi (100) 28.1%
hi (50) 22.2% ur (50) 28.0%
hi (100) 22.0% tr (100) 27.6%
ur (100) 20.6% fi (100) 21.8%
ur (50) 20.6% tr (50) 19.4%

ja (50) 18.0%

Table 5: Weighted LAS using typologically close
languages (with hidden layer size)

The reason for not replacing nouns, adjectives,
and verbs is simple: Leaving the original words
of the training corpus language and the test cor-
pus language, means while the parser predicts, it
comes across a word which it has never seen dur-
ing training. But since it has the UPOS, it has

16fiu represents the Fenno-Ugric languages, in our case a
mix of Finnish, Estonian and Hungaric

115

treebank de
ve

lo
pm

en
t

re
su

lts

fin
al

te
st

re
su

lts

di
ffe

re
nc

e

ar 76.75 67.26 -9.49
ar-pud (unavailable for dev.) 44.77
bg 83.62 85.06 1.44
bxr (surprise lg) 32.00 25.25 -6.75
ca 85.67 86.24 0.57
cs 87.08 84.33 -2.75
cs-CAC 85.93 83.98 -1.95
cs-CLTT 78.95 72.99 -5.96
cs-pud (unavailable for dev.) 79.49
cu 75.18 64.26 -10.92
da 72.46 73.54 1.08
de 78.03 73.38 -4.65
de-pud (unavailable for dev.) 69.75
el 80.59 80.69 0.10
en 84.60 77.51 -7.09
en-LinES 77.83 73.36 -4.47
en-ParTUT 79.93 75.78 -4.15
en-pud (unavailable for dev.) 79.67
es 80.29 83.03 2.74
es-AnCora 85.60 85.57 -0.03
es-pud (unavailable for dev.) 78.78
et 67.68 58.98 -8.70
eu 65.65 65.29 -0.36
fa 84.23 80.87 -3.36
fi 77.84 73.97 -3.87
fi-FTP 82.70 78.64 -4.06
fi-pud (unavailable for dev.) 77.52
fr 83.64 80.58 -3.06
fr-ParTut (*) 83.03 77.26 (tested

with fr)
fr-pud (unavailable for dev.) 74.63
fr-Sequoia 80.42 81.54 1.12
ga 64.84 63.10 -1.74
gl 78.46 79.66 1.20
gl-TreeGal (*) 70.04 22.46 (tested

with gl)
got 68.53 57.97 -10.56
grc 58.21 54.10 -4.11
grc-PROIEL 66.81 65.50 -1.31
he 78.87 58.07 -20.8
hi 89.70 87.09 -2.61
hi-pud (unavailable for dev.) 51.02
hr 72.56 77.11 4.55

treebank de
ve

lo
pm

en
t

re
su

lts

fin
al

te
st

re
su

lts

di
ffe

re
nc

e

hsb (surprise lg) 69.50 58.25 -11.25
hu 64.72 64.59 -0.13
id 71.82 73.64 1.82
it 86.34 86.65 0.31
it-ParTuT 79.54 (withdrawn)
it-pud (unavailable for dev.) 84.89
ja 91.04 73.37 -17.67
ja-pud (unavailable for dev.) 76.74
kk 31.53 21.31 -10.22
kmr (surprise lg) 36.70 38.31 1.61
ko 73.76 67.76 -6.00
la 54.40 43.16 -11.27
la-ITTB 72.32 76.42 4.10
la-PROIEL 70.49 60.44 -10.05
lv 69.47 61.52 -7.95
nl 78.70 70.33 -8.37
nl-LassySmall 73.99 77.58 3.59
no-Bokmaal 82.19 83.79 1.60
no-Nynorsk 80.25 81.69 1.44
pl 86.78 81.71 -5.07
pt 91.21 76.40 -14.81
pt-BR 87.22 87.07 -0.15
pt-pud (unavailable for dev.) 69.00
ro 80.10 81.34 1.24
ru 80.22 76.28 -3.94
ru-pud (unavailable for dev.) 69.58
ru-SynTagRus 82.06 87.10 5.04
sk 82.67 75.97 -6.7
sl 86.62 82.38 -4.24
sl-sst (*) 60.24 40.25 (tested

with sl)
sme (surprise lg) 52.90 33.08 -19.82
sv 80.01 78.85 -1.16
sv-LinES 79.73 74.28 -5.45
sv-pud (unavailable for dev.) 70.82
tr 56.60 55.21 -1.39
tr-pud (unavailable for dev.) 34.36
ug 42.35 34.24 -8.11
uk 75.77 62.30 -13.47
ur 80.89 77.93 -2.96
vi 71.06 39.12 -31.94
zh 78.28 59.33 -18.95
average 74.40 68.61

Table 6: comparison of training results (on development corpora) and final results. Due to an error, the
models for the treebanks marked (*) were unfortunately not used for the tests.

116

an idea what to do. If we took UPOS for verbs,
nouns, and adjectives, this meant that the whole
training (and test) corpus would only contain one
single verb (namely VERB), noun (NOUN) and ad-
jective (ADJ). Tests showed, that the parser got
confused, since it encountered the same verb, noun
or adjective in very different syntactic contexts. Of
course, this applies also to prepositions or adverbs
but keeping the open word classes gave the best
development results.

As expected, Upper Sorbian and Norther Sami
give quite acceptable results using models trained
on Czech and Finnish respectively. Due to the
fact that the provided treebanks for Kazakh and
Uyghur are both very small we tried to apply the
same approach of using the training corpus of a ty-
pologically close language (here Turkish). How-
ever, the results were disappointing. Thus, we
continue to use the models trained on very small
corpora for these two languages in the shared
task. Possibly the fact that the raw text corpus
used to calculate word embeddings for Kazakh
and Uyghur are much bigger than those of the sur-
prise languages allowed to produce usable word
embeddings. If so, this would mean that word em-
beddings play a very prominent role in data driven
dependency parsing.

5 Results of the Shared Task

Our final macro-averaged LAS F1 score on the
CoNLL 2017 UD Shared Task test data (Nivre
et al., 2017a) was 68.61%, (10th out of 33)17. The
details show that our approach worked well for
the bigger treebanks and the surprise languages
(where we ended up as 8th). In general, the results
per language are slightly lower than those we had
during training on the development corpora (cf. ta-
ble 1). This is due to the fact we did our training
on forms, lemmas, UPOS and XPOS of the train-
ing corpus, which are gold. In the test data, lem-
mas, UPOS and XPOS (if present), however, are
predicted by UDpipe, and do contain some errors
with respect to the gold standard.

After the end of the test phase, we discovered
a bug in our chain, which concerned languages,
which have only UPOS data. In this case the
UPOS information was totally discarded by error.
Thus all training and testing are done only on the

17http://universaldependencies.org/
conll17/results.html

forms18.
Further we made en error uploading the models

for the gl TreeGal, fr parTut and sl sst
treebanks. During the tests the models trained
on the basic gl, fr and sl treebanks were used
instead. After the test phase we corrected these
errors. Fortunately, their impact was not that
hard. Apart from the result for gl TreeGal and
sl sst, which went up to 66.13% (from 22.46%)
and to 47.68 (from 40.25) respectively once the
correct model was used, the results for the other
corpora changed only slightly, the global results
could have been 69.38%. All results are shown
in table 6. The column on the right shows the
difference between the results of the development
corpora and test data. For some languages, the
test results are unexpectedly lower than the results
on the development corpora. For gl TreeGal,
fr parTut and sl sst, this is due to errors
when installing our system on the Tira-platform.
The lower performance on languages like Chinese,
Ukrainian, Vietnamese or Latin (both ITTB and
PROIEL) seems to be caused by the nature of the
test corpora themselves. Systems of other partici-
pants seem to drop in performance as well; for all
these languages our system is still around the 10th
position of the global ranking. Perhaps a cause
may be the fact that the XPOS we use (predicted
by UDpipe) contain more errors than average for
the Chinese, Ukrainian or Vietnamese treebanks
than for languages where our test score is closer to
the development score.

Acknowledgments

We would like to thank the developpers of Bist-
Parser, Eliyahu Kiperwasser and Yoav Goldberg,
and the developper of the CNN library (Chris
Dyer) for making them available as open source
on GitHub. Finally we would like to thank our
colleague Ghislain Putois for help on all aspects
on neural networks.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors
with subword information. CoRR abs/1607.04606.
http://arxiv.org/abs/1607.04606.

18This concerns the treebanks da, en-LinES, es, eu, fr,
fr-Sequoia, hr, hu, id, ja, nl-LassySmall, no-Bokmaal, no-
Nynorsk, ru-SynTagRus and sv-LinEs.

117

Marie Candito, Guy Perrier, Bruno Guillaume,
Corentin Ribeyre, Karën Fort, Djamé Seddah, and
Éric de la Clergerie. 2014. Deep syntax annotation
of the sequoia french treebank. In Proc. of LREC
2014. Reykjavı́k, Iceland.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016. Bag of tricks for ef-
ficient text classification. CoRR abs/1607.01759.
http://arxiv.org/abs/1607.01759.

Eliyahu Kiperwasser and Yoav Goldberg.
2016. Easy-first dependency parsing with
hierarchical tree lstms. TACL 4:445–461.
https://transacl.org/ojs/index.php/tacl/article/view/798.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Morgan and Claypool
Publishers.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and
Giorgio Satta. 2011. Dynamic programming al-
gorithms for transition-based dependency parsers.
In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguis-
tics: Human Language Technologies - Volume
1. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’11, pages 673–682.
http://dl.acm.org/citation.cfm?id=2002472.2002558.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu, and
Castelló Jungmee Lee. 2013. Universal dependency
annotation for multilingual parsing. In Proc. of ACL
2013.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Joakim Nivre. 2008. Algoritms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513–553.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, Portorož, Slovenia, pages
1659–1666.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Depen-
dencies (UDW 2017). Association for Computa-
tional Linguistics, Gothenburg, Sweden, pages 86–
95. http://www.aclweb.org/anthology/W17-0411.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague. http://hdl.handle.net/11234/1-1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Héctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

118

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 119–125,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

TurkuNLP: Delexicalized Pre-training of Word Embeddings for
Dependency Parsing

Jenna Kanerva1,2, Juhani Luotolahti1,2, and Filip Ginter1

1Turku NLP Group
2University of Turku Graduate School (UTUGS)

University of Turku, Finland
jmnybl@utu.fi, mjluot@utu.fi, figint@utu.fi

Abstract

We present the TurkuNLP entry in the
CoNLL 2017 Shared Task on Multilingual
Parsing from Raw Text to Universal De-
pendencies. The system is based on the
UDPipe parser with our focus being in ex-
ploring various techniques to pre-train the
word embeddings used by the parser in or-
der to improve its performance especially
on languages with small training sets. The
system ranked 11th among the 33 partici-
pants overall, being 8th on the small tree-
banks, 10th on the large treebanks, 12th on
the parallel test sets, and 26th on the sur-
prise languages.

1 Introduction

In this paper we describe the TurkuNLP entry
in the CoNLL 2017 Shared Task on Multilin-
gual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2017). The Univer-
sal Dependencies (UD) treebank collection (Nivre
et al., 2017b) has 70 treebanks for 50 languages
with cross-linguistically consistent annotation. Of
these, the 63 treebanks which have at least 10,000
tokens in their test section are used for training and
testing the systems. Further, a parallel corpus con-
sisting of 1,000 sentences in 14 languages was de-
veloped as an additional test set, and finally, the
shared task included test sets for four “surprise”
languages not known until a week prior to the test
phase of the shared task (Nivre et al., 2017a). No
training data was provided for these languages —
only a handful of sentences was given as an ex-
ample. As an additional novelty, participation in
the shared task involved developing an end-to-end
parsing system, from raw text to dependency trees,
for all of the languages and treebanks. The partic-
ipants were provided with automatically predicted

word and sentence segmentation as well as mor-
phological tags for the test sets, which they could
choose to use as an alternative to developing own
segmentation and tagging. These baseline seg-
mentations and morphological analyses were pro-
vided by UDPipe v1.1 (Straka et al., 2016).

In addition to the manually annotated treebanks,
the shared task organizers also distributed a large
collection of web-crawled text for all but one of
the languages in the shared task, totaling over 90
billion tokens of fully dependency parsed data.
Once again, these analyses were produced by the
UDPipe system. This automatically processed
large dataset was intended by the organizers to
complement the manually annotated data and, for
instance, support the induction of word embed-
dings.

As an overall strategy for the shared task, we
chose to build on an existing parser and focus
on exploring various methods of pre-training the
parser and especially its embeddings, using the
large, automatically analyzed corpus provided by
the organizers. We expected this strategy to be
particularly helpful for languages with only a lit-
tle training data. On the other hand we put only
a minimal effort into the surprise languages. We
also chose to use the word and sentence segmen-
tation of the test datasets, as provided by the or-
ganizers. As we will demonstrate, the results of
our system correlate with the focus of our efforts.
Initially, we focused on the latest ParseySaurus
parser (Alberti et al., 2017), but due to the magni-
tude of the task and restrictions on time, we finally
used the UDPipe parsing pipeline of Straka et al.
(2016) as the basis of our efforts.

2 Word Embeddings

The most important component of our system
is the novel techniques we used to pre-train the

119

word embeddings. Our word embeddings com-
bine three important aspects: 1) delexicalized syn-
tactic contexts for inducing word embeddings, 2)
word embeddings built from character n-grams,
and 3) post-training injection and modification of
embeddings for unseen words.

2.1 Delexicalized Syntactic Contexts
Word embeddings induced from large text corpora
have been a key resource in many NLP task in
recent years. In many common tools for learn-
ing word embeddings, such as word2vec (Mikolov
et al., 2013), the context for a focus word is a slid-
ing window of words surrounding the focus word
in linear order. Levy and Goldberg (2014) extend
the context with dependency trees, where the con-
text is defined as the words nearby in the depen-
dency tree with additionally the dependency rela-
tion attached to the context words, for example in-
terresting/amod.

In Kanerva et al. (2017), we show that word
embeddings trained in a strongly syntactic fash-
ion outperform standard word2vec embeddings in
dependency parsing. In particular, the context is
fully delexicalized — instead of using words in the
word2vec output layer, only part-of-speech tags,
morphological features and syntactic functions are
predicted. This delexicalized syntactic context is
shown to lead to higher performance as well as
generalize better across languages.

In our shared task submission we build on top
of the previous work and optimize the embeddings
even closer to the parsing task: We extend the orig-
inal delexicalized context to also predict parsing
actions of a transition-based parser. From the ex-
isting parse trees in the raw data collection, we
create the transition sequence used to produce the
tree and for each word collect features describing
the actions taken when the word is on top-2 posi-
tions of the stack, e.g. if the focus word is first on
stack, what is the next action. Our word–context
pairs are illustrated in Table 1. In this way, we
strive to build embeddings which relate together
words which appear in similar configurations of
the parser.

2.2 Word embeddings from character
n-grams

It is known that the initial embeddings affect the
performance of neural dependency parsers and
pre-training the embedding matrix prior to train-
ing has an important effect on the performance of

interesting question
amod

root

input context
interesting ADJ
interesting Degree=Pos
interesting amod
question NOUN
question Number=Sing
question root
question Dep amod

interesting stack1 shift
interesting stack2 left-arc
interesting stack2 left amod
question stack1 left-arc
question stack1 left amod
question stack1 root

character four-grams
interesting, char $int, char inte, char nter,
char tere, char eres, char rest, char esti,
char stin, char ting, char ing$
question, char $que, char ques, char uest
char esti, char stio, char tion, char ion$

Table 1: Delexicalized contexts and character n-
grams for word embeddings

neural systems (Chen and Manning, 2014; Andor
et al., 2016).

Since the scope of languages in the task is large,
the embeddings used for this dependency pars-
ing task need to be able to be representative of
languages with both large and small available re-
sources, and also they need to be able to cap-
ture morphological information for languages with
complex morphologies as well as those with less
morphological variation.

To address better the needs of small languages
with very little of data available as well as mor-
phologically rich languages, we build our word
embedding models with methods used in the pop-
ular fastText1 representation of Bojanowski et al.
(2016). They suggest, instead of tokens, to use
character n-grams as the basic units in building
embeddings for words. First, words are turned into
character n-grams and embeddings are learned
separately for each of these character n-grams.
Secondly, word vectors are assembled from these

1https://github.com/facebookresearch/
fastText

120

trained character embeddings by averaging all
character n-grams present in a word. To make
the embeddings more informative, the n-grams in-
clude special markers for the beginning and the
end of the token, allowing the model for exam-
ple to learn special embeddings for word suffixes
which are often used as inflectional markers. In
addition to the n-grams, a vector for the full word
is also trained, and when final word vectors are
produced, the full word vector is treated similarly
as other n-grams and is averaged as part of the fi-
nal product along with the rest. This allows for the
potential benefits of token level embeddings to be
materialized in our model.

Table 1 demonstrates the splitting of a word
into character four-grams with special start and
end markers. When learning embeddings for
these character n-grams, context for each n-gram
is replicated from the original word context, i.e.
each character n-gram created from the word in-
teresting gets the delexicalized context assigned
for that word, namely ADJ, Degree=Pos, amod,
stack1 shift, stack2 left-arc, stack2 left amod in
the example Table 1.

This procedure offers multiple advantages. One
of them is the ability to construct embeddings for
previously unseen words, a common occurrence
especially with languages with small training cor-
pora. With these character n-gram embeddings
we are basically able to build an embedding for
any word, except very few cases where we do
not find any of the character n-grams from our
trained model. Another advantage of this em-
bedding scheme is its better ability to address the
morphological variation compared to plain token
based embeddings.

2.3 Data and Parameters

For the training of word embeddings for each lan-
guage we took training data from the treebank
training section and the automatically analyzed
raw corpus (Ginter et al., 2017). Using also the
treebank training section is important for very
small languages where there is very little of raw
data, especially for Old Church Slavonic where
the raw data has only 29,000 tokens compared to
37,500 tokens in the treebank training set, while
for big languages it barely makes any difference as
the treebank data gets buried under the mass of raw
data. For each language we build character n-gram

embedding models using word2vecf software2 by
Levy and Goldberg (2014) with negative sam-
pling, skip-gram architecture, embeddings dimen-
sionality of 100, delexicalized syntactic contexts
explained in Section 2.1 and character n-grams of
length 3-6. The maximum size of raw data used
is limited to 50 million unique sentences in or-
der to keep the training times bearable, and sen-
tences longer that 30 tokens are discarded. Lan-
guages with only very limited resources we run 10
training iterations, but for rest only one iteration
is used. These character n-gram models explained
in detail in Section 2.2 can then be used to build
word embeddings for arbitrary words, only requir-
ing that at least one of the extracted character n-
grams is present in our embedding model.

For parsing we also used the parameters opti-
mized for UDPipe baseline system and changed
only parts related to pre-trained embeddings. As
we do not perform further parameter optimiza-
tion, we trained our models always using the full
training set, also in cases where different devel-
opment sets were not provided. For small tree-
banks without development data, we did not test
our models in advance but trusted methods tested
on other treebanks to generalize also for these. For
each language we include 100-dim word embed-
dings trained using our methods described in Sec-
tions 2.1 and 2.2. Additionally, pre-trained fea-
ture embeddings are trained for upos+feat com-
binations included in the xpostag column. These
embeddings are trained using the transition actions
as delixicalized context, and vectors for full fea-
ture combinations are constructed from individual
features using the same character n-gram method
as in the word embeddings (one feature is now the
same as one character n-gram).

3 Parsing Pipeline

Our submission builds on top of the UDPipe pars-
ing pipeline by Straka et al. (2016). We use data
segmented by the UDPipe baseline systems as our
system input, and then morphological analysis and
syntactic parses are produced with our own UD-
Pipe models. The UDPipe morphological tagger
(MorphoDiTa (Straková et al., 2014)) is run as-is
with parameters optimized for the baseline system
(released together with the baseline models). The
only exception is that we replaced the language-
specific postag (xpostag) column with a combined

2https://github.com/BIU-NLP/word2vecf

121

universal postag (upostag) and morphological fea-
tures (feats), and trained the tagger to produce this
instead of the language-specific postags. We did
not expect this to affect the tagging accuracy, but
instead it was used to provide pre-trained feature
embeddings for the parser.

We further modified the UDPipe parser to allow
including new embedding matrices after the model
has been trained. This gives us an easy way to add
embeddings for arbitrary words without a need of
training a new parsing model. As we are able to
create word embeddings for almost any word us-
ing our character n-gram embeddings described in
Section 2.2, we are able to collect vocabulary from
the data we are parsing, create vectors for previ-
ously unseen words and inject these vectors into
the parsing model. This method essentially elimi-
nates all out of vocabulary words.

3.1 Post-training modifications of word
embeddings

The UDPipe parser uses the common technique
of adjusting the word embeddings during train-
ing. The magnitude of the change imposed by
the parser depends on the frequency of the word
in the training data and, naturally, only words seen
in the training set are subject to this training-phase
adjustment. Therefore, we implemented a step
whereby we transfer the parser adjustments onto
the words not seen in the training data. For ev-
ery such unseen word, we calculate its transla-
tion in the vector space by summing the parser-
induced changes of known words in its neighbor-
hood. These are weighted by their cosine similar-
ity with the unknown word, using a linear function
mapping similarities in the [0.5, 1.0] interval into
weights in the [0.0, 1.0] range. I.e. known words
with similarity below 0.5 do not contribute, and
thereafter the weighting is linear. The overall ef-
fect of this modification observed in our develop-
ment runs was marginal.

3.2 Parallel test sets (PUD)
Parallel test sets are parsed with a model trained on
the default treebank of a language (the one without
any treebank-specific suffix). For many languages
only one treebank exists and no choice is needed,
but for some there are two or even more choices.
We chose to use these treebanks without tree-
bank suffixes as the very first treebank included
for a language will receive just the language code
without the treebank suffix while newer treebanks

will get a distinguishable treebank suffix. It then
means that the default treebanks without suffixes
have been part of the UD collection longer, many
of these originating from the Google’s Universal
Treebank collection (McDonald et al., 2013). We
hypothesized these treebanks to be more harmo-
nized to the UD guidelines and apply better to the
new test sets.

3.3 Surprise languages

In this work we did not concentrate on parsing
the four surprise languages, and only used a very
naive approach to complete the submission of all
required test sets. For each surprise language we
simply picked one existing model among all mod-
els trained for regular treebanks. We parsed the
small sample of example sentences (about 20 sen-
tences for each language) with all existing mod-
els, and picked the one which maximized the LAS
score (Kazakh for Buryat, Galician-TreeGal for
Kurmanji, Portuguese for North Sami and Slove-
nian for Upper Sorbian) without doing any tree-
bank size, language family or related language
evaluation. The only change in the parsing model
is that during parsing, we mask all word embed-
dings, this way preventing the parser to use the
vector for unknown word too often. This makes
our parsing model delexicalized as all word em-
beddings are zeroed after training and not used in
parsing, with the exception that parsing model is
trained using information from word embeddings.

4 Results

The participating systems are tested using TIRA
platform (Potthast et al., 2014), where the system
must be deployed on a virtual machine and the test
sets are processed without direct access to the data.
Overall rank of our system in the official evalu-
ation is 11th out of 33 participating teams with
a macro-averaged labeled attachment score (LAS)
of 68.59%.3 On macro-LAS score across all tree-
banks, we are clearly behind the winning system
(Stanford, 76.30%), but our pre-trained word em-
beddings are able to improve over the baseline
UDPipe by 0.24% points on average. When look-
ing only at treebanks with very little of training
data we gain on average 2.38% over the baseline
system. The same number for the big treebanks

3Full list of the official results can be found
at http://universaldependencies.org/
conll17/results.html.

122

only is +1.15%, +0.23% for parallel test sets and
-16.55% for surprise languages. Based on these
numbers we can clearly see that we managed to
get a substantial improvement over the baseline
system on very small languages where we also as-
sumed our word embeddings to be most helpful.
Instead, our very naive approach for handling sur-
prise languages is clearly not sufficient, and a bet-
ter approach should have been implemented. De-
tailed results of our system are shown in Table 2.

On official evaluation our system ranked sixth
on universal part-of-speech tagging and second
on morphological features. We see modest im-
provement of +0.22% (upos) and +0.27% (feats)
over the baseline models. As word embeddings
are not used in tagging and we use the same pa-
rameters as the baseline system, the only modifi-
cation we did in tagging is that instead of using
language-specific postags (xpostag), we concate-
nated universal postag and morphological features
into xpostag column and trained the tagger to pro-
duce this concatenation.

5 Conclusions

We have presented our entry in the CoNLL 2017
Shared Task on Multilingual Parsing from Raw
Text to Universal Dependencies, with the 11th
rank of 33 participants. During the development,
we have focused on exploring various ways of
pre-training the embeddings used by the parser,
as well as providing embeddings also for the
unknown words in the data to be parsed. In
particular, we have proposed a method of pre-
training the embeddings using an entirely delex-
icalized output layer of the word2vec skip-gram
model. This mode of pre-training the embed-
dings is shown to be superior to the usual approach
of pre-training with the standard word2vec skip-
gram with negative sampling. We have also ex-
plored, here with only a minimal improvement to
the score, the possibility of post-hoc application
of the adjustments effected by the parser on the
word embeddings during the training phase. All
our components used in this paper are freely avail-
able at https://github.com/TurkuNLP/
conll17-system.

Acknowledgments

This work was supported by the Finnish Academy
and the Kone Foundation. Computational re-
sources were provided by CSC – IT Center for

Science, Finland.

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Dan Gillick, Lingpeng Kong, Terry Koo,
Ji Ma, Mark Omernick, Slav Petrov, et al. 2017.
Syntaxnet models for the conll 2017 shared task.
arXiv preprint arXiv:1703.04929 .

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042 .

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan
Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task - automatically annotated raw texts
and word embeddings. LINDAT/CLARIN
digital library at the Institute of Formal
and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1989.

Jenna Kanerva, Sampo Pyysalo, and Filip Ginter.
2017. Delexicalized contexts for pure dependency-
based word embeddings. In Proceedings of the In-
ternational Conference on Dependency Linguistics
(Depling’17). Under review.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of ACL.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, Os-
car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In ACL (2).
pages 92–97.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of ICLR.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

123

Big Treebanks
Treebank Rank LAS F1 Treebank Rank LAS F1
ar 17 65.74 hr 9 78.57
bg 11 84.85 hu 10 65.61
ca 11 85.64 id 12 74.87
cs 13 83.48 it 15 85.66
cs_cac 8 84.28 ja 15 72.81
cs_cltt 11 73.83 ko 11 66.93
cu 11 65.43 la_ittb 9 78.99
da 12 74.61 la_proiel 11 59.86
de 17 69.32 lv 8 62.13
el 13 79.93 nl 14 69.59
en 11 76.68 nl_lassysmall 14 79.06
en_lines 8 74.77 no_bokmaal 13 83.60
en_partut 13 74.48 no_nynorsk 10 82.35
es 15 81.79 pl 12 80.11
es_ancora 15 84.15 pt 10 82.91
et 10 59.79 pt_br 12 86.36
eu 13 70.22 ro 10 80.71
fa 20 76.54 ru 17 74.69
fi 9 75.82 ru_syntagrus 13 86.79
fi_ftb 9 75.59 sk 12 74.72
fr 12 80.61 sl 8 82.77
fr_sequoia 10 81.12 sv 12 77.35
gl 17 77.66 sv_lines 13 74.46
got 9 61.52 tr 13 54.69
grc 8 59.83 ur 14 77.06
grc_proiel 7 68.04 vi 14 38.07
he 16 57.50 zh 12 58.71
hi 7 87.75

All 10 74.19

Parellel Test Sets Surprise Test Sets
Treebank Rank LAS F1 Treebank Rank LAS F1
ar_pud 27 42.34 bxr 26 14.22
cs_pud 11 80.02 hsb 25 34.67
de_pud 17 66.78 kmr 23 22.19
en_pud 9 79.61 sme 27 10.99
es_pud 12 78.02 All 26 20.52
fi_pud 8 79.61
fr_pud 14 74.17 Small Treebanks
hi_pud 8 51.87 Treebank Rank LAS F1
it_pud 12 84.18 fr_partut 12 78.83
ja_pud 19 76.09 ga 7 64.25
pt_pud 12 74.09 gl_treegal 9 66.47
ru_pud 8 69.11 kk 2 28.31
sv_pud 16 69.90 la 9 47.91
tr_pud 15 34.09 la_ittb 9 78.99
All 12 68.56 la_proiel 11 59.86

sl_sst 11 47.50
All treebanks ug 6 36.51
Treebank Rank LAS F1 uk 7 63.70
All 11 68.59 All 8 54.18

Table 2: Rank and labeled attachment score for our system in the official evaluation.

124

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Jana Straková, Milan Straka, and Jan Hajič. 2014.
Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recogni-
tion. In Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics:
System Demonstrations. Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 13–
18. http://www.aclweb.org/anthology/P/P14/P14-
5003.pdf.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

125

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 126–133,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

The parse is darc and full of errors: Universal dependency parsing with
transition-based and graph-based algorithms

Kuan Yu Pavel Sofroniev Erik Schill Erhard Hinrichs
Department of Linguistics, University of Tübingen

{kuan.yu,pavel.sofroniev,erik.schill}@student.uni-tuebingen.de
erhard.hinrichs@uni-tuebingen.de

Abstract

We developed two simple systems for de-
pendency parsing: darc, a transition-based
parser, and mstnn, a graph-based parser.
We tested our systems in the CoNLL 2017
UD Shared Task, with darc being the of-
ficial system. Darc ranked 12th among 33
systems, just above the baseline. Mstnn
had no official ranking, but its main score
was above the 27th. In this paper, we
describe our two systems, examine their
strengths and weaknesses, and discuss the
lessons we learned.

1 Introduction

Universal Dependencies (UD) (Nivre et al.,
2016) is a cross-linguistically consistent annota-
tion scheme for dependency-based treebanks. UD
version 2.0 (UD2) (Nivre et al., 2017b,a) provided
the datasets for the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies (Zeman et al., 2017). In the shared
task participating systems were evaluated through
the TIRA platform (Potthast et al., 2014). The
main evaluation metric was the labeled attachment
F1-score (LAS). 33 systems completed the official
evaluation, including the baseline UDPipe (Straka
et al., 2016).

We submitted a primary system darc and a
secondary system mstnn, with the primary sys-
tem partaking in the official evaluation. Both
are open sourced under the MIT license.1 The
two systems differ only in the parsing algo-
rithm. Darc is equipped with a transition-
based non-projective/projective parser. Mstnn is
equipped with a graph-based non-projective unla-
beled parser and a standalone labeler. Both sys-

1
https://github.com/CoNLL-UD-2017/darc

tems utilize a neural network classifier with simi-
lar input features.

In this paper, we start with a description of
our treatments for different datasets in the shared
task, and then the separate descriptions of our two
parsers, followed by an analysis of the results.

2 Treatments for datasets

We were tasked with producing parsed outputs for
81 test-sets, either from raw texts or from seg-
mented and tagged inputs produced by the base-
line system.

The outputs were required to conform to the
CoNLL-U format.2 In this format, each node
in a dependency-graph has ten fields named ID,
FORM, LEMMA, UPOSTAG, XPOSTAG, FEATS,
HEAD, DEPREL, DEPS, and MISC, where ID,
HEAD, and DEPREL defines an edge. Segmen-
tation establishes the graph/sentence boundaries
while filling in ID, FORM, and MISC. Tag-
ging fills in LEMMA, UPOSTAG, XPOSTAG,
and FEATS.

63 test-sets have corresponding treebanks in
UD2. These treebanks were the only training re-
sources we used.

2.1 Big treebanks

The majority of the treebanks in UD2 (55/63) con-
sist of train-sets and dev-sets. These are the big
treebanks.

For segmentation and tagging, we trained UD-
Pipe models on the train-sets and used the dev-sets
for parameter tuning.3 The only hyperparameter
tuned by the dev-sets was the number of train-
ing iterations. All the other hyperparameters were

2
http://universaldependencies.org/format.html

3Danish, Finnish-FTB, and Slovenian-SST treebanks are
missing the SpaceAfter=No information in MISC. For
training the tokenizers, this information was added.

126

simply taken from the baseline models (Straka,
2017), because of our limited computing power.

The gold-standard train-sets were re-tagged by
our UDPipe models to produce training data for
our parsers.

2.2 Small treebanks
The remainder of the treebanks (8/63) consist only
of train-sets. These are the small treebanks.

Here we consulted the approach of the baseline
system, which split the train-sets into three parts:
train, tune, and dev. For our UDPipe models, both
the train-sets and tune-sets were used for training,
and the dev-sets for tuning. For our parser models,
the entirety of treebanks was used for training, and
all hyperparameters took the default values.

2.3 Parallel test-sets
The 14 parallel test-sets have no corresponding
treebanks, but the corresponding languages exist.
For these we used the preprocessed inputs from
the baseline system, and picked our parser models
according to the languages. If multiple treebanks
exist for the same language, we took the model
trained on the first one.

2.4 Surprise languages
4 test-sets have no corresponding languages,
though small samples of gold-standard data were
released as part of the shared task. Again, we used
the preprocessed inputs from the baseline system.

For each sample we applied our existing parser
models to pick the best treebank for training a
delexicalized model. These delexicalized models
rely mostly on UPOSTAG, but may utilize FEATS
as well. This setting, along with the other hyper-
parameters, were tuned by the sample data.4

3 Primary system: darc

Our primary system employs a transition-based
parser.

We adapted our parser from Chen and Manning
(2014), who used a neural network classifier in a
transition-based parsing algorithm known as the
arc-standard system (Nivre, 2008).

The neural network classifier requires little fea-
ture engineering, and therefore is easily adapt-
able for different languages, making it ideal for

4In the end, we used the Polish treebank for Buryat and
Kurmanji, Finnish for North Sami, and Slovenian for Upper
Sorbian. The FEATS field was used in the models for Buryat
and North Sami.

UD parsing. However, the arc-standard system is
only applicable to projective parsing, while over
half of the treebanks in UD2 have more than 10%
non-projective sentences in the train-sets. For
this reason, we adopted a non-projective variant
by adding a swap action to the transition sys-
tem (Nivre, 2009; Nivre et al., 2009). We chose ei-
ther the projective or the non-projective algorithm
based on how they performed for each treebank.
In the end, we used the non-projective one for all
but three treebanks.5

3.1 The transition algorithm

The algorithm produces a directed acyclic graph
from a sequence of nodes [w0, w1, . . . , wn], which
are the syntactic tokens of a sentence, where
w0 is a pseudo root node. The transition sys-
tem consists of several transition actions defined
over configurations. Each configuration is a
triple consisting of a stack σ, a buffer β, and a
set of edges A. From the initial configuration
c0 : (σ : [w0], β : [w1, w2, . . . , wn], A : {}), a se-
ries of transition actions are taken to produce a ter-
minal configuration cm : (σ : [w0], β : [], A).

Possible transition actions are listed below. A
different action is defined for each l in the set of
dependency labels.

shift
(σ, [wi|β], A) 7→ ([wi|σ], β, A)

left arcl

([wj , wi|σ], β, A) 7→ ([wj |σ], β, A∪{(wj , l, wi)})
right arcl

([wj , wi|σ], β, A) 7→ ([wi|σ], β, A∪{(wi, l, wj)})
where 0 ̸= i

swap
([wj , wi|σ], β, A) 7→ ([wj |σ], [wi|β], A)

where 0 < i < j

3.2 Input features

As input features, we use the set of 18 graph nodes
from Chen and Manning (2014):

• The top three words on the stack & buffer

• The first & second leftmost & rightmost chil-
dren of the top two words on the stack

5Persian, Spanish, and Vietnamese.

127

• The leftmost-of-leftmost & rightmost-of-
rightmost children of the top two words on
the stack

For each node we take its FORM, LEMMA,
UPOSTAG, FEATS, and DEPREL fields. Each
field is represented through an embedding into the
real vector space. However, some treebanks have
no informative LEMMA. For these treebanks we
omit the LEMMA embedding, and double the di-
mension of the FORM embedding.6

All embeddings are trainable, except for the
FEATS embedding. Each FEATS is represented
by a vector of binary values, indicating the pres-
ence or absence of any attribute-value pairs in
the morphological vocabulary of its affiliated tree-
bank.

In any transition configuration, some nodes may
be missing, for which special dummy members
are in all embeddings. Special members are also
appointed for the root node. For FORM and
LEMMA, all hapaxes are replaced with a single
arbitrary symbol.

Table 1 lists the number of rows (min, max &
avg) and columns (dim) in the embedding matri-
ces.

field min max avg dim

FORM 70 58562 9070 32
LEMMA 89 29972 6321 32
UPOSTAG 13 19 18 12
DEPREL 21 55 37 16

Table 1: Shapes of embedding matrices

The amount of parameters in the embedding
matrices for FORM and LEMMA are substantial.
Initializing these parameters with pretrained em-
beddings has been shown to be beneficial (Chen
and Manning, 2014). To produce embeddings
which are more suitable for capturing syntactic
information, we used the tool developed by Ling
et al. (2015).7

The embeddings for UPOSTAG and DE-
PREL are randomly initialized from the
uniform(−0.5, 0.5) distribution.

6Korean, Portuguese-BR, English-LinES, Indonesian,
Swedish-LinES, and Uyghur.

7
https://github.com/wlin12/wang2vec/ with options

{-type 3 -hs 0 -min-count 2 -window 7
-sample 0.1 -negative 7 -iter 20}; Though
in fact [-min-count 2] had no effect, as we had all
hapaxes replaced by an obscure symbol.

3.3 Feedforward neural network

Our neural network classifier is implemented in
Keras (Chollet et al., 2015) with the TensorFlow
backend (Abadi et al., 2015).

The inputs are first transformed by a hidden
layer with 256 rectified linear units (ReLU), then
by a second, similar hidden layer, and finally by
a softmax layer with as many units as the number
of transition actions. The softmax output assigns a
probability prediction for each action.

The weights for all layers are initialized in a
random uniform distribution following He et al.
(2015). The ReLU layers have their biases ini-
tialized to ones, in order to alleviate the dying
ReLU problem. The network is trained through
backpropagation by the AdaMax (Kingma and Ba,
2014) algorithm.

In our experiments, we found it helpful to ap-
ply dropout (Srivastava et al., 2014) to both the
trainable embedding layers and the hidden lay-
ers. For our network, 25% dropout rate seems to
be the optimal. The 50% dropout rate suggested
by Srivastava et al. (2014) requires extending the
sizes of these layers, which would result in a poly-
nomial amount of increase in the number of pa-
rameters. Even though we did find a slight im-
provement in accuracy with a larger network and
a higher dropout rate, we rejected extending the
network because of our limited computing power.

For regularization, we apply the unit-norm con-
straint to the trainable embeddings, which ensures
that each column of the embedding matrices is
a unit vector. We found this helpful for stabi-
lizing the accuracy in later iterations and achiev-
ing higher scores. We also experimented with the
max-norm constraint, which only forces the norms
of the column vectors to be no greater than the
max-norm; We found that it can be better than the
unit-norm constraint, but only for certain optimal
max-norm values, which were different for every
dataset.

3.4 Training and parsing

These hyperparameters are tuned during training,
with their default values marked bold:

• Algorithm: projective, non-projective

• Batch-size: 16, 32, 64

• Iterations: maximally 16

128

Our parser is greedy during parsing. From any
configuration, only the action with the highest
probability prediction is taken to advance into the
next configuration. In case the action suggested
by the classifier is illegal, the next best action is
taken.

The transition algorithm does not prevent mul-
tiple nodes from being attached to the pseudo root
node. However, this is not allowed in the UD tree-
banks. When this occurs, we keep the first attach-
ment, and attach the other nodes to that node with
the parataxis label.

Apart from the regular syntactic nodes, the
CoNLL-U format allows for empty-words and
multi-words. We completely ignore the empty-
words. We keep track of the multi-words, but ig-
nore them during parsing.

The evaluation is only concerned with the UD
labels, and not the language-specific subtypes. For
example, acl:relcl is considered to be the same as
acl. We experimented with removing the language
specific information before parsing, and we found
it to be helpful in some cases, but harmful in oth-
ers. Either way, the differences are negligible.

3.5 A comparison with Parsito

Our parser is very similar to the Parsito
parser (Straka et al., 2015) incorporated in UD-
Pipe, which is also a transition-based parser with
a feedforward neural network classifier.

The primary difference is in the training. Our
parser uses only a static oracle, while Parsito sup-
ports a dynamic oracle, and may additionally uti-
lize a search-based oracle.

The static oracle produces transition sequences
which must lead to the gold-standard parse trees.
A classifier trained only on the gold-standard tran-
sition sequences is not robust against its own er-
rors. When an error is made, the parser arrives
in a configuration which it has never seen be-
fore. To help the classifier make the best decision
possible in any configuration, the dynamic ora-
cle (Goldberg and Nivre, 2012) explores erroneous
transitions suggested by the classifier itself. Par-
sito’s search-based oracle applies the SEARN al-
gorithm (Daumé et al., 2009) to mitigate this prob-
lem.

Moreover, in addition to the projective and
non-projective transition systems, Parsito supports
link2 (Attardi, 2006), a partially non-projective
transition algorithm, which was used for more

than one-third of the baseline models.
Despite the limitations of our parser in compari-

son with UDPipe’s Parsito, it achieved comparable
results in the shared task.

4 Secondary system: mstnn

In our secondary system, a graph-based non-
projective unlabeled parser and a labeler are used.

4.1 Unlabeled parsing
We adapted the MSTParser (McDonald et al.,
2005) with a neural network classifier. Starting
with a fully connected directed graph, the classi-
fier scores the edges between every two nodes, and
then the Chu-Liu-Edmonds’ algorithm (Chu and
Liu, 1965; Edmonds, 1967) is applied to find the
maximum spanning arborescence. The algorithm
was implemented using NetworkX (Hagberg et al.,
2008).

The neural network classifier accepts the fol-
lowing inputs:

• The distance between the two nodes (the
arithmetic difference of their ID)

• FORM & LEMMA of the two nodes

• UPOSTAG of the two nodes and their left &
right & left-of-left & right-of-right neighbors

• FEATS of the two nodes and their left & right
neighbors

All features are constructed the same as in the
primary system, except for the added distance fea-
ture.8 The structure of the neural network is also
the same, except that the output layer consists of
a single sigmoid unit. The probability prediction
of the sigmoid unit is taken as the score associated
with the dependency arc in consideration.

4.2 Labeling
For labeling the edges, we implemented a lin-
ear support-vector classifier (Cortes and Vapnik,
1995) using LIBLINEAR (Fan et al., 2008) through
scikit-learn (Pedregosa et al., 2011).9

Input features to the classifier are the FORM,
LEMMA, UPOSTAG, and FEATS fields of the
two nodes, plus the UPOSTAG of their left & right
neighbors. The FEATS field is represented in the

8Also as in the primary system, some features were omit-
ted for certain treebanks.

9All hyperparameters used the default values.

129

ranking darc baseline ÚFAL best score best system

all treebanks 12 68.41 68.35 69.52 76.30 Stanford (Stanford)
big treebanks 15 73.31 73.04 74.38 81.77 Stanford (Stanford)
small treebanks 12 52.46 51.80 53.75 61.49 C2L2 (Ithaca)
parallel test-sets 16 67.96 68.33 69.00 73.73 Stanford (Stanford)
surprise languages 18 34.47 37.07 35.96 47.54 C2L2 (Ithaca)

Old Church Slavonic 7 66.37 62.76 62.76 76.84 IMS (Stuttgart)
Gothic 8 61.92 59.81 62.80 71.36 IMS (Stuttgart)
Hindi 8 87.50 86.77 87.28 91.59 Stanford (Stanford)
German PUD 25 65.09 66.53 66.05 74.86 Stanford (Stanford)
Buryat 25 15.61 31.50 21.58 32.24 IMS (Stuttgart)
Korean 25 58.30 59.09 60.30 82.49 Stanford (Stanford)

Table 2: Official results (LAS)

UAS LAS
mstnn darc baseline ÚFAL mstnn darc baseline ÚFAL

all treebanks 71.03 74.22 74.41 75.39 61.13 68.41 68.35 69.52

Ancient Greek 66.29 64.92 62.74 65.37 54.78 58.20 56.04 57.39
Irish 73.61 72.81 72.08 73.10 57.55 62.97 61.52 62.87
Turkish 61.45 61.33 60.48 60.78 52.44 54.70 53.19 53.78
Uyghur 52.05 53.79 53.58 53.49 34.32 34.28 34.18 33.21

Table 3: Secondary results

same way as described above, while the other fea-
tures are constructed through one-hot encoding.

5 Results

The official test-run took 1 hour 47 minutes on a
single-core Intel Xeon CPU, which included seg-
mentation, tagging, and parsing. The secondary
system took 3 hours and 14 minutes.

In Table 2, we report our official LAS (labeled
attached F1-score) and our rankings among the 33
systems.10 We compare our system against the
baseline (UDPipe 1.1), ÚFAL (UDPipe 1.2), and
the best systems. Included are the macro-averaged
scores for all and some subsets of the treebanks,
plus three of our best-ranking & worst-ranking
per-treebank scores.

Our official system was far from the best, but it
was comparable to the two UDPipe systems, de-
spite having a much simpler parser. Parsing aside,
it had the highest all-tags F1-score with 73.92%,
thanks to the MorphoDiTa (Straková et al., 2014)
tool incorporated in UDPipe. However, the base-

10
http://universaldependencies.org/conll17/

results.html

line was very close with 73.74%.
In general, our primary system (darc) out-

performed our secondary system (mstnn), both
in LAS and UAS (unlabeled attached F1-score).
However, mstnn occasionally achieved better UAS
or LAS, as shown in Table 3.

6 Discussions

In Section 3.5 we made a comparison between our
darc parser and UDPipe’s Parsito parser. Specifi-
cally, Parsito supports better oracles and an addi-
tional transition algorithm. We attribute the com-
parable performance of our much simpler parser
to the following factors:

• We used more training data.

The baseline models were trained on sub-
sets of the train-sets, while using the rest for
parameter tuning, leaving the dev-sets un-
touched. Our models were trained on the en-
tire train-sets, and tuned on the dev-sets.

We believe this was the reason that we ranked
above the baseline but below ÚFAL.

• We used LEMMA when possible.

130

In our experiments, we fixed the dimension-
ality of the lexical space, namely the target
real vector space where we embed the lexi-
cal representation (FORM and/or LEMMA)
of the vocabulary. We found that splitting the
dimensions between FORM and LEMMA, as
opposed to dedicating exclusively to either
one, consistently produced the best results.

Further evidence of this is that for four out
of the six treebanks where LEMMA was not
used, darc performed worse than the baseline.

Splitting the lexical space between FORM
and LEMMA actually decreases the num-
ber of parameters in the embedding matrices,
comparing with using FORM alone, because
LEMMA has fewer types.

• We had a better representation for FEATS.

Simply treating FEATS as atomic symbols is
subject to data sparsity as shown in Table 4.

FEATS max avg

type count 2487 430
hapax type count 561 92
entry type count 112 44

Table 4: Statistics for FEATS

Different types of FEATS are merely dif-
ferent combinations of morphological en-
tries, aka the attribute-value pairs. They are
compound symbols with a visible structure,
which should be preserved.

Our representation is explained in Sec-
tion 3.2. We experimented with normalizing
the FEATS vectors into unit vectors by their
L2-norm, or into probability distributions by
their L1-norm as in Alberti et al. (2015). But
simple binary indicators seemed to work the
best.

Despite the generally similar performance of
the original MSTParser in comparison with
transition-based parsers with similar learning al-
gorithms, our own mstnn did not meet the expec-
tation, when compared against darc.

The graph-based approach and the transition-
based approach are faced with different chal-
lenges, and produces different types of errors (Mc-
Donald and Nivre, 2007). The former suffers less

from the errors of local decisions, but the latter
usually benefits from richer features. In our case,
the neural network classifier in mstnn used much
less information from neighboring nodes than the
classifier in darc.

The separate labeler in mstnn was also subop-
timal. From UAS to LAS, the absolute drop was
4% higher for mstnn than it was for darc, which
actually means a 15.6% higher increase in error
rate. This exemplified a general problem with the
pipeline approach: Errors made in each step of
the pipeline stack up quickly, which is made even
worse by the snowball effect, where errors made
in one step bring about more errors in the follow-
ing steps. Another problem is that in a pipeline,
the information necessary for making the correct
decisions in one step may not be available until
later. We experimented with unlabeled parsing us-
ing darc, and despite facing a much simpler task
than labeled parsing, it yielded lower UAS.

The pipeline approach is a common weakness
of our both systems. We believe that for tasks
such as this one, an integrated end-to-end system
is more desirable.

Acknowledgments

We thank Dr. Çağrı Çöltekin for his encourage-
ment and expert support, which made this work
possible. We also thank Dr. Daniël de Kok for his
counseling and the anonymous reviewers for their
advice.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Chris Alberti, David Weiss, and Slav Petrov. 2015.
Improved transition-based parsing and tagging with
neural networks .

131

Giuseppe Attardi. 2006. Experiments with a multilan-
guage non-projective dependency parser. In Pro-
ceedings of the Tenth Conference on Computational
Natural Language Learning. Association for Com-
putational Linguistics, pages 166–170.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On short-
est arborescence of a directed graph. Scientia Sinica
14(10):1396.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning 20(3):273–297.

Hal Daumé, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine learn-
ing 75(3):297–325.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B
71(4):233–240.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research 9(Aug):1871–1874.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In COL-
ING. pages 959–976.

Aric A. Hagberg, Daniel A. Schult, and Pieter J.
Swart. 2008. Exploring network structure, dy-
namics, and function using NetworkX. In Pro-
ceedings of the 7th Python in Science Conference
(SciPy2008). Pasadena, CA USA, pages 11–15.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE international
conference on computer vision. pages 1026–1034.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Wang Ling, Chris Dyer, Alan Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 523–530.

Ryan T McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In EMNLP-CoNLL. pages 122–131.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP:
Volume 1-Volume 1. Association for Computational
Linguistics, pages 351–359.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An improved oracle for dependency parsing with on-
line reordering. In Proceedings of the 11th interna-
tional conference on parsing technologies. Associa-
tion for Computational Linguistics, pages 73–76.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative

132

(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Milan Straka. 2017. CoNLL 2017 shared task - UD-
Pipe baseline models and supplementary materials.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1990.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Milan Straka, Jan Hajič, Jana Straková, and Jan
Hajič jr. 2015. Parsing universal dependency tree-
banks using neural networks and search-based or-
acle. In Proceedings of Fourteenth International
Workshop on Treebanks and Linguistic Theories
(TLT 14).

Jana Straková, Milan Straka, and Jan Hajic. 2014.
Open-source tools for morphology, lemmatization,
pos tagging and named entity recognition. In ACL
(System Demonstrations). pages 13–18.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

133

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 134–142,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A Novel Neural Network Model for Joint POS Tagging and
Graph-based Dependency Parsing

Dat Quoc Nguyen, Mark Dras and Mark Johnson
Department of Computing

Macquarie University, Australia
dat.nguyen@students.mq.edu.au

{mark.dras, mark.johnson}@mq.edu.au

Abstract

We present a novel neural network model
that learns POS tagging and graph-based
dependency parsing jointly. Our model
uses bidirectional LSTMs to learn feature
representations shared for both POS tag-
ging and dependency parsing tasks, thus
handling the feature-engineering problem.
Our extensive experiments, on 19 lan-
guages from the Universal Dependen-
cies project, show that our model outper-
forms the state-of-the-art neural network-
based Stack-propagation model for joint
POS tagging and transition-based depen-
dency parsing, resulting in a new state
of the art. Our code is open-source
and available together with pre-trained
models at: https://github.com/
datquocnguyen/jPTDP.

Keywords: Neural network, POS tag-
ging, Dependency parsing, Bidirectional
LSTM, Universal Dependencies, Multilin-
gual parsing.

1 Introduction

Dependency parsing has become a key research
topic in NLP in the last decade, boosted by the suc-
cess of the CoNLL 2006, 2007 and 2017 shared
tasks on multilingual dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007a; Zeman
et al., 2017). McDonald and Nivre (2011) identify
two types of data-driven methodologies for depen-
dency parsing: graph-based approaches (Eisner,
1996; McDonald et al., 2005; Koo and Collins,
2010) and transition-based approaches (Yamada

and Matsumoto, 2003; Nivre, 2003). Most tra-
ditional graph- or transition-based parsing ap-
proaches manually define a set of core and com-
bined features associated with one-hot representa-
tions (McDonald and Pereira, 2006; Nivre et al.,
2007b; Bohnet, 2010; Zhang and Nivre, 2011;
Martins et al., 2013; Choi and McCallum, 2013).
Recent work shows that using deep learning in
dependency parsing has obtained state-of-the-art
performances. Several authors represent the core
features with dense vector embeddings and then
feed them as inputs to neural network-based clas-
sifiers (Chen and Manning, 2014; Weiss et al.,
2015; Pei et al., 2015; Andor et al., 2016). In ad-
dition, others propose novel neural architectures
for parsing to handle feature-engineering (Dyer
et al., 2015; Cheng et al., 2016; Zhang et al., 2016;
Wang and Chang, 2016; Kiperwasser and Gold-
berg, 2016a,b; Dozat and Manning, 2017; Ma and
Hovy, 2017; Peng et al., 2017).

Part-of-speech (POS) tags are essential features
used in most dependency parsers. In real-world
parsing, those dependency parsers rely heavily on
the use of automatically predicted POS tags, thus
encountering error propagation problems. Li et al.
(2011), Straka et al. (2016) and Nguyen et al.
(2016) show that parsing accuracies drop by 5+%
when utilizing automatic POS tags instead of gold
ones. Some attempts have been made to avoid us-
ing POS tags during dependency parsing (Dyer
et al., 2015; Ballesteros et al., 2015), however,
these approaches still additionally use the auto-
matic POS tags to achieve the best accuracy. Al-
ternatively, joint learning both POS tagging and
dependency parsing has gained more attention be-
cause: i) more accurate POS tags could lead to im-
proved parsing performance and ii) the the syntac-
tic context of a parse tree could help resolve POS

134

<c> w e </c>

we finishedare .

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

we are finished .
PRON VERB ADJ PUNCT

nsubj
cop punct

nsubj cop punct

PRON VERB ADJ PUNCTMLP MLP MLP

Figure 1: Illustration of our jPTDP for joint POS tagging and graph-based dependency parsing.

ambiguities (Li et al., 2011; Hatori et al., 2011;
Lee et al., 2011; Bohnet and Nivre, 2012; Qian
and Liu, 2012; Wang and Xue, 2014; Zhang et al.,
2015; Alberti et al., 2015; Johannsen et al., 2016;
Zhang and Weiss, 2016).

In this paper, we propose a novel neural archi-
tecture for joint POS tagging and graph-based de-
pendency parsing. Our model learns latent feature
representations shared for both POS tagging and
dependency parsing tasks by using BiLSTM—
the bidirectional LSTM (Schuster and Paliwal,
1997; Hochreiter and Schmidhuber, 1997). Not
using any external resources such as pre-trained
word embeddings, experimental results on 19 lan-
guages from the Universal Dependencies project
show that: our joint model performs better than
strong baselines and especially outperforms the
neural network-based Stack-propagation model
for joint POS tagging and transition-based depen-
dency parsing (Zhang and Weiss, 2016), achieving
a new state of the art.

2 Our joint model

In this section, we describe our new model for
joint POS tagging and dependency parsing, which
we call jPTDP. Figure 1 illustrates the architec-
ture of our new model. We learn shared latent fea-
ture vectors representing word tokens in an input
sentence by using BiLSTMs. Then these shared
feature vectors are further used to make the predic-

tion of POS tags as well as fed into a multi-layer
perceptron with one hidden layer (MLP) to decode
dependency arcs and another MLP to predict rela-
tion types for labeling the predicted arcs.

BiLSTM-based latent feature representations:
Given an input sentence s consisting of n word to-
kens w1, w2, ..., wn, we represent each word wi in
s by an embedding e(•)

wi . Plank et al. (2016) and
Ballesteros et al. (2015) show that character-based
representations of words help improve POS tag-
ging and dependency parsing performances. So,
we also use a sequence BiLSTM (BiLSTMseq) to
compute a character-based vector representation
for each word wi in s. For a word type w con-
sisting of k characters w = c1c2...ck, the input to
the sequence BiLSTM consists of k character em-
beddings c1:k in which each embedding vector cj

represents the jth character cj in w; and the output
is the character-based embedding e(∗)

w of the word
type w, computed as:

e(∗)
w = BiLSTMseq(c1:k)

For the ith word wi in the input sentence s, we
create an input vector ei which is a concatena-
tion (◦) of the corresponding word embedding and
character-based embedding vectors:

ei = e(•)
wi
◦ e(∗)

wi

135

Then, we feed the sequence of input vec-
tors e1:n with an additional index i correspond-
ing to a context position into another BiLSTM
(BiLSTMctx), resulting in shared feature vectors
vi representing the ith words wi in the sentence s:

vi = BiLSTMctx(e1:n, i)

POS tagging: Using shared BiLSTM-based la-
tent feature vector representations, then we follow
a common approach to compute the cross-entropy
objective loss LPOS(t̂, t), in which t̂ and t are the
sequence of predicted POS tags and sequence of
gold POS tags of words in the input sentence s,
respectively (Goldberg, 2016; Plank et al., 2016).

Arc-factored graph-based parsing: Depen-
dency trees can be formalized as directed graphs.
An arc-factored parsing approach learns the scores
of the arcs in a graph (Kübler et al., 2009). Then,
using an efficient decoding algorithm (in particu-
lar, we use the Eisner (1996)’s algorithm), we can
find a maximum spanning tree—the highest scor-
ing parse tree—of the graph from those arc scores:

score(s) = argmax
ŷ∈Y(s)

∑
(h,m)∈ŷ

scorearc(h,m)

where Y(s) is the set of all possible dependency
trees for the input sentence s while scorearc(h,m)
measures the score of the arc between the head hth

word and the modifier mth word in s. Following
Kiperwasser and Goldberg (2016b), we score an
arc by using a MLP with one-node output layer
(MLParc) on top of the BiLSTMctx:

scorearc(h,m) = MLParc(vh ◦ vm)

where vh and vm are the shared BiLSTM-based
feature vectors representing the hth and mth words
in s, respectively. We then compute a margin-
based hinge loss Larc with loss-augmented infer-
ence to maximize the margin between the gold un-
labeled parse tree and the highest scoring incorrect
tree (Kiperwasser and Goldberg, 2016b).

Dependency relation types are predicted in a
similar manner. We use another MLP on top of
the BiLSTMctx for predicting relation type of an
head-modifier arc. Here, the number of the nodes
in the output layer of this MLP (MLPrel) is the
number of relation types. Given an arc (h,m), we
compute a corresponding output vector as:

v(h,m) = MLPrel(vh ◦ vm)

Then, based on MLP output vectors v(h,m), we
also compute another margin-based hinge loss Lrel
for relation type prediction, using only the gold
labeled parse tree.

Joint model training: The final training objec-
tive function of our joint model is the sum of the
POS tagging loss LPOS, the structure loss Larc and
the relation labeling loss Lrel. The model pa-
rameters, including word embeddings, character
embeddings, two BiLSTMs and two MLPs, are
learned to minimize the sum of the losses.

Discussion: Prior neural network-based joint
models for POS tagging and dependency parsing
are feed-forward network- and transition-based
approaches (Alberti et al., 2015; Zhang and Weiss,
2016), while our model is a BiLSTM- and graph-
based method. Our model can be considered as
a two-component mixture of a tagging component
and a parsing component. Here, the tagging com-
ponent can be viewed as a simplified version with-
out the additional auxiliary loss for rare words of
the BiLSTM-based POS tagging model proposed
by Plank et al. (2016). The parsing component
can be viewed as an extension of the graph-based
dependency model proposed by Kiperwasser and
Goldberg (2016b), where we replace the input
POS tag embeddings by the character-based rep-
resentations of words.

3 Experiments

3.1 Experimental setup

Following Zhang and Weiss (2016) and Plank
et al. (2016), we conduct multilingual experiments
on 19 languages from the Universal Dependencies
(UD) treebanks1 v1.2 (Nivre et al., 2015), using
the universal POS tagset (Petrov et al., 2012) in-
stead of the language specific POS tagset.2 For de-
pendency parsing, the evaluation metric is the la-
beled attachment score (LAS). LAS is the percent-
age of words which are correctly assigned both de-
pendency arc and relation type.

1http://universaldependencies.org/
2 Zhang and Weiss (2016) and Plank et al. (2016) exper-

imented on 19 and 22 languages, respectively. For consis-
tency, we use 19 languages as in Zhang and Weiss (2016).

136

Method
ar bg da de• en es eu• fa fi• fr hi id it iw nl no pl• pt sl• AVG
10.3 12.3 15.6 11.9 9.1 7.3 17.8 8.2 24.4 5.7 4.6 13.8 5.7 10.9 18.8 11.2 23.1 10.0 19.9 12.7

PART-OF-SPEECH TAGGING

UDPipe 98.7 97.8 95.8 90.7 94.5 95.0 93.1 96.9 94.9 95.9 95.8 93.6 97.2 94.8 89.2 97.2 96.0 97.4 95.6 95.3
TnT [⊕] 97.8 96.8 94.3 92.6 92.7 94.6 93.4 96.0 93.6 94.5 94.5 93.2 96.2 93.7 88.5 96.3 95.6 96.3 94.9 94.5
CRF [⊕] 97.6 96.4 93.8 91.4 93.4 94.2 91.6 95.7 90.3 95.1 96.0 93.0 96.4 93.6 90.0 96.2 94.0 96.3 94.8 94.2
BiLSTM-aux 98.9 98.0 96.2 92.6 94.5 95.1 94.7 97.2 94.9 95.8 96.2 93.1 97.6 95.8 93.3 97.6 96.4 97.5 97.6 95.9
Stack-prop - - - - - - - - - - - - - - - - - - - 95.4
Our jPTDP 98.8 97.4 95.8 92.7 94.7 95.9 93.7 96.8 94.6 96.0 96.4 93.1 97.5 95.5 91.4 97.4 96.3 97.5 97.1 95.7
5-Chars 3.1 2.4 3.9 2.3 1.6 0.8 4.3 0.8 5.4 1.1 0.3 3.7 1.4 1.6 6.6 2.7 4.7 3.1 5.7 2.9

DEPENDENCY PARSING

UDPipe 76.0 84.7 74.8 71.8 80.2 79.7 69.7 79.7 76.3 77.8 87.5 73.9 85.7 77.1 71.3 84.5 79.4 81.3 80.2 78.5
B’15 [*] 75.6 83.1 69.6 72.4 77.9 78.5 67.5 74.7 73.2 77.4 85.9 72.3 84.1 73.1 69.5 82.4 78.0 79.9 80.1 76.6
PipelinePtag[*] 73.7 83.6 72.0 73.0 79.3 79.5 63.0 78.0 66.9 78.5 87.8 73.5 84.2 75.4 70.3 83.6 73.4 79.5 79.4 76.6
RBGParser [*] 75.8 83.6 73.9 73.5 79.9 79.6 68.0 78.5 65.4 78.9 87.7 74.2 84.7 77.6 72.4 83.9 75.4 81.3 80.7 77.6
Stack-prop 77.0 84.3 73.8 74.2 80.7 80.7 70.1 78.5 74.5 80.0 88.9 74.1 85.8 77.5 73.6 84.7 79.2 80.4 81.8 78.9
Our jPTDP 79.0 83.9 75.8 75.8 82.0 82.4 73.2 81.5 75.0 80.0 87.3 75.7 86.4 79.2 66.8 84.9 82.5 79.3 81.7 79.6
5-Chars 3.8 4.1 4.5 3.6 1.4 2.3 12.0 1.1 11.1 0.2 0.3 4.1 1.9 1.9 5.4 2.3 10.6 3.4 9.2 4.4

Table 1: Universal POS tagging accuracies and LAS scores computed on all tokens (including punctua-
tion) on test sets for 19 languages in UD v1.2. The language codes with • refer to morphologically rich
languages. Numbers (in the second top row) right below language codes are out-of-vocabulary rates.
UDPipe is the trainable pipeline for processing CoNLL-U files (Straka et al., 2016). TnT denotes the
second order HMM-based TnT tagger (Brants, 2000). CRF denotes the Conditional random fields-based
tagger, presented in Plank et al. (2014). BiLSTM-aux refers to the state-of-the-art (SOTA) BiLSTM-
based POS tagging model with an additional auxiliary loss for rare words (Plank et al., 2016). Note that
the (old) language code for Hebrew “iw” is referred to as “he” as in Plank et al. (2016). [⊕]: Results are
reported in Plank et al. (2016). Stack-prop refers to the SOTA Stack-propagation model for joint POS
tagging and transition-based dependency parsing (Zhang and Weiss, 2016). 5-Chars denotes the absolute
accuracy decrease of our jPTDP, when the character-based representations of words are not taken into
account. B’15 denotes the character-based stack LSTM model for transition-based dependency parsing
(Ballesteros et al., 2015). PipelinePtag refers to a greedy version of the approach proposed by Alberti
et al. (2015). RBGParser refers to the graph-based dependency parser with tensor decomposition, pre-
sented in Lei et al. (2014). [*]: Results are reported in Zhang and Weiss (2016).

3.2 Implementation details

Our jPTDP is implemented using DYNET v2.0
(Neubig et al., 2017).3 We optimize the objec-
tive function using Adam (Kingma and Ba, 2014)
with default DYNET parameter settings and no
mini-batches. We use a fixed random seed, and
we do not utilize pre-trained embeddings in any
experiment. Following Kiperwasser and Gold-
berg (2016b) and Plank et al. (2016), we apply a
word dropout rate of 0.25 and Gaussian noise with
σ = 0.2. For training, we run for 30 epochs, and
evaluate the mixed accuracy of correctly assigning
POS tag together with dependency arc and rela-
tion type on the development set after each train-
ing epoch. We perform a minimal grid search of
hyper-parameters on English. We find that the
highest mixed accuracy on the English develop-

3https://github.com/clab/dynet

ment set is when using 64-dimensional character
embeddings, 128-dimensional word embeddings,
128-dimensional BiLSTM states, 2 BiLSTM lay-
ers and 100 hidden nodes in MLPs with one hid-
den layer.4 We then apply those hyper-parameters
to all 18 remaining languages.

3.3 Main results

Table 1 compares the POS tagging and depen-
dency parsing results of our model jPTDP with
results reported in prior work, using the same ex-
perimental setup.

Regarding POS tagging, our joint model jPTDP
generally obtains similar POS tagging accura-
cies to the BiLSTM-aux model (Plank et al.,

4On English, carried out on a computer with 2.2 GHz
Core i7 processor, jPTDP took 6 hours for training with these
hyper-parameters, and then obtained a joint tagging and pars-
ing speed of 700 words/second.

137

2016). Our model also achieves higher averaged
POS tagging accuracy than the joint model Stack-
propagation (Zhang and Weiss, 2016). There
are slightly higher tagging results obtained by
BiLSTM-aux when utilizing pre-trained word em-
beddings for initialization, as presented in Plank
et al. (2016). However, for a fair comparison to
both Stack-propagation and our jPTDP, we only
compare to the results reported without using the
pre-trained word embeddings.

In terms of dependency parsing, in most cases,
our model jPTDP outperforms Stack-propagation.
It is somewhat unexpected that our model pro-
duces about 7% absolute lower LAS score than
Stack-propagation on Dutch (nl). A possible rea-
son is that the hyper-parameters we selected on
English are not optimal for Dutch. Another reason
is due to a large number of non-projective trees in
Dutch test set (106/386 ≈ 27.5%), while we use
the Eisner’s decoding algorithm, producing only
projective trees (Eisner, 1996). Without taking
“nl” into account, our averaged LAS score over all
remaining languages is 1.1% absolute higher than
Stack-propagation’s.

One reason for our better LAS is probably be-
cause jPTDP uses character-based representations
of words, while Stack-propagation uses feature
representations for suffixes and prefixes which
might not be as useful as character-based represen-
tations for capturing unknown words. The last row
in Table 1 shows an absolute LAS improvement
of 4.4% on average when comparing our jPTDP
with its simplified version of not using character-
based representations: specifically, morphologi-
cally rich languages get an averaged improvement
of 9.3 %, vice versa 2.6% for others.5 So, our
jPDTP is particularly good for morphologically
rich languages, with 1.7% higher averaged LAS
than Stack-propagation over these languages.

4 MQuni at the CoNLL 2017 shared task

Our team MQuni participated with jPTDP in the
CoNLL 2017 shared task on multilingual parsing
from raw text to universal dependencies (Zeman
et al., 2017). Training data are 60+ universal de-
pendency treebanks for 40+ languages from UD
v2.0 (Nivre et al., 2017a). We do not use any ex-
ternal resource, and we use a fixed random seed

5To determine a morphologically rich language, we
take as a proxy for morphological richness the number of
noun cases >= 4, with this value obtained from WALS
(http://wals.info/) where available or Wikipedia otherwise.

and a fixed set of hyper-parameters as presented in
Section 3.2 for all treebanks.6 For each treebank,
we train a joint model for universal POS tagging
and dependency parsing. We evaluate the mixed
accuracy on the development set after each train-
ing epoch, and select the model with the highest
mixed accuracy. Note that for each “surprise” lan-
guage where there are only few sample sentences
with gold-standard annotation or a “small” tree-
bank whose development set is not available, we
simply split its sample or training set into two parts
with a ratio 4:1, and then use the larger part for
training and the smaller part for development.

For parsing from raw text to universal de-
pendencies, we utilize CoNLL-U test files pre-
processed by the baseline UDPipe 1.1 (Straka
et al., 2016). These pre-processed CoNLL-U test
files are available to all participants who do not
want to train their own models for any steps pre-
ceding the dependency analysis, including: tok-
enization, word segmentation, sentence segmen-
tation, POS tagging and morphological analysis.
Note that we only employ the tokenization, word
and sentence segmentation, and we do not care
about the POS tagging and morphological analysis
pre-processed by UDPipe 1.1. Recall that we per-
form universal POS tagging and dependency pars-
ing jointly. In addition, when we encounter an ad-
ditional parallel test set in a language where mul-
tiple training treebanks exist, i.e. a parallel test set
marked with language code suffix “ pud” such as
“ar pud”, “cs pud” and “de pud”, we simply use
the model trained for its corresponding language
code prefix, e.g., “ar”, “cs” and “de”.

Table 2 presents our official parsing results
from the CoNLL 2017 shared task on UD pars-
ing (Zeman et al., 2017). We obtain 1% abso-
lute higher averaged scores than the baseline UD-
Pipe 1.1 (Straka et al., 2016) in both categories:
big treebank test sets (denoted as Big in Table
2) and parallel test sets (denoted as PUD in Ta-
ble 2). Specifically, we obtain a highest rank at
8th place for the PUD category, showing that our
parsing model jPTDP is particularly good when
it is applied to a real practical application in out-
of-domain data. Unlike the baseline UDPipe 1.1
and others, for each surprise language, we simply

6Except for the biggest treebank UD Czech (cs) consist-
ing of 68K training sentences, due to a limited computation
resource, we used 64-dimensional word embeddings and 32-
dimensional character embeddings. Then it took 30 hours to
complete training process for UD Czech.

138

System All Big PUD Sma. Sur. R-S(81) (55) (14) (8) (4)
UDPipe 1.2 69.528 74.389 69.009 53.759 35.9614 8
UDPipe 1.1 68.3513 73.0417 68.3313 51.8015 37.0711 15
MQuni 68.0514 74.0312 69.288 51.5817 14.4828 10

Table 2: Official macro-averaged LAS F1 scores
of MQuni and baselines from the CoNLL 2017
shared task on UD parsing (Zeman et al., 2017):
http://universaldependencies.org/
conll17/results-las.html. “All” refers
to the averaged score over all 81 test sets, which is
used as the main metric for ranking participating
systems. Big: the averaged score over 55/81 test
sets whose training treebanks are big and have
development data available. PUD: the averaged
score over 14/81 test sets that are additional
parallel ones, produced separately and their
domain may be different from their training data.
Sma.: the averaged score over 8/81 test sets
whose training treebanks are small, i.e., they lack
development data and some of them have very
little training data. Sur.: the averaged score over
4/81 remaining test sets for surprise languages.
Here the subscript denotes the official rank out of
33 participating systems. R-S is the system rank
where the 4 surprise language test sets are not
taken into account.

train a joint model just on the sample data of few
sentences with gold-standard annotation provided
before the test phase, i.e., we utilize neither exter-
nal resources nor a cross-lingual technique nor a
delexicalized parser. So, it is not surprising that
we obtain a very low averaged score over the 4
surprise language test sets. When the 4 surprise
language test sets are not taken into account, we
obtain a rank in top-10 participating systems.

In fact, it is hard to make a clear comparison
between our jPTDP and the parsing models used
in other top participating systems. This is be-
cause other systems use various external resources
and/or better pre-processing modules and/or con-
struct ensemble models for dependency parsing.7

For example, UDPipe 1.2 only extends the word
and sentence segmenters of the baseline UDPipe
1.1. Consequently, UDPipe 1.2 obtains 0.1% ab-
solute higher in the macro-averaged word seg-
mentation score8 and 0.2% higher in the macro-

7Combining multiple treebanks available for a language
or similar languages to obtain larger training data is also con-
sidered as a manner of exploiting external data.

8Word segmentation results are available at:

averaged sentence segmentation score9 than the
baseline UDPipe 1.1, resulting in 1+% better in
the macro-averaged LAS F1 score though they use
exactly the same parsing model. See Zeman et al.
(2017) for an overview of the methods, algorithms,
resources and software used for all other partici-
pating systems.10

It is worth noting that for universal POS tag-
ging, we obtain a highest rank at 4th place for the
Big category (i.e., 4th on average over 55 big tree-
bank test sets).11 In this Big category, we also ob-
tain better rank than both UDPipe 1.2 and 1.1.

5 Conclusion

In this paper, we describe our novel model for joint
POS tagging and graph-based dependency pars-
ing, using bidirectional LSTM-based feature rep-
resentations. Experiments on 19 languages from
the Universal Dependencies (UD) v1.2 show that
our model obtains state-of-the-art results in both
POS tagging and dependency parsing.

With our joint model, we participated in the
CoNLL 2017 shared task on UD parsing (Zeman
et al., 2017). Given that we followed a strict closed
setting while other top participating systems did
not, we still obtained very competitive results. So,
we believe our joint model can serve as a new
strong baseline for further models in both POS
tagging and dependency parsing tasks.

For future comparison, we provide in Ta-
ble 3 the POS tagging, UAS and LAS accura-
cies with respect to gold-standard segmentation
on the UD v2.0—CoNLL 2017 shared task test
sets (Nivre et al., 2017b). Our code is open-
source and available at: https://github.
com/datquocnguyen/jPTDP.

Acknowledgments

This research was supported by a Google award
through the Natural Language Understanding Fo-
cused Program, and under the Australian Research
Council’s Discovery Projects funding scheme
(project number DP160102156). This research

http://universaldependencies.org/
conll17/results-words.html

9Sentence segmentation results are available at:
http://universaldependencies.org/
conll17/results-sentences.html

10Outlined at: http://universaldependencies.
org/conll17/systems-in-a-nutshell.html

11Universal POS tagging results are available at:
http://universaldependencies.org/
conll17/results-upos.html

139

ltcode UPOS UAS LAS ltcode UPOS UAS LAS ltcode UPOS UAS LAS
ar pud 79.34 68.78 56.81 fr partut 95.34 84.75 80.68 lv 90.27 69.28 61.50
ar 95.18 84.16 77.82 fr pud 89.85 83.50 78.14 nl lassysmall 95.82 79.74 75.29
bg 97.49 88.53 84.20 fr sequoia 97.27 86.00 83.25 nl 91.15 78.47 71.39
bxr 43.21 28.79 14.04 fr 96.70 87.69 84.51 no bokmaal 97.43 88.25 85.33
ca 98.10 88.62 85.59 ga 88.35 73.43 62.24 no nynorsk 97.07 86.30 83.12
cs cac 98.53 87.52 83.47 gl treegal 92.83 75.45 68.46 pl 96.18 88.60 82.70
cs cltt 97.20 79.61 74.84 gl 96.86 83.77 80.40 pt br 97.64 90.40 88.32
cs pud 95.96 85.26 79.83 got 94.27 77.78 70.27 pt pud 88.41 81.49 75.15
cs 98.41 88.03 84.35 grc proiel 94.73 73.25 67.34 pt 96.58 87.88 84.54
cu 92.81 81.96 73.22 grc 86.97 54.87 47.57 ro 96.72 87.04 81.37
da 95.80 80.87 76.89 he 95.53 86.65 80.91 ru pud 86.26 78.88 70.15
de pud 85.62 78.34 71.34 hi pud 85.19 64.54 51.97 ru syntagrus 98.11 89.73 87.08
de 92.83 80.16 75.66 hi 96.41 90.68 86.71 ru 95.31 82.14 77.12
el 96.18 85.07 81.55 hr 96.19 85.46 79.32 sk 94.48 81.26 75.51
en lines 94.67 79.21 74.60 hsb 51.13 29.88 17.06 sl sst 88.84 63.25 55.01
en partut 94.17 81.25 76.56 hu 91.81 74.05 66.82 sl 96.87 84.75 81.25
en pud 94.74 85.49 81.64 id 93.10 83.41 76.84 sme 33.12 22.80 8.23
en 94.82 85.29 81.64 it pud 93.51 89.30 85.58 sv lines 94.73 81.52 76.19
es ancora 98.28 88.48 85.50 it 97.62 90.28 87.26 sv pud 91.60 77.73 72.05
es pud 88.59 87.55 80.28 ja pud 97.08 94.40 93.26 sv 96.05 83.35 78.85
es 96.32 87.66 84.05 ja 96.56 94.07 92.41 tr pud 72.60 57.14 35.50
et 87.62 69.44 59.15 kk 51.11 44.25 22.91 tr 93.42 67.39 59.14
eu 93.15 77.86 72.56 kmr 47.72 31.59 18.79 ug 72.49 57.79 39.48
fa 96.38 85.98 81.91 ko 93.47 79.89 74.75 uk 88.09 71.03 61.03
fi ftb 92.63 82.48 76.54 la ittb 97.44 78.81 74.65 ur 92.96 86.05 79.27
fi pud 96.15 83.15 79.31 la proiel 94.23 71.75 64.78 vi 86.78 64.88 55.63
fi 94.95 81.89 77.50 la 83.26 57.79 44.60 zh 92.36 78.57 72.99

Table 3: Universal POS tagging accuracies (labeled as UPOS), UAS and LAS scores of our jPTDP model
with respect to gold-standard segmentation on the UD v2.0—CoNLL 2017 shared task test sets (Nivre
et al., 2017b). UAS refers to the unlabeled attachment score. ltcode denotes the language treebank code.
The 4 surprise language tests are bxr, hsb, kmr and sme. The 8 small treebank tests are fr partut, ga,
gl treegal, kk, la, sl sst, ug and uk. The 14 parallel test sets are marked with the language code suffix
“ pud”. The 55 remaining test sets are for big treebanks.

was also supported by NICTA, funded by the
Australian Government through the Department
of Communications and the Australian Research
Council through the ICT Centre of Excellence
Program. The first author was supported by an In-
ternational Postgraduate Research Scholarship—
which is an Australian Government Research
Training Program Scholarship—and a NICTA
NRPA Top-Up Scholarship.

References
Chris Alberti, David Weiss, Greg Coppola, and Slav

Petrov. 2015. Improved Transition-Based Parsing
and Tagging with Neural Networks. In Proceedings
of EMNLP. pages 1354–1359.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav

Petrov, and Michael Collins. 2016. Globally Nor-
malized Transition-Based Neural Networks. In Pro-
ceedings of ACL. pages 2442–2452.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved Transition-based Parsing by Mod-
eling Characters instead of Words with LSTMs. In
Proceedings of EMNLP. pages 349–359.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of COLING. pages 89–97.

Bernd Bohnet and Joakim Nivre. 2012. A Transition-
Based System for Joint Part-of-Speech Tagging and
Labeled Non-Projective Dependency Parsing. In
Proceedings of EMNLP-CoNLL. pages 1455–1465.

Thorsten Brants. 2000. TnT: A Statistical Part-of-
Speech Tagger. In Proceedings of ANLP. pages
224–231.

140

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL. pages 149–164.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP. pages 740–750.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao,
and Li Deng. 2016. Bi-directional Attention with
Agreement for Dependency Parsing. In Proceedings
of EMNLP. pages 2204–2214.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of ACL. pages
1052–1062.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of ICLR.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proceedings of ACL-IJCNLP.
pages 334–343.

Jason M. Eisner. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
Proceedings of COLING. pages 340–345.

Yoav Goldberg. 2016. A Primer on Neural Network
Models for Natural Language Processing. Journal
of Artificial Intelligence Research 57:345–420.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental Joint POS Tag-
ging and Dependency Parsing in Chinese. In Pro-
ceedings of IJCNLP. pages 1216–1224.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Anders Johannsen, Željko Agić, and Anders Søgaard.
2016. Joint part-of-speech and dependency projec-
tion from multiple sources. In Proceedings of ACL
(Volume 2: Short Papers). pages 561–566.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR
abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
First Dependency Parsing with Hierarchical Tree
LSTMs. Transactions of ACL 4:445–461.

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of ACL 4:313–327.

Terry Koo and Michael Collins. 2010. Efficient Third-
Order Dependency Parsers. In Proceedings of ACL.
pages 1–11.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies, Morgan & cLay-
pool publishers.

John Lee, Jason Naradowsky, and David A. Smith.
2011. A discriminative model for joint morphologi-
cal disambiguation and dependency parsing. In Pro-
ceedings of ACL-HLT (Volume 1). pages 885–894.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-Rank Tensors for
Scoring Dependency Structures. In Proceedings of
ACL (Volume 1: Long Papers). pages 1381–1391.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint Mod-
els for Chinese POS Tagging and Dependency Pars-
ing. In Proceedings of EMNLP. pages 1180–1191.

Xuezhe Ma and Eduard H. Hovy. 2017. Neural Prob-
abilistic Model for Non-projective MST Parsing.
CoRR abs/1701.00874.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the Turbo: Fast Third-Order Non-
Projective Turbo Parsers. In Proceedings of ACL
(Volume 2: Short Papers). pages 617–622.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of ACL. pages
91–98.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics 37(1):197–230.

Ryan McDonald and Fernando Pereira. 2006. Online
Learning of Approximate Dependency Parsing Al-
gorithms. In Proceedings of EACL. pages 81–88.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 .

Dat Quoc Nguyen, Mark Dras, and Mark Johnson.
2016. An empirical study for Vietnamese depen-
dency parsing. In Proceedings of ALTA. pages 143–
149.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of IWPT .

Joakim Nivre, Željko Agić, Lars Ahrenberg,
et al. 2017a. Universal Dependencies 2.0.
http://hdl.handle.net/11234/1-1983.

141

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017b. Universal dependencies 2.0 - CoNLL
2017 shared task development and test data.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Željko Agić, Maria Jesus Aranz-
abe, et al. 2015. Universal Dependencies 1.2.
http://hdl.handle.net/11234/1-1548.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007a. The CoNLL 2007 Shared Task on
Dependency Parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007b. MaltParser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering
13(2):95–135.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An
effective neural network model for graph-based de-
pendency parsing. In Proceedings of ACL-IJCNLP.
pages 313–322.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep Multitask Learning for Semantic Dependency
Parsing. In Proceedings of ACL.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2012. A Universal Part-of-Speech Tagset. In Pro-
ceedings of LREC. pages 2089–2096.

Barbara Plank, Dirk Hovy, Ryan McDonald, and An-
ders Søgaard. 2014. Adapting taggers to Twitter
with not-so-distant supervision. In Proceedings of
COLING: Technical Papers. pages 1783–1792.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and
Auxiliary Loss. In Proceedings of ACL (Volume 2:
Short Papers). pages 412–418.

Xian Qian and Yang Liu. 2012. Joint Chinese Word
Segmentation, POS Tagging and Parsing. In Pro-
ceedings of EMNLP-CoNLL. pages 501–511.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing 45(11):2673–2681.

Milan Straka, Jan Hajic, and Jana Strakov. 2016. UD-
Pipe: Trainable Pipeline for Processing CoNLL-
U Files Performing Tokenization, Morphological
Analysis, POS Tagging and Parsing. In Proceedings
of LREC.

Wenhui Wang and Baobao Chang. 2016. Graph-based
Dependency Parsing with Bidirectional LSTM. In
Proceedings of ACL (Volume 1: Long Papers). pages
2306–2315.

Zhiguo Wang and Nianwen Xue. 2014. Joint POS
Tagging and Transition-based Constituent Parsing in
Chinese with Non-local Features. In Proceedings of
ACL (Volume 1: Long Papers). pages 733–742.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL-
IJCNLP. pages 323–333.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings IWPT .

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized greedy inference
for joint segmentation, pos tagging and dependency
parsing. In Proceedings of NAACL-HLT .

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved Representation Learning for
Syntax. In Proceedings of ACL (Volume 1: Long
Papers). pages 1557–1566.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings ACL-HLT . pages 188–193.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. 2016.
Probabilistic Graph-based Dependency Parsing with
Convolutional Neural Network. In Proceedings of
ACL (Volume 1: Long Papers). pages 1382–1392.

142

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 143–151,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A non-DNN Feature Engineering Approach to Dependency Parsing –
FBAML at CoNLL 2017 Shared Task

Xian Qian Yang Liu
xianqian@fb.com yangli@fb.com

Facebook Applied Machine Learning / 1 Facebook Way

Abstract

For this year’s multilingual dependency
parsing shared task, we developed a
pipeline system, which uses a variety
of features for each of its components.
Unlike the recent popular deep learning
approaches that learn low dimensional
dense features using non-linear classifier,
our system uses structured linear classi-
fiers to learn millions of sparse features.
Specifically, we trained a linear classifier
for sentence boundary prediction, linear
chain conditional random fields (CRFs)
for tokenization, part-of-speech tagging
and morph analysis. A second order
graph based parser learns the tree structure
(without relations), and a linear tree CRF
then assigns relations to the dependencies
in the tree. Our system achieves reason-
able performance – 67.87% official aver-
aged macro F1 score.

1 Introduction

Our system for the universal dependency parsing
shared task in CoNLL 2017 (Zeman et al., 2017)
follows a typical pipeline framework.

The system architecture is shown in Figure 1,
which consists of the following components : (1)
sentence segmentor, which segments raw text into
sentences, (2) tokenizer that tokenizes sentences
into words, or performs word segmentation for
Asian languages, (3) morphologic analyzer gen-
erates morphologic features, (4) part-of-speech
(POS) tagger generates universal POS tags and
language specific POS tags, (5) parser predicts tree
structures without relations, (6) a relation predic-
tor assigns relations to the dependencies in the
tree.

	

Sentence	Segmentation	

Word	Segmentation	

Morphological	Analysis	

UPOS	Tagging	 XPOS	Tagging	

Unlabeled	Parsing	

Relation	Classification	

Raw	Text	

Labeled	Text	

Figure 1: System architecture: pipeline compo-
nents for universal dependency parsing.

For each component, we take a non deep learn-
ing based approach, that is the typical structured
linear classifier that learns sparse features, but re-
quires heavy feature engineering.

Sentence segmentation, tokenization, POS tag-
ger and morphologic analyzer are based on linear
chain CRFs (Lafferty et al., 2001), and the relation
predictor is based on linear tree CRFs. We train
the pipeline for each language independently us-
ing the training portion of the treebank and the of-
ficial word embeddings for 45 languages provided
by the organizers. Our system components are im-
plemented in C++ with no third party toolkits. Due
to the time limit, we did not optimize our system
for speed or memory.

143

2 System Components

2.1 Sentence Segmentation
2.1.1 Task setup
We cast sentence segmentation as a classifica-
tion problem at the character level, determining
whether a character is the end of the sentence char-
acter (EOS). To obtain the gold labels, we aligned
the raw text file with the conllu file with annota-
tions.

Since most characters are not sentence bound-
aries, using all the characters will make the data
very imbalanced. To address this problem, we
only consider a character as a candidate trigger if
it is labeled as EOS at least once in the training
data. Intuitively this would prune many characters
as EOS characters should be punctuation marks.
However, we noticed that for English (possibly
other languages too) many sentences in the data
end without punctation, and thus the last character
of the sentence will be added into the EOS char-
acter trigger set. To reduce the size of the triggers,
we use a three label scheme for the characters.

• Label N for the character following the end
of a sentence, and before the beginning of the
next sentence. A typical example for this is
the space between two sentences. Even for
cases when punctuation marks are omitted,
this applies to the space separating the two
sentences.

• Label E represents a character is the end of a
sentence, and its next character is the begin-
ning of the next sentence. This category is
introduced for sentences that are not split by
space. For example, past few years,...Great
to have you on board!, ‘G’ is the beginning
of the second sentence, ‘.’ before ‘G’ has a
label of ‘E’.

• Label O is used for all other cases. Note that
a punctuation mark that ends a sentence will
have a label of ‘O’ if there is a space follow-
ing the sentence. In this case, EOS informa-
tion is obtained by the ‘N’ label for the space.

Using this scheme, during testing, an EOS char-
acter is found if it is labeled as E or its next char-
acter is labeled as N. For training, we collect the
characters labeled as E or N in the training set as
candidates. Table 1 shows the number of candi-
dates for each language. This significantly reduces

languages #trigger characters
cs cltt, et, it, lv, pt, pt br 3

en lines, sl 4
no nynorsk 5
no bokmaal 6
ru syntagrus 7

en 8
cs 14
zh 20
ja 23

others 2

Table 1: Number of trigger characters for EOS de-
tection.

the number of trigger candidates compared to con-
sidering all the characters.

2.1.2 Features
We use a linear classifier for EOS detection. We
tune the feature templates on the English develop-
ment data, and apply to all the other languages.
Detailed feature templates are described in Table
2. Features include the surrounding characters
and their lower cases. For character types, we
use digit and letters, and keep the other symbols.
Take 12:00pm as an example, it is represented as:
00:00aa, where we replace all digits by ’0’ and
all lower cased letters by ’a’. For languages that
have spaces between words, we also use the sur-
rounding ‘words’ split by spaces and the current
character. For example, for the following exam-
ple: comes this story: President Bush for char-
acter ‘y’, we have word features: word−2=this,
word−1=stor, word1=:, word2=President.

2.2 Tokenization
2.2.1 Methodology
We use a sequence labeling model for tokeniza-
tion. Each character will be labeled as one of the
following tags:

• B: beginning of a multi-character token,

• I: inside a multi-character token,

• E: end of a multi-character token,

• S: single character token,

• O: other.

The labels are generated by aligning the raw text
with the gold sentence segmentation with the word
form column of the conllu table.

144

chari, −3 ≤ i ≤ +3
charichari+1, −3 ≤ i ≤ +2
lowchari, −3 ≤ i ≤ +3

lowcharilowchari+1, −3 ≤ i ≤ +2
chartypei, −3 ≤ i ≤ +3

chartypeichartypei+1, −3 ≤ i ≤ +2
wordi, i = −2,−1, 1, 2

wordtypei, i = −2,−1, 1, 2

Table 2: Feature templates for sentence segmenta-
tion. chari is the ith character to the right of cur-
rent character, char−i is the ith character to the
left of the current character. lowchar is the lower
cased character, chartype is the character type, it
can be digit, upper cased letter, lower cased letter
or other. wordi is surrounding ’words’ splitted by
spaces and the current character. wordtype is the
concatenation of character types

chartype0, chartype−1chartype0
word−1, word1

word−1chartype0, word1chartype0
chartype−1chartype0, chartype0chartype1

transition feature

Table 3: Tokenization feature templates for lan-
guages with space between words (except Chinese
and Japanese).

2.2.2 Features
Linear chain CRF is used to learn the model with
character and word n-gram features. We used two
sets of feature templates, one for languages having
spaces between words including English, Arabric
etc., the other for languages without spaces includ-
ing Chinese and Japanese, as shown in Table 3 and
4. The first feature template set is tuned on English
development set, the second one is tuned on Chi-
nese development set.

2.3 POS Tagging and Morph Analysis

2.3.1 Methodology
For morphological analysis and POS tagging, we
use the same model setup and features, therefore
we group them together in this section. We used
linear chain CRFs for these tasks (a sequence la-
beling task for each word in the sequence). As
the morph features consist of several fields sepa-
rated by a special symbol, we treat the prediction
of each field as an independent task, and then com-
bine the predictions from different models. For

charichari+1, −2 ≤ i ≤ 1
word−1, word1

char0wordleft to current character

char0wordright to current character

wordleft to current character

wordright to current character

wordleft to left character

wordright to left character

wordleft to right character

wordright to right character

transition feature
transition feature + current character

Table 4: Tokenization feature templates for Chi-
nese and Japanese. Words in these languages are
obtained by maximum forward/backward match-
ing.

POS tagging (both universal (UPOS) and language
specific POS (XPOS) tagging), we use the same
set of features as used for morph analysis, and the
automatically predicted morph features. For lan-
guages that have multiple labels in XPOS tag, we
use a similar strategy as for morph analysis, i.e.,
learning multiple taggers and combine the results.

2.3.2 Features
The list of feature templates are shown in Ta-
ble 5. Note for POS tagging, as mentioned above,
one additional feature is the morph feature, which
comes from the automatic morph models.

The basic features includes word and lower
cased word n-grams, prefixes and suffixes. With
these features, the baseline UPOS tagger achieves
94.78% accuracy on the English development set.
Since we do not use deep learning based ap-
proaches, incorporating pretrained word embed-
dings is not straightforward for linear classifiers.
In our system, we clustered the word vectors us-
ing k-means, where k = 2048 and 10000, and then
used the cluster n-grams as features.

2.4 Unlabeled Dependency Parsing

2.4.1 Methodology
Our dependency parser consists of two compo-
nents, one is the unlabeled parser which only pre-
dicts the tree structures, the other is relation type
prediction that assigns dependency relations to the
dependencies. Originally, we trained a third or-
der parser with word/POS/morph n-gram features,
but it is too slow to extract features, especially

145

wordi, −2 ≤ i ≤ 2
wordichari+1, −2 ≤ i ≤ 1

cluster0, clustericlusteri+1, i = −1, 0
lowerCasedWord0

prefixi,j , i = −1, 0, 1, 1 ≤ j ≤ 6
suffixi,j , i = −1, 0, 1, 1 ≤ j ≤ 6

word0prefixi,j , i = −1, 1, 1 ≤ j ≤ 6
word0suffixi,j , i = −1, 1, 1 ≤ j ≤ 6
morph (invalid for morph analysis)

transition features

Table 5: Feature templates for morph analysis and
POS tagging, where prefixi,j is the length = j
prefix of the ith word to the right of current word,
clusteri is the cluster id of wordi

the third order features. So we chose to build
a second order parser to balance speed and per-
formance. We developed two versions of depen-
dency parsers, one is pseudo-projective parser that
handles treebanks that are nearly projective (pro-
jective dependencies % > 95%), the other is
the 1-endpoint-crossing parser (Pitler et al., 2013;
Pitler, 2014) that processes treebanks with more
non-projective dependencies (projective depen-
dencies % < 95%), such as Dutch-LassySmall,
Ancient Greek, Ancient Greek-PROIEL, Basque,
Latin-PROIEL and Latin. We modified the origi-
nal third order 1-endpoint-crossing parsing algo-
rithm to guarantee the unique derivation of any
parse tree, because we need the top k parse trees
for training.

2.4.2 Features
Our original third order parser includes 1000+
feature templates, and generated more than 100
million features on English data. As the features
consume too much memory, making the parser
rather slow, we kept only 260 templates, and use
second order parser instead, which generated 15
million features. Most of the feature templates
come from the previous works (Koo and Collins,
2010; McDonald et al., 2005), including word,
POS ngrams and their combinations. We also add
some morphology and word cluster n-grams. De-
tailed feature templates are described in Table 6.

2.5 Relation Classification

2.5.1 Methodology
Once the tree structure of a parse tree is obtained,
we train a linear tree CRF to assign the relation

type to each arc in the tree. Given a tree repre-
sented as a collection of arcs: T = {e}, the tree
CRF represents the potential function of T as the
sum of the potential functions of arcs and arc pair
chains:

φ(T) =
∑
e

φ(e) +
∑
e→e′

φ(e→ e′) (1)

where φ(e) is the linear combination of node fea-
tures in the CRF and φ(e→ e′) is the linear com-
bination of transition features in the CRF.

2.5.2 Features
For each arc p → c, we use the same feature tem-
plates as in Table 6 to generate node features. For
transition features, we simply use the relation type
bigrams, i.e., relation(g→ p)relation(p→ c).

3 CoNLL Shared Task Results

3.1 Implementation details

All the classifiers, including linear chain CRF,
tree CRF and second order dependency parser,
are trained using 10-best MIRA (McDonald et al.,
2005). Parameters are averaged to avoid overfit-
ting. We found that k best MIRA consistently out-
performs averaged perceptron about 0.1 − 0.2%
for all tasks.

For CRFs and the parser, we used the lazy de-
coding algorithm (Huang and Chiang, 2005) for
fast k-best candidate generation, the complexity
is nearly the same as 1-best decoding. Specifi-
cally, the time complexity for CRFs is O(nL2 +
nk log(k)), and O(n4 + nk log(k)) for the parser.
where n is the length of sentence.

Both CRFs are optimized for fast tagging:
strings like words, POS tags are mapped to bit
strings for efficient concatenation to generate fea-
ture strings, while the parser is not optimized. The
actual running time for 1-endpoint-crossing parser
is about 1.8 times of projective parser, though the-
oretically it should be 50x times slower. The main
reason is that feature generating is much more
slower than decoding, which is actully the same
for both parsers. For fast training, we use hog-
wild strategy to update the parameters using 30
threads. Empirical results on English development
data showed that compared with standard MIRA
that only used single thread, the hogwild strategy
get 5x speedup, the parser can be trained within
2.5 hours. While the performance is very compet-
itive, only lost 0.1% UAS.

146

pi.word, ci.word, −2 ≤ i ≤ 2
pi.word pi+1.word, ci.word ci+1.word, −2 ≤ i ≤ 1

pi.word cj .word, ci.word sj .word, gi.word cj .word, −1 ≤ i, j ≤ 1
gi.word pj .word ck.word, pi.word cj .word sk.word, −1 ≤ i, j, k ≤ 1

pi.word cj .word cj+1.word, −1 ≤ i ≤ 1, −1 ≤ j ≤ 0
pi.word pi+1.word cj .word, −1 ≤ i ≤ 0, −1 ≤ j ≤ 1

g0.word pi.word cj .word cj+1.word, −1 ≤ i ≤ 1, −1 ≤ j ≤ 0
g0.word pi.word pi+1.word cj .word, −1 ≤ i ≤ 0, −1 ≤ j ≤ 1
pi.word cj .word cj+1.word s0.word, −1 ≤ i ≤ 1, −1 ≤ j ≤ 0
pi.word pi+1.word cj .word s0.word, −1 ≤ i ≤ 0, −1 ≤ j ≤ 1

replace word above by upos, xpos, lowCasedWord, wordCluster, morph
combine the templates above with distance and direction of arcs

Table 6: Feature templates for unlabeled dependency parsing, where pi, ci, gi, si are the ith token right
to the parent, child, grand parent, sibling. (to the left, if i < 0)

To cluster word vectors, we implemented fast k
means using triangle inequality. We let k means
run 20 iterations using 45 threads to quickly gen-
erate clusters. For languages without pretrained
word vectors, such as en lines, we use word vec-
tors from en instead.

For surprised languages, we trained POS tagger,
morphological analyzer and parser using the ex-
ample data. The word cluster features are derived
by running word2vec on the unlabeled dataset, and
k-means clustering. For sentence segmentation
and tokenization, we just used the models trained
on English data, since the example dataset is quite
limited.

3.2 Results on development data
The feature sets are tuned on English development
data, except some languages specific tasks such as
Chinese word segmentation. Table 7 shows the re-
sults on development dataset. We have the follow-
ing observation regarding feature effect.

• Character type features are useful for sen-
tence segmentation, which made 13% abso-
lute F1 score improvement.

• Morphological features help the parser, re-
sulting in an UAS 0.5% absolute F1 score im-
provement.

• For tokenization, word features i.e., word−1

and word1 in Table 3 are useful, which made
1% absolute F1 score improvement.

• Lemma features do not have a big effect on
parsing. We compared using the gold lemma
features vs. the automatically generated ones,

with about 0.3% improvement from the for-
mer, and only 0.1% using the latter. Because
of this our system did not do lemmartization
for all the languages.

• Word cluster features have limited gains. We
tried two different ways to convert the pre-
trained word vectors to binary features:

(1) find the k nearest neighbors (k = 3 in ex-
periments) in the embedding space, and use
these neighors as features;

(2) cluster the words into k clusters, (k =
8, 16, . . . , 2048, 10000, 100000), and used
the cluster features.

The results on the English development set
showed that the two approaches performed
quite the same, both achieving 94.92% UPOS
accuracy, 0.15% improvement over the base-
line. In addition, we noticed that the word
cluster features did not help when k is small.
In our system submission, we used k =
2048, 10000 to generate the clusters.

It is worth pointing out that such improve-
ment from using the cluster features is quite
limited compared to using embeddings in
deep learning based methods. For example,
using stacked word and character bi-LSTM-
CRFs (Lample et al., 2016) achieved 95.75%
POS tagging accuracy, and 96.00% using
word+prefix/suffix embedding. We suspect
that the converting real valued features to
binary features (cluster features) loses too
much information.

147

Language Sentence Words UPOS XPOS Feats UAS LAS
ar 87.89% 92.15% 87.51% 81.08% 78.83% 70.33% 65.03%
bg 91.32% 99.77% 97.36% 75.72% 89.78% 87.75% 83.30%
ca 99.30% 99.73% 97.89% 97.92% 95.63% 88.69% 85.41%
cs 96.09% 99.96% 98.71% 92.11% 88.65% 89.46% 86.11%

cs cac 99.50% 100.00% 99.00% 88.60% 83.94% 87.47% 84.26%
cs cltt 74.36% 99.33% 89.20% 70.17% 65.97% 71.70% 68.37%

da 87.39% 100.00% 95.65% 0.00% 89.51% 79.36% 75.40%
de 93.68% 99.91% 93.39% 95.74% 79.83% 84.16% 79.76%
el 94.37% 99.78% 94.76% 94.80% 84.85% 81.99% 78.60%
en 81.43% 98.92% 93.89% 92.22% 92.23% 81.63% 78.11%

en partut 95.73% 99.37% 94.37% 93.76% 88.81% 80.60% 76.35%
es 98.75% 99.70% 96.24% 0.00% 95.00% 86.95% 83.71%

es ancora 96.66% 99.74% 97.93% 97.77% 95.64% 87.73% 84.74%
et 93.21% 99.07% 89.27% 91.13% 74.46% 71.24% 59.57%
eu 100.00% 99.99% 94.95% 0.00% 83.97% 76.87% 70.12%
fa 98.74% 99.48% 95.75% 95.52% 94.33% 83.27% 78.84%
fi 89.33% 99.77% 94.93% 96.07% 88.01% 78.73% 74.26%

fi ftb 85.02% 100.00% 92.96% 0.00% 88.60% 78.78% 73.34%
fr 97.73% 99.16% 96.27% 0.00% 94.87% 87.67% 85.03%

fr sequoia 90.58% 98.83% 96.05% 0.00% 92.82% 83.03% 80.43%
gl 96.68% 99.96% 96.83% 95.32% 99.79% 83.17% 79.89%

got 26.87% 100.00% 94.29% 95.23% 80.63% 70.46% 62.89%
grc 99.34% 100.00% 88.35% 77.68% 84.01% 68.13% 60.82%

grc proiel 42.42% 100.00% 96.20% 96.54% 86.50% 74.26% 68.52%
he 99.49% 84.12% 80.55% 80.66% 75.41% 62.52% 57.81%
hi 98.55% 100.00% 96.33% 95.11% 87.43% 92.20% 88.09%
hr 97.48% 99.89% 96.64% 0.00% 81.14% 82.20% 76.22%
hu 98.19% 99.95% 93.40% 0.00% 59.68% 73.99% 64.48%
it 97.02% 99.44% 96.92% 96.28% 95.44% 87.65% 85.36%

it partut 96.62% 99.16% 95.16% 94.89% 92.60% 82.55% 79.02%
ko 90.61% 97.91% 91.54% 86.50% 97.57% 62.80% 55.05%

la ittb 77.03% 99.87% 96.75% 0.00% 88.37% 75.85% 70.70%
la proiel 22.81% 100.00% 95.62% 95.37% 84.94% 68.66% 62.19%

lv 94.30% 99.66% 91.76% 26.01% 69.57% 72.57% 64.15%
nl 93.25% 99.66% 94.49% 0.00% 89.96% 82.82% 77.86%

nl lassysmall 81.01% 99.81% 96.32% 0.00% 93.48% 79.35% 74.41%
no bokmaal 96.08% 99.88% 97.28% 0.00% 91.16% 86.64% 83.22%
no nynorsk 93.90% 99.94% 96.54% 0.00% 91.27% 84.78% 81.28%

pl 99.56% 99.17% 95.54% 0.00% 77.10% 84.51% 79.17%
pt 90.71% 99.53% 96.70% 0.00% 92.86% 87.45% 84.66%

pt br 96.71% 99.82% 97.65% 97.57% 99.70% 89.23% 87.01%
ro 97.47% 99.63% 96.58% 9.64% 89.17% 86.94% 81.59%
ru 93.09% 99.79% 95.48% 94.35% 79.82% 82.12% 77.38%

ru syntagrus 97.29% 99.72% 98.10% 0.00% 90.25% 88.91% 86.14%
sk 76.09% 99.93% 94.94% 0.87% 69.04% 82.74% 77.20%
sl 99.59% 99.94% 97.38% 14.87% 81.19% 87.41% 84.31%
sv 96.17% 99.88% 95.66% 0.00% 89.63% 80.57% 76.05%

sv lines 87.19% 99.97% 94.89% 66.27% 99.97% 80.30% 75.22%
tr 96.98% 96.61% 89.31% 88.25% 77.59% 60.47% 52.49%
ur 99.10% 99.99% 93.46% 91.47% 77.62% 84.81% 78.02%
vi 97.40% 85.98% 78.32% 75.69% 85.84% 49.67% 44.20%
zh 98.50% 93.81% 87.21% 87.39% 92.25% 67.97% 62.75%

Table 7: Performance of our system on development dataset. XPOS accuracy for some languages are
quite low due to the format issue.

148

Language Sentence Word UPOS XPOS Feats UAS LAS
ar 85.69% 91.45% 86.59% 80.83% 78.27% 70.16% 64.89%
bg 91.5% 99.82% 97.67% 76.65% 90.18% 87.96% 83.89%
ca 99.35% 99.77% 97.68% 97.68% 95.35% 88.48% 85.02%

cs cac 99.76% 99.94% 98.43% 87.99% 83.95% 87.54% 83.27%
cs cltt 91.99% 99.59% 96.65% 83.34% 78.42% 80.26% 76.08%

cs 95.1% 99.99% 98.53% 91.45% 87.96% 88.14% 84.43%
cu 37.46% 100% 94.8% 95.02% 80.78% 73.68% 66.91%
da 81.41% 100% 95.84% 0% 90.55% 79.48% 75.59%
de 78.78% 99.61% 92.42% 96.74% 78.28% 79.17% 74.26%
el 28.28% 100% 95.75% 95.9% 84.99% 67.8% 61.53%

en lines 86.95% 99.96% 95.4% 63.43% 99.96% 79.27% 74.67%
en partut 98.1% 99.31% 94.2% 93.43% 88.49% 80.83% 76.68%

en 78.01% 98.98% 94.09% 93.46% 92.9% 80.8% 77.57%
es ancora 98.67% 99.72% 97.87% 97.87% 95.66% 87.13% 83.81%

es 87.08% 99.98% 94.88% 62.88% 99.98% 80.33% 74.89%
et 92.63% 99.28% 89.9% 92.01% 75.16% 69.98% 58.48%
eu 99.75% 99.99% 94.59% 0% 83.32% 77.28% 70.76%
fa 99.25% 99.44% 95.86% 95.74% 94.4% 82.11% 77.74%

fi ftb 86.46% 99.98% 93.11% 0% 89.1% 78.16% 72.08%
fi 89.48% 99.6% 95.15% 96.15% 88.07% 78.87% 74.51%

fr sequoia 82.97% 99.19% 96.4% 0% 93.33% 82.91% 80.3%
fr 92.49% 98.84% 95.68% 0% 94.27% 83.83% 80.38%
gl 96.14% 99.98% 96.98% 95.82% 99.78% 83% 79.79%
got 28.35% 100% 94.85% 95.7% 81.73% 70.13% 62.64%
grc 98.96% 100% 87.25% 75.43% 81.13% 66.23% 58.42%
he 99.49% 80.93% 77.34% 77.34% 71.84% 58.54% 54.25%
hi 99.11% 99.99% 96.4% 95.8% 87.71% 92.31% 88.15%
hr 95.92% 99.88% 96.13% 0% 78.71% 82.95% 76.63%
hu 94.1% 99.75% 92.63% 0% 59.13% 74.22% 64.37%
id 92.14% 99.96% 93.41% 0% 99.46% 82.27% 75.74%
it 98.76% 99.56% 97.29% 97.17% 96.02% 88.42% 86.01%
ja 94.64% 93.32% 91.04% 0% 93.3% 80.71% 79.25%
ko 90.99% 98.24% 92.51% 88.35% 97.9% 68.14% 61.14%

la ittb 92.91% 99.97% 97.49% 0% 91.59% 82.08% 77.62%
la proiel 28.28% 100% 95.75% 95.9% 84.99% 67.8% 61.53%

lv 98.8% 99.45% 90.09% 26.52% 68.6% 69.15% 60.94%
nl lassysmall 82.8% 99.93% 97.74% 0% 95.74% 84.92% 81.81%

nl 76.83% 99.79% 92.04% 0% 87.45% 77.93% 72%
no bokmaal 96.26% 99.85% 96.64% 0% 90.78% 85.8% 82.6%
no nynorsk 80.51% 96.99% 28.19% 0% 25.88% 23.91% 6.57%

pl 98.73% 98.99% 95.66% 0% 77.12% 84.05% 78.61%
pt br 96.63% 99.83% 97.42% 97.42% 99.7% 87.57% 85.41%

pt 91.67% 99.34% 96.51% 0% 92.24% 85.15% 82.03%
ro 94.79% 99.64% 96.71% 9.43% 89.06% 86.68% 81.19%

ru syntagrus 97.97% 99.69% 98.2% 0% 90.38% 89.36% 86.83%
ru 95.75% 99.81% 95.49% 95.24% 80.24% 81.58% 76.53%
sk 82.04% 99.98% 94.22% 0.9% 68.49% 81.58% 76.23%
sl 99.24% 99.93% 96.92% 14.55% 81.73% 85.74% 82.19%

sv lines 87.08% 99.98% 94.88% 62.88% 99.98% 80.33% 74.89%
sv 94.92% 99.84% 96.05% 0% 89.81% 82.31% 77.7%
tr 96.32% 97.13% 91.3% 90.45% 78.62% 61.69% 53.08%
ur 97.67% 100% 93.17% 91.23% 78.21% 85.22% 78.61%
vi 92.44% 83.8% 75.84% 72.94% 83.56% 46.16% 40.89%
zh 98.5% 94.57% 88.36% 88.4% 92.9% 70.35% 65.15

Table 8: Official performance of our system on big treebanks. For language no nynorsk, we used the
model trained on another language, thus got very poor result.

149

Language Sentence Word UPOS XPOS Feats UAS LAS
fr partut 98.5% 98.88% 95.26% 95.04% 90.07% 84.2% 80.06%

ga 94.75% 99.64% 90.79% 89.9% 71.95% 76.51% 66.49%
gl treegal 86.74% 97.91% 91.89% 86.48% 83.83% 73.44% 67.97%

kk 71.84% 94.45% 56.76% 57.13% 36.46% 44.67% 23.99%
la 98.14% 99.99% 88.57% 68.96% 67.45% 59.83% 48.33%

sl sst 17.58% 100% 91.78% 13.97% 75.6% 56.73% 49.53%
ug 67.13% 96.94% 74.76% 76.87% 96.94% 54.54% 34.57%%
uk 92.49% 99.82% 90.08% 8.95% 62.26% 73.52% 65.17%

ar pud 99.4% 89.08% 69.85% 0% 21.16% 53.74% 44.31%
cs pud 96.13% 98.48% 96.32% 87.99% 83.56% 85.12% 79.76%
de pud 88.4% 96.28% 83.82% 20.29% 30.75% 75.61% 69.19%
en pud 98.06% 99.59% 94.46% 93.43% 91.38% 83.56% 79.88%
es pud 94.88% 99.24% 88.01% 0% 54.03% 84.27% 77.09%
fr pud 96.55% 96.63% 87.56% 0% 57.52% 78.74% 73.67%
hi pud 1.17% 92.38% 79.04% 34.5% 13.38% 54.7% 43.46%
it pud 93.97% 99.08% 93.19% 2.48% 57.18% 87.72% 84.41%
ja pud 96.6% 93.57% 91.7% 0% 54.72% 82.04% 81.25%
pt pud 97.32% 98.51% 88% 0% 58.8% 78.75% 72.85%
ru pud 97.23% 97.15% 85.67% 79.23% 37.33% 77.5% 69.46%
sv pud 94.11% 98.39% 92.54% 0% 69.4% 75.94% 70.76%
tr pud 93% 94.94% 68.8% 0% 22.41% 52.75% 31.53%

bxr 90.62% 97.46% 49.11% 0% 39.9% 36.42% 17.08%
hsb 72.93% 94.32% 63.89% 0% 35.05% 37.58% 24.58%
kmr 92.91% 91.45% 58.03% 56.45% 31.56% 33.98% 25.85%
sme 98.09% 96.52% 53.98% 57.7% 30.7% 31.22% 17.1%

Table 9: Official performance of our system on small treebanks, PUD treebanks and suprise languages.

3.3 Official Results and Analysis

Detailed numbers for official runs on the test set
(Nivre et al., 2017) are listed in Table 8 and Table
9.

Our system ranked the 15th among the 33 sub-
missions. Unfortunately, we found that for one
language (no nynorsk), we used the model trained
on another language, therefore the performance is
poor. Changing to the correct model would change
our results from 67.87% averaged macro F1 score
to 68.78%. For two languages la and grc proiel,
we trained the 1-endpoint-crossing parser, but
used the projective parser for testing due to mem-
ory issue. On the development dataset, we found
that such strategy lost about 0.5% LAS due to the
inconsistent decoding algorithms between training
and testing. For PUD treebanks that have no cor-
responding training portion, we used the model
trained on the non-PUD dataset, e.g., used the
model trained on en to parse en pud.

Regarding speed, our parser is not optimized
for running time nor memory. It spent 67 hours
to parse all the languages using 10 threads. The
peak memory usage is about 89GB when parsing
grc proiel. The most time consuming part in our
system is feature generation that has a complex-
ity of O(n3T), where T = 260 is the number of
templates.

4 Conclusion and Future Work

We described our system for the universal depen-
dency parsing task that relies heavily on feature
engineering for each component in the pipeline.
Our system achieves reasonable performance. An
important observation we have is regarding the
pretrained word embeddings. Unlike neural net
based parsers that can effectively use large unla-
beled data by pretrained word embedding, pictures
of semi-supervised learning approaches for feature
engineering based systems are unclear. Though
we tried different ways in our work, the improve-
ment is quite limited. In our future work, we plan
to combine our system with neural net based ap-
proaches and explore some other semi-superivsed
learning techniques.

References
Liang Huang and David Chiang. 2005. Better

k-best parsing. In Proceedings of the Ninth
International Workshop on Parsing Technol-
ogy. Association for Computational Linguistics,
Stroudsburg, PA, USA, Parsing ’05, pages 53–64.
http://dl.acm.org/citation.cfm?id=1654494.1654500.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-

150

tional Linguistics, Uppsala, Sweden, pages 1–11.
http://www.aclweb.org/anthology/P10-1001.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, ICML ’01, pages 282–289.
http://dl.acm.org/citation.cfm?id=645530.655813.

Guillaume Lample, Miguel Ballesteros, Sandeep
Subramanian, Kazuya Kawakami, and Chris
Dyer. 2016. Neural architectures for named
entity recognition. CoRR abs/1603.01360.
http://arxiv.org/abs/1603.01360.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05). Association for Com-
putational Linguistics, Ann Arbor, Michigan, pages
91–98. https://doi.org/10.3115/1219840.1219852.

Joakim Nivre et al. 2017. Universal Dependencies
2.0 CoNLL 2017 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-2184. http://hdl.handle.net/11234/1-
2184.

Emily Pitler. 2014. A crossing-sensitive
third-order factorization for dependency
parsing. Transactions of the Associa-
tion for Computational Linguistics 2:41–54.
https://www.transacl.org/ojs/index.php/tacl/article/view/193.

Emily Pitler, Sampath Kannan, and Mitchell
Marcus. 2013. Finding optimal 1-endpoint-
crossing trees. Transactions of the Associa-
tion for Computational Linguistics 1:13–24.
https://www.transacl.org/ojs/index.php/tacl/article/view/23.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Associa-
tion for Computational Linguistics, pages 1–20.

151

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 152–162,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A non-projective greedy dependency parser with bidirectional LSTMs

David Vilares
Universidade da Coruña

LyS Group
Departamento de Computación
Campus de Elviña s/n, 15071

A Coruña, Spain
david.vilares@udc.es

Carlos Gómez-Rodrı́guez
Universidade da Coruña

FASTPARSE Lab, LyS Group
Departamento de Computación
Campus de A Elviña s/n, 15071

A Coruña, Spain
carlos.gomez@udc.es

Abstract

The LyS-FASTPARSE team presents
BIST-COVINGTON, a neural implementa-
tion of the Covington (2001) algorithm
for non-projective dependency parsing.
The bidirectional LSTM approach by
Kiperwasser and Goldberg (2016) is used
to train a greedy parser with a dynamic
oracle to mitigate error propagation. The
model participated in the CoNLL 2017
UD Shared Task. In spite of not using
any ensemble methods and using the
baseline segmentation and PoS tagging,
the parser obtained good results on both
macro-average LAS and UAS in the
big treebanks category (55 languages),
ranking 7th out of 33 teams. In the all
treebanks category (LAS and UAS) we
ranked 16th and 12th. The gap between
the all and big categories is mainly due
to the poor performance on four parallel
PUD treebanks, suggesting that some ‘suf-
fixed’ treebanks (e.g. Spanish-AnCora)
perform poorly on cross-treebank settings,
which does not occur with the correspond-
ing ‘unsuffixed’ treebank (e.g. Spanish).
By changing that, we obtain the 11th
best LAS among all runs (official and
unofficial). The code is made available
at https://github.com/CoNLL-
UD-2017/LyS-FASTPARSE

1 Introduction

Dependency parsing is one of the core structured
prediction tasks researched by computational lin-
guists, due to the potential advantages that ob-
taining the syntactic structure of a text has in
many natural language processing applications,
such as machine translation (Miceli-Barone and

Attardi, 2015; Xiao et al., 2016), sentiment anal-
ysis (Socher et al., 2013; Vilares et al., 2017) or
information extraction (Yu et al., 2015).

The goal of a dependency parser is to analyze
the syntactic structure of sentences in one or sev-
eral human languages by obtaining their analy-
ses in the form of dependency trees. Let w =
[w1, w2, ..., w|w|] be an input sentence, a depen-
dency tree for w is an edge-labeled directed tree
T = (V,E) where V = {0, 1, 2, . . . , |w|} is the
set of nodes and E = V × D × V is the set of
labeled arcs. Each arc, of the form (i, d, j), cor-
responds to a syntactic dependency between the
words wi and wj ; where i is the index of the head
word, j is the index of the child word and d is the
dependency type representing the kind of syntac-
tic relation between them.1 We will write i d−→ j
as shorthand for (i, d, j) ∈ E and we will omit the
dependency types when they are not relevant.

A dependency tree is said to be non-projective
if it contains two arcs i −→ j and k −→ l
where min(i, j) < min(k, l) < max(i, j) <
max(k, l), i.e., if there is any pair of arcs that
cross when they are drawn over the sentence, as
shown in Figure 1. Unrestricted non-projective
parsing allows more accurate syntactic represen-
tations than projective parsing, but it comes at a
higher computational cost, as there is more flexi-
bility in how the tree can be arranged so that more
operations are usually needed to explore the much
larger search space.

Non-projective transition-based parsing has
been actively explored in the last decade
(Nivre and Nilsson, 2005; Attardi, 2006; Nivre,
2008, 2009; Gómez-Rodrı́guez and Nivre, 2010;
Gómez-Rodrı́guez et al., 2014). The success of
neural networks and word embeddings for pro-

1Following common practice, we are using node 0 as a
dummy root node that acts as the head of the syntactic root(s)
of the sentence.

152

He gave a talk yesterday about parsing

Figure 1: A non-projective dependency tree

jective dependency parsing (Chen and Manning,
2014) also encouraged research on neural non-
projective models (Straka et al., 2016). How-
ever, to the best of our knowledge, no neural
implementation is available of unrestricted non-
projective transition-based parsing with a dynamic
oracle. Here, we present such an implementation
for the Covington (2001) algorithm using bidirec-
tional long short-term memory networks (LSTM)
(Hochreiter and Schmidhuber, 1997), which is the
main contribution of this paper.

The system is evaluated at the CoNLL 2017 UD
Shared Task: end-to-end multilingual parsing us-
ing Universal Dependencies (Zeman et al., 2017).
The goal is to obtain a Universal Dependencies
v2.0 representation (Nivre et al., 2016) of a col-
lection of raw texts in different languages.

2 End-to-end multilingual parsing

Given a raw text, we: (1) segment and tokenize
sentences and words, (2) apply part-of-speech
(PoS) tagging over them and (3) obtain the depen-
dency structure for each sentence.

2.1 Segmentation and PoS tagging
For these two steps we relied on the output pro-
vided by UDpipe v1.1 (Straka et al., 2016), which
was provided as a baseline model for the shared
task.

2.2 The BIST-COVINGTON parser
BIST-COVINGTON is built on the top of three core
ideas: a non-projective transition-based parsing al-
gorithm (Covington, 2001; Nivre, 2008), a neural
scoring model with bidirectional long short-term
memory networks as feature extractors that feed
a multilayer perceptron (Kiperwasser and Gold-
berg, 2016), and a dynamic oracle to mitigate error
propagation (Gómez-Rodrı́guez and Fernández-
González, 2015).

2.2.1 The Covington (2001) algorithm
The idea of Covington’s algorithm is quite intu-
itive: any pair of words wi, wj in w have a chance
to be connected, so we need to consider all such

pairs to determine the type of relation that exists
between them (i.e. i d−→ j, j d−→ i or none). One
pair (i, j) is compared at a time. We will be refer-
ring to the indexes i and j as the focus words. It
is straightforward to conclude that the theoretical
complexity of the algorithm is O(|w|2).

Covington’s algorithm can be easily imple-
mented as a transition system (Nivre, 2008). The
set of transitions used in BIST-COVINGTON and
their preconditions is specified in Table 1. Each
transition corresponds to a parsing configuration
represented as a 4-tuple c = (λ1, λ2, β, A), such
that:

• λ1, λ2 are two lists storing the words that
have been already processed in previous
steps. λ1 contains the already processed
words for which the parser still has not de-
cided, in the current state, the type of rela-
tion with respect to the focus word j, located
at the top of β. λ2 contains the already pro-
cessed words for which the parser has already
determined the type of relation with respect
to j in the current step.

• β contains the words to be processed.

• A contains the set of arcs already created.

Given a sentence w the parser starts at an initial
configuration cs = ([0], [], [1, ..., |w|], {}) and will
apply valid transitions until reaching a final con-
figuration cf such that cf = (λ1, λ2, [], A). Figure
2 illustrates an intermediate parsing configuration
for our introductory example.

He gave a talk yesterday about parsing
1 2 3 4 5 6 7

A = [(0,2), (2,1), (4,3), (2,5), (2,4)]

i j

λ1 λ2
β

Figure 2: A parsing configuration for our in-
troductory example just before creating a non-
projective RIGHT ARC talk −→ about.

2.2.2 A dynamic oracle for Covington’s
algorithm (Gómez-Rodrı́guez and
Fernández-González, 2015)

Given a gold dependency tree, τg, and a parser
configuration c, we can define a loss function

153

Transitions
LEFT ARC (λ1|i, λ2, j|β,A) (λ1, i|λ2, j|β,A ∪ {(j, d, i)})
RIGHT ARC (λ1|i, λ2, j|β,A) (λ1, i|λ2, j|β,A ∪ {(i, d, j)})
SHIFT (λ1, λ2, i|β,A) (λ1 · λ2|i, [], β, A)
NO-ARC (λ1|i, λ2, β, A) (λ1 · i|λ2, β, A)

Preconditions
LEFT ARC i > 0 and 6 ∃(k −→ i) ∈ A and 6 ∃(i −→ ... −→ j)
RIGHT ARC 6 ∃(k −→ j) ∈ A and 6 ∃(j −→ ... −→ i)
NO-ARC i > 0

Table 1: Set of transitions for BIST-COVINGTON as described in Nivre (2008). a −→ ... −→ b indicates
there is a path in the dependency tree that allows to reach b from a

L(c, τg) that determines the minimum number of
missed arcs of τg across the possible outputs (A)
of final configurations that can be reached from c,
i.e., the least possible number of errors with re-
spect to τg that we can obtain from c. A static
(traditional) oracle is only defined on canonical
transition sequences that lead to the gold tree, so
that L(c, τg) = 0 at every step during the training
phase. However, during the test phase such train-
ing strategy might end up in serious error propaga-
tion, as it is difficult for the parser to recover from
wrong configurations that it has never seen, result-
ing from suboptimal transitions that increase loss.
A dynamic oracle (Goldberg and Nivre, 2012) ex-
plores such wrong configurations during the train-
ing phase to overcome this issue. Instead of al-
ways picking the optimal transition during train-
ing, the parser moves with probability x to an erro-
neous (loss-increasing) configuration, namely the
one with the highest score among those that in-
crease loss.

To compute L for non-projective trees we
used the approach proposed by Gómez-Rodrı́guez
and Fernández-González (2015, Algorithm 1).
This dynamic oracle can be computed in O(|w|)
although the current implementation in BIST-
COVINGTON is O(|w|3). To choose the depen-
dency type corresponding to the selected transition
(in case it is a LEFT or RIGHT ARC), we look at the
gold treebank.

2.2.3 The BIST-parsers (Kiperwasser and
Goldberg, 2016)

The original set of BIST-parsers is composed
of a projective transition-based model using the
arc-hybrid algorithm (Kuhlmann et al., 2011)
and a graph-based model inspired in Eisner

(1996). They both rely on bidirectional LSTM’s
(BILSTM’s). We kept the main architecture of the
arc-hybrid BIST-parser and changed the parsing
algorithm to that described in §2.2.1 and §2.2.2.
We encourage the reader to consult Kiperwasser
and Goldberg (2016) for a detailed explanation
of their architecture, but we now try to give a
quick overview of its use as the core part of BIST-
COVINGTON.2

In contrast to traditional parsers (Nivre et al.,
2006; Martins et al., 2010; Rasooli and Tetreault,
2015), BIST-parsers rely on embeddings as inputs
instead of on discrete events (co-occurrences of
words, tags, features, etc.). Embeddings are low-
dimensional vectors that provide a continuous rep-
resentation of a linguistic unit (word, PoS tag, etc.)
based on its context (Mikolov et al., 2013).

Let w=[w1, ...,w|w|] be a list of word embed-
dings for a sentence, let u=[u1, ...,u|w|] be the cor-
responding list of universal PoS tag embeddings,
t=[t1, ..., t|w|] the list of specific PoS tag embed-
dings, f=[f1, ..., f|w|] the list of morphological fea-
tures (“feats” column in the Universal Dependen-
cies data format) and e=[e1, ..., e|w|] a list of exter-
nal word embeddings; an input xi for a word wi to
BIST-COVINGTON is defined as:3

xi = wi ◦ ui ◦ ti ◦ fi ◦ ei

where ◦ is the concatenation operator.
Let LSTM(x) be an abstraction of a standard

long short-term memory network that processes
the sequence x = [x1, ...,x|x|], then a BILSTM

encoding of its ith element, BILSTM(x, i) can be

2Including some additional capabilities that we included
especially for BIST-COVINGTON.

3 It might turn out that for some treebank/language some
of this information is not available, in which case the unavail-
able elements are considered as empty lists.

154

defined as:

BILSTM(x, i) = LSTM(x1:i) ◦ LSTM(x|x|:i)

In the case of multilayer BILSTM’S (BIST-
parsers allow it), given n layers, the output of the
BILSTMm is fed as input to BILSTMm+1. From
the BILSTM network we take a hidden vector h,
which can contain the output hidden vectors for:
the x leftmost words in β, the rightmost y of λ1,
and the z leftmost and v rightmost words in λ2.

The hidden vector h is used to feed a multilayer
perceptron with one hidden layer and four output
neurons that predicts which transition to take. The
output is computed as W2 · tanh(W ·h + b) + b2,
where W,W2, b and b2 correspond to the weight
matrices and bias vectors of the hidden and output
layer of the perceptron. Similarly, BIST-parsers
(including BIST-COVINGTON) use a second per-
ceptron with one hidden layer to predict the de-
pendency type. In this case the output layer corre-
sponds to the number of dependency types in the
training set.

2.3 Postprocessing
BIST-COVINGTON as it is allows parses with mul-
tiple roots, i.e., with several nodes assigned as
children of the dummy root. This was not allowed
however by the task organizers, as it is enforced
by Universal Dependencies that only one word per
sentence must depend on the dummy root. To
overcome this, the output is postprocessed accord-
ing to Algorithm 1. Basically, we look for the first
verb rooted at 0, or for the first word whose head
is 0 if there is no verb, and reassign all other words
to the selected term:

3 Experiments

We here describe the official treebanks used in the
shared task (§3.1), the general setup used to train
the models (§3.2) and some exceptions to said gen-
eral setup that were applied to special cases (§3.3).
We also discuss the experimental results obtained
by our system in the shared task (§3.4).

3.1 CoNLL 2017 treebanks
3.1.1 Training/development splits
60 treebanks from 45 languages were released to
train the models, based on Universal Dependen-
cies 2.0 (Nivre et al., 2017a). Most of them al-
ready contained official training and development
splits. A few others lacked a development set.
For these, we applied a training/dev random split

Algorithm 1 Multiple to single node root
1: procedure TO SINGLE(V, E)

. Get the nodes rooted at zero (those whose head has to
be reassigned)

2: RO ← []
3: for i in V do
4: if head(i) = 0 then
5: append(RO, i)

. We select the first verb linked to the dummy root to
remove multiple roots

6: if len(RO) > 1 then
7: closest head← RO[0]
8: for r0 in RO do
9: if utag(r0) = VERB then

10: closest head← r0
11: break

. Reassign the head of the invalid nodes (rooted to the
dummy root) to closest head

12: for r0 in RO do
13: if r0 6= closest head then
14: head(r0)← closest head

(80/20) over the original training set. All devel-
opment sets were only used to evaluate and tune
the trained models. No development set was used
to train any of the runs, as specified in the task
guidelines.

Additionally, four surprise languages (truly low
resource languages), were considered by the orga-
nization for evaluation: Buryat, Kurmanji, North
Sami and Upper Sorbian. For these, the organiz-
ers only released a tiny sample set consisting of
very few sentences annotated according to the UD

guidelines.

3.1.2 Test splits
The organizers provided a test split for each of
the treebanks released in the training phase, in-
cluding the surprise languages. Additionally, they
provided test sets corresponding to 14 parallel
treebanks in different languages translated from a
unique source. All of these test sets (Nivre et al.,
2017b) were hidden from the participating teams
until the shared task had ended. Using the TIRA
environment (Potthast et al., 2014) provided for
the shared task, participants could execute runs on
them, but not see the outputs or the results.

3.2 General setup

We used the gold training treebanks to train the
parsing models. We trained one model per tree-
bank. No predicted training treebank (predicted
universal and/or specific tags and morphological
features) was used for training, except for the case
of Portuguese (see §3.3.1).

155

Embeddings: Word embeddings are set to
size 100 and universal tag embeddings to 25.
Language-specific tag and morphological feature
embeddings are used and set to size 25, if they
are available for the treebank at hand. Using
external word embeddings seems to be beneficial
to improve parsing performance (Kiperwasser and
Goldberg, 2016), but it also makes models take
more time and especially much more memory to
train. The external word embeddings used in this
work (the ones pretrained by the CoNLL 2017
UD Shared Task organizers4) are of size 100. Due
to lack of enough computational resources, we
only had time to train 38 models (mainly corre-
sponding to the smallest treebanks) including this
information. Models trained with external word
embeddings are marked in Table 3 with ?.

Parameters: Adam is used as optimizer (Kingma
and Ba, 2014). Models were trained for up to 30
epochs, except for the two smallest training sets
(Kazakh and Uyghur), where models were trained
for up to 100 epochs. The size of the output of the
stacked BILSTM was set to 512. For very large
treebanks (e.g. Czech or Russian-SyntagRus)
or treebanks where sentences are very long (e.g.
Arabic), we set it to 256, also to counteract the
lack of physical resources to finish the task on
time. These models are marked in Table 3 with
•. The number of BILSTM layers is set to 2.
To choose a transition, BIST-COVINGTON looks
at the embeddings of: the first word in β, the
rightmost three words in λ1, and the leftmost and
rightmost word in λ2 (i.e., following the notation
in Section 2.2.3, we set x = 1, y = 3, z = 1 and
v = 1).

Other relevant features of the setup: Aggressive
exploration is applied to the dynamic oracle, as in
the original arc-hybrid BIST-PARSER.

3.3 Special cases
For some treebanks, we followed a different strat-
egy due to various issues. We enumerate the
changes below:

3.3.1 The Portuguese model
Surprisingly, the model trained on the Portuguese
treebank suffered a significant loss with respect to
the UDpipe baseline when parsing the full pre-
dicted (segmentation and tagging) development

4http://hdl.handle.net/11234/1-1989

file. We first hypothesized this was due to a
low accuracy on predicting the “feats” column in
comparison to other languages, as they are pretty
sparse. To try to overcome this, we trained a model
without considering them, but it did not solve the
problem. Our second option was to train a Por-
tuguese model on its predicted training treebank.5

Additionally, despite being a relative large tree-
bank, we included external word embeddings to
boost performance. This helped us to obtain a per-
formance similar to that reported by UDpipe.

3.3.2 Surprise languages

As training an accurate parser with so little data
might be a hard task , especially in the case of
data-hungry deep learning models, we used other
training treebanks for this purpose. We built a set
of parsers inspired on the approach presented by
Vilares et al. (2016), who find that training a mul-
tilingual model on merged harmonized treebanks
might actually have a positive impact on parsing
the corresponding monolingual treebank. In this
particular case, we are assuming that a trained
model over multilingual treebanks might be able
to capture similar treebank structures for unseen
languages.

In particular, we: (1) ran every trained mono-
lingual model on the sample sets, (2) for each sur-
prise language, we chose the top three languages
where the corresponding models obtained the best
performance and (3) trained a parser taking the
first 2 000 sentences of the training sets corre-
sponding to such languages and merging them.

Thus, we did not use the provided sample data
for training, but only as a development set to
choose suitable source languages for our cross-
lingual approach.

3.3.3 Parallel (PUD) treebanks

The only information our models knew about the
parallel treebanks during the testing phase was the
language in which they were written. To parse
these languages we follow a simplistic approach,
using the models we had already trained on the
provided training corpora: (1) if there is only one
model trained on the same language we take that
model, (2) else if there is more than one model
trained on that language, we take the one trained
over the largest treebank (in number of sentences),

5We used the predicted tokenization and tagging provided
by UDpipe.

156

otherwise (3) we parse the PUD treebank using the
English model.6

3.4 Results

Official and unofficial results for our model
and for the rest of participants on the
test set can be found at the task website:
http://universaldependencies.
org/conll17/results.html, but in
this section we detail the results obtained by
BIST-COVINGTON.

3.4.1 Results on small and big treebanks
categories

Table 2 shows the performance on the test sets for
the treebanks where an official training set was re-
leased.

In Table 3 we summarize our results on the
development sets for those treebanks that pro-
vided an official one. Although not shown for
brevity and clarity reasons, it is easy to check for
the reader that BIST-COVINGTON outperformed
the baseline UDpipe7 for all these treebanks on
the gold configuration (gold segmentation, gold
tags). The same is true, except for Chinese (-
0.69 decrease in LAS) and Portuguese (-0.09), in
the fully predicted configuration (end-to-end pars-
ing). It is easy to conclude from the table that
including external word embeddings has a posi-
tive effect in most of the treebanks we had time to
try. This is especially true when performing end-
to-end parsing, where only for three languages
(English-LinES, Gothic and Old Church Slavonic)
a negative effect was observed.8

Table 4 shows the top three selected languages
for each surprise treebank, the performance of the
monolingual and multilingual (merged) models on
them on the sample set (used as dev set), and also
shows the performance of the multilingual models
in the official test sets.

Table 5 shows our performance on the PUD
treebanks (test sets). There are 4 PUD treebanks
for which we obtained a poor performance: Span-
ish, Finnish, Portuguese and Russian. Average
LAS loss with respect to the top system in the cor-

6This latter case should and did never happen, as the task
organizers specified in advance that the parallel treebanks
would correspond to languages with existing treebanks, but
we included it as a fallback mechanism.

7http://universaldependencies.org/
conll17/baseline.html

8Due to not so rich embeddings and/or the model finishing
earlier than expected during training. See §5.

Treebank LAS
Ancient Greek 67.858-PROIEL
Ancient Greek 59.836

Arabic 66.5410

Basque 73.275

Bulgarian 85.766

Catalan 85.3718

Chinese 56.762

Croatian 77.9111

Czech-CAC 82.7116

Czech-CLTT 68.9223

Czech 83.7711

Danish 75.2711

Dutch-LassySmall 82.496

Dutch 71.897

English-LinES 73.4713

English-ParTUT 74.5012

English 76.0014

Estonian 61.797

Finnish-FTB 76.807

Finnish 76.118

French-ParTUT 72.0925

French-Sequoia 77.7723

French 79.8620

Galician-TreeGal 65.4217

Galician 79.2412

German 68.3522

Gothic 62.077

Greek 81.436

Hebrew 59.289

Hindi 86.8815

Hungarian 66.009

Indonesian 72.9423

Irish 58.0522

Italian 85.6016

Japanese 72.6817

Kazakh 16.2026

Korean 63.8514

Latin-ITTB 79.587

Latin-PROIEL 61.457

Latin 48.927

Latvian 63.057

Norwegian-Bokmaal 84.498

Norwegian-Nynorsk 83.107

Old Church Slavonic 67.214

Persian 77.6817

Polish 82.097

Portuguese-BR 86.749

Portuguese 80.9119

Romanian 80.5811

Russian-SynTagRus 87.559

Russian 76.988

Slovak 76.476

Slovenian-SST 43.8021

Slovenian 82.927

Spanish-AnCora 86.837

Spanish 83.248

Swedish-LinES 75.0410

Swedish 77.3313

Turkish 57.225

Ukrainian 61.2115

Urdu 78.319

Uyghur 27.9223

Vietnamese 38.3312

Table 2: BIST-COVINGTON results on the test
sets, for those treebanks from which a training set
was provided (small and big treebanks categories)

157

Gold treebank LAS Predicted treebank LAS
Treebank no E E no E E
Ancient Greek 81.44 N/A 70.5 N/A-PROIEL
Ancient Greek? 71.01 71.31 60.41 61.25
Arabic?• 79.12 79.71 64.37 65.62
Basque? 81.53 82.06 72.00 73.42
Bulgarian? 89.88 90.46 84.33 85.30
Catalan• 90.63 N/A 87.21 N/A
Chinese 80.34 N/A 55.31 N/A
Croatian? 83.86 83.64 78.04 78.74
Czech-CAC• 88.64 N/A 84.93 N/A
Czech-CLTT• 82.28 N/A 68.03 N/A
Czech• 90.70 N/A 85.47 N/A
Danish? 83.85 85.78 74.92 76.94
Dutch-LassySmall? 86.59 86.65 76.78 77.50
Dutch 86.82 N/A 76.47 N/A
English-LinES? 83.74 83.05 76.48 76.44
English-ParTUT? 84.15 84.60 76.24 77.07
English 88.02 N/A 76.7 N/A
Estonian? 79.26 80.21 61.09 62.80
Finnish-FTB 89.00 N/A 76.43 N/A
Finnish 86.51 N/A 76.96 N/A
French-Sequoia 89.14 N/A 81.79 N/A
French• 89.86 N/A 85.8 N/A
Galician?• 84.22 82.58 80.17 79.03
German 87.63 N/A 73.61 N/A
Gothic? 80.82 81.17 60.84 60.82
Greek? 86.03 86.37 79.74 80.05
Hebrew?• 85.26 85.13 62.18 62.39
Hindi 93.42 N/A 87.41 N/A
Hungarian? 80.84 81.30 69.16 70.43
Indonesian 80.39 N/A 74.91 N/A
Italian-ParTUT? 86.20 86.83 78.90 79.56
Italian 90.30 N/A 86.05 N/A
Japanese? 96.48 96.46 73.99 74.20
Korean 68.66 N/A 60.18 N/A
Latin-ITTB 84.21 N/A 72.22 N/A
Latin-PROIEL 79.37 N/A 61.98 N/A
Latvian? 77.25 76.55 63.12 63.62
Norwegian-Bokmaal 91.45 N/A 85.13 N/A
Norwegian-Nynorsk 91.06 N/A 83.38 N/A
Old Church Slavonic? 84.59 84.52 66.93 66.66
Persian?• 86.85 N/A 80.44 81.45
Polish? 91.04 91.25 81.43 82.18
Portuguese-BR• 90.91 N/A 86.41 N/A
Portuguese?• 94.94 93.09 79.3 84.00
Romanian? 85.08 84.44 80.97 81.01
Russian-SynTagRus• 91.91 N/A 88.29 N/A
Russian? 85.12 86.07 78.02 79.09
Slovak? 87.61 88.39 75.59 77.35
Slovenian? 92.28 93.14 82.48 84.15
Spanish-AnCora• 90.50 N/A 86.21 N/A
Spanish• 87.90 N/A 84.25 N/A
Swedish-LinES? 84.23 84.44 76.39 76.86
Swedish? 84.88 85.03 76.41 76.64
Turkish? 61.66 64.46 55.05 57.60
Urdu? 87.63 87.50 77.43 77.49
Vietnamese? 72.21 72.58 42.27 42.94

Table 3: BIST-COVINGTON results on the
dev set, for those treebanks that have an offi-
cial dev set (all treebanks except French-ParTUT,
Irish, Galician-TreeGal, Kazakh, Slovenian-SST,
Kazakh, Uyghur and Ukrainian). ? indicates the
model was also trained with external word embed-
dings (E). • indicates the BILSTM output dimen-
sion was 256. The performance of some models is
likely to be improved, as its training finished ear-
lier than expected due to lack of time to finish it or
memory issues (see also §5)

responding treebank was 32.47, which implied a
LAS loss up to 1.60 points in the official global
ranking. We hypothesized that taking the model

Surprise Top 3 Sample set Sample set Test set
language treebanks Monolingual Multilingual Multi

Buryat
Hindi 36.60

43.14 28.655German 32.68
Korean 27.45

Kurmanji
Romanian 38.84

39.26 32.0816Czech 37.19
Slovenian 31.40

North Estonian 45.38
57.14 32.5814Finnish 40.82

Sami Finnish-FTB 40.14

Upper Slovenian 65.22
70.65 52.5015Slovak 64.78

Sorbian Bulgarian 61.09

Table 4: LAS on the surprise languages sample
sets for: (1) top 3 best performing monolingual
models for which there is an official training tree-
bank and (2) a multilingual model trained on the
first 2 000 sentences of each of such treebanks. For
the multilingual models, the last column shows its
performance on the test sets (subscripts indicate
our ranking in that language)

trained on the largest treebank of the same lan-
guage was the safest option to parse PUD texts,
but in retrospective this clearly was not the optimal
choice. Those four PUD treebanks were parsed
with models trained on Universal Dependencies
(UD) treebanks whose official name has a suffix
(i.e. Spanish-Ancora, Finnish-FTB, Portuguese-
BR and Russian-SyntagRus), which were larger
than the unsuffixed UD treebank. However, we
think such a poor performance surpasses what can
be reasonably expected from an universal treebank
written in the same language. From Table 5 it
is reasonable to conclude that such suffixed tree-
banks parse more than poorly on cross-treebank
settings, in comparison to the model trained on the
unsuffixed treebank (rightmost column). We won-
der if this can be an indicator of those treebanks
sharing universal dependency types, but diverging
in terms of syntactic structures, which caused the
low LAS scores in those cases.

A possible contributing factor to this could be
that the annotators of the parallel treebanks used
guidelines from the unsuffixed treebanks, or auto-
matic output trained on them, as a starting point
from the annotation process. At the point of writ-
ing we cannot confirm whether this is the case, as
documentation for the PUD treebanks is not yet
publicly available.

158

PUD Trained on
LAS

Trained on
LAStreebank largest treebank uns. treebank

(official) (unofficial)
Arabic Arabic 45.1211 =
Czech Czech 80.1310 =
German German 66.2919 =
English English 78.7916 =
Spanish Spanish-Ancora 53.7330↓ Spanish 78.90
Finnish Finnish-FTB 40.6628 ↓ Finnish 80.70
French French 73.1523 =
Hindi Hindi 51.1513 =
Italian Italian 83.8415 =
Japanese Japanese 76.0918 =
Portuguese Portuguese-BR 54.7527 ↓ Portuguese 72.84
Russian Russian-SyntagRus 44.6931 ↓ Russian 70.00
Swedish Swedish 69.6017 =
Turkish Turkish 34.964 =

Table 5: LAS/UAS performance on the PUD tree-
banks (test sets). The ↓ symbol indicates a dras-
tic gap in performance with respect the average
performance of BIST-COVINGTON. We show how
parsing the PUD treebank with a model trained on
the corresponding unsuffixed treebank clearly im-
proves the LAS accuracy.

4 Discussion

BIST-COVINGTON worked very well on languages
where official training/development sets were
available, what the organizers named big tree-
banks (55 treebanks), category where we ranked
7th out of 33 systems, both for LAS and UAS met-
rics, in spite of not using any ensemble method
and not performing custom tokenization, segmen-
tation or tagging.

More in detail, we ranked in the top
ten LAS for 35 languages, where 32 be-
long to the category of big treebanks: Ara-
bic (10th), Bulgarian (6th), Buryat (5th), Czech-
PUD (10th), Old Church Slavonic (4th), Greek
(6th), Spanish (8th), Spanish-Ancora (7th),
Estonian (7th), Basque (5th), Finnish (8th),
Finnish-ftb (7th), Gothic (7th), Ancient Greek
(6th), Ancient Greek-PROIEL (8th), Hebrew
(9th), Hungarian (9th), Latin (7th), Latin-
ITB (7th), Latin-PROIEL (7th), Latvian (7th),
Dutch (7th), Dutch-lassysmall (6th), Norwegian-
Bokmaal (8th), Norwegian-Nynorsk (7th), Pol-
ish (7th), Portuguese-BR (9th), Russian (8th),
Russian-Syntagrus(9th), Slovak (6th), Slovenian
(7th), Swedish-LinES (10th), Turkish (5th),
Turkish-PUD (4th) and Ukrainian (9th).

We failed on a subset of the PUD treebanks. As
previously explained, the main gap came from the
Spanish, Russian, Portuguese and Finnish PUD
treebanks. We analyzed those treebanks based on
existing UD CoNLL treebanks. We parsed them

with the model trained on the largest treebank that
shared the language. It turned out that those PUD
treebanks that were parsed with suffixed treebanks
(e.g. Spanish-Ancora or Russian-SynTagRus) ob-
tained a very low performance, something that did
not happen when parsing them with the model
trained on the corresponding unsuffixed treebank
(e.g. Spanish or Russian). In cases where there
was only one UD treebank sharing the language,
our approach worked reasonably well, in spite
of the simplistic strategy followed (e.g. Turkish-
PUD or Czech-PUD).

We did not perform too well either on the set of
small treebanks (French-ParTUT, Irish, Galician-
TreeGal, Kazakh, Slovenian-SST, Uyghur and
Ukrainian). This was somewhat expected for two
reasons: (1) neural models that are fed with con-
tinuous vector representations are usually data-
hungry and (2) the submitted model was only
trained on our training split; we did not include
the ad-hoc dev sets for those languages as a part
of the final training data.

We believe that the cases where the parser did
not work well were due to external causes (e.g.
the chosen cross-treebank strategy), as shown in
the case of the PUD treebanks. Unofficial results
such as the ones in Table 5 show that this can be
easily addressed to push BIST-COVINGTON to ob-
tain competitive results in those treebanks too.

5 Hardware requirements and issues

Our models required DyNet (Neubig et al., 2017),
which allocates memory when it is launched. We
ran them on CPU. To train the models we used two
servers with 128GB of RAM memory each. Es-
timating the required memory to allocate to train
each model was a hard task for us. Dynet does
not currently have a garbage collector,9 so many
models ran out of memory even before finishing
their training, probably due to wrong memory es-
timations to complete this phase, and our lack of
resources to allocate memory for many treebanks
at a time. We observed that models such as Arabic
with external word embeddings could take up to
64GB during the training phase.

The performance on the dev set of our trained
models was close, but not equal, in our train-
ing machine and in TIRA. This might be caused
by a serialization versioning issue: https://

9https://github.com/clab/dynet/issues/
418

159

github.com/clab/dynet/issues/84.
To safely run a large trained model with exter-

nal embeddings we recommend at least 32GB of
RAM memory. We think a safe estimate to run
any model without external embeddings would be
something between 15 and 20GB.

The current version of BIST-COVINGTON is not
very fast. Average speed (tokens/second) over
all test treebanks was 18.27. The fastest mod-
els were Kazakh (66.36), Uyghur (54.11) and
Czech-PUD (45.79) and the slowest ones Czech-
CLTT (5.37), Latin-PROIEL (7.69) and Galician-
TreeGal (8.19). To complete the testing phase of
the shared task, BIST-COVINGTON took around 28
hours. These times correspond to those of the offi-
cial evaluation on the TIRA virtual machine. Sev-
eral factors influence these speeds. Firstly, RNN
approaches tend to be slower than feedforward
approaches (e.g., reported speeds for the original
transition-based BIST-parser by Kiperwasser and
Goldberg (2016) are an order of magnitude be-
hind those of Chen and Manning (2014), although
the latter is also much less accurate). Secondly,
parsing UD data for different languages accurately
requires using more linguistic information (e.g.
feature embeddings), increasing the model size
with respect to models evaluated on simpler set-
tings like the English Penn Treebank. Finally,
we are aware that Covington’s algorithm may be-
come slower when sentences are too long due to its
quadratic worst-case complexity, an issue that is
likely to happen due to the predicted segmentation
(the organizers actually informed that some tree-
banks contained sentences of about 300 words).

6 Conclusion

This paper presented BIST-COVINGTON, a bidi-
rectional LSTM implementation of the Coving-
ton (2001) algorithm for non-projective transition-
based dependency parsing. Our model was evalu-
ated on the end-to-end multilingual parsing with
universal dependencies shared task proposed at
CoNLL 2017. For segmentation and part-of-
speech tagging our model relied on the official
UDpipe baseline. The official results located us
7th out of 33 teams in the big treebanks category,
in spite of not using any ensemble method.

As future work, there is room for improvement.
Due to lack of resources to train the models and
complete the task on time, we could not train all
models using external word embeddings, which

has been shown to produce a significant over-
all improvement. Jackniffing (Agić and Schluter,
2017) might be a simple way to improve the LAS
scores. Finally, it would be interesting to im-
plement the non-monotonic version of the Cov-
ington transition system, together with approxi-
mate dynamic oracles (Fernández-González and
Gómez-Rodrı́guez, 2017), shown to improve ac-
curacy over the regular Covington parser.

Acknowledgments

David Vilares is funded by an FPU Grant
13/01180. Carlos Gómez-Rodrı́guez has re-
ceived funding from the European Research Coun-
cil (ERC), under the European Union’s Hori-
zon 2020 research and innovation programme
(FASTPARSE, grant agreement No 714150).
Both authors have received funding from the
TELEPARES-UDC project from MINECO.

References
Željko Agić and Natalie Schluter. 2017. How (not) to

train a dependency parser: The curious case of jack-
knifing part-of-speech taggers. In The 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2017).

Giuseppe Attardi. 2006. Experiments with a mul-
tilanguage non-projective dependency parser. In
Proceedings of the Tenth Conference on Compu-
tational Natural Language Learning. Association
for Computational Linguistics, pages 166–170.
http://dl.acm.org/citation.cfm?id=1596276.1596307.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Michael A Covington. 2001. A fundamental algorithm
for dependency parsing. In Proceedings of the 39th
annual ACM southeast conference. Citeseer, pages
95–102.

Jason M Eisner. 1996. Three new probabilis-
tic models for dependency parsing: An explo-
ration. In Proceedings of the 16th conference
on Computational linguistics-Volume 1. Associa-
tion for Computational Linguistics, pages 340–345.
https://arxiv.org/pdf/cmp-lg/9706003.pdf.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2017. A full non-monotonic transition
system for unrestricted non-projective parsing.
In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (in
press). Association for Computational Linguistics.

160

Yoav Goldberg and Joakim Nivre. 2012. A
dynamic oracle for arc-eager dependency
parsing. In COLING. pages 959–976.
http://www.aclweb.org/anthology/C12-1059.

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2015. An efficient dynamic or-
acle for unrestricted non-projective pars-
ing. Volume 2: Short Papers page 256.
http://aclweb.org/anthology/P/P15/P15-2042.pdf.

Carlos Gómez-Rodrı́guez and Joakim Nivre.
2010. A transition-based parser for 2-planar
dependency structures. In Proceedings of the
48th Annual Meeting of the Association for
Computational Linguistics. Association for
Computational Linguistics, pages 1492–1501.
http://aclweb.org/anthology/P/P10/P10-1151.pdf.

Carlos Gómez-Rodrı́guez, Francesco Sartorio, and
Giorgio Satta. 2014. A polynomial-time dy-
namic oracle for non-projective dependency
parsing. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP). pages 917–927.
http://aclweb.org/anthology/D/D14/D14-1099.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014.
Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980
https://arxiv.org/pdf/1412.6980.pdf.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing
using bidirectional lstm feature represen-
tations. Transactions of the Association
for Computational Linguistics 4:313–327.
http://transacl.org/ojs/index.php/tacl/article/view/885.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algo-
rithms for transition-based dependency parsers. In
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Associa-
tion for Computational Linguistics, pages 673–682.
http://aclweb.org/anthology/P/P11/P11-1068.pdf.

André FT Martins, Noah A Smith, Eric P Xing,
Pedro MQ Aguiar, and Mário AT Figueiredo.
2010. Turbo parsers: Dependency parsing by
approximate variational inference. In Proceed-
ings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 34–44.
http://aclweb.org/anthology/D/D10/D10-1004.pdf.

Antonio Valerio Miceli-Barone and Giuseppe At-
tardi. 2015. Non-projective dependency-based pre-
reordering with recurrent neural network for ma-
chine translation. In The 53rd Annual Meeting of

the Association for Computational Linguistics and
The 7th International Joint Conference of the Asian
Federation of Natural Language Processing.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Advances in neural infor-
mation processing systems. pages 3111–3119.
https://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-
compositionality.pdf.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 https://arxiv.org/abs/1701.03980.

Joakim Nivre. 2008. Algorithms for deter-
ministic incremental dependency parsing.
Computational Linguistics 34(4):513–553.
http://dl.acm.org/citation.cfm?id=1479205.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceed-
ings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International
Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 1-Volume 1. Associa-
tion for Computational Linguistics, pages 351–359.
http://aclweb.org/anthology/P/P09/P09-1040.pdf.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017b. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajič, Christopher
Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A
multilingual treebank collection. In Proceed-
ings of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC 2016).
European Language Resources Association, Por-
toro, Slovenia, pages 1659–1666. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/348 Paper.pdf.

161

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of LREC.
volume 6, pages 2216–2219. http://www.lrec-
conf.org/proceedings/lrec2006/pdf/162 pdf.pdf.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceed-
ings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 99–106.
http://aclweb.org/anthology/P/P05/P05-1013.pdf.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Mohammad Sadegh Rasooli and Joel Tetreault.
2015. Yara parser: A fast and accurate depen-
dency parser. arXiv preprint arXiv:1503.06733
https://arxiv.org/pdf/1503.06733.pdf.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. 2013. Recursive deep
models for semantic compositionality over a senti-
ment treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP). volume 1631, page 1642.

Milan Straka, Jan Hajic, and Jana Straková. 2016. Ud-
pipe: Trainable pipeline for processing conll-u files
performing tokenization, morphological analysis,
pos tagging and parsing. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016). http://www.lrec-
conf.org/proceedings/lrec2016/pdf/873 Paper.pdf.

David Vilares, Carlos Gómez-Rodrıguez, and
Miguel A. Alonso. 2016. One model, two lan-
guages: training bilingual parsers with harmonized
treebanks. In The 54th Annual Meeting of the
Association for Computational Linguistics. pages
425–431. http://aclweb.org/anthology/P/P16/P16-
2069.pdf.

David Vilares, Carlos Gómez-Rodrı́guez, and
Miguel A Alonso. 2017. Universal, unsuper-
vised (rule-based), uncovered sentiment analysis.
Knowledge-Based Systems 118:45–55.

Tong Xiao, Jingbo Zhu, Chunliang Zhang, and Tongran
Liu. 2016. Syntactic skeleton-based translation.
In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17,

2016, Phoenix, Arizona, USA.. pages 2856–2862.
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11933.

Mo Yu, Matthew R Gormley, and Mark Dredze. 2015.
Combining word embeddings and feature embed-
dings for fine-grained relation extraction. In HLT-
NAACL. pages 1374–1379.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Héctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

162

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 163–173,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

LIMSI@CoNLL’17: UD Shared Task

Lauriane Aufrant1,2 Guillaume Wisniewski1

1LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91 405 Orsay, France
2DGA, 60 boulevard du Général Martial Valin, 75 509 Paris, France

{lauriane.aufrant,guillaume.wisniewski}@limsi.fr

Abstract

This paper describes LIMSI’s submission
to the CoNLL 2017 UD Shared Task,
which is focused on small treebanks, and
how to improve low-resourced parsing
only by ad hoc combination of multiple
views and resources. We present our ap-
proach for low-resourced parsing, together
with a detailed analysis of the results for
each test treebank. We also report exten-
sive analysis experiments on model selec-
tion for the PUD treebanks, and on anno-
tation consistency among UD treebanks.

1 Introduction

This paper describes LIMSI’s submission to the
CoNLL 2017 UD Shared Task (Zeman et al.,
2017), dedicated to parsing Universal Dependen-
cies (Nivre et al., 2016) on a wide array of lan-
guages. Our team’s work is focused on small tree-
banks, under 1,000 training sentences. To improve
low-resourced parsing, we propose to leverage
base parsers, either monolingual or cross-lingual,
by combining them with a cascading method: each
parser in turn annotates some of the tokens, and
has access to previous predictions on other tokens
to help current prediction; in the end each token
is annotated by exactly one parser. Compared
to the official baseline, this combination method
yields significant improvements on several small
treebanks, as well as a few larger ones.

Overall, according to the official results, our
system achieves 67.72 LAS and is ranked 17th
out of 33 participants, while the baseline (UD-
Pipe 1.1) achieves 68.35 LAS and is ranked 13th.
This is mostly due to huge drops from the base-
line on a few languages, for which we submit-
ted one of the official baseline models. Analyzing
these drops (see §4.5) unveils that strong annota-

tion divergences remain among UD treebanks of
the same language. If for these treebanks we had
submitted the exact same models as the baseline
submission, our system would have been ranked
9th, achieving 68.90 LAS. In the unofficial, post-
evaluation ranking, it is ranked 12th.

In §2, we present the design of our system, the
base parsers we use and how we combine them.
Official results are reported in §3; the strategy
adopted for each group of treebanks is presented
in §4, along with per-treebank detailed analyses.

2 System overview

Our system consists of several strategies, sum-
marized in Figure 1: depending on the treebank
size, we build and compare several parsers with
various designs, and finally submit the parser or
parsers combination performing best on develop-
ment data. For a few languages, we also improve
preprocessing by correcting errors in the tokeniza-
tion predicted by UDPipe (Straka et al., 2016).

Most of the parsers we consider are based on the
literature or our previous works, but for some lan-
guages, we also experiment with a new method for
combining base parsers. This method is designed
to better leverage each available resource in a low-
resource context. Indeed, state-of-the-art methods
for low-resourced parsing generally focus on ex-
ploiting one type of resource (e.g. parallel data) to
build a model, neglecting the others. On the con-
trary, our approach aims at using all available re-
sources together, since when data is scarce, we can
hardly afford ignoring a given information source.

The main idea of our approach is that vari-
ous kinds of parsing algorithms and training data
(monolingual, cross-lingual, delexicalized, paral-
lel data) provide different, complementary views
on the dependency structure of the language at
hand. We intend to leverage this complementar-

163

Delex

PanParser

UDPipe

Project-en

Project

X-Delex

Generic multi-
source delex

Multi-source delex

UDPipe +
PanParser

Cascade

X-Cascade

combine

combine
+ retrain

combine
+ retrain

multi-
source

multi-
source

only for small treebanks

Figure 1: The various strategies contained in our
system. The strategies written in bold consist of a
single model, the others are combinations of mod-
els. For each language, the best strategy is selected
on development data.

ity with a selective combination of several base
parsers.

For instance, a cross-lingual delexicalized
parser intuitively provides insights on the main
syntactic structures, presumably shared because of
linguistic similarities (typically assessed using lin-
guistic knowledge), while a monolingual parser
can learn target-specific structures in target data.
On one hand, if monolingual data is too small,
it does not contain enough information on the
main syntactic structures, and the cross-lingual
parser will be more accurate; it should be pre-
ferred for this kind of dependencies. On the other
hand, knowing the main structure of the sentence
can help in identifying fine-grained, target-specific
structures; when it is not available in monolingual
data, we want the cross-lingual parser to provide
this information to the monolingual parser (e.g. as
additional features).

Hence, we propose that some part of the syn-
tax is preassigned to each base parser, which is
retrained to specialize on that part, and to make
use of the syntactic insights provided by other,
more generic parsers. We achieve this with a
cascading method (Alpaydin and Kaynak, 1998)
and preestimated competence regions (Kuncheva,
2004, Chapter 6): each component of the cascade
is assigned a competence region, i.e. a subset of
the tokens on which it is assumed a priori to per-
form well, it annotates only these tokens and the

subsequent parsers are only allowed to complete
this partial tree. In the cascade, each component
parser trains and annotates the input based on its
predecessors; this requires (a) parsers with partial
trees as output, (b) to predict parses that include
a given set of dependency constraints, and (c) to
train parsers to use such constraints. Figure 2 sum-
marizes the method.

The base parsers that we compare and combine
are introduced in §2.1, and §2.2 describes how the
cascades are implemented and the competence re-
gions are chosen. §2.3 and §2.4 address other tech-
nical aspects of our submission: model selection
among our multiple strategies, and input prepro-
cessing.

2.1 Base parsers

2.1.1 Training data

In our system, we do not distinguish languages
with or without development data, nor sur-
prise languages. For all languages, we use
train/tune/dev splits of the UD data (Nivre et al.,
2017a), following the splits provided with the of-
ficial baseline (Straka, 2017).1 We perform a sim-
ilar split for the surprise languages, retaining the
10 first sentences for the trainset and the 4 last sen-
tences for the devset.

We always use gold tokenization and segmen-
tation during training, but to improve robustness
to noisy tags, all models are trained on treebanks
with predicted tags, provided by the task organiz-
ers.2

We use the word embeddings provided by the
organizers, computed on monolingual data prepro-
cessed by UDPipe.3

Parallel data from the OPUS platform (Tiede-
mann, 2012) is preprocessed as follows: for each
pair, all corpora are concatenated, tokenized and
annotated by UDPipe, and word aligned with fast
align (Dyer et al., 2013).

2.1.2 Monolingual

We consider four monolingual parsers:

1However, in the case of Uyghur and Kazakh, whose tune-
sets are particularly small and can hinder our method, we re-
allocate sentences from trainsets to tunesets, to reach 15 tun-
ing sentences. Still, to prevent train-tune overlaps, the initial
tuneset is used when evaluating the official UDPipe model.

2Except for the sample treebanks of the surprise lan-
guages, for which only gold tags are released.

3We also compute such embeddings for the surprise lan-
guages, using the same process.

164

input

P1

trained on R1

partial tree

P2

trained on R2

partial tree

P3

trained on R3

output

annotates R1

uses + respects

annotates R2

uses + respects

annotates R3

Figure 2: Processing of an input sentence by a 3-component cascade. The cascade contains parsers P1,
P2 and P3, which have been respectively assigned the competence regions R1, R2 and R3; each token
belongs to exactly one region. On the input sentence, the white areas represent tokens whose head is
unknown, while the black areas represent tokens whose head has already been predicted.

UDPipe We apply the official UDPipe 1.1 base-
line models (Straka, 2017). For the surprise lan-
guages, we train our own model.4

PanParser This is an in-house implementa-
tion (Aufrant and Wisniewski, 2016) of a
transition-based parser, using the ArcEager sys-
tem and an averaged perceptron. Hyperparame-
ters to tune are the number of epochs, the use of
the universal morphological features, the use of
word embeddings concatenated to the feature vec-
tors, and the size of the beam (either 8 or 1, i.e.
greedy). In any case the parser trains with dy-
namic oracles, with the restart strategy of Aufrant
et al. (2017). Relation labels are predicted in a
second step, which enables to use features of the
whole parse tree for this prediction.

Delex This is the same as the PanParser models,
except that all lexicalized features are removed, in-
cluding word embeddings.

UDPipe+PanParser As relation labels are
sometimes better predicted by PanParser than
UDPipe, we also consider combining their outputs
at prediction time: we first annotate the input
with UDPipe, discard the predicted labels and
replace them with labels predicted by PanParser
on UDPipe trees.

4We use the same hyperparameters as the smallest UD
treebank (Kazakh), including word embeddings pretrained on
their trainsets.

2.1.3 Cross-lingual
For each treebank under 1,000 training sentences,
we apply cross-treebank techniques to build addi-
tional parsers.

First, for each target treebank, we transform ev-
ery source treebank by delexicalizing it and ap-
plying the WALS rewrite rules of Aufrant et al.
(2016). We then compute, for each such tree-
bank, its similarity to the target treebank, using the
KLcpos3 divergence metric (Rosa and Zabokrtsky,
2015).

We select the source among treebanks over
2,000 sentences, by retaining the languages re-
quiring the smallest number of rewrite rules (i.e.
the smallest number of divergent WALS features),
and then choosing the (transformed) treebank min-
imizing the KLcpos3 divergence.

When the selected source is of the same lan-
guage, we use domain adaptation techniques, oth-
erwise we turn to cross-lingual methods. How-
ever, domain adaptation was not used in the final
submission as it did not bring significant improve-
ments on the corresponding treebanks (French-
ParTUT, Galician-TreeGal and Czech-CLTT), and
is not detailed here.

We consider five cross-lingual parsers:

Project-en Based on parallel data with English,
we use the partial projection technique of Lacroix
et al. (2016). Similarly to Lacroix et al. (2016),
alignment links are filtered by PoS agreement and
non-projective parses are filtered out; for some
pairs there are not many trees with high coverage,

165

so we adopt the following heuristic: we select all
trees with coverage over 20% if there are less than
5,000, trees with coverage over 80% if there are
more than 5,000 (up to 10,000), or the 5,000 trees
with highest coverage otherwise. Training on par-
tial trees is enabled by PanParser; PanParser hy-
perparameters are tuned on the target tuning data.

Project This model is the same as Project-en,
but using parallel data between the selected source
and the target. Depending on the language, the
language pair may be similar enough to compen-
sate for the reduced amount of parallel data.

X-Delex We train a delexicalized PanParser
model on the selected source treebank, trans-
formed by the WALS rules. In order to in-
crease train-test similarity, especially for Uyghur
and Kazakh whose tagging accuracy is particularly
low (under 70%), we also experimented with arti-
ficial noise added to the source tags (either random
or designed to match the error types of the target
tagger) but it was not conclusive. Hyperparame-
ters are tuned on the target tuning data.

Generic multi-source delex This language-
independent model first parses the input with all
Delex models, then computes the output tree as
a maximum spanning tree over all (unweighted)
candidate parses; relation labels result from a vote
of all Delex models, for each dependent token.

Multi-source delex This is a language-
dependent variant of the previous model, where
delexicalized models (excluding the target) are
trained on the transformed treebanks, and their
contributions to tree combination and vote on
labels are weighted by

(
1/KLcpos3

)4, following
Rosa and Zabokrtsky (2015). We experiment with
three heuristics to reduce the source set: retaining
only treebanks over 2,000 sentences, treebanks
that minimize the number of rewrite rules, and the
top 5 treebanks according to the KLcpos3 metric;
the best heuristic depends on the language and is
tuned on target data.

Most base parsers are trained in a few hours on
CPU, using a single thread (excluding hyperpa-
rameter tuning); exceptions are for instance Czech
and Russian-SynTagRus, whose treebanks are no-
tably large, and parser projection to Hungarian,
due to parallel data much larger than other pairs.

2.2 Cascade combination
Implementing a cascade parser relies on three fea-
tures of PanParser:

– Training parsers for partial output: training
data annotations are filtered according to the
competence region, and during training, the
model is penalized when it attaches unanno-
tated tokens.

– Predicting parses under constraints: the
search space is reduced at prediction time, ac-
cording to a partial tree.

– Training parsers under constraints: the search
space is reduced at training time, by preanno-
tating the training data with all previous com-
ponents of the cascade.

Hence, each component parser is retrained5 both
to specialize on its competence region, and to take
into account the knowledge provided by the previ-
ous components. To ensure that the final output is
complete, the last component trains on full parses
and annotates any remaining token.

As these features do not exist in UDPipe, we
do not retrain the UDPipe models, but still in-
clude them in the cascade by predicting without
constraints, filtering the output according to com-
petence regions, and restoring the constraint trees
as a postprocessing step. This way, they anno-
tate more tokens than needed, and do not use the
knowledge from previous components, but they
can still provide useful knowledge to later com-
ponents.

Confidence filtering Sometimes the output con-
tains a few noisy dependencies on top of the de-
pendencies belonging to the competence region.
To help distinguishing those, we add confidence
filtering with ensembling: for each component,
5 parsers are trained, and only the dependencies
predicted by at least 3 parsers are retained (using
maximum spanning tree techniques for combina-
tion).

Relation labels As in base PanParser models,
relation labels are predicted in a second step, us-
ing features from the whole predicted parse tree.
Since each label is predicted independently, the
competence regions are computed only after train-
ing, without retraining: at test time we simply
use the label predicted by the competent classifier.

5For each retrained component, hyperparameter values
are reused from the corresponding base parser.

166

For each component separately, label prediction is
trained on full data, preannotated with parse trees
resulting from the whole cascade, and competence
regions are computed for these label classifiers.

Competence regions To compute the regions,
we group the dependencies into classes accord-
ing to the PoS of the child and parent (e.g. DETs
depending on NOUNs, or NOUNs depending on
VERBs), evaluate each base parser on tuning data,
and assign each ‘PoS-PoS’ class to the model that
annotates it best. We do not assign classes that
are too small (less than 5 occurrences) or have low
accuracy (under 0.2). By design, any unassigned
class defaults to the last component of the cascade,
which in our experiments is always the monolin-
gual PanParser model.

Choice of components We apply the cascade
combination method both in monolingual and in
cross-lingual configurations. In each case, we try
out several subsets of components, training cas-
cades for each subset, and tune this choice sepa-
rately for the heads and the labels.6

In monolingual configurations (denoted Cas-
cade), when the scores of UDPipe and PanParser
on tuning data are close enough, we hypothesize
that their views may complement one another, and
train cascades with the following component can-
didates: either UDPipe followed by PanParser, or
UDPipe alone, or PanParser alone. Hence, we
compare 3 cascades on the head prediction task,
and 3 computations of competence regions on the
label prediction task.

In cross-lingual configurations (denoted X-
Cascade), the cascades are trained with the best
projected parser (either Project or Project-en,
when they exist), followed by X-Delex, the target
UDPipe and the target PanParser. We try removing
one or both of X-Delex and UDPipe, thus compar-
ing 4 cascades.

2.3 Model selection

For each treebank, we compare all base and cas-
cade parsers, and retain the parser yielding the
best LAS on the provided development set (us-
ing gold tokenization). However, in some lan-
guages this dataset was particularly small and con-
sequently biased, which often led to selecting the
wrong model, as will be seen in §4.

6Depending on the data sizes, the cascades train in a few
hours to two days on CPU, using 5 threads.

For the PUD treebanks, i.e. extra test sets of
a UD language but which do not correspond to
a given UD treebank, when there are several UD
treebanks for the same language, we choose the
model whose LAS on own development data is the
highest. This corresponds in practice to choosing
the largest treebank (in number of sentences), ex-
cept for Swedish-LinES. This choice is analyzed
in detail in §4.5.

2.4 Preprocessing

For most languages, we rely solely on the UDPipe
preprocessing as provided by the organizers. To-
kenization is customized only for the 3 languages
with lowest tokenization accuracy on development
data: Vietnamese, Chinese and Japanese.

Vietnamese In the UD 2.0 guidelines, spaces
are allowed inside words. While in most tree-
banks such words are rare, in Vietnamese whites-
paces denote syllable boundaries as well as word
boundaries, and words containing spaces are con-
sequently much more frequent. The low tokeniza-
tion accuracy (F1=83.99) of the baseline UDPipe
is mostly due to errors on such words.

UDPipe’s tokenization is postprocessed to im-
prove the recognition of words containing spaces.
To achieve this, we use a PMI criterion, assuming
that pairs of tokens which mostly appear together
are very likely a single word. When two consecu-
tive (orthographic) tokens have a very high (resp.
low) PMI, they are joined into a single word (resp.
split, if UDPipe had joined them). We do not allow
words with more than 2 orthographic tokens; in
case of conflict the pair with highest PMI is joined.

PMI values are computed using the unigram
and bigram counts of orthographic tokens in the
crawled monolingual data (after UDPipe tokeniza-
tion, to segment punctuation); in case of OOV the
pair remains unchanged. We set the PMI lower-
and upperbounds to log 5 and log 400.

Chinese and Japanese We rely on UDPipe for
sentence segmentation, and then use KyTea (Neu-
big et al., 2011) to tokenize each sentence. KyTea
models are trained on UD Chinese and Japanese
training treebanks.

For all three languages, the newly tokenized in-
put is then morphologically annotated by UDPipe.

167

3 Overall results

As part of the CoNLL 2017 UD Shared Task, we
evaluated our system on the TIRA platform (Pot-
thast et al., 2014). Evaluation runs on the virtual
machine took 10.5 hours on a single thread, using
up to 6GB RAM.

Table 1 presents our overall results as published
by the organizers, compared to the UDPipe 1.1
baseline.

Results rank our model first in tokenization and
second in morphological tagging, although these
improvements are due to our tokenization im-
provements on only 3 languages.

Regarding LAS, and according to the vari-
ous strategies that were adopted, our system
presents various behaviors depending on the tree-
bank group, and sometimes even among tree-
banks of the same group, e.g. surprise languages
(see §4.4).

However, the publication of the results, and
careful comparison with the baseline UDPipe sub-
mission, revealed huge unexpected drops on the
PUD treebanks, associated to differences in model
selection. Consequently, we also submitted an
additional, unofficial run, using the same heuris-
tic as the baseline submission: always retain the
model trained on the main treebank of the lan-
guage. The corresponding scores are reported in
Table 1 as ‘unoff.’. The score differences are
mostly explained by biases in PUD treebanks, to-
wards one of the UD treebanks of the given lan-
guage (see §4.5).

Consequently, our system is ranked below the
baseline in the official run, but above the baseline
when taking the PUD bias into account.

4 Analysis

In this section, we present the strategy that was
adopted for each treebank, along with detailed
analysis on the results. The analysis is conducted
separately for the treebanks with custom tokeniza-
tion, the large (over 10,000 training sentences),
medium and small (under 1,000 sentences) UD
treebanks, and for PUD treebanks.

Throughout the section, we report both official
results from the TIRA platform, and our own mea-
sures using the official evaluation script on the re-
leased test files (Nivre et al., 2017b). The latter are
displayed in italics.

UDPipe [off.] LIMSI [off.] LIMSI [unoff.]

F1/LAS Rank F1/LAS Rank F1/LAS Rank

Tokenization 98.77 8 98.95 ∗ 1 98.95 ∗

All tags 73.74 4 73.86 ∗ 2 73.86 ∗

All treebanks 68.35 13 67.72 17 68.90 ∗ 12
Big (55) 73.04 17 73.64 ∗ 13 73.64 ∗

PUD (14) 68.33 13 62.24 26 69.07 ∗

Small (8) 51.80 ∗ 15 51.71 16 51.71
Surprise (4) 37.07 11 37.57 ∗ 9 37.57 ∗

Table 1: Overall results of the shared task, as
published by the organizers. ‘*’ denotes the best
scores among the three systems. For each group
of treebanks, the number of treebanks it contains
is indicated in parentheses. The last column corre-
sponds to the unofficial ranking, which also takes
into account later improvements achieved by other
teams. The missing ranks are unknown.

4.1 Custom tokenization

For the languages with custom tokenization
(Japanese, Chinese and Vietnamese), we use the
UDPipe model for parsing. Table 2 displays our
improvements on tokenization and the resulting
improvements on LAS. It also reports the LAS of
the UDPipe models using gold tokenization and
sentence segmentation, which singles out the LAS
drop due to tokenization issues.

It appears that for all four treebanks, tokeniza-
tion is an important cause of errors, and that our
tokenization improvements (+2 to +4 on F1) result
in large LAS improvements (+2 to +8 on F1).

ja ja pud zh vi

Trainset size 6,805 3,797 1,330

UDPipe tokenization 89.68 91.06 88.91 82.47
LIMSI tokenization 93.82 94.93 91.35 87.30

UDPipe (gold seg.) 90.99 92.12 70.04 53.28

UDPipe LAS 72.21 76.28 57.40 37.47
LIMSI LAS 80.01 82.99 59.98 42.02

Table 2: Tokenization and LAS results on the tree-
banks with custom tokenization.

4.2 Treebanks over 10,000 sentences

Table 3 reports the scores obtained on the largest
treebanks, and the corresponding baselines. It in-
cludes evaluation of both UDPipe and PanParser
based on gold segmentation, for a better compar-
ison of parsers (as they were trained, tuned and
selected using gold segmentation), and an assess-
ment of the LAS drop due to segmentation errors.

168

cs ru syntagrus cs cac la ittb no bokmaal fi ftb grc proiel fr es ancora la proiel

Trainset size 65,070 46,373 22,304 15,017 14,911 14,231 14,103 13,825 13,589 13,482
G S
O E
L G
D .

UDPipe 83.76 87.55 82.47 77.74 83.94 76.07 70.69 82.15 83.97 67.22
PanParser 78.65 82.41 79.80 74.78 83.38 75.49 69.03 81.33 83.50 65.36

T
I
R
A

UDPipe (F1) 82.87 86.76 82.46 76.98 83.27 74.03 65.22 80.75 83.78 57.54
LIMSI (F1) 82.87 86.76 82.46 76.98 83.27 74.04 65.22 80.75 83.78 57.51

es no nynorsk de hi ca it en nl fi grc

Trainset size 13,477 13,465 13,412 12,638 12,466 12,196 11,915 11,713 11,606 10,902
G S
O E
L G
D .

UDPipe 81.97 82.71 71.33 86.84 85.46 85.90 80.72 71.10 75.41 56.16
PanParser 80.58 81.04 72.98 85.88 84.55 85.25 79.64 70.10 73.87 52.45

T
I
R
A

UDPipe (F1) 81.47 81.56 69.11 86.77 85.39 85.27 75.84 68.90 73.75 56.04
LIMSI (F1) 81.47 81.56 70.89 86.82 85.39 85.28 75.84 68.31 73.75 56.04

Table 3: LAS results on the large treebanks. The models selected on development data are underlined.
For 3 languages, we selected other models: UDPipe+PanParser for la proiel, a monolingual Cascade
(using UDPipe and PanParser) for hi and it.

pt br bg sk pt ro hr sl pl ar nl lassysmall eu he fa id ko da

Trainset size 9,180 8,461 8,058 7,914 7,640 7,304 6,154 5,795 5,771 5,738 5,126 4,978 4,558 4,253 4,180 4,163

G S
O E
L G
D .

UDPipe 85.79 84.55 74.23 83.10 80.57 77.51 81.20 79.31 73.85 81.34 69.23 78.31 79.82 75.02 60.04 74.98
PanParser 84.38 84.13 75.90 81.72 80.55 78.21 81.64 80.42 74.20 81.54 67.45 77.83 79.33 74.34 62.19 75.24
Cascade 84.09 75.19 77.28 81.24 79.88 80.48 69.31 77.60 79.30 75.18 59.60 74.92

T
I
R
A

UDPipe (F1) 85.36 83.64 72.75 82.11 79.88 77.18 81.15 78.78 65.30 78.15 69.15 57.23 79.24 74.61 59.09 73.38
LIMSI (F1) 85.36 83.22 74.45 82.19 80.11 78.02 81.37 79.95 65.86 78.15 69.21 57.23 79.24 74.78 59.09 73.85

sv cu ur ru tr got sv lines en lines lv gl et fr sequoia sl sst el la en partut

Trainset size 4,087 3,916 3,840 3,657 3,500 3,217 2,601 2,601 2,197 2,162 2,149 2,119 1,816 1,578 1,133 1,035

G S
O E
L G
D .

UDPipe 77.28 72.56 76.74 74.45 55.93 68.98 74.94 73.64 61.15 77.46 59.87 82.10 55.22 79.92 43.81 74.08
PanParser 77.14 74.58 76.26 76.07 57.41 69.50 74.68 73.87 60.99 76.74 60.96 81.76 56.62 79.58 44.17 73.89
Cascade 76.99 72.67 75.69 75.17 57.59 69.69 73.98 72.91 59.85 59.37 82.62 55.49 80.05 43.67 72.80

T
I
R
A

UDPipe (F1) 76.73 62.76 76.69 74.03 53.19 59.81 74.29 72.94 59.95 77.31 58.79 79.98 46.45 79.26 43.77 73.64
LIMSI (F1) 76.73 65.64 76.65 75.65 55.23 60.94 74.29 72.94 59.81 77.31 59.80 80.55 46.71 79.38 43.55 73.60

Table 4: LAS results on the medium treebanks. The models selected on development data are underlined.
For pt, ro, sl, id, ur, sl sst and en partut, we rather selected UDPipe+PanParser.

In most cases, our submission is simply the base-
line UDPipe, as we did not focus on improving the
system for large treebanks. Thus, no improvement
is reported on these treebanks.

Model selection proves successful on all tree-
banks except Latin-PROIEL and Dutch. In partic-
ular, it detects that the German PanParser is signif-
icantly better than UDPipe; considering the Pan-
Parser LAS on the other large treebanks, this is
unexpected and remains to be investigated.

4.3 Treebanks from 1,000 to 10,000 sentences

The results for the medium treebanks are reported
in Table 4. Compared to Table 3, it also includes
gold segmentation evaluation of the monolingual
Cascades, when they were considered.

As treebank size reduces, PanParser is more and
more often the best parser; but with smaller devel-
opment sets, the number of failures to select the
best model increases (12 out of 32 treebanks).

The Cascade model provides significant gains
on several treebanks, outperforming both UD-
Pipe and PanParser; it is indeed able to extract
knowledge from the lowest parser and use it to
improve upon the best parser (see Basque, In-
donesian, Turkish, Gothic, French-Sequoia and
Greek). However, these gains are not consistent,
and despite confidence and tuning mechanisms,
the method still requires empirical validation.

4.4 Treebanks under 1,000 sentences

Table 5 presents the last group of UD treebanks,
the smallest ones, including surprise languages.

For each treebank, we report several scores,
now including Delex, which is a promising can-
didate to parse the smallest treebanks. When
cross-lingual methods are used, we indicate the
source treebank and the scores of the projected
base parsers (except for the surprise languages
lacking parallel data), X-Delex and their combi-

169

nation X-Cascade.
For this group, since the development sets are

very small, model selection is not reliable and
misses the best model in 5 out of 12 cases. Ad-
ditionally, the even smaller tuning sets lead for
the cascades to poor estimation of competence re-
gions. But the main challenge faced by cascades is
noisy tags. Indeed, while preliminary experiments
on X-Cascade with gold tags were very promising,
turning to predicted tags makes the X-Delex mod-
els very unreliable (as their only features are unre-
liable), and they cannot provide useful insights to
the cascade anymore, in which case cascades lack
interest.

Regarding Uyghur, Kazakh and the surprise lan-
guages, for lack of data we decided to reduce the
training set in favor of the tuning set, in the hope
that better estimated cascades would compensate
for worse base parsers. This proves to be a bad
strategy in half the cases, and we end up underper-
forming the baseline by a large margin in Kazakh
and Buryat.

However, X-Cascades still achieve significant
improvements over their base parsers in Uyghur,
North Sámi and Buryat. This suggests that cas-
cading can indeed prove useful in cross-lingual
contexts; with the appropriate amount of data and
additional effort on estimation of competence re-
gions and on robustness to noisy tags, it may con-
vey much larger gains.

4.5 Model selection for PUD treebanks

The PUD treebanks are the additional test sets pro-
vided for 14 of the languages covered by the UD
treebanks. They have been annotated separately
and do not correspond to a given UD treebank.
As such, processing them with systems trained
on UD treebanks is prone to domain adaptation
issues: the PUD treebanks contain sentences ex-
tracted from newswire and Wikipedia, while UD
treebanks also cover several other domains. For
some of the PUD languages, several UD treebanks
are available, which raises the additional question
of choosing training data: either one of the UD
treebanks, or all of them.

For the PUD treebanks, we submitted baseline
UDPipe models in Czech, English, French, Span-
ish, Finnish, Portuguese, Russian and Swedish,
yet on 5 of these treebanks we suffered huge drops
(-9 to -34 LAS) from the official baseline submis-
sion. For these, the only difference with the base-

line is that we selected different treebanks. In or-
der to understand these drops, we performed a sys-
tematic evaluation of various preprocessing and
parser choices, comparing the same system with
different training data.

Table 6 reports, for each PUD treebank, the
results when applying each UDPipe pipeline on
gold segmentation, and when combining each UD-
Pipe preprocesser (segmentation and tagging) with
each UDPipe parser. Experiments with PanParser
yield consistent results.

In some cases, important drops seem due to
incompatible preprocessing between treebanks of
the same language: in English, Portuguese and
Swedish, the ‘main’ scores are much lower and
‘variant 1’ scores much higher when replacing
‘main’ preprocessing by ‘variant 1’. As the pre-
processing provided by the organizers was system-
atically produced by the ‘main’ UDPipe model,
this certainly affected our submission, which used
the provided preprocessing even when not using
the ‘main’ parser.

However, comparing results where treebank
choices are consistent, it appears that the ‘main’
treebank always outperforms the variants by a
large margin. This is not only due to differences
in tokenization, as this occurs also with gold seg-
mentation.

Additionally, in Table 6, the ‘All data’ results
are those obtained with a UDPipe model trained
on the concatenation of all treebanks of the lan-
guage. In most cases they underperform the
‘main’ model, which confirms that the variant tree-
banks add mostly noise to the model, from the
PUD perspective.

While there may be various explanations to
these accuracy differences, what is surprising here
is that the best treebank does not seem consistent
with common factors of high accuracy (treebank
size, domain similarity, treebank consistency). For
instance, Russian contains Wikipedia articles and
Russian-SynTagRus news (and Russian-PUD con-
sists of both Wikipedia articles and news), but
Russian-SynTagRus is much larger than Russian;
as such, parsers trained on Russian-SynTagRus
should be more accurate on Russian-PUD than
Russian, which they are not. Besides, Russian-
SynTagRus performs better than Russian on their
own test sets, indicating that the treebank does not
have strong self-consistency issues. For these rea-
sons, and the additional cue of incompatible pre-

170

hu uk fr partut gl treegal ga cs cltt ug kk hsb kmr sme bxr

Trainset size 864 733 527 510 481 441 75 12 10 10 10 10

G
O
L
D

S
E
G
.

UDPipe 64.67 60.92 78.77 68.50 62.25 72.77 36.66 27.10 32.91 ∗ 27.93 ∗ 20.72 ∗ 12.88 ∗

PanParser 65.60 61.97 79.78 68.36 63.38 74.94 36.21 ∗ 23.48 ∗ 47.27 ∗ 39.38 ∗ 31.99 ∗ 28.59 ∗

Delex 61.97 59.79 74.14 66.01 59.44 66.42 36.54 ∗ 22.75 ∗ 46.44 ∗ 38.27 ∗ 32.84 ∗ 29.73 ∗

Cascade 65.46 61.64 79.13 68.75 62.55 73.51 35.83 ∗ 23.99 ∗ 46.55 ∗ 37.80 ∗ 31.35 ∗ 25.91 ∗

Source fi ftb sk fr sequoia gl id cs cac tr tr sl fa et et

Project-en 44.01 52.59 42.48 16.65 13.87 37.77
Project 36.61 55.52 38.46 23.27 23.08 43.27
X-Delex 41.42 54.75 38.80 22.89 25.63 62.20 43.32 37.58 26.16
X-Cascade 57.43 60.09 37.35 ∗ 22.35 ∗ 54.61 ∗ 40.26 ∗ 37.79 ∗ 30.13 ∗

Multi-source 68.78 41.52
T
I
R
A

UDPipe (F1) 64.30 60.76 77.38 65.82 61.52 71.64 34.18 24.51 53.83 32.35 30.60 31.50
LIMSI (F1) 65.18 61.68 78.30 65.85 61.94 73.49 34.70 20.94 57.79 35.59 31.03 25.86

Table 5: LAS results on the small treebanks. For the last 4 columns (surprise languages), ‘gold seg.’
results use gold segmentation and gold tagging. ‘*’ denotes parsers whose monolingual training data
is smaller than the data used by the UDPipe baseline, hence important score differences. The models
selected on development data are underlined. The Multi-source line reports the scores of two models:
‘Generic multi-source delex’ for sme, and ‘Multi-source delex’ for hsb, with the heuristic retaining
only treebanks over 2,000 sentences.

cs pud en pud fr pud es pud fi pud it pud pt pud ru pud sv pud ar pud de pud hi pud ja pud tr pud

G
O
L
D

S
E
G
.

UDPipe Main 81.10+ 79.58∗
+ 75.54+ 78.40 78.84+84.43+ 74.32 70.36 73.05+ 52.78+ 68.03+ 52.49+ 92.12+ 37.37+

UDPipe Variant 1 75.14 64.67 ∗ 68.20 74.38+ 48.70 ∗ 76.62 72.22+ 61.81+ 66.58 ∗

UDPipe Variant 2 44.67 ∗ 65.65 63.57

S
E
G
.

+

T
A
G

M
A
I
N

UDPipe All data 79.32 79.05 74.00 77.58 76.49 83.57 74.27 64.49 69.97
UDPipe Main 79.80 78.95 73.63 77.65 78.65 83.70 73.96 68.31 70.62 43.14 66.53 50.85 76.28 34.53
UDPipe Variant 1 76.58 47.30 68.31 68.40 44.99 80.35 59.50 52.36 49.41
UDPipe Variant 2 54.65 66.42 68.18

V
A
R
1

UDPipe Main 75.36 63.42 69.04 70.75 52.80 78.43 62.83 68.18 51.63
UDPipe Variant 1 73.03 64.28 66.08 71.30 47.27 75.75 69.82 59.87 65.11
UDPipe Variant 2 53.32 55.68 64.39

V
A
R
2

UDPipe Main 47.31 68.53 63.18
UDPipe Variant 1 46.10 45.28 59.20
UDPipe Variant 2 41.66 64.82 61.10

T
I
R
A

UDPipe 79.80 78.95 73.63 77.65 78.65 83.70 73.96 68.31 70.62 43.14 66.53 50.85 76.28 34.53
LIMSI 79.80 78.95 73.63 68.40 44.99 83.69 59.50 52.36 49.41 43.91 68.62 50.91 82.99 34.15

Table 6: LAS results on the PUD treebanks. For lang pud, ‘main’ denotes the lang treebank.
Variants 1 are cs cac, en lines, fr sequoia, es ancora, fi ftb, it partut, pt br,
ru syntagrus and sv lines. Variants 2 are cs cltt, en partut and fr partut.

For each language, the largest treebank is annotated with ‘+’ (considering numbers of tokens: fi ftb
contains more sentences than fi, but they are shorter), and ‘∗’ indicates treebanks with important domain
adaptation issues (i.e. that contain neither Wikipedia nor news data).

Underlined results denote the training treebanks that we used to annotate the PUD treebanks (not
necessarily with a UDPipe model). The baseline UDPipe submission corresponds to ‘main’+‘main’.

For instance, in the cs pud column, the 3rd row (‘gold’+‘variant 2’) corresponds to gold tokenization
and segmentation, tagging with the cs cltt UDPipe model, and parsing with the cs cltt UDPipe
model. The 8th row (‘var1’+‘main’) corresponds to tokenizing and tagging with the cs cac UDPipe
model, and parsing with the cs UDPipe model.

171

processings, we speculate that the PUD treebanks
are indeed biased towards the main treebank of
each language, because of annotation scheme dis-
crepancies between treebanks. Such inconsisten-
cies may be due either to one treebank not fol-
lowing the guidelines, or to underspecified aspects
of the guidelines that have been interpreted differ-
ently by different teams.

Notably, Arabic and Hindi also present huge
drops from their scores on UD test sets, even
though they trained only on news; it is possible
that here as well, the drops are due only to annota-
tion inconsistencies.

Concluding on this hypothesis would require,
however, further analysis of the treebank domains:
the scores may still be partially explained by ac-
tual domain adaptation issues, e.g. the relative size
of each domain in multi-domain treebanks, or de-
tails of the domains (style, author, date...) that do
not appear in the coarse domain categories (news,
Wikipedia, fiction...).

Full examination of the annotation inconsisten-
cies is an ongoing work of the UD project, and
is out of the scope of this paper, but during our
manual analysis we already noticed that plain text
(both in the training data, and the raw input of the
test data) is in fact already partially preprocessed,
for some UD treebanks. For some, multitoken
words are already detected and annotated with ‘ ’
instead of spaces: this concerns at least Russian-
SynTagRus (phrasal conjunctions and numbers),
Finnish-FTB (numbers) and Greek (dates). For
others (Danish, Finnish-FTB), plain text is already
fully tokenized (except for multiword tokens).

This is not an issue in general, because the UD
treebanks are self-consistent on this convention,
but it affects the ability of the trained models to
process actual raw input. This partially explains
the PUD bias, since Russian and Finnish main
treebanks have actual raw text, as the PUD ones.

5 Conclusion

Our submission to the CoNLL 2017 UD Shared
Task focuses on low-resourced dependency pars-
ing. Our system is built upon base parsers, and
combines them using a cascading algorithm, in or-
der to leverage small and incomplete data.

This shared task was an opportunity to exper-
iment with this new cascading method in realis-
tic conditions; this is particularly interesting, since
this method addresses precisely realistic scenar-

ios where available data does not consist in either
large monolingual data or large parallel data, but
in various amounts of each resource type.

The method has proved useful in many cases,
with sometimes large improvements, but the gains
are not consistent enough to be reliable and still
require further work. The shared task conditions
have indeed uncovered several challenges faced
by the method: it lacks confidence mechanisms,
delexicalized models are too unreliable, and the
lack of development data hinders accurate estima-
tion of competence regions for the components of
the cascade.

The improvements we achieve are strongly di-
minished by huge unexpected drops on a few lan-
guages; while this affects our ranking in great pro-
portions, it also enables detailed analysis of the
new PUD treebanks, and on how and why they are
biased towards the main UD treebanks.

Acknowledgments

This work has been partly funded by the French
Direction générale de l’armement and by the
Agence Nationale de la Recherche (ParSiTi
project, ANR-16-CE33-0021). We thank Joseph
Le Roux for fruitful discussions and comments.

References
Ethem Alpaydin and Cenk Kaynak. 1998. Cascading

classifiers. Kybernetika pages 369–374.

Lauriane Aufrant and Guillaume Wisniewski. 2016.
PanParser: a Modular Implementation for Efficient
Transition-Based Dependency Parsing. Technical
report, LIMSI-CNRS.

Lauriane Aufrant, Guillaume Wisniewski, and François
Yvon. 2016. Zero-resource Dependency Parsing:
Boosting Delexicalized Cross-lingual Transfer with
Linguistic Knowledge. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers. The COL-
ING 2016 Organizing Committee, Osaka, Japan,
pages 119–130. http://aclweb.org/anthology/C16-
1012.

Lauriane Aufrant, Guillaume Wisniewski, and François
Yvon. 2017. Don’t Stop Me Now! Using Global
Dynamic Oracles to Correct Training Biases of
Transition-Based Dependency Parsers. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 318–323.
http://www.aclweb.org/anthology/E17-2051.

172

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A Simple, Fast, and Effective Reparameter-
ization of IBM Model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 644–648.
http://www.aclweb.org/anthology/N13-1073.

Ludmila I Kuncheva. 2004. Combining pattern classi-
fiers: methods and algorithms.

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wis-
niewski, and François Yvon. 2016. Frustratingly
Easy Cross-Lingual Transfer for Transition-Based
Dependency Parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Compu-
tational Linguistics, San Diego, California, pages
1058–1063. http://www.aclweb.org/anthology/N16-
1121.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise Prediction for Robust, Adapt-
able Japanese Morphological Analysis. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, pages 529–533.
http://www.aclweb.org/anthology/P11-2093.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University,
Prague. http://hdl.handle.net/11234/1-1983.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017b. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th

International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Rudolf Rosa and Zdenek Zabokrtsky. 2015. KLcpos3
- a Language Similarity Measure for Delexicalized
Parser Transfer. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers). pages 243–249.

Milan Straka. 2017. CoNLL 2017 Shared Task - UD-
Pipe Baseline Models and Supplementary Materials.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1990.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Jörg Tiedemann. 2012. Parallel Data, Tools and In-
terfaces in OPUS. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
Mehmet Ugur Dogan, Bente Maegaard, Joseph
Mariani, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Eight International Con-
ference on Language Resources and Evaluation
(LREC’12). European Language Resources Associ-
ation (ELRA), Istanbul, Turkey.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

173

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 174–181,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

RACAI’s Natural Language Processing pipeline for Universal
Dependencies

Stefan Daniel Dumitrescu, Tiberiu Boros and Dan Tufis
Research Institute for Artificial

Intelligence, Romanian Academy
Bucharest, Romania

sdumitrescu@racai.ro, tibi@racai.ro, tufis@racai.ro

Abstract

This paper presents RACAI’s approach,
experiments and results at CoNLL 2017
Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies. We
handle raw text and we cover tokeniza-
tion, sentence splitting, word segmenta-
tion, tagging, lemmatization and parsing.
All results are reported under strict train-
ing, development and testing conditions,
in which the corpora provided for the
shared tasks is used “as is”, without any
modifications to the composition of the
train and development sets.

1 Introduction

This paper describes RACAI’s entry for the
CONLL Shared Task on Universal Dependen-
cies parsing. We represent the Research Institute
for Artificial Intelligence, in Bucharest, Roma-
nia. The shared task refers to processing raw text
with the goal of automatically inferring word de-
pendencies. While some approaches require only
segmented (tokenized) text, parsing methods that
depend on rich feature sets (which is our case),
implicitly require that the text is tokenized, POS
tagged and lemmatized. The Universal Depen-
dencies (UD) corpus (Nivre et al., 2016, 2017a)
uses 3 distinct layers of analysis: (a) a Univer-
sal Part-of-Speech layer (UPOS) (Petrov et al.,
2011); (b) a language specific part-of-speech layer
(XPOS) and (c) a list of language-dependent mor-
phological attributes Zeman (2008). Also, in the
current version of UD, tokenization and word-
segmentation require different handling strategies
(see section 3.2 for details). In what follows
we will provide an overview of our system’s ar-
chitecture (section 2) and a detailed description
of each module (section 3) used in our process-

ing pipeline, followed by its evaluation (section
4) (Nivre et al., 2017b) on the TIRA platform
(Potthast et al., 2014). Though Syntaxnet (Weiss
et al., 2015) models were also available, some
discrepancies in the token and word-segmentation
methodology made the comparison impossible
(mainly because the Syntaxnet’s output was in-
compatible with the evaluation script). This work
is focused on presenting our system’s technical de-
tails and individual results. The full comparison
between competing systems, as well as the base-
line values obtained by UDPipe v1.1 (Straka et al.,
2016) are available in Zeman et al. (2017).

2 System Architecture

Figure 1 presents a bird’s eye view on the individ-
ual modules of the system and how they intercon-
nect.

At runtime, the input of the system is a raw text
file. As the file is not sentence split, all new line
characters are removed and passed as a single long
string to the first module: the Tokenization and
Sentence Splitting (Tok/SS) (section 3.1). De-
pending on language, some files are already tok-
enized, for which we perform only sentence split-
ting; however, for most languages, we perform
both tokenization and sentence-splitting in a sin-
gle pass. At this point, we obtain a file in the con-
llu format, passed to the Compound Word mod-
ule (section 3.2). This module looks for words
that can (and should) be split in two or more to-
kens. For example, in German "im" becomes "in
dem", or in Polish: "kupiłbym" becomes "kupił by
m". Compound words are added as new lines in
the conllu file. Next, language independent part of
speech (UPOS) tags are added by the Tag.UPOS
module (section 3.3). Based on the available in-
formation so far, the following modules all run in
parallel: The Lemma (section 3.4), Tag.XPOS

174

Figure 1: System architecture

and Morphological Features modules add lem-
mas, XPOSes and Morphological Features. The
XPOS and Morphological Features modules are
language dependent and are described together in
section 3.5. Finally, the Parser module (section
3.6) adds the final dependencies in the output con-
llu file.

For the training process we used the available
training data in the conllu format. The conllu files
provided by the organizers contained “detokeniza-
tion” information (a SpaceAfter=No flag added to
every token that in the original text had no space)
and morphological analysis layers: word, lem-
mas, part-of-speech, language-dependent part-of-
speech, morphological attributes and word depen-
dencies (index of the head of each word, as well as
the relationship type).

Further details about each information layer
will be provided later in the paper, when we in-
troduce the individual processing modules and de-
scribe our feature extraction and labeling strate-
gies. During training we use a separate script re-
sponsible for preparing the custom training and
development sets. Depending on the memory and
CPU requirements we trained either the models se-
quentially (e.g. the parser is memory expensive
and the linear classifier for part-of-speech tagging
is multi-threaded) or multiple models in parallel
(the morphological analysis require far less mem-
ory and CPU time - practically the decision trees
for all languages in the competition were built and
pruned in parallel).

3 System Description

Before we proceed with the description of the
modules we must note that some of our methods
rely on decision trees (DT) that are built using a
custom designed algorithm that relies on the con-
stituency matrix to speed-up computation for the
Information Gain (IG) (Equation 1). Also, after
the initial trees are built, we use the available de-

velopment sets to prune them to reduce possible
train-data overfitting, leading to improved perfor-
mance.

IGi(S) = H(S)−
∑
t∈T

(P (t) ·H(t)) (1)

where i represents an input feature, H(S) (Equa-
tion 2) is the entropy of the initial set S, H(t) the
entropy of subset t, and P (t) is the fraction of el-
ements in t over the entire |S|. We note |S| as the
number of instances in S.

H(S) = −
N∑

x=1

Px · log2 Px (2)

We note this because the above mentioned
methodology was not presented elsewhere and we
feel the it is an important aspect of our approach
(see section 4 for details regarding the model sizes
and section 5 for comments).

3.1 Tokenization and Sentence Splitting

The first module in the pipeline is the Tokenizer
and Sentence Splitter. Depending on the train-
ing data, we actually have 4 distinct tokeniz-
ers/sentence splitters merged into our module: the
standard Tok/SS for corpora that had both punc-
tuation and was not already tokenized (this is
the case for most languages), the character level
Tok/SS for Japanese and Chinese, and two ver-
sions of the sentence splitter for training data with
pre-tokenized sentences that had (e.g. Danish,
Finish FTB and Slovene SST), and had not punc-
tuation (e.g. Gothic, Latin Proiel, Ancient Greek
Proiel and Old Church Slavonic).

The main tokenizer and sentence splitter is
based on DTs. Tokenization and sentence split-
ting are independent models, and are run in par-
allel. Based on a number of features (described
below), the DT tokenizer model chooses be-
tween 4 classes: SPLIT_LEFT, SPLIT_RIGHT,

175

SPLIT_LEFTRIGHT and NONE, meaning it
should split to the left of the current charac-
ter, right, to put two spaces around the charac-
ter or not make a split. The DT sentence split-
ter has only 2 classes: SPLIT and NONE. Train-
ing is done in the following manner: (1) initially,
we look for specific characters where we might
have a word split, marked in the conllu train file
by "SpaceAfter=No"; we then normalize the fre-
quency of these characters; iterating again on the
training data, we choose only the character that is
most probable to initiate a split, based on the nor-
malized frequency; for sentence splitting we per-
form the same process, the only difference being
we pre-seed the character list with a number of
punctuation characters like: .-!? etc., because we
had cases where ? for example was not frequent
enough to remain in the split list, though it was a
valid sentence splitter; (2) we extracted the follow-
ing features for each split character: current letter,
3 characters before and after (4 for sentence split-
ting), and for the previous and next words a marker
whether or not the word is punctuation only, if it
ends with punctuation, if it contains punctuation,
if it is uppercase, if it is capitalized and the num-
ber of periods in the word; (3) we trained the DT
model and pruned the tree based on the dev set.
Another small optimization worth mentioning is
that we replaced all digits with zeroes to reduce
variability in the training data.

The symbol based tokenizer is targeted for
Japanese and Chinese where we have to look after
each symbol and decide whether to split. The fea-
tures are simply the current symbol and one sym-
bol to the left and right, with two possible classes:
SPLIT (split after the current symbol) and NONE.

The last two Tok/SS address languages that are
already tokenized, performing only sentence split-
ting. For the languages that had no punctuation
(e.g. Gothic), the features are 5 characters to the
left and 3 to the right (including the current charac-
ter). For the languages that had punctuation (e.g.
Danish) the features are token based: the current
token plus 2 tokens before and after; for each to-
ken we mark all the features the main tokenizer
has for words (if the token is punctuation only,
etc.)

Overall, we compared our results on the dev sets
against UDPipe’s, obtaining good results. How-
ever, for a few languages it seems that the deci-
sion tree approach is not optimal, yielding low per-

formances. For English, Bulgarian, Korean, Por-
tuguese and other 14 smaller languages, at run-
time we directly used the UDPipe tokenization and
sentence split conllu files, bypassing this module.
This is the only place in the system where we use
data that was not generated by us.

3.2 Compound Words
The compound words module has the task of
word expansion. For example, in German “im” is
the contraction of "in dem”; in Turkish, “muhab-
betliydi” is for “muhabbet li ydi”. While word ex-
pansion could be relatively well solved by using
a dictionary (search for the key and replace with
expansion tokens), it would fail for unseen words
as well as ignoring split-no split decisions depend-
ing on POS tags. Our intuition was that we need
to represent generated word expansions as parts of
the original string (longest common substring or
LCS) plus new terminations, either before and/or
after the LCS. For example, currency tokens like
“7000e ” should always expand as the first vari-
able part plus the last symbol separately if that
last symbol is “e ”, while the opposite example
“e 7000” should be represented as a static first
symbol followed by a variable string (here the nu-
meric amount).

Needless to say, the process of token decompo-
sition into words carries a great weight over the
accuracy of the system, because all other modules
depend on it: tagging, morphological analysis and
parsing. Obviously preserving the head or tail of
the original token and concatenating strings at the
beginning or end requires different labeling strate-
gies, because any of the words in the decompo-
sition can be written either by keeping the head
of the original token and concatenating a suffix or
by a prefix and concatenating the tail of the orig-
inal token. More often than not, one strategy will
likely yield a larger number of unique output la-
bels in the training data than the other. As such,
the actual difficulty is determining which labeling
strategy would be more accurate. We attempted to
determine the labeling strategy as follows:

• First, take the training data and generate out-
put labels using all (desired) tagging strate-
gies, generating multiple label sets;

• Then, measure the system entropy for each of
the previously generated label sets;

• Finally, use the tagging strategy which gen-

176

erated the lowest-entropy system for training
the classifier.

In our approach the labeling scheme was in the
form of "n+<string>" where n is a number and
<string> is a string to keep. Consider the fol-
lowing example, where a is the word that will
be expanded in two words b c. There are four
different output encodings we can choose from:
FS_KS, FS_KE, FE_KS and FE_KE. FS means
"from start" and denotes that the number n is
an absolute index, which measures the character
span from the beginning of the word, FE is "from
end" and denotes that n is a relative index and it
will express a character span relative to the size of
the original token. The meaning of KS is “keep
start” and means that the head of the token should
be preserved, while KE stands for “keep end” and
means that the tail of the original token will be
used in building the decomposed token. Now, sup-
pose we write word a as letters a1a2a3a4a5 and its
first expansion b as b1b2b3b4, and a1−2 is equal to
b1−2 and a5 is equal to b4. To obtain the first en-
coding FS_KS we find the longest common sub-
string from start of a and b which is b1−2, of length
2, keeping the rest of b; so, the FS_KS label en-
coding is 2+ < b3−4 >. Encoding FS_KE means
finding the longest common substring from start,
while keeping the end: 3 + b4−n−3.

Our algorithm has to choose between FS and
FE labeling schemes, the decision between KS and
KE subordinated depending only on the LCS cri-
terion (for each word in the decomposition, we
chose to keep the head or tail of the original to-
ken depending on which would provide a higher
character overlapping).

After determining the best labeling strategy we
generated a decision tree using the following fea-
tures: first four letters, last four letters, wordform
(if occurrence frequency was higher than 10 in the
training data).

To show how important choosing the appropri-
ate labeling strategy is, on the Hebrew develop-
ment set we obtained 93% F-score using the FE
notation (automatically selected by the system),
versus 88% when we forced the system to use FS.

3.3 POS Tagging

The part-of-speech inventory used in this step
refers to UPOS tags, an inventory which contains
only 17 unique labels. Our tagging methodology
is fairly standard: we use a Conditional Random

Field to estimate the probability of the i-th tag (ti),
based on the previous tag and a rich set of features
(fi) (Equation 3). During runtime, we use Viterbi
to obtain the optimal sequence of labels.

P (ti|ti−1, fi) (3)

The set of features is composed of (a) the lower-
cased wordform, (b) a large number of letter n-
grams, with n ranging from 2 to 5 and (c) a feature
which we refer to as “writing style”. All the fea-
tures are extracted from a window of 3 words (cen-
tered on the current word). The “writing style”
feature takes 4 values:

• ALL-CAPS - the word is written in CAPS;

• ALL-LOWER - the word contains only
lower-cased symbols;

• F-UPPER - the word starts with a capital let-
ter and all other symbols are lower-cased;

• F-UPPER-START - similar with F-UPPER,
only this time the word is also the first token
of the sentence.

We use a large number of character combina-
tions (90), which includes cross-word letter n-
grams and was manually obtained using a trial-
and-error process.

To prevent overfitting and obtain a robust model
for out-of-vocabulary (OOV) words, we only in-
clude a wordform as a feature, if that word’s oc-
currence frequency is higher than a threshold (k)
in the training data1.

3.4 Lemmatizer

Lemmatization is done in two steps. First, the
surface wordform and its UPOS (language inde-
pendent part of speech) is searched in a dictionary
created at train time. If the surface form & UPOS
match, the corresponding lemma is used (if there
is more than one lemma for the surface&UPOS
pair, we prefer the most frequent). If not found,
we attempt to create the new lemma using a DT.
Given a word, we extract the UPOS, the first 4 let-
ters and the last 4 as features. The first and last
letters may overlap if the word is smaller than 8
letters, or can be null (encoded as "_") if the word
is smaller than 4 letters. The output classes are

1In our experiments we observed that k = 10 is a good
choice for many of the languages we used for tunning

177

Model Type Count Min Max Average St. Dev.
Tokenization DT 57 0.66 KB 394 KB 18.09 KB 71.09 KB
Sentence Split DT 64 0.91 KB 345 KB 23.90 KB 54.07 KB
Compound Words DT 22 0.34 KB 484 KB 50.53 KB 126.68 KB
Lemmatization DT 56 2.79 KB 370.53 KB 56.36 KB 68.23 KB
Tag.UPOS CRF 64 2.97 MB 612 MB 121.26 MB 100.09 MB
Morph. Feats. DT 64 10.46 KB 1.34 MB 170.21 KB 219.05 KB
Tag.XPOS DT 64 10.64 KB 1.08 MB 111.73 KB 200.39 KB
Parsing RBG 64 43.41 MB 3.16 GB 1.01 GB 755.5 MB

Table 1: Model types and sizes

strings looking like "n+<string>". The n repre-
sents how many letters to cut from the surface
form of the word, and <string> means the string to
append to the word. For example, given the word
forgotten, which is a Verb, with features f o r g and
t t e n, its output class would be 5+et, meaning
that we need to cut the last 5 letters (to obtain the
largest common prefix) and add et to obtain the
lemma forget.

We note that the number of output classes varies
between a few hundreds to several thousands de-
pending on the language, but, even for this large
number, the results of the DT seem accurate.

3.5 Language Specific Morphological
Analysis

Language-specific morphological analysis is a
two-fold process that refers to the resolution of (a)
the language-dependent part-of-speech (XPOS)
tag and (b) a structured set of morphological at-
tributes (in the form of key-value pairs), which are
used to encode important information such as gen-
der, number, case etc.

As a rule-of-thumb, the XPOS tag used in mor-
phologically rich languages is a compact repre-
sentation of the morphological attributes. For
instance, the Romanian corpus from the UD
data uses a standardized compact representation,
which is composed of morphosyntactic descrip-
tors (MSDs) (Erjavec, 2004). Given the simi-
larities between language-specific tags and UD
morphological-attributes, in our approach we used
the same feature sets for both tasks. The features
are composed of: (a) the UPOS tag, (b) the first
four characters of the word; (c) the last four char-
acters of the word and (d) the previously men-
tioned “writing-style” feature. To capture local-
dependencies between words we used a context
window of 5 centered on the current word.

In this case, we preferred to use decision trees,
mainly because of reduced computational require-
ments and the small-footprint of the output mod-
els.

3.6 Parsing
Once the morphological analysis is completed, our
processing pipeline relies on RBGParser2 which
is a greedy hill-climbing parser, well described in
Zhang et al. (2014a,b); Lei et al. (2014). In our
approach, we used branch 1.1.2 of RBG, which we
modified in order to be compliant with the current
UD version.

The main incompatibility was generated by the
presence of multiword tokens. During training we
modified the data adapter of the RBGParser to skip
multiword tokens and, for the runtime version, we
filtered the input for RBG to exclude multiword
tokens and we re-aligned the output of RBG with
the unparsed dataset, to restore multiword tokens
and provide an output compatible with the current
UD standard.

The RBG models were built using the default
parameters for the “standardModel” predefined
configuration, on which we added automatically
extracted word embeddings (Mikolov et al., 2013),
obtained using word2vec3. The word embeddings
were computed by applying the Continuous Bag of
Words (CBOW) model on the permitted raw-text
resources.

Depending on the language, for the computa-
tion of word vectors we compiled monolithic cor-
pora composed of Wikipedia Dumps (whenever
available) and raw text from UD training.

2https://github.com/taolei87/RBGParser - accessed 2017-
05-24

3https://github.com/dav/word2vec - accessed 2017-05-24

178

Language Tok SS Words Lemma UPOS XPOS Morpho UAS LAS
ar 99.98 60.50 95.50 85.51 90.01 81.96 80.76 76.35 69.32

ar_pud 80.81 98.80 93.34 0 73.54 0 0 59.80 48.73
bg 99.91 92.83 99.91 92.14 97.20 91.45 90.00 87.66 82.47

bxr 99.35 91.81 99.35 81.40 84.12 99.35 78.08 38.46 21.66
ca 99.96 98.95 99.95 84.26 97.60 97.60 95.46 87.98 83.94
cs 99.96 82.83 99.96 95.03 98.07 88.31 85.15 85.97 81.14

cs_cac 100.00 100.00 99.97 96.27 98.38 85.22 81.94 87.18 81.95
cs_cltt 99.82 80.14 99.820 94.56 95.78 83.24 83.00 76.17 68.36
cs_pud 97.98 93.23 97.97 92.00 95.40 83.93 80.01 84.13 77.71

cu 99.96 36.05 99.96 86.38 94.06 94.28 80.76 74.04 67.12
da 100.00 76.85 100.00 94.14 94.62 100.00 90.46 77.15 72.29
de 99.44 76.80 99.45 90.82 91.02 91.27 71.30 76.21 69.14

de_pud 96.72 89.87 96.47 2.71 83.12 19.45 1.36 74.65 65.24
el 99.83 87.56 99.83 91.78 95.78 95.78 84.98 84.03 79.08
en 98.67 73.22 98.67 93.43 92.76 91.67 89.75 78.34 74.44

en_lines 99.92 82.11 99.92 88.36 93.86 90.90 88.98 76.84 70.97
en_partut 99.51 97.51 99.49 94.81 92.93 92.60 90.22 78.11 72.69

en_pud 99.66 97.13 99.66 95.00 93.65 91.81 88.36 82.59 77.79
es 99.94 94.17 99.77 94.17 95.21 99.75 92.04 84.43 79.97

es_ancora 99.95 98.06 99.93 78.56 97.60 97.60 95.56 86.12 82.07
es_pud 99.53 95.27 99.36 3.32 87.55 1.70 0 84.60 76.64

et 99.85 92.53 99.85 79.28 87.53 89.48 77.32 68.69 58.74
eu 99.98 99.83 99.98 88.89 92.44 99.98 80.72 77.31 70.40
fa 99.99 98.01 99.34 96.58 94.92 94.50 93.75 82.69 77.45
fi 99.46 86.05 99.46 81.87 92.56 93.77 85.05 78.23 72.59

fi_ftb 99.90 83.83 99.87 85.58 89.77 85.74 82.94 78.21 72.09
fi_pud 99.39 91.91 99.39 81.06 93.74 0.01 0.01 80.85 75.44

fr 99.72 92.12 98.85 95.41 94.95 98.85 92.18 82.64 78.38
fr_partut 99.75 99.12 98.89 92.86 94.30 90.15 84.69 81.42 76.75

fr_pud 97.43 91.71 96.62 4.82 87.23 2.41 0 77.50 72.18
fr_sequoia 99.77 83.75 99.14 95.66 95.41 99.14 91.94 81.52 77.64

ga 99.73 96.69 99.73 83.33 88.95 83.25 65.64 76.27 65.65
gl 99.92 95.92 99.92 96.94 96.11 95.15 94.88 82.43 78.34

gl_treegal 98.91 84.80 97.97 90.94 90.51 85.60 83.99 71.74 65.22
got 100.00 27.85 100.00 88.80 93.39 93.13 80.18 70.18 62.30
grc 99.98 98.70 99.98 72.35 86.48 72.68 71.44 68.53 60.48

grc_proiel 100.00 43.11 100.00 90.17 95.70 96.03 83.01 74.89 69.47
he 99.98 100.00 88.55 75.64 83.24 83.24 78.17 66.23 60.72
hi 100.00 99.20 100.00 87.09 95.94 95.05 84.93 89.90 85.33

hi_pud 92.27 94.45 92.27 0 78.12 33.23 4.67 57.33 45.57
hr 99.84 95.91 99.84 93.36 95.80 99.84 79.17 84.13 77.03

hsb 99.84 90.69 99.84 87.70 90.30 99.84 72.43 54.24 43.74
hu 99.70 89.75 99.70 80.02 90.52 99.70 67.59 72.34 64.76
id 99.99 88.41 99.99 85.47 92.71 99.99 92.67 80.89 73.86
it 99.92 98.45 99.82 89.40 96.56 95.74 94.19 87.98 84.45

it_pud 99.60 94.56 99.16 88.22 92.50 2.47 2.47 86.73 82.48
ja 87.57 93.18 86.57 86.00 84.82 87.57 84.82 69.14 67.64

ja_pud 89.87 96.21 89.87 88.55 87.78 6.17 5.69 74.92 74.06
kk 94.52 81.50 93.89 51.48 56.49 54.94 35.81 43.01 29.22

kmr 99.01 97.02 98.85 89.76 90.04 89.84 80.62 32.05 14.73
ko 99.73 93.05 99.73 53.80 91.21 81.02 81.02 69.45 62.79
la 99.97 99.20 99.97 31.42 84.58 63.18 62.79 59.15 46.77

la_ittb 99.91 83.10 99.91 94.32 96.68 88.49 84.56 79.61 74.45
la_proiel 100.00 25.80 100.00 88.08 93.73 93.91 80.29 67.68 60.80

lv 99.30 93.30 99.30 84.86 88.62 71.51 69.55 68.54 60.08
nl 99.85 74.52 99.85 77.02 91.19 85.67 83.82 77.32 68.23

nl_lassy 99.93 78.62 99.93 97.13 96.88 99.93 93.82 84.05 79.54
no_bokmaal 99.88 93.11 99.88 95.55 96.04 99.88 90.91 83.84 79.84
no_nynorsk 99.85 91.23 99.85 93.30 95.51 99.85 90.47 82.33 77.83

pl 99.97 99.59 99.89 92.23 95.45 77.72 75.94 85.56 78.29
pt 99.64 89.79 99.49 94.05 96.01 73.24 71.81 85.81 81.92

pt_br 99.95 95.51 99.84 81.13 96.81 96.81 96.80 86.92 83.54
pt_pud 99.29 95.65 99.40 11.87 88.12 0 0 79.85 73.27

ro 99.54 92.60 99.54 95.90 96.02 94.11 93.88 85.75 79.44
ru 99.94 95.30 99.94 74.14 95.15 94.38 77.71 81.06 75.54

ru_pud 97.22 96.93 97.21 0 85.33 78.49 33.85 77.32 68.96
ru_syntag 99.51 98.01 99.51 93.55 97.70 99.51 89.04 89.41 85.41

sk 100.00 83.53 100.00 86.18 94.11 71.55 68.68 80.77 74.26
sl 99.96 99.24 99.96 93.95 96.24 83.08 80.99 84.67 79.61

179

Language Tok SS Words Lemma UPOS XPOS Morpho UAS LAS
sl_sst 99.82 16.72 99.82 90.64 89.42 77.15 72.58 55.84 48.13

sme 99.88 98.79 99.82 81.86 86.81 88.98 77.76 47.51 35.47
sv 99.59 89.87 99.59 91.62 94.63 87.70 86.42 79.36 73.56

sv_lines 99.90 84.96 99.90 83.82 93.48 89.42 88.02 76.95 70.72
sv_pud 98.39 94.46 98.39 81.73 90.87 83.63 68.71 74.81 68.40

tr 99.76 95.77 97.52 84.83 89.30 87.31 76.01 64.09 55.74
tr_pud 97.61 91.79 95.10 0 68.66 0 0 53.78 33.20

ug 98.57 68.17 98.57 36.73 72.79 74.73 72.41 57.61 38.76
uk 99.65 94.25 99.65 85.16 88.58 65.35 61.26 72.45 63.54
ur 100.00 96.83 100.00 69.78 92.12 89.64 75.35 82.72 75.17
vi 82.47 92.59 82.47 78.18 71.23 50.35 50.25 39.98 34.19
zh 88.91 98.19 88.91 88.38 82.81 82.50 81.14 62.56 57.75

Table 2: Results per language

4 Evaluation
Table 1 presents the types of the individual models and their
sizes. We use decision trees for most of the tasks, a CRF
model for UPOS tagging and the models RBG Parser cre-
ates for the last task of parsing. We can directly see that the
DT models are very small, even if they are written in text
mode, with the largest average for morphological features of
170 KB. We also note that while there are 64 models for the
64 languages we had training data for, we only created 22
models for the languages that actually had compound words
and 56 for lemmatization. The 57 tokenization models do
not include the symbol tokenization models for Japanese and
Chinese, which are even smaller; also, there were other lan-
guages that were pre-tokenized, so no models were created
for them (details in section 3.1). The CRF models used for
UPOS tagging are significantly larger, with the average of
121MB. Still, with a standard deviation of 100MB, we can
say that most models are smaller than 250MB. The largest
models are created by RBG, with the model for Czech reach-
ing an impressive 3.16GB. On average, RBG creates models
of around 1GB.

Moving on to the system results, we evaluate each task
incrementally, starting from tokenization. We obtained a
macro-averaged F1 score of 98.58, with a 0.37 difference to
the first place. The decision tree approach used, while simple,
brought interesting results, like first place for Czech (CLTT),
Italian, Irish or Russian.

For sentence splitting, also based on DT, we obtained an
average F1 score of 87.52 versus the top score of 89.10. We
obtained first place on a number of languages like Hebrew,
Basque or Latin. However on Latvian we obtained last place
with an F1 of 93.30 versus 98.90. We note that no language-
dependent tuning was performed, neither for tokenization nor
for sentence splitting. The same features were chosen for all
languages. While we did perform tree pruning based on the
dev sets, we did not vary and choose the best feature set for
each language (e.g. tokenization on some languages was bet-
ter with a context of 2,2, while for others with context 4,1;
we used 3,3 for every language that had punctuation and was
not pre-tokenized).

In word segmentation we obtained a score of 98.39 vs
98.81, a difference of only 0.42 percent. Using the DT clas-
sifier brought us top places in several languages like Czech
(CLTT), Danish, Norwegian (Bokmaal) or Russian.

Lemmatization, also based on decision trees, unfortu-
nately worked really well on only a small number of lan-
guages. For example on Farsi we were the first with a 1.5
point difference over second place. Overall, we obtained
an F1 score of 77.45 versus the top performer that obtained
83.74.

The morphological features average F1 score of 70.8
brings us relatively close to the top score of 73.92. Again,

while not a best performer, the decision tree algorithm we
used has shown very good performance compared to more
complex algorithms in the competition.

On the language independent parts of speech (UPOSes)
we obtained 90.71 vs 93.09. On language dependent parts of
speech (XPOSes) we have an average F1 of 78.20 vs the top
performer 82.27, a larger difference that for UPOSes.

Finally, on parsing we obtained an UAS of 74.67 vs 81.30
(11th place), and on LAS an F1 score of 67.71 vs 76.3, plac-
ing us on the 18th place.

5 Conclusions
The CoNLL 2017 UD Shared Task has been a learning expe-
rience for us. Considering that so far we only worked mostly
on Romanian and English, and only up to the level of POS
tagging, we managed to draw a number of conclusions, a few
outlined below:
• while the DT algorithm has, on average, below state-

of-the-art performance, it is very close to top performers. It
sometimes achieves first place on tasks like tokenization or
word expansion which follow a simpler and more predictable
set of rules. We used a decision tree model because it is a pre-
dictable and understandable model, that, for this initial set of
experiments allowed us to obtain significant insight on how
we should create features and output labels, something that
using a neural network would not allow.
• sticking with a method and trying out variations can

lead to noticeable improvements. For example, pruning the
character list on which to attempt a word split for tokeniza-
tion based on normalized frequency yielded a more balanced
training set. This has led to better results than simply ask-
ing whether to split on each character in the unpruned list (an
unbalanced training set with most examples being “no split”).
• sometimes intuition does not work. Initially, we hypoth-

esized that for the morphological feature prediction task it
was natural to attempted to predict each feature individually:
we would predict, for every word irrespective of its part of
speech, all available features separately. Each feature had
an extra class of NONE meaning that it was not appropri-
ate for that particular word, so it would not show up to the
final composition of features. The results were actually sig-
nificantly worse that trying to predict all features at once, as
a single class output label, even if the number of such labels
was much higher as it contained all combinations seen in the
training data for morphological features.

As we viewed the CoNLL 2017 UD Shared Task as a
learning experience, we attempted all tasks sequentially, even
though the main goal of the challenge was the last task: pars-
ing. The only place we used baseline UDPipe files was in
the tokenization and sentence splitting where our decision
tree approach with no tuning produced results significantly
below the baseline. However, we kept our Tok/SS module

180

even for languages where we were 5 points below the base-
line, to see what would be the results on the test data. That
basically meant that any error in the initial task would be par-
tially propagated in the next one in our processing chain, as
each module relies on information from any number of the
preceding modules, marginally explaining some of the lower
scores in later tasks.

Regarding the system itself we already created a fully
functioning on-line version available at our NLP Tools Web-
site4. During the last weeks after the shared task ended, we
have replaced the decision tree algorithm with our own im-
plementation of a linear classifier, and have obtained superior
results. However there the footprint of the model obtained
using the linear classifier is, in some cases, 1000 times larger
than that of the decision tree classifier (i.e. the Ancient Greek
XPOS linear model size is 4.5GB, whereas the DT model is
only 4MB). Experiments using a deep neural network (DNN)
architecture, trained to predict attributes and XPOS based on
character-level features were also performed. Though this ap-
proach provided state-of-the art results for some languages,
we found it difficult to tune hyper-parameters for all lan-
guages. However, for the DNN approach, the model foot-
print and performance figures (accuracy and computational
time) were very appealing.

While one might consider that training independent mod-
els for each morphological attribute would provide better re-
sults, decision trees, Linear Classifier and DNN performed
significantly better, when trained to output all the morpholog-
ical features at once (softmax one-of-n encoded, not multi-
task learning). Additionally, we experimented with multi-
task learning (i.e.: using a common network structure, fol-
lowed by multiple softmax layers) (Collobert and Weston,
2008) and observed that it did not improve the learning pro-
cess, at least on the corpora and feature sets we used. Further
tuning will be done and performance figures evaluated by the
UD evaluation script will be reported on the above mentioned
website.

Acknowledgments
This work was supported by UEFISCDI, under grant PN-II-
PT-PCCA-2013-4-0789, project “Assistive Natural-language,
Voice-controlled System for Intelligent Buildings” (2013-
2017).

References
Ronan Collobert and Jason Weston. 2008. A unified ar-

chitecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the
25th international conference on Machine learning. ACM,
pages 160–167.

Tomaz Erjavec. 2004. Multext-east version 3: Multilingual
morphosyntactic specifications, lexicons and corpora. In
Proceedings of the 4th International Conference on Lan-
guage Resources and Evaluation (LREC 2004).

Tao Lei, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola.
2014. Low-rank tensors for scoring dependency struc-
tures. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances in
neural information processing systems. pages 3111–3119.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter,
Yoav Goldberg, Jan Hajič, Christopher Manning, Ryan
McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira,

Reut Tsarfaty, and Daniel Zeman. 2016. Universal De-
pendencies v1: A multilingual treebank collection. In
Proceedings of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC 2016). Euro-
pean Language Resources Association, Portoroz, Slove-
nia, pages 1659–1666.

Joakim Nivre et al. 2017a. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/11234/
1-1983. http://hdl.handle.net/11234/1-1983.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0 – CoNLL 2017 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/11234/
1-2184. http://hdl.handle.net/11234/1-2184.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086 .

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo Rosso,
Efstathios Stamatatos, and Benno Stein. 2014. Improv-
ing the reproducibility of PAN’s shared tasks: Plagia-
rism detection, author identification, and author profil-
ing. In Evangelos Kanoulas, Mihai Lupu, Paul Clough,
Mark Sanderson, Mark Hall, Allan Hanbury, and Elaine
Toms, editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th Inter-
national Conference of the CLEF Initiative (CLEF 14).
Springer, Berlin Heidelberg New York, pages 268–299.
https://doi.org/10.1007/978-3-319-11382-1_22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U files per-
forming tokenization, morphological analysis, POS tag-
ging and parsing. In Proceedings of the 10th Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2016). European Language Resources Asso-
ciation, Portoroz, Slovenia.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. CoRR abs/1506.06158.
http://arxiv.org/abs/1506.06158.

Daniel Zeman. 2008. Reusable tagset conversion using tagset
drivers. In Proceedings of the 6th International Con-
ference on Language Resources and Evaluation (LREC
2008).

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre, Mar-
tin Popel, Milan Straka, and et al. 2017. CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. Association for Computational Lin-
guistics, pages 1–20.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi Jaakkola.
2014a. Greed is good if randomized: New inference for
dependency parsing .

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola, and
Amir Globerson. 2014b. Steps to excellence: Simple in-
ference with refined scoring of dependency trees. Associ-
ation for Computational Linguistics.

4http://slp.racai.ro/index.php/mlpla-new/

181

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 182–190,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Delexicalized transfer parsing for low-resource languages using
transformed and combined treebanks

Ayan Das, Mohammad Affan Zafar, Sudeshna Sarkar
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur, WB, India
ayan.das@cse.iitkgp.ernet.in

affanzafar07@gmail.com
sudeshna@cse.iitkgp.ernet.in

Abstract

This paper describes the IIT Kharagpur
dependency parsing system in CoNLL-
2017 shared task on Multilingual Pars-
ing from Raw Text to Universal Depen-
dencies. We primarily focus on the low-
resource languages (surprise languages).
We have developed a framework to com-
bine multiple treebanks to train parsers
for low resource languages by a delexical-
ization method. We have applied trans-
formation on the source language tree-
banks based on syntactic features of the
low-resource language to improve perfor-
mance of the parser. In the official evalua-
tion, our system achieves macro-averaged
LAS scores of 67.61 and 37.16 on the en-
tire blind test data and the surprise lan-
guage test data respectively.

1 Introduction

A dependency parser analyzes the relations among
the words in a sentence to determine the syntactic
dependencies among them where the dependency
relations are drawn from a fixed set of grammati-
cal relations. Dependency parsing is a very impor-
tant NLP task and has wide usage in different tasks
such as question answering, semantic parsing, in-
formation extraction and machine translation.

There has been a lot of focus recently on de-
velopment of dependency parsers for low-resource
languages i.e., the languages for which little or no
treebanks are available by cross-lingual transfer
parsing methods using knowledge derived from
treebanks of other languages and the resources
available for the low-resource languages (McDon-
ald et al., 2011; Tiedemann, 2015; McDonald
et al., 2011; Zeman and Resnik, 2008; Rasooli and
Collins, 2015).

The Universal Dependencies (http:
//universaldependencies.org/) (Nivre
et al., 2016) project has enabled the development
of consistent treebanks for several languages
using an uniform PoS, morphological features
and dependency relation tagging scheme. This
has immensely helped research in multi-lingual
parsing, cross-lingual transfer parsing and the
comparison of language structures over several
languages.

The CONLL 2017 shared task focusses on
learning syntactic parsers starting from raw text
that can work over several typologically different
languages and even surprise languages for which
no training data is available using the common an-
notation scheme (UD v2). The details of the task
are available in the overview paper (Zeman et al.,
2017).

For parsing the surprise languages we trained
delexicalized parser models. In order to improve
performance on the surprise languages we applied
syntactic transformation on some source language
treebanks based on the information obtained from
the “The World Atlas of Language Structures”
(WALS) (Haspelmath, 2005) and sample data and
used the transformed treebanks to train the parsers
for the surprise languages. The details of the tree-
banks are discussed in Section 3.1.

The rest of the paper is organized as follows. In
Section 2 we describe the corpora and resources
used to build our system. In Section 3 we describe
in details the methods used to train the parser mod-
els. In Section 4 we describe the experiments and
report the results, and, we conclude in Section 5.

2 Corpus and resources

We used the treebanks (UD v2.0) (Nivre et al.,
2017b) which were officially released for the
shared task to train our parser models. The dataset

182

consists of 70 treebanks on 50 different languages.
There are multiple treebanks for some languages
such as Arabic, English, French, Russian etc. For
the shared task, only the training and development
data was released. The small sample treebanks
(approximately 20 sentences per language) for the
surprise languages were made available separately
one week before the test phase.

We have used the pre-trained word vectors of
50 dimensions provided by the organizers to train
the parser models. For tokenization and tagging
we used the baseline models provided by the orga-
nizers. Our parser models were trained using the
Parsito parser (Straka et al., 2015) implemented
in UDPipe (Straka et al., 2016) text-processing
pipeline system.

3 System description

Our parser worked on parsed the tokenized and
tagged files (*-udpipe.conllu) provided by
the organizers rather than the raw text files. We
first discuss the steps for training the models for
surprise languages in Section 3.1 followed by
methods used to train the models for the new par-
allel treebanks in Section 3.2 and known treebanks
in Section 3.3.

3.1 Surprise language

The surprise languages are Buryat (bxr), Kurmanji
(Kurdish) (kmr), North Sámi (sme) and Upper
Sorbian (hsb) for which sample data of approxi-
mately 20 annotated sentences per language was
made available. No training or test data is avail-
able for the surprise languages.

We have used cross-lingual parser transfer to
develop parsers for the surprise languages using
the treebanks of resource-rich languages (McDon-
ald et al., 2011). Annotation projection (Hwa
et al., 2005) and delexicalized transfer (Zeman and
Resnik, 2008) are the two major methods of cross-
lingual parser transfer.

However, annotation projection requires paral-
lel data which is not available for the surprise lan-
guages. Hence, we used the delexicalized parser
transfer method to train parser models for the sur-
prise languages. Training delexicalized parser in-
volves supervised training of a parser model on a
source language (SL) treebank without using any
lexical features and then applying the model di-
rectly to parse sentences in the target language
(TL). Zeman and Resnik (2008) and Søgaard

(2011) have shown that cross-lingual transfer by
delexicalization works best for syntactically re-
lated language pairs.

The first step was to identify the languages
which are syntactically related to the surprise lan-
guages and whose treebanks are in Universal De-
pendency corpus. We observed that Upper Sorbian
being a slavonic language is typologically related
to Czech, Polish and to some extent Slovak. North
Sámi is spoken in the northern parts of Norway,
Sweden and Finland. It belongs to the family of
Finno-Ugric languages and hence has typological
similarities with Estonian, Finnish and Hungarian.
Kurmanji has typological similarities with Persian
and Turkish. Buryat is spoken in Monglia. Al-
though none of the languages whose treebanks are
available in Universal Dependencies corpus be-
long to the family of Buryat yet we guessed that
Kazakh, Tamil, Hindi and Urdu might have some
similarities with Buryat based on the syntactic fea-
tures and phrasal structures of the languages.

In order to verify our guesses, we tested the
delexicalized models trained on individual tree-
banks on the sample data for the surprise lan-
guages and ranked them based on LAS. We ob-
served that our guesses were quite close to the
actual results except a few cases. Table 3.1 lists
the top-5 languages for each of the surprise lan-
guage based on LAS score. Encouraged by the
above results that support our guesses we explored
a transformation-based method to further reduce
the syntactic differences between the surprise lan-
guages and the corresponding source languages.
Besides attempting to reduce the syntactic dif-
ferences between the languages we also experi-
mented with combining the treebanks for which
the individual LAS scores were highest to further
boost the LAS on the surprise languages.

3.1.1 Syntactic feature based transformation
Aufrant et al. (2016) have shown that local re-
ordering of words of the source sentence using
PoS language model and linguistic knowledge de-
rived from WALS improve performance of the
delexicalized transfer parser even for syntactically
different SL-TL pairs. The reordering features
they use are relative orderings of the adjectives,
adpositions, articles (definite and indefinite) and
demonstratives with respect to the corresponding
modified nouns in the TL.

However, for language pairs that differ in the
arrangement of verb arguments, local rearrange-

183

Buryat Kazakh
(43.14)

Latvian
(37.25)

Hindi
(37.25)

Tamil
(35.95)

Finnish-ftb
(35.29)

Kurmanji
(Kurdish)

Polish
(45.04)

Persian
(42.15)

Bulgarian
(41.74)

Romanian
(40.91)

Czech
(40.5)

North Sámi Finnish
(54.42)

Swedish
(51.02)

Estonian
(48.98)

Norwegian
(46.26)

Lithuanian
(45.58)

Upper Sorbian Slovak
(71.5)

Slovenian
(65.9)

Bulgarian
(63.91)

Polish
(63.48)

Czech
(62.83)

Table 1: Top 5 languages whose delex models gave the highest LAS on the surprise language sample
data

81A 84A 87A 85A 37A 38A 88A 86A aux cop cco-
mp

xco-
mp

acl advcl 90A

bxr SOV - pre post × × pre pre post post post - pre pre ×
kmr SOV - post pre pre pre pre post pre post pre pre post pre ×
sme SVO - pre post × × × pre pre post - pre post pre post
hsb SVO - pre pre pre pre pre post - - post post post post ×

Table 2: Ordering of the head-modifier pairs in the target language as derived from the universal depen-
dency treebank statistics. “pre” indicates that the modifier precedes the head, “post” indicates that the
modifier succeeds the head and “-” indicates that the ordering cannot be decided. “×” shows that the
dependency does apply to the language. Some of the feature identifiers are derived from WALS: 81A -
order of subject, object and verb in a sentence, 84A - order of object, oblique and verb, 87A - ordering of
ADJ and NOUN, 85A - ordering of ADP and NOUN, 37A/38A - ordering of Definite/Indefinite articles
and NOUN, 88A - ordering of Demonstrative and NOUN, 86A - ordering of genitive and NOUN, 90A -
ordering of relative clause and VERB

Our system Best scores Our rank
UAS LAS UAS LAS

All test data 73.68 67.61 81.30 (Stan.) 76.30 (Stan.) 19
Surprise
treebanks

49.98 37.16 58.40 (C2L2) 47.54 (C2L2) 10

Big treebanks 77.32 72.68 85.16 (Stan.) 81.77 (Stan.) 18
New parallel

treebanks
74.45 67.42 80.17 (Stan.) 73.73 (Stan.) 17

Small
treebanks

59.14 48.33 70.59 (C2L2) 61.49 (C2L2) 22

Table 3: UAS and LAS on blind test as obtained by primary system run and their comparison with the
best runs. Stan. and C2L2 refer to the systems submitted by Stanford University and C2L2 (Ithaca)
respectively

ments based on PoS tags may not be enough to
address the difference between the two languages.
Hence, we hypothesize that a reordering of SL
sentences based on more generic features such as
dependency relations (subject, object, indirect ob-
ject, clausal complement) might result in improve-
ment in accuracy of the parser.

An example of syntactic transformation In
order to illustrate the syntactic difference be-
tween two languages we put forth an example for
English-Kurmanji (Kurdish) language pair.

The example in figure 1 shows the syntactic
difference between the two languages - English
and Kurmanji (Kurdish) - and how the transforma-
tion of the English sentence makes it syntactically

184

Figure 1: Transformation of English sentence to
match the syntax of Kurdish sentence based on the
syntactic features of Hindi

closer to Kurmanji (Kurdish). English language
sentences have a SVO sentence structure while
Kurmanji (Kurdish) has a SOV sentence structure.
Moreover, in English the oblique arguments tend
to appear after the object in the sentence while in
Kurmanji (Kurdish) the oblique arguments tend to
appear before the object.

The English sentence “Me and my friend had
fish last night” may be translated to Kurmanji
(Kurdish) as “ Min û hevalê min şeva din ması̂
xwar (Me and friend my night last fish had)”. In
this sentence pair Me and my friend (Min û hevalê
min) and fish (ması̂) are the subject and the object
of the main verb had (xwar) and last night (şeva
din) is the non-core (oblique) argument indicating
the time of occurrence of the verb. Also, in Kur-
manji (Kurdish), the adjectival modifiers and gen-
itives occur after the modified noun e.g., hevalê
min (friend my) and şeva din (night last), while in
English these modifiers occur before the modified
noun e.g. my friend and last night.

3.1.2 Transformation features

Apart from the features proposed by Aufrant et al.
(2016) we obtained the order of subject-object-
verb (SOV), order of object-oblique-verb, and the
relative order of relative clause, auxiliaries, copula
verbs, clausal complements, clausal modifier (ad-
jectival and adverbial) with respect to the modified

verb from WALS and the statistics of sample data.
The relative ordering of head-modifier pairs based
on the features derived from treebanks was deter-
mined using the following heuristic. If a particular
order appears in at least 90% cases out of the total
number of occurrences of the feature (dependency
tag) then we use that ordering corresponding to
the feature. Else we do not do any transforma-
tion based on that feature. We relied on the WALS
features and the statistics of the sample data to de-
rive the syntactic features and ignored the features
that did not appear in these two sources. For ex-
ample, although Buryat, Upper Sorbian and Kur-
manji have relative clauses we neither did we find
mention of the feature in WALS for the language
nor did we find that relation in sample data for
these languages. Hence, we did not use that re-
lation during transfer. In Table 3.1 we summarize
the transformation features and the corresponding
orderings used for each surprise language.

We categorized the dependency relations into
six classes.

• Clausal complements : ccomp, xcomp

• Subject : nsubj, nsubj:pass, csubj, csubj:pass

• Object : obj, iobj

• Modifiers : acl, advcl, amod, aux, case, cop,
det (Pronominal type = Article or Demonstra-
tive, and, Definiteness = Definite, Indefinite)

• Other dependencies : Dependency labels
that do not belong to the above five classes
(cc, conj, punct, mwe, foreign etc.).

Among the determiners we only considered the
articles and demonstratives. We further divide the
members of class modifiers into pre-modifiers and
post-modifiers depending upon the position they
take in the sentences with respect to the parent
word in TL.

3.1.3 Tree-traversal based transformation
algorithm

Given a source language sentence S =
{w1, · · · , wm}, where m is the length of S,
let TS be the parse tree of S. The transformation
is carried out in two steps.

• Step 1: Remove the words corresponding to
the dependency relations that do not hold in
the TL from the SL parse tree e.g., remove

185

Demonstratives when North Sámi is the tar-
get language.

• Step 2: Rewrite the sentence by a tree-
traversal method depending upon the order-
ing of the head-modifier pairs based on the
transformation features.

Corresponding to each target language we have
separate transformation procedures. The Proce-
dure BuildTree is common for all the target lan-
guages. In this procedure we construct the tree
data structure where each node in the tree corre-
sponds to a word in the sentence. Each node con-
sists subject, object, clausal complement, premod-
ifier, postmodifier and other-modifier lists. The
lists of a node are filled up only by the dependents
of the corresponding word in the dependency tree.
The subjects, objects and the clausal complements
of the word are added to the corresponding lists.
While constructing the pre-modifier, post-modifier
and other modifier lists the module refers to a
look-up table to obtain the order of the modifiers in
the TL and place the modifiers in the correspond-
ing lists. All the lists are not necessarily filled
up e.g., if none of the dependents hold a subject
relation (nsubj or nsubj:pass) with the word then
the subject list of the corresponding node remains
empty.

We have separate procedures for transforming
the SL trees for each TL. The sentences are trans-
formed by traversing the trees according to the
ordering of the dependencies in the TL e.g., the
subtrees corresponding to the modifiers in the
pre-modifier list and the modifiers in the other-
modifier list that appear before the current word
in the SL sentence are traversed first, then the
word of the current node is added to the trans-
formed word list, followed by traversal of the sub-
trees corresponding to the modifiers in the post-
modifier list and the words in other-modifiers list
that appear after the current word in the SL sen-
tence. Also, if the TL has SVO sentence struc-
ture, first the subtree corresponding to the sub-
ject is traversed, the verb is added to the trans-
formed list and finally the subtree corresponding
to the object is traversed. Procedure TraverseAnd-
TransformTree illustrates the steps used for trans-
forming the SL tree when the the target language
follows SOV ordering of verb arguments and the
clausal complements occur before the verb.

Lang-
uage

Treebanks Transfo-
rmation

Number
of
tokens

bxr Kazakh
(kk)

- 547

kmr
Polish

(pl)
-

175600

Slovenian
(sl)

37A,
38A,
86A,
87A

sme
Finnish

(fi)
-

187920
Estonian

(et)
88A

Lithuanian

(lt)

85A,
88A,
cop,

xcomp,
acl, advcl

hsb
Slovak

(sk)
-

273680
Slovak

(sk)
81A,
37A,
38A,
86A,

ccomp,
advcl

Slovenian
(sl)

37A,
38A,
86A

Table 4: The treebanks combined to train the
parser models for surprise languages in the pri-
mary system. The ‘Transformation’ column lists
the syntactic features on which the source tree-
banks were transformed. ‘-’ implies untrans-
formed treebank

3.1.4 Steps for training the parser for
surprise languages

For each language we used the following steps to
train the delexicalized parser:

1. We obtained the syntactic features proposed
by Aufrant et al. (2016) from WALS and the
sample data.

2. Besides the features obtained in step 1, we
also derived some more syntactic features
from WALS and sample data statistics such
as ordering of subject (S)-object (O)-verb (V)

186

Procedure BuildTree
input : Source language parse tree TS

output: Tree data structure T
1 T = node nroot, containing the root word

(wroot), POS (poswroot), empty children list
(clroot), parent link (proot) = null

2 for each word wi in S except the root word do
3 Form a node ni containing, wi, poswi , cli,

pi, dependency relation with pi = di

4 Add ni to the children list of pi

5 Add ni to the pre−modifier,
post−modifier or other −modifier
list based on TL features

6 return T

in a sentence, relative ordering of auxiliaries,
copula verbs, clausal complements, adjecti-
val and adverbial clausal modifiers.

3. We transformed all the available treebanks
based on the syntactic features described in
step 1 and the combination of the features
stated in step 1 and 2 using the appropriate
transformation procedures.

4. We trained separate delexicalized models for
untransformed treebanks and both types of
transformations such that corresponding to
each source language there are three models
- one trained on untransformed treebank and
two on transformed treebanks. Universal De-
pendencies v2.0 corpus consists of 70 tree-
banks. Hence, after transformation we have
70 × 3 = 210 treebanks.

5. We ranked the 210 models based on their
LAS on the sample data provided for the sur-
prise language and broke ties based on UAS
and chose the top 20 treebanks for our next
step.

6. We trained 20 models by combining the tree-
banks in the top-k ordering (top-1, top-2,· · · ,
top-20) and selected the model that gave the
highest LAS on the sample data. The tree-
banks were combined by concatenating the
treebank files to form a single treebank e.g.
for the top-2 model, we concatenated the two
treebanks which ranked first and second with
respect to the LAS on the sample data and
used the concatenated treebank to train the
top-2 model. In Table 3.1.4 we summarize

Procedure TraverseAndTransformTree
input : Source language parse tree data

structure T
output: Transformed source language parse

tree TR
S

1 TR
S = RearrangeNodes(T)

2 return TR
S

3 Procedure RearrangeNodes(Root node
nroot of tree datastructure T)

4 Rearranged word sequence (SR) =
TraverseTree(nroot)

5 TR
S = null

6 for i in SR do
7 iRp = index of parent of i in SR

8 Add (i,iRp ,dj) to TR
S

9 return TR
S

10 Procedure TraverseTree(node t)
11 SR=null
12 if t has empty children list then
13 Add word (wt) of t to SR

14 else
15 for Child ct in clt with clausal

complements (ccomp, xcomp)
dependency relation do

16 TraverseTree(ct)
17 for Child ct in clt with subject

(nsubj) dependency relation do
18 TraverseTree(ct)
19 for Child ct in clt with dobj, iobj

dependency relation do
20 TraverseTree(ct)
21 for Child ct in clt that are

pre-modifiers of t or in other
dependencies appearing before t
in S do

22 TraverseTree(ct)
23 Add word (wt) of t to SR

24 for Child ct in clt that are
post-modifiers of t or in
other dependencies appearing
after t in S do

25 TraverseTree(ct)
26 return SR

187

the LAS of our combined treebanks on the
sample data. We report only those top-k com-
binations that have been used in the submit-
ted systems.

3.2 Known language, new parallel treebank
New parallel treebanks were provided for 14 lan-
guages in the test data. Out of these 14 lan-
guages, we trained the models for German, Hindi,
Japanese and Turkish on the single UD treebanks
available for each of these languages. Multiple
treebanks are available for each of the remain-
ing 10 languages, viz, Arabic, Czech, English,
Finnish, French, Italian, Portuguese, Russian and
Swedish.

For each language with multiple treebanks we
followed the following steps:

1. We combined all the treebanks in that lan-
guage and trained a parser model on the com-
bined treebank.

2. We tested the combined model and the mod-
els trained on the individual treebanks on the
development sets of all individual treebanks.

3. We used the combined model for the paral-
lel treebank if it gives uniform UAS and LAS
scores across all the development sets and
gave significant improvement over the mod-
els trained on individual treebanks. Else we
used the model trained on the treebank that
gave best result across all the treebanks.

We used the combined models for Swedish, En-
glish, Finnish, French, Italian, Portuguese, Rus-
sian. For Arabic and Czech we used the models
trained on the main treebanks (lcode: ’ar’ and ’cs’,
tcode: ’0’) of the respective languages.

3.3 Known language, known treebank
We trained separate models for each of the 70
Universal Dependecies v2.0 treebanks. We used
word, PoS and dependency relation embeddings
of 50 dimensions. Apart from these parameters
we used the default parameter settings of the UD-
Pipe parser to train our models. The ’small’ tree-
banks for which for which no development data
was available, we used the training data itself as
development data.

4 Experiments and results

Our system comprises of 88 models. 70 models
were trained on the individual treebanks available

from http://universaldependencies.
org/, 14 models were trained for the new par-
allel treebanks and 4 models for the surprise lan-
guage. Given the language code (lcode) and tree-
bank code (tcode), our system identifies the parser
model corresponding to the input test treebank and
parses the sentences in the treebank file.

The systems were ranked based on macro-
averaged LAS. The final evaluation of the parser is
on blind test data sets (Nivre et al., 2017a) through
TIRA platform set up by Potthast et al. (2014).
We submitted 9 systems (softwarek, where k ∈
{2, · · · , 10}). The systems differ in the models
trained for the surprise languages. The models
corresponding to the known language treebanks
and the new parallel treebanks were same in all
the systems. Since the test set was blind, the first
four systems (software 2 to 5) consisted of a com-
bination of models for the surprise languages that
were expected to perform best based on the per-
formance on the sample treebanks. The remaining
5 consisted of models corresponding to combina-
tions of top-k (k= 1, 5, 10, 15, 20) models for each
of the surprise languages. Table 3.1.3 lists the tree-
banks combined to train the models for our pri-
mary system. We summarize the macro-averaged
LAS scores for the surprise languages for the 8
models in Table 3.3. The highest scoring system
for the surprise languages (software2) consists of
top-2 model for Buryat, top-10 model for Kur-
manji (Kurdish) and top-6 models for North Sámi
and Upper Sorbian. The results using the primary
system is summarized in Table 3.1 and the macro-
average over all submitted softwares are listed in
Table 3.3.

5 Conclusion

In this work, we have implemented a system for
parsing sentences in several typologically differ-
ent languages with a special focus on surprise lan-
guages for the CoNLL 2017 Shared Task. We
have developed a system for combining treebanks
to train parsers for surprise languages and ap-
plied syntactic transformation of source languages
based on the syntactic features of the target lan-
guages to improve performance on the target lan-
guages. We derived the syntactic features from the
WALS and sample data provided. On the surprise
languages, the macro-averaged LAS F1-score of
our primary system is 37.16 while that of the best
performing system (Stanford) is 47.54. However,

188

Combin-
ation bxr kmr hsb sme

UAS LAS UAS LAS UAS LAS UAS LAS
Top-1 63.1 43.14 51.2 45.04 76.52 71.52 63.95 54.52
Top-2 62.18 41.81 52.07 45.87 78.26 73.7 70.75 57.82
Top-3 58.17 39.22 45.04 40.91 78.26 74.13 70.75 59.86
Top-5 54.25 35.95 47.93 41.74 76.52 71.52 62.59 48.98
Top-6 53.59 32.03 48.6 42.43 77.61 74.13 72.11 59.18
Top-10 59.5 40.52 49.6 43.39 76.96 73.7 72.11 55.1
Top-15 58.17 41.18 40.5 35.54 77.83 74.57 70.75 59.18
Top-20 53.59 38.56 45.87 42.15 78.04 73.7 67.35 54.42

Table 5: UAS and LAS scores of models trained on treebank combinations on the surprise language
sample data

bxr kmr sme hsb Macro-averaged
LAS F1 score

Overall
macro-averaged
LAS F1 score

Primary system
(software3)

26.60 32.03 35.25 54.78 37.16 67.61

software2 29.98 32.38 33.27 55.4 37.75 67.75
software4 26.60 32.03 35.25 53.37 36.81 67.60
software5 29.98 32.38 32.05 53.37 36.94 67.60

Top-1 (software6) 26.60 32.18 32.83 52.92 36.13 67.56
Top-5 (software7) 29.08 32.97 32.88 54.85 37.44 67.63
Top-10 (software8) 28.91 32.38 33.03 53.54 36.96 67.62
Top-15 (software9) 31.65 32.27 32.05 53.37 37.33 67.62

Top-20 (software10) 30.44 32.51 32.95 53.23 37.28 67.62

Table 6: Comparison of LAS F1 scores of the submitted systems and their macro-averages on the surprise
language test data. The system with highest macro-averaged LAS F1 score (software2) is composed of
top-2, top-10, top-6, top-6 models for bxr, kmr, sme and hsb respectively. The software4 is composed of
top-1, top-2, top-3, top-15 models for bxr, kmr, sme and hsb respectively and the software5 is composed
of top-2, top-10, top-15, top-15 models for bxr, kmr, sme and hsb respectively. For the remaining systems
(software6-10) we combined the top-5, top-10, top-15 and top-20 treebanks respectively.

the macro-averaged LAS F1-score of our best per-
forming system is 37.75. Our rank with respect to
the surprise languages is 10.

The overall macro-averaged LAS F1-score of
our primary system is 67.61 as compared the best
performing system that has an macro-averaged
LAS F1 score of 76.30. The overall macro-
averaged LAS F1-score of our best-performing
system is 67.75. Our overall rank is 19.

References
Lauriane Aufrant, Guillaume Wisniewski, and Franois

Yvon. 2016. Zero-resource dependency parsing:
Boosting delexicalized cross-lingual transfer with
linguistic knowledge. In Proceedings of COLING

2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers. The COL-
ING 2016 Organizing Committee, Osaka, Japan,
pages 119–130. http://aclweb.org/anthology/C16-
1012.

Martin Haspelmath. 2005. The world atlas of language
structures / edited by Martin Haspelmath ... [et al.].
Oxford University Press Oxford.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering 11:11–311.

Ryan McDonald, Slav Petrov, and Keith Hall.
2011. Multi-source transfer of delexical-
ized dependency parsers. In Proceedings
of the Conference on EMNLP. Associa-

189

tion for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’11, pages 62–72.
http://dl.acm.org/citation.cfm?id=2145432.2145440.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Mohammad Sadegh Rasooli and Michael Collins.
2015. Density-driven cross-lingual transfer of de-
pendency parsers. In Proceedings of the 2015
Conference on EMNLP. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 328–338.
http://aclweb.org/anthology/D15-1039.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Milan Straka, Jan Hajič, Jana Straková, and Jan
Hajič jr. 2015. Parsing universal dependency tree-
banks using neural networks and search-based or-
acle. In Proceedings of Fourteenth International

Workshop on Treebanks and Linguistic Theories
(TLT 14).

Jörg Tiedemann. 2015. Improving the cross-
lingual projection of syntactic dependencies.
In Proceedings of the 20th Nordic Conference
of Computational Linguistics (NODALIDA
2015). Linköping University Electronic Press,
Sweden, Vilnius, Lithuania, pages 191–199.
http://www.aclweb.org/anthology/W15-1824.

D. Zeman and Philip Resnik. 2008. Cross-language
parser adaptation between related languages. NLP
for Less Privileged Languages pages 35 – 35.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

190

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 191–197,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A Transition-based System for Universal Dependency Parsing

Hao Wang1,2, Hai Zhao1,2,∗, Zhisong Zhang1,2

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
{wanghao.ftd, zzs2011}@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn,

Abstract

This paper describes the system for our
participation of team Wanghao-ftd-SJTU
in the CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Univer-
sal Dependencies. In this work, we design
a system based on UDPipe1 for univer-
sal dependency parsing, where transition-
based models are trained for different tree-
banks. Our system directly takes raw texts
as input, performing several intermediate
steps like tokenizing and tagging, and fi-
nally generates the corresponding depen-
dency trees. For the special surprise lan-
guages for this task, we adopt a delexical-
ized strategy and predict based on trans-
fer learning from other related languages.
In the final evaluation of the shared task,
our system achieves a result of 66.53% in
macro-averaged LAS F1-score.

1 Introduction

Universal Dependencies (UD) (Nivre et al., 2016,
2017b) and universal dependency parsing take ef-
forts to build cross-linguistically treebank annota-
tion and develop cross-lingual learning to parse
many languages even low-resource languages.
Universal Dependencies release 2.02 (Nivre et al.,
2017b) includes rich languages and treebanks re-
sources and the parsing task in CoNLL 2017 is

∗Correspondence author. This paper was partially sup-
ported by Cai Yuanpei Program (CSC No. 201304490199
and No. 201304490171), National Natural Science Foun-
dation of China (No. 61170114, No. 61672343 and No.
61272248), National Basic Research Program of China (No.
2013CB329401), Major Basic Research Program of Shang-
hai Science and Technology Committee (No. 15JC1400103),
Art and Science Interdisciplinary Funds of Shanghai Jiao
Tong University (No. 14JCRZ04), Key Project of National
Society Science Foundation of China (No. 15-ZDA041).

1http://ufal.mff.cuni.cz/udpipe
2http://universaldependencies.org/

based on this dataset. In fact, dependency pars-
ing has been adopted as topic of the shared task
in CoNLL-X and CoNLL-2007 (Buchholz and
Marsi, 2006; Nivre et al., 2007), which have been
the milestones for the researching field of parsing.
This time, the task is taking a universal annotation
version and trying to exploit cross-linguistic simi-
larities between various languages.

In this paper, we describe the system of team
Wanghao-ftd-SJTU for the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies (Zeman et al., 2017). For
this task, we only use provided treebanks to train
models without any other resources including pre-
trained embeddings.

For dependency parsing, there have been
two major parsing methods: graph-based and
transition-based. The former searches for the fi-
nal tree through graph algorithms by decompos-
ing trees into factors, utilizing ingenious dynamic
programming algorithms (Eisner, 1996; McDon-
ald et al., 2005; McDonald and Pereira, 2006);
while the latter parses sentences by making a se-
ries of shift-reduce decisions (Yamada and Mat-
sumoto, 2003; Nivre, 2003). In our system, we
will utilize the transition-based system for its sim-
plicity and relatively lower computation cost.

Transition-based dependency parsing takes lin-
ear time complexity and utilizes rich features
to make structural prediction (Zhang and Clark,
2008; Zhang and Nivre, 2011). Specifically, a
buffer for input words, a stack for partially built
structure and shift-reduce actions are basic ele-
ments in a transition-based dependency parsing.
For the transition systems of dependency parsing,
there have been two major ones: arc-standard and
arc-eager (Nivre, 2008). Our system adopts the
former, whose basic algorithm can be described as

191

following:

Start : σ = [ROOT], β = w1, ..., wn, A = ∅
1. Shift :
σ,wi | β,A→ σ | wi, β, A

2. Left-Arcr :
σ | wi | wj , β, A→ σ | wj , β, A ∪ r(wj , wi)

3. Right-Arcr :
σ | wi | wj , β, A→ σ | wi, β, A ∪ r(wi, wj)

Finish : σ = [w], β = ∅
where σ, β,A represent the stack, queue and the
actions respectively.

One major difference for parsing between the
situation of current and that of ten years ago
is that recently we have seen a rising of neu-
ral network based methods in the field of Natu-
ral Language Processing and parsing has also been
greatly changed by the neural methods. With dis-
tributed representation for words and sentences
and the powerful non-linear calculation ability of
the neural networks, we could explore deeper syn-
tactic and maybe semantic meaning in text analy-
sis, and both graph-based (Pei et al., 2015; Wang
and Chang, 2016) and transition-based (Chen and
Manning, 2014; Weiss et al., 2015; Dyer et al.,
2015; Andor et al., 2016) parsing have benefited
a lot from neural representation learnings. In our
system, the model, which is trained by UDPipe,
for the transition action predictor is also based
on neural network, which is similar to the one of
Chen and Manning (2014).

For this shared task, our system is built based
on UDpipe (Straka et al., 2016), which provides
a pipeline from raw text to dependency structures,
including a tokenizer, taggers and the dependency
predictor. We trained and tuned the models on
different treebanks, and in the final evaluation, a
score of 66.53% in macro-averaged LAS F1-score
measurement is achieved. In the task, there are
several surprise languages which lack of annotated
resources, which means it is hard to train spec-
ified models for those languages. To tackle this
problem, we exploit the universal part-of-speech
(POS) tags, which could be represented as cross-
lingual knowledge to avoid language-specific in-
formation, and adopting a delexicalized and cross-
lingual method, which relies solely on universal
POS tags and annotated data in close-related lan-
guages.

The rest of the paper is organized as follows:

Multi-lingual Inputs

Model Selector

Raw Text

Tokenizer

Tagger

Parser Parser

CoNLL-U

Known Language
 Parser

Surprise Language
 Parser

Figure 1: System overview.

Section 2 describes our system overview, Section
3 elaborates the components of the system, Sec-
tion 4 shows the experiments and results for our
participation in the shared task, and Section 5 con-
cludes this paper.

2 System Overview

The overall architecture of our universal depen-
dency parser is shown in Figure 1. The whole
system can be divided into two parts: Known Lan-
guage Parser and Surprise Language Parser. The
former deals with known languages, including rich
resource treebanks and low resource treebanks,
whose annotations as the training data are acces-
sible, while the latter disposes of the ones with-
out dependency annotations. When the text to be
processed by the system is inputed, it is first dis-
criminated as rich-resource or low-resource and
then dispatched to the corresponding sub-systems,
which will be described as follows.

For the Known Language Parser, the related
pipeline contains three steps as follow.

(1) Tokenizer The raw texts are split into basic
units for the latter processing of dependency anal-

192

ysis, which is the main task of the tokenizer. For
all rich resource languages, we train tokenziers us-
ing provided training data, including the languages
which can be easily tokenized by specific delim-
iters.

(2) Tagger The tokenized texts are labeled by
taggers, which provides them with the tags which
will be utilized in the later dependency analysis,
such as POS and morphological features. Like the
previous step, we train taggers for all the rich re-
source languages.

(3) Dependency Parser Tokens and linguistic
features generated by taggers are put into the de-
pendency parser to generate the final dependency
structures.

For Surprise Language Parser, only Depen-
dency Parser is needed. We directly take the pro-
vided CoNLL-U files which already include the
tokens and features as inputs and predicts the re-
sults. Without annotated training data, we could
not train the tokenizers and taggers for these lan-
guages; Meanwhile for the parsing, we adopt
a delexicalized and cross-lingual strategy, which
will be described later in Section 3.3.

3 System Components

3.1 Model Selector

In the final testing phase of the shared task,
there are mainly three types of test data (Nivre
et al., 2017a), Ordinary Provided Resource Test
Set which have corresponding training datasets ,
Parallel Test Set which concerns selected known
languages but may have different domain from
their training data and Surprise Languages whose
training annotations are not available in the pro-
vided dataset. The model selector aims to discrim-
inate these different input types, and dispatch the
inputs to different sub-systems. Specifically, for
the first two types which we refer to as Known
Language, they will be dealt by the Known Lan-
guage Parser, while the Surprise Language Parser
will dispose with the surprise languages.

As for Parallel Test Set, we use its correspond-
ing treebank without specific domain in treebank
name.3

3It may be better if we use the whole treebanks of corre-
sponding language

Parameter Name Value
tokenize url 1
allow spaces 1
iterations 20
batch size 50
learning rate 0.005
dropout 0.1

Table 1: Parameters for the training of tokenizers.

Parameter Name Value
guesser suffix rules 8
guesser prefixes max 4
guesser prefix min count 10
guesser enrich dictionary 0
iterations 20
dimension of upostag 20
dimension of feats 20
dimension of xpostag 20
dimension of form 50
dimension of deprel 20

Table 2: Parameters for the training of taggers.

3.2 Known Language Parser
3.2.1 Tokenizer
In the Known Language Parser, the first step is to
tokenize the input raw text, generating the basic
units for later processing. We train tokenizers for
all the languages using UDPipe, including those
ones which are quite easy to separate using simple
rules, like identifying the blank spaces in English.
Considering there are some languages that could
not be simply tokenized by blank spaces, we adopt
this unified treatment for this step. The tokenizers
are trained mainly using the SpaceAfter features
provided in the CoNLL-U files and the parameters
of UDPipe Tokenizer are shown in Table 1.

3.2.2 Tagger
In the pipeline of dealing known languages, the
second step is to provide several light-weighted
syntactical and morphological features for the to-
kenized texts, which will be utilized as the input
features in the final parsing step. In our system,
we adopt the tagger in UDPipe, whose tagging
method is based on MorphoDita (Straková et al.,
2014) and the training method is the classical Av-
eraged Perceptron (Collins, 2002), and the train-
ing parameters of UDPipe Tagger are provided in
Table 2. In this step, the tagger will provide the
following outputs:

193

1. Lemma: Lemma or stem of word forms.

2. UPOS: Universal POS tags.

3. XPOS: Language-specific POS tags.

4. FEATS: Morphological features from the uni-
versal feature inventory or from a defined
language-specific extension.

These features will be used as inputs in the final
parsing step for Rich Resource Languages.

3.2.3 Dependency Parser
For the final step, we generate the final depen-
dency outputs with the tokens and features gen-
erated by the pre-trained POS taggers. The parser
uses Parsito (Straka et al., 2015b). Parsito4 is a
transition-based parser with neural network clas-
sifier, which is similar to the one of (Chen and
Manning, 2014). The inputs to the model rep-
resent the current configuration of the stack and
buffer, including features of the top three nodes
on both of them and child nodes of the nodes on
the stack. After we projected features to embed-
dings and concatenated the generated embeddings
to representations of features, the vector represen-
tations of the input are fed to a hidden layer ac-
tivated with tanh, and the output layer is softmax
indicating the probabilities of each possible tran-
sition actions.

The parser supports projective and non-
projective dependency parsing, which is config-
ured by the option transition system. In Univer-
sal Dependencies release 2.0, only UD Japanese
and UD Galician have no non-projective depen-
dency trees; while UD Chinese, UD Polish and
UD Hebrew have a few non-projective trees,
around 1% in the treebanks. According to the pro-
jective tree quantities of the whole treebanks5, we
train non-projective parsing for most treebanks ex-
cept UD Japanese and UD Galician. In projective
parsing, we use dynamic oracle which usually per-
forms better but more slowly. In non-projective
parsing, we use static lazy and search-based ora-
cle (Straka et al., 2015a).

Except transition system option, other configu-
rations of Parsito are the same in all the training
of different treebanks. For the structured interval
option, we kept the default value 8. To make
sure that there is a only single root when pars-
ing, single root option is set to 1. Transition-based

4http://ufal.mff.cuni.cz/parsito
5Projective tree extraction script is from

https://github.com/ftyers/ud-scripts

Parameter Name Value
iteration 20
hidden layer 200
batch size 10
learning rate 0.1
dimension of upostag 20
dimension of feats 20
dimension of xpostag 20
dimension of form 50
dimension of deprel 20

Table 3: Parameters for the training of parsers.

Surprise Language Source Language
Buryat Turkish
Kurmanji Persian
North Sami Finnish
Upper Sorbian Czech

Table 4: Surprise languages and corresponding
source languages.

method could employ rich features effectively. In
our system, we use the linguistic features gener-
ated by previous taggers, including lemma, POS
tags and morphological features as described in
Section 3.2.2. The parameters for the parser train-
ing are shown in Table 3.

3.3 Surprise Language Parser

This sub-system deals with the surprise languages
without enough training data. We use a simple
delexicalized and cross-lingual method, that is,
parsing these low resource languages based on the
models learned from other languages. This fol-
lows the method of (Zeman and Resnik, 2008),
which shows that transfer learning for another lan-
guage based on delexicalized parser can perform
well. Although different languages may have dif-
ferent word forms, the underlying syntactic in-
formation could overlap and the universal POS
tags could be utilized to explore the correlations.
To achieve this, we train a dependency parser in
a close-relation language (source language) for a
surprise language, and then feed the delexicalized
POS tag sequence of the surprise language to the
source language parser. We consider language
family and close area to find the source language
for surprise language. Table 4 shows surprise lan-
guages and their corresponding source languages
we found.

We use delexicalized source language parser to

194

Treebank’s Type LAS
Big treebanks 71.20
PUD treebanks 65.55
Small treebanks 52.13
Surprise languages 34.49

Table 5: Results of main types of treebanks.

Surprise Language LAS UAS
Buryat 28.11 49.67
Kurmanji 19.85 30.49
North Sami 33.39 45.60
Upper Sorbian 56.60 64.33
Macro-average 34.49 47.52

Table 6: Final LAS scores for the surprise lan-
guages.

predict the surprise language’s dependency struc-
tures. The input is CoNLL-U file in which we fil-
ter other linguistic features except Universal POS
tags. Blind test results of surprise language are
showed in Section 4.

Results Our System Best
LAS 66.53 76.30
UAS 72.69 81.30
CLAS 60.85 72.57
UPOS 90.63 93.09
XPOS 79.64 82.27
Morphological Features 82.27 82.58
Morphological Tags 73.81 73.92
Lemmas 81.63 83.74
Sentence segmentation 88.40 89.10
Word Segmentation 98.55 98.81
Tokenization 98.81 98.95

Table 7: Final results for the task.

4 Results

Evaluation process of this shared task is deployed
in TIRA 6 (Potthast et al., 2014). LAS is the main
scoring metric and we show performances of our
system in several types of treebanks in Table 5 us-
ing the same groups as the official results. What’s
more, LAS of our system in Surprise Languages
are shown in Table 6. We show several official
evaluation results such as LAS, UAS and other re-
sults and compared with best results in Table 7.

6http://www.tira.io/tasks/conll

5 Conclusion

In this paper, we describe the universal depen-
dency parser for our participation in the CoNLL
2017 shared task. The official evaluation shows
that our system achieves 66.53% in macro-
averaged LAS F1-score measurement on the of-
ficial blind test. Further improvements could be
obtained by more carefully fine-tuning models and
adopting more sophisticated neural models.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Berlin, Germany, pages 2442–2452.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning (CoNLL-X). As-
sociation for Computational Linguistics, New York
City, pages 149–164.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar, pages 740–750.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings
of the 2002 Conference on Empirical Methods in
Natural Language Processing. pages 1–8.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Beijing, China, pages 334–343.

Jason M. Eisner. 1996. Three new probabilistic mod-
els for dependency parsing: An exploration. In
Proceedings of the 16th International Conference
on Computational Linguistics. Copenhagen, pages
340–345.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05). Ann Arbor, Michigan, pages
91–98.

195

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of the 11th Conference of the
European Chapter of the ACL (EACL 2006). pages
81–88.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT). pages 149–160.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513–553.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). Portoro, Slovenia, pages
1659–1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. As-
sociation for Computational Linguistics, Prague,
Czech Republic, pages 915–932.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague. http://hdl.handle.net/11234/1-1983.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An
effective neural network model for graph-based de-
pendency parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers). Beijing, China, pages 313–322.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author identifica-
tion, and author profiling. In Evangelos Kanoulas,
Mihai Lupu, Paul Clough, Mark Sanderson, Mark
Hall, Allan Hanbury, and Elaine Toms, editors, In-
formation Access Evaluation meets Multilingual-
ity, Multimodality, and Visualization. 5th Interna-
tional Conference of the CLEF Initiative (CLEF 14).
Berlin Heidelberg New York, pages 268–299.

Milan Straka, Jan Hajic, Jana Straková, and Jan Ha-
jic jr. 2015a. Parsing universal dependency tree-
banks using neural networks and search-based or-
acle. In International Workshop on Treebanks and
Linguistic Theories (TLT14). page 208.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16). Paris, France.

Milan Straka, Jan Hajič, Jana Straková, and Jan
Hajič jr. 2015b. Parsing universal dependency tree-
banks using neural networks and search-based or-
acle. In Proceedings of Fourteenth International
Workshop on Treebanks and Linguistic Theories
(TLT 14).

Jana Straková, Milan Straka, and Jan Hajič. 2014.
Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recognition.
In Proceedings of 52nd Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations. Baltimore, Maryland, pages 13–
18.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional lstm. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Berlin, Germany, pages 2306–2315.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Beijing, China, pages 323–
333.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT). pages
195–206.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael

196

Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In IJCNLP. pages 35–42.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing. Honolulu,
Hawaii, pages 562–571.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Portland, Oregon, USA, pages
188–193.

197

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 198–206,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Corpus Selection Approaches for Multilingual Parsing from Raw Text to
Universal Dependencies

Ryan Hornby1 and Clark Taylor2 and Jungyeul Park3

1BASIS Oro Valley, Oro Valley, AZ
ryanhornby1999@gmail.com

2Department of Computer Science, University of Arizona
cgtboy1988@email.arizona.edu

3Department of Linguistics, University of Arizona
jungyeul@email.arizona.edu

Abstract

This paper describes UALing’s approach
to the CoNLL 2017 UD Shared Task us-
ing corpus selection techniques to re-
duce training data size. The methodol-
ogy is simple: We use similarity mea-
sures to select a corpus from available
training data (even from multiple corpora
for surprise languages) and use the re-
sulting corpus to complete the parsing
task. The training and parsing is done
with the baseline UDPipe system (Straka
et al., 2016). While our approach re-
duces the size of training data signifi-
cantly, it retains performance within 0.5%
of the baseline system. Due to the reduc-
tion in training data size, our system per-
forms faster than the naı̈ve, complete cor-
pus method. Specifically, our system runs
in less than 10 minutes, ranking it among
the fastest entries for this task. Our sys-
tem is available at https://github.
com/CoNLL-UD-2017/UALING.

1 Introduction

Universal Dependencies (UDs) (Nivre et al., 2016)
includes corpora from different languages anno-
tated with identical types of labels. This allows
for the examination of different theoretical (Schus-
ter and Manning, 2016) and practical applications
such as the CoNLL 2017 UD Shared Task (Zeman
et al., 2017).1 The specific practical task presented
here involves using these corpora in a supervised
learning approach in order to achieve the task’s
goal: Training with the multilingual UD data in
order to find dependency relationships not just for

1http://universaldependencies.org/
conll17

these known languages, but also for unknown or
little-known language.2

1.1 Theoretical Concepts
Supervised learning occurs when humans encode
their judgment into a set of data, which is in
turn used to train statistical models with the ulti-
mate goal of using these models to make accurate
predictions for previously unseen datasets—which
are often too large (and costly) or otherwise un-
available for humans to judge manually. Build-
ing these models of human judgment is neces-
sary in cases where explicit rules are too complex
to encode, ambiguous, or where such rules are
not known; rather than explicitly and programat-
ically encoding rules, supervised learning mod-
els ”learn” or at least ”contain” the rules through
models generated from human-judged data. Ide-
ally, the models are used to apply those same rules
to the unseen datasets.

The rules contained in human-judged train-
ing data are, necessarily, constrained to the do-
main from which the data derives.3 Unknown
domains—such as unknown languages—are dif-
ficult to handle, because the rules from another
known domain do not necessarily apply and the
rules for the target domain are thus not readily
known. Creating new corpora for specific do-
mains (which occurs often for biomedical-domain
data, for instance) drastically improves accuracy
for the given corpus domain (Clegg and Shepherd,
2005). The UD corpora extend training data across

2”Little-known” here implies that the language has little
to no human-annotated data—also known as under-resourced
languages.

3What constitutes a ”domain” may vary across different
contexts. Here, the term is used generally to denote sources
of data for which there exist significant similarity in gram-
matical rules, such as entire languages or much smaller top-
ics. In the context of the task, ”domain” generally refers to a
single language, as our target data is of unknown topics but
of a single language.

198

numerous different language-domains. However,
adapting currently known data to new domains (in-
cluding new languages) is a difficult problem, par-
ticularly when human judgment is not available to
aid in the adaption.

Similarly, in many cases training data contains
rules not relevant or even contradictory to those
in unseen data. This occurs both interdomain—
where the training data contains data from a do-
main which is not relevant to the unseen data—and
intradomain—where training data from a domain
is not relevant to other data in the same domain.4

This data may not be necessary to building su-
pervised learning models because it does not con-
tain relevant rules; in some circumstances, training
data may even introduce rules to the model which
contradict rules in the unseen data.5 Still other
training data contains rules of marginal signifi-
cance to the model, where such rules apply only
to an extremely small segment of unseen data.

Without using supervised learning methods
which actively adapt the rules of these data types
to incoming unseen data, it is possible to (1) im-
prove algorithmic and model performance by re-
moving contradictory-rule training data, (2) im-
prove algorithmic performance without model per-
formance loss by removing irrelevant-rule train-
ing data, and (3) improve algorithmic performance
without significant performance loss by removing
marginal-significance rule data.

1.2 Resulting Methodology

For this paper, we introduce several methods of
automated corpus refinement in order to improve
and at best optimize supervised learning by ac-
complishing the goals enumerated above. Specifi-
cally, we propose and evaluate the use of similarity
measures to refine the training data set; these sim-
ilarity metrics ”select” training data of the same
domain and data which is closest in linguistic rules
to the target, unseen data from available corpora.

4Both interdomain and intradomain data are considered
and dealt with by the method proposed here, though the task
focuses on interdomain problems when considering different
language domains. Pure corpus compression, as also dis-
cussed herein, tends to focus on the intradomain problem.

5To illustrate, when considering supervised learning ap-
proaches to parts-of-speech annotating, in the domain of for-
mal scientific literature the word ”as” might more often be
used as a conjunction (as a synonym of ”because”) while in
journalism it might be more often used as an adverb. Models
trained on these different domains would likely result in dif-
ferent outcomes when labeling parts-of-speech due to these
differences.

Using only this similar training data ought to re-
move data containing contradictory or irrelevant
rules. Furthermore, similarity metrics provide an
opportunity to scale the included data by includ-
ing only the most similar data above a threshold,
which also has the potential to remove marginal-
significance training data. This method allows us
to drastically reduce corpus size while retaining
only the most similar—and, ideally, best—training
data. The overall effect on supervised learning
performance depends on how well the employed
similarity metric matches underlying rule similar-
ity.

To accomplish this, we create a corpus process-
ing pipeline in Java which calculates similarity and
selects data. In this implementation, the develop-
ment data set for monolingual parsing is consid-
ered a feature vector (§3), and similarity (§2) is
calculated between this vector and each sentence
in the single monolingual training data of the lan-
guage. We try to find a fixed selection thresh-
old (where sentences above the threshold are kept
in the new training dataset) for all languages for
monolingual parsing that provides the greatest per-
formance, though performance-per-compression
metrics are also valuable in some contexts. The
sample data set for surprise languages also consti-
tutes a feature vector (§4), and the program cal-
culates the similarity between this vector and each
sentence in the training data of all other languages.
We evaluate various selection thresholds to adapt
the under-resourced situation for each surprise lan-
guage. We use UDPipe 1.1 (Straka et al., 2016)
as the baseline system and the UD version 2.0
datasets (Nivre et al., 2017). We are able to re-
duce the size of training data down to 76.25% of
the original in average using the proposed method
while retaining UD parsing results are comparable
to the baseline system. We can actually increase
result accuracies for certain languages by using the
resulting compressed training datasets.

2 Similarity

In our methodology, we employ cosine similar-
ity as our similarity metric. The cosine similar-
ity measure is applied to two latent vectors in two
datasets. Let cos(d1, d2) be the cosine similarity,
which is calculated as follows:

cos(d1, d2) =
Vd1 · Vd2

‖Vd1‖‖Vd2‖
(1)

where two feature vectors of Vd1 and Vd2 are

199

Les commotions cérébrales sont devenu si courante dans ce sport qu’ on les considére presque comme la routine .
DET NOUN ADJ AUX VERB ADV ADJ ADP DET NOUN SCONJ PRON PRON VERB ADV ADP DET NOUN PUNCT

det

nsubj

amod aux

root

advmod

xcomp case

det

obl mark

nsubj

obj

advcl

advmod

case

det

obl

punct

Figure 1: Treebank example: tri-gram POS sequences and dependency relationship between POS labels
are extracted for features of the similarity measure.

from training and development datasets. Among
the 64 languages with training data, 56 provide
development data as well. Therefore, we focus on
56 languages for the proposed corpus selection ap-
proaches. The entire development data set makes
one vector, and then the similarity is calculated be-
tween this vector and every sentence in the train-
ing data.

Various feature vectors are described in §3 and
§4 for the monolingual and cross-lingual corpus
selection approaches. For monolingual parsing,
we use training and development corpora of the
single language set for similarity measurement,
extracting the most pertinent training data from the
single corpus in order to compress and/or refine it.
For cross-lingual parsing when we deal with sur-
prise languages, we use training corpora from all
languages, comparing the target language data to
all known UD language corpora. This extracts the
most similar data from other languages, with the
hope that it is also similar in language grammar
and structure—and, hence, similar in annotation.

3 Monolingual Corpus Selection
Approaches

We use the following features for monolingual
parsing:

1. tri-gram POS sequences

2. dependency relationships between two POS
labels

Tri-gram POS sequences represent the tri-gram
universal POS labels (Petrov et al., 2012). Depen-
dency relationships represents the part of speech
labels of a dependent and a dependee, and their
dependency relationships.

3.1 Feature extraction

Tri-gram POS sequences are extracted from Uni-
versal POS labels of the sentence such as DET

NOUN ADJ, NOUN ADJ AUX, etc. (See Figure 1).
Uni-gram and bi-gram POS sequences are ex-
cluded because we found them to not be distinctive
between the languages with Universal POS labels
that we examined. We also extract dependency re-
lationships between POS labels for the similarity
measure such as NOUN nsubj VERB for com-
motions ... devenu where commotions/NOUN is
dependent on devenu/VERB with nsubj depen-
dency relation.6 Figure 2 shows two results by
using the different thresholds for tri-gram POS se-
quences and POS-dep-POS. Using similarity mea-
sures to select the subset of the original training
data, the proposed method slightly outperforms
the results obtained by the original training data
set with the similarity threshold θ = 0.1. Actually,
it improves the parsing result by 0.01% and 0.15%
only using 94% and 77% of the original training
datasets for German and Dutch, respectively.

Table 1 shows our entire results of the corpus se-
lection method for monolingual parsing on the dev
datasets using label attachment score (LAS) per
treebank. We train the full training datasets, and
trimmed datasets using similarity of tri-gram POS
sequences (pos) and POS-dep-POS (dep). We also
train the monolingual parsing models by using re-
sults the intersection of two similarity measures
(intersection). All results are tested on the dev
datasets without 8 languages which do not provide
dev datasets.7 Table 1 also shows results from the

6While current feature selection is based on Universal
POS labels, using language-specific POS labels for feature
selection is one possible way to extend our approach for the
monolingual corpus selection.

7 We also exclude results of ru syntagrus from the table
because of internal formatting errors that our corpus selection
method produced.

200

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Tri-gram	POS

DE	pos NL	pos

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

#	of	sentences	(pos)

DE	sentences NL	sentences

(a) Tri-gram POS sequences

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

POS	dep	POS

DE	dep NL	dep

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

# of	sentences	(dep)

DE	sentences NL	sentences

(b) POS dep POS

Figure 2: Threshold estimation using Dutch (NL) and German (DE): Similarity thresholds for tri-gram
POS sequences and POS-dep-POS. Y-axis shows LAS (left) and the number of sentences (right).

method of length-based corpus selection (length).
Since the sentence lengths decay after the peak (of
the distribution of the numbers of sentences), our
length-based approach to reduce the data set by
length is to count the number of sentences before
the peak and keep up to that many sentences after
the peak.8 In Table 1, we also indicate ratios of
training datasets. This compression amount uses
the scale indicated by the entire (full) and its com-
pressed rates. For example, while grc uses 54.76%
() of the full training data set for length, its
results decreases only by 2.54%. Actually, grc
uses only 83.54% () for intersection, it out-
performs by 0.41%. We improve parsing results
for 33 languages on dev data using the proposed
corpus selection method by measuring similarity.

8This method resulted in some languages having up to
80% of the sentences removed because the peak sentence
length was a small number of words. In order to make sure
that only the outliers in length are removed we change the
algorithm so that the peak value was between ten and twenty
words long. This fixes the problem where languages with a
low peak length having a large amount of sentences removed.

3.2 Discussion

Besides features that we presented, we also inves-
tigate a length-based approach to select the train-
ing data. Instead of using the peak of the distri-
bution of the numbers of sentences as in Table 1,
we calculate the simple average numbers of words
of the sentences in the dev data set. Then, we
obtain the training data set using thresholds with
average ± scale for the number of words, where
scale is the number of max(|avg −max|, |avg −
min|) words of the sentence in the dev data set.
max and min are the maximum and the mini-
mum numbers of words of the sentences. Figure
3 shows results and the number of sentences in
the trimmed training datasets using length thresh-
olds. We vary scale multipliers from 1 to 5. Fil-
tering based on sentence length can potentially re-
move unnecessary size from the training data and
possibly remove some inaccuracy, assuming that
longer sentences increase entropy and become in-
herently less predictable. However, as Figure 3
indicated this simple length-based approach can-
not keep up with the baseline results. While cor-
pus compression levels compare to the similarity-

201

full length pos dep intersection
grc 49.79 47.24 48.67 49.49 50.20

grc proiel 65.87 57.95 65.66 66.40 66.69
ar 66.99 51.59 65.56 65.87 67.14
eu 67.48 52.35 66.94 67.86 67.32
bg 83.55 82.30 82.86 83.19 82.98
ca 81.80 75.23 81.26 81.05 81.59
zh 66.20 51.45 66.30 66.45 66.35
hr 73.87 72.64 73.41 74.23 74.33

cs cac 79.89 73.24 79.81 79.48 79.74
cs cltt 67.93 55.10 68.00 68.27 68.00

cs 79.42 76.48 79.42 79.03 79.42
da 72.68 59.66 73.29 73.78 73.83

nl lassysmall 73.05 58.06 73.57 74.12 72.88
nl 72.31 60.26 72.46 73.00 71.56
en 77.67 76.50 77.72 77.78 77.16

en lines 73.77 55.38 73.39 74.35 73.68
en partut 75.66 56.99 74.30 74.97 74.30

et 60.11 44.93 59.87 60.46 59.75
fi 74.99 73.30 73.90 74.76 73.81

fi ftb 75.17 75.17 73.49 74.04 73.18
fr 83.29 80.75 83.54 83.57 83.15

fr sequoia 81.73 80.41 81.74 81.82 81.74
gl 74.95 42.68 74.31 74.95 74.31
de 70.80 66.15 70.81 70.98 70.33

got 66.84 60.09 66.65 67.90 66.76
el 75.41 65.71 75.08 75.08 75.08
he 75.46 73.90 75.18 74.35 75.49
hi 85.85 77.60 85.62 85.49 85.49
hu 67.23 60.76 66.54 66.37 66.54
id 71.88 70.05 71.67 71.65 71.14
it 83.21 79.19 81.48 83.08 82.57

it partut 77.32 65.10 77.24 78.22 77.24
ja 92.42 82.50 92.12 91.99 92.06

ko 51.05 51.05 51.26 51.78 50.53
la ittb 69.43 58.16 69.48 68.71 68.54

la proiel 65.58 65.58 65.14 65.51 64.58
lv 63.02 48.34 61.97 62.78 62.87

no bokmaal 82.34 79.81 81.06 81.59 81.40
no nynorsk 80.20 79.93 79.95 80.07 79.72

cu 71.26 64.04 71.14 71.90 70.63
fa 75.93 50.92 75.73 75.88 75.29
pl 78.81 71.11 78.71 78.96 77.77

pt br 83.44 80.95 83.28 82.87 83.61
pt 81.87 80.74 81.87 80.74 81.87
ro 77.70 69.25 77.14 77.74 76.72
ru 54.21 50.80 54.63 53.77 53.94
sk 75.10 65.66 73.61 75.06 73.69
sl 79.72 69.10 79.19 79.73 79.20

es ancora 80.35 79.65 80.54 80.57 81.02
es 81.57 79.64 80.72 81.29 81.51

sv lines 73.43 69.37 73.92 73.40 73.19
sv 72.88 68.01 71.97 72.92 72.47
tr 53.91 45.92 51.95 54.19 51.99
ur 75.23 66.55 74.60 75.36 74.20
vi 54.16 44.44 53.82 53.38 54.10

average 72.6545 64.9818 72.2545 71.3636 71.0727

Table 1: Monolingual corpus selection results on dev datasets. The numerical entries are LAS, and the
bar indicates corpus compression amount. Length-based is trimmed based on the length of sentences in
training data. Tri-gram POS sequences and POS-relation-POS are trimmed based on similarities between
full training and dev data. intersection applies two feature extraction together (POS sequences and POS-
relation-POS trimming). Threshold is fixed for all languages (0.1). We also indicate ratios of trimming
of training datasets alongside parsing results.

202

54
56
58
60
62
64
66
68
70
72
74

1 2 3 4 5 all _ _ _

Length

DE	length NL	length

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 all _ _ _

#	of	sentences	(length)

DE	sentences NL	sentences

Figure 3: Threshold estimation for Dutch (nl) and German (de): Length scale thresholds based on the
average number of words in the dev data set. Y-axis shows LAS (left) and the number of sentences
(right).

0
10
20
30
40
50
60
70
80
90

0,7 0,8 0,9

Surprise	 languages

bxr hsb kmr sme

Figure 4: Threshold estimation for surprise languages: we fix 0.3 for tri-gram POS sequences and we
vary between 0.7 and 0.9 for POS-dep-POS. Y-axis shows LAS.

based approaches, parsing results drop signifi-
cantly. The empirical reasons that naive length-
based approaches do not work well may be worth
further consideration, but as a general matter the
length metric is overly simplistic and may omit
significant amounts of pertinent training data; sim-
ilarity metrics, by contrast, attempt to retain the
most pertinent data.

4 Cross-lingual Similarities for Surprise
Language Parsing

We use the same similarity measures to identify
the training data of the surprise language. Since
surprise languages are provided without training
data, we select the training datasets from training
datasets of all languages by calculating similar-
ities with sample datasets of surprise languages.
Figure 4 shows threshold estimation for surprise
languages. We fix the similarity threshold at 0.3
for tri-gram POS sequences because larger thresh-
olds provide too little training data, and the smaller
thresholds do not compress adequately. Thus, we

tune based on resulting corpus size.
We vary similarity threshold between 0.7 and

0.9 for POS-dep-POS. 0.3 for tri-gram POS se-
quences and 0.7 for POS-dep-POS both result in
a size of about 25% of the training data set for
monolingual corpus selection.

5 Results

For the submitted official results through TIRA
(Potthast et al., 2014), we use the intersection
model for all languages. Since we focus on the
corpus selection, we do not perform additional
preprocessing and we use the provided training
datasets as they are. We fix 0.1 both for tri-
gram POS sequences and POS-dep-POS because
it gives the best results for dev datasets for mono-
lingual training. We fix 0.3 for tri-gram POS se-
quences and we use the thresholds described in Ta-
ble 2 for POS-dep-POS to select training datasets
from all languages for surprise language parsing.
We provide the basic parsing model for PUD tree-
banks, for example, we use cs parsing model for

203

bxr hsb kmr sme

0.8 0.9 0.8 0.7

Table 2: POS-dep-POS thresholds for surprise languages

lang BASELINE UDPipe 1.1 UALING

All treebanks 68.35 65.24
Big treebanks only 73.04 69.59

PUD treebanks only 68.33 64.29
Small treebanks only 51.80 52.27

Surprise languages only 37.07 34.57

Table 3: Summary of LAS results

cs pud treebank without any modification. We ob-
tain 65.24% LAS F1 score for the submitted model
where we position 22nd. Table 3 and 4 show the
summaries of LAS and results per treebank, re-
spectively.

6 Discussion and Conclusion

In this paper, we introduced the idea of refining the
training datasets to UD parsing and cross-lingual
parsing to select training datasets from the same
language and other languages, respectively. While
our approach reduced the size of training data sig-
nificantly, we retained performance within 0.5%
of the baseline system. Additionally, corpus re-
finement methods can also be of utmost impor-
tance in trimming the size of training data for
algorithmically intense algorithms or large scale
system deployment runtime performance. A total
runtime on entire treebanks is only around 10min
with a default setting, which is fast enough; ad-
ditional optimization may improve this. The size
of parsing models is smaller than the baseline be-
cause we use only the subset of the entire train-
ing datasets. Even though we don’t use any ex-
ternal data, our final results are competitive to the
baseline system even with smaller datasets. The
current results presented here show promise, and
there exists potential for further refinement by, for
instance, using different similarity metrics. Ex-
ploring different similarity metrics may further en-
hance performance for other NLP tasks as well as
UD parsing.

References
Andrew B. Clegg and Adrian J. Shepherd. 2005.

Evaluating and Integrating Treebank Parsers on a

Biomedical Corpus. In Proceedings of the ACL
Workshop on Software. Association for Computa-
tional Linguistics, Ann Arbor, Michigan, pages 14–
33. http://www.aclweb.org/anthology/W05-1102.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A Multilin-
gual Treebank Collection. In Luis von Ahn, edi-
tor, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016). European Language Resources Association
(ELRA), Portorož, Slovenia.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A Universal Part-of-Speech Tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC-2012). European
Language Resources Association (ELRA), Istanbul,
Turkey, pages 2089–2096.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the Reproducibility of PAN’s
Shared Tasks:. In Evangelos Kanoulas, Mihai Lupu,
Paul Clough, Mark Sanderson, Mark Hall, Allan
Hanbury, and Elaine Toms, editors, Information Ac-
cess Evaluation. Multilinguality, Multimodality, and
Interaction: Proceedings of the 5th International
Conference of the CLEF Initiative (CLEF 2014),
Springer International Publishing, Sheffield, UK,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An Im-
proved Representation for Natural Language Under-

204

standing Tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016). European Language Resources
Association (ELRA), Paris, France.

Milan Straka, Jan Hajic, and Jana Straková. 2016. UD-
Pipe: Trainable Pipeline for Processing CoNLL-
U Files Performing Tokenization, Morphological
Analysis, POS Tagging and Parsing. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016). Eu-
ropean Language Resources Association (ELRA),
Paris, France.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

205

BASELINE UALING BASELINE UALING
UDPipe 1.1 UDPipe 1.1

ar 65.30 61.86 hsb 53.83 46.78
ar pud 43.14 42.57 hu 64.30 64.18

bg 83.64 82.43 id 74.61 72.59
bxr 31.50 19.15 it 85.28 84.01
ca 85.39 81.93 it pud 83.70 82.31
cs 82.87 78.04 ja 72.21 71.75

cs cac 82.46 79.59 ja pud 76.28 75.61
cs cltt 71.64 71.86 kk 24.51 24.75
cs pud 79.80 76.75 kmr 32.35 40.57

cu 62.76 61.35 ko 59.09 52.61
da 73.38 72.61 la 43.77 44.62
de 69.11 66.00 la ittb 76.98 73.29

de pud 66.53 63.65 la proiel 57.54 54.53
el 79.26 78.43 lv 59.95 59.73
en 75.84 72.84 nl 68.90 66.14

en lines 72.94 72.55 nl lassysmall 78.15 72.99
en partut 73.64 73.59 no bokmaal 83.27 80.56

en pud 78.95 76.42 no nynorsk 81.56 79.16
es 81.47 78.73 pl 78.78 78.24

es ancora 83.78 80.90 pt 82.11 36.40
es pud 77.65 76.31 pt br 85.36 82.58

et 58.79 58.85 pt pud 73.96 35.76
eu 69.15 66.77 ro 79.88 76.68
fa 79.24 76.23 ru 74.03 73.56
fi 73.75 73.06 ru pud 68.31 67.64

fi ftb 74.03 72.60 ru syntagrus 86.76 52.22
fi pud 78.65 77.22 sk 72.75 72.95

fr 80.75 77.30 sl 81.15 79.29
fr partut 77.38 78.29 sl sst 46.45 46.09

fr pud 73.63 72.03 sme 30.60 31.77
fr sequoia 79.98 79.12 sv 76.73 75.32

ga 61.52 62.20 sv lines 74.29 72.63
gl 77.31 74.02 sv pud 70.62 69.43

gl treegal 65.82 66.12 tr 53.19 50.69
got 59.81 57.62 tr pud 34.53 33.55
grc 56.04 52.56 ug 34.18 34.97

grc proiel 65.22 62.07 uk 60.76 61.12
he 57.23 55.79 ur 76.69 74.92
hi 86.77 85.56 vi 37.47 35.98

hi pud 50.85 50.83 zh 57.40 55.85
hr 77.18 74.59

avg 68.35 65.24

Table 4: LAS results per treebank. We highlight the score where we can improve the results compared
to the baseline system.

206

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 207–217,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

From Raw Text to Universal Dependencies – Look, No Tags!

Miryam de Lhoneux∗ Yan Shao∗ Ali Basirat∗ Eliyahu Kiperwasser†

Sara Stymne∗ Yoav Goldberg† Joakim Nivre∗

∗Department of Linguistics and Philology †Computer Science Department
Uppsala University Bar-Ilan University
Uppsala, Sweden Ramat-Gan, Israel

Abstract

We present the Uppsala submission to the
CoNLL 2017 shared task on parsing from
raw text to universal dependencies. Our
system is a simple pipeline consisting of
two components. The first performs joint
word and sentence segmentation on raw
text; the second predicts dependency trees
from raw words. The parser bypasses
the need for part-of-speech tagging, but
uses word embeddings based on universal
tag distributions. We achieved a macro-
averaged LAS F1 of 65.11 in the official
test run and obtained the 2nd best result
for sentence segmentation with a score of
89.03. After fixing two bugs, we obtained
an unofficial LAS F1 of 70.49.

1 Introduction

The CoNLL 2017 shared task differs from most
previous multilingual dependency parsing tasks
not only by using cross-linguistically consistent
syntactic representations from the UD project
(Nivre et al., 2016), but also by requiring sys-
tems to start from raw text, as opposed to pre-
segmented and (often) pre-annotated words and
sentences. Since systems are only evaluated on
their output dependency trees (and indirectly on
the word and sentence segmentation implicit in
these trees), developers are free to choose what
additional linguistic features (if any) to predict as
part of the parsing process.

The Uppsala team has adopted a minimalistic
stance in this respect and developed a system that
does not predict any linguistic structure over and
above a segmentation into sentences and words
and a dependency structure over the words of each
sentence. In particular, the system makes no use
of part-of-speech tags, morphological features, or

lemmas, despite the fact that these annotations are
available in the training and development data.

In this way, we go against a strong tradition in
dependency parsing, which has generally favored
pipeline systems with part-of-speech tagging as a
crucial component, a tendency that has probably
been reinforced by the widespread use of data sets
with gold tags from the early CoNLL tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007). Even
models that perform joint inference, like those of
Hatori et al. (2012) and Bohnet et al. (2013), de-
pend heavily on part-of-speech tags, so we were
unlikely to reach top scores in the shared task
without them. However, from a scientific perspec-
tive, we thought it would be interesting to explore
how far we can get with a bare-bones system that
does not predict redundant linguistic categories.
In addition, we take inspiration from recent work
showing that character-based representations can
at least partly obviate the need for part-of-speech
tags (Ballesteros et al., 2015).

The Uppsala system is a very simple pipeline
consisting of two main components. The first is a
model for joint sentence and word segmentation,
which uses the BiRNN-CRF framework of Shao
et al. (2017) to predict sentence and word bound-
aries in the raw input and simultaneously marks
multiword tokens that need non-segmental analy-
sis. The latter are handled by a simple dictionary
lookup or by an encoder-decoder network. We use
a single universal model regardless of writing sys-
tem, but train separate models for each language.
The segmentation component is described in more
detail in Section 2.

The second main component of our system is a
greedy transition-based parser that predicts the de-
pendency tree given the raw words of a sentence.
The starting point for this model is the transition-
based parser described in Kiperwasser and Gold-
berg (2016b), which relies on a BiLSTM to learn

207

informative features of words in context and a
feed-forward network for predicting the next pars-
ing transition. The parser uses the arc-hybrid tran-
sition system (Kuhlmann et al., 2011) with greedy
inference and a dynamic oracle for exploration
during training (Goldberg and Nivre, 2013). For
the shared task, the parser has been modified to use
character-based representations instead of part-of-
speech tags and to use pseudo-projective parsing
to capture non-projective dependencies (Nivre and
Nilsson, 2005). The parsing component is further
described in Section 3.

Our original plans included training a single
universal model on data from all languages, with
cross-lingual word embeddings, but in the limited
time available we could only start exploring two
simple enhancements. First, we constructed word
embeddings based on the RSV model (Basirat and
Nivre, 2017), using universal part-of-speech tags
as contexts (Section 4). Secondly, we used multi-
lingual training data for languages with little or no
training data (Section 5).

Our system was trained only on the training sets
provided by the organizers (Nivre et al., 2017a).
We did not make any use of large unlabeled data
sets, parallel data sets, or word embeddings de-
rived from such data. After evaluation on the of-
ficial test sets (Nivre et al., 2017b), run on the
TIRA server (Potthast et al., 2014), the Uppsala
system ranked 23 of 33 systems with respect to
the main evaluation metric, with a macro-average
LAS F1 of 65.11. We obtained the 2nd highest
score for sentence segmentation overall (89.03),
and top scores for word segmentation on several
languages (but with relatively high variance).

However, after the test phase was concluded,
we discovered two bugs that had affected the re-
sults negatively. For comparison, we therefore
also include post-evaluation results obtained af-
ter eliminating the bugs but without changing any-
thing else, resulting in a macro-average LAS F1
of 70.49. Because of the nature of one of the
bugs, the corrected results were obtained by run-
ning our system on a local server instead of the
official TIRA server (see Section 6). We discuss
our results in Section 6 and refer to the shared task
overview paper (Zeman et al., 2017) for a thor-
ough description of the task and an overview of
the results.

2 Sentence and Word Segmentation

We model joint sentence and word segmentation
as a character-level sequence labeling problem in
a Bi-RNN-CRF model (Huang et al., 2015; Ma
and Hovy, 2016). We simultaneously predict sen-
tence boundaries and word boundaries and iden-
tify multi-word tokens that require further trans-
duction.

In the BiRNN-CRF architecture, characters –
regardless of writing system – are represented as
dense vectors and fed into the bidirectional recur-
rent layers. We employ the gated recurrent unit
(GRU) (Cho et al., 2014) as the basic recurrent
cell. Dropout (Srivastava et al., 2014) is applied to
the output of the recurrent layers, which are con-
catenated and passed further to the first order chain
CRF layer. The CRF layer models conditional
scores over all possible boundary tags given the
features extracted by the BiRNN from the vector
representations of the input characters. Incorpo-
rating the transition scores between the successive
labels, the optimal sequence of labels that indicate
different types of boundaries can be obtained effi-
ciently via the Viterbi algorithm.

As illustrated in Figure 1, following Shao et al.
(2017), we employ the boundary tags B, I, E, and
S to indicate a character positioned at the begin-
ning (B), inside (I), or at the end (E) of a word, or
occurring as a single-character word (S). To this
standard tag set, we add four corresponding tags
(K, Z, J, D) to label corresponding positions in
multi-word tokens, and a special tag X to mark
characters, mostly spaces, that do not belong to
words/tokens. Finally, we mark a character that
occurs at the end of a sentence. T is employed if
the character is a single-character word and U is
used otherwise.

Multi-word tokens are transcribed without con-
sidering contextual information. For most lan-
guages, the number of unique multi-word tokens
is rather limited and can be covered by dictio-
naries built from the training data. However, if
there are more than 200 unique multi-word to-
kens contained in the training data, we employ an
attention-based encoder-decoder (Bahdanau et al.,
2014) equipped with shared long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
as the basic recurrent cell. At test time, multi-word
tokens are first queried in the dictionary. If not
found, the segmented words are generated via the
encoder-decoder as a sequence-to-sequence trans-

208

Characters: ... La sede del condado es Ottawa. En ...
Tags: ... BEXBIIEXKZJXBIIIIIEXBEXBIIIIETXBE ...

Figure 1: Tags employed for sentence and word segmentation. Note that the token del is a multiword
token that should be transcribed to de and el and should therefore be tagged KZJ instead of BIE.

Character embedding size 50
GRU/LSTM state size 200
Optimizer Adagrad
Initial learning rate (main) 0.1
Decay rate 0.05
Gradient Clipping 5.0
Initial learning rate (encoder-decoder) 0.3
Dropout rate 0.5
Batch size 10

Table 1: Hyper-parameters for segmentation.

duction.
Table 1 shows the hyper-parameters adopted for

the main network as well as the encoder-decoder,
which is trained separately from the main net-
work. We use one set of parameters for all tree-
banks. The weights of the neural networks, in-
cluding the embeddings, are initialized using the
scheme introduced in Glorot and Bengio (2010).
The network is trained using back-propagation,
and all embeddings are fine-tuned during training
by back-propagating gradients. Adagrad (Duchi
et al., 2011) with mini-batches is employed for
optimization. The initial learning rate η0 is up-
dated with a decay rate ρ as ηt = η0

ρ(t−1)+1 when
training the main network, where t is the index of
the current epoch. We use early stopping (Yao
et al., 2007) with respect to the performance of
the model on the validation sets. For the encoder-
decoder, 5% of the training data is randomly sub-
tracted for validation. The score is calculated via
how many outputs exactly match the references.
For the main network, the F1-score is employed to
measure the performance of the model after each
epoch during training on the development set.

The general segmentation model is applied to
all languages with small variations for Chinese
and Vietnamese. For Chinese, the concatenated
trigram model introduced in Shao et al. (2017) is
employed. For Vietnamese, we first separate punc-
tuation marks and then use space-delimited units
as the basic elements for boundary prediction.

Bug in test results: After the official evalua-
tion, we discovered a bug in the segmenter, which

affected words and punctuation marks immedi-
ately before sentence boundaries. After fixing the
bugs, both word segmentation and sentence seg-
mentation results improved, as seen from our post-
evaluation results included in Section 6.

3 Dependency Parsing

The transition-based parser from Kiperwasser and
Goldberg (2016b) uses a configuration containing
a buffer B, a stack Σ, and a set of arcs A. In the
initial configuration, all words from the sentence
plus a root node are in the buffer and the arc set
is empty. A terminal configuration has a buffer
with just the root and an empty stack, and the arc
set then forms a tree spanning the input sentence.
Parsing consists in performing a sequence of tran-
sitions from the initial configuration to the termi-
nal one, using the arc-hybrid transition system,
which allows three types of transitions, SHIFT,
LEFT-ARCd and RIGHT-ARCd, defined as in Fig-
ure 2.

The LEFT-ARCd transition removes the first
item on top of the stack (i) and attaches it as a
modifier to the first item of the buffer j with label
d, adding the arc (j, d, i). The RIGHT-ARCd tran-
sition removes the first item on top of the stack (j)
and attaches it as a modifier to the next item on
the stack (i), adding the arc (i, d, j). The SHIFT

transition moves the first item of the buffer i to the
stack. To conform to the constraints of UD repre-
sentations, we have added a new precondition to
the LEFT-ARCd transition to ensure that the spe-
cial root node has exactly one dependent. Thus, if
the potential head i is the root node, LEFT-ARCd is
only permissible if the stack contains exactly one
element (in which case the transition will lead to
a terminal configuration). This precondition is ap-
plied only at parsing time and not during training.

A configuration c is represented by a feature
function φ(·) over a subset of its elements and
for each configuration, transitions are scored by a
classifier. In this case, the classifier is a multi-layer
perceptron (MLP) and φ(·) is a concatenation of
BiLSTM vectors on top of the stack and the be-

209

Initialization: c0(x = (w1, . . . , wn)) = ([], [1, . . . , n, 0], ∅)
Termination: Ct = {c ∈ C | c = ([], [0], A)}

Transition Condition
LEFT-ARCd (σ|i, j|β,A)⇒ (σ, j|β,A ∪ {(j, d, i)}) j 6= 0 ∨ σ = []

RIGHT-ARCd (σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i, d, j)})
SHIFT (σ, i|β,A)⇒ (σ|i, β, A) i 6= 0

Figure 2: Transitions for the arc-hybrid transition system with an artificial root node (0) at the end of the
sentence. The stack Σ is represented as a list with its head to the right (and tail σ) and the buffer B as a
list with its head to the left (and tail β).

ginning of the buffer. The MLP scores transitions
together with the arc labels for transitions that
involve adding an arc (LEFT-ARCd and RIGHT-
ARCd). For more details, see Kiperwasser and
Goldberg (2016b).

The main modification of the parser for the
shared task concerns the construction of the
BiLSTM vectors, where we remove the reliance
on part-of-speech tags and instead add character-
based representations. For an input sentence of
length n with words w1, . . . , wn, we create a se-
quence of vectors x1:n, where the vector xi rep-
resenting wi is the concatenation of a word em-
bedding, a pretrained embedding, and a character
vector. We construct a character vector che(wi)
for each wi by running a BiLSTM over the char-
acters chj (1 ≤ j ≤ m) of wi:

che(wi) = BILSTM(ch1:m)

As in the original parser, we also concatenate these
vectors with pretrained word embeddings pe(wi).
The input vectors xi are therefore:

xi = e(wi) ◦ pe(wi) ◦ che(wi)
Our pretrained word embeddings are further de-

scribed in Section 4. A variant of word dropout is
applied to the word embeddings, as described in
Kiperwasser and Goldberg (2016a), and we apply
dropout also to the character vectors.

Finally, each input element is represented by a
BiLSTM vector, vi:

vi = BILSTM(x1:n, i)

For each configuration c, the feature extractor con-
catenates the BiLSTM representations of core ele-
ments from the stack and buffer. Both the embed-
dings and the BiLSTMs are trained together with
the model. The model is represented in Figure 3.

Internal word embedding dimension 100
Pre-trained word embedding dimension 50
Character embedding dimension 12
Character BI-LSTM Dimensions 100
Hidden units in MLP 100
BI-LSTM Layers 2
BI-LSTM Dimensions (hidden/output) 200 / 200
α (for word dropout) 0.25
Character dropout 0.33
pagg (for exploration training) 0.1

Table 2: Hyper-parameter values for parsing.

With the aim of training a multilingual parser,
we additionally created a variant of the parser
which adds a language embedding to input vectors
in a spirit similar to what is done in Ammar et al.
(2016). In this setting, the vector for each word xi
is the concatenation of a word embedding, a pre-
trained word embedding, a character vector, and
a language embedding li with the language corre-
sponding to the word. As was mentioned in the
introduction, our experiments with this model was
limited to the languages with little data. Those ex-
periments are described in Section 5.

xi = e(wi) ◦ pe(wi) ◦ che(wi) ◦ e(li)

The final change we made to the parser was to
use pseudo-projective parsing to deal with non-
projective dependencies. Pseudo-projective pars-
ing, as described in Nivre and Nilsson (2005),
consists in a pre-processing and a post-processing
step. The pre-processing step consists in pro-
jectivising the training data by reattaching some
of the dependents and the post-processing step
attempts to deprojectivise trees in output parsed
data. In order for information about non-
projectivity to be recoverable after parsing, when

210

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

STACK

jumped root

BUFFER

Configuration:

the brown fox

concat

Cf Cf Cf

Cb Cb Cb

h et

Character BiLSTM:

XX

b r o n f o x j u e dw m pt h e

Scoring:

(score(LEFT−ARC),score(RIGHT−ARC),score(SHIFT))

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

e(brown)

pe(brown)

e(fox)

pe(fox)

e(jumped)

pe(jumped)pe(the)

e(the)

Figure 3: Illustration of the neural model scheme of the transition-based parser when calculating the scores of the possible
transitions in a given configuration. The configuration (stack and buffer) is depicted in the top left corner. Each transition is
scored using an MLP that is fed the vectors of the first word in the buffer and the three words at the top of the stack, and a
transition is picked greedily. Each vector is a BiLSTM encoding of the word. Each xi is a concatenation of a word vector, a
character vector, and an additional external embedding vector for the word. Character vectors are obtained using a BiLSTM
over the characters of the word. An example is given at the bottom left of the figure. The figure depicts a single-layer BiLSTM,
while in practice we use two layers. When parsing a sentence, we iteratively compute scores for all possible transitions and
apply the best scoring action until the final configuration is reached.

projectivising, arcs are renamed to encode infor-
mation about the original parent of dependents
which get re-attached. We used MaltParser (Nivre
et al., 2006) for this. More specifically, we used
the head schema, as described in Nivre and Nils-
son (2005). This method increases the size of the
dependency label set. In order to keep training ef-
ficient, we cap the number of dependency relations
to the 200 most frequently occurring ones in the
training set.

We did no hyper-parameter tuning for the parser
component but instead mostly used the values that
had been found to work well in Kiperwasser and
Goldberg (2016b), except for the BiLSTM hidden
layer which we increased as we had increased the
dimensions of the output layer by using pseudo-
projective parsing. The hyper-parameter values
we used are in Table 2. We used the dynamic or-
acle as well as the extended feature set (the top
3 items on the stack together with their rightmost
and leftmost modifiers as well as the first item on
the buffer and its leftmost modifier). We trained
the parsers for 30 epochs and picked the model
that gave the best LAS score on the development
sets for languages for which we had a development
set, the last epoch otherwise.

The code is available at https://github.

com/UppsalaNLP/uuparser.

Bug in test results: Our official test run suffered
from a bug in the way serialization is handled
in dynet. As reported in https://github.com/clab/
dynet/issues/84, results may differ if the machine
on which a model is used does not have the exact
same version of boost as the machine on which the
model was trained. Our post-evaluations results
were obtained by using exactly the same models
but parsing the test data on the machine on which
they were trained.

4 Pre-Trained Word Embeddings

Our word embedding method is based on the RSV
method introduced by Basirat and Nivre (2017).
RSV extracts a set of word vectors in three main
steps. First it builds a co-occurrence matrix for
words that appear in certain contexts. Then, it nor-
malizes the data distribution in the co-occurrence
matrix by a power transformation. Finally, it
builds a set of word vectors from the singular vec-
tors of the transformed co-occurrence matrix.

We propose to restrict the contexts used in RSV
to a set of universal features provided by the UD
corpora. The universal features can be any com-
bination of universal POS tags, dependency re-

211

lations, and other universal tags associated with
words. Given the set of universal features, each
word is associated with a high-dimensional vec-
tor whose dimensions correspond to the universal
features. The space formed by these vectors can be
seen as a multi-lingual syntactic space which cap-
tures the universal syntactic properties provided
by the UD corpora.

We define the set of universal features as
{tw, th, (tw, d, th)}, where tw and th are the uni-
versal POS tags of the word of interest and its par-
ent in a dependency tree, and d is the dependency
relation between them. It results in a set of uni-
versal word vectors with fairly large dimensions,
13 794. The values of the vector elements are set
with the probability of seeing each universal fea-
ture given the word. These vectors are then cen-
tered around their mean and the final word vectors
are built from the top k right singular vectors of the
matrix formed by the high-dimensional universal
word vectors:

Υ = λ
√
vVvk (1)

where v is the size of vocabulary, V is the matrix
of right singular vectors, λ is the scaling factor that
controls the variance of the data.

The word vectors are extracted from the train-
ing part of the UD corpora for all words whose
frequencies exceed 5, resulting in 204, 024 unique
words. The number of dimensions, k, is set to 50
and the scaling parameter λ is set to 0.1 as sug-
gested by Basirat and Nivre (2017). Adding these
pre-trained word embeddings improved results on
development sets by 0.44 points on average.

5 Multilingual Models

The shared task contained four surprise languages,
Buryat, Kurmanji, North Sami, and Upper Sor-
bian, for which there was no data available until
the last week, when we had a few sample sen-
tences for each language. Two of the ordinary lan-
guages, Kazakh and Uyghur, had a similar situa-
tion, since they had less than 50 sentences in their
training data. We therefore decided to treat those
two languages like the surprise languages.

For segmentation, we utilized the small amount
of available annotated data as development sets.
We applied all the segmentation models trained on
larger treebanks and adopted the one that achieved
the highest F1-score as the segmentation model for
the surprise language. We thus selected Bulgarian

for Buryat, Slovenian for North Sami, Czech for
Upper Sorbian, Turkish for Kurmanji, Russian for
Kazakh as well as Persian for Uyghur.

For parsing, we trained our parser on a small
set of languages. For each surprise language, we
used the little data we had for that language, and
in addition a set of other languages, which we will
call support languages. In this setting we took ad-
vantage of the language embedding implemented
in the parser. Since the treebanks for the support
languages have very different sizes, we limited the
number of sentences from each treebank used per
epoch to 2263 for North Sami and 2500 for the
other languages, in order ot use a more balanced
sample. For each epoch we randomly picked a
new sample of sentences for each treebank larger
than this ceiling. We chose the support languages
for each surprise language based on four criteria:

• Language relatedness, by including the lan-
guages that were most closely related to each
surprise language.

• Script, by choosing at least one language
sharing the same script as each surprise lan-
guage, which might help our character em-
beddings.

• Geographical closeness to the surprise lan-
guage, since geographically close languages
often influence each other and can share
many traits and have loan words.

• Performance of single models, by evaluating
individual models for all other languages on
each surprise language, and choosing support
languages from the set of best performing
languages.

We used a single multi-lingual model for Kazakh
and Uyghur, since they are related. Table 3 shows
the support languages used for each surprise lan-
guage. Since we used all available surprise lan-
guage data in the training, we could not use it
also as development data, to pick the best epoch.
We instead used the average LAS score on the
development data for all support languages that
had available development data. We did not use
the pseudo-projective method for the surprise lan-
guages, and we did not use pre-trained word em-
beddings.

212

Surprise Support languages
Buryat Russian-SynTagRusgps, Russiangs, Japanesepr, Kazakhps, Bulgarians

Kurmanji Turkishgs, Persianr, Finnish-FTBps, Germanps, Slovenian-SSTps

North Sami Finnishrs, Finnish-FTBprs, Estonianrs, Hungarianprs, Norwegian-Nynorskgps

Upper Sorbian Czechprs, Slovakprs, Slovenianprs, Polishprs, Germangs

Kazakh+Uyghur Russian-SynTagRusgps, Hungarianp, Turkishpr, Persians, Arabics

Table 3: Support languages, and treebanks, used for each surprise language. Superscripts show reason
for inclusion: r(elated), s(cript), g(eography), p(erformance).

6 Results and Discussion

Table 4 summarizes the results for the Uppsala
system with respect to dependency accuracy (LAS
F1) as well as sentence and word segmentation.
For each metric, we report our official test score
(Test), the corrected score after eliminating the
two bugs described in Section 2 and Section 3
(Corr),1 and the difference between the corrected
score and the official UDPipe baseline (Straka
et al., 2016) (positive if we beat the baseline and
negative otherwise). To make the table somewhat
more readable, we have also added a simple color
coding. Post-evaluation scores that are signifi-
cantly higher/lower than the baseline are marked
with two shades of green/red, with brighter colors
for larger differences. Thresholds have been set to
1 and 3 points for LAS, 0.5 and 1 points for Sen-
tences, and 0.1 and 0.5 points for Words.

Looking first at the LAS scores, we see that our
system improves over the baseline in most cases
and by a comfortable margin. In addition, we think
we can distinguish three clear patterns:

• Our post-evaluation results are substantially
worse than the baseline (only) on the six low-
resource languages. This indicates that our
cross-lingual models perform poorly without
the help of part-of-speech tags when there is
little training data. It should, however, also
be kept in mind that the baseline had a spe-
cial advantage here as it was allowed to train
segmenters and taggers using jack-knifing on
the test sets.

• Our post-evaluation results are substantially
better than the baseline on languages with
writing systems that differ (more or less)

1Note that the overview paper mentions the second of
these bugs (i.e. the dynet bug) and reports our results with
only that bug fixed. Note also that, for practical reasons,
all our post-evaluation results were obtained on the system
where models had been trained, as mentioned in the intro-
duction.

from European style alphabetic scripts, in-
cluding Arabic, Chinese, Hebrew, Japanese,
Korean, and Vietnamese. For all languages
except Korean, this can be partly (but not
wholly) explained by more accurate word
segmentation results.

• Our post-evaluation results are substantially
better than the baseline for a number of mor-
phologically rich languages, including An-
cient Greek, Arabic, Basque, Czech, Finnish,
German, Latin, Polish, Russian, and Slove-
nian. This shows that character-based repre-
sentations are effective in capturing morpho-
logical regularities and compensate for the
lack of explicit morphological features.

To further investigate the efficiency of our cross-
lingual models, we ran them for two of the sup-
port languages with medium size training data that
were not affected by the capping of data. Table 5
shows the results of this investigation. For Esto-
nian the North Sami cross-lingual model that in-
cludes the closely related Finnish, was better than
the monolingual model. For Hungarian, on the
other hand, the monolingual model was better than
both cross-lingual models. The model for North
Sami, with related languages did perform better
than the model for Kazakh+Uyghur with only un-
related languages, however. These results indicate
that cross-lingual training without part-of-speech
tags can help for a language with a medium sized
treebank, but it seems that closely related support
languages are needed, which was not the case for
any of the surprise languages.

For word segmentation, we have already noted
that our universal model works well on some of
the most challenging languages, such as Chinese,
Japanese and Vietnamese, and also on the Semitic
languages Arabic and Hebrew. This is not surpris-
ing, given that the model was first developed for
Chinese word segmentation, but it is interesting to

213

LAS F1 Sentences Words
Language Test Corr Diff Test Corr Diff Test Corr Diff
ar 65.96 68.68 3.38 77.32 78.21 -6.36 94.81 94.99 1.30
ar pud 47.34 50.70 7.56 97.18 98.66 -1.34 94.32 95.30 4.48
bg 81.25 85.38 1.74 93.36 95.23 2.40 99.70 99.91 0.00
bxr 17.14 18.01 -13.49 86.93 87.37 -4.44 97.77 97.71 -1.64
ca 85.42 87.08 1.69 99.43 99.59 0.64 99.78 99.79 -0.18
cs 85.88 86.83 3.96 93.97 92.79 0.76 99.96 99.98 0.08
cs cac 83.66 85.75 3.29 99.76 99.68 -0.32 99.97 99.99 0.00
cs cltt 59.84 75.67 4.03 92.99 96.95 1.89 99.54 99.78 0.43
cs pud 80.21 82.27 2.47 94.18 95.55 -0.88 98.42 99.25 -0.04
cu 57.88 67.04 4.28 39.71 43.72 7.67 99.73 99.94 -0.02
da 70.63 77.70 4.32 81.12 83.41 4.05 99.93 100.00 0.31
de 72.61 75.27 6.16 80.47 81.47 2.36 99.44 99.67 0.02
de pud 68.04 70.90 4.37 87.16 86.83 0.34 96.42 96.43 -1.57
el 72.77 80.46 1.20 90.38 91.09 0.30 99.83 99.80 -0.08
en 75.88 79.62 3.78 76.91 80.26 7.04 98.38 99.05 0.38
en lines 67.52 75.80 2.86 86.84 87.17 1.33 99.82 99.96 0.02
en partut 63.55 76.11 2.47 98.20 98.10 0.59 99.55 99.54 0.05
en pud 75.61 80.49 1.54 95.28 96.15 -0.98 99.45 99.59 -0.07
es 82.17 84.26 2.79 95.37 94.16 0.01 99.81 99.84 0.15
es ancora 84.60 86.79 3.01 98.06 98.46 1.41 99.89 99.92 -0.03
es pud 78.16 79.01 1.36 93.41 93.39 -0.03 99.39 99.34 -0.13
et 49.01 58.67 -0.12 92.74 93.23 8.03 99.69 99.90 0.13
eu 69.84 73.82 4.67 99.67 100.00 0.42 99.97 100.00 0.04
fa 76.13 81.89 2.65 98.75 99.50 1.50 99.32 99.61 -0.03
fi 74.59 78.41 4.66 90.88 91.48 6.92 99.62 99.71 0.08
fi ftb 71.85 76.25 2.22 86.98 87.16 3.33 99.91 99.99 0.11
fi pud 76.22 80.05 1.40 92.02 91.64 -2.03 99.39 99.59 -0.02
fr 80.36 83.66 2.91 93.85 94.32 0.73 99.50 99.53 0.66
fr partut 69.17 80.84 3.46 99.13 99.50 1.50 99.01 99.50 0.55
fr pud 73.51 75.25 1.62 93.52 91.33 -0.99 97.38 97.34 -0.83
fr sequoia 74.96 82.85 2.87 81.89 84.95 1.20 99.31 99.48 0.42
ga 52.81 63.35 1.83 95.70 95.35 -0.46 99.62 99.78 0.49
gl 74.09 79.01 1.70 96.36 96.83 0.68 99.91 99.96 0.04
gl treegal 56.79 65.85 0.03 82.71 83.79 2.16 98.42 98.23 -0.39
got 56.69 62.62 2.81 29.65 35.01 7.16 100.00 100.00 0.00
grc 50.94 58.83 2.79 98.70 98.93 0.50 96.78 99.98 0.03
grc proiel 63.86 69.04 3.82 49.31 48.86 5.75 99.99 99.98 -0.02
he 63.72 67.75 10.52 99.29 99.69 0.30 91.18 91.19 6.37
hi 74.34 89.13 2.36 99.29 99.11 -0.09 92.74 99.99 -0.01
hi pud 45.15 53.31 2.46 94.85 95.00 4.17 92.27 98.65 0.84
hr 75.43 79.51 2.33 97.75 97.25 0.33 99.90 99.91 -0.02
hsb 45.63 47.92 -5.91 91.65 89.88 -0.81 99.28 98.76 -1.08
hu 54.55 65.90 1.60 96.56 97.65 3.80 99.85 99.89 0.07
id 72.11 76.13 1.52 92.66 93.55 2.40 100.00 100.00 0.01
it 84.84 87.33 2.05 99.07 99.38 2.28 99.85 99.86 0.13
it pud 83.28 85.59 1.89 93.39 93.90 -2.68 99.27 99.28 0.11
ja 65.71 81.54 9.33 94.92 94.92 0.00 84.26 93.59 3.91
ja pud 71.80 83.26 6.98 97.31 97.31 2.42 86.34 94.30 3.24
kk 18.24 17.14 -7.37 87.52 86.26 4.88 96.56 96.46 1.55
kmr 19.37 20.39 -11.96 94.49 94.08 -2.94 97.15 97.06 -1.79
ko 69.87 74.72 15.63 92.39 93.01 -0.04 99.63 99.99 0.26
la 38.93 46.26 2.49 98.04 97.41 -0.68 100.00 100.00 0.01
la ittb 80.04 82.34 5.36 94.34 92.93 -0.31 99.97 99.99 0.00
la proiel 58.74 63.17 5.63 30.24 34.66 8.86 99.99 100.00 0.00
lv 52.36 59.75 -0.20 93.45 93.65 -4.94 99.20 99.13 0.22
nl 69.83 74.41 5.51 75.15 76.16 -0.98 99.73 99.85 -0.03
nl lassysmall 77.56 83.58 5.43 85.33 87.00 8.38 99.85 99.97 0.04
no bokmaal 83.22 86.04 2.77 96.44 96.20 0.44 99.84 99.87 0.12
no nynorsk 81.12 84.41 2.85 94.56 93.67 2.44 99.93 99.92 0.07
pl 77.39 82.33 3.55 98.91 99.46 0.55 99.90 99.93 0.05
pt 80.97 83.25 1.14 90.33 90.43 0.64 99.37 99.45 -0.07
pt br 86.15 88.19 2.83 96.51 97.04 0.20 99.80 99.87 0.03
pt pud 72.43 74.48 0.52 93.58 94.50 -1.15 98.39 98.48 -0.94
ro 79.40 81.68 1.80 96.57 96.02 2.60 99.77 99.75 0.11
ru 71.65 77.99 3.96 97.16 96.91 0.49 99.83 99.90 -0.01
ru pud 65.22 70.78 2.47 98.66 98.80 -0.15 97.31 97.34 0.16
ru syntagrus 88.04 89.61 2.85 98.64 98.78 0.97 99.51 99.63 0.06
sk 69.35 75.98 3.23 85.32 87.17 3.64 99.97 99.96 -0.04
sl 80.14 84.16 3.01 98.67 98.11 -1.13 99.96 99.97 0.01
sl sst 36.97 46.76 0.31 19.03 19.52 2.80 97.75 100.00 0.18
sme 11.70 11.72 -18.88 98.27 97.59 -1.20 98.44 96.75 -3.13
sv 73.45 79.86 3.13 97.26 95.96 -0.41 99.86 99.77 -0.07
sv lines 69.42 76.37 2.08 87.89 88.12 1.68 99.86 99.99 0.01
sv pud 62.40 69.52 -1.10 84.63 81.14 -9.06 98.56 98.47 0.21
tr 48.29 52.84 -0.35 96.29 96.44 -0.19 96.57 97.51 -0.38
tr pud 29.79 32.84 -1.69 92.08 90.75 -3.16 96.82 96.93 0.31
ug 28.35 30.98 -3.20 68.76 69.36 5.81 97.82 98.74 0.22
uk 47.00 59.33 -1.43 90.04 92.18 -0.41 99.41 99.52 -0.29
ur 64.96 79.31 2.62 98.60 98.60 0.28 94.55 100.00 0.00
vi 37.99 42.68 5.21 87.30 89.49 -3.10 86.63 86.70 4.23
zh 60.47 65.25 7.85 98.20 98.80 0.61 93.81 93.43 4.52
Average 65.11 70.49 2.14 89.03 89.48 0.99 98.20 98.79 0.30

Table 4: Results for LAS F1, sentence and word segmentation. Test = official test score; Corr = corrected
score; Diff = difference Corr − Baseline.

214

Language Models
sme kk-ug mono

Hungarian 62.67 61.64 65.91
Estonian 59.59 – 58.46

Table 5: LAS F1 scores comparing cross-lingual
and monolingual models.

see that it generalizes well and gives competitive
results also on European style alphabetic scripts,
where it is mostly above or very close to the base-
line. After fixing the bug mentioned in Section 2,
our word segmentation results are only 0.02 below
the best official result.

The sentence segmentation results are generally
harder to interpret, with much greater variance and
really low scores especially for some of the classi-
cal languages that lack modern punctuation. Nev-
ertheless, we can conclude that performing sen-
tence segmentation jointly with word segmenta-
tion is a viable approach, as our system achieved
the second highest score of all systems on sentence
segmentation in the official test results. After bug
fixing, it is better than any of the official results.

All in all, we are pleased to see that a bare-bones
model, which does not make use of part-of-speech
tags, morphological features or lemmas, can give
reasonable performance on a wide range of lan-
guages.

7 Conclusion

We have described the Uppsala submission to the
CoNLL 2017 shared task on parsing from raw
text to universal dependencies. The system con-
sists of a segmenter, which extracts words and
sentences from a raw text, and a parser, which
builds a dependency tree over the words of each
sentence, without relying on part-of-speech tags
or any other explicit morphological analysis. Our
post-evaluation results (after correcting two bugs)
are on average 2.14 points above the baseline,
despite very poor performance on surprise lan-
guages, and the system has competitive results
especially on languages with rich morphology
and/or non-European writing systems. Given the
simplicity of our system, we find the results very
encouraging.

There are many different lines of future research
that we want to pursue. First of all, we want to
explore the use of multilingual models with lan-
guage embeddings, trained on much larger data
sets than was practically possible for the shared

task. In this context, we also want to investigate
the effectiveness of our multilingual word embed-
dings based on universal part-of-speech tags, de-
riving them from large parsed corpora instead of
the small training sets that were used for the shared
task. Finally, we want to extend the parser so that
it can jointly predict part-of-speech tags and (se-
lected) morphological features. This will allow us
to systematically study the effect of using explicit
linguistic categories, as opposed to just relying on
inference from raw words and characters. For seg-
mentation, we want to investigate how our model
deals with multiword tokens across languages.

Acknowledgments

We are grateful to the shared task organizers and
to Dan Zeman in particular, and we acknowledge
the computational resources provided by CSC in
Helsinki and Sigma2 in Oslo through NeIC-NLPL
(www.nlpl.eu). Our parser will be made available
in the NLPL dependency parsing laboratory.

References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics 4:431–444.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).
pages 349–359.

Ali Basirat and Joakim Nivre. 2017. Real-valued syn-
tactic word vectors (RSV) for greedy neural depen-
dency parsing. In Proceedings of the 21st Nordic
Conference on Computational Linguistics (NoDaL-
iDa). pages 21–28.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajič. 2013.
Joint morphological and syntactic analysis for richly
inflected languages. Transactions of the Association
for Computational Linguistics 1:415–428.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL). pages
149–164.

215

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats. pages 249–256.

Yoav Goldberg and Joakim Nivre. 2013. Training de-
terministic parsers with non-deterministic oracles.
Transactions of the Association for Computational
Linguistics 1:403–414.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach to
word segmentation, POS tagging, and dependency
parsing in Chinese. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (ACL). pages 1045–1053.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
first dependency parsing with hierarchical tree
LSTMs. Transactions of the Association for Com-
putational Linguistics 4:445–461.

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. Transac-
tions of the Association for Computational Linguis-
tics 4:313–327.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
673–682.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics.
pages 1064–1074.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal Dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University,
Prague. http://hdl.handle.net/11234/1-1983.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017b. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, Portorož, Slovenia, pages
1659–1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007. pages 915–
932.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the 5th In-
ternational Conference on Language Resources and
Evaluation (LREC). pages 2216–2219.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings of
the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL). pages 99–106.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author identifica-
tion, and author profiling. In Evangelos Kanoulas,
Mihai Lupu, Paul Clough, Mark Sanderson, Mark
Hall, Allan Hanbury, and Elaine Toms, editors, In-
formation Access Evaluation meets Multilingual-
ity, Multimodality, and Visualization. 5th Interna-
tional Conference of the CLEF Initiative (CLEF 14).
Springer, Berlin Heidelberg New York, pages 268–
299.

Yan Shao, Christian Hardmeier, Jörg Tiedemann, and
Joakim Nivre. 2017. Character-based joint seg-
mentation and POS tagging for Chinese using bidi-
rectional RNN-CRF. ArXiv e-prints: 1704.01314
(cs.CL).

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings

216

of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto.
2007. On early stopping in gradient descent learn-
ing. Constructive Approximation 26(2):289–315.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

217

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 218–227,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Initial Explorations of CCG Supertagging for Universal Dependency
Parsing

Burak Kerim Akkus, Heval Azizoglu and Ruket Cakici
Computer Engineering Department
Middle East Technical University

Ankara, Turkey
{burakkerim,heval.azizoglu,ruken}@ceng.metu.edu.tr

Abstract

In this paper we describe the system by
METU team for universal dependency
parsing of multilingual text. We use a neu-
ral network-based dependency parser that
has a greedy transition approach to de-
pendency parsing. CCG supertags contain
rich structural information that proves use-
ful in certain NLP tasks. We experiment
with CCG supertags as additional features
in our experiments. The neural network
parser is trained together with dependen-
cies and simplified CCG tags as well as
other features provided.

1 Introduction

Combinatory Categorial Grammar (Steedman,
2000) (CCG) is widely used for natural language
processing for its desirable properties of gener-
ative expressiveness and its transparent interface
of syntax and underlying semantic interpretation.
CCG has been used for creating fast and accu-
rate parsers (Hockenmaier and Steedman, 2002),
(Clark and Curran, 2007), (Auli and Lopez, 2011),
(Lewis and Steedman, 2014). In addition to this,
the structural information in the CCG categories,
which is a lexicalised grammar, has been shown
to improve performance of various other systems
when used indirectly. Examples are multilingual
dependency parsing and machine translation (Am-
bati et al., 2013a; Çakıcı, 2008; Birch et al., 2007).

In this paper, we describe a system we created
for CoNLL Shared Task of 2017 (Zeman et al.,
2017) Multilingual Parsing from Raw Text to Uni-
versal Dependencies (Nivre et al., 2016, 2017b)
1 . We use CCG categories induced from the
CCGBank (Hockenmaier and Steedman, 2007) to

1Results are announced at http://universaldependencies.
org/conll17/results.html

supertag different languages with these structural
information-packed tags. We aim to show that
CCG categories for English may be used to im-
prove parsing results for other languages, espe-
cially similar ones.

In the next section, we give a brief background
on the dependency parsing problem and CCG cat-
egories that have been shown to improve perfor-
mance on various tasks either directly or indi-
rectly. Section 3 gives the implementation details
for the METU system and in Section 4 results are
discussed.

2 Background

Combinatory Categorial Grammar is a lexicalised
grammar formalism that has a transparent syntax-
semantics interface which means one can create
rich semantic interpretations in parallel with pars-
ing (Steedman, 2000). Several fast and highly ac-
curate CCG parsers have been introduced in the
literature. These parsers make use of the CCG-
Bank (Hockenmaier and Steedman, 2002) that is
created by inducing a CCG Grammar from the
Penn Treebank (Marcus et al., 1993). The CCG
categories of each word are extracted and referred
to as supertags or CCG tags throughout the paper.

Different types of supertags such as the ones
encoding predicate argument structure or mor-
phosyntactic information have been shown to
increase parsing performance in several studies
starting with Bangalore and Joshi (1999). The
importance of supertagging in parsing accuracy
has been shown in various studies such as Falen-
ska et al. (2015), Ouchi et al. (2014) and Foth
et al. (2006) for different types of supertags such
as combinations of dependency labels and depen-
dent positions, and by Clark and Curran (2004) for
CCG categories as supertags. The use of induced
CCG grammar was also evaluated as an extrinsic

218

model in Bisk et al. (2016). They show that al-
though using full CCG derivation trees is superior,
CCG lexicon-based grammars also increase per-
formance in a semantics task.

CCG categories have been successfully used
in parsing studies as external features and were
shown to increase the performance. Note that
this use of CCG categories does not allow us
to fully access the power of CCG formalism but
rather provides a way to use the rich structural
information as a means of supertags. Çakıcı
(2008) first uses automatically-induced CCG cat-
egories from the Turkish treebank as extended
(fine) tags (Buchholz and Marsi, 2006) in Mac-
Donald’s parser (McDonald et al., 2005). Then
they were used for Hindi dependency parsing by
Ambati et al. (2013a). Birch et al. (2007) and
Nadejde et al. (2017) showed that statistical ma-
chine translation benefits from using structurally
rich CCG categories (supertags/tags) in the source
or target language.

Chen and Manning (2014) proposed a neural
network classifier for use in a greedy, transition-
based dependency parser. They created a three
layer network in which the input layer is fed with
word, POS tag and label embeddings, and after
the feed forward step, the error is back-propagated
to the input layer in order to tune embeddings.
They randomly initialized the POS tag and label
embeddings, however, as pre-trained word vec-
tors, they used a combination of the embeddings
in Collobert et al. (2011) and their trained 50 di-
mensional word2vec vectors. As this parser only
learns and uses dense features with word repre-
sentations, its parsing speed is at least two times
faster than its closest opponent while also improv-
ing the accuracy by 2% for English and Chinese.
Andor et al. (2016) also created a transition-based
dependency parser based on neural networks and
word embeddings after the Chen and Manning
(2014) work. They proposed to use global instead
of local model normalizations to overcome label
bias problem with feed forward neural networks.
Their parser achieved higher accuracies than for-
mer studies in English, Chinese and some other
languages as stated in their results.

Dozat and Manning (2016) created a neural
network oriented graph based dependency parser.
They used bi-affine classifiers to predict arcs and
labels. They achieved state-of-the-art or com-
petent accuracies on graph-based parsing for six

languages. They improved LAS and UAS score
by 1% from previous most accurate graph based
parser.

Transition-based dependency parser created by
(Kuncoro et al., 2016) is performing as current
state-of-the-art with using recurrent neural net-
work grammars. They also outperform most per-
forming graph based parser with increasing attach-
ment scores by almost 2% for English.

3 Method

Gold-standard CCG categories do not exist for
languages except a few ones. In order to ex-
plore the effects of CCG supertagging on multi-
lingual universal dependencies we assign simpli-
fied CCG-based supertags to the multilingual data
by using dependency relations from English CCG-
bank (Hockenmaier and Steedman, 2007). We la-
bel training and development data sets for different
languages using a tagger trained on English su-
pertagged data and then we use the supertagged
training and development data sets for each lan-
guage in training CCG-based supertaggers and de-
pendency parsers for test data sets in UD tree-
banks.

Figure 1 shows the overall system that we use
for the multilingual universal dependency parsing
task (Zeman et al., 2017). We train separate mod-
els for dependency parsing for each language.

Section 3.1 explains how we transfer CCG-
based supertags to UD training and development
data sets, Section 3.2 explains how we train a se-
quence tagger for assigning supertags to test data
and finally Section 3.3 explains how the depen-
dency parser is trained using these supertags.

3.1 Assigning CCG Categories Using
Dependency Relations

Dependency relations and predicate-argument
structures encoded in CCG categories are paral-
lel most of the time, even though the parent-child
directions are different in many cases. Figure
2 shows a sentence from PTB (and CCGbank)
with dependency relations above the sentence and
predicate-argument relations below the sentence.
Many of the edges are symmetric in dependency
relations and predicate-argument structure derived
from the lexical categories. Figure 3 shows an en-
larged view of a part of the sentence in Figure 2 in
order to make the labels clearer.

In order to supertag the data, first, the CCGbank

219

PTB CCGbank

Merge

Tain CCG Supertagger us-
ing dependency relations

Dep2CCG
Tagger

xx ud train
xx ud dev

Train Dependency Parser

Train CCG supertagger xx Supertagger

xx Parser

xx ud test

xx ud output

Figure 1: System overview

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .
PROPN PROPN PUNCT NUM NOUN ADJ PUNCT AUX VERB DET NOUN ADP DET ADJ NOUN PROPN NUM PUNCT

N/N N N/N N (S[adj]\NP)\NP (S[dcl]\NP)/(S[b]\NP) ((S[b]\NP)/PP)/NP NP[nb]/N N PP/NP NP[nb]/N N/N N ((S\NP)\(S\NP))/N[num] N

ROOT

punctcompound

punct

amod

det

amod

case

nummodnummod

nummod det

nsubjnsubj

nmod

aux

nmod:tmod

punct

dobjdobj

nmod:npmodnmod:npmod

1

2

33
11

1

1

2

11

33

1

2

1

22

1

Figure 2: Example: wsj 0001.1

(Hockenmaier and Steedman, 2007) and the Penn
Treebank (Marcus et al., 1993) are merged by con-
verting PTB to CONLLU format using Stanford
CoreNLP tool (Manning et al., 2014). We then
aligned the tokens in both data sets so that CCG
categories from CCGbank can be transfered to the
MISC field in the CONLLU data.

CCG category (S[dcl]\NP)/(S[b]\NP)
Without subcategories (S\NP)/(S\NP)
Without directions (S-NP)-(S-NP)

Table 1: Category simplification for supertags

A logistic regression classifier is trained to label
the tokens in training and development sets using
Scikit-Learn (Pedregosa et al., 2011). The classi-
fier only uses universal part-of-speech tags and de-

CCG category Simplified category
en (S\NP)\(S\NP) (S-NP)-(S-NP)
tr (S\NP[nom])/(S\NP[nom]) (S-NP)-(S-NP)

Table 2: Two adverb categories that take a verb as
their arguments in Turkish and English

pendency relations as its features since other fea-
tures are not common among languages. We use
an overly simplified version of CCG categories
by removing directional information and features
from the CCG supertags. This over-generalization
results in decreasing the supertagging accuracy,
however, it is necessary so that the English depen-
dency directional information is not imposed on
other languages with different word orders. Ta-
ble 1 shows the simplification of a CCG category

220

join the board as a nonexecutive director
VERB DET NOUN ADP DET ADJ NOUN

((S[b]\NP)/PP)/NP NP[nb]/N N PP/NP NP[nb]/N N/N N

det

amod

case

det

nmod

dobj

1

1

1

2

33

1

Figure 3: Example: A part of wsj 0001.1

to create a supertag. In Table 2, two adverbs are
shown with different CCG categories in two lan-
guages. Note that the directions of the slashes
in the original forms are different due to different
word-order in these languages..

We use dependency relation labels between the
word, its head, the head of the head, its dependents
and the dependents of its head as features in the
tagger. We also use universal part of speech tags
for each one of the mentioned words. In English,
the only language for which we have the gold stan-
dard CCG tags and dependency relations aligned,
the re-tagging accuracy is 91.78%. If we addition-
ally use extended part-of-speech tags and CCG ar-
gument positions as labels relative to (before or
after) the current word, the accuracy increases to
93.55% on English for CCG categories with di-
rectional information. However, these are not uni-
versal in all languages, so we drop these features.
Table 3 shows the features that are extracted for a
sample word.

We run this tagger, trained on English CCG
data, on every language to generate training and
development files with CCG-based supertags for
training supetaggers and dependency parsers that
will work on test data.

3.2 CCG Sequence Tagging for Training

A supertagger for each language is built us-
ing CCG-based supertags transferred with depen-

KEY VALUE KEY VALUE
idx 16 pos NOUN
head pos VERB head rel dobj
h head pos VERB h head rel dobj-ccomp
dep count 4 h dep count 3
dep 1 pos DET dep 1 rel det
dep 2 pos ADJ dep 2 rel amod
dep 3 pos NOUN dep 3 rel nmod
dep 4 pos NOUN dep 4 rel nmod
h dep 1 pos NOUN h dep 1 rel nsubj
h dep 2 pos AUX h dep 2 rel aux
h dep 3 pos NOUN h dep 3 rel dobj

Table 3: Features used in the tagger

dency relations. This tagger is a CRF model (Laf-
ferty et al., 2001) built using CRFSuite (Okazaki,
2007). The features are word, part-of-speech tags,
key-value pairs in FEATS columns, prefixes and
suffixes up to 5 characters, previous and follow-
ing words and POS tags in a 2-token window. The
CRF supertagger on CCGbank with these features
(trained only on sections 02-05, tested on section
00) has an accuracy of 93.74%. Lewis and Steed-
man (2014) give 91.3%, Curran et al. (2007) give
92.6% accuracy with their maximum entropy tag-
ger.

Table 4 show features extracted for the word
“çalışacak” in sentence “İnşaatta çalışacak vasıfsız
işçilerin ...”

221

KEY VALUE KEY VALUE
Aspect Perf Mood Ind
Polarity Pos Tense Fut
VerbForm Part hyp False
num False pnc False
upp False prefix 1 ç
prefix 2 ça prefix 3 çal
prefix 4 çalı prefix 5 çalış
suffix 1 k suffix 2 ak
suffix 3 cak suffix 4 acak
w çalışacak w+1 vasıfsız
w+2 işçilerin w-1 İnşaatta
w-2 word-1 p VERB
p+1 ADJ p+2 NOUN
p-1 NOUN p-2 POS-1
x Verb x+1 Adj
x+2 Noun x-1 Noun
x-2 XPOS-1

Table 4: Features used in the tagger

The tagger tries to recover the supertags that are
assigned using the dependency relations. On En-
glish, the recovery accuracy is 87.36%. Table 5
shows the accuracy of the supertagger on several
languages. Note that these are not based on the
correct CCG categories but on the assigned su-
pertags via the tagger explained on Section 3.1.
This tagger is used on test data preprocessed by
UDpipe (Straka et al., 2016) with POSTAGS and
FEATS. Then the tagged test data is passed to the
dependency parser.

Language CCG Accuracy

ar 83.47

el 88.90

en 87.36

es 89.70

de 86.45

fr 91.41

he 86.55

tr 77.97

zh 83.83

Table 5: CCG tagger accuracy on several lan-
guages

3.3 Dependency Parsing

Two different dependency parsers are experi-
mented with in this study which are powered by

two different techniques. First, CCG-based su-
pertags are integrated into the maximum-spanning
tree parser ()MSTParser) (McDonald et al., 2005;
McDonald, 2006) which is known as the first high-
performing graph-based dependency parser. This
parser uses discrete local features as input, and
thus, the supertags are directly added to this set of
features. This implementation shows us the effect
of supertagging in a system where the similarities
between the supertag groups are not captured se-
mantically. The following parameters are used in
all experiments unless otherwise stated:
order = 2,
loss type = no punctuation,
decode type = projective.

We use the Chen and Manning (2014) neu-
ral network-based dependency parser to observe
how similarities in our supertags affect the model.
This parser has been chosen as a baseline as it
is the pioneer in using word embeddings for all
the features in parsing process. Furthermore, it
was given as the parser in the baseline system
in Straka et al. (2016) that we compare our re-
sults with. In our parser CCG tags are repre-
sented with 100 dimensional vectors instead of
discrete features. The supertags are obtained from
the CCG-based supertagger described in the pre-
vious section. In experiments, the following pa-
rameters are used: embedding size = 100 and
hidden layer size = 200. For word embeddings,
pre-trained 100 dimensional word embeddings by
Ginter et al. (2017) are used. For POS tags and
supertags, vectors are initialized randomly and are
fed to the neural network during training.

4 Results

First, we present our experiments before the re-
lease of the test data, then we present the results
on the shared task.

4.1 Pre-evaluation

In MSTParser pre-evaluation experiments, we use
the Penn Treebank Wall Street Journal segmenta-
tion split as sections 2-21 for training and section
23 as the test set. Extra training parameters are as
the following:
training − k = 5
loss− type = nopunc
decode− type = proj
order = 2
unless stated otherwise in the results. Detailed

222

descriptions of these parameters can be found in
McDonald et al. (2006). These parameters re-
produce similar results as McDonald and Pereira
(2006) which we use as a baseline to compare our
improvements. The version in which the CCG
supertags were added also uses the same config-
uration. Table 6 shows labelled and unlabelled
accuracies in detail in these experiments. Accu-
racy results are obtained from the evaluator built
in MSTParser itself. Training and testing times
were similar throughout different experiments ex-
plained here.

Parser Configuration UAS LAS

MSTParser (1st order) 90.7 87.6

MSTParser (2nd order) 91.4 88.3

- xpos (2nd order) 91.1 88.0

- xpos + CCG tags (2nd order) 94.3 90.5

+ CCG tags (2nd order) 94.5 90.8

Table 6: Accuracy on MSTParser with CCG su-
pertags in English (pre-evaluation)

In the pre-evaluation Chen and Manning
(2014)’s parser experiment, we also use the Penn
Treebank for English as sections 2-21 for training,
section 22 as development and section 23 as
the test set. For word embedding file, GloVe 50
dimensional data is used (Pennington et al., 2014).
Extra configurational parameters are:
−maxIter : 20000
−trainingThreads : 10
−embeddingSize : 50
where maxIter stands for maximum it-
eration step in neural network training,
trainingThreads for number of threads to
use during training and embeddingSize for
embedding vector size for words, POS tags and
supertags.

Reproduction of the results from the original
study and our results with our supertags are given
in Table 7. These results are obtained by the eval-
uation method of the original parser.

Also, in the pre-evaluation phase, we test our
Chen and Manning (2014) parser-based system on
Turkish, German and French data. Shared task-
provided data is used for training and development
purposes. Word embeddings are used as 100 di-
mensional vectors from Ginter et al. (2017). Ex-
cept this difference, all other configuration param-

Parser Configuration UAS LAS

Chen & Manning 91.3 89.8

Chen & Manning + CCG supertags 95.7 94.6

Table 7: Accuracy on (Chen and Manning, 2014)
parser with CCG tags in English (pre-evaluation)

eters are the same as in English experiments. Ta-
ble 8 shows the results. As we see in the results,
the tagger predicting the French supertags trans-
ferred from English data performs well since the
two languages are similar. Also, German tags are
inferrable as it is also close to English in grammat-
ical structure. On the other hand, this is not rele-
vant for Turkish, as grammatically, the two lan-
guages are quite different. Word order is one of
the major differences between these two languages
that might have affected the results.

Language pre-UAS pre-LAS post-UAS post-LAS

Turkish 74.0 61.1 65.8 54.9

German 90.3 80.7 85.4 76.9

French 90.7 75.0 88.1 73.5

Table 8: Accuracy on the Chen and Manning
(2014) parser with CCG-based supertags in other
languages (pre-evaluation). pre-UAS and pre-
LAS stands for accuracies obtained with Chen
& Manning, while post-UAS and post-LAS with
Chen & Manning + Supertags.

Language Shared Task Baseline Our Result
English 82.25 73.40
Spanish 76.76 77.54
Turkish 52.06 48.53
German 71.53 67.97
French 74.57 77.48

Table 9: Our CONLL 2017 Shared task results vs
Shared Task baselines (LAS F1 Score)

4.2 Shared Task
In Table 9, we give our shared task results with
baselines. Here, we see a drop in accuracy com-
pared to our pre-evaluation phase. The main dif-
ferences between the systems are pre-trained em-
bedding source and embedding sizes for words,
POS tags and labels. In our development exper-
iments, we believe, we are able to capture simi-
larities between POS tags and supertags more ef-

223

ficiently as the embedding size is smaller and the
cardinalities of these groups are quite low. This
also applies to word embeddings. Other than this,
the training iteration count remains the same dur-
ing experiments. This may be required as we in-
crease the number of features and it needs to be
tuned.

For each of the PUD treebanks, we select a
model trained on the same language. For some of
the languages for which we cannot train a parser,
either due to lack of training data or word vectors,
and also for the surprise languages, we selected
a similar language in the same language family.
Table 10 shows the model assignments for the un-
known languages.

Language Selected Language Selected

bxr ru kmr fa

sme fi hsb cs

ar pud ar cs pud cs

de pud de en pud en

es pud es fi pud fi

fr partut fr fr pud fr

ga en gl treegal gl

got de hi pud hi

it pud it ja pud ja

kk tr la la ittb

pt pud pt ru pud ru

sl sst sl sv pud sv

tr pud tr ug tr

uk ru

Table 10: Selected models for surprise languages
and ones without models on training data

Table 11 shows the LAS score of the system on
different categories of treebanks as reported in the
Shared task paper. All treebanks are shown with
the official macro-averaged LAS F1 score. As
expected, the system performs better on big tree-
banks where there are more data instances. PUD
treebanks have a big treebank in the same lan-
guage, therefore the results are close. The differ-
ence between our system and the best performing
ones is bigger for the small treebanks. The rea-
son for this is that we only train on the language
dataset itself and do not use data from other lan-
guages for the small treebanks. This causes spar-
sity issues with the supertagger and the parser. We

try to use model trained on a similar language for
the surprise languages, however this does not re-
sult in a reasonable accuracy since the lexicons
are usually very different even if the languages are
from the same family and the supertagging relies
mostly on the lexical entries and features extracted
from them since we do not have the dependency
information while decoding. POS tagging error
that propagates through the pipeline also affects
the performance.

Language Set LAS F1 Score

All treebanks 61.98

Big treebanks only 68.77

PUD treebanks only 65.30

Small treebanks only 30.84

Surprise languages only 19.39

Table 11: Test results of different categories

Table 12 shows the results of our system on
TIRA (Potthast et al., 2014) evaluations of UD test
data for each language (Nivre et al., 2017a).

5 Conclusion and Future Work

We experimented with the effects of introducing
CCG-based supertags on multilingual universal
dependency parsing by taking a radical approach
of transferring CCG categories from English to
other languages. We used the similarities in de-
pendency formalism and the universal POS tags
in order to create CCG lexicons for each language
included in the shared task. Since this is a diverse
set of languages from different language families
and different structural and orthographic proper-
ties this transferring is not ideal for many lan-
guages.

The existing CCG lexicons for languages such
as Turkish were not used for the task since the uni-
versal dependency release of Turkish and the de-
pendency treebank the Turkish CCG lexicon were
induced from are not aligned on word/tokenization
level. Therefore we could not provide accuracy on
that data.

We hypothesise that using CCG lexicons from
a different language family, especially one with
a different word order, may increase the perfor-
mance of the supertaggers since English only cov-
ers a small subset of syntactic properties in a di-
verse set of languages.

224

Language LAS F1 Score Language LAS F1 Score

ar pud 42.68 ar 63.81

bg 82.07 bxr 18.18

ca 82.43 cs cac 79.52

cs cltt 68.71 cs pud 77.06

cs 79.89 cu 60.33

da 68.09 de pud 65.94

de 67.97 el 76.71

en lines 70.36 en partut 72.38

en pud 75.97 en 73.40

es ancora 80.89 es pud 75.26

es 77.54 et 52.08

eu 59.01 fa 75.73

fi ftb 72.13 fi pud 69.47

fi 66.46 fr partut 71.50

fr pud 71.15 fr sequoia 75.96

fr 77.48 ga 13.26

gl treegal 42.91 gl 75.25

got 20.05 grc proiel 60.08

grc 49.11 he 55.32

hi pud 49.63 hi 84.54

hr 71.39 hsb 19.59

hu 52.40 id 68.83

it pud 80.99 it 83.01

ja pud 74.69 ja 70.62

kk 16.48 kmr 15.86

ko 64.25 la ittb 70.90

la proiel 52.23 la 17.21

lv 56.34 nl lassysmall 71.12

nl 64.73 no bokmaal 78.51

no nynorsk 76.19 pl 76.40

pt br 83.17 pt pud 68.97

pt 76.48 ro 76.75

ru pud 65.81 ru syntagrus 80.88

ru 71.40 sk 70.96

sl sst 38.00 sl 78.14

sme 23.95 sv lines 71.93

sv pud 67.38 sv 74.06

tr pud 29.24 tr 48.53

ug 15.66 uk 31.68

ur 75.40 vi 36.51

zh 53.84

Table 12: Test results

After a manual alignment and tagging proce-
dure, the Turkish data can be used in both training
and evaluation. We can also group the languages
and use similar families of languages to train a
common system for them in the future.

One important addition to future work is to in-
duce the CCG supertags in each language includ-
ing the smaller datasets similar to the approaches

used in (Ambati et al., 2013b,a; Çakıcı, 2008) and
use these tags in our experiments. We believe
adding the specific directional information in CCG
categories will help in making more use of the in-
formation in the potentially very rich supertags.

Combining two or more CCG lexicons and tag-
ging with the combined model might also be an
interesting experiment.

For parsing, we plan to experiment with differ-
ent word embedding sizes and tune the deep learn-
ing parameters. Other than these, we will experi-
ment over neural networks integrated into graph-
based dependency parsers. In future, we are plan-
ning to use pre-trained POS and CCG tag embed-
dings in our experiments. If these embeddings can
be extracted from corpora on all available tags, this
will reduce training time and increase parsing ac-
curacy.

References

Bharat Ram Ambati, Tejaswini Deoskar, and Mark
Steedman. 2013a. Using CCG categories to im-
prove hindi dependency parsing. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics, ACL 2013, 4-9 August 2013,
Sofia, Bulgaria, Volume 2: Short Papers. pages 604–
609.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark
Steedman. 2013b. Using ccg categories to improve
hindi dependency parsing. In ACL (2). pages 604–
609.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042 .

Michael Auli and Adam Lopez. 2011. Efficient ccg
parsing: A* versus adaptive supertagging. In
Dekang Lin, Yuji Matsumoto, and Rada Mihal-
cea, editors, ACL ’11: Proceedings of the 49th An-
nual Meeting on Association for Computational Lin-
guistics. The Association for Computer Linguistics,
pages 1577–1585.

Srinivas Bangalore and Aravind K Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational linguistics 25(2):237–265.

Alexandra Birch, Miles Osborne, and Philipp Koehn.
2007. Ccg supertags in factored statistical machine
translation. In Proceedings of the Second Workshop
on Statistical Machine Translation. Association for
Computational Linguistics, pages 9–16.

225

Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hock-
enmaier, and Mark Steedman. 2016. Evaluating in-
duced ccg parsers on grounded semantic parsing. In
EMNLP.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the 10th Conf. on Computational
Natural Language Learning (CoNLL-X). SIGNLL.

Ruket Çakıcı. 2008. Wide-Coverage Parsing for Turk-
ish. Ph.D. thesis, University of Edinburgh.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

Stephen Clark and James R. Curran. 2004. The
importance of supertagging for wide-coverage
ccg parsing. In Proceedings of the 20th In-
ternational Conference on Computational Lin-
guistics. Association for Computational Lin-
guistics, Stroudsburg, PA, USA, COLING ’04.
https://doi.org/10.3115/1220355.1220396.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics 33(4).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734 .

Agnieszka Falenska, Anders Bjorkelund, Ozlem
Cetinoglu, and Wolfgang Seeker. 2015. Stacking or
supertagging for dependency parsing what’s the dif-
ference? In Proceedings of the 14th International
Conference on Parsing Technologies. Association
for Computational Linguistics, Bilbao, Spain, pages
118–129. http://www.aclweb.org/anthology/W15-
2215.

Kilian Foth, Tomas By, and Wolfgang Menzel. 2006.
Guiding a constraint dependency parser with su-
pertags. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 289–296.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan
Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task - automatically annotated raw texts
and word embeddings. LINDAT/CLARIN
digital library at the Institute of Formal
and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1989.

Julia Hockenmaier and Mark Steedman. 2002. Gener-
ative models for statistical parsing with combinatory
categorial grammar. In ACL ’02: Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics. pages 335–342.

Julia Hockenmaier and Mark Steedman. 2007. Ccg-
bank: a corpus of ccg derivations and dependency
structures extracted from the penn treebank. Com-
putational Linguistics 33(3):355–396.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A
Smith. 2016. What do recurrent neural network
grammars learn about syntax? arXiv preprint
arXiv:1611.05774 .

John Lafferty, Andrew McCallum, Fernando Pereira,
et al. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proceedings of the eighteenth international
conference on machine learning, ICML. volume 1,
pages 282–289.

Mike Lewis and Mark Steedman. 2014. A* CCG pars-
ing with a supertag-factored model. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, Octo-
ber 25-29, 2014, Doha, Qatar, A meeting of SIG-
DAT, a Special Interest Group of the ACL. pages
990–1000.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit.
In Association for Computational Linguistics
(ACL) System Demonstrations. pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Ryan McDonald. 2006. Discriminative Learning and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of ACL 2005. Ann
Arbor, MI, USA.

Ryan McDonald et al. 2006. Mstparser readme.
http://www.seas.upenn.edu/
˜strctlrn/MSTParser/README.

Ryan T McDonald and Fernando CN Pereira. 2006.
Online learning of approximate dependency parsing
algorithms. In EACL. pages 81–88.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Birch. 2017. Syntax-aware neu-
ral machine translation using ccg. arXiv preprint
arXiv:1702.01147 .

226

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Naoaki Okazaki. 2007. Crfsuite: a fast im-
plementation of conditional random fields (crfs).
http://www.chokkan.org/software/crfsuite/.

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto. 2014.
Improving dependency parsers with supertags. In
EACL. pages 154–158.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

227

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 228–236,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

CLCL (Geneva) DINN Parser:
a Neural Network Dependency Parser Ten Years Later

Christophe Moor
University of Geneva

Christophe.Moor@etu.unige.ch

Paola Merlo
University of Geneva

Paola.Merlo@unige.ch

James Henderson
XRCE / University of Geneva

James.Henderson@unige.ch

Haozhou Wang
University of Geneva

Haozhou.Wang@unige.ch

Abstract

This paper describes the University of
Geneva’s submission to the CoNLL 2017
shared task Multilingual Parsing from
Raw Text to Universal Dependencies
(listed as the CLCL (Geneva) entry). Our
submitted parsing system is the grandchild
of the first transition-based neural network
dependency parser, which was the Univer-
sity of Geneva’s entry in the CoNLL 2007
multilingual dependency parsing shared
task, with some improvements to speed
and portability. These results provide a
baseline for investigating how far we have
come in the past ten years of work on neu-
ral network dependency parsing.

1 Introduction

The system described in this paper is the grand-
child of the first transition-based neural network
dependency parser (Titov and Henderson, 2007b),
which was the University of Geneva’s entry in
the CoNLL 2007 multilingual dependency parsing
shared task (Titov and Henderson, 2007a). The
system has undergone some developments and
modifications, in particular the faster discrimina-
tive version introduced by Yazdani and Hender-
son (2015), but in many respects the design and
implementation of this parser is unchanged since
2007. One of our motivations for our submis-
sion to this CoNLL 2017 multilingual dependency
parsing shared task is to provide a baseline to eval-
uate to what extent recent advances in neural net-
work models and training do in fact improve per-
formance over “traditional” recurrent neural net-
works. We are listed in the table of results as the
CLCL (Geneva) entry.

As with previous work using the Incremen-
tal Neural Network architecture (e.g. Hender-
son, 2003), the main philosophy of our submis-

sion is that we build language universal induc-
tive biases into the model structure of the recur-
rent neural network, but we do not do any feature
engineering. Training the neural network induces
language-specific hidden representations automat-
ically. To provide such a baseline, we use UDPipe
for all pre-processing (Straka et al., 2016), and
Malt Parser for all projectivisation (Nivre et al.,
2006). The only exception is our strategy for sur-
prise languages, discussed below.

These goals match well the aim of the 2017 Uni-
versal dependencies shared task, described in the
introductory overview (Zeman et al., 2017). This
task makes true cross-linguistic comparison pos-
sible thanks to the universal dependency annota-
tion project, which underlies the data used in this
shared task. We train exactly the same parsing
model on every language, thereby allowing fur-
ther comparisons. In addition, the feature induc-
tion abilities of the recurrent neural network help
minimise any remaining cross-lingual differences
due to pre-processing or annotation.

2 Data

We use only the provided treebanks. For large
treebanks, we train the model on the UD treebank
(Nivre et al., 2017a), with some tuning of meta-
parameter using the development set.

For surprise languages, we train on the concate-
nation of the treebank for the language, no matter
how small, and the treebank of an identified source
language with a larger treebank. In post-testing
experiments, we also apply this same strategy to
other small treebanks, resulting in substantial im-
provements (average 43% better) over the submit-
ted results.

We don’t use externally trained word embed-
dings (we trained our own internally to the parser)
or any other data resource.

228

3 Preprocessing

Tokenisation, word and sentence segmentation is
provided by UD pipe (Straka et al., 2016). We do
not use the morphological transducers from Aper-
tium/Giellatekno that had been made available for
the shared task.

Because our parser can only produce projective
dependency trees, we apply the projectivisation
transformation of the Malt parser package (Nivre
et al., 2006) to all treebanks before training.

4 Parser

We apply a single DINN parser to each language.
We do not use any ensemble methods. This makes
our results more useful for comparison, and allows
our model to be used within an ensemble with
other parsers.

We use the parser described in Yazdani and
Henderson (2015), the Discriminative Incremen-
tal Neural Network parser (DINN). Like the pre-
vious version of this parser (Titov and Henderson,
2007b), it uses a recurrent neural network (RNN)
to predict the actions for a fast shift-reduce de-
pendency parser. Decoding is done with a beam
search where pruning occurs after each shift ac-
tion. The RNN model has an output-dependent
structure that matches locality in the parse struc-
ture, making it an “incremental” neural network
(INN, previously called SSN). This INN com-
putes hidden vectors that encode the preceding
partial parse, and estimates the probabilities of the
parser actions given this history. Unlike the previ-
ous generative INN parser, DINN is a discrimina-
tive parser, using lookahead instead of word pre-
diction. In order to combine beam search with
a discriminative model, word predictions are re-
placed by a binary correctness probability which
is trained discriminatively.

4.1 Transition-Based Neural Network
Parsing

In DINN, the neural network is used to estimate
the conditional probabilities of a transition-based
statistical parsing model.

4.1.1 The Probabilistic Parsing Model
In shift-reduce dependency parsing, a parser con-
figuration consists of a stack P of words, the
queue Q of words and the partial labelled depen-
dency trees constructed by the previous history of
parser actions. The parser starts with an empty

stack P and all the input words in the queue Q.
It stops when it reaches a configuration with an
empty queue Q, with any words left on the stack
then being attached to ROOT. We use an arc-eager
algorithm, which has 4 actions that all manipulate
the word s on top of the stack P and the word q
on the front of the queue Q: Left-Arcr adds a de-
pendency arc from q to s labelled r, then popping
s from the stack. Right-Arcr adds an arc from s to
q labelled r. Reduce pops s from the stack. Shift
shifts q from the queue to the stack. For exact de-
tails, see Titov and Henderson (2007b).

To model parse trees, we model the sequences
of parser actions which generate them. We take a
history based approach to model these sequences
of parser actions. So, at each step of the parse
sequence, the parser chooses between the set of
possible next actions using an estimate of its con-
ditional probability, where T is the parse tree,
D1· · ·Dm is its equivalent sequence of shift-
reduce parser actions and S is the input sentence:

P (T |S) = P (D1· · ·Dm|S)

=
∏

t

P (Dt|D1· · ·Dt−1, S)

Unlike in previous dependency parser evalua-
tions, the evaluation script for this shared task re-
quires that exactly one word be attached to the
ROOT node of the sentence. We implemented this
constraint by modifying the calculation of the set
of possible next actions. If an action will lead to
a parser configuration where all possible ways of
finishing the parse result in more than one word
being attached to ROOT, then that action is not a
possible action.

4.1.2 Estimating Action Probabilities
To estimate each P (Dt|D1· · ·Dt−1, S), we
need to condition on the unbounded sequences
D1· · ·Dt−1 and S. To condition on the words in
the queue, we use a bounded lookahead:

P (T |S) ≈
∏

t

P (Dt|D1· · ·Dt−1, wt
a1
· · ·wt

ak
)

where wt
a1
· · ·wt

ak
is the first k words on the front

of the queue at time t. At every Shift, one word
is moved from the lookahead onto the stack and
a new word from the input is added to the looka-
head.

To estimate the probability of a decision at time
t conditioned on the history of actionsD1· · ·Dt−1,

229

Figure 1: DINN computations for one decision

we use a recurrent neural network to induce hid-
den representations of the parse history sequence.
The relevant information about the parse history
at time t is encoded in the hidden representation
vector ht, of size d.∏

t

P (Dt|D1· · ·Dt−1, wt
a1
· · ·wt

ak
) =

∏
t

P (Dt|ht)

This model is depicted in Figure 1. The hidden
representation at time t is computed from selected
previous hidden representations, plus pre-defined
features. The model defines a set of link types c ∈
C which select previous states tc<t and connect
them to the current hidden layer ht via the hidden-
hidden weights W c

HH . The model also defines a
set of features f ∈ F calculated from the previous
decision and the current queue and stack, which
are connected to the current hidden layer via the
input-hidden weights WIH :

ht = σ(
∑
c∈C

htcW c
HH +

∑
f∈F

WIH(f, :))

where σ is the sigmoid function andW (i, :) is row
i of matrix W .

The probability of each decision is estimated
with a softmax layer (a normalised exponential)
with outputs for all decisions that are possible at
this step, conditioned on the hidden representa-
tion.

P (Dt=d|ht) =
eh

tWHO(:,d)∑
d′ eh

tWHO(:,d′)

whereWHO is the weight matrix from hidden rep-
resentations to the outputs.

4.1.3 Hidden and Input Features
C and F are the only hand-coded parts of the
model. Because C defines the recurrent connec-
tions in the neural network, it is responsible for

passing information about the unbounded parse
history to the current decision. Because RNNs
are biased towards learning correlations which are
close together in the connected sequence of hidden
layers, we exploit this bias by making the structure
of the neural network match the structure of the
output parse. This is achieved by including previ-
ous states in C if they had a word on the top of the
stack or front of the queue which are also relevant
to the current decision. In the version we use in
this experiment, we use a minimal set of these link
types, specified in section 5.

The input features F are typical of any statis-
tical model. But in the case of neural networks,
it is common to decompose the parametrisation
of these features into a matrix for the feature role
(e.g. front-of-the-queue) and a vector for the fea-
ture value (e.g. a word). This decomposition of
features overcomes feature sparsity, because the
same value vector can be shared across multiple
roles. Word embedding vectors are the most com-
mon example of this decomposition.

Unlike in the previous versions of the parser,
Yazdani and Henderson (2015) added feature de-
compositions in the definition of the input-to-
hidden weights WIH .

WIH(f, :) = Wemb.(val(f), :)W role(f)
HH

Every row in Wemb. is an embedding for a fea-
ture value, which may be a word, lemma, POS
tag, or dependency relation. val(f) is the index
of the value for feature role role(f), for exam-
ple the particular word that is at the front of the
queue. The matrix W role(f)

HH is the feature role ma-
trix, which maps the feature value embedding to
the role-value feature vector for the given feature
role role(f). For simplicity, we assume here that
the size of the embeddings and the size of the hid-
den representations of the DINN are the same. In
this way, the parameters of the embedding matrix
Wemb. is shared among various feature input link
types role(f), which can improve the model in the
case of sparse features f .

We train our own word embeddings within the
parsing model, using only the parsed training data.
We tried initialising with Facebook embeddings
on a sample of languages, but random initialisa-
tion worked better.

Unlike Yazdani and Henderson (2015), we did
not cache any features, either in testing or in train-
ing. Caching can have a big impact on speed, but

230

it has not been shown to improve accuracies.

4.1.4 Discrimination of Correct Partial
Parses

Unlike in the previous generative models, the
above formulas for computing the probability of
a parse make independence assumptions, in that
words to the right of wt

ak
are assumed to be inde-

pendent of Dt. And even for words in the looka-
head, it can be difficult to learn correlations with
the unstructured lookahead string. If a discrimi-
native model uses normalised estimates for deci-
sions, then once a wrong decision is made there is
no way for the estimates to express that this de-
cision has lead to a structure that is incompatible
with the current or future lookahead string (see
Lafferty et al. (2001) for more discussion). For
this reason, there is no obvious way to make effec-
tive use of beam search for a normalised discrimi-
native model.

To overcome this problem, DINN estimates a
correctness probability after every Shift action.
This output is trained to discriminate correct from
incorrect parse prefixes, using the same hidden
representation as used to predict parser actions,
as depicted in Figure 1. A beam search is then
used to consider multiple possible partial parses
so that the correctness probability can be used to
select between them. The total score of a parse is
the multiplication of the probabilities of all its ac-
tions with the correctness probabilities at the shift
of each word. For more details on this technique,
see Yazdani and Henderson (2015).

5 Experimental Settings

The implementation of DINN uses a parameter
file to define the hidden-hidden connections, the
input-hidden features, training meta-parameters,
and various other parameters of the parser. We use
the same settings for all languages. For the official
submission, we used the following settings.

- We used a frequency cutoff for
words/lemmas of 3.

- We did not normalise the input string to low-
ercase.

- We always used all the available training and
development set.

- Search beam size is 10.
- Hidden layer size is 80.
- The size of the internally calculated embed-

dings is 50.

- Word embeddings are initialised randomly.

- We do not apply any feature caching.

- Validation occurs at every iteration.

- The configurations of the Input-to-Hidden
layer connections are as follows:

+ Look at 4 last elements in the stack and 4
next elements from the input (Except the
treebanks fr, ko, it partut, grc proiel, cu,
where we look at 5 last elements from
the stack.)

+ For each element, use all possible fea-
tures from UDPipe (except UPoS if
XPoS exists).

- The configurations of the Hidden-to-Hidden
layer connections are as follows:

Closest Current H-to-H
Queue Queue +
Top Top +
Queue Top +

In this specification of the hidden-to-hidden
connections, Queue refers to the front of the input
queue and Top refers to the top of the stack in the
parser configuration. This specification uses the
same simplified set of connections between hidden
states used in Yazdani and Henderson (2015). We
assume that the induced hidden features primarily
relate to the word on the top of the syntactic stack
and the word at the front of the queue, since these
are the words used in any action. To decide which
previous state’s hidden features are most relevant
to the current decision, we look at these words in
the current parser configuration. For each such
word, we look for previous states where the top
of the stack or the front of the queue was the same
word. If more than one previous state matches,
then the hidden vector of the most recent one is
used. If no state matches, then no connection is
made.

5.1 Training
One aspect of the current implementation which
is basically unchanged from ten years ago is the
training protocol. Learning rates and weight de-
cay regularisation rates are reduced during train-
ing whenever there is a decrease in accuracy on the
development set, and early stopping is used to pre-
vent overtraining. Training and development splits
are those provided by the shared task. The devel-
opment set is also used to select which iteration’s

231

Language abbr. dev. LAS test LAS Rank /33
Ancient Greek grc 54.98 54.56 15
Ancient Greek-PROIEL grc proiel 63.30 62.83 18
Arabic ar 63.37 64.17 23
Basque eu 62.73 62.47 26
Bulgarian bg 82.46 83.50 18
Catalan ca 82.88 82.83 24
Chinese zh 52.51 54.89 25
Croatian hr 72.80 73.78 27
Czech cs 83.36 82.52 18
Czech-CAC cs cac 82.07 81.35 23
Czech-CLTT cs cltt 63.98 69.16 22
Danish da 69.94 69.43 27
Dutch nl 73.75 67.70 22
Dutch-LassySmall nl lassysmall 68.84 73.97 22
English en 75.69 75.09 22
English-LinES en lines 73.03 72.68 21
English-ParTUT en partut 71.97 71.78 25
Estonian et 53.32 52.67 26
Finnish fi 64.38 63.93 27
Finnish-FTB fi ftb 75.69 76.26 8
French fr 83.74 79.85 21
French-ParTUT fr partut 17.85 30
French-Sequoia fr sequoia 76.35 76.36 25
Galician gl 76.04 75.93 23
Galician-TreeGal gl treegal 2.76 30
German de 72.76 69.59 16
Gothic got 57.47 57.72 21
Greek el 76.93 77.80 23
Hebrew he 58.93 55.36 24
Hindi hi 87.20 86.80 17
Hungarian hu 53.81 50.95 27
Indonesian id 68.33 69.45 26
Irish ga 4.30 30
Italian it 84.01 85.05 19
Japanese ja 73.22 71.85 23
Kazakh kk 1.00 29
Korean ko 57.39 61.08 18
Latin la 5.72 31
Latin-ITTB la ittb 69.00 75.81 18
Latin-PROIEL la proiel 55.28 54.07 22
Latvian lv 60.06 59.28 22
Norwegian-Bokmaal no bokmaal 82.37 82.44 20
Norwegian-Nynorsk no nynorsk 80.73 79.34 21
Old Church Slavonic cu 62.80 62.45 20
Persian fa 75.74 75.86 23
Polish pl 80.32 79.83 14
Portuguese pt 81.83 79.74 22
Portuguese-BR pt br 84.75 84.00 21
Romanian ro 77.27 77.34 23
Russian ru 73.03 72.03 22
Russian-SynTagRus ru syntagrus 83.78 83.89 23
Slovak sk 73.70 73.30 18
Slovenian sl 80.31 81.32 14
Slovenian-SST sl sst 4.37 30
Spanish es 81.92 79.96 22
Spanish-AnCora es ancora 81.63 81.26 23
Swedish sv 71.86 76.06 20
Swedish-LinES sv lines 73.07 73.82 18
Turkish tr 48.42 47.91 18
Ukrainian uk 7.87 30
Urdu ur 75.37 76.01 20
Uyghur ug 9.29 27
Vietnamese vi 39.14 35.77 25
MEAN 71.17 62.83

Table 1: DINN and Universal Dependencies treebanks - official results.

232

model to use in testing. Recent advances in opti-
misation methods for neural networks — such as
AdaGrad and mini-batch – are obvious modifica-
tions to compare against the reported results.

To deal with small treebanks without develop-
ment sets, we use a fixed training protocol devel-
oped by looking at the training of models with
other small training sets. We run for a total of 8 it-
erations and changed the learning rate and weight
decay values every other iteration.

5.2 Dealing with surprise languages and
other small datasets

To build a model for the surprise languages, we
use simple cross-lingual techniques. For the offi-
cial test phase, we identified the most similar lan-
guages to the surprise language with a string-based
technique, concatenated the treebanks, trained and
tested on the surprise languages.

The string-based technique constructs a list of
words for each language. We used the sample
data for the surprise language and the training data
for the languages for which we have enough re-
sources. Call these languages with big data sets B.
We denote T as the set of lists of words of B, and
t is a word in T . For a given surprise language, we
calculate the similarity score S for each t. We treat
two words as similar if and only if the first three
characters of these two words are identical and the
edit distance between these two words is less than
or equal to 1. We choose the language that has the
best S for training our model for the surprise lan-
guage. This procedure yields the following sim-
ilar languages for training. We call them source
languages.

Buryat: Russian (rus syntagrus), Turkish (tr)
Upper Sorbian: Czeck (cs), Norwegian (no bokmaal)
Kurmanji: Spanish (es), Turkish (tr)
North Sami: Czech (cs), Finnish (fi ftb)

To train a parser for the surprise language, we
concatenate the datasets for the source languages
with three copies of the dataset for the target lan-
guage. Because our frequency threshold is three,
this means that all words in the target language
dataset are included in the vocabulary. Then we
trained a parser on this concatenated dataset, us-
ing the surprise language corpus also as a devel-
opment set.

In addition to the surprise languages, there
are other languages whose available data is just
enough for a small training set without any de-
velopment set. For the submitted test run, we did

Language Abbrev. LAS rank
Buryat bxr 22.59 16
Kurmanji kmr 22.20 22
North Sami sme 23.99 21
Upper Sorbian hsb 48.50 18
Mean on surprise languages 29.32

Table 2: DINN and Universal Dependencies tree-
banks - official results on surprise languages.

Language Abbrev. LAS rank
Arabic-PUD ar pud 42.61 25
Czech-PUD cs pud 79.17 18
English-PUD en pud 78.22 18
Finnish-PUD fi pud 64.91 24
French-PUD fr pud 74.93 9
German-PUD de pud 67.76 15
Hindi-PUD hi pud 51.31 10
Italian-PUD it pud 83.28 21
Japanese-PUD ja pud 76.21 16
Portuguese-PUD pt pud 73.01 17
Russian-PUD ru pud 67.22 16
Spanish-PUD es pud 75.90 22
Swedish-PUD sv pud 68.92 21
Turkish-PUD tr pud 29.01 25
Mean on PUD treebanks 66.60

Table 3: DINN and Universal Dependencies tree-
banks - official results on PUD Treebanks.

not do anything special for these datasets (other
than the training schedule discussed above), train-
ing parsing models on the individual datasets. But
in subsequent experiments we tried treating them
in the same way as surprise languages, with much
improved results, discussed below.

6 Test Phase Results

Evaluation was run on the provided TIRA plat-
form (Potthast et al., 2014) using the data provided
by the organisers (Nivre et al., 2017b), but blind to
us, as described in the introduction. The results of
our submission are shown in the next three tables.
Accuracy by LAS is shown in Table 1. Accuracy
on surprise languages is shown in Table 2. Accu-
racy on parallel UD data is shown in Table 3.

6.1 Analysis of results
Our results are 25th over the 33 participants glob-
ally, 22nd on the large treebanks only, 19th on the
PUD treebanks only, 30th on the small treebanks
with only 6% accuracy (see below), 20th on sur-

233

Training runtimes Testing runtimes
Language abbr. T/s NUI UTH DPT W/s
Ancient Greek grc 0.0714 14 3.18 177 125.056
Ancient Greek-PROIEL grc proiel 0.0663 25 6.84 99 137.899
Arabic ar 0.2698 144 65.56 259 116.753
Basque eu 0.1001 66 9.90 175 137.686
Bulgarian bg 0.1360 57 19.17 84 191.536
Catalan ca 0.1998 23 16.75 404 139.807
Chinese zh 0.3020 13 4.36 71 178.352
Croatian hr 0.0990 56 11.84 93 156.269
Czech cs 0.1256 26 62.14 1130 140.959
Czech-CAC cs cac 0.1615 43 45.29 87 125.425
Czech-CLTT cs cltt 0.2688 10 0.35 110 94.373
Danish da 0.0835 58 5.90 69 149.739
Dutch nl 0.3163 16 17.33 80 143.225
Dutch-LassySmall nl lassysmall 0.2697 14 6.33 75 140.667
English en 0.0829 17 4.91 163 154.282
English-LinES en lines 0.0931 12 0.85 127 134.661
English-ParTUT en partut 0.1037 105 3.30 79 154.975
Estonian et 0.1613 129 13.08 73 165.795
Finnish fi 0.0842 137 39.16 118 155.000
Finnish-FTB fi ftb 0.1797 20 14.96 86 182.837
French fr 0.1297 19 9.95 289 123.758
French-ParTUT fr partut 0.1226 8 0.17
French-Sequoia fr sequoia 0.0829 429 22.05 63 158.937
Galician gl 0.1402 15 1.33 177 168.232
Galician-TreeGal gl treegal 0.1183 8 0.16
German de 0.0853 124 41.47 80 154.350
Gothic got 0.0484 32 1.46 60 168.567
Greek el 0.1107 14 0.72 63 160.937
Hebrew he 0.1074 132 20.64 68 167.765
Hindi hi 0.0929 9 3.09 213 165.338
Hungarian hu 0.1308 168 5.55 69 165.478
Indonesian id 0.1072 127 16.93
Irish ga 0.1166 8 0.15
Italian it 0.1049 16 5.99 79 150.734
Italian-ParTUT it partut 0.1165 22 0.78 83 166.349
Japanese ja 0.1336 242 64.33
Kazakh kk 0.0968 8 0.01
Korean ko 0.1734 35 7.42 58 191.345
Latin la 0.2819 8 0.84
Latin-ITTB la ittb 0.1741 146 111.61 80 129.138
Latin-PROIEL la proiel 0.1206 30 14.27 86 143.756
Latvian lv 0.2741 18 3.17 60 168.800
Norwegian-Bokmaal no bokmaal 0.1099 174 83.38 222 163.824
Norwegian-Nynorsk no nynorsk 0.1375 83 44.94 190 164.474
Old Church Slavonic cu 0.0403 17 0.78 54 187.037
Persian fa 0.4894 18 11.74 112 141.357
Polish pl 0.1520 46 11.84 53 193.623
Portuguese pt 0.6852 10 15.86 83 130.735
Portuguese-BR pt br 0.5102 13 17.81 191 168.215
Romanian ro 0.6079 15 20.37 126 135.508
Russian ru 0.2192 14 3.28 81 146.630
Russian-SynTagRus ru syntagrus 0.1073 19 27.66 804 147.297
Slovak sk 0.0888 16 3.35 72 172.778
Slovenian sl 0.1882 13 4.40 86 163.523
Slovenian-SST sl sst 0.0917 8 0.44
Spanish es 0.2132 15 12.60 271 137.089
Spanish-AnCora es ancora 0.2073 99 81.54 367 142.605
Swedish sv 0.1406 77 12.94 63 155.508
Swedish-LinES sv lines 0.2144 15 2.45 120 137.183
Turkish tr 0.1115 148 16.90 79 126.722
Ukrainian uk 0.1356 8 0.26
Urdu ur 0.3030 7 2.38 101 144.366
Uyghur ug 0.1000 8 0.02
Vietnamese vi 0.1536 317 18.93 67 171.851
MAX 429 111.61 1130.000 193.623
MEAN 0.1727 16.83 152.389 152.576

Table 4: Training and testing runtimes. T/s: Training time per sentence; NUI: Number of useful itera-
tions; UTH: Useful training time (hours); DPT: Development parsing time (seconds); W/s: Words/sec.

234

Model Training Testing
Training set Dev. set LAS LAS deproj LAS LAS deproj DINN Official LAS

FrenchParTUT fr+ fr partut fr 85.08 85.09 78.14 78.14 17.85
GalicianTreeGal gl+gl treegal gl 75.88 75.88 60.94 60.94 2.76
Irish ga+it partut it partut 75.99 75.99 59.44 59.44 4.30
Kazakh kk+ja ja 93.10 93.10 18.03 18.03 1.00
Latin la+grc grc 55.64 56.86 43.22 43.59 5.72
SlovenianSST sl+sl sst sl 81.09 81.52 47.91 47.99 4.37
Ukrainian lv+uk lv 62.84 62.94 59.64 59.64 7.87
Uyghur ug+bg bg 83.40 83.49 29.66 29.66 9.29
Mean on small treebanks 76.63 76.86 49.62 49.68 6.64

Table 5: Small treebanks as surprise language, Run 5.1 UD PMor (20/05).

prise languages. They are rather firmly in the bot-
tom third, around 22nd-25th place. They rarely
beat the baseline. They are well above the base-
line or close to it (above or below) for twelve tree-
banks (Fi ftp, 8th, well above; fr pud, 9th/33, well
above; grc, 15th, just under; hi, 17th, just above;
hi pud, 10th, well above; it, 19th; ja pud, 16th just
below; ko, 18th, well above; la ittb, 18th, same;
pl, 14th, above; sk, 18th, above; sl, 14th a little
above.)

There are a number of treebanks where the sub-
mitted parser does very poorly (fr partut, 17%; ga,
4%; gl treegal, 2.75%; kk, 1%; la, 6%; sl sst, 4%;
ug, 9%; uk, 8%). These are all small treebanks
with no development set, which we treated in the
same way as all other treebanks. As discussed
in the post-test results section, treating these tree-
banks with the same approach that we used for sur-
prise languages yielded instead results on-average
43% LAS better.

6.2 Resources used

Table 4 shows the training and parsing times, cal-
culated on the training and development sets, re-
spectively. Our shared task submission was pre-
pared primarily by one computer science MSc stu-
dent.

7 Post-Test Results

In the post-test results, we aim to increase the per-
formance on the small treebanks, and correct er-
rors in the submitted system.

7.1 Postprocessing, if any

In the submitted parser, we overlooked the need
to deprojectivise the output of the parser. In the
post-test results, we run the Malt parser deprojec-
tivisation routine on the output of the DINN parser
before doing evaluation. Deprojectivisation makes
no or little difference for most languages, but there

is an improvement on some. Improvements range
from zero to 1.3% LAS score, with an average im-
provement of 0.16%. We report some deprojec-
tivisation results on small treebanks in Table 5.

7.2 Dealing with small treebank languages

In the test phase, we train on small treebanks.
Given that our results were particularly unsatisfac-
tory on small treebanks, in the post-test phase, we
tried a different technique: we treated small tree-
banks like surprise languages.

For small treebanks, we identified the best
source language by exhaustively searching all the
possible languages. As with surprise languages,
we then concatenated three copies of the small
treebank to the larger treebank and trained a parser
on this combined dataset. Table 5 shows the tree-
bank configurations and results on the develop-
ment set and test set. This new method raises the
total average score of our parser by 4.20% LAS.

8 Conclusions and Future Work

With this submission, we have shown how a neural
network dependency parser whose main architec-
ture is largely unchanged from ten years ago per-
forms with respect to the state of the art. These re-
sults can serve as a baseline for future work eval-
uating to what extent recently proposed methods
have a measurable impact on neural network de-
pendency parser accuracy.

Acknowledgements

We would like to thank Corentin Ribeyre for his
help in getting the endeavour started and the Lan-
guage and Communication Network at the univer-
sity of Geneva for support. We also thank Ma-
jid Yazdani for his help understanding the original
code base.

235

References
James Henderson. 2003. Inducing history representa-

tions for broad coverage statistical parsing. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1. Association for Computational Linguistics,
Stroudsburg, PA, USA, NAACL ’03, pages 24–31.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, ICML ’01, pages 282–289.
http://dl.acm.org/citation.cfm?id=645530.655813.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the Fifth In-
ternational Conference on Language Resources and
Evaluation (LREC-2006). pages 2216–2219.

Joakim Nivre et al. 2017a. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0 CoNLL 2017 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-2184. http://hdl.handle.net/11234/1-
2184.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceed-
ings of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC 2016). Por-
torož, Slovenia, publisher = European Language Re-
sources Association, isbn = 978-2-9517408-9-1.

Ivan Titov and James Henderson. 2007a. Fast and ro-
bust multilingual dependency parsing with a gen-
erative latent variable model. In Proceedings

of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 947–
951. http://www.aclweb.org/anthology/D/D07/D07-
1099.

Ivan Titov and James Henderson. 2007b. A latent vari-
able model for generative dependency parsing. In
Proceedings of the 10th International Conference
on Parsing Technologies. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, IWPT
’07, pages 144–155.

Majid Yazdani and James Henderson. 2015. Incremen-
tal recurrent neural network dependency parser with
search-based discriminative training. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning. Association for Com-
putational Linguistics, Beijing, China, pages 142–
152. http://www.aclweb.org/anthology/K15-1015.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Associa-
tion for Computational Linguistics, pages 1–20.

236

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 237–242,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A Fast and Lightweight System for Multilingual Dependency Parsing

Tao Ji, Yuanbin Wu, Man Lan
Department of Computer Science and Technology

East China Normal University
10132130251@stu.ecnu.edu.cn
{ybwu, mlan}@cs.ecnu.edu.cn

Abstract

Following Kiperwasser and Goldberg
(2016), we present a multilingual de-
pendency parser with a bidirectional-
LSTM (BiLSTM) feature extractor and
a multi-layer perceptron (MLP) classifier.
We trained our transition-based projective
parser in UD version 2.0 datasets without
any additional data. The parser is fast,
lightweight and effective on big treebanks.

In the CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Univer-
sal Dependencies, the official results show
that the macro-averaged LAS F1 score of
our system Mengest is 61.33%.

1 Introduction

Developing tools that can process multiple lan-
guages has always been an important goal in
NLP. Ten years ago, CoNLL 2006 (Buchholz and
Marsi, 2006) and CoNLL 2007 (Nivre et al., 2007)
Shared Task were a major milestone for multilin-
gual dependency parsing. The CoNLL 2017 UD
Shared Task (Zeman et al., 2017) is an extension
of the tasks addressed in previous years. Unlike
CoNLL 2006 and CoNLL 2007, the focus of the
CoNLL 2017 UD Shared Task is learning syntactic
dependency parsers on a universal syntactic anno-
tation standard. This shared task requires partici-
pants to parse raw texts from different languages,
which vary both in typology and training set size.

The CoNLL 2017 UD Shared Task provided
universal dependencies description from LREC
2016 (Nivre et al., 2016), two datasets, which are
UD version 2.0 datasets (Nivre et al., 2017b) and
this task test datasets (Nivre et al., 2017a), two
baseline models, which are UDPipe (Straka et al.,
2016) and SyntaxNet (Weiss et al., 2015), and the
evaluation platform TIRA (Potthast et al., 2014).

In this paper, We present our multilingual de-
pendency parsing system Mengest for CoNLL
2017 UD Shared Task. The system contains a
BiLSTM feature extractor for feature representa-
tion and a MLP classifier for the transition system.
The inputs of our system are word form (lemma or
stem, which depending on the particular treebank)
and part of speech (POS) tags (coarse-grained and
fine-grained) for each token. Based on this input,
the system finds a governor for each token, and as-
signs a universal dependency relation label to each
syntactic dependency. Our official submission ob-
tains 61.33% macro-averaged LAS F1 score on all
treebanks.

The rest of this paper is organized as follows.
Section 2 discusses the transition-based model
(Kiperwasser and Goldberg, 2016) and our im-
plementation. Section 3 explains how our system
deals with parallel sets and surprise languages. Fi-
nally, we present experimental and official results
in Section 4.

2 System Description

We implement a transition-based projective parser
following Kiperwasser and Goldberg (2016). The
system consists of a BiLSTM feature extractor and
an MLP classifier. We describe their model and
our implementation in the following sections in
detail.

2.1 Arc-Hybrid System
In this work, we use the arc-hybrid transition sys-
tem (Kuhlmann et al., 2011). In the arc-hybrid
system, a configuration c = (α, β,A) consists of a
stack α, a buffer β, and a set of dependency arcs A.
Given n words sentence s = w1, · · · , wn, the ini-
tial configuration c = (∅, {1, 2, · · · , n, root}, ∅)
with an empty stack, an empty arc set, and a full
buffer β = 1, 2, · · · , n, root, where root is the
special root index. The terminal configuration set

237

contains configurations with an empty stack, an
arc set and a buffer containing only root.

For each configuration c = (σ|s1|s0, b0|β, A),
the arc-hybrid system has 3 kinds of transitions,
T = {SHIFT, LEFTl, RIGHTl}:

SHIFT(c) = (σ|s1|s0|b0, β, A)

s.t. |β| > 0

LEFTl(c) =
(
σ|s1, b0|β, A ∪ {(b0, s0, l)}

)
s.t. |β| > 0, |σ| > 0

RIGHTl(c) =
(
σ|s1, b0|β, A ∪ {(s1, s0, l)}

)
s.t. |σ| > 0, s0 ̸= root

The SHIFT transition moves the first item of
the buffer (b0) to the stack. The LEFTl transition
removes the first item on top of the stack (s0) and
attaches it as a modifier to b0 with label l, adding
the arc (b0, s0, l) to arc set A. The RIGHTl transi-
tion removes s0 from the stack and attaches it as a
modifier to the next item on the stack (s1), adding
the arc (s1, s0, l) to arc set A.

We apply a classifier to determine the best ac-
tion for a configuration. Following Chen and Man-
ning (2014), we use a MLP with one hidden layer.
The score of the transition t ∈ T is defined as:

MLPθ

(
ϕ(c)

)
= W 2 · tanh

(
W 1 · ϕ(c) + b1) + b2

SCOREθ

(
ϕ(c), t

)
= MLPθ

(
ϕ(c)

)
[t]

where θ = {W 1,W 2, b1, b2} are the model pa-
rameters, ϕ(c) is the feature representation of the
configuration c. MLPθ

(
ϕ(c)

)
[t] denotes an in-

dexing operation taking the output element which
is the class of transition t.

2.2 The Feature Representation
We consider two types of feature repersentations
ϕ(c) of a configuration: simple and extended.

Simple: For an input sequence s =
w1, · · · , wn, we associate each word wi with a
vector xi:

xi = e(wi) ◦ e(pi) ◦ e(qi)

where e(wi) is the embedding vector of word
wi, e(pi) is the embedding vector of POS tag
pi, e(qi) is the embedding vector of coarse-
grained POS (CPOS) tag qi. The embeddings
e(wi), e(pi), e(qi) are randomly initialized (with-
out pre-training) and jointly trained with the pars-
ing model. Then, in order to encode context fea-
tures, we use a 2-layer sentence level BiLSTM on
top of x1:n:

h⃗t = LSTM (⃗ht−1, xi, θ⃗)
⃗ht = LSTM(⃗ht+1, xi, ⃗θ)

vi = h⃗i ◦ ⃗hi

θ⃗ are the model parameters of the forward hidden
sequence h⃗. ⃗θ are the model parameters of the
backward hidden sequence ⃗h. The vector vi is our
final vector representation of ith token in s, which
has took into account both the entire history h⃗i and
the entire future ⃗hi by concatenating the matching
Long Short-Term Memory Network (LSTM).

For ϕ(c), our simple feature function is the con-
catenated BiLSTM vectors of the top 3 items on
the stack and the first item on the buffer. A config-
uration c is represented by:

ϕ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0

Extended: We add the feature vectors corre-
sponding to the right-most and left-most modifiers
of s0, s1 and s2, as well as the left-most modifier
of b0, reaching a total of 11 BiLSTM vectors as
extended feature representation. As we will see in
experimental sections, using the extended set does
indeed improves parsing accuracies.

2.3 Training Details

The training objective is to make the score of cor-
rect transitions always above the scores of incor-
rect transitions. We use a margin-based criteria.
Assume Tgold is the set of gold transitions at the
current configuration c. At each time stamp, the
objective function tries to maximize the margin
between Tgold and T − Tgold. The hinge loss of
a configuration c is defined as:

Lossθ(c) =
(
1 − max

to∈Tgold

SCOREθ(ϕ(c), to)

+ max
tp∈(T−Tgold)

SCOREθ(ϕ(c), tp)
)
+

Our system use the backpropagation algorithm to
calculate the gradients of the entire network (in-
cluding the MLP and the BiLSTM).

Since our parser can only deal with projective
dependency trees, we exclude all training exam-
ples with non-projective dependencies. This ap-
proach undoubtedly downgrades the performance
of our system, we plan to use pseudo-projective
approach to improve it in the future work.

238

3 Multilingual Dependency Parsing

There are 81 treebanks in the CoNLL 2017 UD
Shared Task, including 55 big treebanks, 14 PUD
treebanks (additional parallel test sets), 8 small
treebanks and 4 surprise language treebanks. For
each language treebank of UD version 2.0 training
sets, we train a parser only using its monolingual
training set (no cross-lingual features). In total, we
trained 61 models, 55 on big treebanks and 6 on
small treebanks1. Our system reads the CoNLL-U
files predicted by UDPipe, and uses morphology
(lemmas, UPOS, XPOS) predicted by UDPipe.

3.1 Dealing with Parallel Test Sets
There are 14 additional parallel test sets. Our sys-
tem simply selects one trained model when we en-
counter a parallel test set where multiple training
treebanks exist. For example, although we don’t
have English-PUD training set but we have En-
glish, English-LinES and English-ParTUT train-
ing set. So we only use the model trained on En-
glish training set to predict English-PUD test set.

3.2 Dealing with Surprise Languages
There are 4 surprise languages in the CoNLL 2017
UD Shared Task. Our system simply use the
model trained on English to predict 4 surprise lan-
guages, without looking at the input words.

4 Results

We trained our system based on a MacBook Air
with a Intel Core i5 1.6 GHz CPU and 4G memory.
We used the official TIRA (Potthast et al., 2014)
to evaluate the system. We used Dynet neural net-
work library to build our system (Neubig et al.,
2017).

The hyper-parameters of the final system used
for all the reported experiments are detailed in Ta-
ble 1.

4.1 Token Representation
We compare two constructions of xi:

• lemma and POS tag (wi ◦ pi).

• lemma, POS tag and CPOS tag (wi ◦ pi ◦ qi).

The performance of different token representa-
tions on 4 example languages are given in Table 2.
The results show that the CPOS tag improves the
LAS measure between 0.5% and 0.72%.

1In UD version 2.0 datasets, Kazakh and Uyghur only contain develop-
ment set, no training set.

Word embedding dimension 100
POS tag embedding dimension 25

CPOS tag embedding dimension 10
Label embedding dimension 25

Hidden units in MLP 100
BiLSTM layers 2

BiLSTM hidden layer dimensions 125
BiLSTM output layer dimensions 125

α (for word dropout) 0.25
Learning rate 0.1

Optimization algorithm Adam

Table 1: Hyper-parameter values used in shared
task.

Language wi ◦ pi wi ◦ pi ◦ qi

Bulgarian(bg) 83.78 84.28
Catalan(ca) 85.67 86.26
German(de) 70.77 71.49
English(en) 75.91 76.42

Table 2: The LAS score of two different token
representations on the 4 treebanks: Bulgarian(bg),
Catalan(ca), German(de), English(en).

4.2 BiLSTM Feature Representation
Performances of simple feature representation and
extended feature representation are given in Ta-
ble 3. The results show that the extended feature
representation slightly increases the performance
of our system. while the simple feature represen-
tation can significantly speed up the system.

Simple Feature Extended Feature
LAS train(sec) test(sec) LAS train(sec) test(sec)

bg 84.24 205.6 22.4 84.28 287.9 29.1
ca 85.74 663.5 37.2 86.26 878.5 48.8
de 71.15 416.8 29.8 71.49 733.2 37.4
en 76.18 375.6 24.5 76.42 524.8 31.1

Table 3: Comparison of Simple and Extended fea-
ture representations, we report LAS score, offline
training time, and TIRA testing time.

4.3 Overall Performances
In our final submitted system to the shared task,
we used lemmas, POS tags and CPOS tags in to-
ken representation and selected extended feature
representation.

The macro-average LAS of the 55 big treebanks
is 68.37% and the results for each language are

239

Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)

ar 65.65(72.90) bg 84.28(89.81) ca 86.26(90.70) cs 83.85(90.17)
cs cac 83.22(90.43) cs cltt 68.42(85.82) cu 48.95(76.84) da 72.78(82.97)

de 71.49(80.71) el 78.72(87.38) en 76.42(82.23) en lines 72.66(82.09)
en partut 73.74(84.46) es 75.41(87.29) es ancora 78.64(89.99) et 55.40(71.65)

eu 62.89(81.44) fa 61.43(86.31) fi 69.86(85.64) fi ftb 75.13(86.81)
fr 80.07(85.51) fr sequoia 79.00(87.31) gl 79.28(83.23) got 57.02(71.36)

grc 49.30(73.19) grc proiel 60.61(75.28) he 58.10(68.16) hi 86.76(91.59)
hr 76.59(85.25) hu 57.85(77.56) id 74.40(79.19) it 86.14(90.68)
ja 73.00(91.13) ko 63.21(82.49) la ittb 74.37(87.02) la proiel 54.07(71.55)
lv 59.50(74.01) nl 68.84(80.48) nl lassysmall 71.53(87.71) no bokmaal 75.96(89.88)

no nynorsk 70.97(88.81) pl 67.63(90.32) pt 62.85(87.65) pt br 79.71(91.36)
ro 64.38(85.92) ru 56.56(83.65) ru syntagrus 82.42(92.60) sk 60.48(86.04)
sl 61.28(91.51) sv 61.43(85.87) sv lines 61.09(82.89) tr 49.11(62.79)
ur 61.77(82.28) vi 31.67(47.51) zh 58.03(68.56)

Table 4: The LAS F1 score of our system and best system on the 55 big treebanks: ar, bg, ca, cs, cs cac,
cs cltt, cu, da, de, el, en, en lines, en partut, es, es ancora, et, eu, fa, fi, fi ftb, fr, fr sequoia, gl, got, grc,
grc proiel, he, hi, hr, hu, id, it, ja, ko, la ittb, la proiel, lv, nl, nl lassysmall, no bokmaal, no nynorsk, pl,
pt, pt br, ro, ru, ru syntagrus, sk, sl, sv, sv lines, tr, ur, vi, zh.

Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)

fr partut 72.40(88.13) ga 55.07(70.06) gl treegal 61.17(74.34) kk (29.22)
la 38.00(63.37) sl sst 23.77(59.07) ug (43.51) uk 20.61(75.33)

Table 5: The LAS F1 score of our system and best system on the 8 small treebanks: fr partut, ga,
gl treegal, kk, la, sl sst, ug, uk.

Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)

ar pud 43.70(49.94) cs pud 80.44(84.42) de pud 69.13(74.86) en pud 79.02(85.51)
es pud 72.61(81.05) fi pud 71.77(88.47) fr pud 73.92(78.81) hi pud 51.07(54.49)
it pud 83.79(88.14) ja pud 76.66(83.75) pt pud 59.32(78.48) ru pud 52.73(75.71)
sv pud 54.83(78.49) tr pud 22.52(38.22)

Table 6: The LAS F1 score of our system and best system on the 14 PUD treebanks (additional parallel
test sets): ar pud, cs pud, de pud, en pud, es pud, fi pud, fr pud, hi pud, it pud, ja pud, pt pud, ru pud,
sv pud, tr pud.

Language LAS(max) Language LAS(max) Language LAS(max) Language LAS(max)

bxr 12.44(32.24) hsb 14.19(61.70) kmr 8.62(47.53) sme 10.00(48.96)

Table 7: The LAS F1 score of our system and best system on the 4 surprise language treebanks: bxr, hsb,
kmr, sme.

240

shown in Table 4. The macro-average LAS of the
8 small treebanks is 33.88% and the results for
each language are shown in Table 5. The macro-
average LAS of the 14 PUD treebanks is 63.68%
and the results for each language are shown in Ta-
ble 6. The macro-average LAS of the 4 surprise
language treebanks is 11.31% and the results for
each language are shown in Table 7. The macro-
averaged LAS F1 score of our system on all tree-
banks is 61.33%.

4.4 Computational Efficiencies

The parser is fast. Offline training time is about
300 words/sec. Prediction time on the official
TIRA is about 400 words/sec without asking for
more resources.

Memory requirements are lower than 512M for
each language.

5 Conclusions

In this paper, we present a fast and lightweight
multilingual dependency parsing system for the
CoNLL 2017 UD Shared Task, which composed
of a BiLSTMs feature extractor and a MLP classi-
fier. Our system only uses UD version 2.0 datasets
(without any additional data). The parser makes
a good ranking at some of the big treebanks. The
results suggests that the simple BiLSTM extrac-
tor is a reasonable baseline for multilingual depen-
dency parsing. We will continue to improve our
system and add cross-lingual techniques in our fu-
ture work.

Acknowledgments

We would like to thank the CoNLL 2017 UD
Shared Task organizers (Jan Hajič, Daniel Zeman,
Joakim Nivre, Filip Ginter, Slav Petrov, Milan
Straka , Martin Popel, Eduard Bejček, Martin Pot-
thast et al.).

This research is supported by
NSFC(61402175).

References

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, CoNLL 2006,
New York City, USA, June 8-9, 2006. pages 149–
164. http://aclweb.org/anthology/W/W06/W06-
2920.pdf.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing (EMNLP).

Eliyahu Kiperwasser and Yoav Goldberg.
2016. Simple and accurate dependency
parsing using bidirectional LSTM fea-
ture representations. TACL 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/
885.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algo-
rithms for transition-based dependency parsers. In
The 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, Proceedings of the Conference, 19-24
June, 2011, Portland, Oregon, USA. pages 673–682.
http://www.aclweb.org/anthology/P11-1068.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan T. Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The conll 2007 shared task on de-
pendency parsing. In EMNLP-CoNLL 2007, Pro-
ceedings of the 2007 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, June
28-30, 2007, Prague, Czech Republic. pages 915–
932. http://www.aclweb.org/anthology/D07-1096.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/

241

11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. CoRR abs/1506.06158.
http://arxiv.org/abs/1506.06158.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

242

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 243–252,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

The ParisNLP entry at the ConLL UD Shared Task 2017:
A Tale of a #ParsingTragedy

Éric de La Clergerie1 Benoı̂t Sagot1 Djamé Seddah2,1

(1) Inria (2) Université Paris Sorbonne
{firstname.lastname}@inria.fr

Abstract

We present the ParisNLP entry at the UD
CoNLL 2017 parsing shared task. In ad-
dition to the UDpipe models provided,
we built our own data-driven tokenization
models, sentence segmenter and lexicon-
based morphological analyzers. All of
these were used with a range of different
parsing models (neural or not, feature-rich
or not, transition or graph-based, etc.) and
the best combination for each language
was selected. Unfortunately, a glitch in the
shared task’s Matrix led our model selec-
tor to run generic, weakly lexicalized mod-
els, tailored for surprise languages, instead
of our dataset-specific models. Because of
this #ParsingTragedy, we officially ranked
27th, whereas our real models finally un-
officially ranked 6th.

1 Introduction

The Universal Dependency parsing shared task
(Zeman et al., 2017) was arguably the hardest
shared task the field has seen since the CoNLL
2006 shared task (Buchholz and Marsi, 2006)
where 13 languages had to be parsed in gold to-
ken, gold morphology mode, while its follow up in
2007 introduced an out-of-domain track for a sub-
set of the 2006 languages (Nivre et al., 2007). The
SANCL “parsing the web” shared task (Petrov and
McDonald, 2012) introduced the parsing of En-
glish non-canonical data in gold token, predicted
morphology mode and saw a large decrease of per-
formance compared to what was usually reported
in English parsing of the Penn Treebank . As far
as we know, the SPMRL shared tasks (Seddah
et al., 2013, 2014) were first to introduce a non
gold tokenization, predicted morphology, scenario
for two morphologically rich languages, Arabic

and Hebrew while, for other languages, complex
source tokens were left untouched (Korean, Ger-
man, French. . .). Here, the Universal Dependency
(hereafter “UD”) shared task introduced an end-
to-end parsing evaluation protocol where none of
the usual stratification layers were to be evaluated
in gold mode: tokenization, sentence segmenta-
tion, morphology prediction and of course syn-
tactic structures had to be produced1 for 46 lan-
guages covering 81 datasets. Some of them are
low-resource languages, with training sets con-
taining as few as 22 sentences. In addition, an
out-of-domain scenario was de facto included via
a new 14-language parallel test set. Because of the
very nature of the UD initiative, some languages
are covered by several treebanks (English, French,
Russian, Finnish. . .) built by different teams, who
interpreted the annotation guidelines with a certain
degree of freedom when it comes to rare, or sim-
ply not covered, phenomena.2 Let us add that our
systems had to be deployed on a virtual machine
and evaluated in a total blind mode with different
metadata between the trial and the test runs.

All those parameters led to a multi-dimension
shared task which can loosely be summarized by
the following “equation”:

Lang.Tok.WS.Seg.Morph.DS.OOD.AS.Exp,

where Lang stands for Language, Tok for tok-
enization, WS for word segmentation, Seg for
sentence segmentation, Morph for predicted mor-
phology, DS for data scarcity, OOD for out-of-
domainness, AS for annotation scheme, Exp for
experimental environment.

1Although baseline prediction for all layers were made
available through Straka et al.’s (2016) pre-trained models or
pre-annotated development and test files.

2See for example, the discrepancy between frpartut and
the other French treebanks regarding the annotation of the
not so rare car conjunction, ‘for/because’, and the asso-
ciated syntactic structures, cf. https://github.com/
UniversalDependencies/docs/issues/432.

243

In this shared task, we earnestly tried to cover
all of these dimensions, ranking #3 in UPOS tag-
ging and #5 in sentence segmentation. But we
were ultimately strongly impacted by the Exp pa-
rameter (cf. Section 6.3), a parameter we could not
control, resulting in a disappointing rank of #27
out of 33. Once this variable was corrected, we
reached rank #6.3

Our system relies on a strong pre-processing
pipeline, which includes lexicon-enhanced statis-
tical taggers as well as data-driven tokenizers and
sentence segmenters. The parsing step proper
makes use for each dataset of one of 4 parsing
models: 2 non-neural ones (transition and graph-
based) and extensions of these models with char-
acter and word-level neural layers.

2 Architecture and Strategies

In preparation for the shared task, we have de-
veloped and adapted a number of different mod-
els for tokenization4 and sentence segmentation,
tagging—predicting UPOS and the values for a
(manually selected, language-independent) subset
of the morphological attributes (hereafter “par-
tial MSTAGs”)— and parsing. For each dataset
for which training data was available, we com-
bined different pre-processing strategies with dif-
ferent parsing models and selected the best per-
forming ones based on parsing F-scores on the
development set in the predicted token scenario.
Whenever no development set was available, we
achieved this selection based on a 10-fold cross-
evaluation on the training set.

Our baseline pre-processing strategy consisted
in simply using the data annotated using UDPipe
(Straka et al., 2016) provided by the shared task
organizers. We also developed new tools of our
own, namely a tagger as well as a joint tokenizer
and sentence segmenter. We chose whether to use
the baseline UDPipe annotations or our own an-
notations for each of the following steps: sentence
segmentation, tokenization, and tagging (UPOS
and partial MSTAGs). We used UDPipe-based in-
formation in all configurations for XPOS, lemma,
and word segmentation, based on an a posteriori
character-level alignment algorithm.

3http://universaldependencies.org/
conll17/results-unofficial.html

4We follow the shared task terminology in differentiating
tokenization and word segmentation. A tokenizer only per-
forms token segmentation (i.e. source tokens), and does not
predict word segmentation (i.e. wordforms, or tree tokens).

At the parsing level, we developed and tried
five different parsers, both neural and non-neural,
which are variants of the shift-reduce (hereafter
“SR”) and maximum spanning-tree algorithms
(hereafter “MST”). The next two sections describe
in more detail our different pre-processing and
parsing architectures, give insights into their per-
formance, and show how we selected our final ar-
chitecture for each dataset.

3 Pre-processing

3.1 Tagging
Tagging architecture Taking advantage of the
opportunity given by the shared task, we devel-
oped a new part-of-speech tagging system inspired
by our previous work on MElt (Denis and Sagot,
2012), a left-to-right maximum-entropy tagger re-
lying on features based on both the training corpus
and, when available, an external lexicon. The two
main advantages of using an external lexicon as
a source of additional features are the following:
(i) it provides the tagger with information about
words unknown to the training corpus; (ii) it al-
lows the tagger to have a better insight into the
right context of the current word, for which the
tagger has not yet predicted anything.

Whereas MElt uses the megam package to learn
tagging models, our new system, named alVW-
Tagger, relies on Vowpal Wabbit.5 One of Vowpal
Wabbit’s major advantages is its training speed,
which allowed us to train many tagger variants for
each language, in order to assess, for each lan-
guage, the relative performance of different types
of external lexicons and different ways to use them
as a source of features. In all our experiments, we
used VW in its default multiclass mode, i.e. us-
ing a squared loss and the one-against-all strategy.
Our feature set is a slight extension of the one used
by MElt (cf. Denis and Sagot, 2012).

The first improvement over MElt concerns how
information extracted from the external lexicons
is used: instead of only using the categories pro-
vided by the lexicon, we also use morphological
features. We experimented different modes. In the
baseline mode, the category provided by the lexi-
con is the concatenation of a UPOS and a sequence
of morphological features, hereafter the “full cat-
egory”. In the F mode (“ms mode” in Table 1),
only the UPOS is used (morphological features

5https://github.com/JohnLangford/
vowpal_wabbit/

244

are ignored). In the M mode, both the full cate-
gory and the sequence of morphological features
are used separately. Finally, in the FM mode, both
the UPOS and the sequence of morphological fea-
tures are used separately.

The second improvement over MElt is that
alVWTagger predicts both a part-of-speech (here,
a UPOS) and a set of morphological features. As
mentioned earlier, we decided to restrict the set of
morphological features we predict, in order to re-
duce data sparsity.6 For each word, our tagger first
predicts a UPOS. Next, it uses this UPOS as a fea-
ture to predict the set of morphological features as
a whole, using an auxiliary model.7

Extraction of morphological lexicons As men-
tioned above, our tagger is able to use an exter-
nal lexicon as a source of external information.
We therefore created a number of morphological
lexicons for as many languages as possible, rely-
ing only on data and tools that were allowed by
the shared task instructions. We compared the
UPOS accuracies on the development sets, or on
the training sets in an 10-fold setting when no
development data was provided, and retained the
best performing lexicon for each dataset (see Ta-
ble 1). Each lexicon was extracted from one of the
following sources or several of them, using an a
posteriori merging algorithm:

• The monolingual lexicons from the Apertium
project (lexicon type code “AP” in Table 1);

• Raw monolingual raw corpora provided by
the shared task organizers, after application
of a basic rule-based tokenizer and the appro-
priate Apertium or Giellatekno morphologi-
cal analyzers (codes “APma” or “GTma”);

• The corresponding training dataset (code
“T”) or another training dataset for the same
language (code “Tdataset”);

• The UDPipe-annotated corpora provided by
the shared task organizers (code “UDP”);

• A previously extracted lexicon for an-
other language, which we automatically
“translated” using a dedicated algorithm,
which we provided, as a seed, with a
bilingual lexicon automatically extracted
from OPUS sentence-aligned data (code
“TRsource language”).

6The list of features we retained is the following: Case,
Gender, Number, PronType, VerbForm, Mood, and Voice.

7We also experimented with per-feature prediction, but it
resulted in slightly lower accuracy results on average, as mea-
sured on development sets.

All lexical information not directly extracted
from UDPipe-annotated data or from training data
was converted to the UD morphological categories
(UPOS and morphological features).

For a few languages only (for lack of time), we
also created expanded versions of our lexicons us-
ing word embeddings re-computed on the raw data
provided by the organizers, assigning to words un-
known to the lexicon the morphological informa-
tion associated with the closest known word (using
a simple euclidian distance on the word embed-
ding space).8 When the best performing lexicon
is one of these extended lexicons, it is indicated in
Table 1 by the “-e” suffix.

3.2 Tokenization and sentence segmentation

Using the same architecture as our tagger, yet
without resorting to external lexicons, we devel-
oped a data-driven tokenizer and sentence seg-
menter, which runs as follows. First, a simple
rule-based pre-tokenizer is applied to the raw text
of the training corpus, after removing all sen-
tence boundaries.9,10 This pre-tokenizer outputs
a sequence of “pre-tokens,” in which, at each
pre-token boundary, we keep trace of whether a
whitespace was present in the raw text or not at
this position. Next, we use the gold train data
to label each pre-token boundary with one of the
following labels: not a token boundary (NATB),
token boundary (TB), sentence boundary (SB).11

This model can then be applied on raw text, af-
ter the pre-tokenizer has been applied. It labels
each pre-token boundary, resulting in the follow-
ing decisions depending on whether it corresponds
to a whitespace in the raw text or not: (i) if
it predicts NATB at a non-whitespace boundary,
the boundary is removed; (ii) if it predicts NATB
at a whitespace boundary, it results in a token-
with-space; (iii) if it predicts TB (resp. SB) at
a non-whitespace boundary, a token (resp. sen-
tence) boundary is created and “SpaceAfter=No”
is added to the preceedings token; (iv) if it predicts

8We did not used the embeddings provided by the organiz-
ers because we experimentally found that the 10-token win-
dow used to train these embeddings resulted in less accurate
results than when using smaller windows, especially when
the raw corpus available was of a limited size.

9Apart from paragraph boundaries whenever available.
10On languages such as Japanese and Chinese, each non-

latin character is a pre-token on its own.
11Our tokenizer and sentence segmenter relies on the al-

most same features as the tagger, except for two special fea-
tures, which encode whether the current pre-token is a strong
(resp. weak) punctuation, based on two manually crafted lists.

245

Dataset ours (best setting) UDPipe Dataset ours (best setting) UDPipe Dataset ours (best setting) UDPipe
lexicon ms overall overall lexicon ms overall overall lexicon ms overall overall

type mode acc. acc. type mode acc. acc. type mode acc. acc.

ar AP-e M 94.71 94.57 fr AP-e 97.30 97.08 nl AP F 94.70 94.07
bg AP F 97.61 97.72 frsequoia AP-e FM 97.54 96.60 nllassysmall AP+Tnl F 96.74 95.65
ca AP-e FM 98.42 98.15 ga UDP M — — nobokmaal AP 97.66 97.34
cs AP M 98.83 98.48 gl AP FM 97.45 96.77 nonynorsk AP M 97.23 96.74
cscac Tcs 99.24 98.78 got T 94.53 94.22 pl AP M 97.03 95.34
cscltt AP+Tcs F 94.34 92.06 grc Tgrcproiel-e 89.56 81.54 pt AP FM 97.21 97.00
cu T F 95.15 94.07 grcproiel UDP-e FM 96.40 96.01 ptbr AP+Tpt FM 97.96 97.40
da AP 96.30 95.19 he AP FM 96.68 95.72 ro AP 97.34 96.98
de AP M 92.70 91.39 hi AP F 96.59 95.79 ru AP M 96.62 94.95
el AP F 95.53 94.17 hr TRsl M 96.94 96.15 rusyntagrus AP FM 98.54 98.20
en AP F 94.68 94.43 hu T 93.90 92.31 sk TRcs FM 96.00 93.14
enlines AP FM 96.08 94.75 id AP M 92.98 93.36 sl AP FM 97.82 96.34
enpartut AP+T FM 95.90 94.39 it AP F 97.55 97.23 sv AP FM 96.32 95.17
es AP 96.47 96.24 itpartut Trit M 97.89 95.16 svlines AP F 96.01 94.63
esancora AP FM 98.39 98.16 ja no lexicon 96.87 96.72 tr APma FM 93.65 92.25
et GTms FM 89.28 87.52 kk APms — — ug UDP — —
eu AP F 94.48 92.80 ko no lexicon 93.77 93.68 uk AP M — —
fa no lexicon 96.04 96.17 laittb TRit+T 97.15 96.86 ur AP 93.01 92.45
fi GTms FM 95.06 94.52 laproiel TRit+T-e FM 95.62 95.43 vi no lexicon 88.60 88.68
fiftb GTms F 92.50 92.34 lv AP FM 93.43 90.81 zh AP+UDP 91.40 91.21

Table 1: UPOS accuracies for the UDPipe baseline and for our best alVWTagger setting.

TB (resp. SB) at a whitespace boundary, a token
(resp. sentence) boundary is created.

We compared our tokenization and sentence
segmentation results with the UDPipe baseline on
development sets. Whenever the UDPipe tok-
enization and sentence segmentation scores were
both better, we decided to use them in all config-
urations. Other datasets, for which tokenization
and sentence segmentation performance is shown
in Table 2, were split into two sets: those on which
our tokenization was better but sentence segmen-
tation was worse—for those, we forced the UD-
Pipe sentence segmentation in all settings—, and
those for which both our tokenization and sentence
segmentation were better.

3.3 Preprocessing model configurations

As mentioned in Section 2, we used parsing-based
evaluation to select our pre-processing strategy for
each corpus. More precisely, we selected for each
dataset one of the following strategies:

1. UDPIPE: the UDPipe baseline is used and
provided as such to the parser.

2. TAG: the UDPipe baseline is used, except for
the UPOS and MSTAG information, which is
provided by our own tagger.

3. TAG+TOK+SEG and TAG+TOK: we apply
our own tokenization and POS-tagger to pro-
duce UPOS and MSTAG information; sen-
tence segmentation is performed either by us
(TAG+TOK+SEG (available for datasets with
“yes” in the last column in Table 2) or by
the UDPipe baseline (TAG+TOK, available
for datasets with “no” in Table 2).

Dataset ours UDPIPE Use our
tok. sent. tokenis. sent. sent.
F-sc. F-sc. F-sc. F-sc. seg.?

ar 99.54 92.75 99.99 77.99 yes
ca 99.95 99.01 99.97 98.77 yes
cscac 100.00 99.5 100.00 99.09 yes
cu 99.98 39.44 100.00 37.09 yes
da 100.00 84.01 99.68 84.36 no
el 99.57 92.61 99.87 88.67 yes
et 99.69 90.82 99.79 84.91 yes
eu 99.93 99.42 99.99 99.00 yes
fa 99.95 99.42 100.00 97.14 yes
fi 99.54 87.76 99.69 86.47 yes
fiftb 100.00 85.94 99.94 82.52 yes
gl 99.73 96.8 99.06 92.44 yes
got 99.99 28.95 100.00 23.51 yes
hu 99.74 96.83 99.91 94.55 yes
it 99.73 96.31 99.82 93.20 yes
ja 92.63 99.61 89.53 99.71 no
laittb 99.90 78.71 99.88 77.38 yes
laproiel 100.00 19.92 99.99 19.76 yes
lv 99.21 91.48 98.91 96.48 no
nonynorsk 99.82 94.30 99.92 93.05 yes
pt 99.89 90.23 99.82 89.27 yes
vi 87.25 92.23 83.99 96.28 no

Table 2: Tokenization and sentence segmentation
accuracies for the UDPipe baseline and our tok-
enizer (restricted to those datasets for which we
experimented the use of our own tokenization).

Whenever we used our own tokenization and not
that of the UDPipe baseline, we used a character-
level alignment algorithm to map this information
to our own tokens.

Table 1 shows the configuration retained for
each language for which a training set was
provided in advance.12 For surprise language

12Note that our parsing-performance-based selection strat-
egy did not always result in the same outcome as what we
would have been chosen based solely on the comparison of
our own tools with UDPipe’s baseline. For instance, our new
tagger gets better results than UDPipe in UPOS tagging on
all development corpora but one, yet we used UDPipe-based
UPOS for 24 non-PUD corpora.

246

datasets, we always used the UDPipe configura-
tion.13 For PUD corpora, we used the same con-
figuration as for the basic dataset for the same lan-
guage (for instance, we used for the frpud dataset
the same configuration as that chosen for the fr
dataset).14 Table 1 indicates for each dataset
which configuration was retained.

4 Parsing Models

We used 4 base parsers, all implemented on top
of the DYALOG system (de La Clergerie, 2005),
a logic-programming environment (à la Prolog)
specially tailored for natural language processing,
in particular for tabulation-based dynamic pro-
gramming algorithms.

Non-neural parsing models The first two
parsers are feature-based and use no neural com-
ponents. The most advanced one is DYALOG-
SR, a shift-reduce transition-based parser, us-
ing dynamic programming techniques to maintain
beams (Villemonte De La Clergerie, 2013). It ac-
cepts a large set of transition types, besides the
usual shift and reduce transitions of the arc-
standard strategy. In particular, to handle non-
projectivity, it can use different instances of swap
transitions, to swap 2 stack elements between the
3 topmost ones. A noop transition may also be
used at the end of parsing paths to compensate
differences in path lengths. Training is done with
a structured averaged perceptron, using early ag-
gressive updates, whenever the oracle falls out of
the beam, or when a violation occurs, or when a
margin becomes too high, etc.15

Feature templates are used to combine elemen-
tary standard features:

• Word features related to the 3 topmost
stack elements si=0···2, 4 first buffer ele-
ments Ij=1···4, leftmost/rightmost children
[lr]si /grandchildren of the stack elements
[lr]2si, and governors. These features in-
clude the lexical form, lemma, UPOS, XPOS,

13For surprise languages, the UDPipe baseline was trained
on data not available to the shared task participants.

14Because of a last-minute bug, we used the TAG configu-
ration for trpud and ptpud although we used the UDPIPE con-
figuration for tr and pt. We also used the TAG setting for fipud
rather than the TAG+TOK+SEG setting used for fi.

15By “violation,” we mean for instance adding an edge not
present in the gold tree, a first step towards dynamic oracles.
We explored this path further for the shared task through dy-
namic programming exploration of the search space, yet did
not observe significant improvements yet.

morphosyntactic features, Brown-like clus-
ters (derived from word embeddings), and
flags indicating capitalization, numbers, etc.

• Binned distances between some of these ele-
ments

• Dependency features related to the left-
most/rightmost dependency labels for si (and
dependent [lr]si), label set for the dependents
of si and [lr]si, and number of dependents

• Last action (+label) leading to the current
parsing state.

The second feature-based parser is DYALOG-
MST, a parser developed for the shared task
and implementing the Maximum Spanning Tree
(MST) algorithm (McDonald et al., 2005). By
definition, DYALOG-MST may produce non-
projective trees. Being recent and much less flex-
ible than DYALOG-SR, it also relies on a much
smaller set of first-order features and templates,
related to the source and target words of a depen-
dency edge, plus its label and binned distance. It
also exploits features related to the number of oc-
currences of a given POS between the source and
target of an edge (inside features) or not covered
by the edge but in the neighborhood of the nodes
(outside features). Similar features are also imple-
mented for punctuation.

Neural parsing models Both feature-based
parsers were then extended with a neural-based
component, implemented in C++ with DyNet
(Neubig et al., 2017). The key idea is that the
neural component can provide the best parser ac-
tion or, if aksed, a ranking of all possible actions.
This information is then used as extra features to
finally take a decision. The 2 neural-based vari-
ants of DYALOG-SR and DYALOG-MST, straight-
forwardly dubbed DYALOG-SRNN and DYALOG-
MSTNN, implement a similar architecture, the one
for DYALOG-SRNN being a bit more advanced
and stable. Moreover, DYALOG-MSTNN was only
found to be the best choice for a very limited num-
ber of treebanks. In addition to these models,
we also investigated a basic version of DYALOG-
SRNN that only uses, in a feature-poor setting, its
character-level component and its joint action pre-
diction, and which provides the best performance
on 3 languages. The following discussion will fo-
cus on DYALOG-SRNN.

The architecture is inspired by Google’s
PARSEYSAURUS (Alberti et al., 2017), with a
first left-to-right char LSTM covering the whole

247

sentence and (artificial) whitespaces introduced
to separate tokens.16 The output vectors of the
char LSTM at the token separations are used as
(learned) word embeddings that are concatenated
(when present) with both the pre-trained ones pro-
vided for the task and the UPOS tags predicted
by the external tagger. The concatenated vectors
serve as input to a word bi-LSTM that is also used
to predict UPOS tags as a joint task (training with
the gold tags provided as oracle). For a given word
wi, its final vector representation is the concatena-
tion of the output of the bi-LSTM layers at posi-
tion i with the LSTM-predicted UPOS tag.

The deployment of the LSTMs is done once
for a given sentence. Then, for any parsing state,
characterized by the stack, buffer, and dependency
components mentioned above, a query is made to
the neural layers to suggest an action. The query
fetches the final vectors associated with the stack,
buffer, and dependent state words, and completes
it with input vectors for 12 (possibly empty) label
dependencies and for the last action. The number
of considered state words is a hyper-parameter of
the system, which can range between 10 and 19,
the best and default value being 10, covering the 3
topmost stack elements and 6 dependent children,
but only the first buffer lookahead word17 and no
grandchildren. Through a hidden layer and a soft-
max layer, the neural component returns the best
action paction (and plabel) but also the rank-
ing and weights of all possible actions. The best
action is used as a feature to guide the decision
of the parser in combination with the other fea-
tures, the final weight of an action being a linear
weighted combination of the weights returned by
both perceptron and neural layers.18

A dropout rate of 0.25 was used to introduce
some noise. The Dynet AdamTrainer was cho-
sen for gradient updates, with its default param-
eters. Many hyperparameters are however avail-
able as options, such as the number of layers of the
char and word LSTMs, the size of input, hidden
and output dimensions for the LSTMs and feed-
forward layers. A partial exploration of these pa-
rameters was run on a few languages, but not in a
systematic way given the lack of time and the huge

16A better option would be to add whitespace only when
present in the original text.

17We suppose the information relative to the other looka-
head words are encapsulated in the final vector of the first
lookahead word.

18The best way to combine the weights of the neural and
feature components remains a point to further investigate.

number of possibilities. Clearly, even if we did try
380 distinct parsing configurations through around
16K training runs,19 we are still far away from
language-specific parameter tuning, thus leaving
room for improvement.

5 Results

Because of the greater flexibility of transition-
based parsers, MST-based models were only used
for a few languages. However, our results, pro-
vided in the Appendix, show the good perfor-
mance of these models, for instance on Old
Church Slavonic (cu), Gothic (got), Ancient Greek
(grc), and Kazakh (kk). Already during develop-
ment, it was surprising to observe, for most lan-
guages, a strong preference for either SR-based
models or MST-based ones. For instance, for An-
cient Greek, the best score in gold token mode for
a MST-based model is 62.43 while the best score
for a SR-based one is 60.59. On the other hand,
for Arabic (ar), we get 74.87 for the best SR model
and 71.44 for the best MST model.

Altogether, our real, yet unofficial scores are
encouraging (ranking #6 in LAS) while our offi-
cial UPOS tagging, sentence segmentation and to-
kenization results ranked respectively #3, #6 and
#5. Let us note that our low LAS official results,
#27, was the result of a mismatch between the
trial and test experimental environments provided
by the organizers (cf. Section 6.3). However, we
officially ranked #5 on surprise languages, which
were not affected by this mismatch.

6 Discussion

While developing our parsers, training and eval-
uation were mostly performed using the UDPipe
pre-processing baseline with predicted UPOS and
MSTAGs but gold tokenization and gold sentence
segmentation. For several (bad) reasons, only in
the very last days did we train on files tagged
with our preprocessing chain. Even later, eval-
uation (but no training) was finally performed
on dev files with predicted segmentation and to-
kenization, done by either UDPipe or by our
pre-processing chains (TAG, TAG+TOK+SEG or
TAG+TOK). Based on the results, we selected, for
each language and treebank, the best preprocess-
ing configuration and the best parsing model.

19We count as a training run the conjunction of a parser
configuration, a treebank, and a beam size. Please note that a
synthesis may be found at http://alpage.inria.fr/
˜clerger/UD17/synthesis.html

248

In general, we observed that neural-based mod-
els without features often worked worse than pure
feature-based parsers (such as srcat), but great
when combined with features. We believe that, be-
ing quite recent, our neural architecture is not yet
up-to-date and that we still have to evaluate sev-
eral possible options. Between using no features
(srnnsimple and srnncharsimple mod-
els) and using a rich feature set (srnnpx mod-
els), where the predicted actions paction and
plabelmay be combined with other features, we
also tested, for a few languages, a more restricted
feature set with no combinations of paction and
plabel with other features (srnncharjoin
models). These latter combinations are faster to
train and reach good scores, as shown in Table 3.

srnn
Lang srcat charsimple charjoin px

sk 76.85 67.85 78.87 80.84
cscac 84.48 77.07 84.80 84.85
lv 63.86 59.57 66.95 68.74
ko 54.43 57.19 70.91 71.45

Table 3: Neural models & feature impact (Dev)

For the treebanks without dev files, we simply
did a standard training, using a random 80/20-split
of the train files. Given more time, we would have
tried transfer from other treebanks when available
(as described below).

To summarize, a large majority of 47 selected
models were based on DYALOG-SRNN with a
rich feature set, 29 of them relying on predicted
data coming from our processing chains (TAG or
TAG+TOK+SEG), the other ones relying on the tags
and segmentation predicted by UDPipe. 10 mod-
els were based on DYALOG-MSTNN, with 5 of
them relying on our preprocessing chain. Finally,
5 (resp. 2) were simply based on DYALOG-SR

(resp. DYALOG-MST), none of them using our
preprocessing.

6.1 OOV Handling

Besides the fact that we did not train on files
with predicted segmentation, we are also aware
of weaknesses in handling unknown words in test
files. Indeed, at some point, we made the choice
to filter the large word-embedding files by the vo-
cabulary found in the train and dev files of each
dataset. We made the same for the clusters we
derived from word embeddings. It means that
unknown words have no associated word embed-

dings or clusters (besides a default one). The im-
pact of this choice is not yet clear but it should be
a relatively significant part of the performance gap
between our score of the dev set (with predicted
segmentation) and on the final test set.20

6.2 Generic Models

We also started exploring the idea of transfer-
ring information between close languages, such as
Slavic languages. Treebank families were created
for some groups of related languages by randomly
sampling their respective treebanks as described in
Table 4. A fully generic treebank was also created
by randomly sampling 41k sentences from almost
all languages (1k sentences per primary treebank).

Model Languages #sent.

ZZNorthGerman da, no, sv 8k
ZZRoman fr, ca, es, it, pt, ro, gl 20k
ZZSouthSlavic bg, cu, hr, sl 16k
ZZWestSlavic cs, pl, sk 9k
ZZWestGerman de, du, nl 12k
ZZGeneric sampling main 46 lang. 41k

Table 4: Generic models partition

The non-neural parsers were trained on these
new treebanks, using much less lexicalized infor-
mation (no clusters, no word embeddings, no lem-
mas, and keeping only UPOS tags, but keeping
forms and lemmas when present). We tested using
the resulting models, whose named are prefixed
with “ZZ”, as base models for further training on
some small language treebanks. However, prelim-
inary evaluations did not show any major improve-
ment and, due to lack of time, we put on hold this
line of research, while keeping our generic parsers
as backup ones.

Some of these generic parsers were used for the
4 surprise languages, with Upper Sorbian using
a ZZSSlavic parser21 (LAS=56.22), North Saami
using ZZFinnish (LAS=37.33), and the two other
ones using the fully generic parser (Kurmanji
LAS=34.8; Buryat LAS=28.55).

6.3 The Tragedy

Ironically, the back-off mechanism we set up for
our model selection was also a cause of failure and
salvation. Because of the absence of the name

20An average of 0.4 points between dev and tests. Dev
results available at goo.gl/lyuC8L.

21We had planned to use a ZZWSlavic parser but made a
mistake in the configuration file.

249

field in the test set metadata, which was never-
theless present in the dev run and crucially also
in the trial run metadata, the selection of the best
model per language was broken and led to the se-
lection of back-off models, either a family one
or in most cases the generic one. The Tira blind
test configuration prevented us from discovering
this experimental discrepancy before the deadline.
Once we adapted our wrapper to the test meta-
data, the appropriate models were selected, result-
ing in our real run results. It turned out that our
non language-specific, generic models performed
surprisingly well, with a macro-average F-score of
60% LAS. Of course, except for Ukrainian, our
language-specific models reach much better per-
formance, with a macro-average F-score of 70.3%.
But our misadventure is an invitation to further in-
vestigation.

However, it is unclear at this stage whether
or not mixing languages in a large treebank re-
ally has advantages over using several small tree-
banks. In very preliminary experiments on Greek,
Arabic, and French, we extracted the 1000 sen-
tences present in the generic treebank for these
languages and trained the best generic configura-
tion (srcat, beam 6) on each of these small tree-
banks. As shown in Table 5, the scores on the
development sets do not exhibit any improvement
coming from mixing languages in a large pool and
are largely below the scores obtained on a larger
language-specific treebank.

Lang generic small full size

Greek 76.25 76.29 78.40 1,662
Arabic 57.94 59.84 64.34 6,075
French 78.28 79.59 84.81 14,553

Table 5: Generic pool vs. small treebank vs. full
treebank (with srcat models (LAS, Dev)

6.4 Impact of the Lexicon
We also investigated the influence of our tagging
strategy with respect to the UDPipe baseline. Fig-
ure 1 plots the parsing LAS F-scores with respect
to training corpus size. It also show the result
of logarithmic regressions performed on datasets
for which we used the UDPipe baseline for pre-
processing versus those for which we used the
TAG configuration. As can be seen, using the UD-
Pipe baseline results in a much stronger impact of
training corpus size, whereas using our own tag-
ger leads to more stable results. We interpret this

40

45

50

55

60

65

70

75

80

85

90

TAG
TAG+TOK+SEG
TAG+TOK
UDPIPE

10,000 100,000 1,000,000

Training corpus size (in words)

LA
S

ac
cu

ra
cy

 o
n

th
e

te
st

se
t

(Regression)

(Regression)

Figure 1: LAS F-score w.r.t. training corpus size

observation as resulting from the influence of ex-
ternal lexicons during tagging, which lowers the
negative impact of out-of-training-corpus words
on tagging and therefore parsing performance. It
illustrates the relevance of using external lexical
information, especially for small training corpora.

7 Conclusion

The shared task was a excellent opportunity for us
to develop a new generation of NLP components
to process a large spectrum of languages, using
some of the latest developments in deep learning.
However, it was really a challenging task, with an
overwhelming number of decisions to take and ex-
periments to run over a short period of time.

We now have many paths for improvement.
First, because we have a very flexible but newly
developed architecture, we need to stabilize it by
carefully selecting the best design choices and pa-
rameters. We also plan to explore the potential of
a multilingual dataset based on the UD annotation
scheme, focusing on cross-language transfer and
language-independent models.

Acknowledgments

We thank the organizers and the data providers
who made this shared task possible within the
core Universal Dependencies framework (Nivre
et al., 2016), namely the authors of the UD ver-
sion 2.0 datasets (Nivre et al., 2017), the base-
line UDPipe models (Straka et al., 2016), and of
course the team behind the TIRA evaluation plat-
form (Potthast et al., 2014) to whom we owe a lot.
This work was funded by the ANR projects Par-
SiTi (ANR-16-CE33-0021) and SoSweet (ANR-
15-CE38-0011-01).

250

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Dan Gillick, Lingpeng Kong, Terry Koo,
Ji Ma, Mark Omernick, Slav Petrov, Chayut
Thanapirom, Zora Tung, and David Weiss. 2017.
SyntaxNet models for the CoNLL 2017 shared task.
CoRR abs/1703.04929.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proc. of the Tenth Conference on Computational
Natural Language Learning. New York City, USA,
pages 149–164.

Éric de La Clergerie. 2005. DyALog: a tabular
logic programming based environment for NLP.
In Proceedings of 2nd International Workshop
on Constraint Solving and Language Processing
(CSLP’05). Barcelone, Espagne.

Pascal Denis and Benoı̂t Sagot. 2012. Coupling an
annotated corpus and a lexicon for state-of-the-art
POS tagging. Language Resources and Evaluation
46(4):721–736.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. pages 523–530.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). Portorož, Slovenia, pages
1659–1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proc. of the CoNLL Shared
Task Session of EMNLP-CoNLL 2007. Prague,
Czech Republic, pages 915–932.

Joakim Nivre et al. 2017. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL). Montreal, Canada,
volume 59.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author identifica-
tion, and author profiling. In Evangelos Kanoulas,
Mihai Lupu, Paul Clough, Mark Sanderson, Mark
Hall, Allan Hanbury, and Elaine Toms, editors, In-
formation Access Evaluation meets Multilingual-
ity, Multimodality, and Visualization. 5th Interna-
tional Conference of the CLEF Initiative (CLEF 14).
Springer, Berlin Heidelberg New York, pages 268–
299.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the SPMRL 2014 shared task
on parsing morphologically-rich languages. In Pro-
ceedings of the First Joint Workshop on Statisti-
cal Parsing of Morphologically Rich Languages and
Syntactic Analysis of Non-Canonical Languages.
Dublin, Ireland, pages 103–109.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Goldberg,
Spence Green, Nizar Habash, Marco Kuhlmann,
Wolfgang Maier, Joakim Nivre, Adam Przepi-
orkowski, Ryan Roth, Wolfgang Seeker, Yannick
Versley, Veronika Vincze, Marcin Woliński, Alina
Wróblewska, and Eric Villemonte de la Clérgerie.
2013. Overview of the spmrl 2013 shared task: A
cross-framework evaluation of parsing morphologi-
cally rich languages. In Proc. of the 4th Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages: Shared Task. Seattle, USA.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). Portorož,
Slovenia.

Éric Villemonte De La Clergerie. 2013. Exploring
beam-based shift-reduce dependency parsing with
DyALog: Results from the SPMRL 2013 shared
task. In 4th Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL’2013). Seat-
tle, USA.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Vancou-
ver, Canada, pages 1–20.

251

Appendix: Overall Results

Dataset Preproc. UPOS tagging Parsing (LAS)
name #train wds mode acc. rank model real run real rank official run ∆(real−official)

ar 224k UDPIPE 88.13 8 SR-nn 66.47 11 56.72 9.75
arpud — UDPIPE 70.27 8 SR-nn 45.38 10 42.73 2.65
bg 124k TAG 97.29 25 SR-nn 84.41 13 74.15 10.26
bxr — UDPIPE 84.12 1 SR-cat (Generic) 28.55 6 28.55 0
ca 418k UDPIPE 98.04 3 SR-feats 85.78 11 81.94 3.84
cs 1,173k UDPIPE 98.13 6 SR-cat 82.72 18 71.30 11.42
cscac 473k UDPIPE 98.27 8 SR-nn-charjoin 83.56 12 73.62 9.94
cscltt 16k TAG 97.77 2 SR-nn 76.72 6 58.65 18.07
cspud — UDPIPE 96.55 2 SR-cat 79.28 18 72.05 7.23
cu 37k UDPIPE 93.34 11 MST-nn 67.34 4 63.64 3.70
da 80k TAG+TOK 96.43 2 SR-nn 76.31 8 73.83 2.48
de 270k TAG 92.04 6 SR-nn 72.27 12 68.45 3.82
depud — TAG 84.58 2 SR-nn 69.79 8 65.16 4.63
el 41k TAG+TOK+SEG 96.26 3 SR-nn 82.25 5 77.00 5.25
en 205k TAG 93.52 3 SR-nn 76.00 14 70.20 5.80
enlines 50k TAG 95.99 2 SR-nn 76.01 7 64.77 11.24
enpartut 26k TAG 94.78 2 SR-nn 77.21 7 69.29 7.92
enpud — TAG 94.74 2 SR-nn 80.68 7 75.87 4.81
es 382k UDPIPE 95.60 5 SR-nn 82.09 13 77.94 4.15
esancora 445k UDPIPE 98.15 4 SR-feats 84.47 14 76.61 7.86
espud — UDPIPE 88.15 5 SR-nn 78.15 11 76.57 1.58
et 23k TAG+TOK+SEG 89.24 5 SR-nn 61.52 8 56.00 5.52
eu 73k TAG 94.01 3 SR-nn 71.70 8 50.67 21.03
fa 121k UDPIPE 96.00 7 SR-nn 80.52 9 61.93 18.59
fi 163k TAG+TOK+SEG 84.59 4 SR-nn 75.82 9 60.19 15.63
fiftb 128k TAG+TOK+SEG 93.11 2 MST-nn 75.88 9 40.21 35.67
fipud — TAG 95.98 4 SR-nn 79.68 7 62.41 17.27
fr 356k TAG 95.51 6 SR-nn 80.44 16 76.79 3.65
frpartut 18k UDPIPE 94.46 7 SR-nn 77.40 16 75.15 2.25
frpud — TAG 88.54 4 SR-nn 74.82 10 74.70 0.12
frsequoia 51k TAG 96.78 2 SR-nn 80.48 13 73.55 6.93
ga 14k TAG 90.00 3 MST-nn 62.23 13 56.35 5.88
gl 79k TAG 97.42 2 SR-nn 79.06 13 76.81 2.25
gltreegal 15k UDPIPE 90.69 9 SR-nn 64.36 21 65.95 -1.59
got 35k UDPIPE 93.55 10 MST-nn 63.40 4 58.66 4.74
grc 160k TAG 88.48 3 MST-nn 62.53 5 47.37 15.16
grcproiel 184k UDPIPE 95.72 7 MST-altcats 68.72 7 49.41 19.31
he 138k TAG 81.42 4 SR-nn 57.85 15 44.49 13.36
hi 281k TAG 96.61 3 SR-nn 87.25 10 45.72 41.53
hipud — TAG 84.62 4 SR-nn 51.46 10 32.39 19.07
hr 169k UDPIPE 95.67 12 SR-nn 78.67 9 74.81 3.86
hsb — UDPIPE 90.30 1 SR-altcats (SSlavic (!)) 56.22 9 56.22 0
hu 20k TAG 92.19 4 SR-nn 66.82 6 49.82 17
id 98k TAG 93.59 2 SR-nn 75.47 10 64.84 10.63
it 271k TAG+TOK+SEG 97.38 3 SR-nn 85.59 17 81.20 4.39
itpud — TAG+TOK+SEG 93.08 6 SR-nn 84.17 13 81.81 2.36
ja 29k TAG+TOK 90.00 5 SR-nn 77.52 6 65.15 12.37
japud — TAG+TOK 88.49 25 SR-nn 76.03 20 62.91 13.12
kk 162k TAG 67.86 1 MST-nn 26.64 4 24.73 1.91
kmr 0.5k UDPIPE 90.04 1 SR-cat (Generic) 34.80 12 34.80 0
ko 52k UDPIPE 93.79 7 SR-nn 73.26 6 40.71 32.55
la 18k UDPIPE 83.39 11 MST-nn 46.59 13 39.91 6.68
laittb 270k TAG+TOK+SEG 97.39 6 SR-nn 78.51 10 52.38 26.13
laproiel 147k UDPIPE 94.82 8 MST-altcats 60.65 10 42.68 17.97
lv 35k TAG+TOK 91.10 2 SR-nn 64.03 6 50.52 13.51
nl 186k TAG 91.57 3 SR-nn 70.28 11 56.11 14.17
nllassysmall 81k TAG 97.84 2 SR-nn 79.99 10 57.83 22.16
nobokmaal 244k UDPIPE 96.75 6 SR-nn 83.49 14 68.58 14.91
nonynorsk 245k UDPIPE 96.38 7 SR-feats 82.66 10 65.11 17.55
pl 63k TAG 96.95 2 SR-nn 83.65 6 71.98 11.67
pt 207k UDPIPE 96.22 6 SR-nn-charjoint 81.87 17 79.21 2.66
ptbr 256k TAG 97.54 2 SR-nn 86.17 13 61.30 24.87
ptpud — TAG 88.88 2 SR-nn-charjoint 74.67 10 75.00 -0.33
ro 185k UDPIPE 96.40 10 SR-nn 80.47 13 76.69 3.78
ru 76k TAG 96.60 2 SR-nn 77.61 7 66.83 10.78
rupud — TAG 86.66 3 SR-nn 71.55 3 66.17 5.38
rusyntagrus 870k UDPIPE 97.99 4 SR-altcats 86.25 18 54.19 32.06
sk 81k TAG 95.10 2 SR-nn 77.17 6 67.72 9.45
sl 113k TAG 97.36 2 SR-nn 85.41 5 80.27 5.14
slsst 19k UDPIPE 88.82 9 MST-nn 46.27 17 40.15 6.12
sme — UDPIPE 86.81 1 SR-cat (Generic) 37.33 5 37.33 0
sv 67k TAG 96.74 2 SR-nn 80.30 6 76.77 3.53
svlines 48k TAG 95.83 2 SR-nn 76.61 7 63.50 13.11
svpud — TAG 93.43 2 SR-nn 73.65 4 70.83 2.82
tr 38k UDPIPE 91.22 10 SR-nn 56.03 9 46.38 9.65
trpud — TAG 72.65 2 SR-nn 32.74 20 25.78 6.96
ug 2k TAG 74.06 9 MST-nn 34.82 10 19.65 15.17
uk 13k TAG 92.10 2 MST-nn 64.58 6 65.52 -0.94
ur 109k TAG 92.65 6 SR-nn 77.46 12 39.73 37.73
vi 20k TAG+TOK 77.64 2 SR-nn 42.40 3 33.00 9.40
zh 99k UDPIPE 82.69 11 SR-nn 59.28 12 45.83 13.45

Overall (macro-average) 91.79 3 70.35 6 60.02 10.33

252

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 253–264,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

Universal Joint Morph-Syntactic Processing:
The Open University of Israel’s Submission to

The CoNLL 2017 Shared Task

Amir More
Open University of Israel
habeanf@gmail.com

Reut Tsarfaty
Open University of Israel
reutts@openu.ac.il

Abstract

We present the Open University’s submis-
sion (ID OpenU-NLP-Lab) to the CoNLL
2017 UD Shared Task on multilingual
parsing from raw text to Universal De-
pendencies. The core of our system is
a joint morphological disambiguator and
syntactic parser which accepts morpho-
logically analyzed surface tokens as in-
put and returns morphologically disam-
biguated dependency trees as output. Our
parser requires a lattice as input, so we
generate morphological analyses of sur-
face tokens using a data-driven morpho-
logical analyzer that derives its lexicon
from the UD training corpora, and we
rely on UDPipe for sentence segmenta-
tion and surface-level tokenization. We
report our official macro-average LAS is
56.56. Although our model is not as per-
formant as many others, it does not make
use of neural networks, therefore we do
not rely on word embeddings or any other
data source other than the corpora them-
selves. In addition, we show the utility of
a lexicon-backed morphological analyzer
for the MRL Modern Hebrew. We use our
results on Modern Hebrew to argue that
the UD community should define a UD-
compatible standard for access to lexical
resources, which we argue is crucial for
MRLs and low resource languages in par-
ticular.

1 Introduction

The Universal Dependencies (UD) project (Nivre
et al., 2016) sets itself apart from previ-
ous multilingual parsing initiatives such as the
CoNLL (Buchholz and Marsi, 2006; Nivre et al.,

2007) and SPMRL (Seddah et al., 2013, 2014)
shared tasks with two key principles: (i) the POS
tags, morphological properties, and dependency
labels are unified, with enforceable annotation
guidelines and (ii) corpora text is provided via a
two-level representation of the input stream. With
the latter two-level principle in place, corpora can
be provided with raw text, syntactic words as the
nodes of syntactic trees, and the relationship be-
tween them, in a harmonized scheme. This repre-
sentation is crucial to the participation of Morpho-
logically Rich Languages (MRLs) in end-to-end
parsing tasks.

The availability of a wide range of language cor-
pora in this manner provides a unique opportunity
for the advancement of (universal) joint morpho-
syntactic processing, introduced by Tsarfaty and
Goldberg (2008) in a generative setting and ad-
vocated for in a variety of settings (Bohnet and
Nivre, 2012; Andor et al., 2016; Bohnet et al.,
2013; Li et al., 2011; Bohnet and Nivre, 2012;
Li et al., 2014; Zhang et al., 2014). To this
end, our submission is a joint morpho-syntactic
processor in a transition-based framework. We
present our submission (OpenU-NLP-Lab), with
models trained only on the train sets (Nivre
et al., 2017b), parsing all 81 test treebanks of UD
v2 corpora (Nivre et al., 2017a) participating in
the CoNLL 2017 UD Shared Task (Zeman et al.,
2017).

We use the results of our processor on an MRL
to argue that one last piece of the puzzle is miss-
ing: a universal scheme for access to lexical re-
sources. We discuss our results for a lexicon-
backed approach, compared to a data-driven one.
The goal of our submission is to compel the UD
community to recognize the need for lexical re-
sources in the context of joint morpho-syntactic
processing, and push forward the discussion on
a UD annotation-compliant standard for access to

253

lexical resources that could benefit MRLs and low
resource languages.

In section 2 we describe our framework and for-
mal settings (2.1), first instantiated individually as
a morphological disambiguator (2.2) and depen-
dency parser (2.2), followed by how we unify the
two into a joint processor (2.4).

Since the input stream of the processor is a
morphological analysis of the tokenized raw text,
we describe a universal, data-driven morphologi-
cal analyzer, and a lexicon-based MA for the MRL
Modern Hebrew (2.5).

In section 3, we detail the implementation of our
parser (3.1) and specific technical issues we en-
countered with the official run for the shared task
(3.2). We then present our results on all languages
in section 4, and present a comparison to process-
ing Modern Hebrew with a lexicon-based morpho-
logical analyzer. We discuss directions for future
work in section 5, conclude with a summary of our
submission in section 6, and urge the UD commu-
nity to put forth a standard for lexical resource ac-
cess.

2 Our Framework

We use the transition-based framework of Zhang
and Clark (2011), originally designed for syntactic
processing using the generalized perceptron and
beam search, which we briefly cover in subsec-
tion 2.1.

We first describe the standalone transition sys-
tem and model for morphological disambigua-
tion of (More and Tsarfaty, 2016) (2.2), and Arc
Standard transition system together with a rich-
linguistic feature model (2.3). We then present
our approach to joint morpho-syntactic processing
which unifies both transition systems (2.4).

We present our baseline approach to data-driven
morphological analysis, followed by our Modern
Hebrew lexical resource (2.5).

2.1 Formal Settings

Formally, a transition system is a quadruple
(C, T, cs, Ct) where C is a set of configurations,
T a set of transitions between the elements of C,
cs an initialization function, and Ct ⊂ C a set
of terminal configurations. A transition sequence
y = tn(tn−1(...t1(cs(x)))) for an input x starts
with the configuration cs(x). After n transitions
of corresponding configurations (ti, ci) ∈ T × C,
the result is a terminal configuration cn ∈ Ct.

In order to determine which transition t ∈ T
to apply given a configuration c ∈ C, we need to
define a model that learns to predict the transition
that would be chosen by an oracle function O :
C → T , which has access to the correct (gold)
output.

To define a model, we employ an objective
function F : X → R, which ranks outputs
via a scoring of the possible transition sequences
(GEN(x)) from which outputs are derived, such
that the most plausible sequence of transitions is
the one that most closely resembles one generated
by an oracle:

F (x) = argmaxy∈GEN(x)Score(y)

How we define Score is therefore crucial to the
performance of the model, since it must capture
the relation of a generated sequence (and its de-
rived output) to that of an oracle’s output. To com-
pute Score(y), y is mapped to a global feature
vector Φ(y) = {φi(y)} where each feature is a
count of occurrences defined by feature functions.
Given this vector, Score(y) is calculated as the dot
product of Φ(y) and a weights vector ~ω:

Score(y) = Φ(y) · ~ω =
∑
cj∈y

∑
i

ωiφi(cj)

Following Zhang and Clark (2011), we learn the
weights vector ~ω via the generalized perceptron,
using the early-update averaged variant of Collins
and Roark (2004).

For decoding, the framework uses the beam
search algorithm, which helps mitigate otherwise
irrecoverable errors in the transition sequence.

2.2 Morphological Disambiguation
The morphological disambiguator (MD) compo-
nent of our parser is based on More and Tsarfaty
(2016), modified only to accommodate UD POS
tags and morphological features. We provide a
brief exposition of the transition system, and re-
fer the reader to the original paper for an in-depth
explanation (More and Tsarfaty, 2016).

The input to the transition-based MD is a lat-
tice L of an input stream of k surface tokens
x = x1, ..., xk, such that Li = MA(xi), is gener-
ated by a morphological analysis component that
analyzes each token separately and returns a lat-
tice for the whole input sentence x. We rely on the
UDPipe baseline models (Straka et al., 2016) for
sentence segmentation and tokenization.

254

Each lattice-arc in L corresponds to a potential
node in the intended dependency tree. A lattice-
arc has a morpho-syntactic representation (MSR)
defined as m = (b, e, f, t, g), with b and e mark-
ing the start and end nodes of m in L, f a form,
t a universal part-of-speech tag, and g a set of at-
tribute=value universal features.

A configuration CMD = (L, n, i,M) consists
of a lattice L, an index n representing a node in L,
an index i s.t. 0 ≤ i < k representing a specific
token’s lattice, and a set of disambiguated mor-
phemes M .

The initial configuration function cs(x) =
(L, bottom(L), 0, ∅), where L = MA(x1) ◦ ... ◦
MA(xk), and n = bottom(L), the bottom of the
lattice. A configuration is terminal when n =
top(L) and i = k.

To traverse the lattice and disambiguate the in-
put, we define an open set of transitions using the
MDs transition template:

MDs : (L, p, i,M)→ (L, q, i,M ∪ {m})

Where p = b, q = e, and s relates the transition to
the disambiguated morpheme m using a parame-
terized delexicalization s = DLEXoc(m):

DLEXOC(m) =

{
(, , , t, g) if t ∈ OC
(, , f, t, g) otherwise

In words, DLEX projects a morpheme either
with or without its form depending on whether or
not the POS tag is an open-class with respect to
the form. For UD, we redefine:

OC = {ADJ,AUX,ADV,PUNCT,NUM,
INTJ,NOUN,PROPN,V ERB }

We use the parametric model of More and Tsar-
faty (2016) to score the transitions at each step.

Since lattices may have paths of different length
and we use beam search for decoding, the prob-
lem of variable-length transition sequences arises.
We follow More and Tsarfaty (2016), using the
ENDTOKEN transition to mitigate the biases
induced by variable-length sequences.

2.3 Syntactic Disambiguation

For dependency parsing, we use the Arc Standard
configuration, transition system, and oracle func-
tion defined in Kübler et al. (2009). A configu-
ration is a triple CDEP = (σ, β,A) where σ is a
stack, β is a buffer, and A a set of labeled arcs.

We present the specific variant of Arc Standard
that we use in Figure 2.3. Note that in this vari-
ant, arc operations are performed between the top
of the stack σ and the head of the buffer β. Addi-
tionally, in order to guarantee a single root, for the
purposes of the shared task we apply a post pro-
cessing step in which the first root node encoun-
tered (in left-to-right order) is designated as the
only root node, and all other root nodes are set as
its modifier with the “punct” dependency label.

Of course, this means that our transition sys-
tem only applies to projective trees — the oracle
will indeed fail given a non-projective tree, and
our transition system cannot output one. In ad-
dition, since we are using the Arc Standard transi-
tion system, which has been shown to not be arc-
decomposable, we cannot employ a dynamic ora-
cle during training (Goldberg and Nivre, 2012).

The rich-linguistic feature model for our depen-
dency parser, inspired by Zhang and Nivre (2011),
applies the rich non-local features to arc standard
(where this is possible), such as to accommodate
the free word order of MRLs. We provide an ap-
pendix with a detailed comparison of the two fea-
ture models.

2.4 Joint Morpho-Syntactic Processing

Given standalone morphological and syntactic dis-
ambiguation systems in the same framework, we
integrate them into a joint morpho-syntactic pro-
cessor. Our integration is a literal embedding of
the two systems, with a deterministic “router” that
decides which of the two transition systems should
apply a transition to a given configuration — we
call this router a strategy.

We first must alter the morphological disam-
biguation transition such that a disambiguated
morpheme is enqueued onto β:

MDs : ((L, n, i,M), (σ, β,A))→
((L, q, j,M ∪ {m}), (σ, [β|m], A))

We call the set of joint strategies used for the
shared task ArcGreedyk, because it will perform
a syntactic operation if possible, otherwise it will
disambiguate a morpheme. k determines the min-
imal number of morphemes in the buffer β of the
Arc Standard configuration in order to perform a
syntactic transition:

ArcGreedyk(cmd, (σ, β,A)) =
Tm if |β| ≤ k
Td otherwise

255

Initial cs(x = x1, ..., xn) = ([0], [1, ..., n], ∅)
Terminal Ct = {c ∈ C|c = ([0], [], A)}
Transitions (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|β], A)→ (σ, [j|β], A ∪ {(j, l, i)}) if i 6= 0 (ArcLeftl)
([σ|i], [j|β], A)→ (σ, [i|β], A ∪ {(i, l, j)}) (ArcRightl)

Figure 1: The Arc Standard transition system

We set k = 3 based on the features we use to
predict the syntactic transition.

The ArcGreedy approach provides joint pro-
cessing through the interaction of the two systems
through the global score. Together with beam
search, this allows a syntactic transition to reverse
the ranking of an otherwise higher-scored disam-
biguation candidate, and vice-versa, although this
interaction occurs with a small delay due to the
difference between a morphological disambigua-
tion transition and a syntactic transition for the
same morpheme.

2.5 Morphological Analysis

The joint parser requires a morphologically ana-
lyzed input, in the form of a lattice. However,
universal lexical resources are not available for all
languages participating in the shared task. There-
fore, we use the data-driven morphological ana-
lyzer from More and Tsarfaty (2016), which de-
rives its lexicon from the training set of a given UD
corpora, modified to read/write UDv2-compatible
file formats.

As part of our submission, we provide these de-
rived lexica to the community.

In addition, we use the HEBLEX morpholog-
ical analyzer from More and Tsarfaty (2016),
adapted to output lattices conforming to UD anno-
tation standards for universal POS tags and mor-
phological features.

3 Implementation

In this section we describe technical details of
implementation 3.1, bugs encountered during the
shared task 3.2, and our approach to surprise lan-
guages 3.3.

3.1 Technical Details

For sentence segmentation and tokenization, we
rely on the UDPipe (Straka et al., 2016) predicted
data files. The morphological analysis compo-
nent and joint morpho-syntactic parser are all im-

plemented in yap1 (yet another parser), an open-
source natural language processor written in Go2.
Once compiled, the processor is a self-contained
binary, without any dependencies on external li-
braries.

For the shared task the processor was compiled
with Go version 1.8.1, and a git tag created for
the commit used at the time of the task. During
the test phase we wrapped the processor with a
python script that invokes two instances concur-
rently in order to complete processing before the
official (final) deadline.

Additionally, in order to train on all treebanks
we limited the size of all training sets to the first
50,000 sentences for the parser.

Finally, our training algorithm iterates until con-
vergence, where performance is measured by F1

for full morphological disambiguation when eval-
uated on languages’ respective development sets.
We define convergence as two consecutive itera-
tions resulting in a monotonic decrease in F1 for
full MD, and used the best performing model up to
that point. For some languages we observed the F1

never monotonically decreased twice, so after 20
iterations we manually stopped training and used
the best performing model.3

3.2 Shared Task Bugs

We encountered two serious bugs during training
for the shared task, which prevented us from run-
ning our joint processor on all treebanks.

First, for some treebanks (cs cac, cs cltt,
cs pud, cs, en, fr sequoia, ru syntagrus) the seri-
alization code, which relies on Go’s built-in en-
coder package, failed to serialize the in-memory
model because it is larger than 230 bytes. Much
too our surprise, this is apparently an issue related
to the decoder, one the Go maintainers are aware
of but have decided not to address.4 Changing our

1https://github.com/CoNLL-UD-2017/
OpenU-NLP-Lab

2https://golang.org
3For PUD, we use models of “main” treebanks (no tcode)
4https://git.io/nogo

256

model serialization code was too large a task at the
time we found it, so for the aforementioned prob-
lematic treebanks we had no choice but to train
only the dependency parser, and rely on UDPipe
for morphological disambiguation.

Second, close to the time of submitting this pa-
per, we discovered a bug in the morphological dis-
ambiguator. The original MD model from More
and Tsarfaty (2016) assumed the Hebrew tree-
bank SPMRL annotation (SPMRL citation), in
which some clitics are identified by morpholog-
ical “suffix” features, as opposed to the UD ap-
proach which breaks them down as separate syn-
tactic words. As a result, the MD transition sys-
tem sometimes fails to distinguish between lattice-
arcs.

As a temporary remedy, we modified the parser
such that syntactic words with clitic suffixes have
an additional indication as such, to set them apart
from syntactic words without clitic suffixes. How-
ever, we did not have time to re-run our data-
driven morphologically analyzed parses with this
fix.

3.3 Surprise Languages
Our strategy for parsing surprise languages was
to train a delexicalized (no word-form features)
dependency-only parsing model on one treebank
per surprise language, which we manually deemed
as “close” as follows:

• bxr: ru syntagrus

• kmr:fa

• sme: fi

• hsb: cs

We relied on the UDPipe predicted data up to
and including full morphological disambiguation
for all surprise languages.

4 Results and Discussion

In Tables 1 and 2 we present our official results
for all languages. For the MRL Modern Hebrew,
we train and test parsed using the lexicon-backed
morphological analyzer (HEBLEX). When using
HEBLEX, we obtained word-segmentation accu-
racy F1 score of 87.48, compared to 81.26 in the
data-driven MA of the official results, a 33% re-
duction in error rate.

Although the data-driven results suffer from
the aforementioned bug, we do not expect them

to change considerably, as we have seen such
large differences with similar comparisons for the
SPMRL Hebrew treebank. We hope the results
from our unofficial run will be more convinc-
ing. It is important to note that the best word-
segmentation result for Modern Hebrew in the
shared task is 91.37.

We argue that although our lexicon-assisted
model did not outperform the best model in the
shared task, this does not invalidate our position
on universal lexical resources. A 91.37 F1 word-
segmentation accuracy on Modern Hebrew is quite
low, and in our opinion, still too low for inclusion
in practical, real-world applications. We believe
it is likely that together with access to lexical re-
sources, more performant models would be able to
bridge the gap and reduce this large error rate to a
more acceptable level for down-stream tasks.

5 Future Work

In the future, we would like to replace our more
traditional linear model with a modern, non-linear
neural network-based approach. However, to date
there is no solution for joint morph-syntactic pro-
cessing of MRLs, a problem we aim to tackle. In
the context of a neural-based solution, we believe
that the availability of lexical resources will be
crucial for MRLs and low resource languages in
particular.

6 Conclusion

We present our submission to the CoNLL 2017 UD
Shared Task, to the best of our knowledge the first
universal, joint morpho-syntactic processor. We
report our official result of 56.56. We contrast our
results on the MRL Modern Hebrew, as a show-
case of the utility of access to a lexicon-backed
morphological analyzer.

Our goal is to instigate a discussion in the UD
community on the need for a universal scheme for
lexical resource access.

Acknowledgements

We would like to thank the CoNLL Shared Task
Organizing Committee (COSTOCOM) for their
hard word on the task and their timely support.
We would also like to thank the TIRA platform
team (Potthast et al., 2014) for providing a sys-
tem that facilitates competition and reproducible
research.

257

UDPipe yap
Treebank Sentences Tokens Words UPOS Feats UAS LAS
ar 84.57 99.98 92.48 82.73 21.13 53.41 45.01
ar pud 100 80.89 89.68 65.49 33.49 41.54 31.84
bg 92.83 99.91 99.91 94.47 35.96 80.09 74.23
bxr 91.81 99.35 99.35 84.12 81.65 41.15 26.44
ca 98.95 99.97 99.78 93.55 19.48 80.09 74.53
cs* 92.03 99.9 99.9 98.13 91.01 81.45 76.44
cs cac* 100 100 99.99 98.27 89.05 84.73 79.43
cs cltt* 95.06 99.35 99.35 95.41 85.38 76.4 71.68
cs pud* 96.43 99.29 99.29 96.55 87.34 81.33 75.75
cu 36.05 99.96 99.96 88.52 26.22 65.73 56.19
da 79.36 99.69 99.69 90.02 31.01 70.24 65.28
de 79.11 99.64 99.65 84.32 47.29 55.21 48.05
de pud 86.49 97.97 97.7 77.61 30.13 52.98 44.05
el 90.79 99.88 99.88 92.29 29.89 77.8 73.41
en* 73.22 98.67 98.67 93.11 93.97 78.09 75.12
en lines 85.84 99.94 99.94 91.78 99.94 73.5 68.09
en partut 97.51 99.51 99.48 90.58 37.16 73.47 68.17
en pud 97.13 99.66 99.66 89.6 32.92 78.27 73.47
es 94.15 99.87 99.42 91.14 42.85 73.51 67.89
es ancora 97.05 99.97 99.72 93.73 16.99 76.74 71.34
es pud 93.42 99.52 99.25 84.74 34.59 74.66 67.15
et 85.2 99.77 99.77 78.8 34.19 58.15 45.01
eu 99.58 99.96 99.96 87.06 37.02 66.24 56.37
fa 98 100 99.46 91.5 33.38 69.04 62.89
fi 84.56 99.63 99.63 84.99 29.62 57.65 45.99
fi ftb 83.83 99.9 99.88 82.41 28.83 63.91 52.73
fi pud 93.67 99.61 99.61 82.99 28.18 56.51 45.17
fr 93.59 99.75 99.49 92.54 42.33 77.28 71.96
fr partut 98 99.83 99.44 93.61 34.13 78.84 73.1
fr pud 92.32 99.1 98.79 84.73 36.8 73.68 67.67
fr sequoia* 83.75 99.77 99.06 95.4 94.03 81.74 78.92
ga 95.81 99.29 99.29 83.69 28.66 67.69 54.53
gl 96.15 99.92 99.92 95.18 99.69 78.59 74.81
gl treegal 81.63 99.59 98.02 86.8 22.08 66.68 59.77
got 27.85 100 100 89.19 27.67 59.25 50.06
grc 98.43 99.95 99.95 72.66 35.15 42.39 32.53
grc proiel 43.11 100 100 89.8 25.26 59.13 51.05
he 99.39 99.94 81.26 73.55 31.71 46.67 41.49
hi 99.2 100 100 92.44 14.94 77.74 69.36
hi pud 90.83 97.81 97.81 79.93 31.96 55.53 43.06
hr 96.92 99.93 99.93 89.45 19.84 68.49 59.94
hsb 90.69 99.84 99.84 90.3 74.02 64.5 57.14
hu 93.85 99.82 99.82 77.31 26.73 54.56 40.28
id 91.15 99.99 99.99 88.98 96.15 76.13 68.49
it 97.1 99.81 99.5 94.52 38.85 81.98 77.96
it pud 96.58 99.59 99 88.37 33.98 80.02 75.11
ja 94.92 89.68 89.68 85.2 88.01 70.79 68.68
ja pud 94.89 91.06 91.06 85.75 54.8 73.09 71.45

Table 1: Official results for the UD Shared Task. We include UDPipe predicted measures for complete-
ness. Our system does not predict lemmas and XPOS, so we do not show them. Treebanks with * were
processed by only our dependency parser, relying on UDPipe for morphological disambiguation, due to
a technical issue.

258

UDPipe yap
Treebank Sentences Tokens Words UPOS Feats UAS LAS
kk 81.38 95.2 94.9 43.87 33.45 36.12 10.49
kmr 97.02 99.01 98.85 90.04 80.72 51.24 38.61
ko 93.05 99.73 99.73 81.9 98.99 60.75 52.37
la 98.09 99.99 99.99 68.32 36.76 37.04 24.3
la ittb 93.24 99.99 99.99 93.65 31.57 57.99 50.65
la proiel 25.8 100 100 87.32 26.48 46.46 37.12
lv 98.59 98.91 98.91 80.81 39.93 58.13 47.71
nl 77.14 99.88 99.88 80.07 7.56 50.27 41.9
nl lassysmall 78.62 99.93 99.93 95.09 47.01 73.8 69.78
no bokmaal 95.76 99.75 99.75 93.4 40.05 80.68 76.69
no nynorsk 91.23 99.85 99.85 92.69 40.01 76.51 71.89
pl 98.91 99.99 98.97 86.81 26.09 71.07 63.03
pt 89.79 99.64 99.27 88.48 35.63 59.62 53.67
pt br 96.84 99.94 99.84 94.44 90.12 83.9 80.65
pt pud 95.65 99.29 99.2 82.17 37.21 60.51 53.87
ro 93.42 99.64 99.64 93.86 16.29 79.55 72.14
ru 96.42 99.91 99.91 84.32 37.04 64.02 57.09
ru pud 98.95 97.18 97.18 75.21 35.31 61.06 52.14
ru syntagrus* 97.81 99.57 99.57 97.99 93.47 84.2 80.1
sk 83.53 100 100 77.99 19.11 57.95 50.25
sl 99.24 99.96 99.96 89.19 23.64 70.95 65.27
sl sst 16.72 99.82 99.82 83.24 29.7 45.76 37.11
sme 98.79 99.88 99.88 86.81 81.25 45.03 32.57
sv 96.37 99.84 99.84 92.23 34.17 75.96 70.38
sv lines 86.44 99.98 99.98 91.39 99.98 75.1 69.21
sv pud 90.2 98.26 98.26 82.66 32.27 68.35 61.42
tr 96.63 99.85 97.17 83.15 35.75 52.72 39.82
tr pud 93.91 98.86 95.7 61.52 23.36 44.73 23.95
ug 63.55 98.52 98.52 66.15 98.52 20.7 7.35
uk 92.59 99.81 99.81 76.27 30.24 53.24 42.29
ur 98.32 100 100 88.58 14.53 77.95 69.89
vi 92.59 82.47 82.47 71.84 78.23 41.25 36.51
zh 98.19 88.91 88.91 80.08 78.27 58.03 52.93

Table 2: Official results for the UD Shared Task. We include UDPipe predicted measures for complete-
ness. Our system does not predict lemmas and XPOS, so we do not show them. Treebanks with * were
processed by only our dependency parser, relying on UDPipe for morphological disambiguation, due to
a technical issue.

259

Appendix
Dependency Features

We use the feature description scheme of Zhang and Nivre (2011) for easy comparison.
Let c = (S,N,A) be a configuration where S is the stack, N is the buffer.
We define an address as the location of a node in the partial dependencies trees in S and N of con-

figuration c. An address has a structure name S or N , a subscript integer to access a k-deep node, and
characters to access the heads or dependents of the node found at Sk or Nk. For example, the address
S0h refers to the head (if such exists) of the partial tree found at the top of the stack. The address N1

refers to the node that is second in the buffer.

Rich Linguistic Feature Types

In addition to features described in Zhang and Nivre (2011), we define the following attributes:

• fp - the multi-set of parts of speech of the dependents of a node

• sf - the multi-set of labels of all dependents of a node

• vf - the valency (= number) of all dependents of a node

Also, we define Ci as an address generator - it generate a feature for each dependent of the addressed
node.

Morphological Augmentation
To allow the inclusion of morphology we add the ability of specifying morphological properties to be
added to all features of a feature group. Augmentation of a feature group does not cause a replacement
of the defined features, it only creates a copy with the addition of morphological properties.

To augment a feature group, all the features to the groups are required to have the same number of
addresses. An augmentation specifies a character, either h or x, to specify the host or suffix morphologi-
cal properties as attributes, respectively. If the group has more than one address, the augmentation must
specify an address (a 1-indexed integer offset). Multiple augmentations may be used together.

For example, given the feature group Pairs in table 3, the first few features are SwtN0wt, S0wtN0w,
SwN0wt, etc. All features in the Pairs group have two addresses. An example of a morphological aug-
mentation of the Pairs group is h1h2, resulting in the new features S0wtmhN0wtmh, S0wtmhN0wmh,
SwmhN0wtmh, etc. where mh is the set of key-value pairs of properties of the respective morphemes at
the top of the stack (S0) and buffer (N0).

Features
The set of rich non-local features of (Zhang and Nivre, 2011) and the new rich linguistic features defined
in this work are shown in table 3. The features are shown side by side to ease the comparison of the two
feature sets, along with a column indicating the changes made.

The feature groups are augmented with morphological properties as defined in table 6.

260

N-L Group N-L Feature Ling. Feature Ling. Group Change
Single S0w S0w Single
Single S0t S0t Single
Single S0wt S0wt Single
Single N0w N0w Single
Single N0t N0t Single
Single N0wt N0wt Single
Single N1w N1w Single
Single N1t N1t Single
Single N1wt N1wt Single
Single N2w N2w Single
Single N2t N2t Single
Single N2wt N2wt Single
Pairs S0wtN0wt S0wtN0wt Pairs
Pairs S0wtN0w S0wtN0w Pairs
Pairs S0wN0wt S0wN0wt Pairs
Pairs S0wtN0t S0wtN0t Pairs
Pairs S0tN0wt S0tN0wt Pairs
Pairs S0wN0w S0wN0w Pairs
Pairs S0tN0t S0tN0t Pairs
Pairs N0tN1t N0tN1t Pairs
Three Words N0tN1tN2t N0tN1tN2t Three Words (A)
Three Words S0tN0tN1t S0tN0tN1t Three Words (A)
Three Words S0htS0tN0t S0htS0tN0t Three Words (A)
Three Words S0tN0tN0ldt S0tN0tfp Three Words (B) N0ldt→ N0fp

Three Words S0tS0ldtN0t S0tfpN0t
Three Words (B)

ld/rd→ fpThree Words S0tS0rdtN0t Three Words (B)
Distance S0wd S0wd Distance
Distance S0td S0td Distance
Distance N0wd N0wd Distance
Distance N0td N0td Distance
Distance S0wN0wd S0wN0wd Distance
Distance S0tN0td S0tN0td Distance
Valency S0wvr S0wvf

Valency frames

vr/vl → vf

Valency S0wvl Valency frames
Valency S0tvr S0tvf

Valency frames
Valency S0tvl Valency frames
Valency N0wvl N0wvf Valency frames
Valency N0tvl N0tvf Valency frames
Unigrams S0hw S0hw Unigrams (A)
Unigrams S0ht S0ht Unigrams (A)
Unigrams S0l S0l Unigrams (A)
Unigrams S0ldw S0wS0Ciw Unigrams (B)

Switch to non-
directional bi-
lexical dependen-
cies, Ci = for each
dependent

Unigrams S0ldt S0wS0Cit Unigrams (B)
Unigrams S0ldl S0wS0Cil Unigrams (B)
Unigrams S0rdw S0tS0Ciw Unigrams (B)
Unigrams S0rdt S0tS0Cit Unigrams (B)
Unigrams S0rdl S0tS0Cil Unigrams (B)
Unigrams N0ldw N0wN0Ciw Unigrams (B)
Unigrams N0ldt N0wN0Cit Unigrams (B)
Unigrams N0ldl N0wN0Cil Unigrams (B)
Unigrams N0tN0Ciw Unigrams

NewUnigrams N0tN0Cit Unigrams
Unigrams N0tN0Cil Unigrams
Third Order S0l2dw Third Order

Removed

Third Order S0l2dt Third Order
Third Order S0l2dl Third Order
Third Order S0r2dw Third Order
Third Order S0r2dt Third Order
Third Order S0r2dl Third Order
Third Order N0l2dw Third Order
Third Order N0l2dt Third Order
Third Order N0l2dl Third Order
Third Order N0tN0ldtN0l2dt N0tfp Third Order N0l2dt→ N0fp

Third Order S0h2w S0h2w Third Order (A)
Third Order S0h2t S0h2t Third Order (A)
Third Order S0hl S0hl Third Order (A)
Third Order S0tS0ldtS0l2dt S0tfp

Third Order (B)
ld/rd/l2d/r2d→ fpThird Order S0tS0rdtS0r2dt Third Order (B)

Third Order S0h2tS0htS0t S0h2tS0htS0t Third Order (C)
LabelSet S0wlp S0wsf

Subcat. frames

lp/rp → sf

LabelSet S0wrp Subcat. frames
LabelSet S0trp S0wsf

Subcat. frames
LabelSet S0tlp Subcat. frames
LabelSet N0wlp N0wsf Subcat. frames
LabelSet N0tlp N0tsf Subcat. frames

S0wS0o Edge Potential
New
o = |σh| = edge po-
tential

S0tS0o Edge Potential
N0tS0o Edge Potential
N0wS0o Edge Potential

Table 3: Rich Non-Local Features vs. Rich Linguistic Features

261

Feature Group Morphological Augmentations

Single
h
x

Pairs
h1h2
h1x2
x1h2

Three Words (A)

h1h2
h1x2
x1h2
h1h3
h1x3
x1h3
h2h3
h2x3
x2h3

Three Words (B)
h1h3
h1x3
x1h3

Valency h

Unigram (A)
h
x

Bigram
h1h2
h1x2
x1h2

Third Order (A)
h
x

Third Order (B)
h
x

Third Order (C)

h1h2
h1x2
x1h2
h1h3
h1x3
x1h3
h2h3
h2x3
x2h3

Table 4: Morphological Augmentation of Rich Linguistic Feature Groups

262

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. http://aclweb.org/anthology/P/P16/P16-
1231.pdf.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP-CoNLL ’12, pages 1455–1465.
http://dl.acm.org/citation.cfm?id=2390948.2391114.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajic.
2013. Joint morphological and syntactic analysis
for richly inflected languages. TACL 1:415–428.
http://dblp.uni-trier.de/db/journals/tacl/tacl1.html.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X. pages 149–164.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of the 42Nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, ACL
’04. https://doi.org/10.3115/1218955.1218970.

Yoav Goldberg and Joakim Nivre. 2012. A dy-
namic oracle for arc-eager dependency parsing.
In COLING 2012, 24th International Confer-
ence on Computational Linguistics, Proceedings
of the Conference: Technical Papers, 8-15 De-
cember 2012, Mumbai, India. pages 959–976.
http://aclweb.org/anthology/C/C12/C12-1059.pdf.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Number 2 in Synthesis
Lectures on Human Language Technologies. Mor-
gan & Claypool Publishers.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting
Liu, and Wenliang Chen. 2014. Joint op-
timization for chinese POS tagging and de-
pendency parsing. IEEE/ACM Trans. Audio,
Speech & Language Processing 22(1):274–286.
https://doi.org/10.1109/TASLP.2013.2288081.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint
models for chinese pos tagging and dependency
parsing. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’11, pages 1180–1191.
http://dl.acm.org/citation.cfm?id=2145432.2145557.

Amir More and Reut Tsarfaty. 2016. Data-driven mor-
phological analysis and disambiguation for morpho-
logically rich languages and universal dependen-
cies. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers. The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 337–348.
http://aclweb.org/anthology/C16-1033.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017a. Universal dependencies 2.0 CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016). European Language Re-
sources Association, Portoro, Slovenia, pages 1659–
1666.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. pages
915–932.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the spmrl 2014 shared task
on parsing morphologically-rich languages. pages
103–109.

Djame Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, D. Jinho Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim

263

Nivre, Adam Przepiórkowski, Ryan Roth, Wolf-
gang Seeker, Yannick Versley, Veronika Vincze,
Marcin Woliński, Alina Wróblewska, and Ville-
monte Eric de la Clergerie. 2013. Proceed-
ings of the fourth workshop on statistical pars-
ing of morphologically-rich languages. Associa-
tion for Computational Linguistics, pages 146–182.
http://aclweb.org/anthology/W13-4917.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Reut Tsarfaty and Yoav Goldberg. 2008. Word-based
or morpheme-based? annotation strategies for mod-
ern Hebrew clitics. In Proceedings of LREC.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-level chinese dependency
parsing. In In Proceedings of the ACL.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics 37(1):105–151.
https://doi.org/10.1162/coli a 00037.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume
2. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’11, pages 188–193.
http://dl.acm.org/citation.cfm?id=2002736.2002777.

264

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 265–273,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A Semi-universal Pipelined Approach to the CoNLL 2017 UD Shared Task

Hiroshi Kanayama Masayasu Muraoka Katsumasa Yoshikawa
IBM Research - Tokyo

{hkana,mmuraoka,katsuy }@jp.ibm.com

Abstract

This paper presents the TRL team’s sys-
tem submitted for the CoNLL 2017 Shared
Task, “Multilingual Parsing from Raw
Text to Universal Dependencies.” We ran
the system for all languages with our own
fully pipelined components without rely-
ing on either pre-trained baseline or ma-
chine learning techniques. We used only
the universal part-of-speech tags and dis-
tance between words, and applied deter-
ministic rules to assign labels. The delex-
icalized models are suitable for cross-
lingual transfer or universal approaches.
Experimental results show that our model
performed well in some metrics and leads
discussion on topics such as contribution
of each component and on syntactic simi-
larities among languages.

1 Introduction

We tested dependency-based syntactic parsing in
49 languages on Universal Dependencies (Nivre
et al., 2015) using 81 corpora from the UD version
2.0 datasets (Nivre et al., 2017). The task is de-
scribed in the overview paper (Zeman et al., 2017)
and the whole system is evaluated on the TIRA
platform (Potthast et al., 2014).

Instead of merely pursuing higher scores in the
shared task, we adopted several strategies in the
design of our parser:

Self-contained system.To keep capabilities to
control the input and output of the system,
we use only our own components for the
whole pipeline including sentence splitter, to-
kenizer, lemmatizer, PoS tagger, dependency
parser and role labeler. We do not rely on
any existing preprocessors such as UDPipe

(Straka et al., 2016) and SyntaxNet (Weiss
et al., 2015).

One model per language.When there are multi-
ple corpora in a language with different an-
notation strategies, our system does not op-
timize models for each corpus, because the
real applications do not assume such specific
corpora.

No machine learning. We use merely simple
statistics with parts of speech of each word
and distance between words, and induced de-
terministic rules. Neither higher order mod-
els nor word embeddings are used, thus our
system is fully controllable with linguistic
knowledge.

Componentized pipeline.Components in the
pipeline can be divided and optimized inde-
pendently so that they are interchangeable
with other corresponding components such
as the UDPipe tokenizer. Our dependency
parser relies only on Universal PoS tags and
does not use an extended PoS, lemma nor
features annotated by a specific tokenizer.

Our system was composed under these con-
straints at the sacrifice of overall scores but it per-
formed marginally well, achieving the best partic-
ipant scores in a number of metrics. The major
contributions in this report are as follows:

1. Report of runs without UDPipe with very dif-
ferent results than those obtained from other
participants.

2. Experiments in cross-lingual and universal
scenarios by using delexicalized statistics of
different languages.

3. Simple and reusable techniques to induce
rules for PoS tagging and relation labeling.

265

ja ko
ar,de,en,fr,
hi,zh,nl,...

bg,et,fa,id,
kk,lv,ur,... vi la,got

Sentence splitter
English

sentence splitter
Word-based

splitter

sentence

Tokenizer English tokenizer

word

PoS tagger

xpos

Multi-token
aggregator

Word unit
adjustment

Frequency-based
PoS assignment
upos

UPOS mapper

upos

Deterministic
parser Distance based parser

head

Label
mapper

deprel

? ?

Relation labeler

Refinement logics

deprel
? ? ? ?

Figure 1: The pipelined architecture for multilin-
gual parsing from raw text. Dotted boxes indicate
existing (not UD-compliant) components.

Section 2 describes each components in our
pipeline. Section3 reports our results, includ-
ing ablation studies and additional experiments in
cross-lingual and multilingual settings. Section4
shows some related prior work related to our ap-
proach.

2 Components

Figure1 illustrates our pipelined architecture for
multilingual parsing from raw text. As indicated
as dotted boxes in the figure, we exploited in-
house engines for sentence splitting, tokenization
and PoS tagging for a number of languages and
fit them to the UD annotation schemata. For lan-
guages which our engine does not cover, we used
simple statistics in the training corpus to assign
Universal PoS (UPOS). For syntactic parsing, we
extracted statistics to predict the head words, tak-
ing into account UPOS and distance. To assign
relation labels we applied rules induced from the
corpus.

The rest of this section describes each compo-
nent with language specific treatments in the order
in the pipeline.

2.1 Sentence splitting

For the sentence splitting we applied existing log-
ics, taking into account language specific punctu-
ations and special cases such as “Mr.” in English.
For languages that our sentence splitter does not
cover, we simply applied the logic for English. For
corpora that do not use punctuation at all (e.g.got
andla proiel), we identified words that tend to be
the first or the last word in a sentence (more than
half of appearancee.g.“itaque” in Latin as the first
word), and used them to split long sentences that
had 10 or more words.

2.2 Tokenization

Our in-house engine tokenizer and PoS tagger sup-
port 17 languages;ar, cs, da, de, en, es, fr,
he, it, ja, ko, nl, pl, pt, tr, ru andzh. For three
of them, Japanese (ja), Korean (ko) and Chinese
(zh), words are split in very different manner with-
out relying on white spaces1.

We applied English tokenizer for other lan-
guages to simply split words by white spaces and
punctuations. For Vietnamese (vi) in which the
word units are longer than space-split tokens, we
extracted multi-token words from the training cor-
pus and aggregated them in runtime. This raised
the word F1 score forvi from 73.7 to 85.1.

There are unignorable mismatches in tokeniza-
tion strategies between our tokenizer and UD
corpora. The major difference is in Korean
(ko): while our tokenizer splits particles and suf-
fixes from content words, the UD corpus gives
whitespace (eojeol) tokenization. Accordingly, we
merged those tokens after getting parts of speech
of each unit.

We also made adjustments in Turkish (tr) to at-
tach suffixes except for “ki”, and in Arabic (ar)
to attach the determiner “al”. There still remains
many differences in other languages but we did not
make any other modifications, which resulted in
lower word correspondence values (95.5 on aver-
age) compared to those of UDPipe (98.6).

2.3 PoS tagging

As well as the tokenization, we applied PoS tags
output by our engine for 17 languages to get their
own PoS schema; some of them are close to the
Penn Treebank style and the others are in differ-
ent schemes. We adopted those tags as Extended

1Though the word unit in the Korean corpus in UD2.0 is
determined by white space, our tokenizer gives finer tokens
by splitting functional words.

266

I
PRON

�� ��nsubj

?
read

VERB

�� ��root

?
the
DET

�� ��det
?

book
NOUN

�� ��obj

?

Figure 2: A sample dependency structure of an
English sentence.

PoS (XPOS) tags and mapped them to UPOS. The
mapper assigns the most frequent UPOS in the
training corpus for a combination of XPOS and
the lemma of a given word.

By definition, our PoS tagger does not distin-
guish some of the main verbs (VERB) from aux-
iliary verbs (AUX) such as “do” and “have” in
English, “avoir” in French and “haber” in Span-
ish, which causes many parsing errors, and so we
added heuristics to change the UPOS using the
context.

For other languages the PoS tagger does not
cover, we assigned the most frequent UPOS for
each surface form in the training corpus. Even
with this näıve method we obtained UPOS scores
higher than 90 for some languages such as Czech
(cs), Persian (fa), Hindi (hi) and Indonesian (id)
but it did not work well enough for lower resource
languages.

2.4 Dependency parsing

2.4.1 PoS-level models

To keep the simplicity and language universal-
ity of the parsing method, we built the first-order
delexicalized model for each language2. The score
of the dependency between two words is deter-
mined only by the UPOS of head and dependent
words and surface distance between two words.

Figure2 shows a sample dependency structure
for an English sentence and Table1 shows true (T)
and false (F) dependencies found in the sentence in
Figure2. By counting frequencies of these events
for all pairs in a sentence, the ratio of correct de-
pendency for a pair of PoS and distance is calcu-
lated.

Formally, leth be a head word,d be a depen-
dent,pw be the UPOS ofw, and∆d,h be the dis-
tance3 betweend andh, so that the score is

2Not for each corpus, following ‘one model par language’
policy.

3The difference of word IDs ofh andd. We cap the max-
imum distance at 12 (empirically determined),i.e.word pairs
further than 13 are regarded as∆ = 12.

dependent head distance dependency?
PRON VERB 1 T
PRON DET 2 F
PRON NOUN 3 F
VERB PRON −1 F
VERB DET 1 F
VERB NOUN 2 F
DET PRON −2 F
DET VERB −1 F
DET NOUN 1 T
NOUN PRON −3 F
NOUN VERB −2 T
NOUN DET −1 F

Table 1: True (T) and false (F) dependencies be-
tween two words in the sentence in Figure2. Neg-
ative distance means that the head is left to the de-
pendent.

English (en)
ADJ, NOUN,−1 .238
ADJ, NOUN, 1 .906
ADJ, NOUN, 2 .639
VERB, ADJ,−2 .512
ADP, NOUN, 2 .817
AUX, ADP, 1 .034

French (fr)
ADJ, NOUN,−1 .959
ADJ, NOUN, 1 .967
ADJ, NOUN, 2 .130
VERB, ADJ,−2 .180
ADP, NOUN, 2 .943
AUX, ADP, 1 .000

Table 2:Examples of dependency scores between
two words for English and French. A condition
indicates the PoS of dependent and head words,
and distance between two words.

#(T | pd, ph, ∆d,h)
#(T | pd, ph, ∆d,h) + #(F | pd, ph, ∆d,h)

,

where #(·) is the frequency in the training corpus,
T denotes thatd depends onh and F denotes it
does not. The score is set to 0 when the denomi-
nator is 0.

Table2 shows example scores. These statistics
reflect universal attributes, for example, smaller
distance is preferred, functional words tend not to
have dependents, and so on. Also language spe-
cific attributes are contained, such as regarding
orientation of adjective modification and adposi-
tions.

These scores are used as the weight of the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967) to obtain the minimum spanning
tree to optimize the dependency structures in a

267

sentence. This algorithm can produce a non-
projective tree, which frequently appears in lan-
guages such as German, Latin and Czech (Mc-
Donald et al., 2005).

2.4.2 Language specific cases

Japanese (ja) and Korean (ko) are parsed in a dif-
ferent manner. A common point to both languages
is that all content words form right-head struc-
tures; consequently, a set of rules selects the syn-
tactically possible head words for a given word
by using the syntactic features (Kanayama et al.,
2014). Here the dependencies are determined as
the nearest baseline among the modification candi-
dates without relying on the statistics of the train-
ing corpora.

For ‘surprise languages’ that do not have train-
ing corpora, we use models for languages in the
close regions (Russian (ru) for Buryat (bxr), Per-
sian (fa) for Kurmanji (kmr), Finnish (fi) for North
Sámi (sme) and Polish (pl) for Upper Sorbian
(hsb)) but these selections were not optimal as
found in the experiments in Section3.2.

2.4.3 Exceptional dependencies

The statistic model above is apparently ignorant
of the vocabulary and lexical features finer than
UPOS level. To capture some phenomena we
made two deterministic modifications.

Fixed expressions.Multi-word expressions
behave exceptionally in the UPOS-based
model. In each language we extracted fixed
phrases such as “because of” and “as well
as” in English, and in runtime forcibly tagged
dependencies for such word sequences with
‘fixed’ label. Also, for consecutive appear-
ance of same PoS tags ofNOUN, PRON
or NUM, a structure with the majority label
(one offlat, nmod, compoundor nummod) is
assigned depending on the pairs of language
and PoS,e.g. give left-head structures with
flat label for PROPN sequences of Catalan
(ca).

Consistent words. English UPOSPART is used
for possessive “’s” and infinitive “to”, which
behaves very differently from each other. For
such words whose head word is in a consis-
tent direction per dependent word, the score
for the other direction is discounted by multi-
plying 0.1,e.g.0.1 is multiplied for the score

English (en)
ADP, NOUN, + case
VERB, NOUN,+ acl
NOUN, VERB, + nsubj
NOUN, VERB,− obj
ADJ, VERB,− xcomp

Russian (ru)
ADP, NOUN, + case
VERB, NOUN,+ amod
NOUN, VERB, + nsubj
NOUN, VERB,− obl
ADJ, VERB,− obl

Table 3:Examples of label assignment for English
and Russian. ‘+’ and ‘−’ indicate the direction of
the head word against a dependent; ‘+’ means that
the head comes right to a dependent.

of left-head modification ofPART: “to” in
English.

2.5 Relation label assignment

After getting the tree structures, we assigned de-
pendency labels to each node by referring to the
most frequent label between two UPOS tags in the
languages. The labels vary by language and ori-
entation of the dependencies as exemplified in Ta-
ble3.

In some cases the labels are difficult to deter-
ministically assign merely by using UPOS of two
words. In such cases, we applied the following la-
bel refinement rules.

Word based constraints. Forcibly change the la-
bel for words whose relation labels are
mostly consistent (≥ .95), e.g.modification
by “there” in English should haveexpl label.

Verb arguments. Adjust the label of NOUN,
PROPN andPRON when the word is a de-
pendent ofVERB with several conditions,
e.g. set obl if the word has a dependent la-
beledcasein most of languages.

Pronouns. Change the relation label ofPRON as
a dependent ofVERB to its majority4 for a
surface form.E.g.selectobj for “him” in En-
glish.

Conjunctions. When the dependent and head
words have the same UPOS and there is
CCONJ between the two words, set the la-
bel of the dependent asconj.

4Amongnsubj, obj, iobj andexpl.

268

Submitted results (without UDPipe) UDPipe preprocess
Language Sentence Words UPOS UAS LAS WLAS Sentence Words UPOS UAS LAS WLAS
∗ Average 79.99 95.47 80.45 53.53 43.37 37.33 88.48 98.61 91.02 61.89 52.12 45.75

ar 77.10 92.21 80.05 51.44 39.98 33.40 84.57 93.69 88.13 55.26 46.41 40.53
ar pud 99.10 96.05 73.06 56.59 42.76 35.61 100.00 90.82 70.27 50.05 39.51 33.98

bg 80.71 97.43 88.27 61.26 53.39 46.33 92.83 99.91 97.58 74.43 68.00 63.39
bxr 93.69 98.44 47.69 23.40 14.02 4.22 91.81 99.35 84.12 40.35 25.97 19.22
ca 97.25 91.96 85.90 58.31 51.43 40.77 98.95 99.97 98.04 72.85 66.44 56.58
cs 77.90 97.13 93.29 61.32 54.81 51.92 92.03 99.90 98.13 67.24 60.15 57.31

cs cac 99.76 97.45 92.90 64.88 57.59 53.82 100.00 99.99 98.27 69.40 61.93 57.99
cs cltt 45.04 88.90 79.91 54.09 48.38 46.30 95.06 99.35 95.41 63.20 56.50 53.48
cs pud 87.57 97.68 92.67 64.47 58.02 55.20 96.43 99.29 96.55 66.44 59.78 57.34

cu 1.16 99.97 85.52 51.09 35.00 29.90 36.05 99.96 93.34 60.42 45.77 41.04
da 72.76 93.61 79.57 48.62 41.01 34.67 79.36 99.69 95.04 63.15 55.91 50.64
de 69.84 89.86 79.32 49.28 43.23 37.93 79.11 99.65 90.83 62.17 55.87 47.83

de pud 86.93 93.01 77.55 51.35 43.44 38.46 86.49 98.00 84.38 61.76 53.17 46.38
el 81.03 98.12 86.66 61.06 52.44 41.08 90.79 99.88 95.18 72.34 66.77 59.09

en 64.77 94.31 82.41 56.44 49.56 44.77 73.22 98.67 93.11 62.83 55.98 50.41
en lines 81.72 98.63 86.90 59.77 52.49 47.25 85.84 99.94 94.53 66.12 57.65 52.00

en partut 90.61 99.45 88.32 62.48 54.50 46.56 97.51 99.49 93.03 65.19 57.31 49.48
en pud 94.29 99.04 85.43 60.05 53.94 48.09 97.13 99.66 94.00 66.27 59.82 53.30

es 88.19 96.13 88.82 63.80 57.01 49.03 94.15 99.69 95.60 69.76 63.55 53.34
es ancora 95.44 98.54 89.35 65.22 55.52 45.81 97.05 99.95 98.15 70.42 60.92 51.31

es pud 95.40 96.85 84.45 66.68 58.40 50.03 93.42 99.47 88.15 71.92 64.19 54.46
et 80.91 98.73 79.68 49.79 34.05 29.83 85.20 99.77 87.70 58.20 43.25 39.60
eu 91.06 97.52 85.58 53.63 41.80 36.35 99.58 99.96 92.36 59.97 47.51 41.92
fa 96.11 99.07 92.32 56.28 48.40 41.61 98.00 99.64 96.00 60.23 52.12 45.25
fi 80.34 96.10 84.02 45.45 31.51 32.98 84.56 99.63 94.01 51.39 38.23 40.40

fi ftb 75.42 98.66 78.95 57.45 44.55 34.06 83.83 99.88 91.87 63.80 52.65 42.04
fi pud 87.50 96.28 85.59 46.67 32.55 35.19 93.67 99.61 95.61 52.92 39.68 43.12

fr 86.99 93.78 85.75 61.71 54.59 50.00 93.59 98.87 95.33 70.25 64.06 57.61
fr partut 89.99 94.43 86.64 64.75 57.18 51.92 98.00 98.95 94.46 69.93 62.90 54.73

fr pud 95.85 95.01 81.19 64.04 56.96 51.35 92.32 98.17 87.90 69.42 63.22 56.96
fr sequoia 67.24 92.70 84.35 59.60 52.75 48.63 83.75 99.06 95.40 70.50 64.35 58.49

ga 95.49 96.44 82.54 61.87 43.80 28.38 95.81 99.29 88.17 65.09 48.30 32.66
gl 90.64 98.39 88.73 64.69 55.70 45.49 96.15 99.92 96.84 68.78 62.96 54.76

gl treegal 78.79 87.39 71.85 46.75 33.25 27.85 81.63 98.62 90.69 62.92 50.72 41.85
got 3.20 99.90 86.85 51.80 36.92 30.18 27.85 100.00 93.55 58.28 44.97 39.42
grc 41.91 99.96 71.46 41.18 28.63 18.68 98.43 99.95 82.13 47.68 36.16 28.55

grc proiel 1.42 98.93 87.75 49.97 38.88 26.43 43.11 100.00 95.72 57.61 46.97 36.12
he 98.89 84.45 73.29 47.31 37.10 26.50 99.39 84.82 80.48 51.21 42.52 31.92
hi 90.22 99.06 90.15 66.60 55.15 40.59 99.20 100.00 95.63 71.92 60.45 45.90

hi pud 94.47 99.65 81.48 51.26 36.80 26.09 90.83 97.81 83.75 52.57 39.16 29.68
hr 84.67 98.01 87.71 56.49 45.82 41.33 96.92 99.93 95.67 66.95 57.77 54.60

hsb 68.23 99.51 61.48 30.74 22.15 15.99 90.69 99.84 90.30 51.85 41.96 37.46
hu 88.86 94.42 78.98 46.56 33.75 28.71 93.85 99.82 90.80 61.85 49.66 45.60
id 85.37 99.07 90.54 63.72 54.97 51.56 91.15 99.99 93.32 65.36 57.37 54.87
it 89.05 88.56 77.66 57.96 49.67 46.57 97.10 99.73 97.07 76.45 70.78 61.96

it pud 97.81 89.19 73.72 58.76 50.34 46.67 96.58 99.17 93.07 75.50 70.09 61.20
ja 94.56 98.59 98.45 91.14 91.13 84.45 94.92 89.68 98.54 61.28 58.54 43.95

∗ ja pud 97.42 98.89 98.52 88.79 88.71 80.09 94.89 91.06 88.69 64.84 62.31 46.50
kk 89.35 95.93 56.39 45.72 24.14 18.30 81.38 94.91 50.06 31.53 17.01 13.11

kmr 98.64 96.86 35.55 10.59 3.44 3.67 97.02 98.85 90.04 47.66 35.31 28.97
ko 69.87 98.12 76.56 55.54 45.83 42.12 93.05 99.73 93.79 53.11 26.48 20.90
la 62.03 100.00 73.24 37.40 23.48 20.35 98.09 99.99 83.39 42.86 29.75 26.54

la ittb 74.82 99.19 91.33 47.21 37.59 32.05 93.24 99.99 97.21 54.15 44.38 38.52
la proiel 1.25 99.77 85.27 43.87 27.97 22.30 25.80 100.00 94.82 49.74 34.78 28.95

lv 97.36 98.07 78.66 45.13 34.21 29.09 98.59 98.91 88.37 53.17 43.25 38.83
nl 72.92 92.67 78.53 47.58 39.44 30.28 77.14 99.88 91.00 60.45 50.76 41.36

nl lassysmall 33.65 93.68 75.54 45.95 35.32 26.90 78.62 99.93 96.86 63.07 52.78 45.58
no bokmaal 86.72 95.51 87.63 57.07 49.31 42.90 95.76 99.75 96.75 69.57 62.13 55.81
no nynorsk 80.12 94.88 86.43 54.20 46.83 40.78 91.23 99.85 96.38 66.32 58.91 52.00

pl 97.83 97.19 89.14 68.47 57.83 52.71 98.91 99.88 95.31 76.81 65.44 59.39
pt 77.79 86.46 71.60 52.04 40.46 35.71 89.79 99.52 96.22 72.50 62.11 50.03

pt br 92.65 88.26 70.12 53.10 43.76 38.87 96.84 99.84 96.97 72.17 64.03 52.71
pt pud 95.80 88.69 71.70 54.83 44.86 39.42 95.65 99.42 88.45 70.34 60.62 49.06

ro 89.13 96.37 87.64 64.24 53.35 46.51 93.42 99.64 96.40 70.76 62.20 55.63
ru 91.52 93.87 85.62 55.70 45.52 48.67 96.42 99.91 94.47 60.95 51.16 53.69

ru pud 95.28 98.29 86.39 58.58 49.04 52.72 98.95 97.18 85.85 59.33 49.91 54.27
ru syntagrus 89.75 98.36 89.44 69.49 61.66 51.91 97.81 99.57 97.99 72.58 65.84 56.42

sk 68.30 99.75 81.11 46.60 38.69 31.87 83.53 100.00 92.19 68.28 60.78 57.56
sl 96.49 99.73 86.89 56.55 47.25 39.89 99.24 99.96 96.34 72.11 64.63 60.02

sl sst 0.52 88.87 77.78 38.65 29.92 24.63 16.72 99.82 88.82 50.20 39.82 35.27
sme 99.13 98.28 43.88 27.93 7.47 7.74 98.79 99.88 86.81 46.05 31.46 33.56

sv 89.69 94.51 82.37 54.98 45.17 39.76 96.37 99.84 95.41 67.40 59.48 54.79
sv lines 79.82 96.59 83.09 57.70 47.13 42.15 86.44 99.98 94.22 68.18 60.47 55.21
sv pud 95.52 95.00 80.36 54.05 42.58 36.82 90.20 98.26 91.16 65.35 56.49 51.29

tr 93.57 88.78 77.25 42.07 30.48 25.91 96.63 97.89 91.22 52.19 39.28 33.70
tr pud 88.88 88.21 62.02 39.14 21.36 15.17 93.91 96.62 71.05 48.82 25.72 18.36

ug 69.05 98.23 65.27 48.10 23.72 14.37 63.55 98.52 73.63 50.40 31.20 22.55
uk 91.80 98.58 73.97 45.91 33.99 23.45 92.59 99.81 86.72 64.94 52.14 44.82
ur 97.93 97.70 86.31 62.47 50.26 36.55 98.32 100.00 91.71 69.35 56.90 42.73
vi 86.12 85.41 74.53 37.13 31.01 28.50 92.59 82.47 73.82 35.12 29.54 26.32

zh 92.81 83.64 71.31 31.49 25.60 23.24 98.19 88.91 82.69 39.65 33.87 30.99

Table 4:Overall F1 scores over test data (see Section3.1).

269

3 Experimental Results

3.1 Overall results

Table4 shows the results for 81 test corpora in 49
languages including ‘surprise languages’.

The left side shows the performance of our sys-
tem described in Section2. The scores are the
same as those in the official run except forja pud
data on which we encountered a technical prob-
lem in the official run. ‘∗’ denotes that the values
were updated from the official score. WLAS de-
notes “Weighted labeled attachment score”, which
discounts the functional word attachments by mul-
tiplying 0.1 and ignores punctuation.

Numbers in bold letter indicate that our system
achieved the best scores among task participants.
Our sentence splitting was the best for seven cor-
pora including three surprize languages, and word
segmentation was best for five corpora.

Japanese (ja) shows the best score except for
sentence splitting5, but it is exceptional here. As
we provided the Japanese UD2.0 data set, we have
the consistent tokenization, PoS mapping and la-
bel definition with the data set, thus it is straight-
forward to convert the parsing structure into ap-
propriate UD schema. We intentionally use the
näıve method for parsing (nearest baseline), how-
ever, we performed the best among the participants
due to the high coincidence of the tokenization.

For Kazakh (kk), our approach worked well and
achieved the best score in sentence splitting and
unlabeled attachment scores (UAS). The absolute
score was not high, so this shows the difficulty of
the language for machine learning approaches.

Besides the difficult languages in terms of tok-
enization: Chinese (zh), Vietnamese (vi) and He-
brew (he), some languages show quite low scores
for word splitting (e.g. pt and tr) due to differ-
ences in tokenization policies which our adjust-
ment rules did not cover. Due to the nature of the
pipelined architecture, the errors in word splitting
directly affect the downstream metrics. Since the
UPOS is used for dependency parsing, PoS tag-
ging and PoS mapping errors are critical for pars-
ing scores, both UAS and LAS.

The right side of Table4 shows the results of
our parser using UDPipe for tokenization and PoS
tagging. Three columns (Sentence, Words and
UPOS) show the scores of UDPipe itself, and the
rest of columns show the scores of our parser when

5Interestingly the sentence splitting score is almost the
lowest among participants.

UDPipe was applied for preprocessing. Since UD-
Pipe was trained with the UD corpora the tok-
enization and PoS tagging performed much bet-
ter than ours and resulted in scores 8 and 9 points
higher than those obtained for UAS and LAS re-
spectively. For Kazakh (kk), Vietnamese (vi) and
one of Arabic data (ar pud), our tokenizer and PoS
tagger performed better than UDPipe, resulting in
better parsing scores in the left side.

Korean (ko) is another exception. Since our
UPOS-based dependency parsing model does not
capture the decomposed elements of each token,
the parser did not work well after the UDPipe pre-
processing. Our deterministic parser can handle
the functional words thus it performed better.

3.2 Cross-lingual and universal evaluation

One of the advantages of Universal Dependencies
is the capability to test the language independent
model and cross-lingual transfer learning. As de-
scribed in Section2.4, our dependency parsing
models without any lexical information are very
general. They therefore can be applied to other
languages enabling us to test a universal language
model.

Table 5 compares the UAS scores with the
cross-lingual and universal settings. The ‘Own
model’ column shows the original score, the
‘Best transfer’ column shows the score using the
model that performed the best among different
languages, and the ‘Universal’ column shows the
score obtained with the combined statistics ex-
tracted from all of the multilingual corpora. Num-
bers inbold denote that the transfer or universal
model outperformed the language specific model.
Japanese (ja) and Korean (ko) were not tested here
because they did not use compatible models.

The experimental result shows the best models
for applying low-resource languages:fi for bxr,
cs for kmr, tr for sme andhr for hsb. Also for
relatively low-resource languages such as Kazakh
(kk) and Ukrainian (uk), the models with larger
corpora outperformed their own models. For four
French (fr) corpora, the Portuguese (pt) model per-
formed as well as the French model. This suggests
the model with three different French corpora gen-
erated a noisy model.

It is interesting to consider the ‘neighbor’ lan-
guages in terms of syntax. English and Swedish
(sv) selected each other as the closest languages,
which suggests that they are selected not only be-

270

Language Own model Best transfer Universal
Average 53.53 49.06

ar 51.44 ga 47.45 45.47
ar pud 56.59 ga 55.92 54.53

bg 61.26 cs 60.38 60.19
bxr 23.40 fi 24.66 18.10
ca 58.31 es 57.90 57.57
cs 61.32 sl 60.68 59.31

cs cac 64.88 sl 64.19 62.93
cs cltt 54.09 sl 52.88 52.34
cs pud 64.47 sl 64.06 62.43

cu 51.09 got 51.06 47.29
da 48.62 no 48.45 47.56
de 49.28 nl 47.19 47.18

de pud 51.35 sl 49.92 49.21
el 61.06 de 57.04 58.37

en 56.44 sv 54.84 52.15
en lines 59.77 sv 58.89 56.05

en partut 62.48 sv 61.18 58.60
en pud 60.05 sv 58.55 56.00

es 63.80 pt 63.54 62.51
es ancora 65.22 ca 64.97 63.96

es pud 66.68 pt 66.34 65.37
et 49.79 en 48.57 44.14

eu 53.63 hu 47.05 42.78
fa 56.28 la 52.28 51.92
fi 45.45 en 43.98 39.58

fi ftb 57.45 en 50.92 50.51
fi pud 46.67 en 45.23 41.83

fr 61.71 pt 61.48 60.18
fr partut 64.75 it 64.98 63.55

fr pud 64.04 pt 64.65 63.56
fr sequoia 59.60 pt 59.24 57.74

ga 61.87 ro 59.05 57.05
gl 64.69 pt 62.62 60.99

gl treegal 46.75 pt 48.64 47.67
got 51.80 grc 50.93 49.22
grc 41.18 no 39.13 39.75

grc proiel 49.97 got 48.05 46.70
he 47.31 pt 45.35 43.83
hi 66.60 ur 65.48 38.36

hi pud 51.26 ur 50.83 33.41
hr 56.49 cs 55.36 54.23

hsb 30.74 hr 32.37 32.06
hu 46.56 fi 46.21 36.04
id 63.72 ro 62.58 61.55
it 57.96 pt 58.19 57.09

it pud 58.76 pt 59.38 58.75
ja 91.14 - -

ja pud 88.79 - -
kk 45.72 ur 47.58 18.77

kmr 10.59 cs 12.32 12.49
ko 55.54 - -
la 37.40 grc 39.78 35.83

la ittb 47.21 cs 45.01 45.19
la proiel 43.87 got 42.17 41.94

lv 45.13 en 44.80 37.46
nl 47.58 de 45.87 45.65

nl lassysmall 45.95 la 44.10 43.68
no bokmaal 57.07 da 55.69 54.70
no nynorsk 54.20 sv 52.60 51.64

pl 68.47 cs 66.65 66.75
pt 52.04 ca 51.71 50.32

pt br 53.10 es 53.08 51.56
pt pud 54.83 es 54.96 53.12

ro 64.24 pt 63.60 62.62
ru 55.70 bg 58.63 57.12

ru pud 58.58 cs 64.39 62.29
ru syntagrus 69.49 fi 58.81 59.63

sk 46.60 cs 48.82 47.45
sl 56.55 cs 56.21 54.39

sl sst 38.65 hr 37.35 37.78
sme 27.93 tr 28.73 20.31

sv 54.98 en 54.20 51.70
sv lines 57.70 en 56.93 54.04
sv pud 54.05 en 53.99 50.47

tr 42.07 ug 37.71 28.81
tr pud 39.14 ug 36.85 24.12

ug 48.10 ur 45.41 16.20
uk 45.91 sv 48.14 46.15
ur 62.47 hi 60.35 32.83
vi 37.13 en 33.36 34.15

zh 31.49 tr 27.17 19.58

Table 5: UAS-F1 scores with language specific
models, and transfer models (see Section3.2.

cause of the size of the training corpora. It is also
notable that two variants of Norwegian (no) were
closest for different languages (Danish (da) and
Swedish).

Even the universal model performed well. The
drop in UAS scores from the language-specific re-
sult was only 4.5 points on average. This shows
our method is general enough for multilingual de-
sign. Not only for low-resource languages such
as Ukrainian and surprise languages, but also for
Russian (ru) and Slovak (sk), the universal model
outperformed the language specific model.

3.3 Ablation of refinement rules

Table6 shows the difference in UAS scores when
we did not apply one of the sets of rules to change
the dependency structures described in Section2.4
and LAS scores without one of refinements for re-
lation labels described in Section2.5. The iden-
tification of multi word tokens did not work well
as expected, and the word level rules made little
contribution.

Applying all label refinement rules improved
the LAS score by 2.35 points on average. The
rules to modify labels for verb arguments were
the most important on average. Conjunction rules
were very simple but consistently improved for al-
most all languages. Word-based constraints are
good for some languages but may cause side ef-
fects. Pronoun rules were good for Gothic (got),
which suggests that the Gothic pronouns are rel-
atively consistently used for argument casese.g.
“saei” for nsubjand “mik” for obj.

4 Related Work

Some approaches share the same motivation with
ours. Mart́ınez-Alonso et al. (2017) used a small
set of UPOS-level attachment rules for parsing and
achieved 55 UAS with a universal model with pre-
dicted PoS. In this shared task we need to tackle
the preprocessing and relation labeling as well
which cannot be done in a language agnostic man-
ner. Accordingly, we used minimum statistics for
each language and achieved UAS levels similar to
those for our own tokenization and PoS prediction,
and higher value (by 9 points) when we use the
UDPipe preprocessor.

Universal parsing is not our main focus here, but
our results in the rightmost column in Table2 can
be used to compare our approach with universal
approaches (Ammar et al., 2016).

271

∆UAS ∆LAS
Language fixed const word arg pron conj ALL

Average -0.35 0.06 0.41 1.17 0.18 0.40 2.35
ar -2.41 0.04 1.51 -0.26 0.00 0.29 1.54

ar pud -1.39 0.00 1.44 2.80 -0.01 0.68 4.85
bg -0.54 0.10 0.88 0.88 0.58 0.73 3.62
bxr -3.32 0.00 0.00 0.00 0.00 0.00 0.00
ca 1.18 0.05 0.08 0.24 0.49 0.59 1.54
cs -0.39 0.06 0.24 1.95 0.21 0.50 3.42

cs cac -0.13 0.07 0.14 1.93 0.11 1.17 3.72
cs cltt 0.67 0.06 0.13 0.98 0.02 1.27 2.55
cs pud -0.14 0.09 0.08 2.43 0.19 0.60 3.97

cu 0.00 0.16 2.36 2.14 0.49 0.53 6.46
da 0.53 0.04 0.09 1.50 0.01 0.24 2.22
de -0.01 0.01 0.43 1.56 0.27 0.50 2.94

de pud 0.00 0.01 0.12 1.77 0.44 0.38 2.91
el 0.04 0.03 1.60 1.55 0.02 0.63 3.77

en 0.04 0.07 0.52 1.57 -0.33 0.40 2.16
en lines 0.19 0.05 0.59 2.14 -0.35 0.38 2.76

en partut 0.12 0.03 0.33 1.90 -0.04 0.82 3.00
en pud 0.02 0.06 0.32 2.12 -0.11 0.48 2.82

es -0.15 0.05 -0.10 2.14 0.53 0.59 4.27
es ancora 0.41 0.00 -0.63 0.68 -0.08 0.43 -0.46

es pud 0.21 0.02 0.20 2.79 0.32 0.54 3.93
et 0.08 0.00 1.14 0.29 0.23 0.05 1.83

eu -0.16 0.16 1.29 0.37 0.01 0.02 1.62
fa -4.35 0.19 0.82 1.44 0.00 1.49 3.93
fi 0.13 -0.07 -0.84 0.36 0.14 0.04 -0.29

fi ftb 0.21 0.12 -0.33 -0.09 0.20 0.07 -0.09
fi pud 0.09 -0.24 -0.65 0.48 0.10 0.10 0.05

fr -1.08 0.11 -0.37 2.37 0.40 0.48 4.11
fr partut -2.64 0.01 -0.69 2.26 0.24 0.72 3.75

fr pud -1.10 0.06 -0.11 2.81 0.40 0.40 4.98
fr sequoia 0.16 0.05 -0.58 1.75 0.16 0.33 2.95

ga 0.53 0.32 0.46 0.08 0.05 0.44 1.08
gl -0.45 0.04 0.34 0.99 -0.04 -0.41 0.88

gl treegal 0.02 0.08 0.28 0.29 0.11 0.80 1.50
got -0.36 0.15 0.69 1.20 2.18 0.54 4.69
grc -0.12 0.02 -1.02 1.13 0.12 0.47 0.71

grc proiel -0.37 0.01 3.13 1.50 1.07 0.47 6.24
he 0.10 0.09 0.41 0.60 0.02 0.36 1.38
hi 0.03 0.02 0.25 0.95 0.05 -0.01 1.61

hi pud 0.00 0.03 0.74 0.40 0.27 0.04 1.84
hr -0.59 0.00 0.75 1.41 0.24 0.81 3.46

hsb -0.32 0.00 0.29 0.00 0.00 0.66 0.96
hu -0.07 0.07 0.29 0.26 0.04 0.01 0.64
id -2.53 0.05 0.05 2.43 -0.03 0.76 3.21
it 0.02 0.06 -0.14 1.99 0.11 0.52 3.13

it pud 0.16 0.08 -0.01 2.60 0.11 0.43 3.66
kk 0.00 0.00 0.00 0.00 0.00 0.04 0.04

kmr -9.68 0.00 0.02 0.00 0.00 0.00 0.02
la -0.06 0.52 0.19 1.58 0.35 0.28 2.36

la ittb -0.06 0.02 -0.09 1.48 0.05 0.45 1.89
la proiel -0.10 0.02 0.30 2.15 0.65 0.74 3.83

lv 0.20 0.02 0.63 0.21 0.25 0.03 1.12
nl 0.49 0.05 0.59 0.24 0.24 0.63 1.73

nl lassysmall 0.38 0.05 0.34 0.34 -0.02 0.46 1.15
no bokmaal 0.04 0.14 0.54 1.73 0.23 0.37 3.03
no nynorsk 0.13 0.17 0.55 1.42 0.18 0.48 2.83

pl -0.38 0.02 0.60 0.00 0.49 0.37 2.05
pt -0.14 0.03 -0.51 0.06 0.00 0.35 -0.09

pt br -0.02 0.06 0.58 0.20 0.10 0.39 1.27
pt pud 0.02 0.10 0.38 0.17 0.03 0.45 1.04

ro 0.91 0.16 1.20 1.68 0.60 0.57 4.15
ru -0.62 0.16 -0.02 2.85 0.18 0.51 3.84

ru pud -0.71 0.00 0.00 3.84 0.36 0.50 5.05
ru syntagrus -0.65 0.10 0.04 2.38 0.18 0.55 3.43

sk -0.75 0.10 0.49 1.12 0.09 0.83 2.67
sl -0.09 0.00 0.73 2.19 0.26 0.79 4.19

sl sst 0.11 0.01 1.21 1.30 0.40 0.14 3.62
sme 0.00 0.00 0.00 0.00 0.00 0.04 0.04

sv 1.07 0.11 1.38 2.12 -0.01 0.53 4.17
sv lines -0.36 0.18 1.47 2.32 0.22 0.33 4.71
sv pud -0.11 0.19 1.55 2.00 0.06 0.40 4.10

tr 0.28 0.00 0.43 0.00 0.26 -0.02 0.74
tr pud -0.12 0.00 0.23 0.00 0.07 0.05 0.31

ug 0.00 0.00 0.15 0.00 0.04 0.00 0.19
uk -0.03 0.03 1.20 0.13 0.10 0.82 2.20
ur 0.03 -0.01 0.44 0.92 0.03 0.06 1.43
vi -0.53 0.02 0.13 0.57 0.00 0.05 0.75

zh -0.01 0.05 1.37 0.72 0.00 0.00 2.09

Table 6: Ablation shown by differences in UAS
and LAS values.

5 Conclusion

For the CoNLL 2017 Shared Task on multilin-
gual parsing from raw text, we were able to
achieve a whole multilingual parser pipeline in
a “semi-universal” manner exploiting minimum
statistics from the training corpora with determin-
istic rules for part of speech tagging and label ad-
justment. Even with a simple and general model
we achieved .43 labeled attachment scores on av-
erage and showed that the model we propose can
be suitably applied to cross-lingual and universal
scenarios.

References

Waleed Ammar, George Mulcaire, Miguel Balles-
teros, Chris Dyer, and Noah A. Smith. 2016.
Many languages, one parser. TACL 4:431–444.
http://aclweb.org/anthology/Q16-1031.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph.Science Sinica14:1396–
1400.

J. Edmonds. 1967. Optimum branchings.Journal
of Research of the National Bureau of Standards
71(B):233–240.

Hiroshi Kanayama, Youngja Park, Yuta Tsuboi, and
Dongmook Yi. 2014. Learning from a neighbor:
Adapting a Japanese parser for Korean through fea-
ture transfer learning. LT4CloseLang 2014page 2.
http://aclweb.org/anthology/W14-4202.

Héctor Mart́ınez Alonso,Željko Agić, Barbara Plank,
and Anders Søgaard. 2017. Parsing universal depen-
dencies without training. InProceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers. Association for Computational Linguistics,
Valencia, Spain, pages 230–240.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajǐc. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 523–530. www.aclweb.org/anthology/H05-
1066.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal dependencies 2.0― CoNLL
2017 shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Cristina Bosco, Jinho Choi, Marie-
Catherine de Marneffe, Timothy Dozat, Richard

272

Farkas, Jennifer Foster, Filip Ginter, Yoav Gold-
berg, Jan Haji, Jenna Kanerva, Veronika Laippala,
Alessandro Lenci, Teresa Lynn, Christopher Man-
ning, Ryan McDonald, Anna Missila, Simonetta
Montemagni, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Maria Simi, Aaron Smith, Reut Tsarfaty,
Veronika Vincze, and Daniel Zeman. 2015. Univer-
sal dependencies 1.0.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors,Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299.https://doi.org/10.1007/978-3-319-
11382-122.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. InProceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015.Structured training for neural network
transition-based parsing. CoRR abs/1506.06158.
http://arxiv.org/abs/1506.06158.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinkov́a, Jan Hajǐc jr.,
Jaroslava Hlav́ačová, Václava Kettnerov́a, Zděnka
Urěsov́a, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Ȟector Mart́ınez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. InProceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

273

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 274–282,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

A rule-based system for cross-lingual parsing of Romance languages with
Universal Dependencies

Marcos Garcia
LyS Group

Departamento de Letras
Universidade da Coruña

marcos.garcia.gonzalez@udc.gal

Pablo Gamallo
Centro Singular de Investigación en

Tecnoloxı́as da Información (CiTIUS)
Universidade de Santiago de Compostela

pablo.gamallo@usc.es

Abstract

This article describes MetaRomance, a
rule-based cross-lingual parser for Ro-
mance languages submitted to CoNLL
2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependen-
cies. The system is an almost delexi-
calized parser which does not need train-
ing data to analyze Romance languages.
It contains linguistically motivated rules
based on PoS-tag patterns. The rules in-
cluded in MetaRomance were developed
in about 12 hours by one expert with no
prior knowledge in Universal Dependen-
cies, and can be easily extended using
a transparent formalism. In this paper
we compare the performance of MetaRo-
mance with other supervised systems par-
ticipating in the competition, paying spe-
cial attention to the parsing of different
treebanks of the same language. We also
compare our system with a delexicalized
parser for Romance languages, and take
advantage of the harmonized annotation of
Universal Dependencies to propose a lan-
guage ranking based on the syntactic dis-
tance each variety has from Romance lan-
guages.

1 Introduction

This article describes the MetaRomance parser,
which participated at CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Univer-
sal Dependencies (Zeman et al., 2017). MetaRo-
mance is a rule-based parser for Romance lan-
guages adapted to Universal Dependencies (UD).
The system relies on a basic grammar consisting
on simple cross-lingual and (almost) delexicalized
rules likely to be shared by most Romance lan-

guages. Rules are almost delexicalized because
they are mainly applied on Universal PoS-tags,
only containing few grammar words (some prepo-
sitions and conjunctions) together with a small list
of verbs. The grammar was developed by one ex-
pert with no prior knowledge in UD in about 12
hours.1

As the Universal Dependencies initiative (Nivre
et al., 2016) offers linguistic criteria providing a
consistent representation across languages, it fits
perfectly with our objective of defining cross-
lingual rules. In fact, the availability of har-
monized treebanks provides an interesting test
bench for cross-lingual dependency parsing re-
search (McDonald et al., 2011; Mcdonald et al.,
2013; Vilares et al., 2016).

Our participation at this CoNLL 2017 shared
task has several experimental objectives. First,
we will compare our rule-based approach with the
rest of participants, which are likely to be super-
vised systems, with regard to Romance languages.
Namely, we will analyze the performance of sev-
eral systems on different treebanks of the same
language. Then, we will also evaluate the cross-
lingual property of our system by comparing it
with a supervised delexicalized parser. Last but
not least, the analysis of the results in the shared
task will allow us to check whether our method
might be useful to measure the syntactic distance
between Romance and non-Romance languages.

The results of different experiments show that,
in spite of its simplicity, MetaRomance achieve
reasonable results on Romance languages with no
training data, and that its performance is relatively
uniform across different treebanks of the same lan-
guage. The delexicalized rules of this system al-

1The whole system, DepPattern and MetaRomance, is
freely available at:
https://github.com/CoNLL-UD-2017/
MetaRomance.

274

lowed us to present a classification of all the lan-
guages present in the shared task ranked by their
syntactic distance from Romance languages.

The remaining of the paper is organized as fol-
lows. Section 2 presents some related work on
dependency and cross-lingual parsing. Then, we
present the architecture of MetaRomance in Sec-
tion 3, and several experiments on Section 4. Fi-
nally, we briefly discuss the results and present the
conclusions of our work in Sections 5 and 6, re-
spectively.

2 Related Work

In the last 15 years, most work on depen-
dency parsing has been developed within two
supervised (data-driven) approaches: determinis-
tic parsing, which is also known as transition-
based parsing (Yamada and Matsumoto, 2003;
Nivre, 2004; Gómez-Rodrı́guez and Fernández-
González, 2012), and non-deterministic strategies,
known as graph-based dependency parsing (Mc-
Donald and Pereira, 2006; Carreras, 2007; Martins
et al., 2010).

In opposition to data-driven approaches, many
grammar-driven (or rule-based) parsers use finite-
state technology, which has attractive properties
for syntactic parsing, such as conceptual simplic-
ity, flexibility, and efficiency in terms of space and
time. It permits to build robust and deterministic
parsers. Most finite-state based parsing strategies
use cascades of transducers (Ait-Mokhtar et al.,
2002; Oflazer, 2003).

Concerning cross-lingual parsing, there are two
main approaches for parsing one language (the tar-
get) with resources from one or more source lan-
guages: (a) data transfer, and (b) model trans-
fer methods. On the one hand, data transfer ap-
proaches obtain annotated treebanks of a target
language by projecting the syntactic information
from the source data. Some methods use parallel
corpora (Hwa et al., 2005; Ganchev et al., 2009;
Agić et al., 2016) while others create artificial data
taking advantage of machine translation (Tiede-
mann and Agić, 2016).

On the other hand, the strategies based on model
transfer train systems on the source data that can
be used to parse a target language (Zeman and
Resnik, 2008). The emergence of different initia-
tives promoting harmonized annotations allowed
researchers to explore this approach, using delex-
icalized models and multi-source strategies (Mc-

Donald et al., 2011; Täckström et al., 2012).
More recently, some works addressed multi-

lingual parsing using a single model (trained in
a combination of various treebanks) to analyze
different languages (Vilares et al., 2016; Ammar
et al., 2016).

The growth in cross-lingual parsing research
has given rise to a recent shared task at VarDial
2017 (Zampieri et al., 2017), Cross-lingual De-
pendency Parsing (CLP) (Tiedemann, 2017). CLP
is a shared task whose aim is to develop models
for parsing selected target languages without an-
notated training data, but having annotated data in
one or two closely related languages (Rosa et al.,
2017).

With the emergence of UD as the practical stan-
dard for multilingual PoS and syntactic depen-
dency annotation, it is possible to develop univer-
sal rule-based strategies requiring no training data,
and relying on basic rules exploiting the UD crite-
ria. The Universal Dependency Parser, described
in (Martı́nez Alonso et al., 2017), is a good ex-
ample of this unsupervised strategy. Our work
goes in that direction, but with two differences:
the grammar is focused on Romance languages
and the parser relies on basic rules implemented
as cascades of finite-state transducers.

3 MetaRomance

3.1 The architecture

The core of MetaRomance, depicted in Figure 1,
consists of the following modules:

• An adapter converting CoNLL-U into the
format required by the rule-based parser.

• A MetaRomance grammar with 150 cross-
lingual rules configured to work with tags, la-
bels and linguistic constraints of UD.

• A grammar compiler that takes the grammar
as input and generates a dependency parser,
which is based on finite state transitions.

In order to allow MetaRomance to work on
raw text, some scripts are provided in addition
to the core architecture for converting the tags
given by different PoS-taggers (namely, FreeL-
ing (Padró and Stanilovsky, 2012; Garcia and
Gamallo, 2010), TreeTagger (Schmid, 1994), and
LinguaKit (Garcia and Gamallo, 2015)) into the
CoNLL-U format. Thus, MetaRomance is able

275

to parse raw text which has been tokenized, lem-
matized and PoS-tagged with several systems that
provide high-quality analyses for different lan-
guages.

3.2 The MetaRomance grammar

The cost of writing the grammar is not high since
its size is small and the rules are not language-
specific. The strategy we followed to write the
MetaRomance grammar is based on two method-
ological principles:

• Start with high-coverage rules.

• Otherwise, develop rules shared by as many
Romance languages as possible.

The objective is to find a trade-off between high
performance and low effort, i.e. we look for ef-
ficiency. Most rules satisfy these two principles,
giving rise to a broad-coverage parser. We have
not defined non-projective rules since, in general,
they have low coverage and are language depen-
dent. Some rules contain information on spe-
cific lexical units, but only to identify grammati-
cal words: some prepositions, conjunctions, deter-
miners, and pronouns (and a small and automat-
ically extracted list of verbs). Most phenomena
not covered by the grammar are related with some
long distance dependencies, including subordinate
clauses in non-canonical positions, or complex is-
sues derived from coordination.

Cross-lingual rules were written with DepPat-
tern (Gamallo and González, 2011), a high-level
syntactic formalism aimed to write dependency-
based grammars. This dependency formalism has
been adapted so as to let it interpret Universal De-
pendencies, more specifically UDv2. All rules
were written in about 12 hours by an expert lin-
guist who has skills in the DepPattern formalism,
but with no prior knowledge in UD. He took into
account the syntactic structure of all Romance lan-
guages of the UDv2 treebanks except Romanian.
In the following you can see an example of a Dep-
Pattern rule:

det: DET [ADJ]? NOUN
Agreement: gender, number
%

The first line contains, divided by the colon,
the name of the dependency relation (det) together
with the PoS context. Here, a determiner will be

linked as dependent of a noun (the head), with an
optional adjective between them. The second line
states that this rule will only be applied if both the
dependent and the head agree in gender and num-
ber.

As the grammar is not complete, giving rise to
partial parses, we implemented a post-editor script
linking all tokens without head information to the
corresponding sentence root. Moreover, in order
to assign a label to each unknown dependency, the
script associates dependency names to PoS-tags:
e.g., PUNCT is associated with the dependency
name “punct”, VERB with “xcomp”, and so on.

It is worth noting that the rules implemented in
MetaRomance only make use 25 out of the 37 uni-
versal relations defined in the UDv2 guidelines.

3.3 A finite-state transition parser

The parser, automatically generated from the for-
mal grammar, is based on a finite-state transition
approach making use of a similar strategy to the
shift-reduce algorithm. More precisely, it consists
of a set of transducers/rules that compress the in-
put sequence of tokens by progressively removing
the dependent tokens as soon as dependencies are
recognized (Gamallo, 2015). So, at each applica-
tion of a rule, the system reduces the input and
make it easier to find new dependencies in further
rule applications. In particular, short dependencies
are recognized first and, as a consequence, the in-
put is simplified so as to make lighter the recog-
nition of long distance dependencies. This is in-
spired by the easy-first strategy.

4 Experiments

This section presents several evaluations of
MetaRomance using the data provided by the
CoNLL 2017 shared task on UD parsing (Nivre
et al., 2017). We will show the results of the fol-
lowing experiments:

• Comparison of MetaRomance with other su-
pervised approaches on all the testing tree-
banks of Romance languages.

• Analysis of the performance of several
parsers on different treebanks of the same
language.

• Comparison of MetaRomance with a neu-
ral network delexicalized parser for Romance
languages.

276

Figure 1: Architecture of MetaRomance

• Syntactic distance between Romance and
non-Romance languages.

As we had several alignment issues concerning
the evaluation of data pre-processed by LinguaKit
and FreeLing, all the experiments presented in this
paper (as well as the official MetaRomance re-
sults) used as input the tokenized, lemmatized and
PoS-tagged data provided by the UDPipe baseline
models.

4.1 Results at CoNLL-2017 shared task

In general, our system obtained low LAS and
UAS results in the whole dataset of the shared
task (34.05% LAS, 42.55% UAS).2 The results
were mostly expected due to the characteristics
of MetaRomance: an almost delexicalized parser
which does not require training data, with simple
rules only based on the syntactic structure of Ro-
mance languages.

MetaRomance needed 29 minutes and 155MB
of memory to parse all the testing sets on the TIRA
virtual machine provided by the shared task (Pot-
thast et al., 2014).

Table 1 shows the official MetaRomance results
on every treebank of a Romance language eval-
uated in the shared task. On average, our system
achieved F1 results of 58.9 (LAS) and 66.1 (UAS).
The worst results were obtained in Romanian; this
fact was expected because (a) Romanian is lin-
guistically more distant than the other Romance
languages (Gamallo et al., 2017), and (b) we did
not implement any dependency rule with this lan-
guage in mind.

2After correcting a small bug in a script —which pro-
duced invalid treebanks for three languages—, we obtained
34.98% LAS and 43.81% UAS. The new results, not present
in the official ones, were (LAS/UAS): bxr: 19.51/30.22, cs:
41.63/47.92, and tr: 13.70/23.85.

Even if the values in Table 1 are not compara-
ble with most supervised systems in the compe-
tition, our simple parser obtained competitive re-
sults in some languages, such as es, it, and pt. In-
terestingly, MetaRomance performed better in the
pud datasets than in the others treebanks of the
same languages (with only one exception: UAS
results in pt and pt pud), while most systems in the
shared task decreased their performance in the pud
datasets in several points. In this respect, MetaRo-
mance leaded some supervised approaches in tree-
banks such as pt pud or gl treegal (this last one
with small training data).

Some of the results on different treebanks of the
same language have noticeable LAS differences:
more than 5 points between es and es pud, and
about 10% between pt br and the two other tree-
banks of Portuguese.3

In this regard, our next experiment compares the
cross-treebank performance of supervised models
(i.e., parsing different treebanks of the same lan-
guage with the same model). To carry out this
experiment we trained a UDPipe model (Straka
et al., 2016) in each training dataset of Spanish,
Galician, and Portuguese. These models were
trained using the default parameters of UDPipe
1.1, but removing the lemmas and the morpholog-
ical features of the treebanks, with a view to build-
ing parsers with more robust performance among
the different test sets.4

3Concerning Portuguese, it is important to note that (a)
Brazilian Portuguese has some syntactic (as well as morpho-
logical, orthographic, etc.) differences regarding European
Portuguese, and that (b) the pt br treebank does not contain
lemmas neither morphological features (and also it has some
tokenization issues: e.g., most contractions with the preposi-
tion em are tokenized as en).

4Preliminary tests using the baseline models provided by
the shared task organization showed that some models trained
in one treebank may obtain LAS results with drops of more
than 26% when parsing a different treebank of the same lan-

277

Treebank LAS UAS
ca 57.71 65.57
es 59.80 67.20
es ancora 60.99 69.63
es pud 65.49 71.68
fr 54.10 62.20
fr partut 56.17 63.10
fr sequoia 55.16 60.76
fr pud 58.67 65.94
gl 54.87 62.59
gl treegal 57.20 63.87
it 62.96 70.35
it pud 65.49 71.82
pt 65.50 71.77
pt br 56.19 65.81
pt pud 66.35 71.43
ro 45.04 53.90
average 58.86 66.10

Table 1: MetaRomance results on the Romance
languages test sets (predicted tokens, lemmas, fea-
tures, and PoS-tags).

Table 2 includes the LAS and UAS values of
each model (in the columns) on the target tree-
banks (on each row). These numbers clearly show
that the results of supervised models are very dif-
ferent when parsing a different treebank to the one
used for training, even if both corpus belong to the
same language. These differences are much higher
than those reported for MetaRomance, exceeding
22% in gl parsing gl treegal, more than 15% in
the analysis of es by es ancora, or more than 14
in pt br parsing pt. Note, however, than most su-
pervised parsers (except gl analyzing gl treegal)
achieved better results than those obtained by
MetaRomance.

These results (both the UDPipe and the
MetaRomance ones) suggest that careful analyses
of the different treebanks are required, aimed at
knowing whether these large variations are due to
different domains, annotation issues, or linguistic
differences.

4.2 Comparison with a cross-lingual
delexicalized parser

In the next experiment we compare the per-
formance of MetaRomance with a delexicalized
parser trained with a combined corpus which in-
cludes sentences from every Romance treebank.

guage.

Target Source

Spanish
es es ancora

LAS UAS LAS UAS
es 76.85 81.19 64.25 71.95
es ancora 67.25 76.43 79.36 83.42
es pud 74.88 82.26 67.67 76.77

Galician
gl gl treegal

LAS UAS LAS UAS
gl 73.71 77.17 58.03 68.47
gl treegal 50.98 63.37 65.24 70.81

Portuguese
pt pt br

LAS UAS LAS UAS
pt 78.74 82.43 68.00 77.92
pt br 66.85 76.19 82.10 84.83
pt pud 71.59 77.58 67.75 77.87

Table 2: Results of UDPipe models trained in the
source treebanks (columns) on the target test sets
(rows).

This is a competitive supervised baseline in cross-
lingual transfer parsing work, which gives us an
indication of how our system compares to standard
cross-lingual parsers.

We trained 50 UDPipe models by randomly se-
lecting from 1 to 50 sentences of each Romance
treebank in the training data. Then, we obtained
the average results on all the Romance test tree-
banks, and plotted them together with the MetaRo-
mance performance in Figure 2.

This figure shows that MetaRomance obtains
similar results (≈ 59% LAS) to those achieved
with about 2,000 tokens of all the Romance tree-
banks. The learning curve also suggest that it is
difficult for cross-lingual models with no lexical
features (as MetaRomance, which is also delexi-
calized) to keep increasing their cross-lingual per-
formance on Romance languages. Thus, UDPipe
achieves 64% with about 5,000 tokens, but it can-
not surpass 65% even with a training corpus of
20,000 tokens.

4.3 Syntactic distance from Romance
languages

The last experiment is an attempt to rank all the
languages in the shared task with respect to the
Romance family, aimed at knowing whether it is
possible to use these results as a syntactic distance
between Romance and non-Romance languages.

Table 3 includes the UAS values obtained by
MetaRomance in every language of the dataset.

278

Language UAS Family Branch
Italian 71 Ind Romance
Portuguese 69 Ind Romance
Spanish 69 Ind Romance
Catalan 65 Ind Romance
Galician 63 Ind Romance
French 63 Ind Romance
Bulgarian 54 Ind Slavic
Romanian 53 Ind Romance
Greek 52 Ind European
Russian 52 Ind Slavic
Indonesian 51 Non-Ind Austronesian
Polish 51 Ind Germanic
Old Bulgarian 50 Ind Slavic
Gothic 50 Ind Germanic
Ukrainian 48 Ind Slavic
Dutch 48 Ind Germanic
Croatian 48 Ind Slavic
Norwegian 48 Ind Germanic
Danish 46 Ind Germanic
Hungarian 46 Non-Ind Uralic
Czech 46 Ind Slavic
Sorbian 45 Ind Slavic
English 45 Ind Germanic
Swedish 44 Ind Germanic
Slovak 44 Ind Slavic
German 43 Ind Germanic
Old Greek 40 Ind European
Irish 40 Ind Celtic
Slovene 38 Ind Slavic
Hebrew 38 Non-Ind Semitic
Latin 37 Ind European
Estonian 37 Non-Ind Uralic
Arabic 37 Non-Ind Semitic
Latvian 36 Ind Germanic
Farsi 35 Ind Indian
Norther Sami 35 Non-Ind Uralic
Kurdish 35 Ind Indian
Finnish 34 Non-Ind Uralic
Russian Buryat 30 Non-Ind Mongolic
Korean 27 Non-Ind Koreanic
Turkish 21 Non-Ind Turkic
Uyghur 18 Non-Ind Turkic
Vietnamese 18 Non-Ind Austroasiatic
Kazakh 18 Non-Ind Turkic
Basque 18 Non-Ind isolated
Hindi 15 Ind Indian
Chinese 14 Non-Ind Sino-tibetan
Urdu 13 Ind Indian
Japanese 8 Non-Ind Japonic

Table 3: MetaRomance results (UAS) on each lan-
guage of the CoNLL 2017 dataset. Results in lan-
guages with more than one treebank are the aver-
age values.

Figure 2: LAS values of MetaRomance versus the
learning curve (0–20,000 tokens) of a delexical-
ized UDPipe model trained with random sentences
from all the Romance treebanks. Results are av-
erage F1 values of all the testing Romance tree-
banks.

For those languages with more than one treebank
we show the average results.5

As expected, at the top of the ranking we
find Romance languages, on which MetaRomance
achieves the best results (except on Romanian,
slightly surpassed by Bulgarian). With few excep-
tions, such as the Indian varieties which obtained
low values, Indo-european languages have the best
results. In general, our system does not reach 40%
UAS in Non-Indo-european languages, except in
Hungarian and in Indonesian. In this regard, it
is worth mentioning that Indonesian (with 51%
UAS) has a Subject-Verb-Object word order simi-
lar to most European languages (Sneddon, 1996).

5 Discussion

The experiments performed in this paper provided
some interesting results that claim for further re-
search in cross-lingual parsing.

On the one hand, there are noticeable differ-
ences when parsing different treebanks of the
same language, both using a rule-based system
and harmonized supervised models. In this re-
spect, it could be interesting to analyze the source
of these variations, and MetaRomance could be

5Table 3 follows the language distinction provided by the
shared task, even if we are aware that some linguistic varieties
may be considered dialects of the same language (e.g., Gali-
cian as a variety of Portuguese, Old Bulgarian as a variety of
Bulgarian, etc.).

279

useful for this purpose because it uses linguisti-
cally transparent rules based on PoS-tags.

On the other hand, the learning curve of a cross-
lingual delexicalized model reinforces the idea
that lexical features are required to obtain high-
quality parsing results. In this respect, further ex-
periments could compare this learning curve to
lexicalized cross-lingual models, which seem to
obtain good results in languages from the same
linguistic family. Concerning MetaRomance, the
addition of new rules (both lexicalized and with-
out lexical information) could allow the parser to
better analyze different languages.

Finally, and even if this is not a fair compari-
son, it is worth noting that MetaRomance obtained
higher results in Romance languages than those
achieved by UDP (Martı́nez Alonso et al., 2017).
UDP is a training-free parser based on PageRank
and a small set of head attachment rules, being
more generic than MetaRomance (it can be applied
to any language with more homogeneous results
than our system). The differences on Romance
languages vary between few decimals to more than
6% UAS, but the experiments were performed us-
ing different versions of the UD treebanks.6

6 Conclusions

This paper presented our submission to the CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. The system,
MetaRomance, is a fast rule-based parser suited to
analyze Romance languages with no training data.
It can be used on the top of several PoS-taggers
such as LinguaKit, FreeLing, TreeTagger, or in a
CoNLL-U file processed by tools such as UDPipe.

This cross-lingual parser contains 150 rules
based on PoS-tags patterns, implemented by a lin-
guist in about 12 hours. The MetaRomance gram-
mar was written in DepPattern, a formalism that
allows experts to easily modify and increase the
rules to cover more syntactic phenomena.

Several experiments showed that a simple sys-
tem such as the proposed in this paper can ana-
lyze in a uniform way different treebanks of Ro-
mance languages (and also from other linguis-
tic families). Furthermore, a preliminary experi-
ment on cross-lingual delexicalized parsing of Ro-
mance languages suggested that lexical features

6At this moment it is not possible to perform a better com-
parison of both systems, because UDP works with UDv1.2
and MetaRomance with UDv2.0.

are needed to increase the parsing performance.
Lexical information can be added both to super-
vised systems and to our rule-based approach.

The grammar provided by MetaRomance was
also used to present a classification of all the lan-
guages of the shared task datasets ranked by their
syntactic distance with respect to Romance lan-
guages.

Acknowledgments

This work has received financial support from a
2016 BBVA Foundation Grant for Researchers
and Cultural Creators, the TelePares project
(MINECO, ref:FFI2014-51978-C2-1-R), the
Consellerı́a de Cultura, Educación e Orde-
nación Universitaria (accreditation 2016-2019,
ED431G/08), the European Regional Devel-
opment Fund (ERDF), and from a Juan de la
Cierva-formación grant (FJCI-2014-22853).

References
Željko Agić, Anders Johannsen, Barbara Plank, Héctor

Martı́nez Alonso, Natalie Schluter, and Anders
Søgaard. 2016. Multilingual projection for parsing
truly low-resource languages. Transactions of the
Association for Computational Linguistics 4:301–
312.

S. Ait-Mokhtar, J-P Chanod, and C. Roux. 2002.
Robustness beyond Shallowness: Incremental
Deep Parsing. Natural Language Engineering
8(2/3):121–144.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Cris Dyer, and Noah A. Smith. 2016. Many Lan-
guages, One Parser. Transactions of the Association
for Computational Linguistics 4:431–444.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007. Association for Computational Lin-
guistics, Prague, pages 957–961.

Pablo Gamallo. 2015. Dependency parsing with com-
pression rules. In Proceedings of the 14th Inter-
national Workshop on Parsing Technology (IWPT
2015). Association for Computational Linguistics,
Bilbao, Spain, pages 107–117.

Pablo Gamallo and Isaac González. 2011. A grammat-
ical formalism based on patterns of part-of-speech
tags. International Journal of Corpus Linguistics
16(1):45–71.

Pablo Gamallo, José Ramom Pichel, and Iñaki Alegria.
2017. From language identification to language dis-
tance. Physica A 484:162–172.

280

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP. As-
sociation for Computational Linguistics, volume 1,
pages 369–377.

Marcos Garcia and Pablo Gamallo. 2010. Análise mor-
fossintáctica para português europeu e galego: Prob-
lemas, soluçoes e avaliaçao. Linguamática 2(2):59–
67.

Marcos Garcia and Pablo Gamallo. 2015. Yet an-
other suite of multilingual NLP tools. In Languages,
Applications and Technologies. Springer, Switzer-
land, volume 563 of Communications in Computer
and Information Science, pages 65–75. Revised Se-
lected Papers of the Symposium on Languages, Ap-
plications and Technologies (SLATE 2015).

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2012. Dependency parsing with undi-
rected graphs. In 13th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL). Avignon, France, pages 66–76.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering 11(03):311–325.

Héctor Martı́nez Alonso, Zeljko Agic, Barbara Plank,
and Anders Søgaard. 2017. Parsing universal de-
pendencies without training. In 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL 2017). Valencia, Spain,
pages 229–239.

André F. T. Martins, Noah A. Smith, Eric P. Xing,
Pedro M. Q. Aguiar, and Mário A. T. Figueiredo.
2010. Turboparsers: Dependency parsing by ap-
proximate variational inference. In Empirical Meth-
ods in Natural Language Processing (EMNLP’10).
Boston, USA.

Ryan Mcdonald, Joakim Nivre, Yvonne Quirmbach-
brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu, and
Castelló Jungmee Lee. 2013. Universal dependency
annotation for multilingual parsing. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013). Association
for Computational Linguistics, Sofia, pages 92–97.

Ryan McDonald and Fernando Pereira. 2006. Online
Learning of Approximate Dependency Parsing Al-
gorithms. In Association for Computational Lin-
guistics, editor, Proceedings of the Eleventh Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL 2006). Trento,
pages 81–88.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source Transfer of Delexicalized Dependency
Parsers. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2011). Association for Computational Lin-
guistics, Edinburgh, United Kingdom, pages 62–72.

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In ACL Workshop on Incre-
mental Parsing: Bringing Engineering and Cogni-
tion Together. Association for Computational Lin-
guistics, Barcelona, pages 50–57.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al.
2017. Universal dependencies 2.0 – CoNLL 2017
shared task development and test data. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Sl av Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association, Portorož, Slovenia, pages
1659–1666.

Kemal Oflazer. 2003. Dependency parsing with an
extended finite-state approach. Computational Lin-
guistics 29(4):515–544.

Lluı́s. Padró and Evgeny Stanilovsky. 2012. FreeL-
ing 3.0: Towards Wider Multilinguality. In Pro-
ceedings of the Language Resources and Evalua-
tion Conference (LREC 2012). European Language
and Resources Association, Istanbul, Turkey, pages
2473–2479.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author identifica-
tion, and author profiling. In Evangelos Kanoulas,
Mihai Lupu, Paul Clough, Mark Sanderson, Mark
Hall, Allan Hanbury, and Elaine Toms, editors, In-
formation Access Evaluation meets Multilingual-
ity, Multimodality, and Visualization. 5th Interna-
tional Conference of the CLEF Initiative (CLEF 14).
Springer, Berlin Heidelberg New York, pages 268–
299.

Rudolf Rosa, Daniel Zeman, David Mareček, and
Zdeněk Žabokrtský. 2017. Slavic forest, norwegian
wood. In Proceedings of the Fourth Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial4). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, pages 210–219.

Helmut Schmid. 1994. Probabilistic Part-of-Speech
Tagging Using Decision Trees. In International
Conference on New Methods in Language Process-
ing. Manchester, pages 154–163.

281

James Neil Sneddon. 1996. Indonesian Reference
Grammar. Allen and Unwin, St. Leonards, Aus-
tralia.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portorož, Slove-
nia.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human language technologies (NAACL - HLT
2012). Association for Computational Linguistics,
pages 477–487.

Jörg Tiedemann. 2017. Cross-lingual dependency
parsing for closely related languages. In Proceed-
ings of the Fourth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial 2017).
Association for Computational Linguistics, Valen-
cia, pages 131–136.

Jörg Tiedemann and Željko Agić. 2016. Synthetic
Treebanking for Cross-Lingual Dependency Pars-
ing. Journal of Artificial Intelligence Research
(JAIR) 55:209–248.

David Vilares, Miguel A. Alonso, and Carlos Gómez-
Rodrı́guez. 2016. One model, two languages: train-
ing bilingual parsers with harmonized treebanks. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2016).
Berlin, Germany, volume 2, pages 425–431.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statisti-
cally Dependency Analysis with Support Vector Ma-
chines. In Proceedings of 8th International Work-
shop on Parsing Technologies (IWPT). pages 195–
206.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
Scherrer, and Noëmi Aepli. 2017. Findings of the
VarDial Evaluation Campaign 2017. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial). Valencia.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gökırmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,

Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

Daniel Zeman and Philip Resnik. 2008. Cross-
Language Parser Adaptation between Related Lan-
guages. In Proceedings of the Workshop on NLP for
Less Privileged Language at the 3rd International
Joint Conference on Natural Language Processing
(IJCNLP 2008). Asian Federation of Natural Lan-
guage Processing, Hyderabad, pages 35–42.

282

Author Index

Akkuş, Burak Kerim, 218
Alcalde, Hector Fernandez, 1
Asadullah, Munshi, 111
Attia, Mohammed, 1
Aufrant, Lauriane, 163
Azizoglu, Heval, 218

Badmaeva, Elena, 1
Banerjee, Esha, 1
Basirat, Ali, 207
Björkelund, Anders, 40
Boroş, Tiberiu, 174
Burchardt, Aljoscha, 1

Cakici, Ruket, 218
Che, Wanxiang, 52
Chen, Xilun, 31
Cheng, Yao, 31
Cinkova, Silvie, 1
Çöltekin, Çağrı, 1

Das, Ayan, 182
De La Clergerie, Eric, 243
de Lhoneux, Miryam, 207
de Marneffe, Marie-Catherine, 1
dePaiva, Valeria, 1
Dozat, Timothy, 20
Dras, Mark, 134
Droganova, Kira, 1
Dumitrescu, Stefan Daniel, 174

Elkahky, Ali, 1

Falenska, Agnieszka, 40

Gamallo, Pablo, 274
Garcia, Marcos, 274
Ginter, Filip, 1, 119
Gokirmak, Memduh, 1
Goldberg, Yoav, 207
Gómez-Rodríguez, Carlos, 152
Guo, Jiang, 52

Habash, Nizar, 1
Hajic jr., Jan, 1
Hajic, Jan, 1

Harris, Kim, 1
Heinecke, Johannes, 111
Henderson, James, 228
Hinrichs, Erhard, 126
Hlavacova, Jaroslava, 1
Hornby, Ryan, 198

Ji, Tao, 237
Johnson, Mark, 134

Kırnap, Ömer, 80
Kanayama, Hiroshi, 1, 265
Kanerva, Jenna, 1, 119
Kayadelen, Tolga, 1
Kettnerová, Václava, 1
Kiperwasser, Eliyahu, 207
Kirchner, Jesse, 1
Kuhn, Jonas, 40
Kwak, Sookyoung, 1

Lan, Man, 237
Lando, Tatiana, 1
Lertpradit, Saran, 1
Leung, Herman, 1
Li, Josie, 1
Lim, KyungTae, 63
Liu, Ting, 52
Liu, Yang, 52, 143
Lopez, Adam, 100
Luotolahti, Juhani, 1, 119

Macketanz, Vivien, 1
Manabe, Hitoshi, 71
Mandl, Michael, 1
Manning, Christopher D., 1, 20
Manurung, Ruli, 1
Marheinecke, Katrin, 1
Martínez Alonso, Héctor, 1
Matsumoto, Yuji, 71
Mendonca, Gustavo, 1
Merlo, Paola, 228
Missilä, Anna, 1
Moor, Christophe, 228
More, Amir, 253
Muraoka, Masayasu, 265

283

Nedoluzhko, Anna, 1
Nguyen, Dat Quoc, 134
Nitisaroj, Rattima, 1
Nivre, Joakim, 1, 207
Noji, Hiroshi, 71

Ojala, Stina, 1
Önder, Berkay Furkan, 80

Park, Jungyeul, 198
Petrov, Slav, 1
Pitler, Emily, 1
Poibeau, Thierry, 63
Popel, Martin, 1
Potthast, Martin, 1
Pyysalo, Sampo, 1

Qi, Peng, 20
Qian, Xian, 143

Reddy, Siva, 1
Rehm, Georg, 1

Sagot, Benoît, 243
Sanguinetti, Manuela, 1
Sarkar, Sudeshna, 182
Sato, Motoki, 71
Schill, Erik, 126
Schuster, Sebastian, 1
Seddah, Djamé, 243
Shao, Yan, 207
Shi, Tianze, 31
Shimada, Atsuko, 1
Simi, Maria, 1
Sofroniev, Pavel, 126
Stella, Antonio, 1
Straka, Milan, 1, 88
Straková, Jana, 88
Strnadová, Jana, 1
Stymne, Sara, 207
Sulubacak, Umut, 1

Taji, Dima, 1
Taylor, Clark, 198
Teng, Dechuan, 52
Tsarfaty, Reut, 253
Tufiş, Dan, 174
Tyers, Francis, 1

Uresova, Zdenka, 1
Uszkoreit, Hans, 1

Vania, Clara, 100
Vilares, David, 152

Wang, Hao, 191
Wang, Haozhou, 228
Wang, Yuxuan, 52
Wisniewski, Guillaume, 163
Wu, Felix G., 31
Wu, Yuanbin, 237

Yoshikawa, Katsumasa, 265
Yu, Kuan, 126
Yu, Xiang, 40
Yu, Zhuoran, 1
Yuret, Deniz, 80
Yvon, François, 163

Zaffar, Affan, 182
Zeman, Daniel, 1
Zhang, Xingxing, 100
Zhang, Zhisong, 191
Zhao, Hai, 191
Zhao, Huaipeng, 52
Zheng, Bo, 52

	Program
	CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
	Stanford's Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task
	Combining Global Models for Parsing Universal Dependencies
	IMS at the CoNLL 2017 UD Shared Task: CRFs and Perceptrons Meet Neural Networks
	The HIT-SCIR System for End-to-End Parsing of Universal Dependencies
	A System for Multilingual Dependency Parsing based on Bidirectional LSTM Feature Representations
	Adversarial Training for Cross-Domain Universal Dependency Parsing
	Parsing with Context Embeddings
	Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe
	UParse: the Edinburgh system for the CoNLL 2017 UD shared task
	Multi-Model and Crosslingual Dependency Analysis
	TurkuNLP: Delexicalized Pre-training of Word Embeddings for Dependency Parsing
	The parse is darc and full of errors: Universal dependency parsing with transition-based and graph-based algorithms
	A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing
	A non-DNN Feature Engineering Approach to Dependency Parsing -- FBAML at CoNLL 2017 Shared Task
	A non-projective greedy dependency parser with bidirectional LSTMs
	LIMSI@CoNLL'17: UD Shared Task
	RACAI's Natural Language Processing pipeline for Universal Dependencies
	Delexicalized transfer parsing for low-resource languages using transformed and combined treebanks
	A Transition-based System for Universal Dependency Parsing
	Corpus Selection Approaches for Multilingual Parsing from Raw Text to Universal Dependencies
	From Raw Text to Universal Dependencies - Look, No Tags!
	Initial Explorations of CCG Supertagging for Universal Dependency Parsing
	CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years Later
	A Fast and Lightweight System for Multilingual Dependency Parsing
	The ParisNLP entry at the ConLL UD Shared Task 2017: A Tale of a #ParsingTragedy
	Universal Joint Morph-Syntactic Processing: The Open University of Israel's Submission to The CoNLL 2017 Shared Task
	A Semi-universal Pipelined Approach to the CoNLL 2017 UD Shared Task
	A rule-based system for cross-lingual parsing of Romance languages with Universal Dependencies

